WO2020186987A1 - 光伏组件 - Google Patents

光伏组件 Download PDF

Info

Publication number
WO2020186987A1
WO2020186987A1 PCT/CN2020/076929 CN2020076929W WO2020186987A1 WO 2020186987 A1 WO2020186987 A1 WO 2020186987A1 CN 2020076929 W CN2020076929 W CN 2020076929W WO 2020186987 A1 WO2020186987 A1 WO 2020186987A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery string
battery
group
string group
photovoltaic module
Prior art date
Application number
PCT/CN2020/076929
Other languages
English (en)
French (fr)
Inventor
许庆丰
徐琛
王乐
何秉轩
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910213440.8A external-priority patent/CN110034201B/zh
Priority claimed from CN201910213436.1A external-priority patent/CN110034200B/zh
Priority claimed from CN201910213452.0A external-priority patent/CN110034202B/zh
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Priority to EP20773410.4A priority Critical patent/EP3926694A4/en
Priority to US17/440,764 priority patent/US20220131497A1/en
Publication of WO2020186987A1 publication Critical patent/WO2020186987A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/044PV modules or arrays of single PV cells including bypass diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/044PV modules or arrays of single PV cells including bypass diodes
    • H01L31/0443PV modules or arrays of single PV cells including bypass diodes comprising bypass diodes integrated or directly associated with the devices, e.g. bypass diodes integrated or formed in or on the same substrate as the photovoltaic cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • This application relates to the technical field of solar energy, and specifically to a photovoltaic module.
  • Photovoltaic modules are devices that use the photovoltaic effect to convert light energy into electrical energy. Among them, it is usually necessary to connect multiple battery pieces in series to form a battery string, and multiple battery strings can be connected in series or parallel to form a battery string group. During the working process, if the cell is blocked (shade, dust, bird droppings, etc.), the blocked cell will become a load, consuming the power generated by other cells and generating heat, causing the local temperature of the component to rise High, produce hot spot effect, reduce the output power of solar cells or even burn. In order to reduce the impact of hot spots, it is usually necessary to introduce diodes in photovoltaic modules.
  • the diodes need to be connected to the battery string or battery string in anti-parallel with the battery string or battery string through a special bus bar.
  • the diode When the battery slice is covered, the diode is turned on so that the battery string or battery string group where the blocked battery slice is located is bypassed by the diode to avoid the hot spot effect.
  • the battery string or battery string groups share one diode. Therefore, when the battery is blocked and the hot spot effect diode is turned on, the battery string or battery string group sharing the diode is bypassed, and the component power loss is excessive.
  • each battery slice is connected in reverse parallel with a diode.
  • the purpose of the present application is to provide a photovoltaic module that can increase the use of bus bars while increasing bypass diodes, facilitate wiring, and improve the resistance to hot spots of the photovoltaic module.
  • a photovoltaic module including at least one battery cell, the battery cell is rectangular; the battery cell includes a plurality of electrically connected battery string sets, each of the battery string sets includes a plurality of A battery string connected in parallel, the battery string includes a plurality of battery pieces connected in series; the battery string set has two conductive ends and two sides located between the two conductive ends; at least two adjacent The battery strings are arranged in a preset manner, and the preset manner is:
  • One conductive end of one battery string and one side of an adjacent battery string are both located on a straight line, and the two adjacent battery strings are located on the same side of the straight line.
  • the battery unit includes a first battery string group, a second battery string group, and a third battery string group; both the second battery string group and the third battery string group are the same as the first battery string group.
  • a conductive end of the first battery string set and one side of the second battery string set are located on a first straight line, and the first battery string set and the second battery string set are located on the first straight line. The same side of the line;
  • a conductive end of the third battery string set and one side of the first battery string set are located on a second straight line, and the third battery string set and the first battery string set are located on the second straight line Same side.
  • the battery unit further includes a fourth battery string group, the second battery string group and the third battery string group are both adjacent to the four battery string group, and the third battery string The group is electrically connected to the fourth battery string group;
  • One side of the third battery string group and a conductive end of the fourth battery string group are located on a third straight line, and the third battery string group and the fourth battery string group are located on the third straight line. The same side of the line;
  • a conductive end of the second battery string set and one side of the fourth battery string set are located on a fourth straight line, and the second battery string set and the fourth battery string set are located on the fourth straight line. The same side of the line.
  • the length of the side of the first battery string is equal to the length of the conductive end of the second battery string.
  • the length of the side of the first battery string is greater than the length of the conductive end of the second battery string.
  • the shapes of the first battery string group, the second battery string group, the third battery string group, and the fourth battery string group are the same.
  • the battery unit includes a first battery string group, a second battery string group, and a third battery string group; both the second battery string group and the third battery string group are the same as the first battery string group.
  • the groups are adjacent, and they are all located on the same side of the first battery string group;
  • a conductive end of the first battery string set and one side of the second battery string set are located on a first straight line, and the first battery string set and the second battery string set are located on the first line.
  • Straight line on the same side;
  • the other conductive end of the first battery string set and one side of the third battery string set are located on a second straight line, and the first battery string set and the third battery string set are located on the first Two straight lines on the same side.
  • the battery unit further includes a fourth battery string group, the second battery string group and the third battery string group are both adjacent to the four battery string group, and the third battery string The group is electrically connected to the fourth battery string group;
  • a conductive end of the fourth battery string set and one side of the second battery string set are located on the first straight line, and the fourth battery string set and the second battery string set are located at the same The same side of the first straight line;
  • the other conductive end of the fourth battery string set and one side of the third battery string set are located on a second straight line, and the fourth battery string set and the third battery string set are located on the first Two straight lines on the same side.
  • the length of the side of the first battery string is equal to the sum of the length of the conductive end of the second battery string and the length of the conductive end of the third battery string.
  • the length of the side of the first battery string is greater than the sum of the length of the conductive end of the second battery string and the length of the conductive end of the third battery string.
  • a diode is connected in anti-parallel between the conductive ends of each battery string;
  • At least two adjacent battery strings are connected in reverse parallel with the same diode.
  • the photovoltaic module further includes a transparent cover plate covering the front surface of the battery unit, and a pattern mark is provided on the inner or outer side of the transparent cover plate corresponding to the position of the bus bar, wherein the bus bar corresponds to The conductive ends of the adjacent battery strings are electrically connected.
  • the photovoltaic module further includes a transparent cover plate covering the front surface of the battery unit, the transparent cover plate is provided with a light emitting device at a position corresponding to the bus bar, and the light emitting device is located inside the transparent cover plate Or the outside, wherein the bus bar electrically connects the conductive ends of the adjacent battery strings.
  • the photovoltaic module further includes a transparent cover plate covering the front surface of the battery unit, the transparent cover plate is provided with a covering layer, and the orthographic projection of the pattern of the covering layer on the battery unit and the bus bar Matching, wherein the bus bar electrically connects the conductive ends of the adjacent battery strings.
  • two adjacent battery sheets of the same battery string group are arranged overlappingly and connected in series via conductive glue or wires.
  • the photovoltaic module further includes a junction box, and the diode is located in the junction box;
  • the diode is packaged in the battery cell.
  • a conductive end of a battery string group and one side of an adjacent battery string group are both located on a straight line, and the two adjacent battery strings
  • the battery strings are located on the same side of the straight line, so that when the conductive ends of the two battery strings are connected by a bus bar, the bus bar can extend between the conductive ends of the battery string, and the extension part can be used at the same time Anti-parallel diodes, thereby reducing the amount of special bus bars for anti-parallel diodes and saving bus bars.
  • a diode can be connected in reverse parallel between the conductive ends of each battery string, which can increase the number of diodes and improve the resistance to hot spots of the photovoltaic module.
  • the blank area designed on the double glass module can be used to place the junction box and the nameplate, thereby avoiding blocking the battery and eliminating the hot spot effect.
  • Fig. 1 is a schematic diagram of the battery string of the photovoltaic module of the application.
