WO2020187438A1 - Lamella block for a calibration device with internal crosspiece - Google Patents

Lamella block for a calibration device with internal crosspiece Download PDF

Info

Publication number
WO2020187438A1
WO2020187438A1 PCT/EP2019/084227 EP2019084227W WO2020187438A1 WO 2020187438 A1 WO2020187438 A1 WO 2020187438A1 EP 2019084227 W EP2019084227 W EP 2019084227W WO 2020187438 A1 WO2020187438 A1 WO 2020187438A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
lamellar
lamella
lamellar block
groove
Prior art date
Application number
PCT/EP2019/084227
Other languages
German (de)
French (fr)
Inventor
Michael ESSWEIN
Original Assignee
Kraussmaffei Technologies Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kraussmaffei Technologies Gmbh filed Critical Kraussmaffei Technologies Gmbh
Publication of WO2020187438A1 publication Critical patent/WO2020187438A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/901Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies
    • B29C48/903Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/904Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using dry calibration, i.e. no quenching tank, e.g. with water spray for cooling or lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/907Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using adjustable calibrators, e.g. the dimensions of the calibrator being changeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/908Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article characterised by calibrator surface, e.g. structure or holes for lubrication, cooling or venting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/005Article surface comprising protrusions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a lamellar block for a calibration device for calibrating an extruded profile.
  • the invention also relates to a calibration device comprising a plurality of lamella blocks and a
  • Calibration devices are used to calibrate extruded endless profiles, such as tubular profiles.
  • a plastic melt desired for producing the profile is first produced in an extruder.
  • the plastic melt produced is then pressed through an outlet nozzle of the extruder, which defines the shape of the profile.
  • the profile emerging from the outlet nozzle of the extruder then passes through a calibration device which reshapes the profile, which is still heated, with dimensional accuracy.
  • Such a calibration device for dimensioning extruded profiles is known from DE 198 43 340 C2.
  • a variably adjustable calibration device is taught therein, which is designed for the calibration of extruded plastic pipes with different pipe diameters.
  • the calibration device comprises a housing and a plurality of lamellar blocks arranged in a circle in the housing, which together form a calibration basket with a circular calibration opening through which the pipes to be calibrated are guided (see in particular Figures 1 and 2 of DE 198 43 340 C2).
  • each lamella block is coupled to an actuating device which is provided for the individual radial displacement of the respective lamella block. In this way, the effective cross-section of the circular calibration opening formed by the plurality of lamellar blocks can be adjusted as required.
  • the lamellar blocks described in DE 198 43 340 C2 each consist of a large number of lamellas which are threaded onto two spaced-apart support rods. Spacer sleeves are used to maintain a desired distance between adjacent slats (see also FIG. 3 of DE 19843 340 C2).
  • An example of a threaded lamella block is also shown in FIG. 1 a.
  • the lamella block 10 shown in FIG. 1 a comprises a multiplicity of lamellae 12 and spacer sleeves 14 which are alternately threaded along second support rods 16. Such threaded lamella blocks are complex to manufacture and thus costly.
  • lamella blocks with closed support structures are also known.
  • Figure 1b shows an example of such a lamella block.
  • the lamellar block 20 comprises a multiplicity of lamellas 22, which are supported by a back structure 24 in the form of a block.
  • the block-shaped back structure 24 is implemented in the form of a one-piece body (e.g. a rod-shaped body).
  • Further examples of lamellar blocks with a closed back structure are known from WO 2004/103684 A1.
  • the outer wall of the profile is pressed against the inner wall of the calibration basket (for example with the help of a vacuum).
  • the inner wall of the calibration basket is formed by the lamellae of the interlocking lamellar blocks. Due to the pressure with which the profile, which is still deformable at this point in time, is pressed against the inner wall of the calibration basket, buckling areas inevitably form on the surface of the profile in the spaces between the lamellas (also called grooves). The dimensions of the buckling areas depend on the length and width of the grooves. However, large buckling areas are unfavorable with regard to the surface of the calibrated profile.
  • the object of the present invention is to provide lamellar blocks for a calibration device which further reduce or eliminate the problems identified in connection with the prior art.
  • the chattering of the profile to be calibrated observed in connection with known calibration blocks should at least be reduced or even avoided entirely.
  • the lamellar block for a calibration device for calibrating an extruded profile.
  • the lamellar block comprises a lamellar structure which has a plurality of lamellas which are spaced apart from one another by grooves and are arranged in the longitudinal direction of the lamellar block. At least some of the grooves each have a web element which divides the respective groove into two groove sections on an inside of the lamella block.
  • the profile to be calibrated can be a plastic profile.
  • the profile to be calibrated can be a pipe.
  • the longitudinal direction of the lamellar block corresponds to the extrusion direction (the feed direction) of the profile to be calibrated when the lamellar block is installed in a calibration device.
  • the inside of the lamellar block is the side of the lamellar block that faces the profile to be calibrated.
  • Each of the web elements arranged in a respective groove can be fixed laterally on at least one of the lamellae (ie on the respective lamella flank) which form the respective groove. It goes without saying that the width of each web element (ie its extension in the longitudinal direction of the lamella block) can correspond to the width of the groove in which the respective web element is arranged.
  • Each of the web elements can be arranged in a respective groove in such a way that it ends flush with the lamella block on the inside. In other words, each web element has a contact surface on the inside of the lamella block, which is flush with the respective contact surface of the adjacent lamellae.
  • the contact surfaces of all web elements and the contact surfaces of all lamellae form a common contact surface of the lamella block, which comes into contact with the outer surface of the profile to be calibrated.
  • the groove sections of a groove defined by a respective web element can be unequal.
  • the groove sections on both sides of the respective bar element can be designed to be of different lengths on the inside of the lamella block.
  • the division of the groove into two unequal groove sections can be achieved by a web element which has an asymmetrical cross-section in a plane perpendicular to the longitudinal direction of the lamella block.
  • Such a web element can have an asymmetrical contact surface, so that when the web element is arranged in the groove, it inevitably breaks up into two unequal groove sections.
  • the length of the groove sections of two adjacent grooves can vary from one another. That is to say, the groove sections of two adjacent grooves can have different lengths on the inside of the lamellar block.
  • the variation of the length of the groove sections along the lamellar block can be achieved by arranging web elements with changing cross sections (or contact surfaces) in the respective grooves along the lamellar block.
  • the cross section here again means the cross section of the web element perpendicular to the longitudinal direction of the lamella block.
  • the length variation of the groove sections of all grooves with respect to one another can follow a discontinuous function.
  • the groove sections of all grooves can differ from one another in their respective length on the inside of the lamellar block in an irregularly variable manner.
  • the variation can also follow a definable function.
  • Each web element can protrude into the groove interior of the respective groove in which it is arranged.
  • Each web element can have a maximum extension in the direction of the inside of the groove in a region in which the respective
  • Web element intersects a longitudinal plane of symmetry of the lamella block.
  • the plane of symmetry runs through the center of the lamellar block and divides the lamellar block into two basically identical halves (without taking into account the bar elements).
  • the web elements can be positioned and / or dimensioned in the grooves in such a way that they do not impair the engagement of the lamellae of an adjacent lamella block of a calibration device in the grooves of the lamella block.
  • Each bar element can be curved inside the groove (convex).
  • each web element can also assume a different shape in the interior of the groove.
  • the shape and dimensioning of the bar elements inside the groove depends on the desired stability (strength, rigidity, etc.) of the bar elements, which in turn depends on the forces acting on the bar elements.
  • the web elements can also be flat solid bodies (about the thickness of a film).
  • the lamellar block can furthermore have a support structure on which the lamellar structure is arranged.
  • the support structure and the slats can be made from the same material or from different materials.
  • the support structure and / or the lamellae can be formed from a metallic material or a polymer material.
  • the carrier structure can be arranged on a side facing away from the inner side of the lamella block on the lamella structure of the lamella block.
  • the carrier structure and the lamellar structure can be designed as a one-piece component.
  • the support structure can comprise at least one support rod, along which the individual lamellae of the lamella block are threaded in the longitudinal direction.
  • the lamellar block can be produced using 3D printing.
  • the lamellar block can be produced, for example, by milling, drilling, cutting or by means of a casting process.
  • the lamellar block according to the invention is advantageous over the prior art in several respects.
  • dividing the grooves into groove sections reduces the size of the buckling areas on the surface of the extruded profile during calibration. This can improve the surface quality of the calibrated profile.
  • an irregular length variation of the groove sections on the inside of the lamellar block leads to a correspondingly uneven formation of bulge areas on the surface of the extruded profile.
  • the rattling described at the outset can be prevented when calibrating the profile, since at least some buckling areas can no longer snap into the subsequent grooves due to their inequality.
  • by choosing a suitable shape and dimensioning of the web elements inside the groove it can be ensured that the engagement of the lamellae of adjacent lamella blocks of a lamella device in the grooves of the lamella block is not restricted.
  • a calibration device for calibrating extruded profiles having a plurality of the lamellar blocks according to the invention which are arranged with respect to one another to form a calibration opening.
  • the arrangement of the lamella blocks can be such that they form a circular calibration opening.
  • the calibration device can furthermore comprise a plurality of actuation devices, each of the actuation devices being coupled to one of the lamellar blocks.
  • Each of the actuation devices being coupled to one of the lamellar blocks.
  • anyone can use the actuator Lamella block can be operated individually radially to the calibration opening.
  • the effective cross section of the calibration opening can be adapted to the cross section (diameter) of the profile to be calibrated as required.
  • the calibration device can have a housing which is provided for receiving and mounting the actuation device and the lamellar blocks coupled to the actuation device.
  • a method for producing a lamellar block according to the invention comprises at least the step of producing the lamella block by means of 3D printing or by means of additive manufacturing.
  • the production of the lamellar block using 3D printing processes or additive manufacturing processes can include laser sintering / laser melting of material layers in layers, with the material layers being applied one after the other (sequentially) according to the shape of the lamellar block to be produced.
