WO2020188158A1 - Cooperative communications device for transport systems combining on-board radars and v2v inter-vehicle communications - Google Patents

Cooperative communications device for transport systems combining on-board radars and v2v inter-vehicle communications Download PDF

Info

Publication number
WO2020188158A1
WO2020188158A1 PCT/FR2020/000107 FR2020000107W WO2020188158A1 WO 2020188158 A1 WO2020188158 A1 WO 2020188158A1 FR 2020000107 W FR2020000107 W FR 2020000107W WO 2020188158 A1 WO2020188158 A1 WO 2020188158A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
vehicles
communications device
road
transport system
Prior art date
Application number
PCT/FR2020/000107
Other languages
French (fr)
Other versions
WO2020188158A8 (en
Inventor
Mondher Attia
Aymen Zayet
Original Assignee
Iptech Entreprise (Sarl)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iptech Entreprise (Sarl) filed Critical Iptech Entreprise (Sarl)
Publication of WO2020188158A1 publication Critical patent/WO2020188158A1/en
Publication of WO2020188158A8 publication Critical patent/WO2020188158A8/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3822Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving specially adapted for use in vehicles

Definitions

  • An autonomous vehicle is most often equipped with digital sensors such as radars, lidars, cameras, sonars etc. whose recorded data are processed by processors and specifically adapted software. Said processors and software reconstruct the 3D road situation by recognition of shapes, for example limits of roadways, traffic lanes, surrounding vehicles, signs or various obstacles and use artificial intelligence algorithms to act accordingly on the vehicle controls.
  • Cooperative communication consists of vehicle-to-vehicle but also vehicle-to-infrastructure cooperation.
  • intelligence is shared between the vehicle and the infrastructure.
  • Vehicles communicate with each other and with infrastructure, thus offering the potential to significantly increase the quality and reliability of information.
  • vehicles traveling on the road are connected to the infrastructure through continuous communication. They exchange relevant data and information relating to the section of road crossed in order to improve safety and enable cooperative traffic management. More specifically, through integrated vehicle-infrastructure-vehicle type communication protocols, a vehicle that detects a dangerous or critical situation will first use V2V vehicle-to-vehicle communication to warn other vehicles in its immediate surroundings and communicate this information to surrounding beacons. If this information cannot be sent to vehicles or beacons, the vehicle will use other communication channels to communicate with a management center. The said center takes care of the routing of appropriate messages to other vehicles approaching the area concerned.
  • Cooperative communication systems are more generally referred to as V2V for vehicle-to-vehicle communications, V21 for vehicle-to-infrastructure communications, and 12V for infrastructure-to-vehicle communications.
  • the current cooperative communicating systems generally make use of at least three types of radars of different range and aperture, short range radars either from 30 to 40 meters, medium range or from 70 to 100 meters and long range varying from 200 to 300 meters.
  • These radars use the frequency bands 76 to 77 GHz and 77 to 81 GHz, the frequency of 24 GHz having been abandoned to date, but are highly sensitive to interference and most often do not detect pedestrians or the road (Radar pulsed, linear FM, FMCW, M-sequense etc.).
  • radar pulsed linear FM, FMCW, M-sequense etc.
  • These types of radars were originally developed for applications such as adaptive-control, Pre-Crash, Blind Spot Detection and Stop and Go. Line Departure application can only be performed by systems with cameras.
  • the ADAS autonomous exhaust and driver assistance systems require vehicles to be equipped with such radars, at the front, rear and on both sides. On the other hand, these radars must be redundant by Lidar systems and cameras.
  • Lidar light detection and ranging
  • lidar optical radars corresponding to a remote measurement technique based on the analysis of the properties of a light beam returned to its emitter.
  • lidar almost always uses light from a laser. The distance is given by measuring the delay between the emission of a pulse and the detection of a reflected pulse. They reach a maximum range of 100 meters and they use MEMS micro mirrors to scan the beam. Their performance deteriorates significantly in the presence of fog, rain or dirt.
  • V2V inter-vehicle communications allow the exchange of data between vehicles and thus to understand the dangers. They generally act according to three common standards such as: 802.11p, Device-to-Device-PC5 of the 3GPP Rel. 13 and 14 standard commonly called 4G and 4G + and Device-to-Device-PC5 of the 3GPP Rel. 15 and 16 standard. called 5G. These standards use:
  • OFDM orthogonal frequency-division multiplexing
  • OFDM orthogonal frequency-division multiplexing
  • This technique makes it possible to fight against frequency selective channels by allowing equalization of low complexity. These channels manifest themselves especially in the presence of multiple paths and are all the more penalizing the higher the transmission rate.
  • OFDM uses orthogonal sub-carriers. Thus, the signals of the different sub-carriers overlap but thanks to the orthogonality do not interfere with each other.
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA subcarrier frequency-division multiple access
  • All of these encodings are derived from OFDM encoding, but unlike OFDM, OFDMA is optimized to allow multiple access, that is, the sharing of the spectral resource among many remote users. This therefore allows a very large number of people to communicate.
  • the cooperative communications device for transport systems hereinafter referred to as communicating radar, dialogues with the on-board computers of a vehicle via CAN BUS and essentially comprises three blocks including a BN digital block, a transceiver unit called BT transceiver and a BA antenna unit.
  • the BN digital block has the task of executing the signal processing and for this comprises two main parts:
  • a CT part consisting of a plurality of data processing circuits for example FPGA, ASIC etc. mainly performing waveform generation processing.
  • a part PT consisting of a plurality of data processing processors for performing all the other tasks which are not considered by the data processing circuits, namely all those which are not constrained by time.
  • the transceiver [18] According to this preferred embodiment of the invention, the transceiver
  • BT transposes the frequency band of digital signals to the band radar transmission frequency 76 to 81 GHz and vice versa. It is made up of three channels, one for VE transmission and two for VR1 and VR2 reception.
  • the transmission channel VE and one of the reception channels VR1 of the transceiver unit BT are respectively connected to two identical synchronous phase shifters and having the same command DP1 and DP2. They therefore display the same phase shift at all times.
  • Each phase shifter is connected to a beamforming antenna A1 and A2.
  • These antennas are made up of N x N radiating elements capable of emitting a beam with an opening of less than 1 °. With certain values of the phases applied to these elements, it is allowed to obtain a scan, for example from - 45 ° to + 45 ° horizontally and - 10 ° to + 10 ° vertically with a beam of aperture less than 1 ° .
  • the second reception channel VR2 is connected to a fixed lobe antenna A3 covering the same scanning area of the other antennas, namely - 45 ° to + 45 ° horizontally and - 10 ° to + 10 ° vertically.
  • the invention differs from existing communication systems by the following points:
  • V2V communications comply with 802.11 p standards, Device-to-Device-PC5 of Standard 3GPP Rel. 13 and 14 commonly called 4G and 4G + and Device-to-Device-PC5 of Standard 3GPP Rel. 15 and 16 commonly called 5G.
  • the precision of the distance and speed measurements as well as the A1 and A2 antennas in scanning mode make it possible to detect the edges of the road and thus determine the traffic lane on which the vehicle is located, detect speed bumps, crevasses and potholes as well as the trenches.
  • the A1 and A2 antennas are beamforming antennas for forming beams to communicate only with certain vehicles. For example, if a vehicle (A) traveling on the central lane of a road follows a vehicle
  • a beam is formed for the vehicle (A) to communicate with the vehicle (B). If other vehicles intervene on the other lanes, for example a vehicle (D) on the left lane and a vehicle (C) on the right lane, two beams are then formed, one beam so that the vehicle (A) communicates with the vehicle
  • the communications between vehicles A and B, A and C and A and D, make it possible to determine unequivocally the signatures of vehicles B, C and D. They determine whether it is a car, a truck, a bus, motorbike, bicycle or pedestrian.
  • FIG.1 Represents a diagram showing the range and opening of the radars of current cooperative communicating systems in relation to table 1.
  • FIG.2 Is a diagram showing the composition of the cooperative communications device of the present invention.
  • FIG.3 Represents the cooperative communications device of the present invention, the beams of the beamforming antennae detecting the edges of the road and the lane taken.
  • FIG.4 Represents the cooperative communications device of the present invention, the beams of the beamforming antennas detecting the presence of a speed bump on the traffic lane.
  • FIG.5 Represents the cooperative communications device of the present invention, the beams of the beamforming antennae detecting the presence of potholes on the traffic lane.
  • FIG.6 Represents the cooperative communications device of the present invention, the beams of the beamforming antennae detecting the presence of trenches on the traffic lane.
  • FIG.7 Represents the cooperative communications device of the present invention, the beams of the beamforming antennas (Beamforming antenna) detecting the presence of vehicles on the three contiguous traffic lanes.