  • Fig. 2 is a schematic diagram of the first embodiment of the photovoltaic module of this application.
  • Fig. 3 is a schematic diagram of the second and third embodiments of the photovoltaic module of this application.
  • Fig. 4 is a schematic diagram of a fourth embodiment of the photovoltaic module of this application.
  • Fig. 5 is a schematic diagram of the fifth and sixth embodiments of the photovoltaic module of this application.
  • Fig. 6 is a schematic diagram of a seventh embodiment of the photovoltaic module of this application.
  • FIG. 7 is a schematic diagram of an eighth embodiment of the photovoltaic module of this application.
  • FIG. 8 is a schematic diagram of a ninth embodiment of the photovoltaic module of this application.
  • Fig. 9 is a schematic diagram of the tenth and eleventh embodiment of the photovoltaic module of this application.
  • FIG. 10 is a schematic diagram of a twelfth embodiment of the photovoltaic module of this application.
  • FIG. 11 is a schematic diagram of the thirteenth and fourteenth embodiments of the photovoltaic module of this application.
  • FIG. 12 is a schematic diagram of a fifteenth embodiment of the photovoltaic module of this application.
  • Fig. 13 is a schematic diagram of a sixteenth embodiment of the photovoltaic module of this application.
  • FIG. 14 is a schematic diagram of a seventeenth embodiment of the photovoltaic module of this application.
  • FIG. 15 is a schematic diagram of an eighteenth embodiment of the photovoltaic module of this application.
  • FIG. 16 is a schematic diagram of a nineteenth embodiment of the photovoltaic module of this application.
  • FIG. 17 is a partial schematic diagram of a diode in the sixth embodiment of the photovoltaic module of this application.
  • FIG. 18 is another partial schematic diagram of the diode in the sixth embodiment of the photovoltaic module of this application.
  • FIG. 19 is a schematic back view of the eleventh embodiment of the photovoltaic module of this application.
  • FIG. 20 is a schematic back view of the eighth embodiment of the photovoltaic module of this application.
  • 21 is a schematic back view of the seventh embodiment, the fifteenth embodiment, and the sixteenth embodiment of the photovoltaic module of this application.
  • FIG. 22 is a schematic back view of the eighteenth embodiment of the photovoltaic module of this application.
  • the embodiment of the present application provides a photovoltaic module, the photovoltaic module includes at least one battery unit, the battery unit is rectangular, the battery unit includes a plurality of electrically connected battery strings, each battery string includes a plurality of parallel battery strings , The battery string includes a plurality of battery slices connected in series; the battery string group has two conductive ends and two sides located between the two conductive ends; at least two adjacent battery string groups are arranged in a preset manner, the The preset method is that a conductive end of a battery string and one side of an adjacent battery string are both located on a straight line, and the two adjacent battery strings are located on the same side of the straight line.
  • a conductive end of a battery string group and one side of an adjacent battery string group are both located on a straight line, and the two phases
  • the adjacent battery strings are located on the same side of the straight line, so that when the conductive ends of the two battery strings are connected by the bus bar, the bus bar can extend between the conductive ends of the battery string, and the extension part can be simultaneously Used for anti-parallel diodes, thereby reducing the amount of special bus bars for anti-parallel diodes and saving bus bars.
  • the rectangular shape is relatively regular and easy to splice and arrange. Therefore, the battery cells are rectangular, which is helpful for splicing multiple battery cells to form a large-area photovoltaic system.
  • the battery string 200 may include a plurality of battery slices 201 connected in series, for example, including 2 to 35 battery slices 201.
  • the cell 201 is the smallest module that realizes photoelectric conversion in the cell string, and multiple cells 201 are connected in series to form a cell string to improve the power generation capacity.
  • the type of the cell 201 is not specifically limited here.
  • the battery string 200 can also include two perforated solder ribbons 202, one perforated solder ribbon 202 is connected to The positive pole of the battery string, and the other perforated ribbon 202 is connected to the negative pole of the battery string. From the perspective of the manufacturing process, the gap of the perforated ribbon provides deformation space, which can avoid the thermal expansion and contraction of the battery string during the manufacturing process. The electrode failed.
  • Each battery string has two conductive ends and two side edges, the two side edges are located between the two conductive ends, and the two conductive ends are the positive electrode and the negative electrode of the battery string respectively.
  • the shape of the battery string group can be rectangular, including square and rectangle, and the shape of different battery string groups can be the same or different, and the size of different battery string groups can be the same or different.
  • the two conductive ends of the battery string are respectively provided with bus bars.
  • the bus bars are welded with the perforated solder tape on the conductive ends of the battery string to connect at least two adjacent battery strings in parallel to form a battery string group. At the same time, adjacent batteries
  • the strings are also connected in parallel or in series via bus bars.
  • the battery unit can be provided with a blank area so that the junction box and nameplate are placed on the transparent cover corresponding to the blank area.
  • the blank area is surrounded by multiple battery strings.
  • the battery cell may not have a blank area.
  • the battery unit 100 includes a first battery string group 1 and a second battery string group 2.
  • the first battery string group 1 and the second battery string group 2 are adjacently spliced, one side of the first battery string group 1 and one conductive end of the second battery string group 2 are located on the first straight line 11 , and the first The battery string group 1 and the second battery string group 2 are both located on the same side of the first straight line l 1 (the right side of l 1 as shown in FIG. 2 ). It can be understood that, in the arrangement shown in FIG.
  • the photovoltaic module according to the embodiment of the present application enables the bus bar to extend between the conductive ends of the battery string when the conductive ends of two adjacent battery strings are connected through the bus bar, and the extension part can be simultaneously Used for anti-parallel diodes, thereby reducing the amount of special bus bars for anti-parallel diodes and saving bus bars.
  • the battery unit 100 can be formed by adding a third battery string 3.
  • the first battery string group 1 and the second battery string group 2 are located on the same side of the first straight line 11 , and the third battery string group 3 is adjacent to the first battery string group 1 and the second battery string group 2 at the same time.
  • the third battery string group 3 and the first battery string group 1 still need to meet the positional relationship similar to the first battery string group 1 and the second battery string group 2, that is, a conductive end of the third battery string group 3 and the first battery the string is located at a side of a second straight line l 2, group 3 and the third cell string with a second straight line l 2 and the first side of the battery 1 is located in the string (the upper side in FIG. 3 l 2) .
  • the length of the side of the third battery string 3 is equal to the sum of the length of the conductive end of the first battery string 1 and the length of the side of the second battery string 2. Therefore, the photovoltaic module can be spliced by such battery cells including three battery strings. The advantages can be referred to the first embodiment, which will not be repeated here.
  • the third embodiment of the photovoltaic module of the present application as shown in FIG. 3, on the basis of the aforementioned second embodiment, when the side length of the first battery string group 1 is equal to the conductive end of the second battery string group 2 When the length is long, at this time, one side of the first battery string set 1 and one conductive end of the second battery string set 2 are aligned on the first straight line l 1 , which is easy to understand. At this time, the three battery string sets form There is no blank area in the battery cell 100, so that waste of planar area can be avoided.
  • the battery cell 100 formed by three battery strings has a blank area 101.
  • This battery cell 100 is especially suitable for double-glass double-sided modules. Junction boxes and nameplates can be placed in the blank area to avoid junction boxes and nameplates. Covering the back of the battery unit causes hot spots.
  • the battery unit 100 can be formed by adding a fourth battery string 4.
  • the first battery string group 1 and the second battery string group 2 are located on the same side of the first straight line 11
  • the third battery string group 3 is simultaneously adjacent to the first battery string group 1 and the second battery string group 2
  • the third A conductive end of the battery string group 3 and one side of the first battery string group 1 are located on the second straight line 12
  • the third battery string group 3 and the first battery string group 1 are located on the same side of the second straight line 12 .
  • the fourth battery string group 4 and the third battery string group 3 still need to meet the positional relationship similar to the first battery string group 1 and the second battery string group 2, that is, one side of the third battery string group 3 and the first battery string group 3 a four-cell conductive end the string 4 is positioned on the third line l 3, and the third cell string 3 and the fourth group of the battery pack 4 in the third string line l 3 is the same side (as shown in Fig. 3 left l side).
  • the photovoltaic module can be spliced by the battery cells including four battery strings.
  • the advantages can be referred to the first embodiment, which will not be repeated here.
  • the battery cell 100 formed by the four battery string groups has a blank area 101.
  • This battery cell 100 is especially suitable for double-glass double-sided modules. Junction boxes and nameplates can be placed in the blank area. , To avoid the junction box and nameplate covering the back of the battery unit and causing hot spots.
  • the shapes of the first battery string group 1, the second battery string group 2, the third battery string group 3 and the fourth battery string group 4 are the same.
