WO2020188739A1 - ダム堆積物推定システム、及びダム堆積物推定方法 - Google Patents

ダム堆積物推定システム、及びダム堆積物推定方法 Download PDF

Info

Publication number
WO2020188739A1
WO2020188739A1 PCT/JP2019/011434 JP2019011434W WO2020188739A1 WO 2020188739 A1 WO2020188739 A1 WO 2020188739A1 JP 2019011434 W JP2019011434 W JP 2019011434W WO 2020188739 A1 WO2020188739 A1 WO 2020188739A1
Authority
WO
WIPO (PCT)
Prior art keywords
dam
sediment
water level
detector
lake
Prior art date
Application number
PCT/JP2019/011434
Other languages
English (en)
French (fr)
Inventor
伸一 宮本
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2021506884A priority Critical patent/JP7070791B2/ja
Priority to PCT/JP2019/011434 priority patent/WO2020188739A1/ja
Publication of WO2020188739A1 publication Critical patent/WO2020188739A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water

Definitions

  • the present invention relates to a dam sediment estimation system and a dam sediment estimation method, and more particularly to a dam sediment estimation system using muography and a dam sediment estimation method.
  • Patent Document 1 relates to a submersible sediment thickness measuring device capable of constantly measuring the thickness of sediment deposited on the bottom of a dam lake or the like and the thickness of sediment that has been eroded and reduced regardless of the weather. The technology is disclosed. In the technique disclosed in Patent Document 1, the thickness of the sediment deposited on the bottom of the water is determined by using a fine particle pressure gauge and a soil material pressure gauge embedded at a predetermined depth from the bottom of the water. ing.
  • Patent Document 1 discloses a technique for measuring the thickness of sediment deposited on the bottom surface of a dam lake or the like.
  • a fine-grained pressure gauge and a soil material pressure gauge are embedded at a predetermined depth from the bottom of the water to obtain the thickness of the sediment deposited on the bottom of the water. Therefore, only the amount of sediment in a narrow area on the bottom of the water can be measured. Therefore, the technique disclosed in Patent Document 1 has a problem that the sediment of the dam lake cannot be measured over a wide range.
  • an object of the present invention is to provide a dam sediment estimation system capable of estimating dam lake sediments over a wide range, and a dam deposit estimation method.
  • the dam deposit estimation system has a water level information acquisition unit for acquiring water level information of a dam lake formed by damming water with a dam, and a water level information acquisition unit provided in the dam and passing through the dam lake.
  • a detector capable of detecting the muon, the structure information of the dam, the water level information acquired by the water level information acquisition unit, and the information about the flux of the muon detected by the detector, the dam is used. It is equipped with an analysis unit that estimates the deposits deposited on the lake.
  • the water level information of a dam lake formed by damming water with a dam is acquired, and the dam lake is detected by using a detector provided in the dam.
  • the passed muon is detected, and the deposits deposited on the dam lake are estimated using the structural information of the dam, the acquired water level information, and the information on the flux of the detected muon.
  • the dam sediment estimation system uses a muography technique.
  • Muonography is a technology that uses the cosmic ray muons that fall from the sky as the radiation source, and by utilizing the high transparency of muons, it is possible to observe and visualize the inside of the object to be observed non-destructively.
  • the path of the muon incident on the detector can be expressed by using the zenith angle ⁇ when the zenith direction of the detector is used as the reference axis and the azimuth angle ⁇ in the ground plane.
  • the amount of energy loss of muons that have passed through the observation object changes according to the density of substances present in the flight path. When the energy loss becomes large, the object to be observed scatters with the nucleus becomes large, and the flight path deviates from the detector is followed. This is observed as a decrease in the number of muons.
  • the inside of the observation object can be examined non-destructively by observing the number of muons that have passed through the observation object. Specifically, by observing the muon flux (that is, the unit time, the unit area, and the number of arrivals in each direction per unit solid angle), the inside of the observation object can be examined.
  • the muon flux that is, the unit time, the unit area, and the number of arrivals in each direction per unit solid angle
  • FIG. 1 is a block diagram for explaining a configuration example of the dam sediment estimation system according to the present embodiment.
  • the dam sediment estimation system 1 according to the present embodiment includes a water level information acquisition unit 11, a detector 12, and an analysis unit 13.
  • FIG. 2 is a cross-sectional view for explaining the dam sediment estimation system according to the present embodiment, and shows a cross-sectional view of the dam on which the dam sediment estimation system 1 is arranged.
  • the dam 21 blocks water, thereby forming a dam lake 22.
  • a management passage 25 is formed inside the dam 21.
  • the water level information acquisition unit 11 shown in FIG. 1 acquires the water level information of the dam lake 22.
  • the water level information acquisition unit 11 may acquire the water level information of the dam lake 22 from the management system that manages the dam 21. Further, as shown in FIG. 5, the water level information acquisition unit 11 performs image processing on the image acquired by the camera 42 that captures the scale 41 indicating the water level of the dam lake 22, thereby performing the image processing on the dam lake 22. Water level information may be obtained.
