WO2020186716A1 - 一种高灰细粒煤泥分选装置及方法 - Google Patents

一种高灰细粒煤泥分选装置及方法 Download PDF

Info

Publication number
WO2020186716A1
WO2020186716A1 PCT/CN2019/106918 CN2019106918W WO2020186716A1 WO 2020186716 A1 WO2020186716 A1 WO 2020186716A1 CN 2019106918 W CN2019106918 W CN 2019106918W WO 2020186716 A1 WO2020186716 A1 WO 2020186716A1
Authority
WO
WIPO (PCT)
Prior art keywords
flotation
particles
flotation column
coal
feeding
Prior art date
Application number
PCT/CN2019/106918
Other languages
English (en)
French (fr)
Inventor
邢耀文
桂夏辉
张友飞
徐梦迪
丁世豪
曹亦俊
刘炯天
夏灵勇
张翠艳
刘瑞山
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2020186716A1 publication Critical patent/WO2020186716A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines

Definitions

  • the invention relates to a high-ash fine-grained coal slime separation device and method, and is particularly suitable for a high-ash and fine-grained coal slime separation device and method used in the field of slime flotation devices.
  • the devices mainly used in the flotation process are flotation machines and flotation columns.
  • the flotation machine As the most widely used flotation device today, the flotation machine has the advantages of high recovery rate and ideal recovery of coarse particles. However, its natural structure determines the characteristics of its separation time and short stroke, resulting in the flotation of clean coal. Disadvantages such as poor quality and poor recovery of fine particles.
  • the flotation column benefits from its design with a longer capture area and a thicker foam layer, which results in better clean coal quality, but it also has poor recovery of coarse particles, serious coal gangue entrainment, and domestic flotation.
  • the poor automatic control device of column selection makes it difficult to be widely used like a flotation machine.
  • the flotation device for high ash and refractory coal slime of the present invention includes a columnar structure, the top of the columnar structure is equipped with a foam sprinkler device, and the columnar structure is provided with a clean coal overflow trough that covers the entire foam sprinkler device , The bottom of the clean coal overflow tank is provided with a clean coal discharge port, and the center of the columnar structure is provided with a feed pipe axially.
  • One end of the feed pipe is the flotation column inlet and extends through the clean coal overflow tank.
  • the other end is equipped with a feeding device, the feeding device is a plurality of small feeding pipes with a circular pipe as the center of the circle, which are radioactively distributed.
  • There are two groups of small feeding pipes, and the two groups are respectively welded to different positions of the feeding pipe.
  • the outlets of the two sets of small feeding pipes are on different circles on the same plane to achieve uniform feeding;
  • the two sets of filling devices are respectively arranged between the feeding device and the foam showering device.
  • the filling device is a closely arranged cylindrical structure, and the cylindrical structure is connected up and down. The whole is honeycomb-shaped, it is an assemblable structure and is not directly connected to the column.
  • a flotation column with an inverted funnel structure is arranged below the column structure, and the flotation column is attached to the inner wall with the flotation column.
  • the bottom of the flotation column is equipped with a medium ore discharge device, the bottom of the medium ore discharge device is equipped with a sweeping section, the bottom of the sweeping section is a funnel structure, and the bottom of the funnel structure is equipped with an underflow port, a funnel
  • a flotation tube in the upper tangential direction of the structure, and an external outlet in the lower tangential direction.
  • the external outlet is sequentially cracked through the pipeline with a circulation pump and a microbubble generator;
  • each hydrocyclone is equipped with a feed interface, which is connected to the discharge port of the mine, and each hydrocyclone overflows
  • the port is directly connected to the outside, and the overflow product is used as the final medium ore; the underflow port is connected with the inlet of the flotation column of the feed pipe.
  • the feeding device includes a plurality of small feeding pipes arranged radioactively around the feeding pipe.
  • the small feeding pipes are divided into two groups.
  • the two groups are welded on the feeding pipe at different positions of the feeding pipe, alternately.
  • the two sets of small feeding pipes are set up and the tail ends are on the same plane, so that the final feeding of the two sets of small feeding pipes is on different circumferences of the same plane to achieve uniform feeding.
  • the bottom of the middle ore discharging device is a circle of discharge trough surrounding the sweeping section, and the discharging trough is connected with the middle ore discharging port of the hydrocyclone through a pipeline.
  • the hydrocyclone is a small-diameter desliming cyclone, and the number is adjusted according to the fine-grained ash content and the processing capacity of the cyclone device; the cyclone desliming device is suspended on the clean coal overflow trough by welding Externally, the hydrocyclone is integrated with the flotation column.
