WO2020186936A1 - 一种柔性接入变电站及控制方法 - Google Patents

一种柔性接入变电站及控制方法 Download PDF

Info

Publication number
WO2020186936A1
WO2020186936A1 PCT/CN2020/074539 CN2020074539W WO2020186936A1 WO 2020186936 A1 WO2020186936 A1 WO 2020186936A1 CN 2020074539 W CN2020074539 W CN 2020074539W WO 2020186936 A1 WO2020186936 A1 WO 2020186936A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converter
circuit breaker
access
output
Prior art date
Application number
PCT/CN2020/074539
Other languages
English (en)
French (fr)
Inventor
谢晔源
王宇
盛晓东
杨幸辰
袁庆伟
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Priority to KR1020217019975A priority Critical patent/KR20210094630A/ko
Priority to JP2021537175A priority patent/JP2022515275A/ja
Priority to EP20773981.4A priority patent/EP3944447A4/en
Publication of WO2020186936A1 publication Critical patent/WO2020186936A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/02Circuit arrangements for ac mains or ac distribution networks using a single network for simultaneous distribution of power at different frequencies; using a single network for simultaneous distribution of ac power and of dc power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/04Driving of auxiliaries from power plant other than propulsion power plant
    • B63J2003/043Driving of auxiliaries from power plant other than propulsion power plant using shore connectors for electric power supply from shore-borne mains, or other electric energy sources external to the vessel, e.g. for docked, or moored vessels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/42The network being an on-board power network, i.e. within a vehicle for ships or vessels