  • the water level information of the dam lake 22 acquired by the water level information acquisition unit 11 is supplied to the analysis unit 13.
  • the detector 12 is configured to be able to detect muons that have passed through the dam lake 22.
  • the detector 12 is provided in a management passage 25 formed inside the dam 21.
  • Information about muons detected by the detector 12 is supplied to the analysis unit 13.
  • the water level information acquisition unit 11, the detector 12, and the analysis unit 13 may be arranged apart from each other (that is, arranged in different places).
  • a nuclear emulsion for example, a nuclear emulsion, a scintillator, a gas type detector, or the like can be used.
  • the nuclear emulsion is a film-shaped detector.
  • a nuclear emulsion has a structure in which a gel composed of AgBr crystals and gelatin is applied on a plastic base. It is configured so that the locus of muons (charged particles) remains in the crystal portion of this Ag.
  • the incident direction of muons can be specified by scanning the nuclear emulsion while changing the depth of focus and restoring the traces of muons observed as points at each depth of focus as lines.
  • a scintillator is a detector that uses scintillation light emitted when muons (charged particles) pass through a translucent substance such as plastic.
  • the scintillation light is amplified using a photomultiplier tube and extracted as a signal.
  • the gas type detector utilizes the phenomenon that when a muon flies in a gas, the electrons of the molecules that make up the gas are knocked out of the molecule by the Coulomb force interaction with the muon, and the molecule is ionized.
  • An amplified electric signal can be created by accelerating the ejected electrons with a strong external electric field.
  • MWPC Multi-Wire Proportional Chamber
  • the gas type detector can acquire the spatial position information of the muon that has passed through the inside of the detector. Considering that the spatial position information of the muon can be acquired in real time, it is preferable to use a gas type detector.
  • the detector 12 used in the present embodiment is not limited to the above-mentioned detectors, and detectors other than these may be used.
  • the analysis unit 13 shown in FIG. 1 uses the structural information of the dam 21, the water level information acquired by the water level information acquisition unit 11, and the information on the muon flux detected by the detector 12 on the dam lake 22. Estimate the deposited sediment 24 (see FIG. 3). Specifically, the analysis unit 13 estimates the amount and position of the sediment 24 deposited on the dam lake 22.
  • the structural information of the dam 21 is information on the shape of the dam 21 and the density of the materials constituting the dam 21.
  • the sediments deposited on the dam lake 22 are analyzed by using (analyzing) the structural information of the dam 21, the water level information, and the information on the detected muon flux. I'm estimating. Since muons fly from all directions in the sky, muons can be used to extensively estimate the sediments 24 deposited on the dam lake 22.
  • the analysis unit 13 determines the expected value of the muon flux that is assumed to be detected by the detector 12 when it is assumed that no sediment is deposited on the dam lake 22, and the muon detected by the detector 12.
  • the deposit 24 may be estimated based on the difference from the measured value of the flux.
  • the analysis unit 13 first obtains the expected value of the muon flux that is assumed to be detected by the detector 12. That is, as shown in FIG. 2, when it is assumed that the dam lake 22 is formed on the ground (bottom surface) 23 without deposits, each zenith that is assumed to be detected by the detector 12 Obtain the expected value of the muon flux at the angle ⁇ and each azimuth angle ⁇ .
  • the analysis unit 13 can calculate the expected value of the muon flux by using the structural information of the dam 21 and the water level information acquired by the water level information acquisition unit 11. That is, the number of muons observed depends on the density and length of the path that the muons take. Specifically, when the density of the path through which muons pass is high, the probability that muons are scattered on the path is high, so that the number of observed muons is small. In this case, the longer the path through which the muons pass (the path with higher density), the higher the probability that the muons will be scattered on the path, and therefore the number of observed muons will decrease. On the contrary, when the density of the path through which the muon passes is low, the probability that the muon is scattered on the path is low, so that the number of observed muons is large.
  • the analysis unit 13 uses the length of the path and the density of the path inside the dam 21 when a muon flying from a specific zenith angle ⁇ and a specific azimuth angle ⁇ passes through the dam 21. (Density of dam 21) can be obtained.
  • the structural information of the dam 21 also includes information on the reinforced concrete constituting the dam 21, and the density of the dam 21 is calculated by using the ratio of the reinforcing bars constituting the dam 21 and the ratio of concrete. can do.
  • the analysis unit 13 uses the water level information acquired by the water level information acquisition unit 11 to allow muons flying from a specific zenith angle ⁇ and a specific azimuth angle ⁇ to pass underwater in the dam lake 22.
  • the length of the path in can be determined.
  • the density of the pathway in water the density of water can be used.
  • the analysis unit 13 uses the density and length of the path through which the muons obtained as described above are used to determine the muons at each zenith angle ⁇ and each azimuth angle ⁇ that are assumed to be detected by the detector 12. The expected value of flux can be obtained.
