WO2020188750A1 - Accumulator and refrigeration cycle device - Google Patents

Accumulator and refrigeration cycle device Download PDF

Info

Publication number
WO2020188750A1
WO2020188750A1 PCT/JP2019/011478 JP2019011478W WO2020188750A1 WO 2020188750 A1 WO2020188750 A1 WO 2020188750A1 JP 2019011478 W JP2019011478 W JP 2019011478W WO 2020188750 A1 WO2020188750 A1 WO 2020188750A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
liquid level
container
accumulator
contact
Prior art date
Application number
PCT/JP2019/011478
Other languages
French (fr)
Japanese (ja)
Inventor
圭 古久保
雄大 森川
宏亮 浅沼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/011478 priority Critical patent/WO2020188750A1/en
Priority to EP19920032.0A priority patent/EP3943838A4/en
Priority to JP2021506895A priority patent/JP7003323B2/en
Publication of WO2020188750A1 publication Critical patent/WO2020188750A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level

Definitions

  • the present invention relates to an accumulator and a refrigeration cycle device provided with a liquid level detection device.
  • the liquid level detection device is externally attached to the container.
  • the liquid level detection device is connected to the container by two pressure equalizing pipes, and is arranged in a pipe that reproduces the same liquid level position as in the container and above and below the liquid level of the liquid refrigerant in the pipe. It has a buoy that moves up and down according to the movement, and a sensor that detects the movement of a magnet provided on the buoy and detects the liquid level position.
  • the liquid level detection device since the liquid level detection device is externally attached to the container, the liquid level is not disturbed by the force of the gas-liquid mixed refrigerant flowing into the accumulator from the outside. Therefore, it is possible to stably detect the accurate liquid level position.
  • Patent Document 1 two pressure equalizing pipes are joined to the container, and there is a possibility of causing refrigerant leakage from the welded portion of the jointed portion of each pressure equalizing pipe.
  • Patent Document 1 since the liquid level detection device has a structure externally attached to the container, a wide arrangement space is required. On the other hand, if the liquid level detection device is incorporated in the container, the problem of placement space will be improved, but the effect of the liquid level rippling due to the momentum of the gas-liquid mixed refrigerant flowing into the accumulator from the outside will be affected. A structure that does not receive is required.
  • the present invention is for solving the above problems, reducing the number of joints between the container and the liquid level detection device to reduce the possibility of refrigerant leakage, and suppressing the influence of ripples on the liquid level. It is an object of the present invention to provide an accumulator and a refrigeration cycle device capable of stably detecting a height.
  • the accumulator according to the present invention includes a container and a liquid level detecting device that is joined through the upper part of the container and extends in the height direction of the container, and the liquid level detecting device is a liquid of liquid refrigerant accumulated in the container. It is provided with a float that moves up and down according to the vertical movement of the surface, and is provided with a sensor unit that detects the liquid level position using the float and a protective tube that is arranged so as to surround the sensor unit and protects the float.
  • the liquid level detection device since the liquid level detection device has only one joint with the container, the number of joints can be reduced to a minimum, and the possibility of refrigerant leakage from the joint can be reduced. Further, since the protective tube for protecting the float is provided, it is possible to suppress the influence of the ripple of the liquid level and stably detect the liquid level.
  • FIG. It is a perspective view which shows the accumulator 1 which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows the internal structure of the accumulator 1 which concerns on Embodiment 1.
  • FIG. It is an upper enlarged view of the accumulator 1 which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows the liquid level detection apparatus 5 of the accumulator 1 which concerns on Embodiment 1.
  • FIG. It is operation explanatory drawing of the liquid level detection apparatus 5 of the accumulator 1 which concerns on Embodiment 1.
  • FIG. It is a figure which shows the comparative example.
  • FIG. shows the refrigerant circuit of the refrigerating cycle apparatus provided with the accumulator of Embodiment 1.
  • FIG. 1 It is sectional drawing of the liquid level detection apparatus 5 of the accumulator 1 which concerns on Embodiment 2.
  • FIG. It is sectional drawing which shows the arrangement relation of each part in the sensor part 10 of the liquid level detection device 5 of the accumulator 1 which concerns on Embodiment 2.
  • FIG. 1 is sectional drawing which shows the arrangement relation of each part in the sensor part 10 of the liquid level detection device 5 of the accumulator 1 which concerns on Embodiment 2.
  • FIG. 1 is a perspective view showing an accumulator 1 according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the internal configuration of the accumulator 1 according to the first embodiment.
  • the accumulator 1 is a vertically long container 2, an inlet pipe 3 for inflowing refrigerant into the container 2, an outlet pipe 4 for flowing out the refrigerant to the outside of the container 2, and a position of the liquid level of the liquid refrigerant accumulated in the container 2. It is provided with a liquid level detecting device 5 for detecting the above.
  • the liquid level detection device 5 is inserted by penetrating the container 2 from the upper part into the inside, and is arranged so as to extend in the height direction of the container 2.
  • the liquid level detection device 5 is joined to the container 2 by welding via a tube base 6. In this way, the liquid level detection device 5 is joined to the container 2 at one location of the tube base 6.
  • the joint between the liquid level detection device 5 and the container 2 can have a likelihood at the height positions of the contact 12 and the contact 13 described later in the liquid level detection device 5, and the airtightness of the joint can be maintained. For example, joining by screwing may be used.
  • FIG. 3 is an enlarged upper view of the accumulator 1 according to the first embodiment, and is a detailed view showing a part of the liquid level detection device 5 cut out.
  • FIG. 4 is a cross-sectional view showing a liquid level detection device 5 of the accumulator 1 according to the first embodiment.
  • FIG. 5 is an operation explanatory view of the liquid level detection device 5 of the accumulator 1 according to the first embodiment.
  • the liquid level detection device 5 includes a sensor unit 10 that detects the liquid level position using the float 14 and a protective tube 20 that is arranged so as to surround the sensor unit 10 and protects the float 14.
  • the sensor unit 10 is formed by extending the contact 12 and the contact 13 in the height direction of the container 2, and corresponds to the built-in pipe 11 incorporating the contact 12 and the contact 13 and the liquid level of the liquid refrigerant accumulated in the container 2. It is provided with an annular float 14 that moves up and down inside the protective tube 20.
  • the built-in tube 11 is made of a non-magnetic material.
  • the built-in tube 11 penetrates the float 14 and supports the raising and lowering operation of the float 14.
  • a magnet 15 for turning on and off the contact 12 and the contact 13 is embedded in the buoy 14.
  • the contact 12 and the contact 13 are composed of, for example, a reed switch.
  • the contact 12 and the contact 13 are connected by a wiring 16 and are installed at different height positions in the built-in pipe 11.
  • the contact 12 and the contact 13 are turned on by the magnet 15, and the liquid level position is detected based on the signals from the contact 12 and the contact 13.
  • the contact 12 is set for the purpose of preventing the excess liquid refrigerant accumulated in the container 2 from flowing from the container 2 into the compressor (not shown) and causing liquid compression in the compressor. It is installed at the height of the highest liquid level.
  • the contact 13 is installed at the optimum liquid level level position set for the purpose of avoiding insufficient amount of oil returned from the accumulator 1 to the compressor together with the refrigerant and causing the compressor to seize and be damaged. ..
  • the installation position and number of contacts are not limited to this, and are arbitrary.
  • a protective tube 20 for protecting the sensor unit 10 is provided.
  • the protective tube 20 will be described.
  • the protection tube 20 is a tube that extends in the height direction of the container 2 and is located on the outer periphery of the sensor unit 10 to protect the sensor unit 10.
  • the protective tube 20 has a role of stabilizing the operation of the float 14 without becoming unstable due to the rippling liquid level in the container 2.
  • a pilot hole 17 and an upper hole 18 are formed in the lower part and the upper part of the side surface of the protective tube 20. Refrigerant flows into the inside of the protection tube 20 from the prepared hole 17, and a stable liquid level is maintained in the protection tube 20. That is, even if the liquid level 30 (see FIG. 5) is rippling in the container 2, a stable liquid level 19 (see FIG. 5) is maintained in the protective tube 20.
  • the upper hole 18 is provided for venting gas.
  • the refrigerant gasified in the protective pipe 20 is discharged from the upper hole 18 to the outside of the protective pipe 20.
  • the dimensions of the prepared hole 17 and the upper hole 18 are arbitrary diameters depending on the inflow amount of the refrigerant.
  • the lower end and upper end of the protective tube 20 are a lower throttle portion 21 and an upper throttle portion 22 having a narrowed inner diameter.
  • the lower throttle portion 21 is used as a space where suspended matter accumulated in the protective tube 20 can be stored. By accumulating the deposited foreign matter 23 in this space, it is possible to prevent the float 14 from being caught by the deposited foreign matter 23.
  • the height position of the prepared hole 17 is set in consideration of the amount of accumulated foreign matter 23 accumulated in the lower throttle portion 21 of the protective tube 20. Specifically, the height position of the prepared hole 17 is set so that the volume in the protective tube 20 below the prepared hole 17 is equal to or larger than the expected volume of the deposited foreign matter 23. This prevents the pilot hole 17 from being blocked by the deposited foreign matter 23.
  • the protective tube 20 is supported by the upper throttle portion 22 and the lower throttle portion 21 at both upper and lower ends of the built-in tube 11.
  • the upper throttle portion 22 supports the upper end portion 11b of the built-in pipe 11 by welding
  • the lower throttle portion 21 supports the lower end portion 11a of the built-in pipe 11 via the gap 21a.
  • the joining between the upper throttle portion 22 of the protective tube 20 and the upper end portion of the built-in tube 11 is not limited to welding, and the contact 12 and the contact 13 of the sensor portion 10 can have a likelihood and airtightness can be improved. If it can be maintained, it may be joined by screwing.
  • the buoy 14 of the sensor unit 10 floats on the liquid level 19 in the protective tube 20 as shown in FIG. 5, and the liquid level 19 rises 31 and falls.
  • the buoy 14 also moves up and down following 32.
  • the buoy 14 reaches the position of the contact 12 or the contact 13
  • the contact at the height position of the buoy 14 is turned on by the magnet 15 embedded in the buoy 14, while the contact at a position different from the height position of the buoy 14. Is turned off.
  • the liquid level position is detected based on the signal of the turned-on contact.
  • FIG. 6 is a diagram showing a comparative example.
  • the liquid level 30 undulates due to the force of the gas-liquid mixed refrigerant flowing into the container 2 from the outside, and the float 14 moves up and down to obtain an accurate position of the liquid level 30. Cannot be detected.