Definitions

  • the application relates to a flexible access substation and a control method, belonging to the technical field of high-power power electronics.
  • Shore power access technology means that when a ship is in a port, it stops using the ship’s generator and uses land power instead.
  • Shore power converter/AC-DC-AC converter is the core of the frequency conversion access system. It is responsible for converting the shore-based 50HZ AC power through the AC-DC-AC frequency conversion link into the 60HZ AC power required by the ship. In the prior art, there is a one-to-one relationship between the shore power converter and the power supply berth.
  • This application introduces the architecture of the power system substation into the shore power system.
  • a flexible access substation and control method is proposed to provide a one-to-many power supply mode to improve the utilization of systems and equipment.
  • a flexible access substation wherein the flexible access substation includes N sets of variable frequency access systems, where N is an integer greater than or equal to 1, and each set of variable frequency access systems includes a first AC-DC converter and a first output circuit breaker And a first power distribution system, the first power distribution system includes an AC incoming line, an AC bus bar and at least one outgoing line, wherein,
  • the output side of the first AC-DC-AC converter is connected to one end of the AC incoming line of the first power distribution system via a first output circuit breaker;
  • the other end of the AC incoming line is connected to the AC bus;
  • each outgoing line is connected to the AC bus, the other end is connected to one end of the outgoing circuit breaker, and the other end of the outgoing circuit breaker is defined as an outgoing terminal;
  • the input side of the first AC-DC-AC converter is connected to an upper-level power grid
  • the first AC-DC-AC converter converts input AC power into DC power, and then converts DC power into output AC power, and the output AC power frequency and voltage are adjustable.
  • the frequency conversion access system includes a first AC-DC-AC converter, an output transformer, M output circuit breakers, and M first power distribution systems.
  • the primary side of the output transformer is connected to the first AC-DC-AC converter.
  • the output side is connected.
  • the output transformer includes M secondary sides. M is an integer greater than or equal to 1.
  • the Mth secondary side is connected to one end of the Mth output circuit breaker, and the other end of the Mth output circuit breaker is connected to the corresponding first power distribution system. AC incoming line.
  • the DC power distribution network includes a DC circuit breaker, a DC transformer, and a DC load, power supply, or ship.
  • variable frequency access system further includes an energy storage unit, and the DC side of the first AC-DC converter is connected to the energy storage unit.
  • an input transformer is also connected between the first AC-DC-AC converter and the upper-level power grid.
  • an input circuit breaker is also connected between the first AC-DC-AC converter and the upper-level power grid.
  • outlet terminal is connected to a ship, and the outlet circuit breaker is also equipped with a synchronization device.
  • the first frequency conversion access system and the second frequency conversion access system respectively include a second output circuit breaker, and one end of the second output circuit breaker of the first frequency conversion access system is connected to the first frequency conversion
  • the output side of the first AC-DC-AC converter of the input system is connected, and the other end is connected with the AC bus of the second frequency conversion access system
  • one end of the second output circuit breaker of the second frequency conversion access system is connected to the second frequency conversion access system
  • the output side of the first AC-DC converter is connected, and the other end is connected with the AC bus of the first frequency conversion access system.
  • N is an integer greater than or equal to 2
  • the flexible access substation further includes N-1 connection modules, and the AC busbars of the N frequency conversion access systems form a hand-in-hand form through N-1 connection modules Connection.
  • connection module includes a first AC-DC converter of the Nth variable frequency access system; the first AC-DC converter of the Nth variable frequency access system converts input AC power into DC power, and then converts DC power into output AC, input and output AC frequency and voltage are adjustable.
  • connection module includes a solid-state switch or a mechanical switch composed of power semiconductor devices.
  • the flexible access substation includes N sets of variable frequency access systems, where N is an integer greater than or equal to 2, and each set of variable frequency access systems includes a first AC-DC-AC converter, A first output circuit breaker, a first power distribution system, and N-1 connection modules.
  • the first power distribution system includes an AC incoming line, an AC bus bar, and at least one outgoing line, and the N frequency conversion access system AC bus bars
  • a hand-in-hand connection is formed through N-1 connection modules, among which,
  • the output side of the first AC-DC-AC converter is connected to one end of the AC incoming line of the first power distribution system via a first output circuit breaker,
  • the other end of the AC incoming line is connected to the AC bus
  • each outlet is connected to the AC bus, the other end is connected to one end of the outlet circuit breaker, and the other end of the outlet circuit breaker is defined as the outlet terminal.
  • the input side of the first AC-DC-AC converter is connected to the upper-level power grid
  • the first AC-DC converter converts input AC power into DC power, and then converts DC power into output AC power, and the output AC power frequency and voltage are adjustable,
  • the connection module includes a first AC-DC-AC converter of the N-th variable-frequency access system, and the first AC-DC-AC converter of the N-th variable-frequency access system converts input AC power into DC power, and then converts DC power into output AC power.
  • the frequency and voltage of AC output are adjustable,
  • control method of the flexible access substation includes: when the output of the first AC-DC converter of the N-th variable-frequency access system is overloaded, the AC-DC-AC conversion of the N-1th variable-frequency system and/or the N+1th variable-frequency system
  • the controller controls the power direction from the AC bus of the adjacent frequency conversion access system to the overload bus.
  • the flexible access substation includes N sets of variable frequency access systems, where N is an integer greater than or equal to 2, and each set of variable frequency access systems includes a first AC-DC-AC converter , A first output circuit breaker, a first power distribution system, and N-1 connection modules.
  • the first power distribution system includes an AC inlet, an AC bus, and at least one outlet.
  • the N frequency conversion access systems The busbars form a hand-in-hand connection through N-1 connection modules, among which,
  • the output side of the first AC-DC-AC converter is connected to one end of the AC incoming line of the first power distribution system via a first output circuit breaker,
  • the other end of the AC incoming line is connected to the AC bus
  • each outlet is connected to the AC bus, the other end is connected to one end of the outlet circuit breaker, and the other end of the outlet circuit breaker is defined as the outlet terminal.
  • the input side of the first AC-DC-AC converter is connected to the upper-level power grid
  • the first AC-DC converter converts input AC power into DC power, and then converts DC power into output AC power, and the output AC power frequency and voltage are adjustable,
  • the connection module includes a first AC-DC-AC converter of the N-th variable-frequency access system, and the first AC-DC-AC converter of the N-th variable-frequency access system converts input AC power into DC power, and then converts DC power into output AC power.
  • the frequency and voltage of AC output are adjustable,
  • control method of the flexible access substation includes: when the first AC-DC-AC converter of the N-th variable-frequency access system fails, stopping the output of the first AC-DC-AC converter, the N-1th variable-frequency system and/or The first AC-DC-AC converter of the N+1th frequency conversion system is switched from power control to voltage control to control the AC bus voltage of the Nth frequency conversion access system.
  • the flexible access substation includes N sets of variable frequency access systems, where N is an integer greater than or equal to 1, and each set of variable frequency access systems includes a first AC-DC-AC converter , A first output circuit breaker and a first power distribution system, the first power distribution system including an AC incoming line, an AC bus bar and at least one outgoing line, wherein:
  • the output side of the first AC-DC-AC converter is connected to one end of the AC incoming line of the first power distribution system via a first output circuit breaker,
  • the other end of the AC incoming line is connected to the AC bus
  • each outgoing line is connected to the AC bus, the other end is connected to one end of the outgoing circuit breaker, and the other end of the outgoing circuit breaker is defined as an outgoing terminal.
  • the input side of the first AC-DC-AC converter is connected to the upper-level power grid
  • the first AC-DC converter converts input AC power into DC power, and then converts DC power into output AC power, and the output AC power frequency and voltage are adjustable,
  • control method of the flexible access substation includes: when the occurrence of reverse power is detected, the reverse power is fed back to the upper-level power grid through the first AC-DC-AC converter of the frequency conversion access system.
  • the flexible access substation includes N sets of variable frequency access systems, where N is an integer greater than or equal to 1, and each set of variable frequency access systems includes a first AC-DC-AC converter , A first output circuit breaker and a first power distribution system, the first power distribution system including an AC incoming line, an AC bus bar and at least one outgoing line, wherein:
  • the output side of the first AC-DC-AC converter is connected to one end of the AC incoming line of the first power distribution system via a first output circuit breaker,
  • the other end of the AC incoming line is connected to the AC bus
  • each outlet is connected to the AC bus, the other end is connected to one end of the outlet circuit breaker, and the other end of the outlet circuit breaker is defined as the outlet terminal.
  • the input side of the first AC-DC-AC converter is connected to the upper-level power grid
  • the first AC-DC converter converts input AC power into DC power, and then converts DC power into output AC power, and the output AC power frequency and voltage are adjustable,
  • the positive and negative poles of the DC side of the first AC-DC-AC converter are led out and connected to a DC power distribution network.
  • the DC power distribution network includes a DC circuit breaker, a DC transformer, and a DC load, power supply or ship,