  • the analysis unit 13 determines the deposit 24 (see FIG. 3) based on the difference between the actually measured value of the muon flux actually detected by the detector 12 and the expected value of the muon flux obtained as described above. ) Is estimated. Specifically, the analysis unit 13 expects the measured value of the muon flux actually detected in a specific path (a specific zenith angle ⁇ and a specific azimuth ⁇ ) to be the muon flux in the specific path. If it is less than the value, it is presumed that the deposit 24 is present on the path.
  • the measured value of the flux of the muon path 34 is the flux of the muon path 31 shown in FIG. 2 (expected flux). Value) is about the same.
  • the measured value of the flux of the muon path 35 is the flux of the muon path 32 shown in FIG. 2 (expected value of the assumed flux). ) Less than. That is, in the muon path 35 shown in FIG. 3, since the muon passes through the inside of the sediment 24 having a density higher than that of water, the flux of the muon path 32 shown in FIG. 2 (expected value of the assumed flux). Less flux than.
  • the measured value of the flux of the muon path 36 is the flux of the muon path 33 shown in FIG. 2 (expected flux). Value) is less than. That is, in the muon path 36 shown in FIG. 3, since the muon passes through the inside of the sediment 24 having a density higher than that of water, the flux of the muon path 33 shown in FIG. 2 (expected value of the assumed flux). Less flux than. Comparing the muon path 35 and the muon path 36 in FIG. 3, the path 36 passes through the inside of the sediment 24 longer than the path 35. Therefore, the measured value of the flux of the muon path 36 is smaller than the measured value of the flux of the muon path 35.
  • the analysis unit 13 obtains the difference between the measured value and the expected value of the muon flux at each zenith angle ⁇ and each azimuth angle ⁇ in this way, and thereby, the amount and position of the sediment 24 deposited on the dam lake 22. Can be estimated.
  • the analysis unit 13 may map the difference between the measured value and the expected value of the muon flux at each zenith angle ⁇ and each azimuth angle ⁇ . By mapping in this way, the state of the sediment 24 deposited on the dam lake 22 can be easily visually recognized.
  • the analysis unit 13 has acquired the expected value of the muon flux, which is assumed to be detected by the detector 12 when it is assumed that no sediment is deposited on the dam lake 22, by the water level information acquisition unit 11. It needs to be updated as the water level fluctuates.
  • the analysis unit 13 needs to update the expected value of the muon flux according to the fluctuation of the water level acquired by the water level information acquisition unit 11.
  • the path through which the muon passes through the water of the dam lake 22 becomes shorter, and the density of water is lower than that of air, so the expected value of flux is updated to increase.
  • FIG. 6 is a top view for explaining an arrangement example of the dam sediment estimation system according to the present embodiment.
  • a plurality of detectors 12_1 to 12_3 may be arranged in the dam 21.
  • the plurality of detectors 12_1 to 12_3 can be arranged in the horizontal direction of the dam 21 along the dam lake 22.
  • the plurality of detectors 12_1 to 12_3 can be provided in the management passage 25 (see FIG. 3) formed inside the dam 21.
  • the detector 12_1 is a deposit near the center of the dam 21
  • the detector 12_2 is a deposit near the left side of the paper surface of the dam 21
  • the detector 12_3 is a deposit near the right side of the paper surface of the dam 21.
  • the detection range of each of the detectors 12_1 to 12_3 is indicated by reference numerals 50_1 to 50_3.
  • the detector 12_4 may be submerged at the bottom of the dam lake 22.
  • the detector 12_4 may be placed in a water resistant container and submerged in the bottom of the dam lake 22. For example, by submerging the detector 12_4 at the bottom of the dam lake 22 near the hillside, it is possible to measure the sediment that has flowed into the dam lake from the hillside.
  • the measurement results of each of the detectors 12_1 to 12_4 are supplied to the analysis unit 13 (FIG. 1).
  • the analysis unit 13 can collectively estimate the sediments deposited on the dam lake 22 by using the measurement results of these detectors 12_1 to 12_4.
  • a plurality of detectors 12 may be provided in the vertical direction of the dam 21.
  • the amount of deposits in the vertical direction of the dam 21 can be accurately determined.
  • the sediment estimation system even if the detectors are arranged so that the detection ranges of the plurality of detectors 12 overlap, the sediment is estimated using the detection results of the plurality of detectors. Good. By overlapping the detection ranges of the plurality of detectors 12 in this way, the time required for measurement can be shortened. Moreover, the detection accuracy can be improved.
  • FIG. 7 is a flowchart for explaining a dam sediment estimation method according to the present embodiment.
  • the dam deposit estimation method according to the present embodiment can be carried out by using the dam deposit estimation system 1 described above.
  • the water level information of the dam lake 22 formed by blocking the water at the dam 21 is acquired (step S1). Further, the muon that has passed through the dam lake 22 is detected by using the detector 12 provided in the dam 21 (step S2). Then, the sediment 24 deposited on the dam lake 22 is estimated by using the structural information of the dam 21, the water level information acquired in step S1, and the information on the muon flux detected in step S2 (). Step S3). Since the method of estimating the sediment 24 deposited on the dam lake 22 has been described in the operation of the analysis unit 13 described above, duplicated description will be omitted.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