  • the buoy 14 is at the height position of the contact (not shown), the buoy 14 moves up and down under the influence of the ripple of the liquid surface 30, so that the contact is repeatedly turned on and off. Therefore, there are inconveniences such as contact failure.
  • the buoy 14 of the sensor unit 10 is not directly affected by the refrigerant rippling in the container 2, and is a protective tube. It floats on the stable liquid level 19 in 20, and the liquid level position can be accurately detected.
  • the upper end portion 11b of the built-in pipe 11 having a built-in contact is joined to and fixed to the container 2, but the lower end portion 11a is a free end. Therefore, due to the waviness of the liquid level 30, the built-in pipe 11 may vibrate with the joint portion of the upper end portion 11b as a fulcrum, and the joint portion may be broken.
  • the protective tube 20 joins and supports the upper end portion 11b of the built-in tube 11 with the upper throttle portion 22, while the lower end portion 11a of the built-in pipe 11 is joined and supported by the lower throttle portion 21 with the gap 21a. Supporting through. Therefore, even if the built-in tube 11 portion protruding downward from the lower throttle portion 21 vibrates under the force of the liquid surface rippling in the container 2, the vibration width is limited to the width of the gap 21a. The vibration width can be reduced. As a result, vibration of the joint portion of the upper end portion 11b of the built-in pipe 11 can be alleviated, and breakage of the joint portion can be prevented.
  • the gap 21a is, for example, 0.05 mm to 0.35 mm in the first embodiment. However, the gap 21a may be determined in consideration of the vibration level, assembly workability, and workability, and is not limited to the above range.
  • the accumulator 1 of the first embodiment configured as described above constitutes a refrigeration cycle apparatus as shown in FIG. 7 below.
  • FIG. 7 is a diagram showing a refrigerant circuit of the refrigeration cycle device provided with the accumulator of the first embodiment.
  • the refrigeration cycle device 60 includes an accumulator 1, a compressor 61, a condenser 62, a pressure reducing device 63 composed of an expansion valve and the like, and an evaporator 64.
  • the compressor 61 when the compressor 61 is driven, the refrigerant flows in the order of the condenser 62, the decompression device 63, the evaporator 64, and the accumulator 1, and repeats the cycle of returning to the compressor 61.
  • the compressor 61 rotates at high speed, a large amount of refrigerant flows in the refrigerant circuit, and the refrigerant starts to temporarily stay in the accumulator 1.
  • the float 14 rises according to the liquid level position of the liquid refrigerant.
  • the upper contact 12 is turned on by the magnet 15 embedded in the buoy 14, and the position of the liquid surface is detected based on the signal from the contact 12.
  • the contact 12 is arranged at the height position of the highest liquid level as described above. Therefore, when the contact 12 is turned on, the liquid level 19 is lowered by controlling the compressor 61 from high-speed rotation to low-speed rotation. As a result, it is possible to prevent the liquid refrigerant from excessively flowing into the compressor 61 and damaging the compressor 61 due to liquid compression.
  • the contact 13 is arranged at the height position of the lowest liquid level as described above. Therefore, when the liquid level 19 is lowered and the contact 13 is turned on, the liquid level of the accumulator 1 is raised by controlling the compressor 61 from low-speed rotation to high-speed rotation. This makes it possible to prevent damage due to seizure of the compressor due to insufficient oil return.
  • the liquid level detection result is applied to the control of the compressor 61 to prevent damage to the compressor 61. Is possible.
  • the first embodiment includes the container 2 and the liquid level detecting device 5 which is joined through the upper part of the container 2 and extends in the height direction of the container 2.
  • the liquid level detection device 5 includes a buoy 14 that moves up and down according to the vertical movement of the liquid level of the liquid refrigerant accumulated in the container 2. It is provided with a protective tube 20 which is arranged so as to surround the float 14 and protects the float 14.
  • the liquid level detection device 5 and the container 2 have only one joint, the number of joints can be minimized as compared with the conventional configuration in which two are required. Therefore, the leakage of the refrigerant from the joint can be minimized.
  • the joint between the liquid level detection device 5 and the container 2 may be welded or screwed as described above, and if the liquid level detection device 5 is screwed in, the sensor unit 10 of the liquid level detection device 5 may be replaced if it fails. It's easy to do.
  • the protective tube 20 for protecting the sensor unit 10 since the protective tube 20 for protecting the sensor unit 10 is provided, it is possible to prevent the buoy 14 of the sensor unit 10 from being directly affected by the buoyant refrigerant in the accumulator 1, and the buoy 14 The elevating operation can be stabilized. As a result, the liquid level position can be accurately detected.
  • the sensor unit 10 is a magnet 15 embedded in the buoy 14, a contact point that is turned on and off by the magnet 15, and a tube that penetrates the annular buoy 14 and extends in the height direction of the container 2. It includes a contact 12 and a built-in tube 11 containing the contact 13.
  • the protective tube 20 has an upper throttle portion 22 and a lower throttle portion 21 whose inner diameters are narrowed at both upper and lower ends, and the upper and lower throttle portions 22 and the lower throttle portion 21 support the upper and lower ends of the built-in tube 11. ..
  • the protective tube 20 supports the upper and lower end portions of the built-in tube 11 by the upper throttle portion 22 and the lower throttle portion 21, the lower end portion 11a of the built-in tube 11 is not supported and is a free end.
  • the vibration of the built-in tube 11 can be suppressed as compared with the structure described above. Therefore, it is possible to suppress a problem that the built-in pipe 11 vibrates during transportation or due to the ripple of the refrigerant in the accumulator 1, leading to breakage.
  • the lower throttle portion 21 is used as a space where the accumulated foreign matter 23 accumulated in the protective tube 20 can be stored. By accumulating the deposited foreign matter 23 in this space, it is possible to prevent the float 14 from being caught by the deposited foreign matter 23.
  • the protective tube 20 has a pilot hole 17 for receiving the liquid refrigerant collected in the container 2 into the protective tube 20, and an upper hole 18 for venting gas from the inside to the outside of the protective tube 20. It is formed.
  • the liquid refrigerant flows into the protective tube 20 from the prepared hole 17, while the gas filled in the protective tube 20 is released from the upper hole 18. Due to the effect of these two holes, a stable refrigerant height can be detected.
  • the height position of the prepared hole 17 is such that the volume in the protective tube 20 below the prepared hole 17 is equal to or larger than the volume of the deposited foreign matter 23 which is assumed to be deposited in the protective tube 20. It is set to be a volume.
  • the accumulator 1 constitutes the refrigeration cycle device 60 together with the compressor 61, the condenser 62, the decompression device 63, and the evaporator 64.
  • the refrigerating cycle device 60 can be applied to an air conditioner, a refrigerator freezer, or the like.
  • Embodiment 2 has a structure capable of confirming the soundness of the liquid level detection device 5.
  • the basic configuration of the accumulator 1 of the second embodiment is the same as that of the first embodiment, and the second embodiment will be described below with a focus on the additional structure from the first embodiment.
  • the soundness of the liquid level detection device 5 is confirmed. Specifically, the soundness of the detection operation such as whether the contact 12 and the contact 13 are turned on by the magnet 15 and the soundness of the installation position such as whether the installation positions of the contact 12 and the contact 13 are correct are confirmed.
  • the second embodiment relates to a technique suitable for confirming the soundness of these. Hereinafter, a specific description will be given.
  • FIG. 8 is a cross-sectional view of the liquid level detection device 5 of the accumulator 1 according to the second embodiment.
  • FIG. 9 is a cross-sectional view showing the arrangement relationship of each part in the sensor part 10 of the liquid level detection device 5 of the accumulator 1 according to the second embodiment.
  • the configuration of the liquid level detection device 5 is different from that in the first embodiment.
  • the liquid level detection device 5 of the second embodiment is a pipe that penetrates the float 14 and extends in the height direction of the container 2, and includes a detection rod insertion pipe 40 that includes the built-in pipe 11.
  • the detection rod insertion tube 40 forms a space 42 for inserting the detection rod 41 between the detection rod insertion tube 40 and the built-in tube 11 contained in the detection rod insertion tube 40.
  • a magnet 43 is attached to the tip of the detection rod 41 in the insertion direction, that is, the lower end.
  • Other structures are the same as those in the first embodiment.
  • the detection rod 41 can be inserted through the upper end opening 40a of the detection rod insertion tube 40 to confirm the detection of the contact 12 and the contact 13. That is, when the magnet 43 attached to the lower end of the detection rod 41 reaches the height positions of the contact 12 and the contact 13, each of the contact 12 and the contact 13 is turned on by the magnet 43. According to this method, the soundness of the operation of the contact 12 and the contact 13 can be confirmed without turning over the accumulator 1. It is preferable that such an operation check can be performed not only at the time of shipment but also after the product is installed, but in the second embodiment, the detection rod 41 is simply inserted into the detection rod insertion tube 40 at either timing. You can.
  • the detection rod 41 is marked in advance. That is, the detection rod 41 is inserted into the detection rod insertion tube 40, and the detection rod 41 is provided with a mark in a state where the magnet 43 reaches the regular height position of the contact 12. The same applies to the contact 13. Then, when the detection rod 41 is inserted into the detection rod insertion tube 40 and inserted to a position with a mark, if the corresponding contact is activated, it can be determined that the installation height of the contact is correct. The installation position can be confirmed by simply inserting the detection rod 41 into the detection rod insertion tube 40 at both the time of shipment and the timing after the product is installed.
  • the second embodiment is a tube that penetrates the float 14 and extends in the height direction of the container 2, and includes a detection rod insertion tube 40 that includes the built-in tube 11.
  • the detection rod insertion tube 40 forms a space 42 for inserting the detection rod 41 between the detection rod insertion tube 40 and the built-in tube 11 contained in the detection rod insertion tube 40.
  • the operation of the contact 12 and the contact 13 can be confirmed only by inserting the detection rod 41 provided with the magnet 43 into the detection rod insertion tube 40. Therefore, the work of turning over the accumulator 1 is unnecessary, the simplicity of the confirmation work can be improved, and the detection accuracy can be improved. Then, these confirmations can be performed both at the time of shipment of the product and after the product is installed. Therefore, if a failure of the contact 12 and the contact 13 is suspected after the product is installed, the presence or absence of the failure can be easily confirmed.
  • the accumulator 1 of the second embodiment can be applied to the refrigeration cycle device 60 of FIG. 7 as in the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Level Indicators Using A Float (AREA)