  • the method can furthermore comprise the step of calculating a lamella block geometry (CAD data) and, optionally, converting the 3D geometry data into corresponding control commands for 3D printing or additive manufacturing.
  • CAD data lamella block geometry
  • the method can include manufacturing the lamella block as a one-piece component. It goes without saying, however, that according to an alternative variant, the method can comprise producing each lamella individually (e.g. with a respective web element in contact) and threading the lamellae along at least one support rod in the longitudinal direction of the lamella block.
  • a method for producing a lamellar block comprising the steps of: creating a data record which maps the lamellar block as described above; and Store the data set on a storage device or server.
  • Method may further include; Entering the data record into a processing device or a computer which controls a device for additive manufacturing in such a way that it manufactures the lamellar block depicted in the data record.
  • a system for the additive manufacturing of a lamellar block with a data record generating device for generating a data record which maps the lamellar block as described above, a storage device for storing the data set and a processing device for receiving the data set and for such a control of a device for additive manufacturing so that it manufactures the lamella block shown in the data record.
  • the storage device can be a USB stick, a CD-ROM, a DVD, a memory card or a hard disk.
  • the processing device can be a computer, a server, or a processor.
  • a computer program or computer program product comprising data records which, when the data records are read in by a processing device or a computer, causes them to control an additive manufacturing device in such a way that the additive manufacturing device manufactures the lamella block as described above.
  • a computer-readable data carrier is provided on which the computer program described above is stored.
  • the computer-readable data carrier can be a USB stick, a CD-ROM, a DVD, a memory card or a hard disk.
  • a data record which maps the lamella block as described above.
  • the data record can be stored on a computer-readable data carrier.
  • 1a shows a lamella block for a calibration device according to the
  • 1b shows a further lamella block for a calibration device according to the prior art
  • FIG. 2a shows a 3D view of a lamella block according to the present invention
  • FIG. 2b shows a normal view of the inside of the one shown in FIG. 2a
  • Fig. 2c is a view of that shown in Figures 2a and 2b
  • Lamella blocks in a section plane A-A (see Figure 2b);
  • 3a is a view of another lamellar block according to the present invention.
  • FIG. 3b shows an isolated illustration of web elements of the lamella block shown in FIG. 3a;
  • FIG. 4 shows a view of a calibration device with a plurality of lamella blocks according to the invention
  • FIG. 6 shows a block diagram of a method for manufacturing a lamellar block according to the invention.
  • Lamella block 100 for a calibration device described further.
  • the lamellar block 100 shown in FIG. 2a comprises a lamellar structure 110 which has a multiplicity of lamellas 112.
  • the lamellar block 100 comprises a support structure 120.
  • the support structure 120 functions as a support for the
  • Lamellar structure 110 is Lamellar structure 110.
  • the lamella block 100 can also have a coupling device (not shown here) which is provided for coupling to an actuating device of a calibration device (also not shown here).
  • the coupling device can be designed such that it can be firmly connected to the support structure 120.
  • the support structure 120 can be implemented (as shown in FIG. 2a) by a bar-shaped body, along which the lamellae 112 are arranged.
  • the bar-shaped support structure 120 can have perforations to reduce the weight of the lamella block 100.
  • the support structure 120 can have at least one support rod on which the lamellas 112 are threaded (compare FIG. 1 a).
  • the lamellar structure 110 comprises a multiplicity of lamellas 112, which are arranged at a distance from one another in the longitudinal direction L of the lamella block 100. Adjacent lamellae 112 are separated from one another by corresponding grooves 130. According to the implementation shown in FIG. 2a, each lamella 112 essentially has the contour of an (isosceles) triangle in cross section to the longitudinal direction L.
  • each lamella On the inside of the lamellar block 100, which faces the profile to be calibrated when it is installed in a calibration device, each lamella has a contact surface 114. During calibration, the contact surface 114 comes into contact with the outer surface of the profile to be calibrated (for example a pipe).
  • each lamella 112 has a slight (concave) curvature and at least partially represents the outer contour of the profile to be calibrated.
  • the lamella block 100 can also have a different lamella shape, that of the triangular cross-sectional profile described here may differ.
  • the contact surfaces 114 of each lamella 112 can have a different curvature or be flat or angled.
  • the lamellar block 100 shown in FIG. 2a further comprises web elements 140 which are arranged in the grooves 130 of the lamellar block 100.
  • the web elements 140 for their part have a contact surface on the inside of the lamella block 100
  • the contact surfaces 114 of the lamellae 112 and the contact surfaces 142 of the web elements 140 form a common contact surface on the inside of the lamella block 100.
  • the common contact surface can at least partially simulate the outer contour of the profile to be calibrated.
  • FIG. 2b shows a normal view of the lamella block 100 shown in FIG. 2a on the inside of the lamellae.
  • the carrier structure 120, along which the lamellae 112 are arranged, is indicated in the normal view in FIG. 2b as a vertical bar lying behind the lamellae 112.
  • the lamellar block 100 is designed mirror-symmetrically to a plane of symmetry 180 which runs centrally through the lamellar block in the longitudinal direction.
  • the contact surfaces 142 of the web elements 140 are shown hatched in FIG. 2b.
  • the web elements 140 are arranged in the longitudinal direction L centrally (i.e. centrally along the plane of symmetry 180) in the grooves 130 of the lamellar block 100 such that each web element 140 divides an associated groove 130 into two identical groove sections 132, 134.
  • FIG. 2c shows a cross section of the lamella block shown in FIGS. 2a and 2b in the sectional plane AA (see FIG. 2b).
  • the contact surface 142 of the web element 140 ends flush with the contact surface 114 of the adjacent lamella 112.
  • the web element 140 also has a web element back 144 with which the web element 140 projects into the inside of the groove 130.
  • the web element 140 On its back 144, the web element 140 has a rounded shape which, in cross section, is symmetrical to the plane of symmetry 180 is. It goes without saying that the web element back 144 can also be embodied as angular. Regardless of its exact rear configuration, the web element 140 protrudes furthest into the groove 130 at that point at which it intersects the plane of symmetry 180.
  • the lamellar block 200 has a lamellar structure 110 with a multiplicity of lamellae 112 which are spaced apart from one another by grooves 130.
  • the lamellar block 200 also has a support structure 120 on which the lamellar structure 110 is arranged.
  • the carrier structure 120 can be designed in exactly the same way as the carrier structure of the lamellar block 100. Reference is made to the corresponding description above. For the sake of simplicity, those features of the lamella block 200 which are structurally and functionally similar or identical to features of the lamella block 100 have been given the same reference numerals,
  • Web elements 240 are arranged in the grooves 130.
  • the web elements 240 are designed such that at least some of the grooves 130 are divided into unequal groove sections 232, 234 with respect to the plane of symmetry 180 on the inside of the lamella block 200.
  • buckling fields of different lengths can form on the surface of the profile to be calibrated during calibration. Chattering during the calibration of the profile can thus be considerably reduced or even completely prevented.
  • each bar element 240a to 240f also has a bar element back 244a to 244f, with which it protrudes into the groove interior of a respective groove 130.
  • the web element backs 244a to 244f each have a curved surface.
  • At least some of the web elements 240a to 240f can be designed asymmetrically (cf. web elements 240b, 240c, 240d and 240f) with respect to the plane of symmetry 180.
  • at least some of the web elements 240 can have an inherently asymmetrical cross section.
  • some or all of the web elements 240 can have cross-sections which are asymmetrical to one another.
  • Each of the web elements 240a to 240f has its greatest extent at the point at which it intersects the plane of symmetry 180 of the lamella block 200.
  • the calibration device 500 comprises a plurality of the above-described lamella blocks 100, 200 according to the invention, which are arranged in the circumferential direction to one another in such a way that the contact surfaces 114 of the lamellae 112 and the contact surfaces 142, 242 of the web elements 140, 240 of the lamella blocks 100, 200 together have a calibration opening 510 form.
  • the calibration opening 510 corresponds to the desired outer contour of a profile to be calibrated (tube 515).
  • a coupling device 150 is arranged on the support structure 120 of each lamella block 100, 200.
  • Each coupling device 150 is in turn connected to a respective actuating device 520, which is fixed between an inner housing cylinder 530 and an outer housing cylinder 540 of the calibration device 500.
  • the actuation of a lamella block 100, 200 by an associated actuation device 520 enables the lamella block 100, 200 to be moved radially.
  • the diameter of the calibration opening 510 can be set variably, since the lamellae 112 of each lamella block 100, 200 in the grooves 130 of each adjacent lamella blocks 100, 200 engage.
  • the structure of the calibration device 500 according to FIG. 4 is similar to the structure of a calibration device, as already described in DE 198 43 340 C2.
  • FIG. 5 schematically shows an arrangement of the lamella blocks 200 shown in FIG. 3a within a calibration device.
  • the respective web elements 240 of each lamella block 200 have their respective largest radial ones
  • Expansion expansion in the direction of the inside of the groove
  • the web elements 240 are dimensioned so that engagement of the lamellae 112 of adjacent lamella blocks 200 is not restricted.
  • the illustration according to FIG. 5 applies analogously to the engagement of lamellar blocks 100 according to the invention (compare FIGS. 2a-2c) with symmetrical web elements 140 which divide the grooves 130 into identical groove sections 131, 134.
  • a generative or additive manufacturing method can preferably be used to manufacture a lamella block 100, 200 according to the invention.
  • a production method 600 is shown in FIG. Accordingly, a 3D printing process is used.
  • 3D geometry data CAD data
  • the calculated 3D geometry data are converted into control commands for a 3D print.
  • the lamella block 100, 200 is finally built up in layers by means of a 3D printing process (e.g. laser sintering, laser melting).
  • a metallic material or a polymer material can be used as the material for 3D printing.
  • the method can include producing each lamella 112 individually (for example, each with an adjacent web element 140, 240) and threading the lamellae 112 along at least one support rod in the longitudinal direction of the lamella block 100, 200.
  • each lamella 112 individually (for example, each with an adjacent web element 140, 240) and threading the lamellae 112 along at least one support rod in the longitudinal direction of the lamella block 100, 200.
  • 3D printing it is also conceivable to use the lamella block
  • each lamella 112 can be produced individually, for example by milling, drilling, cutting or by means of a casting process.
  • the calibration of endless profiles, in particular of plastic profiles can be further improved.
  • an advantageous reduction in the size of the buckling areas on the surface of the profile can be achieved.
  • irregular groove section patterns and thus irregular buckling areas on the profile surface can be realized by the web elements in the longitudinal direction of the lamellar blocks, whereby the chatter when calibrating the profile is eliminated or at least greatly reduced.