  • control method of the flexible access to the substation includes: when the occurrence of reverse power is detected, the reverse power is fed back to the upper-level power grid through the first AC-DC converter of the variable frequency access system or fed back to the first AC The DC distribution network connected to the DC side of the DC-AC converter.
  • the flexible access substation includes N sets of variable frequency access systems, where N is an integer greater than or equal to 1, and each set of variable frequency access systems includes a first AC-DC-AC converter , A first output circuit breaker and a first power distribution system, the first power distribution system including an AC incoming line, an AC bus bar and at least one outgoing line, wherein:
  • the output side of the first AC-DC-AC converter is connected to one end of the AC incoming line of the first power distribution system via a first output circuit breaker,
  • the other end of the AC incoming line is connected to the AC bus
  • each outlet is connected to the AC bus, the other end is connected to one end of the outlet circuit breaker, and the other end of the outlet circuit breaker is defined as the outlet terminal.
  • the input side of the first AC-DC-AC converter is connected to the upper-level power grid
  • the first AC-DC converter converts input AC power into DC power, and then converts DC power into output AC power, and the output AC power frequency and voltage are adjustable,
  • the outlet terminal is connected to the ship, and the outlet circuit breaker is also equipped with a synchronizing device,
  • control method for flexible access to the substation includes:
  • Step 1 When the first ship is docked and connected to shore power, the first AC-DC converter is activated to charge the AC bus and control the voltage of the AC bus to stabilize, and the output frequency of the first AC-DC converter is set to f1 ;
  • Step 2 Complete the connection between the ship's cable and the shore-side outlet terminal
  • Step 3 After confirming that the connection is completed, track the power frequency of the first ship, and automatically adjust the output frequency of the first AC-DC converter to f1+ ⁇ f; the synchronization device corresponding to the outgoing line detects the voltage on both sides of the line breaker; ⁇ f Is the frequency deviation;
  • Step 4 When the closing conditions are met, close the outgoing circuit breaker, or check and close at the same time on the ship side;
  • Step 5 The switching control strategy of the first AC-DC-AC converter enables the ship's load to gradually shift to being supplied by the first AC-DC-AC converter;
  • Step 6 The first ship completes the shore power connection and changes from the load state of the power source before the connection to the pure load state;
  • Step 7 When other ships call at the port to connect to shore power, follow steps 2 to 6 to connect to the AC bus of the variable frequency access system.
  • step 5 includes:
  • the ship load is gradually transferred to the power supplied by the first AC-DC converter, the output of the ship power generation system is gradually reduced to 0, and the ship power generation system is shut down.
  • the first AC-DC converter switches back to the original control strategy to control the AC bus voltage stable.
  • the flexible access substation includes 2 sets of variable frequency access systems, each of which includes a first AC-DC converter, a first output circuit breaker, and a second A two-output circuit breaker and a first power distribution system, where the first power distribution system includes an AC incoming line, an AC bus bar and at least one outgoing line, wherein:
  • the output side of the first AC-DC-AC converter is connected to one end of the AC incoming line of the first power distribution system via a first output circuit breaker,
  • the other end of the AC incoming line is connected to the AC bus
  • each outlet is connected to the AC bus, the other end is connected to one end of the outlet circuit breaker, and the other end of the outlet circuit breaker is defined as the outlet terminal.
  • the input side of the first AC-DC-AC converter is connected to the upper-level power grid
  • the first AC-DC converter converts input AC power into DC power, and then converts DC power into output AC power, and the output AC power frequency and voltage are adjustable,
  • One end of the second output circuit breaker of the first frequency conversion access system is connected to the output side of the first AC-DC converter of the first frequency conversion access system, and the other end is connected to the AC bus of the second frequency conversion access system,
  • One end of the second output circuit breaker of the second frequency conversion access system is connected to the output side of the first AC-DC converter of the second frequency conversion access system, and the other end is connected to the AC bus of the first frequency conversion access system,
  • control method for flexible access to the substation includes:
  • Step 1 The AC-DC-AC converter of the first variable-frequency access system is started, and the output frequency is set to f1; the AC-DC-AC converter of the second variable-frequency access system is started, and the output frequency is set to f2;
  • Step 2 Close the first output circuit breaker of the first frequency conversion access system to make the AC bus of the first frequency conversion access system live; close the first output circuit breaker of the second frequency conversion access system to make the second frequency conversion access system ⁇ AC bus is live; the frequency of the AC bus of the first variable frequency access system is f1, and the frequency of the AC bus of the second variable frequency access system is f2;
  • Step 3 When a ship is connected, identify the frequency f of the ship system. When f is closer to f1, close the outgoing circuit breaker connected to the AC bus of the first variable frequency access system; when f is closer to f2, close and The second frequency conversion is connected to the outlet circuit breaker connected to the AC bus of the system.
  • control method of the flexible access substation further includes:
  • Step 41 If f1 and f2 are not the same, when the AC-DC-AC converter of the first frequency conversion system or the second frequency conversion access system is overloaded, connect the AC-DC-AC converter of the second frequency conversion system or the first frequency conversion access system The module transfers part of the energy to the overloaded bus.
  • control method of the flexible access substation further includes:
  • Step 42 If f1 and f2 are the same, when the AC-DC-AC converter of the first frequency conversion system or the second frequency conversion access system fails, the bus connected to the faulty system loses power; close the second frequency conversion system or the first frequency conversion access system The second output circuit breaker to re-energize the lost bus;
  • Step 5 Separate the outgoing circuit breaker connected to the faulty bus, and close the outgoing circuit breaker connected to another AC bus, so that the ship that loses power can regain power.
  • Figure 1 is a first embodiment of a flexible access substation according to this application.
  • Figure 2 is a second embodiment of a flexible access substation of this application.
  • Figure 3 is a third embodiment of a flexible access substation according to this application.
  • Figure 4 is a fourth embodiment of a flexible access substation according to this application.
  • Figure 5 is a fifth embodiment of a flexible access substation according to this application.
  • Figure 6 is the first embodiment of the AC-DC-AC converter
  • Figure 7 is a second embodiment of the AC-DC-AC converter
  • connection module is a solid state switch
  • Figure 9 shows an embodiment where the connection module is a mechanical switch.
  • a first embodiment of a flexible access substation is shown in Figure 1.
  • the flexible access substation includes N sets of variable frequency access systems 1, where N is an integer greater than or equal to 1, and each set of variable frequency access systems includes a first AC-DC converter 2, a first output circuit breaker 5, and a first power distribution system 12, the first power distribution system including an AC incoming line, an AC bus 6 and at least one outgoing line, the first AC-DC converter output One side is connected to one end of the AC incoming line of the first power distribution system via the first output circuit breaker; the other end of the AC incoming line is connected to the AC bus; one end of each outgoing line is connected to the AC bus, and the other end is connected to one end of the outlet circuit breaker, the outlet circuit breaker
  • the other end of the AC-DC converter is defined as the outlet terminal; the input side of the first AC-DC converter is connected to the upper-level grid; the first AC-DC converter converts the input AC power into DC power, and then converts the DC power into the output AC power, and the output AC
  • the flexible access substation provided in this application includes N sets of frequency conversion access systems, it can output N voltages of different frequencies according to power supply requirements, and can realize simultaneous access of ships of different frequencies.
  • the AC-DC-AC converter needs to be switched according to the frequency of the connected ship.
  • the frequency required by the ship currently includes two specifications of 50Hz and 60Hz.
  • the existing one-to-one power supply mode cannot achieve plug and play. It is impossible to achieve simultaneous access to ships of two frequencies.
  • the flexible access substation includes two sets of variable frequency access systems, which are defined as the first variable frequency access system and the second variable frequency access system.
  • the first and second frequency conversion access systems both include a second output circuit breaker 16.
  • One end of the second output circuit breaker of the first frequency conversion access system is connected to the output side of the first AC-DC converter of the first frequency conversion access system, and the other One end is connected to the AC bus of the second frequency conversion access system; one end of the second output circuit breaker of the second frequency conversion access system is connected to the output side of the first AC-DC converter of the second frequency conversion access system, and the other end is connected to the An AC bus connection of a frequency conversion access system; the outlet terminal of the first frequency conversion access system and the outlet terminal of the second frequency conversion access system are connected one-to-one.
  • the flexible access substation when N is an integer greater than or equal to 2, the flexible access substation further includes N-1 connection modules 10, and the AC busbars of the N frequency conversion access systems pass through N-1
  • the connection modules form a hand-in-hand connection.
  • connection module is a second AC-DC-AC converter; the second AC-DC-AC converter converts input AC power into DC power, and then converts DC power into output AC power.
  • the frequency and voltage of the input and output AC power are both Adjustable.
  • connection module is a solid-state switch or a mechanical switch composed of power semiconductor devices.
  • Fig. 8 is an embodiment of a solid switch composed of anti-parallel thyristors
  • Fig. 9 is an embodiment of a mechanical switch.
  • the substation further includes an output transformer, M output circuit breakers, and M first power distribution systems.