Abstract

An accumulator is provided with a vessel and a liquid level detection device extending through and joined to an upper part of the vessel and extending in a height direction of the vessel. The liquid level detection device is provided with a float that rises and falls corresponding to upward and downward movement of a water level of a liquid refrigerant accumulated inside the vessel, a sensor part that detects a water level position using the float, and a protective tube which is disposed surrounding the sensor part and protects the float.

Description

アキュームレータおよび冷凍サイクル装置Accumulator and refrigeration cycle equipment
 本発明は、液面検知装置を備えたアキュームレータおよび冷凍サイクル装置に関する。 The present invention relates to an accumulator and a refrigeration cycle device provided with a liquid level detection device.
 従来、容器内の液冷媒の液面位置を検知する液面検知装置を備えたアキュームレータがある(例えば、特許文献1参照)。特許文献1では、液面検知装置が容器に対して外付けの構成となっている。具体的には、液面検知装置は、容器と2本の均圧管で接続され、容器内と同じ液面位置が再現された管と、管内に配置され、管内の液冷媒の液面の上下動に応じて昇降する浮子と、浮子に設けられた磁石の動きを検知し、液面位置を検知するセンサとを有している。 Conventionally, there is an accumulator equipped with a liquid level detection device that detects the liquid level position of the liquid refrigerant in the container (see, for example, Patent Document 1). In Patent Document 1, the liquid level detection device is externally attached to the container. Specifically, the liquid level detection device is connected to the container by two pressure equalizing pipes, and is arranged in a pipe that reproduces the same liquid level position as in the container and above and below the liquid level of the liquid refrigerant in the pipe. It has a buoy that moves up and down according to the movement, and a sensor that detects the movement of a magnet provided on the buoy and detects the liquid level position.
 この構成では、液面検知装置が容器に対して外付けとなっているため、アキュームレータ内に外部から流入する気液混合冷媒の勢いによって液面が乱されることがない。このため、正確な液面位置を安定して検知することが可能である。 In this configuration, since the liquid level detection device is externally attached to the container, the liquid level is not disturbed by the force of the gas-liquid mixed refrigerant flowing into the accumulator from the outside. Therefore, it is possible to stably detect the accurate liquid level position.
特開平3-186166号公報Japanese Unexamined Patent Publication No. 3-186166
 しかしながら、特許文献1では、容器に2本の均圧管が接合されており、各均圧管の接合箇所の溶接部分から冷媒漏れを引き起こす可能性がある。 However, in Patent Document 1, two pressure equalizing pipes are joined to the container, and there is a possibility of causing refrigerant leakage from the welded portion of the jointed portion of each pressure equalizing pipe.
 また、特許文献1では、液面検知装置が容器に外付けされた構造であるため、配置スペースを広く必要とする。これに対し、液面検知装置を容器内に組み込んだ構造とすれば、配置スペースの問題は改善されるが、アキュームレータ内に外部から流入する気液混合冷媒の勢いによる液面の波立ちの影響を受けない構造が求められる。 Further, in Patent Document 1, since the liquid level detection device has a structure externally attached to the container, a wide arrangement space is required. On the other hand, if the liquid level detection device is incorporated in the container, the problem of placement space will be improved, but the effect of the liquid level rippling due to the momentum of the gas-liquid mixed refrigerant flowing into the accumulator from the outside will be affected. A structure that does not receive is required.
 本発明は、上記課題を解決するためのものであり、容器と液面検知装置との接合箇所を少なくして冷媒漏れの可能性を低減し、かつ液面の波立ちの影響を抑えて液面高さを安定して検知することが可能なアキュームレータおよび冷凍サイクル装置を提供することを目的とする。 The present invention is for solving the above problems, reducing the number of joints between the container and the liquid level detection device to reduce the possibility of refrigerant leakage, and suppressing the influence of ripples on the liquid level. It is an object of the present invention to provide an accumulator and a refrigeration cycle device capable of stably detecting a height.
 本発明に係るアキュームレータは、容器と、容器の上部を貫通して接合され、容器の高さ方向に延びる液面検知装置とを備え、液面検知装置は、容器内に溜まった液冷媒の液面の上下動に応じて昇降する浮子を備え、浮子を用いて液面位置を検知するセンサ部と、センサ部を取り囲んで配置され、浮子を保護する保護管とを備えたものである。 The accumulator according to the present invention includes a container and a liquid level detecting device that is joined through the upper part of the container and extends in the height direction of the container, and the liquid level detecting device is a liquid of liquid refrigerant accumulated in the container. It is provided with a float that moves up and down according to the vertical movement of the surface, and is provided with a sensor unit that detects the liquid level position using the float and a protective tube that is arranged so as to surround the sensor unit and protects the float.
 本発明によれば、液面検知装置の容器との接合箇所は1箇所であるため、接合箇所を最小限に減らすことができ、接合箇所からの冷媒漏れの可能性を低減できる。また、浮子を保護する保護管を備えたので、液面の波立ちの影響を抑えて液面高さを安定して検知することが可能である。 According to the present invention, since the liquid level detection device has only one joint with the container, the number of joints can be reduced to a minimum, and the possibility of refrigerant leakage from the joint can be reduced. Further, since the protective tube for protecting the float is provided, it is possible to suppress the influence of the ripple of the liquid level and stably detect the liquid level.
実施の形態1に係るアキュームレータ1を示す斜視図である。It is a perspective view which shows the accumulator 1 which concerns on Embodiment 1. FIG. 実施の形態1に係るアキュームレータ1の内部構成を示す断面図である。It is sectional drawing which shows the internal structure of the accumulator 1 which concerns on Embodiment 1. FIG. 実施の形態1に係るアキュームレータ1の上部拡大図である。It is an upper enlarged view of the accumulator 1 which concerns on Embodiment 1. FIG. 実施の形態1に係るアキュームレータ1の液面検知装置5を示す断面図である。It is sectional drawing which shows the liquid level detection apparatus 5 of the accumulator 1 which concerns on Embodiment 1. FIG. 実施の形態1に係るアキュームレータ1の液面検知装置5の動作説明図である。It is operation explanatory drawing of the liquid level detection apparatus 5 of the accumulator 1 which concerns on Embodiment 1. FIG. 比較例を示す図である。It is a figure which shows the comparative example. 実施の形態1のアキュームレータを備えた冷凍サイクル装置の冷媒回路を示す図である。It is a figure which shows the refrigerant circuit of the refrigerating cycle apparatus provided with the accumulator of Embodiment 1. FIG. 実施の形態2に係るアキュームレータ1の液面検知装置5の断面図である。It is sectional drawing of the liquid level detection apparatus 5 of the accumulator 1 which concerns on Embodiment 2. FIG. 実施の形態2に係るアキュームレータ1の液面検知装置5のセンサ部10における各部の配置関係を示す断面図である。It is sectional drawing which shows the arrangement relation of each part in the sensor part 10 of the liquid level detection device 5 of the accumulator 1 which concerns on Embodiment 2. FIG.
 以下、アキュームレータ1の実施の形態について、図面を参照して説明する。なお、図面の形態は一例であり、本実施の形態を限定するものではない。また、各図において同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、以下の図面では、各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, an embodiment of the accumulator 1 will be described with reference to the drawings. The form of the drawing is an example, and does not limit the form of the present embodiment. In addition, those having the same reference numerals in the respective figures are the same or equivalent thereof, which are common to the entire text of the specification. Further, in the drawings below, the size relationship of each component may differ from the actual one.
実施の形態1.
[アキュームレータ1の構成]
 図1は、実施の形態1に係るアキュームレータ1を示す斜視図である。図2は、実施の形態1に係るアキュームレータ1の内部構成を示す断面図である。
Embodiment 1.
[Configuration of accumulator 1]
FIG. 1 is a perspective view showing an accumulator 1 according to the first embodiment. FIG. 2 is a cross-sectional view showing the internal configuration of the accumulator 1 according to the first embodiment.
 アキュームレータ1は、縦長の容器2と、容器2内へ冷媒を流入させる入口配管3と、容器2の外部へ冷媒を流出させる出口配管4と、容器2内に溜まった液冷媒の液面の位置を検知する液面検知装置5とを備えている。 The accumulator 1 is a vertically long container 2, an inlet pipe 3 for inflowing refrigerant into the container 2, an outlet pipe 4 for flowing out the refrigerant to the outside of the container 2, and a position of the liquid level of the liquid refrigerant accumulated in the container 2. It is provided with a liquid level detecting device 5 for detecting the above.
 液面検知装置5は、容器2を上部から内部に貫通して挿入され、容器2の高さ方向に延びて配置されている。液面検知装置5は、容器2に管台6を介して溶接で接合されている。このように、液面検知装置5は、管台6部分の一箇所で容器2と接合されている。液面検知装置5と容器2との接合は、液面検知装置5の後述の接点12および接点13の高さ位置に尤度を持たせることができ、また接合箇所の気密性を保てるのであれば、ねじ込みによる接合でも良い。 The liquid level detection device 5 is inserted by penetrating the container 2 from the upper part into the inside, and is arranged so as to extend in the height direction of the container 2. The liquid level detection device 5 is joined to the container 2 by welding via a tube base 6. In this way, the liquid level detection device 5 is joined to the container 2 at one location of the tube base 6. The joint between the liquid level detection device 5 and the container 2 can have a likelihood at the height positions of the contact 12 and the contact 13 described later in the liquid level detection device 5, and the airtightness of the joint can be maintained. For example, joining by screwing may be used.
 図3は、実施の形態1に係るアキュームレータ1の上部拡大図であって、液面検知装置5の一部を切断して示した詳細図である。図4は、実施の形態1に係るアキュームレータ1の液面検知装置5を示す断面図である。図5は、実施の形態1に係るアキュームレータ1の液面検知装置5の動作説明図である。 FIG. 3 is an enlarged upper view of the accumulator 1 according to the first embodiment, and is a detailed view showing a part of the liquid level detection device 5 cut out. FIG. 4 is a cross-sectional view showing a liquid level detection device 5 of the accumulator 1 according to the first embodiment. FIG. 5 is an operation explanatory view of the liquid level detection device 5 of the accumulator 1 according to the first embodiment.