  • the spray water washing device is composed of a set of circular water pipes with the center of the circle close to the inner wall of the flotation column.
  • the circular water pipe is connected by four straight water pipes close to the inner wall.
  • the area where the spray water washing device is located is In the pool area, the countercurrent collisions between particles and bubbles mainly occur in the reform area.
  • the spray water washing device is composed of a group of circular water pipes with the center of the circle close to the inner wall of the flotation column, and the circular water pipes are connected by multiple straight water pipes close to the inner wall.
  • a flotation method for high-ash refractory slime the steps are as follows:
  • the raw materials are fed in from the inlet of the flotation column. After the raw materials enter the feeding tube through the inlet of the flotation column, the particles sink with the liquid to the sweeping section, and fall into the bottom flow bucket-shaped draft tube in the sweeping section.
  • Discharge through the outer outlet of the bottom flow bucket-shaped draft tube to form the discharged slurry use the pipeline to enter the circulating pump and give power, and then quickly discharge the slurry through the microbubble generator, thereby generating a large number of microbubbles in the discharged slurry and increasing the discharge of the ore in the slurry
  • the slurry is discharged from the tangential cyclone tube to the sweeping section of the flotation column and swirling is generated in the sweeping section.
  • the gangue with high density in the slurry enters the underflow with the outer spiral, and is finally discharged through the underflow opening to become tailings;
  • the higher density is the same as the foam rises from the internal swirling flow to the catching area immediately below the spray water washing device.
  • the rising slurry foam meets and collides with the next batch of incoming particles, and all the ore generated after the collision
  • the foam rises to form a foam layer.
  • the foam layer is the upper limit of the trapping area
  • the scanning section of the flotation column is the lower limit of the trapping area.
  • the spray water washing device on the inner wall of the column produces a downward water flow to wash the foam layer to make the foam
  • the denser foam in the layer is forced to flow down to the China Mine’s discharge device for discharge, and is finally discharged from the China Mine’s discharge port through the pipeline.
  • coal particles with large particle size Due to the probability of collision and desorption, some coal particles with large particle sizes will be discharged and discharged
  • the coal particles with large particle size enter the hydrocyclone for classification.
  • the overflow is used as the final medium mineral product.
  • the overflow is directly connected to the outside.
  • the underflow port of the hydrocyclone classification enters the flotation column through the flotation column inlet.
  • the column is sorted again; the particles finally attached to the bubbles continue to rise to the liquid surface to gather and form a foam layer.
  • the filling device increases the stability of the foam layer through the densely arranged cylindrical honeycomb structure, while the foam shower device is used for the foam layer. Water is sprayed so that the gangue particles in the foam layer sink to the trap area for re-sorting.
  • the ore discharge device is grading, the overflow is used as medium ore, and the underflow becomes flotation again, which can greatly reduce the loss of coarse coal;
  • a filling device at the foam layer which can effectively maintain the shape of the foam layer and ensure precision Coal ash content can effectively reduce the loss of clean coal;
  • the final product is a three-product, which can optimize the final product structure of the process.
  • Fig. 1 is a schematic diagram of the structure of the flotation device for high-ash refractory slime according to the present invention.
  • Figure 2 is a schematic view of the structure of the foam spray device of the present invention.
  • Fig. 3(a) is a front view of the internal spray water washing device of the present invention.
  • Fig. 3(b) is a top view of the internal spray water washing device of the present invention.
  • Figure 4(a) is a front view of the flotation column feeding device of the present invention.
  • Figure 4(b) is a top view of the flotation column feeding device of the present invention.
  • Figure 5(a) is a schematic diagram of the mechanism of the cyclone desliming device of the present invention.
  • Fig. 5(b) is a top view of the mechanism of the cyclone desliming device of the present invention.
  • the high-ash refractory slime flotation device of the present invention includes a columnar structure.
  • the top of the columnar structure is equipped with a foam sprinkler 1 and the columnar structure is provided with foam sprinklers.
  • the clean coal overflow trough 2 covered by the device 1 as a whole.
  • the clean coal overflow trough 2 is provided with a clean coal discharge port B at the bottom.
  • a feed pipe 5 is axially provided at the center of the columnar structure, and one end of the feed pipe 5 In order to extend the flotation column inlet A through the clean coal overflow tank 2, there is a feeding device at the other end.
  • the feeding device is a plurality of small feeding pipes with a circular pipe as the center of the circle, which is radioactive.