  • the primary side of the output transformer is connected to the output side of the first AC-DC-AC converter, and the output transformer includes M secondary sides, M is an integer greater than or equal to 1, the M-th secondary side is connected to one end of the M-th output circuit breaker, and the other end of the M-th output circuit breaker is connected to the corresponding AC incoming line of the first power distribution system.
  • M is an integer greater than or equal to 1
  • M-th secondary side is connected to one end of the M-th output circuit breaker
  • the other end of the M-th output circuit breaker is connected to the corresponding AC incoming line of the first power distribution system.
  • M 2.
  • Two sets of secondary windings can be connected to high-voltage and low-voltage through two output circuit breakers. Distribution System.
  • the positive and negative poles of the DC side of the first AC-DC-AC converter are led out and connected to a DC power distribution network.
  • the DC power distribution network includes a DC circuit breaker, a DC transformer, and a DC load, power supply, or ship.
  • the DC bus of the first AC-DC converter in the two sets of variable frequency access systems in this embodiment is led out and connected to the DC bus at both ends of the DC distribution network, which includes DC circuit breakers. , DC transformers, energy storage units and photovoltaic power generation units.
  • the substation further includes an energy storage unit, and the DC side of the first AC-DC-AC converter is connected to the energy storage unit.
  • the high-voltage multi-level AC-DC-AC converter includes multiple power modules, each of which has a The DC side is connected with the energy storage unit.
  • an input transformer 3 is also connected between the first AC-DC-AC converter and the upper-level power grid.
  • an input circuit breaker 11 is also connected between the first AC-DC-AC converter and the upper-level power grid.
  • the outgoing terminal when the substation is applied to ship shore power access, the outgoing terminal is connected to the ship, the outgoing terminal can be connected to the ship through the shore ship connection device 9, and the outgoing circuit breaker is also equipped with a synchronization device 8 , It can detect the voltage at both ends of the circuit breaker, and realize the synchronous closing.
  • This application also correspondingly proposes the first specific embodiment of the control method for flexible access to the substation, including: when there is more than one set of variable frequency access systems, the output of the first AC-DC-AC converter of one of the variable frequency access systems is overloaded At this time, the second AC-DC-AC converter controls the power direction to flow from the AC bus of the adjacent frequency conversion access system to the overload bus.
  • the shore power access system in the prior art is one-to-one power supply. On the one hand, because the ship has a large capacity range (100kW-16MW), the shore power needs to be designed according to the maximum capacity, and the power load of the ship itself is also fluctuating.
  • the shore power system is kept in low-load operation for a long time, resulting in low equipment utilization and waste of costs; on the other hand, the shore power access power is taken from the original terminal power distribution system, which requires The capacity increase of the power distribution system, the one-to-one power supply mode, requires too much capacity for the distribution system. If there are 4 sets of 10MW shore power berths, the total capacity increase demand is 40MW.
  • the existing terminal power distribution system may be due to the superior
  • the limitation of grid capacity cannot meet the demand for capacity expansion, and expansion is required, which increases the difficulty and cost of capacity expansion and transformation.
  • Using the flexible access substation provided by this application can effectively avoid situations such as low equipment utilization and difficulty in capacity expansion.
  • This application also correspondingly proposes the second specific embodiment of the control method for flexible access to the substation, which includes: when the occurrence of reverse power is detected, that is, when the power is transmitted from the ship side to the shore side, the frequency conversion accesses the first direct current in the system The converter feeds the reverse power back to the upper grid.
  • This application also correspondingly proposes the third specific embodiment of the control method for flexible access to the substation, which includes: when the occurrence of reverse power is detected, that is, the power is transmitted from the ship side to the shore side, the first crossover in the system can be accessed through frequency conversion.
  • the DC-AC converter feeds back the reverse power to the upper-level power grid or the DC distribution network connected to the DC side of the first AC-DC-AC converter.
  • This application also correspondingly proposes the fourth specific embodiment of the control method for flexible access to the substation.
  • the outgoing terminal is connected to the ship and is a load containing power, that is,
  • the control method is as follows:
  • Step 1 When the first ship docks and connects to shore power, the first AC-DC converter is activated to charge the AC bus and control the AC bus voltage to stabilize.
  • the output frequency of the first AC-DC converter is set to f1;
  • Step 2 Complete the connection of the ship’s cable with the shore-side outlet terminal or shore ship connection equipment;
  • Step 3 After confirming the connection, track the power frequency of the first ship, and automatically adjust the output frequency of the first AC-DC converter to f1+ ⁇ f; the synchronization device corresponding to the outgoing line detects the voltage on both sides of the line breaker; ⁇ f is the frequency Deviation: In this embodiment, the frequency deviation is less than 0.1 Hz, and grid connection can effectively reduce the impact within the allowable frequency deviation.
  • Step 4 When the closing conditions are met, close the outgoing circuit breaker, or check and close at the same time on the ship side;
  • Step 5 The first AC-DC-AC converter switching control strategy, so that the ship load is gradually transferred to the first AC-DC-AC converter to supply power;
  • Step 6 The first ship completes the shore power connection and changes from the load state of the power source before the connection to the pure load state;
  • Step 7 When other ships call at the port to connect to shore power, follow steps 2 to 6 to connect to the AC bus of the variable frequency access system.
  • step 5 gradually transfer the load of the ship to the power supplied by the first AC-DC converter, the output of the ship's power generation system is gradually reduced to 0, the ship's power generation system stops, and the first AC-DC converter switches back to the original control Strategy to control AC bus voltage stability.
  • control method for flexible access to the substation.
  • the control method is as follows:
  • Step 1 The AC-DC-AC converter of the first variable-frequency access system is started, and the output frequency is set to f1; the AC-DC-AC converter of the second variable-frequency access system is started, and the output frequency is set to f2;
  • Step 2 Close the first output circuit breaker of the first frequency conversion access system to make the AC bus of the first frequency conversion access system live; close the first output circuit breaker of the second frequency conversion access system to make the second frequency conversion access system ⁇ AC bus is live; the frequency of the AC bus of the first variable frequency access system is f1, and the frequency of the AC bus of the second variable frequency access system is f2;
  • Step 3 When a ship is connected, identify the frequency f of the ship system. When f is closer to f1, close the outgoing circuit breaker connected to the AC bus of the first variable frequency access system; when f is closer to f2, close and Outgoing circuit breaker connected to the AC bus of the second frequency conversion access system;
  • f1 and f2 are respectively 50 Hz and 60 Hz.
  • Step 4 If f1 and f2 are not the same, when an AC-DC-AC converter of a variable-frequency access system is overloaded, part of the energy is transferred to the overloaded bus through the AC-DC-AC converter and connection module of another variable-frequency access system;
  • Step 5 If f1 and f2 are the same, when a set of frequency conversion access system AC-DC-AC converter fails, the bus connected to the faulty system loses power; close the second output circuit breaker of the other set of frequency conversion access system to make it fail The electric bus is energized again;
  • Step 6 Separate the outgoing circuit breaker connected to the faulty bus, and close the outgoing circuit breaker connected to another AC bus, so that the ship that loses power can regain power.
  • this application introduces the architecture of the power system substation into the shore power system, and proposes to install an AC bus on the output side of the AC-DC-AC converter, the AC bus is connected to multiple outgoing lines, each outgoing line is equipped with an independent outgoing circuit breaker, and the outgoing line is disconnected
  • the device is equipped with a synchronization device to solve the impact problem when the ship is integrated into the shore power system.
  • the ship is connected to realize the load transfer through the switch of the control strategy: before the ship is connected, the ship’s power system is the power source + The power supply mode of the load. After the shore power system is connected, the ship's power system becomes a pure load.
  • the application provides a connection module between multiple frequency conversion access systems.
  • the connection module can be an AC-DC converter or a switch.
  • the connection module can realize the interconnection between different AC busbars.
  • the power flow and size of the AC-DC-AC converter can be adjusted to balance the power output between the AC and DC buses.
  • a set of converters is overloaded, support can be obtained from other AC buses, which further improves the converter equipment
  • the converter connected to the module changes the control target, which can realize uninterrupted power supply, and the faulty bus that loses power can be energized again, and the fault ride-through is realized. Improve the power supply reliability of the system.
  • connection module can also be a switch, which can be a solid-state switch or a fast mechanical switch composed of power semiconductor devices. Using the principle of automatic switching, when a section of the AC bus loses power, the fast switch is quickly closed to achieve fault ride-through;
  • this application also provides a solution including two sets of frequency conversion access systems.
  • the first AC-DC converters of the two sets of frequency conversion access systems are both connected to two bus sections through an outlet circuit breaker to form a dual power supply.
  • the power is derived from the two bus sections, which greatly improves the reliability of power supply.
  • the switch can be switched to achieve uninterrupted power supply; and because the shore power load has two different frequencies, 50Hz/60Hz,
  • the AC busbars of the two sets of converters can be set to different frequencies. When the frequency required by the ship is identified, it can be conveniently provided to the ship with a given frequency through the switch.