 液面検知装置5は、浮子14を用いて液面位置を検知するセンサ部10と、センサ部10を取り囲んで配置され、浮子14を保護する保護管20とを備えている。センサ部10は、接点12および接点13と、容器2の高さ方向に延びて形成され、接点12および接点13を内蔵する内蔵管11と、容器2内に溜まった液冷媒の液面に応じて保護管20の内部で昇降する環状の浮子14とを備えている。 The liquid level detection device 5 includes a sensor unit 10 that detects the liquid level position using the float 14 and a protective tube 20 that is arranged so as to surround the sensor unit 10 and protects the float 14. The sensor unit 10 is formed by extending the contact 12 and the contact 13 in the height direction of the container 2, and corresponds to the built-in pipe 11 incorporating the contact 12 and the contact 13 and the liquid level of the liquid refrigerant accumulated in the container 2. It is provided with an annular float 14 that moves up and down inside the protective tube 20.
 内蔵管11は、非磁性の材料で構成されている。内蔵管11は、浮子14を貫通しており、浮子14の昇降動作を支持する。浮子14には、接点12および接点13をオンオフする磁石15が埋め込まれている。 The built-in tube 11 is made of a non-magnetic material. The built-in tube 11 penetrates the float 14 and supports the raising and lowering operation of the float 14. A magnet 15 for turning on and off the contact 12 and the contact 13 is embedded in the buoy 14.
 接点12および接点13は、例えばリードスイッチで構成されている。接点12および接点13は配線16で接続されており、内蔵管11内において異なる高さ位置に設置されている。接点12および接点13は、磁石15によってオンし、接点12および接点13からの信号に基づいて液面位置が検知される。ここでは、接点12は、容器2内に溜まった過剰な液冷媒が、容器2から圧縮機(図示せず)へ流入し、圧縮機にて液圧縮が生じることを避けることを目的に設定された最高液面の高さ位置に設置されている。接点13は、冷媒と共にアキュームレータ1から圧縮機へ戻される油の量が不足し、圧縮機が焼き付いて破損するのを避けることを目的に設定された最適液面の高さ位置に設置されている。なお、接点の設置位置および個数は、これに限られたものではなく、任意である。 The contact 12 and the contact 13 are composed of, for example, a reed switch. The contact 12 and the contact 13 are connected by a wiring 16 and are installed at different height positions in the built-in pipe 11. The contact 12 and the contact 13 are turned on by the magnet 15, and the liquid level position is detected based on the signals from the contact 12 and the contact 13. Here, the contact 12 is set for the purpose of preventing the excess liquid refrigerant accumulated in the container 2 from flowing from the container 2 into the compressor (not shown) and causing liquid compression in the compressor. It is installed at the height of the highest liquid level. The contact 13 is installed at the optimum liquid level level position set for the purpose of avoiding insufficient amount of oil returned from the accumulator 1 to the compressor together with the refrigerant and causing the compressor to seize and be damaged. .. The installation position and number of contacts are not limited to this, and are arbitrary.
 そして、本実施の形態1の特徴とする構成としては、センサ部10を保護する保護管20を備えたことにある。以下、保護管20について説明する。 And, as a feature of the first embodiment, a protective tube 20 for protecting the sensor unit 10 is provided. Hereinafter, the protective tube 20 will be described.
 保護管20は、容器2の高さ方向に延びて形成され、センサ部10の外周に位置してセンサ部10を保護する管である。保護管20は、センサ部10を保護する役割の他、容器2内で波立つ液面によって浮子14の動作が不安定となることなく、安定させる役割を有する。 The protection tube 20 is a tube that extends in the height direction of the container 2 and is located on the outer periphery of the sensor unit 10 to protect the sensor unit 10. In addition to the role of protecting the sensor unit 10, the protective tube 20 has a role of stabilizing the operation of the float 14 without becoming unstable due to the rippling liquid level in the container 2.
 保護管20の側面の下部および上部には、下穴17および上穴18が形成されている。保護管20の内部には下穴17から冷媒が流入し、保護管20内では安定した液面が維持される。つまり、容器2内において液面30(図5参照)が波立っていても、保護管20内では安定した液面19(図5参照)が維持されるようになっている。上穴18は、ガス抜き用として設けられている。保護管20内でガス化した冷媒は、上穴18から保護管20外へと放出される。下穴17および上穴18の寸法は、冷媒の流入量により、任意の径とする。 A pilot hole 17 and an upper hole 18 are formed in the lower part and the upper part of the side surface of the protective tube 20. Refrigerant flows into the inside of the protection tube 20 from the prepared hole 17, and a stable liquid level is maintained in the protection tube 20. That is, even if the liquid level 30 (see FIG. 5) is rippling in the container 2, a stable liquid level 19 (see FIG. 5) is maintained in the protective tube 20. The upper hole 18 is provided for venting gas. The refrigerant gasified in the protective pipe 20 is discharged from the upper hole 18 to the outside of the protective pipe 20. The dimensions of the prepared hole 17 and the upper hole 18 are arbitrary diameters depending on the inflow amount of the refrigerant.
 保護管20の下端部および上端部は、内径を絞った下側絞り部21および上側絞り部22となっている。下側絞り部21は、保護管20内に滞留した浮遊物を溜めることができるスペースとして利用される。このスペース内に堆積異物23が溜まることで、堆積異物23による浮子14のひっかかりを防止できる。上述の下穴17の高さ位置は、保護管20の下側絞り部21内に滞留する堆積異物23の量を加味して設定されている。具体的には、下穴17から下の保護管20内の体積が、想定される堆積異物23の体積以上の体積となるように、下穴17の高さ位置が設定されている。これにより、下穴17が堆積異物23で塞がることを防止している。 The lower end and upper end of the protective tube 20 are a lower throttle portion 21 and an upper throttle portion 22 having a narrowed inner diameter. The lower throttle portion 21 is used as a space where suspended matter accumulated in the protective tube 20 can be stored. By accumulating the deposited foreign matter 23 in this space, it is possible to prevent the float 14 from being caught by the deposited foreign matter 23. The height position of the prepared hole 17 is set in consideration of the amount of accumulated foreign matter 23 accumulated in the lower throttle portion 21 of the protective tube 20. Specifically, the height position of the prepared hole 17 is set so that the volume in the protective tube 20 below the prepared hole 17 is equal to or larger than the expected volume of the deposited foreign matter 23. This prevents the pilot hole 17 from being blocked by the deposited foreign matter 23.
 そして、保護管20は、上側絞り部22および下側絞り部21で、内蔵管11の上下両端部を支持している。具体的には、上側絞り部22は、内蔵管11の上端部11bを溶接支持しており、下側絞り部21は、隙間21aを介して内蔵管11の下端部11aを支持している。保護管20の上側絞り部22と内蔵管11の上端部との接合は、溶接に限るものではなく、センサ部10の接点12および接点13に尤度を持たせることができ、また気密性を保てるのであれば、ねじ込みによる接合でも良い。 The protective tube 20 is supported by the upper throttle portion 22 and the lower throttle portion 21 at both upper and lower ends of the built-in tube 11. Specifically, the upper throttle portion 22 supports the upper end portion 11b of the built-in pipe 11 by welding, and the lower throttle portion 21 supports the lower end portion 11a of the built-in pipe 11 via the gap 21a. The joining between the upper throttle portion 22 of the protective tube 20 and the upper end portion of the built-in tube 11 is not limited to welding, and the contact 12 and the contact 13 of the sensor portion 10 can have a likelihood and airtightness can be improved. If it can be maintained, it may be joined by screwing.
 以上のように構成された液面検知装置5において、センサ部10の浮子14は、図5に示すように保護管20内の液面19上に浮いており、液面19の上昇31および下降32に追従して浮子14も昇降する。浮子14が、接点12または接点13の位置に達すると、浮子14の高さ位置の接点が、浮子14に埋め込まれた磁石15によってオンする一方、浮子14の高さ位置とは異なる位置の接点はオフとなる。オンした接点の信号に基づいて液面位置が検知される。 In the liquid level detection device 5 configured as described above, the buoy 14 of the sensor unit 10 floats on the liquid level 19 in the protective tube 20 as shown in FIG. 5, and the liquid level 19 rises 31 and falls. The buoy 14 also moves up and down following 32. When the buoy 14 reaches the position of the contact 12 or the contact 13, the contact at the height position of the buoy 14 is turned on by the magnet 15 embedded in the buoy 14, while the contact at a position different from the height position of the buoy 14. Is turned off. The liquid level position is detected based on the signal of the turned-on contact.
 ここで、保護管20の作用について説明する。まず、比較例として、保護管20を備えていない構成について説明する。 Here, the action of the protective tube 20 will be described. First, as a comparative example, a configuration without the protective tube 20 will be described.
 図6は、比較例を示す図である。
 図6に示すように保護管20を備えていない場合、容器2内に外部から流入する気液混合冷媒の勢いによって液面30の波立ち、浮子14が昇降して正確な液面30の位置を検知できない。また、浮子14が接点(図示せず)の高さ位置にあるときは、浮子14が液面30の波立ちの影響を受けて昇降するため、接点のオンオフが繰り返される。このため、接点の故障が生じるなどの不都合がある。
FIG. 6 is a diagram showing a comparative example.
As shown in FIG. 6, when the protective tube 20 is not provided, the liquid level 30 undulates due to the force of the gas-liquid mixed refrigerant flowing into the container 2 from the outside, and the float 14 moves up and down to obtain an accurate position of the liquid level 30. Cannot be detected. Further, when the buoy 14 is at the height position of the contact (not shown), the buoy 14 moves up and down under the influence of the ripple of the liquid surface 30, so that the contact is repeatedly turned on and off. Therefore, there are inconveniences such as contact failure.
 これに対し、実施の形態1では、センサ部10を保護する保護管20を備えたので、センサ部10の浮子14は、容器2内で波立つ冷媒の影響を直接、受けることなく、保護管20内の安定した液面19上に浮かんでおり、液面位置を正確に検知できる。 On the other hand, in the first embodiment, since the protective tube 20 for protecting the sensor unit 10 is provided, the buoy 14 of the sensor unit 10 is not directly affected by the refrigerant rippling in the container 2, and is a protective tube. It floats on the stable liquid level 19 in 20, and the liquid level position can be accurately detected.
 また、図6に示す比較例では、接点を内蔵した内蔵管11の上端部11bは、容器2に接合されて固定されているが、下端部11aは自由端となっている。このため、液面30の波立ちによって、内蔵管11が上端部11bの接合部を支点として振動し、接合部が折損する可能性がある。 Further, in the comparative example shown in FIG. 6, the upper end portion 11b of the built-in pipe 11 having a built-in contact is joined to and fixed to the container 2, but the lower end portion 11a is a free end. Therefore, due to the waviness of the liquid level 30, the built-in pipe 11 may vibrate with the joint portion of the upper end portion 11b as a fulcrum, and the joint portion may be broken.