Abstract

The invention relates to a lamella block (200) for a calibration device for the calibration of an extruded profile. The lamella block (200) comprises a lamella structure (110) having a plurality of lamellae (112), which are spaced apart from one another by grooves (130) and arranged in the longitudinal direction (L) of the lamella block (200). At least some of the grooves (130) have a respective crosspiece element (240) which divides the respective groove (130) on an inner side of the lamella block (200) into two groove sections (232, 234). The invention also relates to a method for producing said lamella block (200), as well as a calibration device comprising a plurality of said lamella blocks (200). The invention further relates to a system for additively manufacturing said lamella block (100, 200), a corresponding computer program and corresponding data set.

Description

Lamellenblock für eine Kalibriereinrichtung mit innenseitigem Steg Lamellar block for a calibration device with internal bar
Die Erfindung betrifft einen Lamellenblock für eine Kalibriereinrichtung zur Kalibrierung eines extrudierten Profils. Ferner betrifft die Erfindung eine Kalibriereinrichtung umfassend eine Vielzahl von Lamellenblöcken sowie einThe invention relates to a lamellar block for a calibration device for calibrating an extruded profile. The invention also relates to a calibration device comprising a plurality of lamella blocks and a
Verfahren zur Herstellung eines Lamellenblocks, ein System zur additiven Fertigung eines derartigen Lamellenblocks und ein entsprechendes Computerprogramm und Datensatz. Method for manufacturing a lamellar block, a system for additive manufacturing of such a lamellar block and a corresponding computer program and data set.
Kalibriereinrichtungen werden zur Kalibrierung von extrudierten Endlosprofilen, wie beispielsweise Rohrprofilen, eingesetzt. Bei der Herstellung derartiger Profile wird zunächst in einem Extruder eine zur Herstellung des Profils gewünschte Ku n ststoffsch me Ize erzeugt. Die erzeugte Kunststoffschmelze wird dann durch eine Austrittsdüse des Extruders gepresst, welche die Form des Profils vorgibt. Das aus der Austrittsdüse des Extruders austretende Profil durchläuft anschließend eine Kalibriereinrichtung, welche das noch erhitzte Profil dimensionsgenau nachformt. Calibration devices are used to calibrate extruded endless profiles, such as tubular profiles. In the production of such profiles, a plastic melt desired for producing the profile is first produced in an extruder. The plastic melt produced is then pressed through an outlet nozzle of the extruder, which defines the shape of the profile. The profile emerging from the outlet nozzle of the extruder then passes through a calibration device which reshapes the profile, which is still heated, with dimensional accuracy.
Eine derartige Kalibriereinrichtung zur Dimensionierung extrudierter Profile ist aus der DE 198 43 340 C2 bekannt. Darin wird eine variabel einstellbare Kalibriereinrichtung gelehrt, die zur Kalibrierung von extrudierten Kunststoff rohren mit unterschiedlichem Rohrdurchmesser ausgebildet ist. Die Kalibriereinrichtung umfasst ein Gehäuse und eine Vielzahl von in dem Gehäuse kreisförmig angeordneten Lamellenblöcken, die zusammen einen Kalibrierkorb mit kreisförmiger Kalibrieröffnung bilden, durch welche die zu kalibrierenden Rohre geführt werden (vgl. insbesondere die Figuren 1 und 2 der DE 198 43 340 C2). Ferner ist jeder Lamellenblock mit einer Betätigungsvorrichtung gekoppelt, die zur individuellen radialen Verschiebung des jeweiligen Lamellenblocks vorgesehen ist. Auf diese Weise kann der Wirkquerschnitt der durch die Vielzahl der Lamellenblöcke gebildeten kreisförmigen Kalibrieröffnung je nach Bedarf entsprechend eingestellt werden. Die in der DE 198 43 340 C2 beschriebenen Lamellenblöcke bestehen jeweils aus einer Vielzahl von Lamellen, die auf zwei voneinander beabstandet angeordneten Trägerstangen aufgefädelt sind. Zur Einhaltung eines gewünschten Abstands zwischen benachbarten Lamellen kommen Abstandshülsen zum Einsatz (vgl. auch Figur 3 der DE 19843 340 C2). Ein Beispiel eines gefädelten Lamellenblocks ist ferner in der Figur 1 a gezeigt. Der in Figur 1a dargestellte Lamellenblock 10 umfasst eine Vielzahl von Lamellen 12 und Abstandshülsen 14, die abwechselnd entlang zweiter Trägerstangen 16 aufgefädelt sind. Derartige gefädelte Lamellenblöcke sind aufwendig in der Fertigung und damit kostenintensiv. Such a calibration device for dimensioning extruded profiles is known from DE 198 43 340 C2. A variably adjustable calibration device is taught therein, which is designed for the calibration of extruded plastic pipes with different pipe diameters. The calibration device comprises a housing and a plurality of lamellar blocks arranged in a circle in the housing, which together form a calibration basket with a circular calibration opening through which the pipes to be calibrated are guided (see in particular Figures 1 and 2 of DE 198 43 340 C2). Furthermore, each lamella block is coupled to an actuating device which is provided for the individual radial displacement of the respective lamella block. In this way, the effective cross-section of the circular calibration opening formed by the plurality of lamellar blocks can be adjusted as required. The lamellar blocks described in DE 198 43 340 C2 each consist of a large number of lamellas which are threaded onto two spaced-apart support rods. Spacer sleeves are used to maintain a desired distance between adjacent slats (see also FIG. 3 of DE 19843 340 C2). An example of a threaded lamella block is also shown in FIG. 1 a. The lamella block 10 shown in FIG. 1 a comprises a multiplicity of lamellae 12 and spacer sleeves 14 which are alternately threaded along second support rods 16. Such threaded lamella blocks are complex to manufacture and thus costly.
Abweichend von den oben beschriebenen gefädelten Lamellenblöcken sind ferner Lamellenblöcke mit geschlossenen Trägerstrukturen (bzw. Rückenstrukturen) bekannt. Figur 1b zeigt ein Beispiel eines derartigen Lamellenblocks. Der Lamellenblock 20 umfasst eine Vielzahl von Lamellen 22, die von einer blockförmig ausgebildeten Rückenstruktur 24 getragen werden. Die blockförmige Rückenstruktur 24 ist hierbei in der Form eines einstückigen Körpers (z.B. stabförmiger Körper) realisiert. Weitere Beispiele von Lamellenblöcken mit geschlossener Rückenstruktur sind aus der WO 2004/103684 A1 bekannt. In a departure from the threaded lamella blocks described above, lamella blocks with closed support structures (or back structures) are also known. Figure 1b shows an example of such a lamella block. The lamellar block 20 comprises a multiplicity of lamellas 22, which are supported by a back structure 24 in the form of a block. The block-shaped back structure 24 is implemented in the form of a one-piece body (e.g. a rod-shaped body). Further examples of lamellar blocks with a closed back structure are known from WO 2004/103684 A1.
Bei einem Kalibrierprozess wird die Außenwand des Profils gegen die Innenwand des Kalibrierkorbes gepresst (beispielsweise mit Hilfe eines Vakuums). Die Innenwand des Kalibrierkorbes wird durch die Lamellen der ineinanderg reifenden Lamellenblöcke gebildet. Durch den Druck, mit dem das zu diesem Zeitpunkt noch verformbare Profil gegen die Innenwand des Kalibrierkorbes gedrückt wird, bilden sich in den Lamellenzwischenräumen (auch Nuten genannt) unvermeidlich Beulfelder an der Oberfläche des Profils aus. Die Dimensionen der Beulfelder richten sich nach der Länge und Breite der Nuten. Große Beulfelder sind jedoch ungünstig in Bezug auf die Oberfläche des kalibrierten Profils. Ferner„rasten" bereits erzeugte Beulfelder beim Vorschub des zu kalibrierenden Profils durch den Kalibrierkorb der Kalibriereinrichtung in nachfolgende Nuten der Lamellenblöcke ein. Das sich wiederholende Einrasten der Beulen in die Nuten führt zu einem unerwünschten Rattern des zu kalibrierenden Profils im Kalibrierkorb. Andererseits wird durch die sich wiederholende Einprägung der Lamellenstruktur an der Profiloberfläche die Beulenstruktur an der Profiloberfläche verstärkt. During a calibration process, the outer wall of the profile is pressed against the inner wall of the calibration basket (for example with the help of a vacuum). The inner wall of the calibration basket is formed by the lamellae of the interlocking lamellar blocks. Due to the pressure with which the profile, which is still deformable at this point in time, is pressed against the inner wall of the calibration basket, buckling areas inevitably form on the surface of the profile in the spaces between the lamellas (also called grooves). The dimensions of the buckling areas depend on the length and width of the grooves. However, large buckling areas are unfavorable with regard to the surface of the calibrated profile. Furthermore, when the profile to be calibrated is advanced through the calibration cage of the calibration device, already generated buckling fields "snap into" subsequent grooves in the lamellar blocks. The repeated latching of the bumps into the grooves leads to an undesirable rattling of the profile to be calibrated in the calibration cage the repetitive embossing of the lamellar structure on the profile surface reinforces the bulge structure on the profile surface.
Aufgabe der vorliegenden Erfindung ist es, Lamellenblöcke für eine Kalibriereinrichtung bereitzustellen, welche die im Zusammenhang mit dem Stand der Technik aufgezeigten Probleme weiter reduzieren bzw. beseitigen. Insbesondere ist es Aufgabe der vorliegenden Erfindung, die Oberflächenstruktur des zu kalibrierenden Profils zu verbessern. Ferner soll das in Zusammenhang mit bekannten Kalibrierblöcken beobachtete Rattern des zu kalibrierenden Profils zumindest reduziert bzw. ganz vermieden werden. The object of the present invention is to provide lamellar blocks for a calibration device which further reduce or eliminate the problems identified in connection with the prior art. In particular, it is the object of the present invention to improve the surface structure of the profile to be calibrated. Furthermore, the chattering of the profile to be calibrated observed in connection with known calibration blocks should at least be reduced or even avoided entirely.
Zur Lösung der oben beschriebenen sowie weiterer Aufgaben wird ein Lamellenblock für eine Kalibriereinrichtung zur Kalibrierung eines extrudierten Profils bereitgestellt. Der Lamellenblock umfasst eine Lamellenstruktur, welche eine Vielzahl von Lamellen aufweist, die durch Nuten voneinander beabstandet und in Längsrichtung des Lamellenblocks angeordnet sind. Wenigstens einige der Nuten weisen jeweils ein Stegelement auf, welches die jeweilige Nut an einer Innenseite des Lamellenblocks in zwei Nutabschnitte unterteilt. To achieve the above-described and other objects, a lamella block for a calibration device for calibrating an extruded profile is provided. The lamellar block comprises a lamellar structure which has a plurality of lamellas which are spaced apart from one another by grooves and are arranged in the longitudinal direction of the lamellar block. At least some of the grooves each have a web element which divides the respective groove into two groove sections on an inside of the lamella block.