  • the feeding device includes multiple small feeding pipes arranged radioactively around the feeding pipe 5.
  • the small feeding pipes are divided into two groups, and the two groups are located at different positions of the feeding pipe. Welded on the feeding pipe 5, alternately arranged and the tail ends of the two groups of small feeding pipes are on the same plane, so that the final feeding of the two groups of small feeding pipes is on different circumferences of the same plane to achieve uniform feeding;
  • the filling device 3 is a closely arranged cylindrical structure. The structure is connected up and down, and the whole is honeycomb. It is an assembleable structure and is not directly connected to the column.
  • Below the columnar structure is a flotation column 4 with an inverted funnel structure, as shown in Figure 3(a) and Figure 3( b)
  • the inside of the flotation column body 4 is provided with an internal spray water washing device 6 matched with the flotation column body 4, and a medium ore discharge device 7 is provided under the flotation column body 4,
  • the bottom of the ore discharge device 7 is equipped with a sweeping section 8.
  • the bottom of the sweeping section 8 is a funnel structure.
  • the bottom of the funnel structure is provided with an underflow port D.
  • a flotation tube is provided tangentially above the funnel structure, and an external outlet E is provided tangentially below.
  • the external outlet E has a circulation pump 10 and a microbubble generator 9 for sequential cracking through pipelines;
  • a plurality of hydrocyclones 12 are respectively arranged above the side wall of the clean coal overflow tank 2, and each hydrocyclone 12 is provided with a feed interface,
  • the material interface is connected to the discharge port C of the medium ore, the overflow port of each hydrocyclone 12 is directly connected to the outside, and the overflow product is used as the final medium ore; the underflow port is in phase with the flotation column inlet A of the feed pipe 5 connection.
  • the bottom of the middle ore discharge device 7 is a circle of discharge troughs surrounding the sweep section 8.
  • the discharge trough is connected to the middle ore discharge port C of the hydrocyclone 12 through a pipeline, and the hydrocyclone 12 is a small
  • the diameter of the desliming cyclone is adjusted according to the fine-grained ash content and the processing capacity of the cyclone device; the cyclone desliming device 12 is suspended outside the clean coal overflow tank 2 by welding to make the hydrocyclone
  • the device 12 is integrated with the flotation column.
  • the spray water washing device 6 is composed of a set of circular water pipes with the center of the circle close to the inner wall of the flotation column.
  • the circular water pipes are connected by four straight water pipes close to the inner wall.
  • the area where the spray water washing device 6 is located In order to capture the area, the countercurrent collisions between particles and bubbles mainly occur in the modified area.
  • the spray water washing device 6 is composed of a set of circular water pipes with the center of the center and coaxial close to the inner wall of the flotation column cylinder 4, and the circular water pipes are composed of A plurality of straight water pipes close to the inner wall are connected.
  • a flotation method for high-ash refractory slime the steps are as follows:
  • the raw materials are fed from the flotation column inlet A. After the raw materials enter the feeding pipe 5 through the flotation column inlet A, the particles sink with the liquid to the sweep section 8, and fall into the bottom flow bucket-shaped guide in the sweep section 8. In the flow pipe 11, it is finally discharged through the outer outlet E of the bottom flow bucket-shaped draft tube 11 to form a discharged slurry, which is used to enter the circulating pump 10 and give power, and then the slurry is quickly discharged through the microbubble generator 9 to be discharged in the slurry A large number of microbubbles are produced and the mineralized bubbles in the discharged slurry are increased, and then the slurry is discharged from the tangential cyclone tube to the flotation column sweeping section 8 and swirling is generated in the sweeping section 8. The gangue with high density in the slurry spirals in with the outside. The underflow is finally discharged through the underflow port D to become tailings;
  • the higher density is the same as the foam rises from the internal swirling flow to the catching area immediately below the spray water washing device 6.
  • the rising pulp foam meets and collides with the next batch of incoming particles, and all generated after the collision
  • the mineralized foam floats up to form a foam layer.
  • the foam layer is the upper limit of the trapping area
  • the flotation column sweep section 8 is the lower limit of the trapping area.
  • the spray water washing device 6 on the inner wall of the column produces a downward flow to wash the foam layer.
  • the denser foam in the foam layer is forced to flow down to the China Mine discharge device 7 to be discharged, and finally discharged from the China Mine discharge port C through the pipeline.
  • the overflow is used as the final medium mineral product.
  • the overflow port C is directly connected to the outside, and the hydrocyclone 12 classification underflow port is
  • the flotation column inlet A enters the flotation column for re-sorting; the particles finally attached to the bubbles continue to rise to the liquid level and gather to form a foam layer.