 これに対し、実施の形態1では、保護管20は、上側絞り部22で内蔵管11の上端部11bを接合支持する一方、下側絞り部21で内蔵管11の下端部11aを、隙間21aを介して支持している。このため、下側絞り部21から下方に突出した内蔵管11部分が、容器2内で波立つ液面の力を受けて振動したとしても、その振動幅は、隙間21aの幅に限定され、振動幅を小さくできる。これにより、内蔵管11の上端部11bの接合部の振動を緩和し、接合部の折損を防止できる。なお、隙間21aは、本実施の形態1では、例えば0.05mm~0.35mmとしている。しかし、隙間21aは、振動のレベル、組立作業性および加工性を加味して決めればよく、上記の範囲に限定されない。 On the other hand, in the first embodiment, the protective tube 20 joins and supports the upper end portion 11b of the built-in tube 11 with the upper throttle portion 22, while the lower end portion 11a of the built-in pipe 11 is joined and supported by the lower throttle portion 21 with the gap 21a. Supporting through. Therefore, even if the built-in tube 11 portion protruding downward from the lower throttle portion 21 vibrates under the force of the liquid surface rippling in the container 2, the vibration width is limited to the width of the gap 21a. The vibration width can be reduced. As a result, vibration of the joint portion of the upper end portion 11b of the built-in pipe 11 can be alleviated, and breakage of the joint portion can be prevented. The gap 21a is, for example, 0.05 mm to 0.35 mm in the first embodiment. However, the gap 21a may be determined in consideration of the vibration level, assembly workability, and workability, and is not limited to the above range.
 以上のように構成された実施の形態1のアキュームレータ1は、次の図7に示すように冷凍サイクル装置を構成する。 The accumulator 1 of the first embodiment configured as described above constitutes a refrigeration cycle apparatus as shown in FIG. 7 below.
 図7は、実施の形態1のアキュームレータを備えた冷凍サイクル装置の冷媒回路を示す図である。
 冷凍サイクル装置60は、アキュームレータ1と、圧縮機61と、凝縮器62と、膨張弁などで構成された減圧装置63と、蒸発器64とを備えている。
FIG. 7 is a diagram showing a refrigerant circuit of the refrigeration cycle device provided with the accumulator of the first embodiment.
The refrigeration cycle device 60 includes an accumulator 1, a compressor 61, a condenser 62, a pressure reducing device 63 composed of an expansion valve and the like, and an evaporator 64.
 以下、冷媒回路の動作と、その動作に併せて液面検知装置5の動作および圧縮機61の制御の一例について説明する。 Hereinafter, an example of the operation of the refrigerant circuit, the operation of the liquid level detection device 5 and the control of the compressor 61 along with the operation will be described.
 冷媒回路では、圧縮機61が駆動されると、冷媒が凝縮器62、減圧装置63、蒸発器64、アキュームレータ1の順に冷媒が流れ、圧縮機61に戻るサイクルを繰り返す。圧縮機61が高速回転すると、冷媒が大量に冷媒回路内を流れ、アキュームレータ1に冷媒が一時滞留し始める。 In the refrigerant circuit, when the compressor 61 is driven, the refrigerant flows in the order of the condenser 62, the decompression device 63, the evaporator 64, and the accumulator 1, and repeats the cycle of returning to the compressor 61. When the compressor 61 rotates at high speed, a large amount of refrigerant flows in the refrigerant circuit, and the refrigerant starts to temporarily stay in the accumulator 1.
 このサイクルにてアキュームレータ1に液冷媒が溜り始めると、その液冷媒の液面位置に応じて浮子14が上昇する。これにより、浮子14内に埋め込まれた磁石15により、上の接点12がオンし、接点12からの信号に基づいて液面の位置が検知される。 When the liquid refrigerant starts to accumulate in the accumulator 1 in this cycle, the float 14 rises according to the liquid level position of the liquid refrigerant. As a result, the upper contact 12 is turned on by the magnet 15 embedded in the buoy 14, and the position of the liquid surface is detected based on the signal from the contact 12.
 ここで、接点12は、上述したように最高液面の高さ位置に配置されている。よって、接点12がオンした場合、圧縮機61を高速回転から低速回転へ制御することで、液面19が下降する。これにより、液冷媒が過剰に圧縮機61に流入して液圧縮による圧縮機61の破損を防止することが可能である。 Here, the contact 12 is arranged at the height position of the highest liquid level as described above. Therefore, when the contact 12 is turned on, the liquid level 19 is lowered by controlling the compressor 61 from high-speed rotation to low-speed rotation. As a result, it is possible to prevent the liquid refrigerant from excessively flowing into the compressor 61 and damaging the compressor 61 due to liquid compression.
 また、接点13は、上述したように最低液面の高さ位置に配置されている。よって、液面19が下降して接点13がオンした場合、圧縮機61を低速回転から高速回転へ制御することで、アキュームレータ1の液面が上昇する。これにより、返油不足による圧縮機の焼き付きによる破損を防止することが可能である。 Further, the contact 13 is arranged at the height position of the lowest liquid level as described above. Therefore, when the liquid level 19 is lowered and the contact 13 is turned on, the liquid level of the accumulator 1 is raised by controlling the compressor 61 from low-speed rotation to high-speed rotation. This makes it possible to prevent damage due to seizure of the compressor due to insufficient oil return.
 このように、最高液面および最低液面に接点12および接点13を設けた構成とした場合、液面検知結果を圧縮機61の制御に適用することで、圧縮機61の破損を防止することが可能となる。 In this way, when the contact 12 and the contact 13 are provided on the highest liquid level and the lowest liquid level, the liquid level detection result is applied to the control of the compressor 61 to prevent damage to the compressor 61. Is possible.
[効果]
 以上、実施の形態1は、容器2と、容器2の上部を貫通して接合され、容器2の高さ方向に延びる液面検知装置5とを備える。液面検知装置5は、容器2内に溜まった液冷媒の液面の上下動に応じて昇降する浮子14を備え、浮子14を用いて液面位置を検知するセンサ部10と、センサ部10を取り囲んで配置され、浮子14を保護する保護管20とを備える。
[effect]
As described above, the first embodiment includes the container 2 and the liquid level detecting device 5 which is joined through the upper part of the container 2 and extends in the height direction of the container 2. The liquid level detection device 5 includes a buoy 14 that moves up and down according to the vertical movement of the liquid level of the liquid refrigerant accumulated in the container 2. It is provided with a protective tube 20 which is arranged so as to surround the float 14 and protects the float 14.
 このように、液面検知装置5と容器2との接合箇所は1箇所であるため、2箇所必要であった従来構成に比べて接合箇所を最小限に減らすことができる。よって、接合箇所からの冷媒漏れを最小限にできる。なお、液面検知装置5と容器2との接合は、上述したように溶接でもねじ込み式でもよく、ねじ込み式とした場合には、液面検知装置5のセンサ部10が故障した場合の取替えを簡易に行える。 As described above, since the liquid level detection device 5 and the container 2 have only one joint, the number of joints can be minimized as compared with the conventional configuration in which two are required. Therefore, the leakage of the refrigerant from the joint can be minimized. The joint between the liquid level detection device 5 and the container 2 may be welded or screwed as described above, and if the liquid level detection device 5 is screwed in, the sensor unit 10 of the liquid level detection device 5 may be replaced if it fails. It's easy to do.
 実施の形態1では、センサ部10を保護する保護管20を備えたので、センサ部10の浮子14がアキュームレータ1内で波立つ冷媒の影響を直接、受けるのを避けることができ、浮子14の昇降動作を安定させることができる。これにより、液面位置を正確に検知できる。 In the first embodiment, since the protective tube 20 for protecting the sensor unit 10 is provided, it is possible to prevent the buoy 14 of the sensor unit 10 from being directly affected by the buoyant refrigerant in the accumulator 1, and the buoy 14 The elevating operation can be stabilized. As a result, the liquid level position can be accurately detected.
 実施の形態1では、センサ部10は、浮子14に埋め込まれた磁石15と、磁石15によってオンオフする接点と、環状の浮子14を貫通して容器2の高さ方向に延びる管であって、接点12および接点13を内蔵する内蔵管11とを備える。保護管20は、上下両端部に内径を絞った上側絞り部22と下側絞り部21と有し、上側絞り部22と下側絞り部21とにより、内蔵管11の上下両端部を支持する。 In the first embodiment, the sensor unit 10 is a magnet 15 embedded in the buoy 14, a contact point that is turned on and off by the magnet 15, and a tube that penetrates the annular buoy 14 and extends in the height direction of the container 2. It includes a contact 12 and a built-in tube 11 containing the contact 13. The protective tube 20 has an upper throttle portion 22 and a lower throttle portion 21 whose inner diameters are narrowed at both upper and lower ends, and the upper and lower throttle portions 22 and the lower throttle portion 21 support the upper and lower ends of the built-in tube 11. ..
 このように、保護管20は、上側絞り部22と下側絞り部21とにより、内蔵管11の上下両端部を支持しているので、内蔵管11の下端部11aが支持されずに自由端とされる構造に比べて、内蔵管11の振動を抑制できる。したがって、輸送時またはアキュームレータ1内の冷媒の波立ちによって内蔵管11が振動し、折損に至る不具合を抑制できる。また、下側絞り部21は、保護管20内に滞留した堆積異物23を溜めることができるスペースとして利用される。このスペース内に堆積異物23が溜まることで、堆積異物23による浮子14のひっかかりを防止できる。 In this way, since the protective tube 20 supports the upper and lower end portions of the built-in tube 11 by the upper throttle portion 22 and the lower throttle portion 21, the lower end portion 11a of the built-in tube 11 is not supported and is a free end. The vibration of the built-in tube 11 can be suppressed as compared with the structure described above. Therefore, it is possible to suppress a problem that the built-in pipe 11 vibrates during transportation or due to the ripple of the refrigerant in the accumulator 1, leading to breakage. Further, the lower throttle portion 21 is used as a space where the accumulated foreign matter 23 accumulated in the protective tube 20 can be stored. By accumulating the deposited foreign matter 23 in this space, it is possible to prevent the float 14 from being caught by the deposited foreign matter 23.
 実施の形態1において、保護管20には、容器2内に溜まった液冷媒を保護管20内に受け入れる下穴17と、保護管20の内部から外部へのガス抜き用の上穴18とが形成されている。 In the first embodiment, the protective tube 20 has a pilot hole 17 for receiving the liquid refrigerant collected in the container 2 into the protective tube 20, and an upper hole 18 for venting gas from the inside to the outside of the protective tube 20. It is formed.
 これにより、下穴17から保護管20内に液冷媒が流入する一方、上穴18から保護管20内に充満したガスが放出される。この2つの穴の効果により、安定した冷媒の高さを検知できる。 As a result, the liquid refrigerant flows into the protective tube 20 from the prepared hole 17, while the gas filled in the protective tube 20 is released from the upper hole 18. Due to the effect of these two holes, a stable refrigerant height can be detected.
 また、実施の形態1において、下穴17の高さ位置は、下穴17から下の保護管20内の体積が、保護管20内に堆積されると想定される堆積異物23の体積以上の体積となるように設定されている。 Further, in the first embodiment, the height position of the prepared hole 17 is such that the volume in the protective tube 20 below the prepared hole 17 is equal to or larger than the volume of the deposited foreign matter 23 which is assumed to be deposited in the protective tube 20. It is set to be a volume.
 これにより、下穴17が堆積異物23で塞がることを防止できる。 This makes it possible to prevent the pilot hole 17 from being blocked by the deposited foreign matter 23.