Das zu kalibrierende Profil kann ein Kunststoffprofil sein. Insbesondere kann das zu kalibrierende Profil ein Rohr sein. Die Längsrichtung des Lamellenblocks entspricht der Extrusionsrichtung (der Vorschubrichtung) des zu kalibrierenden Profils, wenn der Lamellenblock in eine Kalibriereinrichtung eingebaut ist. Die Innenseite des Lamellenblocks ist jene Seite des Lamellenblocks, die dem zu kalibrierenden Profil zugewandt ist. The profile to be calibrated can be a plastic profile. In particular, the profile to be calibrated can be a pipe. The longitudinal direction of the lamellar block corresponds to the extrusion direction (the feed direction) of the profile to be calibrated when the lamellar block is installed in a calibration device. The inside of the lamellar block is the side of the lamellar block that faces the profile to be calibrated.
Jedes der in einer jeweiligen Nut angeordneten Stegelemente kann seitlich an wenigstens einer der Lamellen (d.h. an der jeweiligen Lamellenflanke) fixiert sein, die die jeweilige Nut bilden. Es versteht sich, dass die Breite eines jeden Stegelements (d.h. seine Ausdehnung in Längsrichtung des Lamellenblocks) der Breite der Nut entsprechen kann, in der das jeweilige Stegelement angeordnet ist. Jedes der Stegelemente kann derart in einer jeweiligen Nut angeordnet sein, dass es an der Innenseite bündig mit dem Lamellenblock abschließt. Mit anderen Worten weist jedes Stegelement an der Innenseite des Lamellenblocks eine Kontaktfläche auf, die bündig mit der jeweiligen Kontaktfläche der anliegenden Lamellen abschließt. Somit bilden die Kontaktflächen aller Stegelemente und die Kontaktfiächen aller Lamellen eine gemeinsame Kontaktfläche des Lamellenblocks, die mit der Außenfläche des zu kalibrierenden Profils in Kontakt kommt. Each of the web elements arranged in a respective groove can be fixed laterally on at least one of the lamellae (ie on the respective lamella flank) which form the respective groove. It goes without saying that the width of each web element (ie its extension in the longitudinal direction of the lamella block) can correspond to the width of the groove in which the respective web element is arranged. Each of the web elements can be arranged in a respective groove in such a way that it ends flush with the lamella block on the inside. In other words, each web element has a contact surface on the inside of the lamella block, which is flush with the respective contact surface of the adjacent lamellae. Thus, the contact surfaces of all web elements and the contact surfaces of all lamellae form a common contact surface of the lamella block, which comes into contact with the outer surface of the profile to be calibrated.
Gemäß einer Variante können die durch ein jeweiliges Stegelement definierten Nutabschnitte einer Nut ungleich sein. Mit anderen Worten können die Nutabschnitte zu beiden Seiten des jeweiligen Stegelements unterschiedlich lang an der Innenseite des Lamellenblocks ausgebildet sein. Die Aufteilung der Nut in zwei ungleiche Nutabschnitte kann durch ein Stegelement erreicht werden, das einen in einer Ebene senkrecht zur Längsrichtung des Lamellenblocks asymmetrischen Querschnitt aufweist. Ein derartiges Stegelement kann eine asymmetrische Kontaktfläche aufweisen, so dass bei Anordnung des Stegelements in der Nut diese zwangsläufig in zwei ungleiche Nutabschnitte zerfällt. According to a variant, the groove sections of a groove defined by a respective web element can be unequal. In other words, the groove sections on both sides of the respective bar element can be designed to be of different lengths on the inside of the lamella block. The division of the groove into two unequal groove sections can be achieved by a web element which has an asymmetrical cross-section in a plane perpendicular to the longitudinal direction of the lamella block. Such a web element can have an asymmetrical contact surface, so that when the web element is arranged in the groove, it inevitably breaks up into two unequal groove sections.
Die Nutabschnitte zweier benachbarter Nuten können in ihrer Länge zueinander variieren. Das heißt die Nutabschnitte zweier benachbarter Nuten können an der Innenseite des Lamellenblocks unterschiedlich lang ausgebildet sein. Die Variation der Länge der Nutabschnitte entlang des Lamellenblocks kann durch Anordnung von Stegelementen mit sich ändernden Querschnitten (bzw. Kontaktflächen) in den jeweiligen Nuten entlang des Lamellenblocks erreicht werden. Mit Querschnitt ist hier wiederum der Querschnitt des Stegelements senkrecht zur Längsrichtung des Lamellenblocks gemeint. The length of the groove sections of two adjacent grooves can vary from one another. That is to say, the groove sections of two adjacent grooves can have different lengths on the inside of the lamellar block. The variation of the length of the groove sections along the lamellar block can be achieved by arranging web elements with changing cross sections (or contact surfaces) in the respective grooves along the lamellar block. The cross section here again means the cross section of the web element perpendicular to the longitudinal direction of the lamella block.
Die Längenvariation der Nutabschnitte aller Nuten zueinander kann einer nichtstetigen Funktion folgen. Mit anderen Worten können sich die Nutabschnitte aller Nuten in ihrer jeweiligen Länge an der Innenseite des Lamellenblocks unregelmäßig variabel voneinander unterscheiden. Alternativ kann die Variation auch einer festlegbaren Funktion folgen. Jedes Stegelement kann in das Nutinnere der jeweiligen Nut, in der es angeordnet ist, hineinragen. Dabei kann jedes Stegelement eine maximale Ausdehnung in Richtung des Nutinneren in einem Bereich aufweisen, in dem das jeweiligeThe length variation of the groove sections of all grooves with respect to one another can follow a discontinuous function. In other words, the groove sections of all grooves can differ from one another in their respective length on the inside of the lamellar block in an irregularly variable manner. Alternatively, the variation can also follow a definable function. Each web element can protrude into the groove interior of the respective groove in which it is arranged. Each web element can have a maximum extension in the direction of the inside of the groove in a region in which the respective
Stegelement eine in Längsrichtung verlaufende Symmetrieebene des Lamellenblocks schneidet. Die Symmetrieebene verläuft mittig durch den Lamellenblock und teilt den Lamellenblock in zwei grundlegend (spiegel-)gleiche Hälften (ohne Berücksichtigung der Stegelemente). Web element intersects a longitudinal plane of symmetry of the lamella block. The plane of symmetry runs through the center of the lamellar block and divides the lamellar block into two basically identical halves (without taking into account the bar elements).
Die Stegelemente können derartig in den Nuten positioniert und/oder dimensioniert sein, dass sie den Eingriff der Lamellen eines benachbarten Lamellenblocks einer Kalibriereinrichtung in die Nuten des Lamellenblocks nicht beinträchtigen. The web elements can be positioned and / or dimensioned in the grooves in such a way that they do not impair the engagement of the lamellae of an adjacent lamella block of a calibration device in the grooves of the lamella block.
Jedes Stegelement kann im Nutinneren (konvex) gekrümmt sein. Alternativ kann jedes Stegelement im Nutinneren auch eine anderweitige Form annehmen. Die Form und Dimensionierung der Stegelemente im Nutinneren richtet sich nach der gewünschten Stabilität (Festigkeit, Steifigkeit etc.) der Stegelemente, welche wiederum von den Kräften abhängt, welche auf die Stegelemente wirken. Abhängig von den äußeren Anforderungen und dem verwendeten Material können die Stegelemente auch flache Volumenkörper (etwa mit der Dicke einer Folie) sein. Each bar element can be curved inside the groove (convex). Alternatively, each web element can also assume a different shape in the interior of the groove. The shape and dimensioning of the bar elements inside the groove depends on the desired stability (strength, rigidity, etc.) of the bar elements, which in turn depends on the forces acting on the bar elements. Depending on the external requirements and the material used, the web elements can also be flat solid bodies (about the thickness of a film).
Der Lamellenblock kann ferner eine Trägerstruktur aufweisen, an der die Lamellenstruktur angeordnet ist. Die Trägerstruktur und die Lamellen können aus demselben Material oder aus verschiedenen Materialien gefertigt sein. Insbesondere können die Trägerstruktur und/oder die Lamellen aus einem metallischen Werkstoff oder einem Polymerwerkstoff gebildet sein. Die Trägerstruktur kann an einer der Innenseite des Lamellenblocks abgewandten Seite an der Lamellenstruktur des Lamellenblocks angeordnet sein. Die Trägerstruktur und die Lamellenstruktur können als ein einstückiges Bauteil ausgebildet sein. Alternativ kann die Trägerstruktur wenigstens eine Trägerstange umfassen, entlang welcher die einzelnen Lamellen des Lamellenblocks in Längsrichtung aufgefädelt sind. Der Lamellenblock kann mittels 3D-Druck hergestellt sein. Alternativ kann der Lamellenblock beispielsweise durch Fräsen, Bohren, Schneiden oder mittels eines Gussverfahrens hergestellt sein. The lamellar block can furthermore have a support structure on which the lamellar structure is arranged. The support structure and the slats can be made from the same material or from different materials. In particular, the support structure and / or the lamellae can be formed from a metallic material or a polymer material. The carrier structure can be arranged on a side facing away from the inner side of the lamella block on the lamella structure of the lamella block. The carrier structure and the lamellar structure can be designed as a one-piece component. Alternatively, the support structure can comprise at least one support rod, along which the individual lamellae of the lamella block are threaded in the longitudinal direction. The lamellar block can be produced using 3D printing. Alternatively, the lamellar block can be produced, for example, by milling, drilling, cutting or by means of a casting process.
Der erfindungsgemäße Lamellenblock ist aus mehrerlei Hinsicht vorteilhaft gegenüber dem Stand der Technik. Zum einen bewirkt die Unterteilung der Nuten in Nutabschnitte eine Verkleinerung der Beulfelder an der Oberfläche des extrudierten Profils bei der Kalibrierung. Dies kann eine Verbesserung der Oberflächenbeschaffenheit des kalibrierten Profils bewirken. Ferner führt eine unregelmäßige Längenvariation der Nutabschnitte an der Innenseite des Lamellenblocks zu einer entsprechend ungleichmäßigen Ausbildung von Beulfeldern an der Oberfläche des extrudierten Profils. Dadurch kann das eingangs beschriebene Rattern beim Kalibrieren des Profils unterbunden werden, da wenigstens einige Beulfelder aufgrund ihrer Ungleichheit nicht mehr in die nachfolgenden Nuten einrasten können. Zusätzlich kann durch Wahl einer geeigneten Form und Dimensionierung der Stegelemente im Nutinneren gewährleistet werden, dass der Eingriff der Lamellen benachbarter Lamellenblöcke einer Lamelleneinrichtung in die Nuten des Lamellenblocks nicht eingeschränkt wird. The lamellar block according to the invention is advantageous over the prior art in several respects. On the one hand, dividing the grooves into groove sections reduces the size of the buckling areas on the surface of the extruded profile during calibration. This can improve the surface quality of the calibrated profile. Furthermore, an irregular length variation of the groove sections on the inside of the lamellar block leads to a correspondingly uneven formation of bulge areas on the surface of the extruded profile. As a result, the rattling described at the outset can be prevented when calibrating the profile, since at least some buckling areas can no longer snap into the subsequent grooves due to their inequality. In addition, by choosing a suitable shape and dimensioning of the web elements inside the groove, it can be ensured that the engagement of the lamellae of adjacent lamella blocks of a lamella device in the grooves of the lamella block is not restricted.