Abstract

The invention relates to a unique device combining long-range, medium-range and short-range radar detection functions as well as V2V inter-vehicle communications. It reduces costs, weight and installation space in a vehicle, while precisely locating the road and the traffic lanes on the road, by identifying all the obstacles present on the road such as cars, motorcycles, bicycles, pedestrians, etc., without experiencing any disturbance from interference due to bad weather, dirt, etc. The device uses beamforming antennas making it possible to form beams in order to communicate only with certain vehicles, for example if a vehicle (A) travelling in the central lane of a road follows a vehicle (B), a beam is formed such that the vehicle (A) communicates with the vehicle (B) and if other vehicles are driving in the other lanes such as a vehicle (D) in the left lane and a vehicle (C) in the right lane, two beams are subsequently formed, one beam for the vehicle (A) to communicate with the vehicle (C) travelling in the right lane and another beam for the vehicle (A) to communicate with the vehicle (D) travelling in the left lane. The communications between the vehicles (A) and (B), (A) and (C) and (A) and (D) also make it possible to determine the signature of each vehicle, i.e. to know whether the detected vehicle is a car, truck, bus, motorcycle, bicycle or pedestrian.

Description

Description Description
Titre de l’invention: Dispositif de communications coopératives pour systèmes de transport, associant radars embarqués et communications inter véhicules V2V Title of the invention: Cooperative communications device for transport systems, combining on-board radars and V2V inter-vehicle communications
[1] On sait que l’amélioration de la sécurité routière et l’orientation des technologies vers la conduite autonome des véhicules de transport, conduisent à recourir ie plus souvent à une pluralité de radars embarqués pour détecter l’environnement immédiat des véhicules et apporter auxdits véhicules circulant sur les routes, une sécurité préventive ou primaire, c’est- à-dire un ensemble d’éléments liés au véhicule, aux usagers et à l’environnement pouvant éviter la survenue d’un accident. [1] We know that the improvement of road safety and the orientation of technologies towards the autonomous driving of transport vehicles, lead to resort, ie more often, to a plurality of on-board radars to detect the immediate environment of vehicles and provide to said vehicles traveling on the roads, preventive or primary safety, that is to say a set of elements linked to the vehicle, to the users and to the environment that can prevent the occurrence of an accident.
[2] Le concept du véhicule autonome aujourd’hui recherché correspond à un véhicule automobile apte à circuler sur la voie publique sans intervention humaine en toutes situations. Il s'agit là d’une application typique de la robotique mobile présentant toutefois quelques nuances selon que l'on parle de véhicule totalement autonome, semi-autonome, ou à conduite automatisée par exemple en agglomération ou sur routes ouvertes ou encore à stationnement automatisé etc. [2] The concept of the autonomous vehicle that is sought after today corresponds to a motor vehicle capable of traveling on public roads without human intervention in all situations. This is a typical application of mobile robotics, however, presenting some nuances depending on whether we are talking about a fully autonomous vehicle, semi-autonomous, or automated driving for example in urban areas or on open roads or even automated parking. etc.
[3] Un véhicule autonome est le plus souvent équipé de capteurs numériques tels que radars, lidars, caméras, sonars etc. dont les données relevées sont traitées par des processeurs et des logiciels spécifiquement adaptés. Lesdits processeurs et logiciels reconstituent la situation routière 3D par reconnaissance de formes, par exemple limites de chaussées, de voies de circulation, de véhicules environnants, de panneaux ou d’obstacles divers et emploient des algorithmes d’intelligence artificielle pour agir en conséquence sur les commandes du véhicule. [3] An autonomous vehicle is most often equipped with digital sensors such as radars, lidars, cameras, sonars etc. whose recorded data are processed by processors and specifically adapted software. Said processors and software reconstruct the 3D road situation by recognition of shapes, for example limits of roadways, traffic lanes, surrounding vehicles, signs or various obstacles and use artificial intelligence algorithms to act accordingly on the vehicle controls.
[4] La communication coopérative consiste dans la coopération de véhicule à véhicule mais aussi de véhicule à infrastructure. Dans les systèmes coopératifs, l'intelligence est partagée entre le véhicule et l’infrastructure. Les véhicules communiquent les uns avec les autres et avec l’infrastructure, offrant ainsi le potentiel d’accroitre considérablement la qualité et la fiabilité des informations. [4] Cooperative communication consists of vehicle-to-vehicle but also vehicle-to-infrastructure cooperation. In cooperative systems, intelligence is shared between the vehicle and the infrastructure. Vehicles communicate with each other and with infrastructure, thus offering the potential to significantly increase the quality and reliability of information.
[5] Dans cette vision coopérative, les véhicules circulant sur la route sont connectés à l’infrastructure via une communication continue. Ils échangent des données et des informations pertinentes relatives à la section de route traversée afin d'améliorer la sécurité et permettre une gestion coopérative du trafic. Plus précisément, au travers des protocoles de communication intégrés de type véhicule-infrastructure-véhicuie, un véhicule qui détecte une situation dangereuse ou critique utilisera d’abord la communication véhicule à véhicule V2V pour avertir les autres véhicules se trouvant dans son entourage direct et communique cette information aux balises environnantes. Si ces informations ne peuvent pas être envoyées aux véhicules ou aux balises, le véhicule utilisera d’autres canaux de communication pour communiquer avec un centre de gestion. Ledit centre prend en charge l’acheminement des messages adéquats aux autres véhicules approchant la zone concernée. [5] In this cooperative vision, vehicles traveling on the road are connected to the infrastructure through continuous communication. They exchange relevant data and information relating to the section of road crossed in order to improve safety and enable cooperative traffic management. More specifically, through integrated vehicle-infrastructure-vehicle type communication protocols, a vehicle that detects a dangerous or critical situation will first use V2V vehicle-to-vehicle communication to warn other vehicles in its immediate surroundings and communicate this information to surrounding beacons. If this information cannot be sent to vehicles or beacons, the vehicle will use other communication channels to communicate with a management center. The said center takes care of the routing of appropriate messages to other vehicles approaching the area concerned.
[6] Les systèmes de communication coopérative sont plus généralement désignés par V2V pour les communications de véhicule à véhicule, V21 pour les communications de véhicule à infrastructure et 12V pour les communications des infrastructures vers le véhicule. [6] Cooperative communication systems are more generally referred to as V2V for vehicle-to-vehicle communications, V21 for vehicle-to-infrastructure communications, and 12V for infrastructure-to-vehicle communications.