 実施の形態1において、アキュームレータ1は、圧縮機61と、凝縮器62と、減圧装置63と、蒸発器64と共に冷凍サイクル装置60を構成する。冷凍サイクル装置60は、空気調和機または冷蔵冷凍庫等に適用することができる。 In the first embodiment, the accumulator 1 constitutes the refrigeration cycle device 60 together with the compressor 61, the condenser 62, the decompression device 63, and the evaporator 64. The refrigerating cycle device 60 can be applied to an air conditioner, a refrigerator freezer, or the like.
実施の形態2.
 実施の形態2は、液面検知装置5の健全性を確認できる構造を備えたものである。実施の形態2のアキュームレータ1の基本的な構成は実施の形態1と同様であり、以下、実施の形態1からの追加構造を中心に、実施の形態2について説明する。
Embodiment 2.
The second embodiment has a structure capable of confirming the soundness of the liquid level detection device 5. The basic configuration of the accumulator 1 of the second embodiment is the same as that of the first embodiment, and the second embodiment will be described below with a focus on the additional structure from the first embodiment.
 アキュームレータ1の出荷時には、液面検知装置5の健全性の確認が行われる。具体的には、接点12および接点13が磁石15によってオンするかといった検知動作の健全性と、接点12および接点13の設置位置が正しいかという設置位置の健全性の確認が行われる。実施の形態2は、これらの健全性を確認する際に好適な技術に関する。以下、具体的に説明する。 At the time of shipment of the accumulator 1, the soundness of the liquid level detection device 5 is confirmed. Specifically, the soundness of the detection operation such as whether the contact 12 and the contact 13 are turned on by the magnet 15 and the soundness of the installation position such as whether the installation positions of the contact 12 and the contact 13 are correct are confirmed. The second embodiment relates to a technique suitable for confirming the soundness of these. Hereinafter, a specific description will be given.
[液面検知装置5の構成]
 図8は、実施の形態2に係るアキュームレータ1の液面検知装置5の断面図である。図9は、実施の形態2に係るアキュームレータ1の液面検知装置5のセンサ部10における各部の配置関係を示す断面図である。
 実施の形態2は、実施の形態1と比較して液面検知装置5の構成が異なる。実施の形態2の液面検知装置5は、浮子14を貫通して容器2の高さ方向に延びる管であって、内蔵管11を内包する検知棒挿入管40を備える。検知棒挿入管40は、検知棒挿入管40に内包された内蔵管11との間に、検知棒41を挿入するためのスペース42を形成している。検知棒41の挿入方向先端、つまり下端には、磁石43が取り付けられている。その他の構造は実施の形態1と同様である。
[Configuration of liquid level detection device 5]
FIG. 8 is a cross-sectional view of the liquid level detection device 5 of the accumulator 1 according to the second embodiment. FIG. 9 is a cross-sectional view showing the arrangement relationship of each part in the sensor part 10 of the liquid level detection device 5 of the accumulator 1 according to the second embodiment.
In the second embodiment, the configuration of the liquid level detection device 5 is different from that in the first embodiment. The liquid level detection device 5 of the second embodiment is a pipe that penetrates the float 14 and extends in the height direction of the container 2, and includes a detection rod insertion pipe 40 that includes the built-in pipe 11. The detection rod insertion tube 40 forms a space 42 for inserting the detection rod 41 between the detection rod insertion tube 40 and the built-in tube 11 contained in the detection rod insertion tube 40. A magnet 43 is attached to the tip of the detection rod 41 in the insertion direction, that is, the lower end. Other structures are the same as those in the first embodiment.
(検知動作の確認)
 接点の検知動作の確認を、仮に検知棒41を用いずに行う場合、浮子14を各接点12および接点13のそれぞれの位置まで移動させて、接点がオンするかどうかを確認することになる。浮子14を接点12および接点13のそれぞれの位置まで移動させるには、容器2ごとひっくり返す方法が考えられる。しかし、アキュームレータ1が重量物の場合、重作業となり、安全確保が難しく、現実的には検知確認が難しい。
(Confirmation of detection operation)
If the contact detection operation is confirmed without using the detection rod 41, the float 14 is moved to each position of each contact 12 and 13 to confirm whether or not the contact is turned on. In order to move the buoy 14 to the respective positions of the contact 12 and the contact 13, a method of turning over the container 2 together can be considered. However, when the accumulator 1 is a heavy object, it becomes a heavy work, it is difficult to ensure safety, and in reality, it is difficult to detect and confirm it.
 これに対し、実施の形態2では、検知棒41を検知棒挿入管40の上端開口40aから挿入することで、接点12および接点13の検知確認を行える。すなわち、検知棒41の下端に取り付けられた磁石43が接点12および接点13のそれぞれの高さ位置に達すると、接点12および接点13のそれぞれが磁石43によってオンする。この方法によれば、アキュームレータ1をひっくり返すことなく接点12および接点13の動作の健全性を確認できる。なお、このような動作確認は、出荷時のみならず、製品設置後も行えることが好ましいが、実施の形態2では、どちらのタイミングでも、検知棒41を検知棒挿入管40に挿入するだけで行える。 On the other hand, in the second embodiment, the detection rod 41 can be inserted through the upper end opening 40a of the detection rod insertion tube 40 to confirm the detection of the contact 12 and the contact 13. That is, when the magnet 43 attached to the lower end of the detection rod 41 reaches the height positions of the contact 12 and the contact 13, each of the contact 12 and the contact 13 is turned on by the magnet 43. According to this method, the soundness of the operation of the contact 12 and the contact 13 can be confirmed without turning over the accumulator 1. It is preferable that such an operation check can be performed not only at the time of shipment but also after the product is installed, but in the second embodiment, the detection rod 41 is simply inserted into the detection rod insertion tube 40 at either timing. You can.
(設置位置の確認)
 接点12および接点13のそれぞれの設置位置を確認するには、予め、検知棒41に目印を付けておく。すなわち、検知棒41を検知棒挿入管40に挿入して磁石43が接点12の正規の高さ位置に達した状態での目印を検知棒41に設けておく。接点13についても同様である。そして、検知棒41を検知棒挿入管40に挿入して、目印のある位置まで挿入した際に、対応の接点が作動すれば、接点の設置高さが正しいと判断できる。この設置位置の確認についても、出荷時および製品設置後のどちらのタイミングでも、検知棒41を検知棒挿入管40に挿入するだけで行える。
(Confirmation of installation position)
In order to confirm the installation positions of the contact 12 and the contact 13, the detection rod 41 is marked in advance. That is, the detection rod 41 is inserted into the detection rod insertion tube 40, and the detection rod 41 is provided with a mark in a state where the magnet 43 reaches the regular height position of the contact 12. The same applies to the contact 13. Then, when the detection rod 41 is inserted into the detection rod insertion tube 40 and inserted to a position with a mark, if the corresponding contact is activated, it can be determined that the installation height of the contact is correct. The installation position can be confirmed by simply inserting the detection rod 41 into the detection rod insertion tube 40 at both the time of shipment and the timing after the product is installed.
[効果]
 以上、実施の形態2によれば、実施の形態1と同様の効果が得られると共に、以下の効果が得られる。すなわち、実施の形態2は、浮子14を貫通して容器2の高さ方向に延びる管であって、内蔵管11を内包する検知棒挿入管40を備える。検知棒挿入管40は、検知棒挿入管40に内包された内蔵管11との間に、検知棒41を挿入するためのスペース42を形成している。
[effect]
As described above, according to the second embodiment, the same effect as that of the first embodiment can be obtained, and the following effects can be obtained. That is, the second embodiment is a tube that penetrates the float 14 and extends in the height direction of the container 2, and includes a detection rod insertion tube 40 that includes the built-in tube 11. The detection rod insertion tube 40 forms a space 42 for inserting the detection rod 41 between the detection rod insertion tube 40 and the built-in tube 11 contained in the detection rod insertion tube 40.
 これにより、磁石43を備えた検知棒41を検知棒挿入管40内に挿入するだけで、接点12および接点13の動作確認を行える。したがって、アキュームレータ1をひっくり返すといった作業が不要であり、確認作業の簡易性が向上すると共に検知精度を向上できる。そして、これらの確認は、製品の出荷時および製品設置後のどちらにおいても行うことができる。したがって、製品設置後において、接点12および接点13の故障が疑われた場合に、容易に故障の有無の確認を行える。 As a result, the operation of the contact 12 and the contact 13 can be confirmed only by inserting the detection rod 41 provided with the magnet 43 into the detection rod insertion tube 40. Therefore, the work of turning over the accumulator 1 is unnecessary, the simplicity of the confirmation work can be improved, and the detection accuracy can be improved. Then, these confirmations can be performed both at the time of shipment of the product and after the product is installed. Therefore, if a failure of the contact 12 and the contact 13 is suspected after the product is installed, the presence or absence of the failure can be easily confirmed.
 なお、実施の形態2のアキュームレータ1は、実施の形態1と同様に図7の冷凍サイクル装置60に適用できる。 Note that the accumulator 1 of the second embodiment can be applied to the refrigeration cycle device 60 of FIG. 7 as in the first embodiment.
 実施の形態2によれば、最も必要な、液面検知装置5の容器2に対する設置高さ位置の確認精度の向上と、製品の出荷時および製品設置後の接点の健全性の確認作業における簡易性の向上と、を図ることができる。 According to the second embodiment, the most necessary improvement of the confirmation accuracy of the installation height position of the liquid level detection device 5 with respect to the container 2 and the simple operation of confirming the soundness of the contacts at the time of shipment of the product and after the product is installed. It is possible to improve the sex.
 以上、実施の形態1~実施の形態2について説明したが、各実施の形態の説明に限定されない。たとえば、各実施の形態の全てまたは一部を実施することも可能である。 Although the first to second embodiments have been described above, the description is not limited to the description of each embodiment. For example, it is possible to implement all or part of each embodiment.
 1 アキュームレータ、2 容器、3 入口配管、4 出口配管、5 液面検知装置、6 管台、10 センサ部、11 内蔵管、11a 下端部、11b 上端部、12 接点、13 接点、14 浮子、15 磁石、16 配線、17 下穴、18 上穴、19 液面、20 保護管、21 下側絞り部、21a 隙間、22 上側絞り部、23 堆積異物、30 液面、31 上昇、32 下降、40 検知棒挿入管、40a 上端開口、41 検知棒、42 スペース、43 磁石、60 冷凍サイクル装置、61 圧縮機、62 凝縮器、63 減圧装置、64 蒸発器。 1 Accumulator, 2 Container, 3 Inlet pipe, 4 Outlet pipe, 5 Liquid level detection device, 6 Tube stand, 10 Sensor part, 11 Built-in pipe, 11a Lower end, 11b Upper end, 12 contacts, 13 contacts, 14 floats, 15 Magnet, 16 wiring, 17 pilot hole, 18 upper hole, 19 liquid level, 20 protective tube, 21 lower throttle part, 21a gap, 22 upper throttle part, 23 deposited foreign matter, 30 liquid level, 31 rise, 32 fall, 40 Detection rod insertion tube, 40a upper end opening, 41 detection rod, 42 space, 43 magnet, 60 refrigeration cycle device, 61 compressor, 62 condenser, 63 decompression device, 64 evaporator.