  • the battery cell 100 has a blank area 101.
  • the ninth implementation of the photovoltaic module of the present application as shown in FIG. 8 can be formed In this way, the battery cell 100 does not have a blank area.
  • the battery string in this embodiment is provided with bus bars at the edge. Therefore, the shape of the battery string does not mean that it is an absolute standard square, but an approximate square. The length difference between the two adjacent sides meets the square shape given in this embodiment when the bus bar is arranged.
  • a battery unit 100 can be formed by adding a third battery string 3.
  • the second battery string group 2 and the third battery string group 3 are both adjacent to the first battery string group 1, and both are located on the same side of the first battery string group 1 (as shown in FIG. Side), the first battery string group 1 and the second battery string group 2 are located on the same side of the first straight line l 1 (the right side of l 1 as shown in Fig. 9), and the third battery string group 3 is simultaneously with the first battery The string 1 and the second battery string 2 are adjacent.
  • one side of the third battery string 3 and the other conductive end of the first battery string 1 are located on the second straight line 12 , and the third battery the string 3 and the first cell string 1 in a second set of the same side of the straight line l 2 (l 9 shown in the left side of FIG. 2).
  • the length of the side of the third battery string 3 is equal to the length of the side of the second battery string 2. Therefore, the photovoltaic module can be spliced by such battery cells including three battery strings.
  • the advantages can be referred to the first embodiment, which will not be repeated here.
  • the eleventh embodiment of the photovoltaic module of the present application as shown in FIG. 9, on the basis of the aforementioned ninth embodiment, when the side length of the first battery string group 1 is equal to that of the second battery string group 2 It is easy to understand when the length of the end and the length of the conductive end of the third battery string set 3 are summed. At this time, the battery cell 100 formed by the three battery string sets does not have a blank area, which can avoid the waste of plane area.
  • the battery cell 100 formed by the three battery string groups has a blank area 101.
  • This battery cell 100 is particularly suitable for double glass double
  • junction boxes and nameplates can be placed in this blank area to prevent junction boxes and nameplates from covering the back of the battery unit and causing hot spots.
  • the battery unit 100 can be formed by adding a fourth battery string 4.
  • the first battery string group 1 and the second battery string group 2 are located on the same side of the first straight line l 1 (the right side of l 1 as shown in FIG.
  • the third battery string group 3 is simultaneously with the first battery string group 1
  • the second battery string group 2 is adjacent, one side of the third battery string group 3 and the other conductive end of the first battery string group 1 are located on the second straight line 12 , and the second battery string group 2 and the third The battery strings 3 are all located on the same side of the first battery string 1 (the upper side of the first battery string 1 as shown in FIG. 11).
  • the fourth battery string group 4 and the first battery string group 1 are symmetrically arranged, that is, the second battery string group 2 and the third battery string group 3 are both adjacent to the fourth battery string group 4 and are located On the same side of the fourth battery string 4 (the lower side of the fourth battery string 4 as shown in FIG.
  • a conductive end of the fourth battery string 4 and one side of the second battery string 2 are located in the first line l 1, and fourth battery pack 4 and the second cell string the string 2 is located in a first line l 1 is the same side (right side in FIG. 1, l. 11), the fourth cell string group 4
  • the other conductive end and one side of the third battery string group 3 are located on the second straight line 12
  • the fourth battery string group 4 and the third battery string group 3 are located on the same side of the second straight line 12 ( Figure 11 Shown to the left of l 2 ). Therefore, the photovoltaic module can be spliced by the battery cells including four battery strings.
  • the advantages can be referred to the first embodiment, which will not be repeated here.
  • the fourteenth embodiment of the photovoltaic module of the present application as shown in FIG. 11, on the basis of the aforementioned thirteenth embodiment, when the side length of the first battery string group 1 is equal to that of the second battery string group 2 When the length of the conductive end is the sum of the length of the conductive end of the third battery string 3, it is easy to understand that at this time, the battery cell 100 formed by the four battery strings does not have a blank area, which can avoid the waste of plane area.
  • the battery cell 100 formed by the four battery string groups has a blank area 101.
  • This battery cell 100 is particularly suitable for double glass
  • junction boxes and nameplates can be placed in this blank area to prevent junction boxes and nameplates from covering the back of the battery unit and causing hot spots.
  • the battery unit 100 includes a first battery string group 1, a second battery string group 2, a third battery string group 3, and a fourth battery string group 4 , The fifth battery string group 5 and the sixth battery string group 6.
  • the first battery string group 1 is adjacent to the second battery string group 2, the conductive end of the first battery string group 1 and the side of the second battery string group 2 are located on the first straight line l 1 , the first battery string group 1 and the second cell string group 2 at the right side of the first straight line l 1.
  • the third battery string group 3 is adjacent to the first battery string group 1, the conductive ends of the third battery string group 3 and the side of the first battery string group 1 are located on the second straight line 12 , and the third battery string group 3 and The first battery string group 1 is located on the upper side of the second straight line 12 .
  • the fourth battery string group 4 and the first battery string group 1 are center-symmetrical about the center of the battery cell 100
  • the fifth battery string group 5 and the second battery string group 2 are center-symmetrical about the center of the battery cell 100
  • the group 6 and the third battery string group 3 are center-symmetric about the center of the battery cell 100.
  • the fifth battery string group 5 and the sixth battery string group 6 are respectively adjacent to the fourth battery string group 4, and the side of the fifth battery string group 5 and the conductive end of the fourth battery string group 4 are located on the third straight line.
  • the string 5 further fifth battery cell string and the third set of three adjacent sides of the string fifth battery side 5 of the third cell string 3 group is located at the third straight line l 3
  • the fifth battery string group 5, the fourth battery string group 4, and the third battery string group 3 are all located on the left side of the third straight line 13 .
  • the conductive end of the sixth battery string group 6 and the side of the fourth battery string group 4 are located on the fourth straight line 14 , and the sixth battery string group 6 and the fourth battery string group 4 are located on the lower side of the fourth straight line 14 , At the same time, the sixth battery string group 6 is also adjacent to the second battery string group 2, the side of the sixth battery string group 6 is adjacent to the side of the second battery string group 2, and the sixth battery string group 6, the second cell string and the first cell string group 2 group 1 are located on the right side of the first straight line L 1.
  • the fourth battery string 4 has the same shape and size as the first battery string 1
  • the fifth battery string 5 has the same shape and size as the second battery string group 2
  • the sixth battery string group 6 has the same shape and size as the third battery string group 3.
  • the side length of the first battery string set 1 is greater than the conductive end length of the second battery string set 2.
  • the side length of the fourth battery string set 4 is greater than that of the fifth battery string set 5.
  • the end length is easy to understand.
  • the battery unit 100 formed by the six battery strings has a blank area.
  • the junction box and nameplate can be placed in the blank area to avoid the junction box and the nameplate from blocking the back of the battery unit and causing hot spots.
  • the unit 100 also has the beneficial effects of the first embodiment.
  • the number and distribution of the battery strings of the battery cell 100 are the same as the sixteenth embodiment described above.
  • one aspect can be By designing the lengths of the conductive ends of the second battery string group 2 and the fifth battery string group 5 to be equal to the side lengths of the first battery string group 1 and the fourth battery string group 4, the battery unit 100 does not have a blank area;
  • the battery cells 100 also adopt a center-symmetrical arrangement.
  • the sum of the conductive ends of the second battery string 2 and the fifth battery string 5 can be designed to be equal to the side of the first battery string 1.
  • the sum of the lengths of the conductive ends of the third battery string group 3 is arranged to form battery cells 100 without blank areas.
  • the photovoltaic module includes two battery cells 100 distributed in a rectangular shape.
  • the two battery cells 100 are symmetrically distributed about a line m between them.
  • 100 may be a battery cell 100 with a blank area.
  • FIG. 15 shows an example in which the battery cell 100 is the battery cell 100 in the above eighth embodiment, so that the photovoltaic module has two blank areas 101.
  • the battery cell 100 may also be a battery cell 100 having a blank area in other embodiments such as FIG. 6, which is not limited in the present invention.
  • the photovoltaic module includes two battery cells 100 distributed in a rectangular shape.
  • the two battery cells 100 are symmetrically distributed about a line m between them.
  • 100 may be a battery cell 100 that does not have a blank area.
  • FIG. 16 shows an example in which the battery cell 100 is the battery cell 100 in the above-mentioned ninth embodiment, so that the photovoltaic module does not have a blank area.
  • the battery cell 100 may also be a battery cell 100 that does not have a blank area in other embodiments such as FIG. 5, which is not limited in the present invention.