[7] Les systèmes communicants coopératifs actuels font généralement appel à au moins trois types de radars de portée et d’ouverture différentes, des radars de courte portée soit de 30 à 40 mètres, de moyenne portée soit de 70 à 100 mètres et de longue portée variant de 200 à 300 mètres. Ces radars utilisent les bandes de fréquences de 76 à 77 GHz et 77 à 81 GHz, la fréquence de 24 GHz étant à ce jour abandonnée, mais présentent une grande sensibilité aux interférences et le plus souvent ne détectent ni les piétons ni la route (Radar pulsé, linear FM, FMCW, M-sequense etc.). Ces types de radars ont été initialement développés pour des applications telles que adaptive-control, Pre-Crash, Blind Spot Détection et Stop and Go. L’application Line Departure ne peut être réalisée que par des systèmes embarquant des caméras. [7] The current cooperative communicating systems generally make use of at least three types of radars of different range and aperture, short range radars either from 30 to 40 meters, medium range or from 70 to 100 meters and long range varying from 200 to 300 meters. These radars use the frequency bands 76 to 77 GHz and 77 to 81 GHz, the frequency of 24 GHz having been abandoned to date, but are highly sensitive to interference and most often do not detect pedestrians or the road (Radar pulsed, linear FM, FMCW, M-sequense etc.). These types of radars were originally developed for applications such as adaptive-control, Pre-Crash, Blind Spot Detection and Stop and Go. Line Departure application can only be performed by systems with cameras.
[8] [tableau. 1]
Figure imgf000005_0001
[8] [table. 1]
Figure imgf000005_0001
[9] [tableau. 2] [9] [table. 2]
Figure imgf000005_0002
Figure imgf000005_0002
[10] Les systèmes de exinduite autonome et d’aide à la conduite ADAS impliquent que les véhicules soient équipés par de tels radars, à l'avant, à l’arrière et sur les deux côtés. D’autre part ces radars doivent être redondés par des systèmes Lidar et caméras. [10] The ADAS autonomous exhaust and driver assistance systems require vehicles to be equipped with such radars, at the front, rear and on both sides. On the other hand, these radars must be redundant by Lidar systems and cameras.
[11] Les lidar (light détection and ranging) sont des radars optiques correspondant à une technique de mesure à distance fondée sur l’analyse des propriétés d’un faisceau de lumière renvoyé vers son émetteur. A la différence du radar qui recourt à des ondes radio ou du sonar qui utilise des ondes acoustiques, le lidar utilise la lumière quasiment toujours issue d’un laser. La distance est donnée par la mesure du délai entre l’émission d’une impulsion et la détection d’une impulsion réfléchie. Ils atteignent une portée maximum de 100 mètres et ils utilisent des micro miroirs MEMS pour balayer le faisceau. Leurs performances se dégradent fortement en présence de brouillard, de pluie ou de salissure. [11] Lidar (light detection and ranging) are optical radars corresponding to a remote measurement technique based on the analysis of the properties of a light beam returned to its emitter. Unlike radar, which uses radio waves or sonar, which uses acoustic waves, lidar almost always uses light from a laser. The distance is given by measuring the delay between the emission of a pulse and the detection of a reflected pulse. They reach a maximum range of 100 meters and they use MEMS micro mirrors to scan the beam. Their performance deteriorates significantly in the presence of fog, rain or dirt.
[12] Les caméras présentent également l’inconvénient de voir leurs performances se dégrader en présence de brouillard, de pluie, de soleil intense et de salissure. Elles ont l'avantage de pouvoir détecter la présence des piétons et des lignes blanches. La détection des lignes blanches est actuellement l'unique procédé permettant de bien situer la route et les voies de circulation sur ladite route, informations indispensables pour la conduite autonome. [12] Cameras also have the disadvantage of seeing their performance deteriorate in the presence of fog, rain, sun. intense and soiling. They have the advantage of being able to detect the presence of pedestrians and white lines. The detection of white lines is currently the only process making it possible to correctly locate the road and the traffic lanes on said road, information which is essential for autonomous driving.
[13] Les communications inter-véhicules V2V permettent l’échange de données entre les véhicules et ainsi d’appréhender les dangers. Elles agissent généralement selon trois standards courants tels que: 802.11p, Device-to-Device-PC5 du standard 3GPP Rel.13 et 14 couramment appelé 4G et 4G+ et Device-to-Device-PC5 du standard 3GPP Rel.15 et 16 couramment appelé 5G. Ces standards utilisent: [13] V2V inter-vehicle communications allow the exchange of data between vehicles and thus to understand the dangers. They generally act according to three common standards such as: 802.11p, Device-to-Device-PC5 of the 3GPP Rel. 13 and 14 standard commonly called 4G and 4G + and Device-to-Device-PC5 of the 3GPP Rel. 15 and 16 standard. called 5G. These standards use:
a. Les formes d’ondes OFDM, FBMC etc. L’OFDM (orthogonal frequency-division multiplexing) est un procédé de codage de signaux numériques par répartition en fréquences orthogonales sous forme de multiples sous-porteuses. Cette technique permet de lutter contre les canaux sélectifs en fréquence en permettant une égalisation de faible complexité. Ces canaux se manifestent notamment en présence de trajets multiples et sont d’autant plus pénalisants que le débit de transmission est élevé. Pour que les fréquences des sous-porteuses soient les plus proches possibles et ainsi transmettre le maximum d’informations sur une portion de fréquences donnée, l’OFDM utilise des sous-porteuses orthogonales. Ainsi, les signaux des différentes sous-porteuses se chevauchent mais grâce à l’orthogonalité n’interfèrent pas entre eux. b. L’OFDMA (orthogonal frequency-division multiple access), sa variante SC-FDMA ou d’autres codages pour assurer l’accès multiple. Tous ces codages sont dérivés du codage OFDM mais contrairement à ce dernier, l’OFDMA est optimisé pour permettre l’accès multiple, c’est-à-dire le partage de la ressource spectrale entre de nombreux utilisateurs distants les uns des autres. Cela permet donc à un très grand nombre de personnes de communiquer. at. OFDM, FBMC etc. waveforms OFDM (orthogonal frequency-division multiplexing) is a method of encoding digital signals by division in orthogonal frequencies in the form of multiple sub-carriers. This technique makes it possible to fight against frequency selective channels by allowing equalization of low complexity. These channels manifest themselves especially in the presence of multiple paths and are all the more penalizing the higher the transmission rate. To ensure that the frequencies of the sub-carriers are as close as possible and thus transmit the maximum amount of information on a given frequency portion, OFDM uses orthogonal sub-carriers. Thus, the signals of the different sub-carriers overlap but thanks to the orthogonality do not interfere with each other. b. OFDMA (orthogonal frequency-division multiple access), its variant SC-FDMA or other encodings to provide multiple access. All of these encodings are derived from OFDM encoding, but unlike OFDM, OFDMA is optimized to allow multiple access, that is, the sharing of the spectral resource among many remote users. This therefore allows a very large number of people to communicate.