Abstract

本申请公开了一种柔性接入变电站,所述柔性接入变电站包括N套变频接入系统,N为大于等于1的整数,每套变频接入系统包括第一交直交变换器、第一输出断路器以及第一配电系统,所述第一配电系统包括一条交流进线、交流母线以及至少一条出线,所述交直交变换器输出侧经第一输出断路器与第一配电系统的交流进线一端连接。本申请还公开了所述柔性接入变电站的控制方法,可实现一套变换器同时连接多个泊位的船舶,使停靠船舶即插即用的接入岸电,减小岸电设备投资成本,提高了岸电接入的便捷性。互联模式下,可实现交流母线之间的相互支援,可靠性高。

Description

一种柔性接入变电站及控制方法 技术领域
本申请涉及一种柔性接入变电站及控制方法,属于大功率电力电子技术领域。
背景技术
岸电接入技术,是指船舶靠港期间,停止使用船舶上的发电机,而改用陆地电源供电。岸电变换器/交直交变换器是变频接入系统的核心,负责将岸上50HZ交流电源通过AC-DC-AC变频环节转换为船舶所需的60HZ交流电源。现有技术中,岸电变换器与供电泊位之间是一对一的关系。
发明内容
本申请将电力系统变电站的架构引入岸电系统。提出了一种柔性接入变电站及控制方法,提供一种一对多的供电方式,提高系统和设备的利用率。
为了实现上述目的,本申请采用的技术方案如下:
一种柔性接入变电站,其中,所述柔性接入变电站包括N套变频接入系统,N为大于等于1的整数,每套变频接入系统包括第一交直交变换器、第一输出断路器以及第一配电系统,所述第一配电系统包括一条交流进线、交流母线以及至少一条出线,其中,
所述第一交直交变换器输出侧经第一输出断路器与第一配电系统的交流进线一端连接;
交流进线的另一端连接交流母线;
每条出线一端连接交流母线,另一端连接出线断路器的一端,出线断路器的另一端引出定义为出线终端;
所述第一交直交变换器输入侧连接上级电网;
所述第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输出交流电频率和电压可调。
进一步地,所述变频接入系统包括一个第一交直交变换器、一个输出变压器、M个输出断路器以及M个第一配电系统,所述输出变压器的原边与第一交直交变换器输出侧连接,输出变压器包含M个副边,M为大于等于1的整数,第M副边与第M输出断路器的一端连 接,第M输出断路器的另一端连接对应的第一配电系统的交流进线。
进一步地,所述第一交直交变换器的直流侧正负极引出,连接直流配电网,所述直流配电网包括直流断路器、直流变压器以及直流负荷、电源或船舶。
进一步地,所述变频接入系统还包括储能单元,所述第一交直交变换器的直流侧与所述储能单元连接。
进一步地,所述第一交直交变换器与上级电网之间还连接一个输入变压器。
进一步地,所述第一交直交变换器与上级电网之间还连接一个输入断路器。
进一步地,所述出线终端连接船舶,所述出线断路器还配置一个同期装置。
进一步地,N等于2,所述第一变频接入系统、第二变频接入系统分别包括第二输出断路器,所述第一变频接入系统的第二输出断路器一端与第一变频接入系统的第一交直交变换器输出侧连接,另一端与第二变频接入系统的交流母线连接;所述第二变频接入系统的第二输出断路器一端与第二变频接入系统的第一交直交变换器输出侧连接,另一端与第一变频接入系统的交流母线连接。
进一步地,N为大于等于2的整数,所述柔性接入变电站还包括N-1个连接模块,所述N个变频接入系统的交流母线之间通过N-1个连接模块形成手拉手形式的连接。
进一步地,所述连接模块包括第N变频接入系统的第一交直交变换器;所述第N变频接入系统的第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输入与输出交流电频率和电压均可调。
进一步地,所述连接模块包括由功率半导体器件构成的固态开关或机械开关。
本申请还提供一种柔性接入变电站的控制方法,所述柔性接入变电站包括N套变频接入系统,N为大于等于2的整数,每套变频接入系统包括第一交直交变换器、第一输出断路器、第一配电系统以及N-1个连接模块,所述第一配电系统包括一条交流进线、交流母线以及至少一条出线,所述N个变频接入系统的交流母线之间通过N-1个连接模块形成手拉手形式的连接,其中,
所述第一交直交变换器输出侧经第一输出断路器与第一配电系统的交流进线一端连接,
交流进线的另一端连接交流母线,
每条出线一端连接交流母线,另一端连接出线断路器的一端,出线断路器的另一端引出定义为出线终端,
所述第一交直交变换器输入侧连接上级电网,
所述第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输出交流电频率和电压可调,
所述连接模块包括第N变频接入系统的第一交直交变换器,所述第N变频接入系统的第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输入与输出交流电频率和电压均可调,
其中,所述柔性接入变电站的控制方法包括:当第N变频接入系统的第一交直交变换器输出过载时,第N-1变频系统和/或第N+1变频系统的交直交变换器控制功率方向由相邻的变频接入系统的交流母线流向过载母线。
本申请还提供另一种柔性接入变电站的控制方法,所述柔性接入变电站包括N套变频接入系统,N为大于等于2的整数,每套变频接入系统包括第一交直交变换器、第一输出断路器、第一配电系统以及N-1个连接模块,所述第一配电系统包括一条交流进线、交流母线以及至少一条出线,所述N个变频接入系统的交流母线之间通过N-1个连接模块形成手拉手形式的连接,其中,
所述第一交直交变换器输出侧经第一输出断路器与第一配电系统的交流进线一端连接,
交流进线的另一端连接交流母线,
每条出线一端连接交流母线,另一端连接出线断路器的一端,出线断路器的另一端引出定义为出线终端,
所述第一交直交变换器输入侧连接上级电网,
所述第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输出交流电频率和电压可调,
所述连接模块包括第N变频接入系统的第一交直交变换器,所述第N变频接入系统的第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输入与输出交流电频率和电压均可调,
其中,所述柔性接入变电站的控制方法包括:当第N变频接入系统的第一交直交变换器故障时,停止所述第一交直交变换器输出,第N-1变频系统和/或第N+1变频系统的第一交直交变换器由功率控制切换为电压控制,控制第N变频接入系统的交流母线电压。
本申请还提供另一种柔性接入变电站的控制方法,所述柔性接入变电站包括N套变频接入系统,N为大于等于1的整数,每套变频接入系统包括第一交直交变换器、第一输出断路器以及第一配电系统,所述第一配电系统包括一条交流进线、交流母线以及至少一条出线,其中,
所述第一交直交变换器输出侧经第一输出断路器与第一配电系统的交流进线一端连接,
交流进线的另一端连接交流母线,
每条出线一端连接交流母线,另一端连接出线断路器的一端,出线断路器的另一端引出 定义为出线终端,
所述第一交直交变换器输入侧连接上级电网,
所述第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输出交流电频率和电压可调,
其中,所述柔性接入变电站的控制方法包括:当检测到逆功率发生,通过所述变频接入系统的第一交直交变换器将逆功率回馈给上级电网。
本申请还提供另一种柔性接入变电站的控制方法,所述柔性接入变电站包括N套变频接入系统,N为大于等于1的整数,每套变频接入系统包括第一交直交变换器、第一输出断路器以及第一配电系统,所述第一配电系统包括一条交流进线、交流母线以及至少一条出线,其中,
所述第一交直交变换器输出侧经第一输出断路器与第一配电系统的交流进线一端连接,
交流进线的另一端连接交流母线,
每条出线一端连接交流母线,另一端连接出线断路器的一端,出线断路器的另一端引出定义为出线终端,
所述第一交直交变换器输入侧连接上级电网,
所述第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输出交流电频率和电压可调,
所述第一交直交变换器的直流侧正负极引出,连接直流配电网,所述直流配电网包括直流断路器、直流变压器以及直流负荷、电源或船舶,
其中,所述柔性接入变电站的控制方法包括:当检测到逆功率发生,通过所述变频接入系统的第一交直交变换器将逆功率回馈给上级电网或回馈给与所述第一交直交变换器直流侧连接的直流配电网。
本申请还提供另一种柔性接入变电站的控制方法,所述柔性接入变电站包括N套变频接入系统,N为大于等于1的整数,每套变频接入系统包括第一交直交变换器、第一输出断路器以及第一配电系统,所述第一配电系统包括一条交流进线、交流母线以及至少一条出线,其中,
所述第一交直交变换器输出侧经第一输出断路器与第一配电系统的交流进线一端连接,
交流进线的另一端连接交流母线,
每条出线一端连接交流母线,另一端连接出线断路器的一端,出线断路器的另一端引出定义为出线终端,
所述第一交直交变换器输入侧连接上级电网,
所述第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输出交流电频率和电压可调,
所述出线终端连接船舶,所述出线断路器还配置一个同期装置,
其中,所述柔性接入变电站的控制方法包括:
步骤1:当第一只船舶靠港接入岸电时,所述第一交直交变换器启动,使交流母线带电,控制交流母线电压稳定,所述第一交直交变换器输出频率设置为f1;
步骤2:完成船舶电缆与岸侧出线终端的连接;
步骤3:确认连接完成后,跟踪第一只船舶的电源频率,并自动调整所述第一交直交变换器输出频率为f1+δf;对应出线的同期装置检测出线断路器的两侧电压;δf为频率偏差;
步骤4:当满足合闸条件后,闭合出线断路器,或由船侧进行检同期合闸;
步骤5:所述第一交直交变换器切换控制策略,使船舶负载逐渐转移到由所述第一交直交变换器供电;
步骤6:第一只船舶完成岸电接入,由接入前的电源带负荷状态,变为纯负荷状态;
步骤7:当有其他船舶靠港接入岸电时,按步骤2到步骤6接入变频接入系统的交流母线。
进一步地,所述步骤5包括:
使船舶负载逐渐转移到由所述第一交直交变频器供电,船舶发电系统出力逐渐降低为0,船舶发电系统停机,所述第一交直交变频器切换回原有控制策略,控制交流母线电压稳定。
本申请还提供另一种柔性接入变电站的控制方法,所述柔性接入变电站包括2套变频接入系统,每套变频接入系统包括第一交直交变换器、第一输出断路器、第二输出断路器以及第一配电系统,所述第一配电系统包括一条交流进线、交流母线以及至少一条出线,其中,
所述第一交直交变换器输出侧经第一输出断路器与第一配电系统的交流进线一端连接,
交流进线的另一端连接交流母线,
每条出线一端连接交流母线,另一端连接出线断路器的一端,出线断路器的另一端引出定义为出线终端,
所述第一交直交变换器输入侧连接上级电网,
所述第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输出交流电频率和电压可调,
所述第一变频接入系统的第二输出断路器一端与第一变频接入系统的第一交直交变换器输出侧连接,另一端与第二变频接入系统的交流母线连接,
所述第二变频接入系统的第二输出断路器一端与第二变频接入系统的第一交直交变换器 输出侧连接,另一端与第一变频接入系统的交流母线连接,
其中,所述柔性接入变电站的控制方法包括:
步骤1:第一变频接入系统的交直交变换器启动,输出频率设置为f1;第二变频接入系统的交直交变换器启动,输出频率设置为f2;
步骤2:闭合第一变频接入系统的第一输出断路器,使第一变频接入系统的交流母线带电;闭合第二变频接入系统的第一输出断路器,使第二变频接入系统的交流母线带电;第一变频接入系统交流母线频率为f1,第二变频接入系统交流母线频率为f2;
步骤3:当有船舶接入时,识别船舶系统频率f,当f更接近于f1时,闭合与第一变频接入系统交流母线连接的出线断路器;当f更接近于f2时,闭合与第二变频接入系统交流母线连接的出线断路器。
进一步地,所述柔性接入变电站的控制方法还包括:
步骤41:如果f1与f2不相同,当第一变频系统或第二变频接入系统的交直交变换器发生过载时,通过第二变频系统或第一变频接入系统的交直交变换器和连接模块向过载的母线转移部分能量。