  • the photovoltaic module includes two battery cells 100 distributed in a rectangular shape, and one of the battery cells 100 adopts A battery cell 100 with a blank area (such as the battery cell 100 in the eighth embodiment), another battery cell 100 uses a battery cell 100 without a blank area (such as the battery cell 100 in the ninth embodiment), two The size of each battery cell satisfies the condition of being spliced into a rectangle, which is not limited in the present invention. Thus, a blank area can be formed in the photovoltaic module.
  • a diode can be connected in reverse parallel between the conductive ends of each battery string, thereby increasing the number of diodes and improving the resistance of the module to hot spots.
  • multiple battery strings can also be connected in reverse parallel with one diode, for example, at least two adjacent battery strings are connected in reverse parallel with the same diode.
  • the electrical connection between the battery string group and the battery string group can be connected in series, connected in series and then connected in parallel, and connected in parallel and then connected in series as required.
  • the first method can be the fourth battery string 4, the second battery string 2, and the first battery string.
  • the battery string 1 and the third battery string 3 are connected end to end (that is, the conductive end of the previous battery string is electrically connected to the conductive end of the next battery string), and the spare conductive end of the fourth battery string 4 is used as the positive electrode
  • the second way can be the fourth battery string group 4, the second battery string group 2, and the A battery string set 1 and a third battery string set 3 are connected end to end, and the spare conductive end of the fourth battery string set 4 is used as the positive electrode, and the spare conductive end of the third battery string set 3 is used as the negative electrode.
  • a diode is connected in reverse parallel between the group 4 and the second battery string group 2, the fourth battery string group 4 and the second battery string group 2 share the same diode, between the first battery string group 1 and the third battery string group 3
  • One diode is connected in reverse parallel, the first battery string group 1 and the third battery string group 3 share the same diode; the third way can be the second battery string group 2, the first battery string group 1, and the third battery string group 3
  • the fourth battery string 4 is connected end to end, the spare conductive end of the second battery string 2 is used as the positive electrode, and the spare conductive end of the fourth battery string 4 is used as the negative electrode.
  • Each battery string is connected in reverse parallel.
  • a diode; the fourth way can be that the second battery string 2, the first battery string 1, the third battery string 3, and the fourth battery string 4 are connected end to end, and the second battery string 2 is free to conduct electricity
  • the second battery string 2 and the first battery string 1 are connected in reverse parallel with a diode, and the second battery string 2 and the first battery string 2 are connected in parallel with each other.
  • the battery string group 1 shares the same diode, the third battery string group 3 and the fourth battery string group 4 have a diode in reverse parallel connection, and the third battery string group 3 and the fourth battery string group 4 share the same diode.
  • it is also feasible to connect in series according to other order and it can be deduced by referring to the above description, and will not be repeated.
  • the positive electrode and negative electrode defined in the above description are only regarded as one way. It can be understood that in actual implementation, the positive electrode and the negative electrode are opposite, the electrode positions can be interchanged, and the connection direction of the diode can be adjusted adaptively.
  • the first method can be that the fourth battery string 4 and the second battery string 2 are connected in series, and the first battery string 1 and the third battery string 3 are connected in series. Then, The two strings are connected in parallel. One conductive end of the fourth battery string 4 and the third battery string 3 in parallel is used as the positive electrode, and one conductive end of the first battery string 1 and the second battery string 2 in parallel is used as the negative electrode.
  • each battery string is connected in reverse parallel with a diode;
  • the second way can be that the fourth battery string 4 and the third battery string 3 are connected in series, and the first battery string 1 and the second battery string 2 are connected in series.
  • the two strings are connected in parallel, and a conductive end of the second battery string 2 and the fourth battery string 4 in parallel is used as the positive electrode, and a conductive end of the third battery string 3 and the first battery string 1 in parallel is used as the positive electrode.
  • the negative pole wherein each battery string is connected in reverse parallel with a diode. It can be understood that, compared with the first method, the connection direction of the diode can be adjusted adaptively.
  • the first method can be that the fourth battery string 4 and the second battery string 2 are connected in parallel, and the fourth battery string 4 and the second battery string 2 share a diode.
  • the first battery string group 1 and the third battery string group 3 are connected in parallel.
  • the first battery string group 1 and the third battery string group 3 share a diode. Then, the two groups are connected in series.
  • the spare ends are the anode and Negative; the second way can be the fourth battery string 4 and the third battery string 3 in parallel, the fourth battery string 4 and the third battery string 3 share a diode, the first battery string 1 and the second battery
  • the string group 2 is connected in parallel, the first battery string group 1 and the second battery string group 2 share a diode, and then the two groups are connected in series.
  • the spare two ends are respectively the anode and the cathode.
  • the scheme of connecting in parallel and then in series can add a diode, which helps to improve the anti-hot spot performance of photovoltaic modules.
  • the first battery string group 1 and the second battery string group 2 can be connected through the first bus bar 7, and the first battery string group 1 It is connected to the third battery string group 3 through the second bus bar 8, the third battery string group 3 and the fourth battery string group 1 are connected through the third bus bar 9, and the fourth battery string group 4 and the second battery string group 2 pass through The fourth bus bar 10 is connected.
  • the first diode 11 is connected between the first bus bar 7 and the second bus bar 8
  • the second diode 12 is connected between the second bus bar 8 and the third bus bar 9
  • the third diode 13 It is connected between the first bus bar 7 and the fourth bus bar 10
  • the fourth diode 14 is connected between the third bus bar 9 and the fourth bus bar 10.
  • the photovoltaic module may further include a junction box 300, and each diode may be located in the junction box 300.
  • the junction box 300 may be located in the blank area.
  • the diode can also be directly connected to the bus bar and packaged in the battery cell 100.
  • FIG. 19 shows the back of the eleventh embodiment of the photovoltaic module (see FIG. 9 ), and a junction box 300 is provided on the back of the battery unit 100.
  • Figure 20 shows the back of the eighth embodiment of the photovoltaic module (see Figure 7).
  • the blank area 101 can be provided with a junction box 300 and a nameplate 400.
  • the number of junction boxes 300 is one, and each diode All are located in the junction box 300.
  • Figure 21 shows the back of the seventh embodiment (see Figure 6), the fifteenth embodiment (see Figure 12) and the sixteenth embodiment (see Figure 13) of the photovoltaic module
  • the junction box 300 and the nameplate 400 can be provided in the blank area 101.
  • the number of junction boxes 300 is two, each diode is located in the two junction boxes 300, and the two junction boxes 300 are located on both sides of the nameplate 400 separately.
  • Figure 22 shows the back of the eighteenth embodiment of the photovoltaic module (see Figure 15).
  • the photovoltaic module includes two blank areas 101, and each blank A junction box 300 and a nameplate 400 can be set in the area 101.
  • the photovoltaic module of the present application may further include a transparent cover plate, and the material of the transparent cover plate may be glass or other transparent materials.
  • the transparent cover plate can cover one side of the battery unit, and the position of the inner or outer side of the transparent cover plate corresponding to the bus bar can be provided with a pattern mark, wherein the bus bar electrically connects the conductive ends of adjacent battery strings.
  • the position corresponding to the blank area 101 on the inside or outside of the transparent cover can be provided with a pattern mark.
  • the location of the blank area 101 can refer to the area where different bus bars are extended. , Can also refer to the completely blank area in the area where different bus bars are extended.
  • the inside of the transparent cover is the side of the transparent cover close to the battery unit, and the outside of the transparent cover is the side of the transparent cover away from the battery unit.
  • the specific structure of the pattern mark is not particularly limited here.
  • the pattern mark may be an advertising logo fixed in a blank area by adhesion or other means.
  • the transparent cover is provided with a light emitting device at a position corresponding to the blank area 101 or the bus bar, and the light emitting device is located inside or outside of the transparent cover.
  • the light-emitting device may be an LED lamp or other light-emitting device, as long as it can emit light.
  • the color of the light emitting device is not specifically limited.
  • the transparent cover plate covers the front of the battery cell, and the transparent cover plate is provided with a covering layer.
  • the orthographic projection of the pattern of the covering layer on the battery cell matches the bus bar or blank area 101, so that it can be covered by the covering layer.
  • the material of the covering layer can be an enamel layer, and its color can be white, black or blue, of course, it can also be other colors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请提供一种光伏组件,涉及太阳能技术领域。该光伏组件包括至少一个电池单元,电池单元呈矩形;电池单元包括多个电连接的电池串组,每个电池串组包括多个并联的电池串,电池串包括多个串联的电池片;电池串组具有两个导电端和位于两个导电端之间的两个侧边;至少两个相邻的电池串组按照预设方式排布,预设方式为:一个电池串组的一导电端与一相邻的电池串组的一侧边均位于一直线上,且该两个相邻的电池串组位于该直线的同一侧。本申请的光伏组件,可以减少为反向并联二极管专门设置汇流条的用量,节约汇流条。