  • the filling device 3 increases the stability of the foam layer through the closely arranged cylindrical honeycomb structure , And the foam water spraying device 1 sprays water on the foam layer, so that the gangue particles in the foam layer sink to the trap area for re-sorting.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种高灰细粒煤泥分选装置及方法,包括柱状结构,柱状结构顶端内设有泡沫淋水装置(1),精煤溢流槽(2)底部设有精煤排料口(B),柱状结构的圆心处轴向设有给料管(5),给料管(5)设有入料装置,在给料管(5)上分别串有两组充填装置(3),充填装置(3)为紧密排列的圆筒结构,圆筒结构上下导通,内部贴壁设有与浮选柱柱体(4)匹配的内部喷淋水洗涤装置(6),浮选柱柱体(4)下方设有中矿排料装置(7),中矿排料装置(7)底部设有扫选段(8),外部出口(E)通过管路顺序连接有循环泵(10)和微泡发生器(9);精煤溢流槽(2)侧壁上方分别设有多个水力旋流器(12),每个水力旋流器(12)均设有入料接口,入料接口与中矿排料口(C)相连。该高灰细粒煤泥分选装置及分选方法均能有效提升高灰难选煤泥浮选产品的回收率及精煤质量,减少煤粒中的粗颗粒损失。

Description

一种高灰细粒煤泥分选装置及方法 技术领域
本发明涉及一种高灰细粒煤泥分选装置及方法,尤其适用于煤泥的浮选装置领域使用的高灰细粒煤泥分选装置及方法。
背景技术
随着近年来我国资源情况的恶化,以及煤炭开采技术的进步,我国所开采的原煤的灰分逐年上升;而现今占绝对主流的重介工艺又会加剧次生煤泥、破碎煤泥等的产生,原料及工艺的双重作用下加大了工艺中对难选煤泥在处理量及处理效果两方面的要求,在整体工艺中则主要是对浮选工序的要求。
现今主要用于浮选工序的装置为浮选机、浮选柱。浮选机作为现今使用最为广泛的浮选装置,拥有回收率高、粗粒回收效果理想等优点,但其天生的结构决定了其分选时间及行程短等特点,从而造成了浮选精煤质量差、细粒回收效果差等缺点。浮选柱则得益于其设计有较长的捕集区及较厚的泡沫层,从而有较好的精煤质量,但也使其有粗粒回收差、矸石带煤严重、加之国内浮选柱的自动控制装置差,使之难以如浮选机般运用广泛。对于高灰难选煤泥,一般的装置常造成浮选机虽有较好的回收效果但精煤灰分过高且尾矿中细粒煤较多而灰分过低,而浮选柱虽能保证较好的精煤灰分,但精煤回收率不甚理想且“跑粗”严重。专利公号为:CN101757982A的一种煤泥分选工艺,虽考虑到煤炭内连生体对煤炭灰分及回收的影响,可有效提升精煤质量及回收率,但过度的细磨会造成如料中细泥过多,而泡沫对细粒的选择性差,可能会污染精煤,且该工艺并未解决传统浮选装置的弊端,此外,过于复杂的工艺对于厂内的占地、投资及管理皆有弊端,故而开发一种占地小而效果好的适用于高灰难选煤泥的浮选装置极有必要。
发明内容
技术问题:针对上述技术问题,提供一种占地面积小、结构紧凑而处理效果优异且处理量大的高灰细粒煤泥分选装置及方法。
技术方案:本发明的高灰难选煤泥浮选装置,包括柱状结构,柱状结构顶端内设有泡沫淋水装置,柱状结构上设有将泡沫淋水装置整个罩住的精煤溢流槽,精煤溢流槽底部设有精煤排料口,柱状结构的圆心处轴向设有给料管,所述给料管一端为浮选柱入料口穿过精煤溢流槽延伸出去,另一端设有入料装置,入料装置为多根小入料管以圆形管路为圆心呈放射性分布,小入料管共有两组,两组分别与入料管的不同位置焊接,两组小入料管的出口处于在同一平面的不同圆周上,以达到入料的均匀;