进一步地,所述柔性接入变电站的控制方法还包括:
步骤42:如果f1与f2相同,当第一变频系统或第二变频接入系统的交直交变换器发生故障时,故障系统所连接母线失电;闭合第二变频系统或第一变频接入系统的第二输出断路器,使失电母线重新得电;
步骤5:分开与故障母线连接的出线断路器,闭合与另一交流母线连接的出线断路器,使失电船舶重新得电。
附图说明
图1为本申请一种柔性接入变电站的第一实施例;
图2为本申请一种柔性接入变电站的第二实施例;
图3为本申请一种柔性接入变电站的第三实施例;
图4为本申请一种柔性接入变电站的第四实施例;
图5为本申请一种柔性接入变电站的第五实施例;
图6为交直交变换器的第一实施例;
图7为交直交变换器的第二实施例;
图8为连接模块为固态开关的实施例;
图9为连接模块为机械开关的实施例。
图中标号名称:1、变频接入系统;2、第一交直交变换器;3、输入变压器;4、输出变压器;5、第一输出断路器;6、交流母线;7、出线断路器;8、同期装置;9、船岸连接设备;10、连接模块;11、输入断路器;12、第一配电系统;13、第二配电系统;14、直流断路器;15、直流变压器;16、第二输出断路器。
具体实施方式
下面结合附图对本申请作进一步说明。
如图1所示的一种柔性接入变电站的第一实施例,所述柔性接入变电站包括N套变频接入系统1,N为大于等于1的整数,每套变频接入系统包括第一交直交变换器2、第一输出断路器5以及第一配电系统12,所述第一配电系统包括一条交流进线、交流母线6以及至少一条出线,所述第一交直交变换器输出侧经第一输出断路器与第一配电系统的交流进线一端连接;交流进线的另一端连接交流母线;每条出线一端连接交流母线,另一端连接出线断路器的一端,出线断路器的另一端引出定义为出线终端;所述第一交直交变换器输入侧连接上级电网;所述第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输出交流电频率和电压可调。如图6为低压二电平交直交变换器拓扑结构实施例,图7为高压多电平交直交变换器拓扑结构实施例。
由于本申请提供的柔性接入变电站包括N套变频接入系统,可以根据供电需求输出N种不同频率的电压,可实现不同频率船舶的同时接入。而现有技术的一对一供电模式中交直交变换器需要根据接入船舶的频率进行切换,例如目前船舶需要的频率包含50Hz和60Hz两种规格,现有一对一供电模式无法实现即插即用,无法实现两种频率船舶同时接入。
如图1所示,为N=1时,所述变电站仅包含一套变频接入系统。
一个示例的实施例如图3所示,当N等于2时,所述柔性接入变电站包括两套变频接入系统,分别定义为第一变频接入系统、第二变频接入系统,所述第一、二变频接入系统均包括第二输出断路器16,所述第一变频接入系统的第二输出断路器一端与第一变频接入系统的第一交直交变换器输出侧连接,另一端与第二变频接入系统的交流母线连接;所述第二变频接入系统的第二输出断路器一端与第二变频接入系统的第一交直交变换器输出侧连接,另一端与第一变频接入系统的交流母线连接;所述第一变频接入系统的出线终端与所述第二变频接入系统的出线终端一对一连接。
一个示例的实施例中,当N为大于等于2的整数时,所述柔性接入变电站还包括N-1个连接模块10,所述N个变频接入系统的交流母线之间通过N-1个连接模块形成手拉手形式的连接。如图2所示,当N=2时,两个变频接入系统的交流母线,通过一个连接模块连接。
一个示例的实施例中,所述连接模块为第二交直交变换器;所述第二交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输入与输出交流电频率和电压均可调。
一个示例的实施例中,所述连接模块为由功率半导体器件构成的固态开关或机械开关。图8为由反向并联晶闸管构成的固体开关实施例,图9为机械开关实施例。
一个示例的实施例中,所述变电站还包括输出变压器、M个输出断路器以及M个第一配电系统,所述输出变压器的原边与第一交直交变换器输出侧连接,输出变压器包含M个副边,M为大于等于1的整数,第M副边与第M输出断路器的一端连接,第M输出断路器的另一端连接对应的第一配电系统的交流进线。如图4所示,当所述变电站用于岸电系统时,存在高压上船和低压上船两种方式,M=2,两套副边绕组可以分别通过两个输出断路器连接高压、低压配电系统。
一个示例的实施例中,所述第一交直交变换器的直流侧正负极引出,连接直流配电网,所述直流配电网包括直流断路器、直流变压器以及直流负荷、电源或船舶。如图5所示,该实施例中的两套变频接入系统中第一交直交变换器的直流母线引出,与直流配电网的两端直流母线连接,该直流配电网包含直流断路器、直流变压器、储能单元和光伏发电单元。
一个示例的实施例中,所述变电站还包括储能单元,所述第一交直交变换器的直流侧与储能单元连接。在本实施例中,当第一交直交变换器为图7所示的高压多电平交直交变换器拓扑结构时,高压多电平交直交变换器包含多个功率模块,每个功率模块的直流侧与储能单元连接。
一个示例的实施例中,所述第一交直交变换器与上级电网之间还连接一个输入变压器3。
一个示例的实施例中,所述第一交直交变换器与上级电网之间还连接一个输入断路器11。
一个示例的实施例中,当所述变电站应用于船舶岸电接入时,所述出线终端连接船舶,出线终端可以通过岸船连接设备9连接船舶,所述出线断路器还配置一个同期装置8,可检测出线断路器两端电压,实现检同期合闸。
本申请还相应提出了上述柔性接入变电站的控制方法的具体实施例一,包括:当有大于一套的变频接入系统时,其中一套变频接入系统的第一交直交变换器输出过载时,第二交直交变换器控制功率方向由相邻的变频接入系统的交流母线流向过载母线。现有技术中的岸电接入系统是一对一供电,一方面,由于船舶的容量范围很大(100kW-16MW),设计岸电时需要按照最大容量设计,船舶本身的用电负荷也是波动的,使岸电系统,长时间处于低载运行的状态,造成设备利用率低、成本的浪费;另一方面,岸电的接入电源是取自原有码头配电系统,需要对现有配电系统增容,一对一的供电方式,对配电系统的容量需求过大,如有4套 10MW的岸电泊位,总增容需求即为40MW,现有码头配电系统可能由于上级电网容量的限制,无法满足增容需求,需要进行扩建,增加了增容改造的难度和成本。采用本申请提供的柔性接入变电站,能够有效避免设备利用率低、扩容困难等情形。
当其中一套变频接入系统的第一交直交变换器故障时,停止第一交直交变换器输出,第二交直交变换器由功率控制切换为电压控制,控制交直交变换器发生故障的变频接入系统的交流母线电压。在现有技术中岸电接入系统的一对一供电模式下,船舶重要负荷均是由单路供电,供电可靠性低,一旦交直交变换器故障,负荷完全失电。采用本申请提供的柔性接入变电站,能够实现多套变频接入系统的供电切换,供电可靠性显著提高。
本申请还相应提出了上述柔性接入变电站的控制方法的具体实施例二,包括:当检测到逆功率发生,即船侧向岸侧传输功率时,通过变频接入系统中的第一交直交变换器将逆功率回馈给上级电网。
本申请还相应提出了上述柔性接入变电站的控制方法的具体实施例三,包括:当检测到逆功率发生,即船侧向岸侧传输功率时,可通过变频接入系统中的第一交直交变换器将逆功率回馈给上级电网,或回馈给与第一交直交变换器直流侧连接的直流配电网。
本申请还相应提出了上述柔性接入变电站的控制方法的具体实施例四,当本申请所述变电站应用于船舶岸电接入时,所述出线终端连接船舶,为包含电源的负荷,即包含船上电源与船舶负荷,当只包含一套变频接入系统时,所述控制方法如下:
步骤1:当第一只船舶靠港接入岸电时,第一交直交变换器启动,使交流母线带电,控制交流母线电压稳定,第一交直交变换器输出频率设置为f1;
步骤2:完成船舶电缆与岸侧出线终端或岸船连接设备的连接;
步骤3:确认连接完成后,跟踪第一只船舶的电源频率,并自动调整第一交直交变换器输出频率为f1+δf;对应出线的同期装置检测出线断路器的两侧电压;δf为频率偏差;本实施例中频率偏差小于0.1Hz,在允许的频率偏差内并网可有效减少冲击。
步骤4:当满足合闸条件后,闭合出线断路器,或由船侧进行检同期合闸;
步骤5:第一交直交变换器切换控制策略,使船舶负载逐渐转移到由第一交直交变换器供电;
步骤6:第一只船舶完成岸电接入,由接入前的电源带负荷状态,变为纯负荷状态;
步骤7:当有其他船舶靠港接入岸电时,按步骤2到步骤6接入变频接入系统的交流母线。
所述步骤5的详细操作流程为:使船舶负载逐渐转移到由第一交直交变频器供电,船舶发电系统出力逐渐降低为0,船舶发电系统停机,第一交直交变频器切换回原有控制策略,控 制交流母线电压稳定。
本申请还相应提出了上述柔性接入变电站的控制方法的具体实施例五,当变电站包含两套变频接入系统时,所述控制方法如下:
步骤1:第一变频接入系统的交直交变换器启动,输出频率设置为f1;第二变频接入系统的交直交变换器启动,输出频率设置为f2;
步骤2:闭合第一变频接入系统的第一输出断路器,使第一变频接入系统的交流母线带电;闭合第二变频接入系统的第一输出断路器,使第二变频接入系统的交流母线带电;第一变频接入系统交流母线频率为f1,第二变频接入系统交流母线频率为f2;
步骤3:当有船舶接入时,识别船舶系统频率f,当f更接近于f1时,闭合与第一变频接入系统交流母线连接的出线断路器;当f更接近于f2时,闭合与第二变频接入系统交流母线连接的出线断路器;
在本实施例中f1与f2分别为50Hz和60Hz,当船舶靠港时,可通过判断船舶需求用电频率,选择出线断路器的分合。
步骤4:如果f1与f2不相同,当有一套变频接入系统的交直交变换器发生过载时,通过另一套变频接入系统的交直交变换器和连接模块向过载的母线转移部分能量;
步骤5:如果f1与f2相同,当有一套变频接入系统的交直交变换器发生故障时,故障系统所连接母线失电;闭合另一套变频接入系统的第二输出断路器,使失电母线重新得电;
步骤6:分开与故障母线连接的出线断路器,闭合与另一交流母线连接的出线断路器,使失电船舶重新得电。
本申请的有益效果:
根据一些实施例,本申请将电力系统变电站的架构引入岸电系统,提出在交直交变换器输出侧设置交流母线,交流母线连接多条出线,每条出线配置独立的出线断路器,且出线断路器配置同期装置,解决船舶并入岸电系统时的冲击问题,且在控制方法中,提出通过控制策略的切换使船舶接入实现带载转移:当船舶接入之前,船舶电力系统为电源+负荷的供电模式,在接入岸电系统后,船舶电力系统变为纯负荷,变为负荷后,不会对后面船舶接入造成影响,以此方法即可实现后面船舶的依次接入,真正意义实现了岸电交直交变换器的一对多供电以及船舶接入岸电系统的即插即用,在船舶逐个接入的过程中实现了不停电的无缝切换。由于船舶负荷的波动性,一条交流母线对应多个出线的供电方式,有利于提高供电容量的利用率,各个泊位船舶负荷可共享电能,共享变换器,降低了整个系统的设备投资成本。
根据一些实施例,本申请在多套变频接入系统之间设置了连接模块,连接模块可以是交直交变换器或开关,连接模块可以实现不同交流母线之间的互联,当连接模块为交直交变换 器时,可通过调节交直交变换器功率的流向以及大小,均衡交直流母线之间的用电出力,当一套变换器过载时,可从其他交流母线获取支援,进一步提高了变换器设备的利用率,且在其中一套变换器发生故障时,连接模块的变换器改变控制目标,可实现不间断的电源转供,失电的故障母线重新得电,实现了故障穿越,极大的提高了系统的供电可靠性。连接模块也可以为开关,可以是由功率半导体器件构成的固态开关或快速机械开关,利用备自投的原理,当一段交流母线失电后,利用快速的开关迅速闭合,实现故障穿越;
根据一些实施例,本申请还提供了包含两套变频接入系统的方案,两套变频接入系统的第一交直交变换器均通过出线断路器连接两段母线,形成双电源供电,出线终端得电均来源于两段母线,极大的提供了供电可靠性,当一段母线失电时,可以通过切换开关,实现不间断供电;而且由于岸电负荷存在50Hz/60Hz两种不同的频率,两套变换器的交流母线可以设置成不同的频率,当识别出船舶所需要的频率后,可以方便的通过切换开关,提供给船舶给定频率。
以上实施例仅用于说明本申请的技术方案而非对其限制,参照上述实施例进行的各种形式修改或变更均在本申请的保护范围之内。