[14] Souhaitant améliorer la sécurité routière et l’efficacité du trafic routier, l’auteur de la présente invention a orienté ses recherches vers les communications coopératives pour les systèmes de transport et les systèmes radar embarqués détectant l’environnement immédiat d’un véhicule, pour les systèmes d’aide à la conduite ADAS et les systèmes de détection collaborative. [14] Wishing to improve road safety and road traffic efficiency, the author of the present invention has directed his research towards cooperative communications for transport systems and vehicles. on-board radar systems detecting the immediate surroundings of a vehicle, for ADAS driving assistance systems and collaborative detection systems.
[15] Avantageusement, l’invention permettra: [15] Advantageously, the invention will allow:
a. De regrouper quatre fonctions en une soit trois radars (courte, moyenne et longue portée) ainsi que les communications intervéhicules V2V, at. To combine four functions into one, i.e. three radars (short, medium and long range) as well as V2V inter-vehicle communications,
b. D’établir les communications inter-véhicules en respectant le standard 802.11p. ou celui des communications Device-to-Device- PC5 du Standard 3GPP Rel.13 et 14 couramment appelé 4G et 4G+ ou encore celui des communications Device-to-Device-PC5 du Standard 3GPP Rel.15 et 16 couramment appelé 5G, b. Establish inter-vehicle communications respecting the 802.11p standard. or that of Device-to-Device-PC5 communications of Standard 3GPP Rel. 13 and 14 commonly called 4G and 4G + or that of Device-to-Device-PC5 communications of Standard 3GPP Rel. 15 and 16 commonly called 5G,
c. D’obtenir une image 4D (Dimensions) ayant une très bonne définition pour discriminer entre les différents objets, obstacles ou cibles pouvant être rencontrés sur la route (piéton, voiture, moto, vélo etc.), pour situer la route etc. vs. Obtain a 4D image (Dimensions) with very good definition to discriminate between the different objects, obstacles or targets that may be encountered on the road (pedestrian, car, motorcycle, bicycle etc.), to locate the road etc.
[16] Selon un mode privilégié de réalisation de l’invention, le dispositif de communications coopératives pour systèmes de transport ci-après désigné radar communicant, dialogue avec les calculateurs embarqués d’un véhicule par l’intermédiaire de BUS CAN et comprend essentiellement trois blocs dont un bloc numérique BN, un bloc émetteur-récepteur dit transceiver BT et un bloc antenne BA. [16] According to a preferred embodiment of the invention, the cooperative communications device for transport systems hereinafter referred to as communicating radar, dialogues with the on-board computers of a vehicle via CAN BUS and essentially comprises three blocks including a BN digital block, a transceiver unit called BT transceiver and a BA antenna unit.
[17] Selon ce mode de réalisation privilégié de l’invention, le bloc numérique BN a pour mission d’exécuter le traitement du signal et pour cela comprend deux parties principales: [17] According to this preferred embodiment of the invention, the BN digital block has the task of executing the signal processing and for this comprises two main parts:
a. Une partie CT consistant en une pluralité de circuits de traitement des données par exemple FPGA, ASIC etc. exécutant principalement les traitements de génération des formes d’ondes. b. Une partie PT consistant en une pluralité de processeurs de traitement de données pour exécuter toutes les autres tâches qui ne sont pas considérées par les circuits de traitement de données, à savoir tous ceux qui ne sont pas contraints par le temps. at. A CT part consisting of a plurality of data processing circuits for example FPGA, ASIC etc. mainly performing waveform generation processing. b. A part PT consisting of a plurality of data processing processors for performing all the other tasks which are not considered by the data processing circuits, namely all those which are not constrained by time.
[18] Selon ce mode de réalisation privilégié de l’invention, le transceiver [18] According to this preferred embodiment of the invention, the transceiver
BT transpose la bande de fréquence des signaux numériques à la bande de fréquence d'émission réception radar 76 à 81 GHz et vice-versa. Il est composé de trois voies, une pour l’émission VE et deux pour la réception VR1 et VR2. BT transposes the frequency band of digital signals to the band radar transmission frequency 76 to 81 GHz and vice versa. It is made up of three channels, one for VE transmission and two for VR1 and VR2 reception.
[19] Selon ce mode de réalisation privilégié de l'invention, le canal d’émission VE et un des canaux de réception VR1 du bloc transceiver BT sont connectés respectivement à deux déphaseurs identiques synchrones et ayant la même commande DP1 et DP2. Ils affichent donc à tout instant le même déphasage. Chaque déphaseur est connecté à une antenne de formation d’onde (Beamforming antenna) A1 et A2. Ces antennes sont composées de N x N éléments rayonnants pouvant émettre un faisceau d’ouverture inférieure à 1 °. Il est permis avec certaines valeurs des phases appliquées à ces éléments d'obtenir un balayage par exemple de - 45° à + 45° en horizontale et - 10° à + 10° en verticale d’un faisceau d’ouverture inférieure à 1 °. Selon d’autres valeurs des phases, on peut concentrer les faisceaux dans une ou plusieurs directions. Le deuxième canal de réception VR2 est connecté à une antenne à lobe fixe A3 couvrant la même zone de balayage des autres antennes à savoir - 45° à + 45° en horizontale et - 10° à + 10° en verticale. [19] According to this preferred embodiment of the invention, the transmission channel VE and one of the reception channels VR1 of the transceiver unit BT are respectively connected to two identical synchronous phase shifters and having the same command DP1 and DP2. They therefore display the same phase shift at all times. Each phase shifter is connected to a beamforming antenna A1 and A2. These antennas are made up of N x N radiating elements capable of emitting a beam with an opening of less than 1 °. With certain values of the phases applied to these elements, it is allowed to obtain a scan, for example from - 45 ° to + 45 ° horizontally and - 10 ° to + 10 ° vertically with a beam of aperture less than 1 ° . Depending on other values of the phases, the beams can be concentrated in one or more directions. The second reception channel VR2 is connected to a fixed lobe antenna A3 covering the same scanning area of the other antennas, namely - 45 ° to + 45 ° horizontally and - 10 ° to + 10 ° vertically.
[20] Selon ce mode de réalisation privilégié, l’invention se différencie des systèmes de communication existants par les points suivants: [20] According to this preferred embodiment, the invention differs from existing communication systems by the following points:
a. Combinaison des fonctions radar et communications. Par l'intermédiaire de l’antenne d’émission A1 les données sont émises vers tous les véhicules se situant dans l’ouverture - 45° à +45° en horizontale et - 10° à + 10° en verticale. Si le signal est reçu à l’antenne de réception A2 c’est qu’il provient de la même orientation que celle de l'antenne d’émission A1 , dans le cas contraire la réception du signal est opérée par l’antenne A3. at. Combination of radar and communications functions. Via the transmission antenna A1, data is transmitted to all vehicles located in the opening - 45 ° to + 45 ° horizontally and - 10 ° to + 10 ° vertically. If the signal is received at the receiving antenna A2, it is because it comes from the same orientation as that of the transmitting antenna A1, otherwise the signal is received by antenna A3.