Description

光伏组件
本申请要求在2019年3月20日提交中国专利局、申请号为201910213436.1、201910213440.8、201910213452.0、发明名称为“光伏组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及太阳能技术领域,具体而言,涉及一种光伏组件。
背景技术
光伏组件是利用光伏效应,将光能转化为电能的器件。其中,通常需要将多个电池片串联,以形成电池串,多个电池串可串联或并联成一电池串组。在工作过程中,如果电池片发生遮挡(树荫、灰尘、鸟粪等),该被遮挡的电池片就会变成负载,消耗其他电池片所产生的功率并产生热量,使组件局部温度升高,产生热斑效应,使太阳能电池的输出功率降低甚至烧毁。为了降低热斑的影响,通常需要在光伏组件中引入二极管,二极管需要通过专门的汇流条与电池串或电池串组的两端连接与电池串或电池串组反向并联,在并联有二极管的电池片被遮挡时,二极管导通使得被遮挡电池片所在的电池串或电池串组被二极管旁路,避免出现热斑效应。但是,由于成本及受制于电池串或电池串组排布方式的原因,会出现多个电池串或电池串组共用一个二极管的情况。因此,当电池片被遮挡发生热斑效应二极管导通时,共用该二极管的电池串或电池串组均被旁路,组件功率损失过大。理想情况下是每个电池片均反向并联一个二极管,当电池片被遮挡发生热斑时,仅该发生遮挡的电池片被二极管旁路,不影响其他正常工作的电池片。但是,若要引入更多的二极管,现有的电池串或电池串组的排布方式会导致汇流条用量大大增加,且排布汇流条十分困难。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本申请的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本申请的目的在于提供一种光伏组件,可在增加旁路二极管的同时不过多增加汇流条使用量,且便于走线,提高光伏组件的抗热斑能力。
根据本申请的一个方面,提供一种光伏组件,包括至少一个电池单元,所述电池单元呈矩形;所述电池单元包括多个电连接的电池串组,每个所述电池串组包括多个并联的电池串,所述电池串包括多个串联的电池片;所述电池串组具有两个导电端和位于两个所述导电端之间的两个侧边;至少两个相邻的所述电池串组按照预设方式排布,所述预设方式为:
一个所述电池串组的一导电端与一相邻的电池串组的一侧边均位于一 直线上,且该两个相邻的电池串组位于该直线的同一侧。
可选地,所述电池单元包括第一电池串组、第二电池串组以及第三电池串组;所述第二电池串组及所述第三电池串组均与所述第一电池串组相邻;
所述第一电池串组的一导电端与所述第二电池串组的一侧边位于第一直线上,且第一电池串组与所述第二电池串组位于所述第一直线的同一侧;
所述第三电池串组的一导电端与所述第一电池串组的一侧边位于第二直线上,且第三电池串组与所述第一电池串组位于所述第二直线的同一侧。
可选地,所述电池单元还包括第四电池串组,所述第二电池串组及所述第三电池串组均与所述四电池串组位置相邻,且所述第三电池串组与所述第四电池串组电连接;
所述第三电池串组的一侧边和所述第四电池串组的一导电端位于第三直线上,且所述第三电池串组与所述第四电池串组位于所述第三直线的同一侧;
所述第二电池串组的一导电端与所述第四电池串组的一侧边位于第四直线上,且所述第二电池串组与所述第四电池串组位于所述第四直线的同一侧。
可选地,所述第一电池串组的侧边长度等于所述第二电池串组的导电端长度。
可选地,所述第一电池串组的侧边长度大于所述第二电池串组的导电端长度。
可选地,所述第一电池串组、第二电池串组、第三电池串组和第四电池串组的形状相同。
可选地,所述电池单元包括第一电池串组、第二电池串组以及第三电池串组;所述第二电池串组及所述第三电池串组均与所述第一电池串组相邻,且均位于所述第一电池串组的同一侧;
所述第一电池串组的一导电端与所述第二电池串组的一侧边位于第一直线上,且所述第一电池串组与所述第二电池串组位于所述第一直线的通同一侧;
所述第一电池串组的另一导电端与所述第三电池串组的一侧边位于第二直线上,且所述第一电池串组与所述第三电池串组位于所述第二直线的同一侧。
可选地,所述电池单元还包括第四电池串组,所述第二电池串组及所述第三电池串组均与所述四电池串组位置相邻,且所述第三电池串组与所述第四电池串组电连接;
所述第四电池串组的一导电端与所述第二电池串组的一侧边位于所述 第一直线上,且所述第四电池串组与所述第二电池串组位于所述第一直线的同一侧;
所述第四电池串组的另一导电端与所述第三电池串组的一侧边位于第二直线上,且所述第四电池串组与所述第三电池串组位于所述第二直线的同一侧。
可选地,所述第一电池串组的侧边长度等于所述第二电池串组的导电端长度与所述第三电池串组的导电端长度之和。
可选地,所述第一电池串组的侧边长度大于所述第二电池串组的导电端长度与所述第三电池串组的导电端长度之和。
可选地,每个所述电池串组的导电端之间反向并联一二极管;或者
至少相邻的两个所述电池串组与同一个二极管反向并联。
可选地,所述光伏组件还包括覆盖于所述电池单元正面的透明盖板,所述透明盖板的内侧或外侧对应于汇流条的位置设有图案标记,其中,所述汇流条将相邻的所述电池串组的导电端之间电连接。
可选地,所述光伏组件还包括覆盖于所述电池单元正面的透明盖板,所述透明盖板对应于汇流条的位置设有发光器件,所述发光器件位于所述透明盖板的内侧或外侧,其中,所述汇流条将相邻的所述电池串组的导电端之间电连接。
可选地,所述光伏组件还包括覆盖于所述电池单元正面的透明盖板,所述透明盖板设有遮盖层,所述遮盖层的图案在所述电池单元上的正投影与汇流条匹配,其中,所述汇流条将相邻的所述电池串组的导电端之间电连接。
可选地,同一所述电池串组的相邻两所述电池片交叠设置,并通过导电胶或导线串联。
可选地,所述光伏组件还包括接线盒,所述二极管位于所述接线盒内;或者
所述二极管封装于所述电池单元内。
本申请的光伏组件,在矩形的电池单元的电池串组中,一个电池串组的一导电端与一相邻的电池串组的一侧边均位于一直线上,且该两个相邻的电池串组位于该直线的同一侧,使得在将该两个电池串组的导电端通过汇流条连接时,该汇流条可延伸至电池串组的导电端之间,该延伸部分可同时用于反向并联二极管,从而减少为反向并联二极管专门设置汇流条的用量,节约汇流条。此外,在每个电池串组的导电端之间可以反向并联一二极管,可以增加二极管的数量,提高光伏组件的抗热斑能力。双玻组件上所设计的空白区域可以用于放置接线盒和铭牌,从而,避免对电池片造成遮挡,消除热斑效应。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请光伏组件的电池串的示意图。
图2为本申请光伏组件的第一种实施方式的示意图。
图3为本申请光伏组件的第二种、第三种实施方式的示意图。
图4为本申请光伏组件的第四种实施方式的示意图。
图5为本申请光伏组件的第五种、第六种实施方式的示意图。
图6为本申请光伏组件的第七种实施方式的示意图。
图7为本申请光伏组件的第八种实施方式的示意图。
图8为本申请光伏组件的第九种实施方式的示意图。
图9为本申请光伏组件的第十种、第十一种实施方式的示意图。
图10为本申请光伏组件的第十二种实施方式的示意图。
图11为本申请光伏组件的第十三种、第十四种实施方式的示意图。
图12为本申请光伏组件的第十五种实施方式的示意图。
图13为本申请光伏组件的第十六种实施方式的示意图。
图14为本申请光伏组件的第十七种实施方式的示意图。
图15为本申请光伏组件的第十八种实施方式的示意图。
图16为本申请光伏组件的第十九种实施方式的示意图。
图17为本申请光伏组件的第六种实施方式中二极管一局部示意图。
图18为本申请光伏组件的第六种实施方式中二极管另一局部示意图。
图19为本申请光伏组件的第十一种实施方式的背面示意图。
图20为本申请光伏组件的第八种实施方式的背面示意图。
图21为本申请光伏组件的第七种实施方式、第十五种实施方式及第十六种实施方式的背面示意图。
图22为本申请光伏组件的第十八种实施方式的背面示意图。
图中:100、电池单元;101、空白区域;200、电池串;201、电池片;202、打孔焊带;300、接线盒;400、铭牌;1、第一电池串组;2、第二电池串组;3、第三电池串组;4、第四电池串组;5、第五电池串组;6、第六电池串组;7、第一汇流条;8、第二汇流条;9、第三汇流条;10、第四汇流条;11、第一二极管;12、第二二极管;13、第三二极管;14、第四二极管。
具体实施例
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。
本申请实施方式中提供了一种光伏组件,该光伏组件包括至少一个电池单元,电池单元呈矩形,电池单元包括多个电连接的电池串组,每个电池串组包括多个并联的电池串,电池串包括多个串联的电池片;电池串组具有两个导电端和位于两个导电端之间的两个侧边;至少两个相邻的电池串组按照预设方式排布,该预设方式为:一个电池串组的一导电端与一相邻的电池串组的一侧边均位于一直线上,且该两个相邻的电池串组位于该直线的同一侧。
本申请实施方式的光伏组件,在矩形的电池单元的电池串组中,一个电池串组的一导电端与一相邻的电池串组的一侧边均位于一直线上,且该两个相邻的电池串组位于该直线的同一侧,使得在将该两个电池串组的导电端通过汇流条连接时,该汇流条可延伸至电池串组的导电端之间,该延伸部分可同时用于反向并联二极管,从而减少为反向并联二极管专门设置汇流条的用量,节约汇流条。
在本申请的技术方案中,矩形形状较为规则,易于拼接排布。因此,电池单元呈矩形,有助于多个电池单元拼接形成大面积的光伏系统。如图1所示,电池串200可包括多个依次串联的电池片201,例如包括2-35个电池片201。电池片201为电池串中实现光电转换的最小模块,多个电池片201串联形成电池串可以提升发电能力。电池片201的类型在此不做特殊限定。同一电池串200中,相邻两电池片201可交叠设置并可通过导电胶或金属导线串联;此外,电池串200还可包括两个打孔焊带202,一打 孔焊带202连接于电池串的正极,另一打孔焊带202连接于电池串的负极,从制造工艺的角度出发,打孔焊带的空隙提供了变形空间,可以避免制造过程中因电池串热胀冷缩引起的电极失效。每个电池串组具有两个导电端和两个侧边,两个侧边位于两个导电端之间,两个导电端分别为该电池串组的正极和负极。电池串组的形状可为矩形,包括正方形和长方形,且不同电池串组的形状可相同,也可不同,且不同电池串组的尺寸可以相同,也可以不同。相邻两电池串组间具有间隙,以供连接电池串组的汇流条穿过。在电池串的两个导电端分别设置有汇流条,汇流条通过与电池串导电端上的打孔焊带焊接将相邻的至少两个电池串并联组成电池串组,同时,相邻的电池串组之间也通过汇流条并联或者串联。当光伏组件为双玻双面组件时,为了避免接线盒及铭牌遮挡电池单元背面造成热斑,可使电池单元具有空白区域,以便接线盒、铭牌放置在与该空白区域位置相对应的透明盖板上,该空白区域由多个电池串组围成。当然,电池单元也可不具有空白区域。