在给料管上分别串有两组充填装置,所述两组充填装置分别设置在入料装置与沫淋水装置之间,充填装置为紧密排列的圆筒结构,圆筒结构上下导通,整体呈蜂窝状,为可组装结构,不与柱体直接连接,所述柱状结构下方设有倒漏斗结构的浮选柱柱体,浮选柱柱体内部贴壁设有与浮选柱柱体匹配的内部喷淋水洗涤装置,浮选柱柱体下方设有中矿排料装置,中矿排料装置底部设有扫选段,扫选段底部为漏斗结构,漏斗结构下方设有底流口,漏斗结构的上方切向设有浮选管、下方切向设有外部出口,外部出口通过管路顺序裂解有循环泵和微泡发生器;
精煤溢流槽侧壁上方分别设有多个水力旋流器,每个水力旋流器均设有入料接口,入料接口与中矿排料口相连,每个水力旋流器溢流口直接与外部连接,溢流产品作为最终中矿;底流口与给料管的浮选柱入料口相连接。
所述的入料装置包括多根围绕给料管设置呈放射性设置的小入料管,小入料管共分两组,两组分别于入料管的不同位置焊接在给料管上,交替设置且两组小入料管尾端处于同一平面上,使两组小入料管的最终入料在同一平面的不同圆周上,以达到入料的均匀。
所述中矿排料装置底部为围绕扫选段的一圈排出槽,排出槽通过管路与水力旋流器的中矿排料口相连接。
所述水力旋流器为小直径的脱泥旋流器,根据细粒级灰分以及旋流器装置的处理能力来调整个数;旋流器脱泥装置通过焊接方式悬挂于精煤溢流槽外部,使得水力旋流器与浮选柱成一整体。
所述喷淋水洗涤装置为一组紧贴浮选柱内壁的圆心同轴的圆形水管组成,圆形水管组成由四根紧贴内壁的直水管连接,喷淋水洗涤装置所在区域为捕集区,颗粒气泡间的逆流碰撞主要发生在改区域。
喷淋水洗涤装置为一组紧贴浮选柱柱体内壁的圆心同轴的圆形水管组成,圆形水管组成由多根根紧贴内壁的直水管连接。
一种高灰难选煤泥浮选方法,其步骤如下:
开机后原料由浮选柱入料口给入,原料经浮选柱入料口进入给料管后颗粒随液体下沉至扫选段,落入扫选段中的底流斗形导流管中,最终通过底流斗形导流管的外部出口排出形成排出矿浆,利用管路进入循环泵并给予动力,而后迅速排出矿浆通过微泡发生器,从而在排出矿浆中产生大量微泡同时增加排出矿浆中矿化气泡,而后排出矿浆由切向旋流管给入浮选柱扫选段并于扫选段内产生旋流,矿浆中密度大的矸石随外螺旋入底流,最终通过随底流口排出成为尾矿;
密度较高者则同泡沫由内旋流上升至紧邻喷淋水洗涤装置下方的捕集区,上升的矿浆泡 沫与与下一批次的入料颗粒相遇并发生碰撞,碰撞后生成的所有矿化泡沫上浮形成泡沫层,泡沫层为捕集区的上限,浮选柱扫选段为捕集区的下限,此时柱体内壁的喷淋水洗涤装置产生下行水流对泡沫层进行洗涤,使泡沫层中密度较大泡沫强制下流至中矿排料装置排出,并通过管路最终由中矿排料口排出,由于存在碰撞概率和脱附概率,所以部分粒度大的煤粒会被排出,排出的粒度大的煤粒则进入水力旋流器分级,其溢流作为最终的中矿产品,溢流口直接与外部相连,而水力旋流器分级底流口则由浮选柱入料口进入浮选柱再次分选;与气泡最终依附的颗粒继续则上升至液面集聚形成泡沫层,充填装置通过紧密排列的圆筒结构蜂窝结构增加泡沫层的稳定性,而泡沫淋水装置则对泡沫层进行淋水,从而使泡沫层中矸石颗粒下沉至捕集区再次分选,在水流作用下,粘附于泡沫层的矸石颗粒会被冲洗掉,掉出泡沫层,下沉至矿浆中,合格的物料则流入精煤溢流槽,由精煤排料口排出,完成第一次的高灰难选煤泥浮选;
再次由浮选柱入料口入料,原料进入给料管后,先与紧邻喷淋水洗涤装置下方捕集区中上一次入料所产生的上浮气泡相逆流碰撞,原料中未被粘附的颗粒,包括矸石颗粒和部分未粘附的煤粒,随液体下沉至扫选段,之后重复上述步骤进行浮选;而被粘附在上浮气泡的颗粒则会直接上升至泡沫层,经泡沫淋水装置的二次分选后,作为合格的煤粒由溢流槽排出,泡沫层中矸石颗粒则下沉至浮选柱的矿浆中。