b. Les communications V2V sont conformes aux standards 802.11 p, Device-to-Device-PC5 du Standard 3GPP Rel.13 et 14 couramment appelé 4G et 4G+ et Device-to-Device-PC5 du Standard 3GPP Rel.15 et 16 couramment appelé 5G. b. V2V communications comply with 802.11 p standards, Device-to-Device-PC5 of Standard 3GPP Rel. 13 and 14 commonly called 4G and 4G + and Device-to-Device-PC5 of Standard 3GPP Rel. 15 and 16 commonly called 5G.
c. Les précisions des mesures des distances et des vitesses ainsi que les antennes A1 et A2 en mode balayage permettent de discriminer entre toutes les cibles (voiture, moto, vélo, piéton etc.) et d’obtenir une image 4D de définition N x N (éléments rayonnants). d. Les précisions des mesures des distances et des vitesses ainsi que les ouvertures des antennes permettent de couvrir les exigences des radars courte, moyenne et longue portée. On combine alors ces trois fonctions radar avec celle de la communication V2V. vs. The precision of the distance and speed measurements as well as the A1 and A2 antennas in scanning mode make it possible to discriminate between all the targets (car, motorbike, bicycle, pedestrian, etc.) and obtain a 4D image of N x N definition (radiating elements). d. The precise measurements of distances and speeds as well as the apertures of the antennas make it possible to cover the requirements of short, medium and long range radars. These three radar functions are then combined with that of V2V communication.
e. La fusion de l’image 4D avec celles transmises par les autres véhicules permet d’obtenir une image 4D plus précise et de constituer une cartographie précise de la route. e. By merging the 4D image with those transmitted by other vehicles, it is possible to obtain a more precise 4D image and to build an accurate map of the road.
f. Les précisions des mesures des distances et des vitesses ainsi que les antennes A1 et A2 en mode balayage permettent de détecter les bords de la route et ainsi déterminer la voie de circulation sur laquelle se trouve le véhicule, détecter les dos d’âne, les crevasses et nids de poule ainsi que les tranchées. f. The precision of the distance and speed measurements as well as the A1 and A2 antennas in scanning mode make it possible to detect the edges of the road and thus determine the traffic lane on which the vehicle is located, detect speed bumps, crevasses and potholes as well as the trenches.
g. Les antennes A1 et A2 sont des antennes à formation de faisceaux (Beamforming antenna) permettant de former des faisceaux pour ne communiquer qu’avec certains véhicules. Par exemple, si un véhicule (A) circulant sur la voie centrale d’une route suit un véhicule g. The A1 and A2 antennas are beamforming antennas for forming beams to communicate only with certain vehicles. For example, if a vehicle (A) traveling on the central lane of a road follows a vehicle
(B) un faisceau est formé pour que le véhicule (A) communique avec le véhicule (B). Si d’autres véhicules interviennent sur les autres voies par exemple un véhicule (D) sur la voie de gauche et un véhicule (C) sur la voie de droite, deux faisceaux sont alors formés, un faisceau pour que le véhicule (A) communique avec le véhicule(B) a beam is formed for the vehicle (A) to communicate with the vehicle (B). If other vehicles intervene on the other lanes, for example a vehicle (D) on the left lane and a vehicle (C) on the right lane, two beams are then formed, one beam so that the vehicle (A) communicates with the vehicle
(C) circulant sur la voie de droite et un faisceau pour que le véhicule (A) communique avec le véhicule (D) circulant sur la voie de gauche. Ainsi sont gérées les intentions de changement de voie de chaque véhicule. La capacité de Beamforming confère aux communications une sécurité spatiale venant s'ajouter à la sécurité numérique. (C) traveling in the right lane and a harness for the vehicle (A) to communicate with the vehicle (D) traveling in the left lane. Thus, the lane change intentions of each vehicle are managed. Beamforming capability gives communications space security in addition to digital security.
h. Les communications entre les véhicules A et B, A et C et A et D, permettent de déterminer sans équivoque les signatures des véhicules B, C et D. Elles déterminent s’il s'agit d’une voiture, d’un camion, d'un bus, d'une moto, d’un vélo ou d’un piéton. h. The communications between vehicles A and B, A and C and A and D, make it possible to determine unequivocally the signatures of vehicles B, C and D. They determine whether it is a car, a truck, a bus, motorbike, bicycle or pedestrian.
[21] Les dessins annexés illustrent l'invention: [22] [Fig.1] Représente un schéma montrant la portée et l'ouverture des radars des systèmes communicants coopératifs actuels en rapport avec le tableau 1. [21] The accompanying drawings illustrate the invention: [22] [Fig.1] Represents a diagram showing the range and opening of the radars of current cooperative communicating systems in relation to table 1.
[23] [Fig.2] Représente un schéma montrant la composition du dispositif de communications coopératives de la présente invention. [23] [Fig.2] Is a diagram showing the composition of the cooperative communications device of the present invention.
[24] [Fig.3] Représente le dispositif de communications coopératives de ia présente invention, les faisceaux des antennes à formation de faisceaux (Beamforming antenna) détectant les bords de la route et la voie de circulation empruntée. [24] [Fig.3] Represents the cooperative communications device of the present invention, the beams of the beamforming antennae detecting the edges of the road and the lane taken.
[25] [Fig.4] Représente le dispositif de communications coopératives de la présente invention, les faisceaux des antennes à formation de faisceaux (Beamforming antenna) détectant la présence d’un dos d’âne sur la voie de circulation. [25] [Fig.4] Represents the cooperative communications device of the present invention, the beams of the beamforming antennas detecting the presence of a speed bump on the traffic lane.
[26] [Fig.5] Représente le dispositif de communications coopératives de la présente invention, les faisceaux des antennes à formation de faisceaux (Beamforming antenna) détectant la présence de nid de poule sur la voie de circulation. [26] [Fig.5] Represents the cooperative communications device of the present invention, the beams of the beamforming antennae detecting the presence of potholes on the traffic lane.
[27] [Fig.6] Représente le dispositif de communications coopératives de la présente invention, les faisceaux des antennes à formation de faisceaux (Beamforming antenna) détectant la présence de tranchée sur la voie de circulation. [27] [Fig.6] Represents the cooperative communications device of the present invention, the beams of the beamforming antennae detecting the presence of trenches on the traffic lane.
[28] [Fig.7] Représente le dispositif de communications coopératives de la présente invention, les faisceaux des antennes à formation de faisceaux (Beamforming antenna) détectant la présence de véhicules sur les trois voies contigües de circulation. [28] [Fig.7] Represents the cooperative communications device of the present invention, the beams of the beamforming antennas (Beamforming antenna) detecting the presence of vehicles on the three contiguous traffic lanes.