Gemäß einem weiteren Aspekt der Erfindung wird eine Kalibriereinrichtung zur Kalibrierung von extrudierten Profilen bereitgestellt, wobei die Kalibriereinrichtung eine Vielzahl der erfindungsgemäßen Lamellenblöcke aufweist, die zur Bildung einer Kalibrieröffnung zueinander angeordnet sind. Die Anordnung der Lamellenblöcke kann dabei derart sein, dass diese eine kreisrunde Kalibrieröffnung bilden. According to a further aspect of the invention, a calibration device for calibrating extruded profiles is provided, the calibration device having a plurality of the lamellar blocks according to the invention which are arranged with respect to one another to form a calibration opening. The arrangement of the lamella blocks can be such that they form a circular calibration opening.
Die Kalibriereinrichtung kann ferner eine Vielzahl von Betätigungseinrichtungen umfassen, wobei jede der Betätigungseinrichtungen mit jeweils einem der Lamellenblöcke gekoppelt ist. Durch die Betätigungseinrichtung kann jeder Lamellenblock radial zur Kalibrieröffnung individuell betätigt werden. Dadurch kann der Wirkquerschnitt der Kalibrieröffnung nach Bedarf an den Querschnitt (Durchmesser) des zu kalibrierenden Profils angepasst werden. The calibration device can furthermore comprise a plurality of actuation devices, each of the actuation devices being coupled to one of the lamellar blocks. Anyone can use the actuator Lamella block can be operated individually radially to the calibration opening. As a result, the effective cross section of the calibration opening can be adapted to the cross section (diameter) of the profile to be calibrated as required.
Ferner kann die Kalibriereinrichtung ein Gehäuse aufweisen, das zur Aufnahme und Lagerung der Betätigungseinrichtung und der mit der Betätigungseinrichtung gekoppelten Lamellenblöcke vorgesehen ist. Furthermore, the calibration device can have a housing which is provided for receiving and mounting the actuation device and the lamellar blocks coupled to the actuation device.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird ein Verfahren zum Herstellen eines erfindungsgemäßen Lamellenblocks bereitgestellt. Das Verfahren zum Herstellen des Lamellenblocks umfasst wenigstens den Schritt des Herstellens des Lamellenblocks mittels 3D-Druck oder mittels additiver Fertigung. Die Herstellung des Lamellenblocks mittels 3D-Druckverfahren oder additiver Fertigungsverfahren kann hierbei ein schichtweises Lasersintern/Laserschmelzen von Materialschichten umfassen, wobei die Materialschichten entsprechend der zu erzeugenden Form des Lamellenblocks nacheinander (sequentiell) aufgetragen werden. According to a further aspect of the present invention, a method for producing a lamellar block according to the invention is provided. The method for producing the lamella block comprises at least the step of producing the lamella block by means of 3D printing or by means of additive manufacturing. The production of the lamellar block using 3D printing processes or additive manufacturing processes can include laser sintering / laser melting of material layers in layers, with the material layers being applied one after the other (sequentially) according to the shape of the lamellar block to be produced.
Das Verfahren kann ferner den Schritt des Berechnens einer Lamellenblockgeometrie (CAD-Daten) umfassen und, optional, das Umwandeln der 3D-Geonnetriedaten in entsprechende Steuerbefehle für den 3D-Druck oder die additive Fertigung. The method can furthermore comprise the step of calculating a lamella block geometry (CAD data) and, optionally, converting the 3D geometry data into corresponding control commands for 3D printing or additive manufacturing.
Das Verfahren kann ein Herstellen des Lamellenblocks als einstückiges Bauteil umfassen. Es versteht sich jedoch, dass gemäß einer alternativen Variante das Verfahren ein Herstellen jeder Lamelle einzeln (z.B. mit jeweils einem anliegenden Stegelement) und das Auffädeln der Lamellen entlang wenigstens einer T rägerstange in Längsrichtung des Lamellenblocks umfassen kann. The method can include manufacturing the lamella block as a one-piece component. It goes without saying, however, that according to an alternative variant, the method can comprise producing each lamella individually (e.g. with a respective web element in contact) and threading the lamellae along at least one support rod in the longitudinal direction of the lamella block.
Gemäß einem weiteren Aspekt wird ein Verfahren zum Herstellen eines Lamellenblocks bereitgestellt, das die Schritte umfasst: Erstellen eines Datensatzes, welcher den wie oben beschrieben Lamellenblock abbildet; und Speichern des Datensatzes auf einer Speichervorrichtung oder einem Server. DasAccording to a further aspect, a method for producing a lamellar block is provided, comprising the steps of: creating a data record which maps the lamellar block as described above; and Store the data set on a storage device or server. The
Verfahren kann ferner umfassen; Eingeben des Datensatzes in eine Verarbeitungsvorrichtung oder einen Computer, welche/r eine Vorrichtung zur additiven Fertigung derart ansteuert, dass diese den im Datensatz abgebildeten Lamellenblock fertigt. Method may further include; Entering the data record into a processing device or a computer which controls a device for additive manufacturing in such a way that it manufactures the lamellar block depicted in the data record.
Gemäß einem weiteren Aspekt wird ein System zur additiven Fertigung eines Lamellenblocks bereitgestellt, mit einer Datensatzerzeugungsvorrichtung zum Erzeugen eines Datensatzes, welcher den wie oben beschrieben Lamellenblock abbildet, einer Speichervorrichtung zum Speichern des Datensatzes und einer Verarbeitungsvorrichtung zum Empfangen des Datensatzes und zum derartigen Ansteuern einer Vorrichtung zur additiven Fertigung, dass diese den im Datensatz abgebildeten Lamellenblock fertigt. Die Speichervorrichtung kann ein USB-Stick, eine CD-ROM, eine DVD, eine Speicherkarte oder eine Festplatte sein. Die Verarbeitungsvorrichtung kann ein Computer, ein Server oder ein Prozessor sein. According to a further aspect, a system for the additive manufacturing of a lamellar block is provided, with a data record generating device for generating a data record which maps the lamellar block as described above, a storage device for storing the data set and a processing device for receiving the data set and for such a control of a device for additive manufacturing so that it manufactures the lamella block shown in the data record. The storage device can be a USB stick, a CD-ROM, a DVD, a memory card or a hard disk. The processing device can be a computer, a server, or a processor.
Gemäß einem weiteren Aspekt wird ein Computerprogramm bzw. Computerprogrammprodukt bereitgestellt, umfassend Datensätze, die bei dem Einlesen der Datensätze durch eine Vera rbe itu ngsvorrichtu ng oder einen Computer diese/n veranlasst, eine Vorrichtung zur additiven Fertigung derart anzusteuern, dass die Vorrichtung zur additiven Fertigung den wie oben beschrieben Lamellenblock fertigt. According to a further aspect, a computer program or computer program product is provided, comprising data records which, when the data records are read in by a processing device or a computer, causes them to control an additive manufacturing device in such a way that the additive manufacturing device manufactures the lamella block as described above.
Gemäß einem weiteren Aspekt wird ein computerlesbarer Datenträger bereitgestellt, auf dem das vorstehend beschriebene Computerprogramm gespeichert ist. Der computerlesbare Datenträger kann ein USB-Stick, eine CD- ROM, eine DVD, eine Speicherkarte oder eine Festplatte sein. According to a further aspect, a computer-readable data carrier is provided on which the computer program described above is stored. The computer-readable data carrier can be a USB stick, a CD-ROM, a DVD, a memory card or a hard disk.
Gemäß einem weiteren Aspekt wird ein Datensatz bereitgestellt, welcher den wie oben beschrieben Lamellenblock abbildet. Der Datensatz kann auf einem computerlesebaren Datenträger gespeichert sein. Weitere Vorteile, Einzelheiten und Aspekte der vorliegenden Erfindung werden anhand der nachfolgenden Zeichnungen erläutert. Es zeigen: According to a further aspect, a data record is provided which maps the lamella block as described above. The data record can be stored on a computer-readable data carrier. Further advantages, details and aspects of the present invention are explained with reference to the following drawings. Show it:
Fig. 1a einen Lamellenblock für eine Kalibriereinrichtung gemäß dem 1a shows a lamella block for a calibration device according to the
Stand der Technik; State of the art;
Fig. 1b einen weiteren Lamellenblock für eine Kalibriereinrichtung gemäß dem Stand der Technik; 1b shows a further lamella block for a calibration device according to the prior art;
Fig. 2a eine 3D-Ansicht eines Lamellenblocks gemäß der vorliegenden 2a shows a 3D view of a lamella block according to the present invention
Erfindung; Invention;
Fig. 2b eine Normalansicht auf die Innenseite des in Figur 2a dargestellten FIG. 2b shows a normal view of the inside of the one shown in FIG. 2a
Lamellenblocks; Lamellar blocks;
Fig. 2c eine Ansicht des in den Figuren 2a und 2b dargestellten Fig. 2c is a view of that shown in Figures 2a and 2b
Lamellenblocks in einer Schnittebene A-A (siehe Figur 2b); Lamella blocks in a section plane A-A (see Figure 2b);
Fig. 3a eine Ansicht eines weiteren Lamellenblocks gemäß der vorliegenden Erfindung; 3a is a view of another lamellar block according to the present invention;
Fig. 3b eine isolierte Darstellung von Stegelementen des in Figur 3a dargestellten Lamellenblocks; FIG. 3b shows an isolated illustration of web elements of the lamella block shown in FIG. 3a;
Fig. 4 eine Ansicht einer Kalibriereinrichtung mit einer Vielzahl erfindungsgemäßer Lamellenblöcke; 4 shows a view of a calibration device with a plurality of lamella blocks according to the invention;
Fig. 5 eine schematische Darstellung eines Eingriffs von erfindungsgemäßen Lamellenblöcken ineinander; und 5 shows a schematic illustration of an engagement of lamella blocks according to the invention with one another; and