Claims (6)

  1.  容器と、
     前記容器の上部を貫通して接合され、前記容器の高さ方向に延びる液面検知装置とを備え、
     前記液面検知装置は、
     前記容器内に溜まった液冷媒の液面の上下動に応じて昇降する浮子を備え、前記浮子を用いて液面位置を検知するセンサ部と、
     前記センサ部を取り囲んで配置され、前記浮子を保護する保護管と
    を備えたアキュームレータ。
    With the container
    It is provided with a liquid level detection device that is joined through the upper part of the container and extends in the height direction of the container.
    The liquid level detection device is
    A sensor unit that includes a buoy that moves up and down according to the vertical movement of the liquid level of the liquid refrigerant accumulated in the container and detects the liquid level position using the buoy.
    An accumulator provided with a protective tube arranged around the sensor unit and protecting the float.
  2.  前記センサ部は、
     前記浮子に埋め込まれた磁石と、
     前記磁石によってオンオフする接点と、
     環状の前記浮子を貫通して前記容器の高さ方向に延びる管であって、前記接点を内蔵する内蔵管とを備え、
     前記保護管は、上下両端部に内径を絞った上側絞り部と下側絞り部とを有し、前記上側絞り部と前記下側絞り部とにより、前記内蔵管の上下両端部を支持する請求項1記載のアキュームレータ。
    The sensor unit
    The magnet embedded in the buoy and
    The contacts that are turned on and off by the magnet,
    A tube that penetrates the annular buoy and extends in the height direction of the container, and includes a built-in tube that incorporates the contact.
    The protective tube has an upper throttle portion and a lower throttle portion whose inner diameters are narrowed at both upper and lower ends, and the upper and lower throttle portions support the upper and lower ends of the built-in tube by the upper throttle portion and the lower throttle portion. Item 1. The accumulator according to item 1.
  3.  前記保護管には、前記容器内に溜まった液冷媒を前記保護管内に受け入れる下穴と、前記保護管の内部から外部へのガス抜き用の上穴とが形成されている請求項1または請求項2記載のアキュームレータ。 Claim 1 or claim, wherein the protective tube is formed with a pilot hole for receiving the liquid refrigerant accumulated in the container into the protective tube and an upper hole for venting gas from the inside to the outside of the protective tube. Item 2. The accumulator according to item 2.
  4.  前記下穴の高さ位置は、前記下穴から下の前記保護管内の体積が、前記保護管内に堆積されると想定される堆積異物の体積以上の体積となるように設定されている請求項3記載のアキュームレータ。 The height position of the prepared hole is set so that the volume in the protective tube below the prepared hole is equal to or larger than the volume of the deposited foreign matter expected to be accumulated in the protective tube. The accumulator according to 3.
  5.  前記浮子を貫通して前記容器の高さ方向に延びる管であって、前記内蔵管を内包する検知棒挿入管を備え、
     前記検知棒挿入管は、前記検知棒挿入管に内包された前記内蔵管との間に、検知棒を挿入するためのスペースを形成している請求項2に従属する請求項3または請求項4記載のアキュームレータ。
    A tube that penetrates the float and extends in the height direction of the container, and includes a detection rod insertion tube that includes the built-in tube.
    Claim 3 or claim 4 is dependent on claim 2, wherein the detection rod insertion tube forms a space for inserting the detection rod between the detection rod insertion tube and the built-in tube included in the detection rod insertion tube. The accumulator described.
  6.  請求項1~請求項5のいずれか一項に記載のアキュームレータと、圧縮機と、凝縮器と、減圧装置と、蒸発器とを備えた冷凍サイクル装置。 A refrigeration cycle device including the accumulator according to any one of claims 1 to 5, a compressor, a condenser, a decompression device, and an evaporator.
PCT/JP2019/011478 2019-03-19 2019-03-19 Accumulator and refrigeration cycle device WO2020188750A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/011478 WO2020188750A1 (en) 2019-03-19 2019-03-19 Accumulator and refrigeration cycle device
EP19920032.0A EP3943838A4 (en) 2019-03-19 2019-03-19 Accumulator and refrigeration cycle device
JP2021506895A JP7003323B2 (en) 2019-03-19 2019-03-19 Accumulator and refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/011478 WO2020188750A1 (en) 2019-03-19 2019-03-19 Accumulator and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020188750A1 true WO2020188750A1 (en) 2020-09-24