有益效果:
a、在浮选柱入料区上部泡沫层内侧有喷淋水洗涤装置,使灰分较高而不达标颗粒从中矿装置排出,有效控制精煤灰分;b、使用旋流器对浮选柱中矿排料装置进行分级,溢流做中矿,底流再次成为浮选如料,可大幅减少粗粒煤的损失;c、泡沫层处有充填装置,可有效保持泡沫层的形态,既保证精煤灰分,有可有效减少精煤损失;d、最终产品为三产品,可优化工艺的最终产品结构。
附图说明
图1是本发明的高灰难选煤泥浮选装置结构示意图。
图2是本发明的泡沫喷淋装置结构示意图。
图3(a)是本发明的内部喷淋水洗涤装置正视图。
图3(b)是本发明的内部喷淋水洗涤装置俯视图。
图4(a)是本发明的浮选柱入料装置正视图。
[根据细则91更正 14.10.2019] 
图4(b)是本发明的浮选柱入料装置俯视图。
图5(a)是本发明的旋流器脱泥装置的机构示意图。
[根据细则91更正 14.10.2019] 
图5(b)是本发明的旋流器脱泥装置的机构俯视图。
图中:1-泡沫淋水装置,2-精煤溢流槽,3-充填装置,4-浮选柱柱体,5-给料管,6-内部喷淋水洗涤装置,7-中矿排料装置,8-扫选段,9-微泡发生器,10-循环泵,11-底流斗形导流 管,12-水力旋流器,A-浮选柱入料口,B-精煤排料口,C-中矿排料口,D-底流口,E-外部出口。
具体实施方式
下面结合附图对本发明的实施作进一步的描述:
如图1所示,本发明的高灰难选煤泥浮选装置,包括柱状结构,如图2所示,柱状结构顶端内设有泡沫淋水装置1,柱状结构上设有将泡沫淋水装置1整个罩住的精煤溢流槽2,精煤溢流槽2底部设有精煤排料口B,柱状结构的圆心处轴向设有给料管5,所述给料管5一端为浮选柱入料口A穿过精煤溢流槽2延伸出去,另一端设有入料装置,入料装置为多根小入料管以圆形管路为圆心呈放射性分布,小入料管共有两组,两组分别与入料管的不同位置焊接,两组小入料管的出口处于在同一平面的不同圆周上,以达到入料的均匀;如图4(a)和图4(b)所示,所述的入料装置包括多根围绕给料管5设置呈放射性设置的小入料管,小入料管共分两组,两组分别于入料管的不同位置焊接在给料管5上,交替设置且两组小入料管尾端处于同一平面上,使两组小入料管的最终入料在同一平面的不同圆周上,以达到入料的均匀;
在给料管5上分别串有两组充填装置3,所述两组充填装置3分别设置在入料装置与沫淋水装置1之间,充填装置3为紧密排列的圆筒结构,圆筒结构上下导通,整体呈蜂窝状,为可组装结构,不与柱体直接连接,所述柱状结构下方设有倒漏斗结构的浮选柱柱体4,如图3(a)和图3(b所示,)浮选柱柱体4内部贴壁设有与浮选柱柱体4匹配的内部喷淋水洗涤装置6,浮选柱柱体4下方设有中矿排料装置7,中矿排料装置7底部设有扫选段8,扫选段8底部为漏斗结构,漏斗结构下方设有底流口D,漏斗结构的上方切向设有浮选管、下方切向设有外部出口E,外部出口E通过管路顺序裂解有循环泵10和微泡发生器9;
如图5(a)和图5(b)所示,精煤溢流槽2侧壁上方分别设有多个水力旋流器12,每个水力旋流器12均设有入料接口,入料接口与中矿排料口C相连,每个水力旋流器12溢流口直接与外部连接,溢流产品作为最终中矿;底流口与给料管5的浮选柱入料口A相连接。
所述中矿排料装置7底部为围绕扫选段8的一圈排出槽,排出槽通过管路与水力旋流器12的中矿排料口C相连接,所述水力旋流器12为小直径的脱泥旋流器,根据细粒级灰分以及旋流器装置的处理能力来调整个数;旋流器脱泥装置12通过焊接方式悬挂于精煤溢流槽2外部,使得水力旋流器12与浮选柱成一整体。