Fig. 6 ein Blockdiagramm eines Verfahrens zur Herstellung eines erfindungsgemäßen Lamellenblocks. 6 shows a block diagram of a method for manufacturing a lamellar block according to the invention.
Die Figuren 1a und 1b wurden bereits im Zusammenhang mit dem Stand derFigures 1a and 1b were already in connection with the prior art
Technik eingangs diskutiert. Es sei auf die dortige Beschreibung verwiesen. Technology discussed at the beginning. Reference is made to the description there.
Im Zusammenhang mit den Figuren 2a bis 2c wird nun ein erfindungsgemäßerIn connection with Figures 2a to 2c, an inventive
Lamellenblock 100 für eine Kalibriereinrichtung weiter beschrieben. Der in Figur 2a dargestellte Lamellenblock 100 umfasst eine Lamellenstruktur 110, die eine Vielzahl von Lamellen 112 aufweist. Ferner umfasst der Lamellenblock 100 eine Trägerstruktur 120. Die Trägerstruktur 120 fungiert als Träger für dieLamella block 100 for a calibration device described further. The lamellar block 100 shown in FIG. 2a comprises a lamellar structure 110 which has a multiplicity of lamellas 112. Furthermore, the lamellar block 100 comprises a support structure 120. The support structure 120 functions as a support for the
Lamellenstruktur 110. Lamellar structure 110.
Der Lamellenblock 100 kann ferner eine Kopplungseinrichtung (hier nicht dargestellt) aufweisen, welche zur Kopplung mit einer Betätigungseinrichtung einer Kalibriereinrichtung (hier ebenfalls nicht dargestellt) vorgesehen ist. Die Kopplungseinrichtung kann so ausgebildet sein, dass sie mit der Trägerstruktur 120 fest verbindbar ist. The lamella block 100 can also have a coupling device (not shown here) which is provided for coupling to an actuating device of a calibration device (also not shown here). The coupling device can be designed such that it can be firmly connected to the support structure 120.
Die Trägerstruktur 120 kann (wie in Fig. 2a dargestellt) durch einen balkenförmigen Körper realisiert sein, entlang dem die Lamellen 112 angeordnet sind. Insbesondere kann die balkenförmige Trägerstruktur 120 Durchbrechungen zur Reduzierung des Gewichts des Lamellenblocks 100 aufweisen. Alternativ kann die Trägerstruktur 120 wenigstens eine T rägerstange aufweisen, an der die Lamellen 112 aufgefädelt werden (vergleiche hierzu Fig. 1a). The support structure 120 can be implemented (as shown in FIG. 2a) by a bar-shaped body, along which the lamellae 112 are arranged. In particular, the bar-shaped support structure 120 can have perforations to reduce the weight of the lamella block 100. Alternatively, the support structure 120 can have at least one support rod on which the lamellas 112 are threaded (compare FIG. 1 a).
Die Lamellenstruktur 110 umfasst eine Vielzahl von Lamellen 112, die in Längsrichtung L des Lamellenblocks 100 voneinander beabstandet angeordnet sind. Benachbarte Lamellen 112 sind durch entsprechende Nuten 130 voneinander getrennt. Gemäß der in Figur 2a gezeigten Implementierung weist jede Lamelle 112 im Querschnitt zur Längsrichtung L im Wesentlichen die Kontur eines (gleichschenkligen) Dreiecks auf. An der Innenseite des Lamellenblocks 100, welche in einem in eine Kalibriereinrichtung eingebauten Zustand dem zu kalibrierenden Profil zugewandt ist, weist jede Lamelle eine Kontaktfläche 114 auf. Die Kontaktfläche 114 tritt bei der Kalibrierung mit der Außenfläche des zu kalibrierenden Profils (etwa einem Rohr) in Kontakt. Die Kontaktfläche 114 einer jeden Lamelle 112 weist eine leichte (konkave) Krümmung auf und stellt die Außenkontur des zu kalibrierenden Profils wenigstens teilweise dar. Je nach Anwendung kann der Lamellenblock 100 auch eine andere Lamellenform aufweisen, die von dem hier beschriebenen dreiecksförmigen Querschnittsprofil abweichen kann. Ebenso können die Kontaktfiächen 114 jeder Lamelle 112 eine anderweitige Krümmung aufweisen beziehungsweise flach oder gewinkelt ausgebildet sein. The lamellar structure 110 comprises a multiplicity of lamellas 112, which are arranged at a distance from one another in the longitudinal direction L of the lamella block 100. Adjacent lamellae 112 are separated from one another by corresponding grooves 130. According to the implementation shown in FIG. 2a, each lamella 112 essentially has the contour of an (isosceles) triangle in cross section to the longitudinal direction L. On the inside of the lamellar block 100, which faces the profile to be calibrated when it is installed in a calibration device, each lamella has a contact surface 114. During calibration, the contact surface 114 comes into contact with the outer surface of the profile to be calibrated (for example a pipe). The contact surface 114 of each lamella 112 has a slight (concave) curvature and at least partially represents the outer contour of the profile to be calibrated. Depending on the application, the lamella block 100 can also have a different lamella shape, that of the triangular cross-sectional profile described here may differ. Likewise, the contact surfaces 114 of each lamella 112 can have a different curvature or be flat or angled.
Der in Figur 2a dargestellte Lamellenblock 100 umfasst ferner Stegelemente 140, die in den Nuten 130 des Lamellenblocks 100 angeordnet sind. Die Stegelemente 140 weisen an der Innenseite des Lamellenblocks 100 ihrerseits eine KontaktflächeThe lamellar block 100 shown in FIG. 2a further comprises web elements 140 which are arranged in the grooves 130 of the lamellar block 100. The web elements 140 for their part have a contact surface on the inside of the lamella block 100
142 auf, welche bündig mit den Kontaktflächen 114 der zu dem jeweiligen Stegelement 140 benachbarten Lamellen 112 abschließt. Das heißt, die Kontaktflächen 114 der Lamellen 112 und die Kontaktflächen 142 der Stegelemente 140 bilden an der Innenseite des Lamellenblockes 100 eine gemeinsame Kontaktfläche. Die gemeinsame Kontaktfläche kann die Außenkontur des zu kalibrierenden Profils wenigstens teilweise nachbilden. 142, which ends flush with the contact surfaces 114 of the lamellae 112 adjacent to the respective web element 140. That is, the contact surfaces 114 of the lamellae 112 and the contact surfaces 142 of the web elements 140 form a common contact surface on the inside of the lamella block 100. The common contact surface can at least partially simulate the outer contour of the profile to be calibrated.
In Figur 2b ist eine Normalansicht des in Figur 2a dargestellten Lamellenblocks 100 auf die Lamelleninnenseite dargestellt. Die Trägerstruktur 120, entlang der die Lamellen 112 angeordnet sind, ist in der Normalansicht in Figur 2b als vertikaler hinter den Lamellen 112 liegender Balken angedeutet. Der Lamellenblock 100 ist spiegelsymmetrisch zu einer Symmetrieebene 180 ausgebildet, welche in Längsrichtung mittig durch den Lamellenblock verläuft. Die Kontaktflächen 142 der Stegelemente 140 sind in Figur 2b schraffiert dargestellt. Die Stegelemente 140 sind in Längsrichtung L mittig (d.h. zentral entlang der Symmetrieebene 180) in den Nuten 130 des Lamellenblocks 100 derart angeordnet, dass jedes Stegelement 140 eine zugehörige Nut 130, in zwei gleiche Nutabschnitte 132, 134 teilt. FIG. 2b shows a normal view of the lamella block 100 shown in FIG. 2a on the inside of the lamellae. The carrier structure 120, along which the lamellae 112 are arranged, is indicated in the normal view in FIG. 2b as a vertical bar lying behind the lamellae 112. The lamellar block 100 is designed mirror-symmetrically to a plane of symmetry 180 which runs centrally through the lamellar block in the longitudinal direction. The contact surfaces 142 of the web elements 140 are shown hatched in FIG. 2b. The web elements 140 are arranged in the longitudinal direction L centrally (i.e. centrally along the plane of symmetry 180) in the grooves 130 of the lamellar block 100 such that each web element 140 divides an associated groove 130 into two identical groove sections 132, 134.
In Figur 2c ist ein Querschnitt des in den Figuren 2a und 2b dargestellten Lamellenblocks in der Schnittebene A-A (siehe Figur 2b) dargestellt. Die Kontaktfläche 142 des Stegelements 140 schließt bündig mit der Kontaktfläche 114 der benachbarten Lamelle 112 ab. Das Stegelement 140 weist ferner einen Stegelement-Rücken 144 auf, mit dem das Stegelement 140 in das Nutinnere der Nut 130 hineinragt. An seinem Rücken 144 weist das Stegelement 140 eine abgerundete Form auf, die im Querschnitt symmetrisch zu der Symmetrieebene 180 ist. Es versteht sich, dass der Stegelement-Rücken 144 auch eckig ausgebildet sein kann. Unabhängig von seiner genauen rückseitigen Ausgestaltung ragt das Stegelement 140 an jener Stelle am weitesten in die Nut 130 hinein, an dem es die Symmetrieebene 180 schneidet. FIG. 2c shows a cross section of the lamella block shown in FIGS. 2a and 2b in the sectional plane AA (see FIG. 2b). The contact surface 142 of the web element 140 ends flush with the contact surface 114 of the adjacent lamella 112. The web element 140 also has a web element back 144 with which the web element 140 projects into the inside of the groove 130. On its back 144, the web element 140 has a rounded shape which, in cross section, is symmetrical to the plane of symmetry 180 is. It goes without saying that the web element back 144 can also be embodied as angular. Regardless of its exact rear configuration, the web element 140 protrudes furthest into the groove 130 at that point at which it intersects the plane of symmetry 180.
Im Zusammenhang mit der Figur 3a wird nun ein weiterer erfindungsgemäßer Lamellenblock 200 für eine Kalibriereinrichtung näher beschrieben. Wie der Lamellenblock 100 gemäß den Figuren 2a bis 2c, weist der Lamellenblock 200 eine Lamellenstruktur 110 mit einer Vielzahl von Lamellen 112 auf, die durch Nuten 130 voneinander beabstandet sind. Der Lamellenblock 200 weist ferner eine Trägerstruktur 120 auf, an der die Lamellenstruktur 110 angeordnet ist. Die Trägerstruktur 120 kann hierbei genauso ausgebildet sein, wie die Trägerstruktur des Lamellenblocks 100. Es wird auf die entsprechende Beschreibung oben verwiesen. Zur Vereinfachung wurden jene Merkmale des Lamellenblocks 200, die strukturell und funktionell ähnlich oder identisch mit Merkmalen des Lamellenblocks 100 sind, mit denselben Bezugszeichen versehen, A further lamella block 200 according to the invention for a calibration device will now be described in more detail in connection with FIG. 3a. Like the lamellar block 100 according to FIGS. 2a to 2c, the lamellar block 200 has a lamellar structure 110 with a multiplicity of lamellae 112 which are spaced apart from one another by grooves 130. The lamellar block 200 also has a support structure 120 on which the lamellar structure 110 is arranged. The carrier structure 120 can be designed in exactly the same way as the carrier structure of the lamellar block 100. Reference is made to the corresponding description above. For the sake of simplicity, those features of the lamella block 200 which are structurally and functionally similar or identical to features of the lamella block 100 have been given the same reference numerals,