本発明にかかるダム堆積物推定システム(1)は、ダムで水を堰き止めることで形成されたダム湖の水位情報を取得する水位情報取得部(11)と、ダムに設けられ、ダム湖を通過したミューオンを検出可能な検出器(12)と、ダムの構造情報と、水位情報取得部(11)で取得した水位情報と、検出器(12)で検出されたミューオンのフラックスに関する情報と、を用いて、ダム湖に堆積している堆積物を推定する解析部(13)と、を備える。

Description

ダム堆積物推定システム、及びダム堆積物推定方法
 本発明はダム堆積物推定システム、及びダム堆積物推定方法に関し、特にミュオグラフィーを用いたダム堆積物推定システム、及びダム堆積物推定方法に関する。
 大雨が降ることで山腹から河川に土砂が流れ込み、この土砂がダム湖に堆積する場合がある。ダムの管理上、このようにダム湖に流入した土砂(堆積物)を把握することが重要である。
 特許文献1には、ダム湖等の水底面に堆積される土砂の厚さや、浸食されて減少した土砂の厚さを天候に左右されることなく常時計測することができる水底土砂厚計測装置に関する技術が開示されている。特許文献1に開示されている技術では、水底面から所定の深さの位置に埋設された細粒分圧力計と土質材料圧力計とを用いて、水底面に堆積した土砂の厚さを求めている。
特開2008-20279号公報
 特許文献1には、ダム湖等の水底面に堆積される土砂の厚さを測定する技術が開示されている。しかしながら、特許文献1に開示されている技術では、水底面から所定の深さの位置に細粒分圧力計と土質材料圧力計とを埋設して水底面に堆積した土砂の厚さを求めているので、水底面の狭い範囲の堆積物の量しか測定することができない。このため、特許文献1に開示されている技術では、ダム湖の堆積物を広範囲に測定することができないという問題がある。
 上記課題に鑑み本発明の目的は、ダム湖の堆積物を広範囲に推定することが可能なダム堆積物推定システム、及びダム堆積物推定方法を提供することである。
 本発明の一態様にかかるダム堆積物推定システムは、ダムで水を堰き止めることで形成されたダム湖の水位情報を取得する水位情報取得部と、前記ダムに設けられ、前記ダム湖を通過したミューオンを検出可能な検出器と、前記ダムの構造情報と、前記水位情報取得部で取得した水位情報と、前記検出器で検出された前記ミューオンのフラックスに関する情報と、を用いて、前記ダム湖に堆積している堆積物を推定する解析部と、を備える。
 本発明の一態様にかかるダム堆積物推定方法は、ダムで水を堰き止めることで形成されたダム湖の水位情報を取得し、前記ダムに設けられた検出器を用いて、前記ダム湖を通過したミューオンを検出し、前記ダムの構造情報と、前記取得した水位情報と、前記検出されたミューオンのフラックスに関する情報と、を用いて、前記ダム湖に堆積している堆積物を推定する。
 本発明により、ダム湖の堆積物を広範囲に推定することが可能なダム堆積物推定システム、及びダム堆積物推定方法を提供することができる。
実施の形態にかかるダム堆積物推定システムの構成例を説明するためのブロック図である。 実施の形態にかかるダム堆積物推定システムを説明するための断面図である。 実施の形態にかかるダム堆積物推定システムを説明するための断面図である。 実施の形態にかかるダム堆積物推定システムを説明するための断面図である。 水位情報取得部の構成例を説明するための断面図である。 実施の形態にかかるダム堆積物推定システムの配置例を説明するための上面図である。 実施の形態にかかるダム堆積物推定方法を説明するためのフローチャートである。
 以下、図面を参照して本発明の実施の形態について説明する。
 本実施の形態にかかるダム堆積物推定システムでは、ミュオグラフィー技術を用いている。ミュオグラフィーは、天空から降り注ぐ宇宙線ミューオンを線源としており、ミューオンの高い透過性を利用することで、観察対象物の内部を非破壊で観察・可視化することができる技術である。
 ミュオグラフィーでは、観察対象物を通過したミューオンの数を、検出器を用いて測定する必要がある。検出器に入射するミューオンの経路は、検出器の天頂方向を基準軸とした場合の天頂角θと地平面における方位角φとを用いて表すことができる。観察対象物を通過したミューオンは、その飛行経路に存在する物質の密度に応じてエネルギー損失量が変化する。エネルギー損失が大きくなると、観察対象物の原子核との散乱が大きくなり、検出器から外れた飛行経路を辿ることになる。これはミューオン数の減少として観測される。
 したがってミュオグラフィーでは、観察対象物を通過したミューオンの数を観測することで、観察対象物の内部を非破壊で調べることができる。具体的には、ミューオンのフラックス(すなわち、単位時間、単位面積、単位立体角当たりの方向別飛来数)を観測することで、観察対象物の内部を調べることができる。以下、本実施の形態にかかるダム堆積物推定システムについて詳細に説明する。
 図1は、本実施の形態にかかるダム堆積物推定システムの構成例を説明するためのブロック図である。図1に示すように、本実施の形態にかかるダム堆積物推定システム1は、水位情報取得部11、検出器12、及び解析部13を備える。図2は、本実施の形態にかかるダム堆積物推定システムを説明するための断面図であり、ダム堆積物推定システム1が配置されるダムの断面図を示している。図2に示すように、ダム21は水を堰き止めており、これによりダム湖22が形成されている。ダム21の内部には管理用の通路25が形成されている。
 図1に示す水位情報取得部11は、ダム湖22の水位情報を取得する。例えば、水位情報取得部11は、ダム21を管理している管理システムからダム湖22の水位情報を取得してもよい。また、図5に示すように、水位情報取得部11は、ダム湖22の水位を示す目盛41を撮影しているカメラ42で取得された画像に対して画像処理を施すことで、ダム湖22の水位情報を取得してもよい。水位情報取得部11で取得されたダム湖22の水位情報は、解析部13に供給される。