所述喷淋水洗涤装置6为一组紧贴浮选柱内壁的圆心同轴的圆形水管组成,圆形水管组成由四根紧贴内壁的直水管连接,喷淋水洗涤装置6所在区域为捕集区,颗粒气泡间的逆流碰撞主要发生在改区域,喷淋水洗涤装置6为一组紧贴浮选柱柱体4内壁的圆心同轴的圆形 水管组成,圆形水管组成由多根根紧贴内壁的直水管连接。
一种高灰难选煤泥浮选方法,其步骤如下:
开机后原料由浮选柱入料口A给入,原料经浮选柱入料口A进入给料管5后颗粒随液体下沉至扫选段8,落入扫选段8中的底流斗形导流管11中,最终通过底流斗形导流管11的外部出口E排出形成排出矿浆,利用管路进入循环泵10并给予动力,而后迅速排出矿浆通过微泡发生器9,从而在排出矿浆中产生大量微泡同时增加排出矿浆中矿化气泡,而后排出矿浆由切向旋流管给入浮选柱扫选段8并于扫选段8内产生旋流,矿浆中密度大的矸石随外螺旋入底流,最终通过随底流口D排出成为尾矿;
密度较高者则同泡沫由内旋流上升至紧邻喷淋水洗涤装置6下方的捕集区,上升的矿浆泡沫与与下一批次的入料颗粒相遇并发生碰撞,碰撞后生成的所有矿化泡沫上浮形成泡沫层,泡沫层为捕集区的上限,浮选柱扫选段8为捕集区的下限,此时柱体内壁的喷淋水洗涤装置6产生下行水流对泡沫层进行洗涤,使泡沫层中密度较大泡沫强制下流至中矿排料装置7排出,并通过管路最终由中矿排料口C排出,由于存在碰撞概率和脱附概率,所以部分粒度大的煤粒会被排出,排出的粒度大的煤粒则进入水力旋流器12分级,其溢流作为最终的中矿产品,溢流口C直接与外部相连,而水力旋流器12分级底流口则由浮选柱入料口A进入浮选柱再次分选;与气泡最终依附的颗粒继续则上升至液面集聚形成泡沫层,充填装置3通过紧密排列的圆筒结构蜂窝结构增加泡沫层的稳定性,而泡沫淋水装置1则对泡沫层进行淋水,从而使泡沫层中矸石颗粒下沉至捕集区再次分选,在水流作用下,粘附于泡沫层的矸石颗粒会被冲洗掉,掉出泡沫层,下沉至矿浆中,合格的物料则流入精煤溢流2槽,由精煤排料口B排出,完成第一次的高灰难选煤泥浮选;
再次由浮选柱入料口A入料,原料进入给料管5后,先与紧邻喷淋水洗涤装置6下方捕集区中上一次入料所产生的上浮气泡相逆流碰撞,原料中未被粘附的颗粒,包括矸石颗粒和部分未粘附的煤粒,随液体下沉至扫选段8,之后重复上述步骤进行浮选;而被粘附在上浮气泡的颗粒则会直接上升至泡沫层,经泡沫淋水装置1的二次分选后,作为合格的煤粒由溢流槽2排出,泡沫层中矸石颗粒则下沉至浮选柱的矿浆中。

Claims (7)

  1. 一种高灰难选煤泥浮选装置,其特征在于:它包括柱状结构,柱状结构顶端内设有泡沫淋水装置(1),柱状结构上设有将泡沫淋水装置(1)整个罩住的精煤溢流槽(2),精煤溢流槽(2)底部设有精煤排料口(B),柱状结构的圆心处轴向设有给料管(5),所述给料管(5)一端为浮选柱入料口(A)穿过精煤溢流槽(2)延伸出去,另一端设有入料装置,入料装置为多根小入料管以圆形管路为圆心呈放射性分布,小入料管共有两组,两组分别与入料管的不同位置焊接,两组小入料管的出口处于在同一平面的不同圆周上,以达到入料的均匀;
    在给料管(5)上分别串有两组充填装置(3),所述两组充填装置(3)分别设置在入料装置与沫淋水装置(1)之间,充填装置(3)为紧密排列的圆筒结构,圆筒结构上下导通,整体呈蜂窝状,为可组装结构,不与柱体直接连接,所述柱状结构下方设有倒漏斗结构的浮选柱柱体(4),浮选柱柱体(4)内部贴壁设有与浮选柱柱体(4)匹配的内部喷淋水洗涤装置(6),浮选柱柱体(4)下方设有中矿排料装置(7),中矿排料装置(7)底部设有扫选段(8),扫选段(8)底部为漏斗结构,漏斗结构下方设有底流口(D),漏斗结构的上方切向设有浮选管、下方切向设有外部出口(E),外部出口(E)通过管路顺序裂解有循环泵(10)和微泡发生器(9);