Claims

Revendications Claims
[Revendication 1] Dispositif de communications coopératives pour système de transport, caractérisé en ce qu’il associe fonctionnellement trois radars de portée et d’ouverture différentes et la communication inter- véhicules V2V et se compose de trois blocs distincts dont un premier bloc dit bloc numérique BN, un deuxième bloc dit bloc transceiver BT et un troisième bloc dit bloc antenne BA. [Claim 1] Cooperative communications device for a transport system, characterized in that it functionally associates three radars of different range and aperture and the V2V inter-vehicle communication and consists of three distinct blocks, a first block of which is called a block. digital BN, a second block called the BT transceiver block and a third block called the BA antenna block.
[Revendication 2] Dispositif de communications coopératives pour système de transport selon la revendication 1 , caractérisé en ce que le bloc numérique BN dont la mission principale est d'exécuter le traitement du signal, est composé de deux parties principales: [Claim 2] Cooperative communications device for a transport system according to claim 1, characterized in that the digital block BN, the main task of which is to execute the signal processing, is composed of two main parts:
a. Une partie CT consistant en une pluralité de circuits de traitement des données par exemple FPGA, ASIC exécutant principalement les traitements de génération des formes d’ondes at. A CT part consisting of a plurality of data processing circuits, for example FPGA, ASIC mainly performing the waveform generation processing
b. Une partie PT consistant en une pluralité de processeurs de traitement de données pour exécuter toutes les autres tâches qui ne sont pas considérées par les circuits de traitement de données, à savoir tous ceux qui ne sont pas contraints par le temps. b. A part PT consisting of a plurality of data processing processors for performing all the other tasks which are not considered by the data processing circuits, namely all those which are not constrained by time.
[Revendication 3] Dispositif de communications coopératives pour système de transport selon la revendication 1 , caractérisé en ce que le bloc transceiver BT qui transpose la bande de fréquence des signaux numériques à la bande de fréquence d’émission réception radar 76 à 81 GHz et vice-versa, est composé de trois voies, une pour l’émission VE et deux pour la réception VR1 et VR2. [Claim 3] A cooperative communications device for a transport system according to claim 1, characterized in that the BT transceiver unit which transposes the frequency band of the digital signals to the radar transmission reception frequency band 76 to 81 GHz and vice versa. -versa, is made up of three channels, one for VE transmission and two for VR1 and VR2 reception.
[Revendication 4] Dispositif de communications coopératives pour système de transport selon les revendications 1 et 3 caractérisé en ce que le canal d'émission VE et un des canaux de réception VR1 du bloc transceiver BT sont connectés respectivement à deux déphaseurs identiques synchrones et ayant la même commande DP1 et DP2, chacun de ces déphaseurs étant connecté à une antenne de formation d’onde (Beamforming antenna) A1 et A2, lesdites antennes étant composées de N x N éléments rayonnant pouvant émettre un faisceau d’ouverture inférieure à 1º, l’autre canal de réception VR2 étant connecté à une antenne à lobe fixe A3 couvrant Ea même zone de balayage que celle des autres antennes à savoir - 45° à + 45° en horizontale et - 10° à + 10° en verticale. [Claim 4] Cooperative communications device for a transport system according to claims 1 and 3 characterized in that the transmission channel VE and one of the reception channels VR1 of the transceiver unit BT are respectively connected to two identical synchronous phase shifters and having the same command DP1 and DP2, each of these phase shifters being connected to a beamforming antenna A1 and A2, said antennas being composed of N x N radiating elements capable of emitting a beam of aperture less than 1 °, l 'other receiving channel VR2 being connected to a lobe antenna fixed A3 covering Ea same scanning area as that of the other antennas, namely - 45 ° to + 45 ° horizontally and - 10 ° to + 10 ° vertically.
[Revendication 5] Dispositif de communications coopératives pour système de transport selon la revendication 1 , caractérisé en ce que les communications V2V sont généralement conformes aux standards 802.11 p, au Device-to-Device-PC5 du Standard 3GPP Rel.13 et 14 couramment appelé 4G et 4G+ et au Device-to-Device-PC5 du Standard [Claim 5] Cooperative communications device for a transport system according to Claim 1, characterized in that the V2V communications generally comply with the 802.11 p standards, with Device-to-Device-PC5 of the 3GPP Standard Rel.13 and 14 commonly called 4G and 4G + and Standard Device-to-Device-PC5
3GPP Rel.15 et 16 couramment appelé 5G. 3GPP Rel. 15 and 16 commonly referred to as 5G.