 検出器12は、ダム湖22を通過したミューオンを検出可能に構成されている。例えば、検出器12は、ダム21の内部に形成された管理用の通路25に設けられている。検出器12で検出されたミューオンに関する情報は解析部13に供給される。なお、本実施の形態にかかるダム堆積物推定システム1では、水位情報取得部11、検出器12、及び解析部13を各々離間して配置(つまり別々の場所に配置)してもよい。
 検出器12には、例えば、原子核乾板、シンチレータ、ガスタイプの検出器などを用いることができる。原子核乾板は、フィルム形状の検出器である。一例を挙げると、原子核乾板は、プラスチックのベースの上にAgBrの結晶とゼラチンで構成されるジェルを塗布した構造を持つ。このAgの結晶部分にミューオン(荷電粒子)の軌跡が残るように構成されている。また、原子核乾板を焦点深度を変えつつスキャニングし、各焦点深さで点として観測されるミューオンの痕跡を線として復元することで、ミューオンの入射方向を特定することができる。
 シンチレータは、ミューオン(荷電粒子)がプラスチックなどの半透明な物質中を通過する際に発するシンチレーション光を利用する検出器である。シンチレーション光は、光電子増倍管を用いて増幅されて信号として取り出される。
 ガスタイプの検出器は、気体中をミューオンが飛行するときに、気体を構成する分子が持つ電子がミューオンとのクーロン力相互作用によって分子から叩き出され、分子がイオン化する現象を利用して、ミューオンを検出する検出器である。叩き出された電子を強い外部電場で加速することで、増幅した電気信号を作り出すことができる。ガスタイプの検出器として、例えば、多線比例式検出器(MWPC:Multi-Wire Proportional Chamber)を用いることができる。また、ガスタイプの検出器は、検出器内部を通過したミューオンの空間的な位置情報を取得することができる。ミューオンの空間的な位置情報をリアルタイムで取得できる点を考慮すると、ガスタイプの検出器を用いることが好ましい。なお、本実施の形態において使用する検出器12は上述の検出器に限定されることはなく、これら以外の検出器を用いてもよい。
 図1に示す解析部13は、ダム21の構造情報と、水位情報取得部11で取得した水位情報と、検出器12で検出されたミューオンのフラックスに関する情報と、を用いて、ダム湖22に堆積している堆積物24(図3参照)を推定する。具体的には、解析部13は、ダム湖22に堆積している堆積物24の量や位置を推定する。ここで、ダム21の構造情報とは、ダム21の形状とダム21を構成している材料の密度に関する情報である。
 このように本実施の形態では、ダム21の構造情報と、水位情報と、検出されたミューオンのフラックスに関する情報と、を用いて(解析して)、ダム湖22に堆積している堆積物を推定している。ミューオンは天空のあらゆる方向から飛来するので、ミューオンを用いることで、ダム湖22に堆積している堆積物24を広範囲に推定することができる。
 例えば解析部13は、ダム湖22に堆積物が堆積していないと仮定した場合に検出器12で検出されると想定されるミューオンのフラックスの期待値と、検出器12で検出されたミューオンのフラックスの実測値との違いに基づいて、堆積物24を推定してもよい。
 具体的に説明すると、解析部13は、まず、検出器12において検出されると想定されるミューオンのフラックスの期待値を求める。つまり、図2に示すように、地面(底面)23の上に堆積物がない状態でダム湖22が形成されていると仮定した際に、検出器12で検出されると想定される各天頂角θおよび各方位角φにおけるミューオンのフラックスの期待値を求める。
 このとき解析部13は、ダム21の構造情報と水位情報取得部11で取得した水位情報とを用いてミューオンのフラックスの期待値を算出することができる。すなわち、観測されるミューオンの数は、ミューオンが通過する経路の密度と長さに依存する。具体的には、ミューオンが通過する経路の密度が高い場合は、ミューオンが経路上で散乱される確率が高くなるため、観測されるミューオンの数が少なくなる。この場合は、ミューオンが通過する経路(密度の高い経路)が長いほど、ミューオンが経路上で散乱される確率が高くなるため、観測されるミューオンの数が少なくなる。逆に、ミューオンが通過する経路の密度が低い場合は、ミューオンが経路上で散乱される確率が低くなるため、観測されるミューオンの数が多くなる。
 解析部13は、ダム21の構造情報を用いることで、特定の天頂角θおよび特定の方位角φから飛来したミューオンがダム21を通過する際の、ダム21内部における経路の長さと経路の密度(ダム21の密度)を求めることができる。例えば、ダム21の構造情報には、ダム21を構成している鉄筋コンクリートの情報も含まれており、ダム21の密度は、ダム21を構成している鉄筋の割合とコンクリートの割合を用いて算出することができる。
 また、解析部13は、水位情報取得部11で取得した水位情報を用いることで、特定の天頂角θおよび特定の方位角φから飛来したミューオンがダム湖22の水中を通過する際の、水中における経路の長さを求めることができる。なお、水中の経路の密度については、水の密度を用いることができる。
 解析部13は、上述のようにして求めたミューオンが通過する経路の密度と長さを用いることで、検出器12で検出されると想定される各天頂角θおよび各方位角φにおけるミューオンのフラックスの期待値を求めることができる。
 そして解析部13は、検出器12で実際に検出されたミューオンのフラックスの実測値と、上述のようにして求めたミューオンのフラックスの期待値との違いに基づいて、堆積物24(図3参照)を推定する。具体的には、解析部13は、特定の経路(特定の天頂角θおよび特定の方位角φ)において実際に検出されたミューオンのフラックスの実測値が、特定の経路でのミューオンのフラックスの期待値よりも少ない場合、その経路上に堆積物24が存在すると推定する。
 図3に示すように、ミューオンの経路34には堆積物24が存在しないので、ミューオンの経路34のフラックスの実測値は、図2に示したミューオンの経路31のフラックス(想定されるフラックスの期待値)と同程度となる。