作为本申请光伏组件的第一种实施方式,如图2所示,以两个电池串组形成的电池单元为例。电池单元100中包括第一电池串组1和第二电池串组2。第一电池串组1和第二电池串组2相邻拼接,第一电池串组1的一个侧边和第二电池串组2的一个导电端位于第一直线l 1上,并且第一电池串组1和第二电池串组2均位于该第一直线l 1的同一侧(如图2所示l 1的右侧)。可以理解的是,在图2所示的排布方式中,第一电池串组1的侧边与第二电池串组2的导电端长度相同,从而,使得电池单元100具备矩形形状的条件。从而,本申请实施方式的光伏组件,使得在将两个相邻的电池串组的导电端通过汇流条连接时,该汇流条可延伸至电池串组的导电端之间,该延伸部分可同时用于反向并联二极管,从而减少为反向并联二极管专门设置汇流条的用量,节约汇流条。
作为本申请光伏组件的第二种实施方式,如图3所示,在前述第一种实施方式的基础上,可通过增加一个第三电池串组3形成电池单元100。第一电池串组1与第二电池串组2位于第一直线l 1的同一侧,第三电池串组3同时与第一电池串组1以及第二电池串组2相邻,此时,第三电池串组3与第一电池串组1仍需满足类似第一电池串组1与第二电池串组2的位置关系,即第三电池串组3的一导电端与第一电池串组1的一侧边位于第二直线l 2上,且第三电池串组3与第一电池串组1位于第二直线l 2的同一侧(如图3所示l 2的上侧)。
可以理解的是,为了保证电池单元仍呈矩形形状,第三电池串组3的 侧边长度等于第一电池串组1的导电端长度与第二电池串组2的侧边长度之和。从而,可以利用这种包括三个电池串组的电池单元拼接光伏组件,其优点可参照第一种实施方式,此处不再赘述。
作为本申请光伏组件的第三种实施方式,如图3所示,在前述第二种实施方式的基础上,当第一电池串组1的侧边长度等于第二电池串组2的导电端长度时,此时,第一电池串组1的一个侧边和第二电池串组2的一个导电端在第一直线l 1上对齐,容易理解,此时,三个电池串组形成的电池单元100中不具有空白区域,能够避免平面面积的浪费。
作为本申请光伏组件的第四种实施方式,如图4所示,在前述第二种实施方式的基础上,当第一电池串组1的侧边长度大于第二电池串组2的导电端长度时,此时,沿第一直线l 1,第一电池串组1的一个侧边超出于第二电池串组2的一个导电端,容易理解,此时,再加上第三电池串组3,三个电池串组形成的电池单元100中具有空白区域101,这种电池单元100特别适用于双玻双面组件,可在该空白区域放置接线盒、铭牌,以避免接线盒及铭牌遮挡电池单元背面造成热斑。
作为本申请光伏组件的第五种实施方式,如图5所示,在前述第二种实施方式的基础上,可通过增加一个第四电池串组4形成电池单元100。第一电池串组1与第二电池串组2位于第一直线l 1的同一侧,第三电池串组3同时与第一电池串组1以及第二电池串组2相邻,第三电池串组3的一导电端与第一电池串组1的一侧边位于第二直线l 2上,且第三电池串组3与第一电池串组1位于第二直线l 2的同一侧。此时,第四电池串组4与第三电池串组3仍需满足类似第一电池串组1与第二电池串组2的位置关系,即第三电池串组3的一侧边和第四电池串组4的一导电端位于第三直线l 3上,且第三电池串组3与第四电池串组4位于第三直线l 3的同一侧(如图5所示l 3的左侧)。与此同时,为保证电池单元100呈矩形形状,第二电池串组2的一导电端与第四电池串组4的一侧边位于第四直线l 4上,且第二电池串组2与第四电池串组4位于第四直线l 4的同一侧(如图5所示l 4的下侧)。从而,可以利用这种包括四个电池串组的电池单元拼接光伏组件,其优点可参照第一种实施方式,此处不再赘述。
作为本申请光伏组件的第六种实施方式,如图5所示,在前述第五种实施方式的基础上,当第一电池串组1的侧边长度等于第二电池串组2的导电端长度时,此时,第一电池串组1的一个侧边和第二电池串组2的一 个导电端在第一直线l 1上对齐,容易理解,此时,四个电池串组形成的电池单元100中不具有空白区域,能够避免平面面积的浪费。
作为本申请光伏组件的第七种实施方式,如图6所示,在前述第五种实施方式的基础上,当第一电池串组1的侧边长度大于第二电池串组2的导电端长度时,此时,沿第一直线l 1,第一电池串组1的一个侧边超出于第二电池串组2的一个导电端,容易理解,此时,再加上第三电池串组3和第四电池串组4,四个电池串组形成的电池单元100中具有空白区域101,这种电池单元100特别适用于双玻双面组件,可在该空白区域放置接线盒、铭牌,以避免接线盒及铭牌遮挡电池单元背面造成热斑。
在前述第五种实施方式的基础上,第一电池串组1、第二电池串组2、第三电池串组3和第四电池串组4的形状相同。
容易理解是,当第一电池串组1、第二电池串组2、第三电池串组3和第四电池串组4均为长方形时,可以组成如图7所示的本申请光伏组件的第八种实施方式,其中,电池单元100具有空白区域101。
当第一电池串组1、第二电池串组2、第三电池串组3和第四电池串组4均为正方形时,可以组成如图8所示的本申请光伏组件的第九种实施方式,其中,电池单元100不具有空白区域。需要说明的是,本实施例中的电池串组由于边缘位置布设有汇流条,因此,电池串组的形状为正方形并不意味着其为绝对标准的正方形,而是近似正方形,电池串组的相邻两边的长度之差满足汇流条的布设即符合本实施例所给出的正方形形状。
作为本申请光伏组件的第十种实施方式,如图9所示,在前述第一种实施方式的基础上,可通过增加一个第三电池串组3形成电池单元100。第二电池串组2及第三电池串组3均与第一电池串组1相邻,且均位于第一电池串组1的同一侧(如图9所示第一电池串组1的上侧),第一电池串组1与第二电池串组2位于第一直线l 1的同一侧(如图9所示l 1的右侧),第三电池串组3同时与第一电池串组1以及第二电池串组2相邻,此时,第三电池串组3的一侧边与第一电池串组1的另一导电端位于第二直线l 2上,且第三电池串组3与第一电池串组1位于第二直线l 2的同一侧(如图9所示l 2的左侧)。
可以理解的是,为了保证电池单元仍呈矩形形状,第三电池串组3的侧边长度等于第二电池串组2的侧边长度。从而,可以利用这种包括三个电池串组的电池单元拼接光伏组件,其优点可参照第一种实施方式,此处不再赘述。
作为本申请光伏组件的第十一种实施方式,如图9所示,在前述第九种实施方式的基础上,当第一电池串组1的侧边长度等于第二电池串组2的导电端长度与第三电池串组3的导电端长度之和时,容易理解,此时,三个电池串组形成的电池单元100中不具有空白区域,能够避免平面面积的浪费。
作为本申请光伏组件的第十二种实施方式,如图10所示,在前述第十种实施方式的基础上,当第一电池串组1的侧边长度大于第二电池串组2的导电端长度与第三电池串组3的导电端长度之和时,容易理解,此时,三个电池串组形成的电池单元100中具有空白区域101,这种电池单元100特别适用于双玻双面组件,可在该空白区域放置接线盒、铭牌,以避免接线盒及铭牌遮挡电池单元背面造成热斑。
作为本申请光伏组件的第十三种实施方式,如图11所示,在前述第十种实施方式的基础上,可通过增加一个第四电池串组4形成电池单元100。第一电池串组1与第二电池串组2位于第一直线l 1的同一侧(如图11所示l 1的右侧),第三电池串组3同时与第一电池串组1以及第二电池串组2相邻,第三电池串组3的一侧边与第一电池串组1的另一导电端位于第二直线l 2上,且第二电池串组2与第三电池串组3均位于第一电池串组1的同一侧(如图11所示第一电池串组1的上侧)。此时,第四电池串组4与第一电池串组1呈对称布置的形式,即第二电池串组2及第三电池串组3均与第四电池串组4相邻,且均位于第四电池串组4的同一侧(如图11所示第四电池串组4的下侧),第四电池串组4的一导电端与第二电池串2组的一侧边位于第一直线l 1上,且第四电池串组4与第二电池串组2位于第一直线l 1的同一侧(如图11所示l 1的右侧),第四电池串组4的另一导电端与第三电池串组3的一侧边位于第二直线l 2上,且第四电池串组4与第三电池串组3位于第二直线l 2的同一侧(如图11所示l 2的左侧)。从而,可以利用这种包括四个电池串组的电池单元拼接光伏组件,其优点可参照第一种实施方式,此处不再赘述。
作为本申请光伏组件的第十四种实施方式,如图11所示,在前述第十三种实施方式的基础上,当第一电池串组1的侧边长度等于第二电池串组2的导电端长度与第三电池串组3的导电端长度之和时,容易理解,此时,四个电池串组形成的电池单元100中不具有空白区域,能够避免平面面积的浪费。
作为本申请光伏组件的第十五种实施方式,如图12所示,在前述第十三种实施方式的基础上,当第一电池串组1的侧边长度大于第二电池串组2的导电端长度与第三电池串组3的导电端长度之和时,容易理解,此时,四个电池串组形成的电池单元100中具有空白区域101,这种电池单元100特别适用于双玻双面组件,可在该空白区域放置接线盒、铭牌,以避免接线盒及铭牌遮挡电池单元背面造成热斑。
作为本申请光伏组件的第十六种实施方式,如图13所示,电池单元100包括第一电池串组1、第二电池串组2、第三电池串组3、第四电池串组4、第五电池串组5和第六电池串组6。第一电池串组1与第二电池串组2相邻,第一电池串组1的导电端和第二电池串组2的侧边位于第一直线l 1上,第一电池串组1和第二电池串组2位于第一直线l 1的右侧。第三电池串组3与第一电池串组1相邻,第三电池串组3的导电端与第一电池串组1的侧边位于第二直线l 2上,第三电池串组3与第一电池串组1位于第二直线l 2的上侧。第四电池串组4与第一电池串组1关于电池单元100的中心呈中心对称,第五电池串组5与第二电池串组2关于电池单元100的中心呈中心对称,第六电池串组6与第三电池串组3关于电池单元100的中心呈中心对称。即就是,第五电池串组5和第六电池串组6分别与第四电池串组4相邻,第五电池串组5的侧边与第四电池串组4的导电端位于第三直线l 3上,与此同时,第五电池串组5还与第三电池串组3相邻,第五电池串组5的侧边与第三电池串组3的侧边位于第三直线l 3上,第五电池串组5、第四电池串组4以及第三电池串组3均位于第三直线l 3的左侧。第六电池串组6的导电端与第四电池串组4的侧边位于第四直线l 4上,第六电池串组6与第四电池串组4位于第四直线l 4的下侧,与此同时,第六电池串组6还与第二电池串组2相邻,第六电池串组6的侧边与第二电池串组2的侧边相邻,第六电池串组6、第二电池串组2以及第一电池串组1均位于第一直线l 1的右侧。