Claims (20)

  1. 一种柔性接入变电站,其中,所述柔性接入变电站包括N套变频接入系统,N为大于等于1的整数,每套变频接入系统包括第一交直交变换器、第一输出断路器以及第一配电系统,所述第一配电系统包括一条交流进线、交流母线以及至少一条出线,其中,
    所述第一交直交变换器输出侧经第一输出断路器与第一配电系统的交流进线一端连接;
    交流进线的另一端连接交流母线;
    每条出线一端连接交流母线,另一端连接出线断路器的一端,出线断路器的另一端引出定义为出线终端;
    所述第一交直交变换器输入侧连接上级电网;
    所述第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输出交流电频率和电压可调。
  2. 如权利要求1所述的柔性接入变电站,其中,所述变频接入系统包括一个第一交直交变换器、一个输出变压器、M个输出断路器以及M个第一配电系统,所述输出变压器的原边与第一交直交变换器输出侧连接,输出变压器包含M个副边,M为大于等于1的整数,第M副边与第M输出断路器的一端连接,第M输出断路器的另一端连接对应的第一配电系统的交流进线。
  3. 如权利要求1或2所述的柔性接入变电站,其中,所述第一交直交变换器的直流侧正负极引出,连接直流配电网,所述直流配电网包括直流断路器、直流变压器以及直流负荷、电源或船舶。
  4. 如权利要求1-3任一项所述的柔性接入变电站,其中,所述变频接入系统还包括储能单元,所述第一交直交变换器的直流侧与所述储能单元连接。
  5. 如权利要求1-4任一项所述的柔性接入变电站,其中,所述第一交直交变换器与上级电网之间还连接一个输入变压器。
  6. 如权利要求1-5任一项所述的柔性接入变电站,其中,所述第一交直交变换器与上级电网之间还连接一个输入断路器。
  7. 如权利要求1-6任一项所述的柔性接入变电站,其中,所述出线终端连接船舶,所述出线断路器还配置一个同期装置。
  8. 如权利要求1-7任一项所述的柔性接入变电站,其中,N等于2,所述第一变频接入系统、第二变频接入系统分别包括第二输出断路器,所述第一变频接入系统的第二输出断路器一端与第一变频接入系统的第一交直交变换器输出侧连接,另一端与第二变频接入系统的交流母线连接;所述第二变频接入系统的第二输出断路器一端与第二变频接入系统的第一交 直交变换器输出侧连接,另一端与第一变频接入系统的交流母线连接。
  9. 如权利要求1-7任一项所述的柔性接入变电站,其中,N为大于等于2的整数,所述柔性接入变电站还包括N-1个连接模块,所述N个变频接入系统的交流母线之间通过N-1个连接模块形成手拉手形式的连接。
  10. 如权利要求9所述的柔性接入变电站,其中,所述连接模块包括第N变频接入系统的第一交直交变换器;所述第N变频接入系统的第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输入与输出交流电频率和电压均可调。
  11. 如权利要求9所述的柔性接入变电站,其中,所述连接模块包括由功率半导体器件构成的固态开关或机械开关。
  12. 一种柔性接入变电站的控制方法,所述柔性接入变电站包括N套变频接入系统,N为大于等于2的整数,每套变频接入系统包括第一交直交变换器、第一输出断路器、第一配电系统以及N-1个连接模块,所述第一配电系统包括一条交流进线、交流母线以及至少一条出线,所述N个变频接入系统的交流母线之间通过N-1个连接模块形成手拉手形式的连接,其中,
    所述第一交直交变换器输出侧经第一输出断路器与第一配电系统的交流进线一端连接,交流进线的另一端连接交流母线,
    每条出线一端连接交流母线,另一端连接出线断路器的一端,出线断路器的另一端引出定义为出线终端,
    所述第一交直交变换器输入侧连接上级电网,
    所述第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输出交流电频率和电压可调,
    所述连接模块包括第N变频接入系统的第一交直交变换器,所述第N变频接入系统的第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输入与输出交流电频率和电压均可调,
    其中,所述柔性接入变电站的控制方法包括:
    当第N变频接入系统的第一交直交变换器输出过载时,第N-1变频系统和/或第N+1变频系统的交直交变换器控制功率方向由相邻的变频接入系统的交流母线流向过载母线。
  13. 一种柔性接入变电站的控制方法,所述柔性接入变电站包括N套变频接入系统,N为大于等于2的整数,每套变频接入系统包括第一交直交变换器、第一输出断路器、第一配电系统以及N-1个连接模块,所述第一配电系统包括一条交流进线、交流母线以及至少一条出线,所述N个变频接入系统的交流母线之间通过N-1个连接模块形成手拉手形式的连接, 其中,
    所述第一交直交变换器输出侧经第一输出断路器与第一配电系统的交流进线一端连接,交流进线的另一端连接交流母线,
    每条出线一端连接交流母线,另一端连接出线断路器的一端,出线断路器的另一端引出定义为出线终端,
    所述第一交直交变换器输入侧连接上级电网,
    所述第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输出交流电频率和电压可调,
    所述连接模块包括第N变频接入系统的第一交直交变换器,所述第N变频接入系统的第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输入与输出交流电频率和电压均可调,
    其中,所述柔性接入变电站的控制方法包括:
    当第N变频接入系统的第一交直交变换器故障时,停止所述第一交直交变换器输出,第N-1变频系统和/或第N+1变频系统的第一交直交变换器由功率控制切换为电压控制,控制第N变频接入系统的交流母线电压。
  14. 一种柔性接入变电站的控制方法,所述柔性接入变电站包括N套变频接入系统,N为大于等于1的整数,每套变频接入系统包括第一交直交变换器、第一输出断路器以及第一配电系统,所述第一配电系统包括一条交流进线、交流母线以及至少一条出线,其中,
    所述第一交直交变换器输出侧经第一输出断路器与第一配电系统的交流进线一端连接,交流进线的另一端连接交流母线,
    每条出线一端连接交流母线,另一端连接出线断路器的一端,出线断路器的另一端引出定义为出线终端,
    所述第一交直交变换器输入侧连接上级电网,
    所述第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输出交流电频率和电压可调,
    其中,所述柔性接入变电站的控制方法包括:
    当检测到逆功率发生,通过所述变频接入系统的第一交直交变换器将逆功率回馈给上级电网。
  15. 一种柔性接入变电站的控制方法,所述柔性接入变电站包括N套变频接入系统,N为大于等于1的整数,每套变频接入系统包括第一交直交变换器、第一输出断路器以及第一配电系统,所述第一配电系统包括一条交流进线、交流母线以及至少一条出线,其中,
    所述第一交直交变换器输出侧经第一输出断路器与第一配电系统的交流进线一端连接,
    交流进线的另一端连接交流母线,
    每条出线一端连接交流母线,另一端连接出线断路器的一端,出线断路器的另一端引出定义为出线终端,
    所述第一交直交变换器输入侧连接上级电网,
    所述第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输出交流电频率和电压可调,
    所述第一交直交变换器的直流侧正负极引出,连接直流配电网,所述直流配电网包括直流断路器、直流变压器以及直流负荷、电源或船舶,
    其中,所述柔性接入变电站的控制方法包括:
    当检测到逆功率发生,通过所述变频接入系统的第一交直交变换器将逆功率回馈给上级电网或回馈给与所述第一交直交变换器直流侧连接的直流配电网。
  16. 一种柔性接入变电站的控制方法,所述柔性接入变电站包括N套变频接入系统,N为大于等于1的整数,每套变频接入系统包括第一交直交变换器、第一输出断路器以及第一配电系统,所述第一配电系统包括一条交流进线、交流母线以及至少一条出线,其中,
    所述第一交直交变换器输出侧经第一输出断路器与第一配电系统的交流进线一端连接,交流进线的另一端连接交流母线,
    每条出线一端连接交流母线,另一端连接出线断路器的一端,出线断路器的另一端引出定义为出线终端,
    所述第一交直交变换器输入侧连接上级电网,
    所述第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输出交流电频率和电压可调,
    所述出线终端连接船舶,所述出线断路器还配置一个同期装置,
    其中,所述柔性接入变电站的控制方法包括:
    步骤1:当第一只船舶靠港接入岸电时,所述第一交直交变换器启动,使交流母线带电,控制交流母线电压稳定,所述第一交直交变换器输出频率设置为f1;
    步骤2:完成船舶电缆与岸侧出线终端的连接;
    步骤3:确认连接完成后,跟踪第一只船舶的电源频率,并自动调整所述第一交直交变换器输出频率为f1+δf;对应出线的同期装置检测出线断路器的两侧电压;δf为频率偏差;
    步骤4:当满足合闸条件后,闭合出线断路器,或由船侧进行检同期合闸;
    步骤5:所述第一交直交变换器切换控制策略,使船舶负载逐渐转移到由所述第一交直 交变换器供电;
    步骤6:第一只船舶完成岸电接入,由接入前的电源带负荷状态,变为纯负荷状态;
    步骤7:当有其他船舶靠港接入岸电时,按步骤2到步骤6接入变频接入系统的交流母线。
  17. 如权利要求16所述的柔性接入变电站的控制方法,其中,所述步骤5包括:
    使船舶负载逐渐转移到由所述第一交直交变频器供电,船舶发电系统出力逐渐降低为0,船舶发电系统停机,所述第一交直交变频器切换回原有控制策略,控制交流母线电压稳定。
  18. 一种柔性接入变电站的控制方法,所述柔性接入变电站包括2套变频接入系统,每套变频接入系统包括第一交直交变换器、第一输出断路器、第二输出断路器以及第一配电系统,所述第一配电系统包括一条交流进线、交流母线以及至少一条出线,其中,
    所述第一交直交变换器输出侧经第一输出断路器与第一配电系统的交流进线一端连接,交流进线的另一端连接交流母线,
    每条出线一端连接交流母线,另一端连接出线断路器的一端,出线断路器的另一端引出定义为出线终端,
    所述第一交直交变换器输入侧连接上级电网,
    所述第一交直交变换器将输入交流电转换为直流电,再将直流电转换为输出交流电,输出交流电频率和电压可调,
    所述第一变频接入系统的第二输出断路器一端与第一变频接入系统的第一交直交变换器输出侧连接,另一端与第二变频接入系统的交流母线连接,
    所述第二变频接入系统的第二输出断路器一端与第二变频接入系统的第一交直交变换器输出侧连接,另一端与第一变频接入系统的交流母线连接,
    其中,所述柔性接入变电站的控制方法包括:
    步骤1:第一变频接入系统的交直交变换器启动,输出频率设置为f1;第二变频接入系统的交直交变换器启动,输出频率设置为f2;
    步骤2:闭合第一变频接入系统的第一输出断路器,使第一变频接入系统的交流母线带电;闭合第二变频接入系统的第一输出断路器,使第二变频接入系统的交流母线带电;第一变频接入系统交流母线频率为f1,第二变频接入系统交流母线频率为f2;
    步骤3:当有船舶接入时,识别船舶系统频率f,当f更接近于f1时,闭合与第一变频接入系统交流母线连接的出线断路器;当f更接近于f2时,闭合与第二变频接入系统交流母线连接的出线断路器。
  19. 如权利要求18所述的柔性接入变电站的控制方法,其中,所述控制方法还包括:
    步骤41:如果f1与f2不相同,当第一变频系统或第二变频接入系统的交直交变换器发生过载时,通过第二变频系统或第一变频接入系统的交直交变换器和连接模块向过载的母线转移部分能量。
  20. 如权利要求18所述的柔性接入变电站的控制方法,其中,所述控制方法还包括:
    步骤42:如果f1与f2相同,当第一变频系统或第二变频接入系统的交直交变换器发生故障时,故障系统所连接母线失电;闭合第二变频系统或第一变频接入系统的第二输出断路器,使失电母线重新得电;
    步骤5:分开与故障母线连接的出线断路器,闭合与另一交流母线连接的出线断路器,使失电船舶重新得电。
PCT/CN2020/074539 2019-03-20 2020-02-07 一种柔性接入变电站及控制方法 WO2020186936A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217019975A KR20210094630A (ko) 2019-03-20 2020-02-07 연성 접속 변전소 및 제어 방법
JP2021537175A JP2022515275A (ja) 2019-03-20 2020-02-07 フレキシブルアクセス変電所および制御方法
EP20773981.4A EP3944447A4 (en) 2019-03-20 2020-02-07 SUBSTATION WITH FLEXIBLE ACCESS AND CONTROL METHOD THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910212371.9A CN109768551A (zh) 2019-03-20 2019-03-20 一种柔性接入变电站及控制方法
CN201910212371.9 2019-03-20