 一方、図3に示すミューオンの経路35には堆積物24が存在するので、ミューオンの経路35のフラックスの実測値は、図2に示したミューオンの経路32のフラックス(想定されるフラックスの期待値)よりも少なくなる。つまり、図3に示すミューオンの経路35では、水よりも密度の高い堆積物24の内部をミューオンが通過するため、図2に示したミューオンの経路32のフラックス(想定されるフラックスの期待値)よりもフラックスが少なくなる。
 同様に、図3に示すミューオンの経路36には堆積物24が存在するので、ミューオンの経路36のフラックスの実測値は、図2に示したミューオンの経路33のフラックス(想定されるフラックスの期待値)よりも少なくなる。つまり、図3に示すミューオンの経路36では、水よりも密度の高い堆積物24の内部をミューオンが通過するため、図2に示したミューオンの経路33のフラックス(想定されるフラックスの期待値)よりもフラックスが少なくなる。なお、図3のミューオンの経路35とミューオンの経路36とを比較すると、経路36の方が経路35よりも堆積物24の内部を通過する距離が長い。したがって、ミューオンの経路36のフラックスの実測値は、ミューオンの経路35のフラックスの実測値よりも少なくなる。
 解析部13は、このように各天頂角θおよび各方位角φにおけるミューオンのフラックスの実測値と期待値との差分を求めることで、ダム湖22に堆積している堆積物24の量や位置を推定することができる。例えば、解析部13は、各天頂角θおよび各方位角φにおけるミューオンのフラックスの実測値と期待値との差分をマッピングしてもよい。このようにマッピングすることで、ダム湖22に堆積している堆積物24の状態を視覚的に認識しやすくすることができる。
 次に、ダム湖22の水位が変動した場合について説明する。ダム湖22の水位はダムの放流量や天候などにより変動する。このため解析部13は、ダム湖22に堆積物が堆積していないと仮定した場合に検出器12で検出されると想定されるミューオンのフラックスの期待値を、水位情報取得部11で取得した水位の変動に応じて、更新する必要がある。
 例えば、図4に示すように、ダム湖22の水位が図3と比べて低くなった場合、ミューオンがダム湖22の水中を通過する経路37~39は、図3に示した経路34~36よりも短くなるので、これに応じて検出器12で検出されると想定されるミューオンのフラックスの期待値も変化する。したがって、解析部13は、水位情報取得部11で取得した水位の変動に応じて、ミューオンのフラックスの期待値を更新する必要がある。この場合は、ミューオンがダム湖22の水中を通過する経路が短くなり、また空気よりも水のほうが密度が低いので、フラックスの期待値が増加するように更新する。
 図6は、本実施の形態にかかるダム堆積物推定システムの配置例を説明するための上面図である。図6に示すように、本実施の形態にかかるダム堆積物推定システムでは、ダム21に複数の検出器12_1~12_3を配置してもよい。例えば、複数の検出器12_1~12_3は、ダム湖22に沿ったダム21の水平方向に配置することができる。例えば、複数の検出器12_1~12_3は、ダム21の内部に形成された管理用の通路25(図3参照)に設けることができる。
 図6に示すように、複数の検出器12_1~12_3をダム21に配置することで、ダム21全体に渡って堆積物している堆積物を推定することができる。具体的には、検出器12_1はダム21の中央部付近における堆積物を、検出器12_2はダム21の紙面左側付近における堆積物を、検出器12_3はダム21の紙面右側付近における堆積物を、それぞれ推定することができる。なお、図6では、各々の検出器12_1~12_3の検出範囲を符号50_1~50_3で示している。
 更に、本実施の形態にかかるダム堆積物推定システムでは、ダム湖22の底に検出器12_4を沈めてもよい。この場合は、検出器12_4を耐水容器に入れて、ダム湖22の底に沈めてもよい。例えば、山腹付近のダム湖22の底に検出器12_4を沈めることで、山腹からダム湖に流入した土砂を測定することができる。
 例えば、各々の検出器12_1~12_4の測定結果は、解析部13(図1)に供給される。解析部13は、これらの検出器12_1~12_4の測定結果を用いて、ダム湖22に堆積している堆積物を一括して推定することができる。
 また、本実施の形態にかかるダム堆積物推定システムでは、ダム21の垂直方向に複数の検出器12を設けてもよい。複数の検出器12をダム21の垂直方向に設けることで、ダム21の垂直方向における堆積物の量を精度よく求めることができる。
 また、本実施の形態にかかるダム堆積物推定システムでは、複数の検出器12の検出範囲が重なるように検出器を配置し、複数の検出器の検出結果を用いて堆積物を推定してもよい。このように、複数の検出器12の検出範囲が重なるようにすることで、測定に要する時間を短縮することができる。また、検出精度を向上させることができる。
 図7は、本実施の形態にかかるダム堆積物推定方法を説明するためのフローチャートである。本実施の形態にかかるダム堆積物推定方法は、上述のダム堆積物推定システム1を用いることで実施することができる。
 本実施の形態にかかるダム堆積物推定方法では、まず、ダム21で水を堰き止めることで形成されたダム湖22の水位情報を取得する(ステップS1)。また、ダム21に設けられた検出器12を用いて、ダム湖22を通過したミューオンを検出する(ステップS2)。そして、ダム21の構造情報と、ステップS1で取得した水位情報と、ステップS2で検出されたミューオンのフラックスに関する情報と、を用いて、ダム湖22に堆積している堆積物24を推定する(ステップS3)。なお、ダム湖22に堆積している堆積物24を推定する方法については、上述の解析部13の動作において説明したので重複した説明は省略する。
 以上、本発明を上記実施の形態に即して説明したが、本発明は上記実施の形態の構成にのみ限定されるものではなく、本願特許請求の範囲の請求項の発明の範囲内で当業者であればなし得る各種変形、修正、組み合わせを含むことは勿論である。
1 ダム堆積物推定システム
11 水位情報取得部
12 検出器
13 解析部
21 ダム
22 ダム湖
23 地面(底面)
24 堆積物
25 通路
41 目盛
42 カメラ