[Revendication 6] Dispositif de communications coopératives pour système de transport selon les revendications 1 , 3, 4 et 5, caractérisé en ce que la combinaison des fonctions radar et communications V2V est réalisée par l’intermédiaire de l’antenne d’émission A1 , les données étant émises vers tous les véhicules se situant dans l’ouverture - 45° à + 45° en horizontale et - 10° à + 10° en verticale, si le signal est reçu à l’antenne de réception A2 il provient de la même orientation que celle de l’antenne d’émission A1 , dans le cas contraire la réception du signal est opérée par l’antenne A3. [Claim 6] Cooperative communications device for a transport system according to claims 1, 3, 4 and 5, characterized in that the combination of the radar and V2V communications functions is achieved through the transmitting antenna A1, the data being sent to all vehicles located in the opening - 45 ° to + 45 ° horizontally and - 10 ° to + 10 ° vertically, if the signal is received at the reception antenna A2 it comes from the same orientation as that of the transmitting antenna A1, otherwise the signal is received by the antenna A3.
[Revendication 7] Dispositif de communications coopératives pour système de transport selon les revendications 1 , 3, 4 et 6, caractérisé en ce que la précision des mesures des distances et des vitesses associée aux antennes A1 et A2 en mode balayage discriminent entre toutes les cibles (voiture, moto, vélo, piéton) et d’obtenir une image 4D de définition N x N (éléments rayonnants), la fusion de l’image 4D avec celles transmises par les autres véhicules permettant d’obtenir une image 4D plus précise et de constituer une cartographie précise de la route en détectant les bords de la route, la voie de circulation sur laquelle se trouve le véhicule, les dos d’âne, les crevasses et nids de poule ainsi que les tranchées. [Claim 7] Cooperative communications device for a transport system according to claims 1, 3, 4 and 6, characterized in that the precision of the distance and speed measurements associated with the antennas A1 and A2 in scanning mode discriminate between all the targets. (car, motorcycle, bicycle, pedestrian) and to obtain a 4D image of N x N definition (radiating elements), the fusion of the 4D image with those transmitted by other vehicles allowing to obtain a more precise 4D image and to establish a precise mapping of the road by detecting the edges of the road, the traffic lane on which the vehicle is located, speed bumps, crevasses and potholes as well as trenches.
[Revendication 8] Dispositif de communications coopératives pour système de transport selon les revendications 1 , 3, 4, 6 et 7, caractérisé en ce que les antennes A1 et A2 sont des antennes à formation de faisceaux (Beamforming antenna) formant des faisceaux pour ne communiquer qu’avec certains véhicules, notamment si un véhicule (A) circulant sur la voie centrale d'une route suit un véhicule (B) un faisceau est formé pour que le véhicule (A) communique avec le véhicule (B) et si d’autres véhicules interviennent sur les autres voies tels qu’un véhicule (D) sur la voie de gauche et un véhicule (C) sur la voie de droite, deux faisceaux sont alors formés, un faisceau pour que le véhicule (A) communique avec le véhicule (C) circulant sur la voie de droite et un faisceau pour que le véhicule (A) communique avec le véhicule (D) circulant sur la voie de gauche. [Claim 8] Cooperative communications device for a transport system according to claims 1, 3, 4, 6 and 7, characterized in that the antennas A1 and A2 are beamforming antennas forming beams for ne communicate with certain vehicles, in particular if a vehicle (A) traveling on the central lane of a road follows a vehicle (B) a beam is formed so that the vehicle (A) communicates with the vehicle (B) and if d 'other vehicles intervene on the other lanes such as a vehicle (D) on the left lane and a vehicle (C) on the right lane, two beams are then formed, one beam so that the vehicle (A) communicates with the vehicle (C) traveling in the right lane and a harness for the vehicle (A) to communicate with the vehicle (D) traveling in the left lane.
[Revendication 9] Dispositif de communications coopératives pour système de transport selon les revendications 1 , 3, 4, 6, 7 et 8, caractérisé en ce que les communications entre véhicules notamment véhicules (A) et (B), véhicules (A) et (C) et véhicules (A) et (D), déterminent sans équivoque la signature de chaque véhicule et donc de savoir si le véhicule détecté est une voilure, un camion, un bus, une moto, un vélo ou un piéton. [Claim 9] Cooperative communications device for a transport system according to claims 1, 3, 4, 6, 7 and 8, characterized in that the communications between vehicles, in particular vehicles (A) and (B), vehicles (A) and (C) and vehicles (A) and (D), unequivocally determine the signature of each vehicle and therefore whether the detected vehicle is a wing, a truck, a bus, a motorcycle, a bicycle or a pedestrian.
PCT/FR2020/000107 2019-03-21 2020-04-10 Cooperative communications device for transport systems combining on-board radars and v2v inter-vehicle communications WO2020188158A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1902963A FR3094161B1 (en) 2019-03-21 2019-03-21 Cooperative communications device for transport systems, combining on-board radars and V2V inter-vehicle communications
FR1902963 2019-03-21
FRFR1902963 2019-03-21