In den Nuten 130 sind Stegelemente 240 angeordnet. Die Stegelemente 240 sind so ausgebildet, dass wenigstens einige der Nuten 130 bezüglich der Symmetrieebene 180 an der Innenseite des Lamellenblocks 200 in ungleiche Nutabschnitte 232, 234 geteilt werden. Dadurch können sich bei der Kalibrierung an der Oberfläche des zu kalibrierenden Profils Beulfelder verschiedener Länge ausbilden. Somit kann ein Rattern bei der Kalibrierung des Profils erheblich verringert oder gar gänzlich unterbunden werden. Web elements 240 are arranged in the grooves 130. The web elements 240 are designed such that at least some of the grooves 130 are divided into unequal groove sections 232, 234 with respect to the plane of symmetry 180 on the inside of the lamella block 200. As a result, buckling fields of different lengths can form on the surface of the profile to be calibrated during calibration. Chattering during the calibration of the profile can thus be considerably reduced or even completely prevented.
Im Folgenden werden im Zusammenhang mit der Figur 3b beispielhafte Ausgestaltungen von Stegelementen 240a bis 240f des Lamellenblocks 200 gemäß Figur 3a näher beschrieben. Die Kontaktflächen 242a bis 242f weisen eine leichte (konkave) Krümmung auf. Je nach Kontur des zu kalibrierenden Bauteils kann auch die Ausgestaltung der Kontaktfläche 242 eines jeden Stegelements 240 variieren. Jedes Stegelement 240a bis 240f weist ferner einen Stegelement-Rücken 244a bis 244f auf, mit dem es in das Nutinnere einer jeweiligen Nut 130 hineinragt. Die Stegelement-Rücken 244a bis 244f weisen jeweils eine gewölbte Oberfläche auf. In the following, exemplary configurations of web elements 240a to 240f of the lamella block 200 according to FIG. 3a are described in more detail in connection with FIG. 3b. The contact surfaces 242a to 242f have a slight (concave) curvature. Depending on the contour of the component to be calibrated, the configuration of the contact surface 242 of each web element 240 can also vary. Each bar element 240a to 240f also has a bar element back 244a to 244f, with which it protrudes into the groove interior of a respective groove 130. The web element backs 244a to 244f each have a curved surface.
Im Querschnitt können wenigstens einige der Stegelemente 240a bis 240f asymmetrisch (vgl. Stegelemente 240b, 240c, 240d und 240f) bezüglich der Symmetrieebene 180 ausgebildet sein. Mit anderen Worten können wenigstens einige der Stegelemente 240 einen in sich asymmetrischen Querschnitt aufweisen. Ferner können einige oder alle Stegelemente 240 zueinander asymmetrische Querschnitte aufweisen. Jedes der Stegelemente 240a bis 240f weist seine größte Ausdehnung an der Stelle auf, an der es die Symmetrieebene 180 des Lamellenblocks 200 schneidet. In cross section, at least some of the web elements 240a to 240f can be designed asymmetrically (cf. web elements 240b, 240c, 240d and 240f) with respect to the plane of symmetry 180. In other words, at least some of the web elements 240 can have an inherently asymmetrical cross section. Furthermore, some or all of the web elements 240 can have cross-sections which are asymmetrical to one another. Each of the web elements 240a to 240f has its greatest extent at the point at which it intersects the plane of symmetry 180 of the lamella block 200.
Im Zusammenhang mit der Figur 4 wird nun eine Implementierung einer erfindungsgemäßen Kalibriereinrichtung 500 näher beschrieben. Die Kalibriereinrichtung 500 umfasst eine Vielzahl der oben beschriebenen erfindungsgemäßen Lamellenblöcke 100, 200, welche in Umfangsrichtung derart zueinander angeordnet sind, dass die Kontaktflächen 114 der Lamellen 112 und die Kontaktflächen 142, 242 der Stegelemente 140, 240 der Lamellenblöcke 100, 200 gemeinsam eine Kalibrieröffnung 510 bilden. Die Kalibrieröffnung 510 entspricht der gewünschten Außenkontur eines zu kalibrierenden Profils (Rohr 515). An implementation of a calibration device 500 according to the invention will now be described in greater detail in connection with FIG. The calibration device 500 comprises a plurality of the above-described lamella blocks 100, 200 according to the invention, which are arranged in the circumferential direction to one another in such a way that the contact surfaces 114 of the lamellae 112 and the contact surfaces 142, 242 of the web elements 140, 240 of the lamella blocks 100, 200 together have a calibration opening 510 form. The calibration opening 510 corresponds to the desired outer contour of a profile to be calibrated (tube 515).
An der Trägerstruktur 120 eines jeden Lamellenblocks 100, 200 ist eine Kopplungseinrichtung 150 angeordnet. Jede Kopplungseinrichtung 150 steht wiederum in Verbindung mit jeweils einer Betätigungseinrichtung 520, die zwischen einem inneren Gehäusezylinder 530 und einem äußeren Gehäusezylinder 540 der Kalibriereinrichtung 500 fixiert ist. Die Betätigung eines Lamellenblockes 100, 200 durch eine dazugehörige Betätigungseinrichtung 520 ermöglicht ein radiales Verfahren des Lamellenblocks 100, 200. Auf diese Weise kann der Durchmesser der Kalibrieröffnung 510 variabel eingestellt werden, da die Lamellen 112 eines jeden Lamellenblocks 100, 200 in die Nuten 130 der jeweils benachbarten Lamellenblöcke 100, 200 eingreifen. Grundsätzlich ähnelt der Aufbau der Kalibriereinrichtung 500 gemäß Figur 4 dem Aufbau einer Kalibriereinrichtung, wie säe bereits in der DE 198 43 340 C2 beschrieben ist. A coupling device 150 is arranged on the support structure 120 of each lamella block 100, 200. Each coupling device 150 is in turn connected to a respective actuating device 520, which is fixed between an inner housing cylinder 530 and an outer housing cylinder 540 of the calibration device 500. The actuation of a lamella block 100, 200 by an associated actuation device 520 enables the lamella block 100, 200 to be moved radially. In this way, the diameter of the calibration opening 510 can be set variably, since the lamellae 112 of each lamella block 100, 200 in the grooves 130 of each adjacent lamella blocks 100, 200 engage. In principle, the structure of the calibration device 500 according to FIG. 4 is similar to the structure of a calibration device, as already described in DE 198 43 340 C2.
Figur 5 zeigt schematisch eine Anordnung der in Figur 3a dargestellten Lamellenblöcke 200 innerhalb einer Kalibriereinrichtung. Die jeweiligen Stegelemente 240 jedes Lamellenblocks 200 weisen ihre jeweils größte radialeFIG. 5 schematically shows an arrangement of the lamella blocks 200 shown in FIG. 3a within a calibration device. The respective web elements 240 of each lamella block 200 have their respective largest radial ones
Ausdehnung (Ausdehnung in Richtung des Nutinneren) in dem Bereich auf, in dem sie die Symmetrieebene 180 des jeweiligen Lamellenblocks 200 schneiden. Die Stegelemente 240 sind dabei so dimensioniert, dass ein Eingriff der Lamellen 112 benachbarter Lamellenblöcke 200 nicht eingeschränkt wird. Die Darstellung gemäß Figur 5 gilt analog für den Eingriff erfindungsgemäßer Lamellenblöcke 100 (vergleiche hierzu Fign. 2a-2c) mit symmetrischen Stegelementen 140, die die Nuten 130 in gleiche Nutabschnitte 131 , 134 teilen. Expansion (expansion in the direction of the inside of the groove) in the area in which they intersect the plane of symmetry 180 of the respective lamella block 200. The web elements 240 are dimensioned so that engagement of the lamellae 112 of adjacent lamella blocks 200 is not restricted. The illustration according to FIG. 5 applies analogously to the engagement of lamellar blocks 100 according to the invention (compare FIGS. 2a-2c) with symmetrical web elements 140 which divide the grooves 130 into identical groove sections 131, 134.
Zur Herstellung eines erfindungsgemäßen Lamellenblocks 100, 200 kann vorzugsweise ein generatives bzw. additives Fertigungsverfahren zum Einsatz kommen. Ein derartiges Herstellungsverfahren 600 ist in Figur 6 gezeigt. Demnach kommt ein 3D-Druckverfahren zum Einsatz. Hierbei werden in einem ersten Schritt 610 3D-Geometriedaten (CAD-Daten), welche der Geometrie des zu fertigenden Lamellenblocks 100, 200 entsprechen, berechnet. In einem zweiten Schritt 620 werden die berechneten 3D-Geometriedaten in Steuerbefehle für einen 3D-Druek umgewandelt. In einem dritten Schritt 630 wird schließlich, basierend auf den erzeugten Steuerbefehlen, der Lamellenblock 100, 200 mittels eines 3D- Druckverfahrens (z.B. Lasersintern, Laserschmelzen) schichtweise aufgebaut. Als Werkstoff für den 3D-Druck kann ein metallischer Werkstoff oder ein Polymerwerkstoff zum Einsatz kommen. A generative or additive manufacturing method can preferably be used to manufacture a lamella block 100, 200 according to the invention. Such a production method 600 is shown in FIG. Accordingly, a 3D printing process is used. In this case, in a first step 610, 3D geometry data (CAD data) which correspond to the geometry of the lamella block 100, 200 to be manufactured are calculated. In a second step 620, the calculated 3D geometry data are converted into control commands for a 3D print. In a third step 630, based on the generated control commands, the lamella block 100, 200 is finally built up in layers by means of a 3D printing process (e.g. laser sintering, laser melting). A metallic material or a polymer material can be used as the material for 3D printing.
Es versteht sich, dass gemäß einer alternativen Variante das Verfahren ein Herstellen jeder Lamelle 112 einzeln (z.B. mit jeweils einem anliegenden Stegelement 140, 240) und das Auffädeln der Lamellen 112 entlang wenigstens einer Trägerstange in Längsrichtung des Lamellenblocks 100, 200 umfassen kann. Alternativ zur Herstellung mittels 3D-Druck ist auch denkbar, den LamellenblockIt goes without saying that, according to an alternative variant, the method can include producing each lamella 112 individually (for example, each with an adjacent web element 140, 240) and threading the lamellae 112 along at least one support rod in the longitudinal direction of the lamella block 100, 200. As an alternative to production using 3D printing, it is also conceivable to use the lamella block
100, 200 bzw jede Lamelle 112 einzeln beispielsweise durch Fräsen, Bohren, Schneiden oder mittels eines Gussverfahrens herzustellen. 100, 200 or each lamella 112 can be produced individually, for example by milling, drilling, cutting or by means of a casting process.
Durch den Einsatz der hier beschriebenen Lamellenblöcke mit Stegelementen kann die Kalibrierung von Endlosprofilen, insbesondere von Kunststoffprofilen, weiter verbessert werden. Insbesondere kann eine vorteilhafte Verkleinerung der Beulfelder an der Oberfläche des Profils erzielt werden. Ferner können durch die Stegelemente in Längsrichtung der Lamellenblöcke unregelmäßige Nutabschnittsmuster und somit unregelmäßige Beulfelder an der Profiloberfläche realisiert werden, wodurch das Rattern beim Kalibrieren des Profils eliminiert oder zumindest stark reduziert wird. By using the lamellar blocks with web elements described here, the calibration of endless profiles, in particular of plastic profiles, can be further improved. In particular, an advantageous reduction in the size of the buckling areas on the surface of the profile can be achieved. Furthermore, irregular groove section patterns and thus irregular buckling areas on the profile surface can be realized by the web elements in the longitudinal direction of the lamellar blocks, whereby the chatter when calibrating the profile is eliminated or at least greatly reduced.