Claims (9)

  1.  ダムで水を堰き止めることで形成されたダム湖の水位情報を取得する水位情報取得部と、
     前記ダムに設けられ、前記ダム湖を通過したミューオンを検出可能な検出器と、
     前記ダムの構造情報と、前記水位情報取得部で取得した水位情報と、前記検出器で検出された前記ミューオンのフラックスに関する情報と、を用いて、前記ダム湖に堆積している堆積物を推定する解析部と、を備える、
     ダム堆積物推定システム。
  2.  前記ダムの構造情報は、前記ダムの形状と当該ダムを構成している材料の密度に関する情報である、請求項1に記載のダム堆積物推定システム。
  3.  前記解析部は、前記ダム湖に堆積物が堆積していないと仮定した場合に前記検出器で検出されると想定されるミューオンのフラックスの期待値と、前記検出器で検出されたミューオンのフラックスの実測値と、の違いに基づいて、前記堆積物を推定する、請求項1または2に記載のダム堆積物推定システム。
  4.  前記解析部は、特定の経路において実際に検出されたミューオンのフラックスの実測値が、前記特定の経路におけるミューオンのフラックスの期待値よりも少ない場合、前記特定の経路上に堆積物が存在すると推定する、請求項3に記載のダム堆積物推定システム。
  5.  前記解析部は、前記ダム湖に堆積物が堆積していないと仮定した場合に前記検出器で検出されると想定されるミューオンのフラックスの期待値を、前記水位情報取得部で取得した水位の変動に応じて更新する、請求項3または4に記載のダム堆積物推定システム。
  6.  前記水位情報取得部は、前記ダム湖の水位を示す目盛を撮影しているカメラで取得された画像に対して画像処理を施すことで、前記ダム湖の水位情報を取得する、請求項1~5のいずれか一項に記載のダム堆積物推定システム。
  7.  前記検出器は、前記ダムの内部に形成されている通路に設けられている、請求項1~6のいずれか一項に記載のダム堆積物推定システム。
  8.  前記検出器は、前記ダム湖に沿った前記ダムの水平方向に複数配置されている、請求項1~7のいずれか一項に記載のダム堆積物推定システム。
  9.  ダムで水を堰き止めることで形成されたダム湖の水位情報を取得し、
     前記ダムに設けられた検出器を用いて、前記ダム湖を通過したミューオンを検出し、
     前記ダムの構造情報と、前記取得した水位情報と、前記検出されたミューオンのフラックスに関する情報と、を用いて、前記ダム湖に堆積している堆積物を推定する、
     ダム堆積物推定方法。
PCT/JP2019/011434 2019-03-19 2019-03-19 ダム堆積物推定システム、及びダム堆積物推定方法 WO2020188739A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021506884A JP7070791B2 (ja) 2019-03-19 2019-03-19 ダム堆積物推定システム、及びダム堆積物推定方法
PCT/JP2019/011434 WO2020188739A1 (ja) 2019-03-19 2019-03-19 ダム堆積物推定システム、及びダム堆積物推定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/011434 WO2020188739A1 (ja) 2019-03-19 2019-03-19 ダム堆積物推定システム、及びダム堆積物推定方法