Publications (2)

Publication Number Publication Date
WO2020188158A1 true WO2020188158A1 (en) 2020-09-24
WO2020188158A8 WO2020188158A8 (en) 2020-11-12

Family

ID=68281489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/000107 WO2020188158A1 (en) 2019-03-21 2020-04-10 Cooperative communications device for transport systems combining on-board radars and v2v inter-vehicle communications

Country Status (2)

Country Link
FR (1) FR3094161B1 (en)
WO (1) WO2020188158A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3122530A1 (en) * 2021-04-28 2022-11-04 Iptech Antenna array for on-board radars and inter-vehicle communications
FR3136134A1 (en) * 2022-05-30 2023-12-01 Iptech RadCom low-cost communication device, combining on-board radars and inter-vehicle communication.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030102997A1 (en) * 2000-02-13 2003-06-05 Hexagon System Engineering Ltd. Vehicle communication network
DE102009054776A1 (en) * 2009-01-23 2010-08-12 Adc Automotive Distance Control Systems Gmbh Communication system for use in driver assistance system of e.g. vehicle, has radar module for executing communication function, which executes transmission of communication signal via radar signal to adjacent vehicle
EP3165940A1 (en) * 2015-11-04 2017-05-10 Nxp B.V. Embedded communication authentication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030102997A1 (en) * 2000-02-13 2003-06-05 Hexagon System Engineering Ltd. Vehicle communication network
DE102009054776A1 (en) * 2009-01-23 2010-08-12 Adc Automotive Distance Control Systems Gmbh Communication system for use in driver assistance system of e.g. vehicle, has radar module for executing communication function, which executes transmission of communication signal via radar signal to adjacent vehicle
EP3165940A1 (en) * 2015-11-04 2017-05-10 Nxp B.V. Embedded communication authentication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHOUYANG WEI ET AL: "An Integrated Longitudinal and Lateral Vehicle Following Control System With Radar and Vehicle-to-Vehicle Communication", IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY., vol. 68, no. 2, 1 February 2019 (2019-02-01), US, pages 1116 - 1127, XP055662698, ISSN: 0018-9545, DOI: 10.1109/TVT.2018.2890418 *

Also Published As

Publication number Publication date
WO2020188158A8 (en) 2020-11-12
FR3094161B1 (en) 2022-07-22
FR3094161A1 (en) 2020-09-25

Similar Documents

Publication Publication Date Title
CN109426806B (en) System and method for vehicle signal light detection
US20200314333A1 (en) Dynamic seam adjustment of image overlap zones from multi-camera source images
EP0389325B1 (en) Method and apparatus for assisting land vehicle traffic
EP3282283A1 (en) Fmcw radar detection method with multiple resolution and radar using such a method
US20210124011A1 (en) Robust radar-centric perception system
CN110389332A (en) Light receiving device and receiving system
EP3279690B1 (en) Method for measuring the height of a target relative to the ground by a moving radar, and radar implementing such a method
CN103523011B (en) Apparatus and method for assisting safe driving
FR2695742A1 (en) System for calculating at least one vehicle traffic control parameter.
FR2718874A1 (en) Traffic monitoring method for automatic vehicle incident detection.
WO2018144803A1 (en) Firewall
WO2020188158A1 (en) Cooperative communications device for transport systems combining on-board radars and v2v inter-vehicle communications
FR2948220A1 (en) METHOD AND DEVICE FOR ASSISTING THE DRIVING OF A VEHICLE
EP0591497A1 (en) Method and system for determining the position and direction of a moving object and applications thereof.
US20210389448A1 (en) Control device, control method and sensor control system
EP3945345A1 (en) Method for controlling a vehicle by a plurality of sensors
WO2020064835A1 (en) System for identifying road signs by radar or lidar
EP4206737A1 (en) Time of flight cameras using passive image sensors and existing light sources
US11567192B2 (en) Radar for vehicle
FR3046770B1 (en) DEVICE AND METHOD FOR PROVIDING INFORMATION RELATING TO CIRCULATING VEHICLES INCAPABLE OF EXCHANGING MESSAGES
FR3075141A1 (en) VEHICLE SEAT ASSEMBLY WITH DRIVING AID FUNCTIONS
WO2018041978A1 (en) Device for determining a speed limit, on-board system comprising such a device, and method for determining a speed limit
EP0136956A2 (en) System for the detection of a predetermined obstacle on the way of a ground vehicle
FR3092722A1 (en) SELECTIVE FORWARDING OF MESSAGES IN VEHICLE-TO-VEHICLE COMMUNICATIONS
US20230132421A1 (en) Method of recognizing stop line of autonomous vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20731159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20731159

Country of ref document: EP

Kind code of ref document: A1