可以理解的是,为了保证电池单元仍呈矩形形状,同时为满足电池单元100中心对称这一排布方式,第四电池串组4与第一电池串组1形状尺寸相同,第五电池串组5与第二电池串组2形状尺寸相同,第六电池串组6与第三电池串组3形状尺寸相同。在该实施方式中,第一电池串组1的侧边长度大于第二电池串组2的导电端长度,对应的,第四电池串组4的侧边长度大于第五电池串组5的导电端长度,容易理解,此时,六个电池串组形成的电池单元100中具有空白区域,可在该空白区域放置接线盒、铭牌,以避免接线盒及铭牌遮挡电池单元背面造成热斑,电池单元100同 时还具备第一种实施方式的有益效果。
作为本申请光伏组件的第十七种实施方式,如图14所示,电池单元100的电池串组的数量及分布方式与上述第十六种实施方式相同,在该电池单元中,一方面可以通过设计第二电池串组2和第五电池串组5的导电端的长度均等于第一电池串组1和第四电池串组4的侧边长度,使得该电池单元100不具有空白区域;由于该电池单元100同样采取中心对称的排布方式,另一方面还可以通过设计第二电池串组2与第五电池串组5的导电端的长度之和,等于第一电池串组1的侧边与第三电池串组3的导电端的长度之和,来排布形成不具有空白区域电池单元100。
作为本申请光伏组件的第十八种实施方式,如图15所示,光伏组件包括两个呈矩形分布的电池单元100,两个电池单元100关于二者之间一直线m对称分布,电池单元100可以为具有空白区域的电池单元100,比如,图15给出了电池单元100为上述第八种实施方式中的电池单元100的示例,使得该光伏组件具有两个空白区域101。实际实施中,电池单元100还可以为图6等其他实施方式中具有空白区域的电池单元100,本发明对此不做限制。
作为本申请光伏组件的第十九种实施方式,如图16所示,光伏组件包括两个呈矩形分布的电池单元100,两个电池单元100关于二者之间一直线m对称分布,电池单元100可以为不具有空白区域的电池单元100,比如,图16给出了电池单元100为上述第九种实施方式中的电池单元100的示例,使得该光伏组件不具有空白区域。实际实施中,电池单元100还可以为图5等其他实施方式中不具有空白区域的电池单元100,本发明对此不做限制。
此外,需要说明的是,综合考虑上述第十八种实施方式和第十九种实施方式,还可以采取组合的方式,光伏组件包括两个呈矩形分布的电池单元100,其中一个电池单元100采用具有空白区域的电池单元100(比如第八种实施方式中的电池单元100),另一个电池单元100采用不具有空白区域的电池单元100(比如第九种实施方式中的电池单元100),两个电池单元尺寸满足拼接成矩形的条件即可,本发明对此不做限制。从而在光伏组件中可以形成一个空白区域。
基于上述任一实施方式的光伏组件,每个电池串组的导电端之间可反 向并联一二极管,从而增加二极管的数量,提高组件抗热斑能力。当然,也可多个电池串组共同反向并联一个二极管,例如,至少相邻的两个电池串组与同一个二极管反向并联。
需要说明的是,在上述任一实施例的电池单元中,电池串组与电池串组之间的电连接方式可以根据需要相互串联、串联后再并联、并联后再串联的方式进行电连接。
以图5所示的四个电池串组组成的电池单元为例,当四个电池串组依次串联时:第一种方式可以为第四电池串组4、第二电池串组2、第一电池串组1、第三电池串组3首尾相接(即前一电池串组的导电端与后一电池串组的导电端电连接),以第四电池串组4空余的导电端作为正极,以第三电池串组3空余的导电端作为负极,其中,每个电池串组均反向并联一个二极管;第二种方式可以为第四电池串组4、第二电池串组2、第一电池串组1、第三电池串组3首尾相接,以第四电池串组4空余的导电端作为正极,以第三电池串组3空余的导电端作为负极,其中,第四电池串组4和第二电池串组2之间反向并联一个二极管,第四电池串组4和第二电池串组2共用同一个二极管,第一电池串组1和第三电池串组3之间反向并联一个二极管,第一电池串组1和第三电池串组3共用同一个二极管;第三种方式可以为第二电池串组2、第一电池串组1、第三电池串组3、第四电池串组4首尾相接,以第二电池串组2空余的导电端作为正极,以第四电池串组4空余的导电端作为负极,其中,每个电池串组均反向并联一个二极管;第四种方式可以为第二电池串组2、第一电池串组1、第三电池串组3、第四电池串组4首尾相接,以第二电池串组2空余的导电端作为正极,以第四电池串组4空余的导电端作为负极,其中,第二电池串组2和第一电池串组1之间反向并联一个二极管,第二电池串组2和第一电池串组1共用同一个二极管,第三电池串组3和第四电池串组4之间反向并联一个二极管,第三电池串组3和第四电池串组4共用同一个二极管。当然,按照其它先后次序串联同样可行,参照上述描述类推即可,不再赘述。需要指出的是,上述描述中定义的正极与负极仅视为一种方式,可以理解,实际实施中,正极与负极是相对的,可互换电极位置,并适应性调整二极管的连接方向。当四个电池串组先串联再并联时:第一种方式可以为第四电池串组4和第二电池串组2串联,第一电池串组1和第三电池串组3串联,然后,两串之间并联,以第四电池串组4与第三电池串组3并联的一个导电端作为正极,以第一电池串组1与第二电池串组2并联的一个导电端作为负极,其中,每个电池串组均反向并联一个二极管;第二种方式可以为第四电池串组4和第三电池串组3串联,第一电池串组1和第二电池串组2串联,然后,两串之间并联,以第二电池串组2与第四电池串组4并联 的一个导电端作为正极,以第三电池串组3与第一电池串组1并联的一个导电端作为负极,其中,每个电池串组均反向并联一个二极管,可以理解的是,与第一种方式相比,二极管的连接方向适应性调整即可。当然,按照其它先后次序先串联再并联同样可行,参照上述描述类推即可,不再赘述。需要指出的是,上述描述中定义的正极与负极仅视为一种方式,可以理解,实际实施中,正极与负极是相对的,可互换电极位置,并适应性调整二极管的连接方向。先串联再并联的方案相较于传统方案,可以增加三个二极管,有助于提升光伏组件的抗热斑性能。
当四个电池串组先并联再串联时:第一种方式可以为第四电池串组4和第二电池串组2并联,第四电池串组4和第二电池串组2共用一个二极管,第一电池串组1和第三电池串组3并联,第一电池串组1和第三电池串组3共用一个二极管,然后,两组之间串联,串联后空余的两端分别为正极和负极;第二种方式可以为第四电池串组4和第三电池串组3并联,第四电池串组4和第三电池串组3共用一个二极管,第一电池串组1和第二电池串组2并联,第一电池串组1和第二电池串组2共用一个二极管,然后,两组之间串联,串联后空余的两端分别为正极和负极。当然,按照其它先后次序先并联再串联同样可行,参照上述描述类推即可,不再赘述。先并联再串联的方案相较于传统方案,可以增加一个二极管,有助于提升光伏组件的抗热斑性能。
对于其它电池单元中电池串组之间的电连接方式,可参照上述方式连接并适应性修改调整,此处不再赘述。
举例而言,对于上述的第六种实施方式,如图17和图18所示,第一电池串组1和第二电池串组2可通过第一汇流条7连接,第一电池串组1和第三电池串组3通过第二汇流条8连接,第三电池串组3和第四电池串组1通过第三汇流条9连接,第四电池串组4和第二电池串组2通过第四汇流条10连接。第一二极管11连接于第一汇流条7和第二汇流条8之间,第二二极管12连接于第二汇流条8和第三汇流条9之间,第三二极管13连接于第一汇流条7和第四汇流条10之间,第四二极管14连接于第三汇流条9和第四汇流条10之间。
光伏组件还可包括接线盒300,各个二极管可位于接线盒300内,对于具有空白区域的电池单元100而言,接线盒300可位于空白区域。当然,也可直接将二极管与汇流条连接并封装于电池单元100内。
如图19所示,图19示出了光伏组件第十一种实施方式(见图9)的背面,电池单元100的背面设有接线盒300。
如图20所示,图20示出了光伏组件第八种实施方式(见图7)的背面,空白区域101中可设置有接线盒300和铭牌400,接线盒300的数量 为一个,各个二极管均位于该接线盒300内。
如图21所示,图21示出了光伏组件的第七种实施方式(见图6)、第十五种实施方式(见图12)及第十六种实施方式(见图13)的背面,在上述第十四、第七和第十五种实施方式中,空白区域101中可设置接线盒300和铭牌400。接线盒300的数量为两个,各个二极管分别位于两个接线盒300内,且两个接线盒300分居铭牌400的两侧。
如图22所示,图22示出了光伏组件第十八种实施方式(见图15)的背面,在上述第十八种实施方式中,光伏组件包括两个空白区域101,且每个空白区域101中可设置接线盒300和铭牌400。
对于前述所提到的各个实施方式中的电池单元而言,本申请的光伏组件还可包括透明盖板,该透明盖板的材料可为玻璃或其他透明材料。透明盖板可覆盖于电池单元一侧,透明盖板的内侧或外侧对应于汇流条的位置可设有图案标记,其中,汇流条将相邻的电池串组的导电端之间电连接。当电池单元中存在空白区域101时,透明盖板的内侧或外侧对应于空白区域101的位置可设有图案标记,需要说明的是,空白区域101所在位置可以指不同汇流条延伸后汇集的区域,也可以指不同汇流条延伸后汇集的区域中完全空白的区域。透明盖板的内侧为透明盖板靠近电池单元的一侧,透明盖板的外侧为透明盖板远离电池单元的一侧。图案标记的具体结构在此不做特殊限定,例如,该图案标记可为粘接或通过其他方式固定在空白区域的广告标识等。
基于前述所设置的透明盖板,透明盖板对应于上述空白区域101或汇流条的位置设有发光器件,且发光器件位于透明盖板的内侧或外侧。发光器件可以是LED灯或其他发光器件,只要能发光即可。发光器件发光的颜色不做特殊限定。
在一实施方式中,透明盖板覆盖于电池单元正面,且透明盖板设有遮盖层,遮盖层的图案在电池单元上的正投影与汇流条或空白区域101匹配,从而可通过遮盖层遮蔽该间隙中的汇流条或空白区域中的接线盒。遮盖层的材料可为釉质层,其颜色可以是白色、黑色或蓝色,当然,也可以是其他颜色。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由所附的权利要求指出。