Publications (1)

Publication Number Publication Date
WO2020188739A1 true WO2020188739A1 (ja) 2020-09-24

Family

ID=72520705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011434 WO2020188739A1 (ja) 2019-03-19 2019-03-19 ダム堆積物推定システム、及びダム堆積物推定方法

Country Status (2)

Country Link
JP (1) JP7070791B2 (ja)
WO (1) WO2020188739A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7372611B1 (ja) 2022-09-12 2023-11-01 日本電気株式会社 構造体観測装置、モデル構築方法及びモデル構築プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121202A (ja) * 2005-10-31 2007-05-17 Nippon Steel Corp 高炉炉底耐火物の損耗状態確認方法
AU2006336333A1 (en) * 2005-02-17 2007-07-26 Advanced Applied Physics Solutions, Inc. Geological tomography using cosmic rays
JP2010101892A (ja) * 2008-10-22 2010-05-06 Univ Of Tokyo 巨大物体の内部構造解析装置
JP2013156099A (ja) * 2012-01-27 2013-08-15 Univ Of Tokyo 内部状態解析方法およびプログラム並びに内部状態解析システム
US20150287237A1 (en) * 2014-04-04 2015-10-08 Decision Sciences International Corporation Muon tomography imaging improvement using optimized limited angle data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006336333A1 (en) * 2005-02-17 2007-07-26 Advanced Applied Physics Solutions, Inc. Geological tomography using cosmic rays
JP2007121202A (ja) * 2005-10-31 2007-05-17 Nippon Steel Corp 高炉炉底耐火物の損耗状態確認方法
JP2010101892A (ja) * 2008-10-22 2010-05-06 Univ Of Tokyo 巨大物体の内部構造解析装置
JP2013156099A (ja) * 2012-01-27 2013-08-15 Univ Of Tokyo 内部状態解析方法およびプログラム並びに内部状態解析システム
US20150287237A1 (en) * 2014-04-04 2015-10-08 Decision Sciences International Corporation Muon tomography imaging improvement using optimized limited angle data

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7372611B1 (ja) 2022-09-12 2023-11-01 日本電気株式会社 構造体観測装置、モデル構築方法及びモデル構築プログラム

Also Published As

Publication number Publication date
JPWO2020188739A1 (ja) 2021-10-14
JP7070791B2 (ja) 2022-05-18

Similar Documents

Publication Publication Date Title
Tauro et al. Assessment of drone‐based surface flow observations
US11964741B2 (en) Devices, methods, and systems for underwater surveying
US7470905B1 (en) High Z material detection system and method
US8575546B2 (en) Nondestructive inspection apparatus and nondestructive inspection method for composite structure
US20090224157A1 (en) System and method for high z material detection
Chen Laser scanning technology for bridge monitoring
CN103400137B (zh) 一种sar图像的建筑物几何参数提取方法
JP4106445B2 (ja) 水平宇宙線ミュオン多重分割型検出手段による大型構造物の内部構造情報を得る方法
Gromke et al. Snow particle characteristics in the saltation layer
EP3470782A1 (en) Visualization element, measurement system, and measurement method
Kasvi et al. Sub-bend scale flow–sediment interaction of meander bends—A combined approach of field observations, close-range remote sensing and computational modelling
JP7070791B2 (ja) ダム堆積物推定システム、及びダム堆積物推定方法
JP2019522803A (ja) 岩石体積または人工建造物の密度を判断する方法および装置
JP7099619B2 (ja) 津波検出システム及び津波検出方法
ÖZDOĞAN et al. Landslide detection and characterization using terrestrial 3D laser scanning (LIDAR)
Marino et al. Measuring rock slope damage on rubble mound breakwater through digital photogrammetry
US20160209309A1 (en) Sediment sounding pole and handheld density profiler
EP2201407B1 (fr) Procede de determination de dose de rayonnement et procede de determination de courbe isodose associe
Thomas et al. Applications of low‐budget photogrammetry in the geotechnical laboratory
IMAIZUMI et al. Behavior of boulders within a debris flow initiation zone
Kamalzare et al. New visualization method to evaluate erosion quantity and pattern
CN104535462A (zh) 一种原位实时测量悬移质浓度和级配的装置及方法
RU2549612C1 (ru) Устройство для определения направления прихода широких атмосферных ливней
WO2020194371A1 (ja) 地下空洞検査システム、及び地下空洞検査方法
Oya et al. Field monitoring of pore-water pressure in fully and partly saturated debris flows at Ohya landslide scar, Japan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506884

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919822

Country of ref document: EP

Kind code of ref document: A1