Family

ID=72519737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011478 WO2020188750A1 (en) 2019-03-19 2019-03-19 Accumulator and refrigeration cycle device

Country Status (3)

Country Link
EP (1) EP3943838A4 (en)
JP (1) JP7003323B2 (en)
WO (1) WO2020188750A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS47387Y1 (en) * 1969-04-12 1972-01-08
US4972709A (en) * 1988-10-03 1990-11-27 Bailey Jr James R Pump control system, level sensor switch and switch housing
JPH03186166A (en) 1989-12-15 1991-08-14 Mitsubishi Electric Corp Multiple-room type cooling-heating apparatus
US5076066A (en) * 1990-10-15 1991-12-31 Bottum Edward W Suction accumulator and flood control system therefor
JPH08284223A (en) * 1995-04-10 1996-10-29 Hoshizaki Electric Co Ltd Cold water supply device
JP2002081801A (en) * 2000-08-31 2002-03-22 Mitsubishi Electric Corp Accumulator for refrigerating cycle
JP2002156274A (en) * 2000-11-17 2002-05-31 Mitsubishi Electric Corp Liquid level position detection mechanism of tank for freezing cycle apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525210U (en) * 1978-08-03 1980-02-19
JPS5625226U (en) * 1979-08-03 1981-03-07
US4981039A (en) * 1988-07-07 1991-01-01 Toyoda Gosei Co., Ltd. Liquid level gauge
JP5625226B2 (en) 2007-08-24 2014-11-19 三菱瓦斯化学株式会社 Resin composition for optical materials
JP5525210B2 (en) 2009-08-27 2014-06-18 小川香料株式会社 Taste improver for high-intensity sweeteners
US9151657B2 (en) * 2013-09-10 2015-10-06 Texas Lfp, Llc Dual measurement liquid level transducer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS47387Y1 (en) * 1969-04-12 1972-01-08
US4972709A (en) * 1988-10-03 1990-11-27 Bailey Jr James R Pump control system, level sensor switch and switch housing
JPH03186166A (en) 1989-12-15 1991-08-14 Mitsubishi Electric Corp Multiple-room type cooling-heating apparatus
US5076066A (en) * 1990-10-15 1991-12-31 Bottum Edward W Suction accumulator and flood control system therefor
JPH08284223A (en) * 1995-04-10 1996-10-29 Hoshizaki Electric Co Ltd Cold water supply device
JP2002081801A (en) * 2000-08-31 2002-03-22 Mitsubishi Electric Corp Accumulator for refrigerating cycle
JP2002156274A (en) * 2000-11-17 2002-05-31 Mitsubishi Electric Corp Liquid level position detection mechanism of tank for freezing cycle apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3943838A4

Also Published As

Publication number Publication date
JPWO2020188750A1 (en) 2021-10-14
EP3943838A1 (en) 2022-01-26
JP7003323B2 (en) 2022-01-20
EP3943838A4 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
EP2357432A2 (en) Refrigerating air-conditioning apparatus
JP6101815B2 (en) Refrigeration cycle equipment
JP2006029160A (en) Hermetic compressor
US20190316821A1 (en) Detection apparatus and method for refrigerant leakage of air source cooling only system
WO2020188750A1 (en) Accumulator and refrigeration cycle device
KR101527179B1 (en) Float valve
JP2015078838A (en) Leakage detection device
JP2008032315A (en) Accumulator
KR101145607B1 (en) Liquid level detecting apparatus of high-pressure vessel
JP2006037724A (en) Enclosed electric compressor
EP0544784B1 (en) A differential float means and sensor means incorporating same
CN208207618U (en) A kind of waste lubricant oil regeneration surge tank liquid-level auto-control device
CN109060384A (en) Device, testing stand and the vehicle to cool down automatically in endurance test to damper
JP2008190954A (en) Method and apparatus for attaching liquid level sensor in tank
JP2013525757A (en) Oil level indicator for screw compressor
KR20140088974A (en) Suction pot level control apparatus of high pressure pump for vessel and method for operating the apparatus
JP4633003B2 (en) Liquid-sealed drain trap
JP2007187143A (en) Leakage diagnosing device
JP6522816B1 (en) Water supply device
EP4089314B1 (en) An arrangement for a cryogenic system
CN218093447U (en) Compressor
JP3176564U (en) Liquid level sensor
JP5404326B2 (en) Underground tank leak detection device
JP4117569B2 (en) Underground tank leak detection device
CN207649728U (en) A kind of flow cytometer sheath fluid bucket low liquid level warning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506895

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019920032

Country of ref document: EP

Effective date: 20211019