Publications (1)

Publication Number Publication Date
WO2020186936A1 true WO2020186936A1 (zh) 2020-09-24

Family

ID=66459273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074539 WO2020186936A1 (zh) 2019-03-20 2020-02-07 一种柔性接入变电站及控制方法

Country Status (5)

Country Link
EP (1) EP3944447A4 (zh)
JP (1) JP2022515275A (zh)
KR (1) KR20210094630A (zh)
CN (1) CN109768551A (zh)
WO (1) WO2020186936A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768551A (zh) * 2019-03-20 2019-05-17 南京南瑞继保电气有限公司 一种柔性接入变电站及控制方法
CN110932304B (zh) * 2019-11-08 2021-10-01 南京南瑞继保工程技术有限公司 一种直流耗能装置控制系统及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090312885A1 (en) * 2008-06-11 2009-12-17 Buiel Edward R Management system for drilling rig power supply and storage system
CN105490264A (zh) * 2015-12-21 2016-04-13 辽宁绿港科技有限公司 一种船舶高压岸电系统
CN106936130A (zh) * 2017-03-23 2017-07-07 山西汾西重工有限责任公司 基于船舶直流组网的岸电接入系统及其接入方法
CN107394831A (zh) * 2017-08-29 2017-11-24 国家电网公司 一种港口交直流混联配电网及其综合调度管控方法
CN109768551A (zh) * 2019-03-20 2019-05-17 南京南瑞继保电气有限公司 一种柔性接入变电站及控制方法
CN209448429U (zh) * 2019-03-20 2019-09-27 南京南瑞继保电气有限公司 一种柔性接入变电站

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0922960A2 (pt) * 2008-12-12 2016-01-26 Abb Research Ltd sistema e aparelho para transferir energia para embarcações
EP2377220B1 (en) * 2008-12-12 2013-02-20 ABB Research Ltd. System, apparatus and method for power transfer to vessels
FR2972579B1 (fr) * 2011-03-11 2014-08-01 Schneider Electric Ind Sas Procede de configuration d'une installation de conversion d'energie electrique et installation mettant en oeuvre un tel procede
US9236739B2 (en) * 2012-03-28 2016-01-12 Unitron, L.P. Apparatus for interconnecting a ship with a port power grid
CN203119479U (zh) * 2013-02-05 2013-08-07 张建伟 一种岸基供电系统
KR101665368B1 (ko) * 2014-07-03 2016-10-12 대우조선해양 주식회사 선박과 육상 전력망 간의 전력 전달 및 분배 장치 및 방법
AU2016222134B2 (en) * 2015-02-20 2020-07-16 Noble Drilling A/S Power generation and distribution system for offshore drilling units
JP6724505B2 (ja) * 2016-04-07 2020-07-15 富士電機株式会社 船舶用陸上電源システム及び船舶への給電方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090312885A1 (en) * 2008-06-11 2009-12-17 Buiel Edward R Management system for drilling rig power supply and storage system
CN105490264A (zh) * 2015-12-21 2016-04-13 辽宁绿港科技有限公司 一种船舶高压岸电系统
CN106936130A (zh) * 2017-03-23 2017-07-07 山西汾西重工有限责任公司 基于船舶直流组网的岸电接入系统及其接入方法
CN107394831A (zh) * 2017-08-29 2017-11-24 国家电网公司 一种港口交直流混联配电网及其综合调度管控方法
CN109768551A (zh) * 2019-03-20 2019-05-17 南京南瑞继保电气有限公司 一种柔性接入变电站及控制方法
CN209448429U (zh) * 2019-03-20 2019-09-27 南京南瑞继保电气有限公司 一种柔性接入变电站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3944447A4 *

Also Published As

Publication number Publication date
KR20210094630A (ko) 2021-07-29
EP3944447A4 (en) 2023-01-25
CN109768551A (zh) 2019-05-17
EP3944447A1 (en) 2022-01-26
JP2022515275A (ja) 2022-02-17

Similar Documents

Publication Publication Date Title
EP3651305A1 (en) Chained multi-port grid-connected interface apparatus and control method
CN110582916B (zh) 充电系统和方法
JP5465255B2 (ja) 船に電力を伝達するシステムおよび装置
KR101931138B1 (ko) 선박 상에서의 전력 분배
US7652393B2 (en) Apparatus and method for employing a DC source with an uninterruptible power supply
US20170133858A1 (en) Power system for offshore applications
WO2020186936A1 (zh) 一种柔性接入变电站及控制方法
EP2621076B1 (en) Multicell AC/DC power converter with isolated DC/DC converter stages
CN112383229A (zh) 多端口电力电子变压器拓扑结构及其交直流微电网系统
WO2017000994A1 (en) Power transmission arrangement and method for operating a power transmission arrangement
CN213585598U (zh) 多端口电力电子变压器拓扑结构及其交直流微电网系统
CN209448429U (zh) 一种柔性接入变电站
CN219513973U (zh) 用于大电流负载的供电装置和具有供电装置的设备
CN110710078A (zh) 供电系统和方法
CN114825576A (zh) 一种高效交直流混合不间断供电系统
JP2001047894A (ja) 交流き電装置及び交流き電装置の制御方法
US20230017075A1 (en) Power supply unit and loop power supply system
JP2000083330A (ja) 分散型電源設備
CN110445134B (zh) 一种柔性合环装置
CN105978134B (zh) 一种用于交流配电系统的不间断电力交换器
WO2022141395A1 (zh) 数据中心供配电系统
CN113078635B (zh) 一种多端口背靠背式无缝合环转电装置及方法
CN113746194B (zh) 一种双柔直单元分送输电系统及其电气连接方法
RU111363U1 (ru) Электроэнергетическая система
CN110932254B (zh) 一种多重冗余供电控制系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537175

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217019975

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020773981

Country of ref document: EP

Effective date: 20211020