Claims

Patentansprüche Claims
1. Lamellenblock (100, 200) für eine Kalibriereinrichtung (500) zur Kalibrierung eines extrudierten Profils (515), wobei der Lamellenblock (100, 200) eine Lamellenstruktur (110) umfasst, welche eine Vielzahl von Lamellen (112) aufweist, die durch Nuten (130) voneinander beabstandet und in Längsrichtung des Lamellenblocks (100, 200) angeordnet sind, dadurch gekennzeichnet, dass wenigstens einige der Nuten (130) jeweils ein Stegelement (140, 240) aufweisen, welches die jeweilige Nut (130) an einer Innenseite des Lamellenblockes (100, 200) in zwei Nutabschnitte (132, 134, 232, 234) unterteilt. 1. lamellar block (100, 200) for a calibration device (500) for calibrating an extruded profile (515), wherein the lamellar block (100, 200) comprises a lamellar structure (110) which has a plurality of lamellas (112) extending through Grooves (130) are spaced from one another and are arranged in the longitudinal direction of the lamella block (100, 200), characterized in that at least some of the grooves (130) each have a web element (140, 240), which the respective groove (130) on an inside of the lamellar block (100, 200) divided into two groove sections (132, 134, 232, 234).
2. Lamellenblock (100, 200) nach Anspruch 1 , dadurch gekennzeichnet, dass jedes der Stegelemente (140, 240) derart in einer jeweiligen Nut (130) angeordnet ist, dass es bündig an der Innenseite mit dem Lamellenblock (100, 200) abschließt. 2. Lamellar block (100, 200) according to claim 1, characterized in that each of the web elements (140, 240) is arranged in a respective groove (130) in such a way that it is flush with the lamellar block (100, 200) on the inside .
3. Lamellenblock (200) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die beiden durch ein jeweiliges Stegelement (140, 240) erzeugten Nutabschnitte (232, 234) einer Nut (130) ungleich sind. 3. Lamellar block (200) according to claim 1 or 2, characterized in that the two groove sections (232, 234) of a groove (130) produced by a respective web element (140, 240) are unequal.
4. Lamellenblock (200) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Nutabschnitte (232, 234) zweier benachbarter Nuten (130) in ihrer Länge zueinander variieren. 4. Lamellar block (200) according to one of the preceding claims, characterized in that the groove sections (232, 234) of two adjacent grooves (130) vary in length to one another.
5. Lamellenblock (200) nach Anspruch 3, dadurch gekennzeichnet, dass die Längenvariation der Nutabschnitte (232, 234) aller Nuten (130) zueinander einer nichtstetigen Funktion folgt. 5. Lamella block (200) according to claim 3, characterized in that the length variation of the groove sections (232, 234) of all the grooves (130) follows a discontinuous function with respect to one another.
6. Lamellenblock (100, 200) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jedes Stegelement (140, 240) in das Nutinnere der jeweiligen Nut (130) hineinragt und eine maximale Ausdehnung in Richtung des Nutinneren in einem Bereich aufweist, in dem das jeweilige Stegelement (140, 240) eine in Längsrichtung verlaufende Symmetrieebene (180) des Lamellenblocks (100, 200) schneidet. 6. Lamellar block (100, 200) according to one of the preceding claims, characterized in that each web element (140, 240) protrudes into the groove interior of the respective groove (130) and has a maximum extent in the direction of the groove interior in an area in which the respective web element (140, 240) intersects a plane of symmetry (180) of the lamella block (100, 200) running in the longitudinal direction.
7 Lamellenblock (100, 200) nach Anspruch 6, dadurch gekennzeichnet, dass jedes Stegelement (140, 240) im Nutinneren gekrümmt ausgebildet ist. 7 lamellar block (100, 200) according to claim 6, characterized in that each web element (140, 240) is curved inside the groove.
8. Lamellenblock (100, 200) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Lamellenblock ferner eine Trägerstruktur (120) aufweist, an der die Lamellenstruktur (110) angeordnet ist. 8. lamellar block (100, 200) according to any one of the preceding claims, characterized in that the lamellar block further comprises a support structure (120) on which the lamellar structure (110) is arranged.
9. Lamellenblock (100, 200) nach einem der vorhergehenden Ansprüche, wobei der Lamellenblock (100, 200) mittels 3D-Druck Druck bzw. mittels eines additiven Fertigungsverfahrens hergestellt ist. 9. lamellar block (100, 200) according to any one of the preceding claims, wherein the lamellar block (100, 200) is produced by means of 3D printing or by means of an additive manufacturing process.
10. Kalibriereinrichtung (500) zur Kalibrierung von extrudierten Profilen, umfassend eine Vielzahl von Lamellenblöcken (100, 200) gemäß einem der Ansprüche 1 bis 7, wobei die Lamellenblöcke (100, 200) zur Bildung einer Kalibrieröffnung (510) zueinander angeordnet sind. 10. Calibration device (500) for calibrating extruded profiles, comprising a plurality of lamellar blocks (100, 200) according to one of claims 1 to 7, wherein the lamellar blocks (100, 200) are arranged to form a calibration opening (510) to one another.
11. Kalibriereinrichtung (500) nach Anspruch 10, wobei die Kalibriereinrichtung (500) eine Vielzahl von Betätigungseinrichtungen (520) umfasst, wobei jede der Betätigungseinrichtungen (520) mit jeweils einem der Lamellenblöcke (100, 200) gekoppelt ist, um einen jeden Lamellenblock (100, 200) individuell zu betätigen. 11. The calibration device (500) according to claim 10, wherein the calibration device (500) comprises a plurality of actuation devices (520), each of the actuation devices (520) being coupled to one of the lamellar blocks (100, 200) in order to actuate each lamellar block ( 100, 200) to be operated individually.
12. Verfahren (600) zum Herstellen eines Lamellenblocks (100, 200) gemäß einem der Ansprüche 1 bis 9, umfassend den Schritt des Herstellens (630) des Lamellenblocks (100, 200) mittels 3D-Druck bzw. mittels additiver Fertigung. 12. The method (600) for producing a lamellar block (100, 200) according to one of claims 1 to 9, comprising the step of producing (630) the lamellar block (100, 200) by means of 3D printing or by means of additive manufacturing.
13. Verfahren (600) nach Anspruch 12, ferner umfassend Berechnen (610) einer 3D- Lamellenblock-Geometrie, und Umwandeln (620) der berechneten 3D-Geometriedaten in entsprechende Steuerbefehle für den 3D-Druck bzw. die additive Fertigung. 13. The method (600) according to claim 12, further comprising calculating (610) a 3D lamellar block geometry, and converting (620) the calculated 3D geometry data into corresponding control commands for 3D printing or additive manufacturing.
14. Verfahren zum Herstellen eines Lamellenblocks (100, 200), die Schritte umfassend: 14. A method of manufacturing a lamellar block (100, 200) comprising the steps of:
- Erstellen eines Datensatzes, welcher den Lamellenblock (100, 200) nach einem der Ansprüche 1 bis 9 abbildet; - Speichern des Datensatzes auf einer Speichervorrichtung oder einem Server; und- Creation of a data record which maps the lamellar block (100, 200) according to one of Claims 1 to 9; Storing the data set on a storage device or a server; and
- Eingeben des Datensatzes in eine Verarbeitungsvorrichtung oder einen Computer, welche/r eine Vorrichtung zur additiven Fertigung derart ansteuert, dass diese den im Datensatz abgebildeten Lamellenblock (100, 200) fertigt. - Entering the data record into a processing device or a computer which controls a device for additive manufacturing in such a way that it manufactures the lamellar block (100, 200) depicted in the data record.
15. System zur additiven Fertigung eines Lameilenblocks (100, 200), umfassend: 15. System for additive manufacturing of a lamellar block (100, 200), comprising:
- Datensatzerzeugungsvorrichtung zum Erzeugen eines Datensatzes, welcher den Lamellenblock (100, 200) nach einem der Ansprüche 1 bis 9 abbildet; - Data set generating device for generating a data set which depicts the lamella block (100, 200) according to one of Claims 1 to 9;
- Speichervorrichtung zum Speichern des Datensatzes; - Storage device for storing the data set;
- Verarbeitungsvorrichtung zum Empfangen des Datensatzes und zum derartigen Ansteuern einer Vorrichtung zur additiven Fertigung, dass diese den im Datensatz abgebildeten Lamellenblock (100, 200) fertigt. - Processing device for receiving the data record and for controlling a device for additive manufacturing in such a way that it produces the lamellar block (100, 200) depicted in the data record.
16. Computerprogramm, umfassend Datensätze, die bei dem Einlesen der Datensätze durch eine Verarbeitungsvorrichtung oder einen Computer diese/n veranlasst, eine Vorrichtung zur additiven Fertigung derart anzusteuern, dass die Vorrichtung zur additiven Fertigung ein Lamellenblock (100, 200) mit den Merkmalen nach einem der Ansprüche 1 bis 9 fertigt. 16. A computer program comprising data sets which, when the data sets are read in by a processing device or a computer, causes them to control a device for additive manufacturing in such a way that the device for additive manufacturing has a lamellar block (100, 200) with the features according to a the claims 1 to 9 manufactures.
17. Computerlesbarer Datenträger, auf dem das Computerprogramm nach Anspruch 16 gespeichert ist. 17. Computer-readable data carrier on which the computer program according to claim 16 is stored.
18. Datensatz, welcher einen Lamellenblock (100, 200) mit den Merkmalen nach einem der Ansprüche 1 bis 9 abbildet. 18. Data set which depicts a lamellar block (100, 200) with the features according to one of claims 1 to 9.
PCT/EP2019/084227 2019-03-21 2019-12-09 Lamella block for a calibration device with internal crosspiece WO2020187438A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019002005.7 2019-03-21
DE102019002005.7A DE102019002005A1 (en) 2019-03-21 2019-03-21 Lamellar block for a calibration device with internal bar

Publications (1)

Publication Number Publication Date
WO2020187438A1 true WO2020187438A1 (en) 2020-09-24

Family

ID=68841122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/084227 WO2020187438A1 (en) 2019-03-21 2019-12-09 Lamella block for a calibration device with internal crosspiece

Country Status (3)

Country Link
DE (1) DE102019002005A1 (en)
TW (1) TW202037476A (en)
WO (1) WO2020187438A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2221186A1 (en) * 1995-05-17 1996-11-21 Knud Kristian Pedersen A tubular calibration unit for machines for extruding plastic strings such as pipes
DE19843340C2 (en) 1998-09-22 2001-11-22 Strumann Werner Egeplast Device for the production of plastic pipes
US20030211657A1 (en) * 2000-02-10 2003-11-13 Williams Vernon M. Stereolithographic method for fabricating heat sinks, stereolithographically fabricated heat sinks, and semiconductor devices including same
DE10315125B3 (en) * 2003-04-03 2004-09-09 Krauss-Maffei Kunststofftechnik Gmbh Calibration unit for endless extruded profiles, comprises numerous segment crown sections formed from individual segments, and a carrier structure
WO2004103684A1 (en) 2003-05-24 2004-12-02 Krauss-Maffei Kunststofftechnik Gmbh Calibrating device
DE102005002820B3 (en) * 2005-01-20 2006-05-11 Inoex Gmbh Stepless adjustable calibration sleeve for extruded plastic pipe comprises overlapping toothed radial segments and variable braid and segment ends contact pipe and connect to segments with flush joints
DE102009016100A1 (en) * 2009-04-03 2010-10-07 Egeplast Werner Strumann Gmbh & Co. Kg Calibrating device for plastic pipe extruding system, has calibrating tools formed as hollow body, where tools have slots in area of sliding surfaces that are attached to pipe circumference, and slots are connected with cavity in body
DE102015009528B3 (en) * 2015-07-27 2016-09-22 Inoex Gmbh Infinitely adjustable calibration sleeve for extruded plastic pipes
DE102015007791A1 (en) * 2015-06-19 2016-12-22 Airbus Defence and Space GmbH Production of heat sinks for electrical or electronic components
DE102016211479A1 (en) * 2016-06-27 2017-12-28 Siemens Aktiengesellschaft power module

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2221186A1 (en) * 1995-05-17 1996-11-21 Knud Kristian Pedersen A tubular calibration unit for machines for extruding plastic strings such as pipes
DE19843340C2 (en) 1998-09-22 2001-11-22 Strumann Werner Egeplast Device for the production of plastic pipes
US20030211657A1 (en) * 2000-02-10 2003-11-13 Williams Vernon M. Stereolithographic method for fabricating heat sinks, stereolithographically fabricated heat sinks, and semiconductor devices including same
DE10315125B3 (en) * 2003-04-03 2004-09-09 Krauss-Maffei Kunststofftechnik Gmbh Calibration unit for endless extruded profiles, comprises numerous segment crown sections formed from individual segments, and a carrier structure
WO2004103684A1 (en) 2003-05-24 2004-12-02 Krauss-Maffei Kunststofftechnik Gmbh Calibrating device
DE102005002820B3 (en) * 2005-01-20 2006-05-11 Inoex Gmbh Stepless adjustable calibration sleeve for extruded plastic pipe comprises overlapping toothed radial segments and variable braid and segment ends contact pipe and connect to segments with flush joints
DE102009016100A1 (en) * 2009-04-03 2010-10-07 Egeplast Werner Strumann Gmbh & Co. Kg Calibrating device for plastic pipe extruding system, has calibrating tools formed as hollow body, where tools have slots in area of sliding surfaces that are attached to pipe circumference, and slots are connected with cavity in body
DE102015007791A1 (en) * 2015-06-19 2016-12-22 Airbus Defence and Space GmbH Production of heat sinks for electrical or electronic components
DE102015009528B3 (en) * 2015-07-27 2016-09-22 Inoex Gmbh Infinitely adjustable calibration sleeve for extruded plastic pipes
DE102016211479A1 (en) * 2016-06-27 2017-12-28 Siemens Aktiengesellschaft power module

Also Published As

Publication number Publication date
TW202037476A (en) 2020-10-16
DE102019002005A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
DE102013203936A1 (en) Generative layer building method for producing a three-dimensional object and three-dimensional object
EP2750857B1 (en) Extruder screw, extruder, and method for producing an extruder screw
DE102009016100A1 (en) Calibrating device for plastic pipe extruding system, has calibrating tools formed as hollow body, where tools have slots in area of sliding surfaces that are attached to pipe circumference, and slots are connected with cavity in body
DE102006042065A1 (en) Method and device for producing band-shaped plastic preforms
DE19639969A1 (en) Dice for moulding honeycomb structure
DE102005003933A1 (en) A mandrel for use in extrusion, especially for the production of extruded bars and profiles, comprises at least two parts which can be moved in an axial direction to one another
EP2792429B1 (en) Axial thread rolling head and method for forming an external thread on a workpiece with an axial thread rolling head
EP3921134B1 (en) Lamella block with continuously varied lamella distribution
WO2020187438A1 (en) Lamella block for a calibration device with internal crosspiece
WO2020187439A1 (en) Lamella block for a calibration device with internal crosspiece
EP3921132B1 (en) Lamella block for a calibration device
DE19942966A1 (en) Shaping of drill tool bodies lays a cut length of an extruded cylinder body with straight inner recesses on a support surface to be twisted by a friction surface system to give inner helical recesses for sintering
EP3921136B1 (en) Lamella block comprising laterally displaced lamellae
EP3921135B1 (en) Lamella block with lamella openings
EP3921133B1 (en) Lamella block with a continuously varying lamella width
DE102018202941B4 (en) Process for producing a blank from extrusion mass and extruder
EP3921137B1 (en) Lamella block with offset lamellae
DE102019002019A1 (en) Calibration basket with staggered intersections
EP3921131B1 (en) Lamella block with internal temperature control
DE102006062893B3 (en) Device for the production of band-shaped plastic preforms
WO2022090135A1 (en) Forming tool and method for the impact extrusion of metallic workpieces
EP2981373B1 (en) Method and forming device for a formed wire body and formed wire body
DE102014114706A1 (en) Process for producing a shaped wire body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19817679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19817679

Country of ref document: EP

Kind code of ref document: A1