Claims (17)

  1. 一种光伏组件,其特征在于,包括至少一个电池单元,所述电池单元呈矩形;所述电池单元包括多个电连接的电池串组,每个所述电池串组包括多个并联的电池串,所述电池串包括多个串联的电池片;所述电池串组具有两个导电端和位于两个所述导电端之间的两个侧边;至少两个相邻的所述电池串组按照预设方式排布,所述预设方式为:
    一个所述电池串组的一导电端与一相邻的电池串组的一侧边均位于一直线上,且该两个相邻的电池串组位于该直线的同一侧。
  2. 根据权利要求1所述的光伏组件,其特征在于,所述电池单元包括第一电池串组、第二电池串组以及第三电池串组;所述第二电池串组及所述第三电池串组均与所述第一电池串组相邻;
    所述第一电池串组的一导电端与所述第二电池串组的一侧边位于第一直线上,且第一电池串组与所述第二电池串组位于所述第一直线的同一侧;
    所述第三电池串组的一导电端与所述第一电池串组的一侧边位于第二直线上,且第三电池串组与所述第一电池串组位于所述第二直线的同一侧。
  3. 根据权利要求2所述的光伏组件,其特征在于,所述电池单元还包括第四电池串组,所述第二电池串组及所述第三电池串组均与所述四电池串组位置相邻,且所述第三电池串组与所述第四电池串组电连接;
    所述第三电池串组的一侧边和所述第四电池串组的一导电端位于第三直线上,且所述第三电池串组与所述第四电池串组位于所述第三直线的同一侧;
    所述第二电池串组的一导电端与所述第四电池串组的一侧边位于第四直线上,且所述第二电池串组与所述第四电池串组位于所述第四直线的同一侧。
  4. 根据权利要求2或3所述的光伏组件,其特征在于,
    所述第一电池串组的侧边长度等于所述第二电池串组的导电端长度。
  5. 根据权利要求2或3所述的光伏组件,其特征在于,
    所述第一电池串组的侧边长度大于所述第二电池串组的导电端长度。
  6. 根据权利要求3所述的光伏组件,其特征在于,所述第一电池串组、第二电池串组、第三电池串组和第四电池串组的形状相同。
  7. 根据权利要求1所述的光伏组件,其特征在于,所述电池单元包括第一电池串组、第二电池串组以及第三电池串组;所述第二电池串组及所述第三电池串组均与所述第一电池串组相邻,且均位于所述第一电池串组的同一侧;
    所述第一电池串组的一导电端与所述第二电池串组的一侧边位于第一直线上,且所述第一电池串组与所述第二电池串组位于所述第一直线的通同一侧;
    所述第一电池串组的另一导电端与所述第三电池串组的一侧边位于第二直线上,且所述第一电池串组与所述第三电池串组位于所述第二直线的同一侧。
  8. 根据权利要求7所述的光伏组件,其特征在于,所述电池单元还包括第四电池串组,所述第二电池串组及所述第三电池串组均与所述四电池串组位置相邻,且所述第三电池串组与所述第四电池串组电连接;
    所述第四电池串组的一导电端与所述第二电池串组的一侧边位于所述第一直线上,且所述第四电池串组与所述第二电池串组位于所述第一直线的同一侧;
    所述第四电池串组的另一导电端与所述第三电池串组的一侧边位于第二直线上,且所述第四电池串组与所述第三电池串组位于所述第二直线的同一侧。
  9. 根据权利要求7或8所述的光伏组件,其特征在于,
    所述第一电池串组的侧边长度等于所述第二电池串组的导电端长度与所述第三电池串组的导电端长度之和。
  10. 根据权利要求7或8所述的光伏组件,其特征在于,
    所述第一电池串组的侧边长度大于所述第二电池串组的导电端长度与所述第三电池串组的导电端长度之和。
  11. 根据权利要求1所述的光伏组件,其特征在于,每个所述电池串组的导电端之间反向并联一二极管;或者
    至少相邻的两个所述电池串组与同一个二极管反向并联。
  12. 根据权利要求1所述的光伏组件,其特征在于,所述光伏组件还包括覆盖于所述电池单元正面的透明盖板,所述透明盖板的内侧或外侧对应于汇流条的位置设有图案标记,其中,所述汇流条将相邻的所述电池串组的导电端之间电连接。
  13. 根据权利要求1所述的光伏组件,其特征在于,所述光伏组件还包括覆盖于所述电池单元正面的透明盖板,所述透明盖板对应于汇流条的位置设有发光器件,所述发光器件位于所述透明盖板的内侧或外侧,其中,所述汇流条将相邻的所述电池串组的导电端之间电连接。
  14. 根据权利要求1所述的光伏组件,其特征在于,所述光伏组件还包括覆盖于所述电池单元正面的透明盖板,所述透明盖板设有遮盖层,所述遮盖层的图案在所述电池单元上的正投影与汇流条匹配,其中,所述汇流条将相邻的所述电池串组的导电端之间电连接。
  15. 根据权利要求14所述的光伏组件,其特征在于,所述遮盖层的颜色为白色、黑色或者蓝色。
  16. 根据权利要求1所述的光伏组件,其特征在于,同一所述电池串组的相邻两所述电池片交叠设置,并通过导电胶或导线串联。
  17. 根据权利要求11所述的光伏组件,其特征在于,所述光伏组件还包括接线盒,所述二极管位于所述接线盒内;或者
    所述二极管封装于所述电池单元内。
PCT/CN2020/076929 2019-03-20 2020-02-27 光伏组件 WO2020186987A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20773410.4A EP3926694A4 (en) 2019-03-20 2020-02-27 PHOTOVOLTAIC SYSTEM
US17/440,764 US20220131497A1 (en) 2019-03-20 2020-02-27 Photovoltaic module

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910213440.8A CN110034201B (zh) 2019-03-20 2019-03-20 光伏组件
CN201910213440.8 2019-03-20
CN201910213436.1A CN110034200B (zh) 2019-03-20 2019-03-20 光伏组件
CN201910213452.0A CN110034202B (zh) 2019-03-20 2019-03-20 光伏组件
CN201910213436.1 2019-03-20
CN201910213452.0 2019-03-20

Publications (1)

Publication Number Publication Date
WO2020186987A1 true WO2020186987A1 (zh) 2020-09-24

Family

ID=72519618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076929 WO2020186987A1 (zh) 2019-03-20 2020-02-27 光伏组件

Country Status (3)

Country Link
US (1) US20220131497A1 (zh)
EP (1) EP3926694A4 (zh)
WO (1) WO2020186987A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114388641A (zh) * 2021-11-03 2022-04-22 浙江晶科能源有限公司 一种光伏组件及光伏组件阵列

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117600698B (zh) * 2024-01-22 2024-05-03 苏州小牛自动化设备有限公司 一种电池串排版焊接方法及设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110037284A (ko) * 2009-10-06 2011-04-13 엘지이노텍 주식회사 태양광 발전장치
CN103441163A (zh) * 2013-09-06 2013-12-11 友达光电股份有限公司 太阳能面板
JP2016152721A (ja) * 2015-02-18 2016-08-22 シャープ株式会社 光発電デバイス
US20180358491A1 (en) * 2017-06-12 2018-12-13 The Boeing Company Solar cell array with bypassed solar cells
CN110034201A (zh) * 2019-03-20 2019-07-19 隆基绿能科技股份有限公司 光伏组件
CN110034200A (zh) * 2019-03-20 2019-07-19 隆基绿能科技股份有限公司 光伏组件
CN110034202A (zh) * 2019-03-20 2019-07-19 隆基绿能科技股份有限公司 光伏组件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202454589U (zh) * 2012-02-13 2012-09-26 信息产业电子第十一设计研究院科技工程股份有限公司 一种改进的太阳能光伏组件
US20170170336A1 (en) * 2015-12-14 2017-06-15 Solarcity Corporation Systems and methods for routing wires in a solar module
NL2019318B1 (en) * 2017-07-21 2019-01-30 Tno Photovoltaic module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110037284A (ko) * 2009-10-06 2011-04-13 엘지이노텍 주식회사 태양광 발전장치
CN103441163A (zh) * 2013-09-06 2013-12-11 友达光电股份有限公司 太阳能面板
JP2016152721A (ja) * 2015-02-18 2016-08-22 シャープ株式会社 光発電デバイス
US20180358491A1 (en) * 2017-06-12 2018-12-13 The Boeing Company Solar cell array with bypassed solar cells
CN110034201A (zh) * 2019-03-20 2019-07-19 隆基绿能科技股份有限公司 光伏组件
CN110034200A (zh) * 2019-03-20 2019-07-19 隆基绿能科技股份有限公司 光伏组件
CN110034202A (zh) * 2019-03-20 2019-07-19 隆基绿能科技股份有限公司 光伏组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3926694A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114388641A (zh) * 2021-11-03 2022-04-22 浙江晶科能源有限公司 一种光伏组件及光伏组件阵列
CN114388641B (zh) * 2021-11-03 2023-06-23 浙江晶科能源有限公司 一种光伏组件及光伏组件阵列

Also Published As

Publication number Publication date
EP3926694A4 (en) 2022-11-23
EP3926694A1 (en) 2021-12-22
US20220131497A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
CN105932084B (zh) 太阳能电池组件及其制备方法
CN101304054B (zh) 用于玻璃幕墙的太阳能电池组件
JP2012238884A (ja) 太陽電池セルの製造方法および太陽電池セルユニットの製造方法
WO2020186987A1 (zh) 光伏组件
US8829338B2 (en) Bridging solar cell and solar energy system
JP2014207305A (ja) 太陽電池モジュール
WO2022262163A1 (zh) 一种太阳能电池组件及其制备方法
JP7266444B2 (ja) 太陽電池モジュール、及び太陽電池システム
WO2023273309A1 (zh) 一种光伏组件
JP2000101122A (ja) 太陽電池モジュール
TWM519356U (zh) 太陽能電池模組
WO2021120655A1 (zh) 双面电池组件结构
CN108493281A (zh) 一种太阳能光伏组件
CN209029393U (zh) 一种可印刷柔性太阳能电池
WO2021203984A1 (zh) 光伏组件
CN110034201B (zh) 光伏组件
CN110034202B (zh) 光伏组件
US20190035962A1 (en) Photovoltaic assembly
CN110034200B (zh) 光伏组件
CN210443576U (zh) 光伏组件
CN209804687U (zh) 光伏组件
CN209785958U (zh) 光伏组件
CN208271925U (zh) 一种太阳能光伏组件
US10629763B2 (en) Solar cell module
CN109216475B (zh) 一种太阳能电池板组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020773410

Country of ref document: EP

Effective date: 20210916