    精煤溢流槽(2)侧壁上方分别设有多个水力旋流器(12),每个水力旋流器(12)均设有入料接口,入料接口与中矿排料口(C)相连,每个水力旋流器(12)溢流口直接与外部连接,溢流产品作为最终中矿;底流口与给料管(5)的浮选柱入料口(A)相连接。
  2. 根据权利要求1所述的高灰难选煤泥浮选装置,其特征在于:所述的入料装置包括多根围绕给料管(5)设置呈放射性设置的小入料管,小入料管共分两组,两组分别于入料管的不同位置焊接在给料管(5)上,交替设置且两组小入料管尾端处于同一平面上,使两组小入料管的最终入料在同一平面的不同圆周上,以达到入料的均匀。
  3. 根据权利要求1所述的高灰难选煤泥浮选装置,其特征在于:所述中矿排料装置(7)底部为围绕扫选段(8)的一圈排出槽,排出槽通过管路与水力旋流器(12)的中矿排料口(C)相连接。
  4. 根据权利要求1所述的高灰难选煤泥浮选装置,其特征在于:所述水力旋流器(12)为小直径的脱泥旋流器,根据细粒级灰分以及旋流器装置的处理能力来调整个数;旋流器脱泥装置(12)通过焊接方式悬挂于精煤溢流槽(2)外部,使得水力旋流器(12)与浮选柱成一整体。
  5. 根据权利要求1所述的高灰难选煤泥浮选装置,其特征在于:所述喷淋水洗涤装置(6)为一组紧贴浮选柱内壁的圆心同轴的圆形水管组成,圆形水管组成由四根紧贴内壁的直水管 连接,喷淋水洗涤装置(6)所在区域为捕集区,颗粒气泡间的逆流碰撞主要发生在改区域。
  6. 根据权利要求1所述的高灰难选煤泥浮选装置,其特征在于:喷淋水洗涤装置(6)为一组紧贴浮选柱柱体(4)内壁的圆心同轴的圆形水管组成,圆形水管组成由多根根紧贴内壁的直水管连接。
  7. 一种使用上述任意权利要求1所述高灰难选煤泥浮选装置的高灰难选煤泥浮选方法,其特征在于步骤如下:
    开机后原料由浮选柱入料口(A)给入,原料经浮选柱入料口(A)进入给料管(5)后颗粒随液体下沉至扫选段(8),落入扫选段(8)中的底流斗形导流管(11)中,最终通过底流斗形导流管(11)的外部出口(E)排出形成排出矿浆,利用管路进入循环泵(10)并给予动力,而后迅速排出矿浆通过微泡发生器(9),从而在排出矿浆中产生大量微泡同时增加排出矿浆中矿化气泡,而后排出矿浆由切向旋流管给入浮选柱扫选段(8)并于扫选段(8)内产生旋流,矿浆中密度大的矸石随外螺旋入底流,最终通过随底流口(D)排出成为尾矿;
    密度较高者则同泡沫由内旋流上升至紧邻喷淋水洗涤装置(6)下方的捕集区,上升的矿浆泡沫与与下一批次的入料颗粒相遇并发生碰撞,碰撞后生成的所有矿化泡沫上浮形成泡沫层,泡沫层为捕集区的上限,浮选柱扫选段(8)为捕集区的下限,此时柱体内壁的喷淋水洗涤装置(6)产生下行水流对泡沫层进行洗涤,使泡沫层中密度较大泡沫强制下流至中矿排料装置(7)排出,并通过管路最终由中矿排料口(C)排出,由于存在碰撞概率和脱附概率,所以部分粒度大的煤粒会被排出,排出的粒度大的煤粒则进入水力旋流器(12)分级,其溢流作为最终的中矿产品,溢流口(C)直接与外部相连,而水力旋流器(12)分级底流口则由浮选柱入料口(A)进入浮选柱再次分选;与气泡最终依附的颗粒继续则上升至液面集聚形成泡沫层,充填装置(3)通过紧密排列的圆筒结构蜂窝结构增加泡沫层的稳定性,而泡沫淋水装置(1)则对泡沫层进行淋水,从而使泡沫层中矸石颗粒下沉至捕集区再次分选,在水流作用下,粘附于泡沫层的矸石颗粒会被冲洗掉,掉出泡沫层,下沉至矿浆中,合格的物料则流入精煤溢流(2)槽,由精煤排料口(B)排出,完成第一次的高灰难选煤泥浮选;
    再次由浮选柱入料口(A)入料,原料进入给料管(5)后,先与紧邻喷淋水洗涤装置(6)下方捕集区中上一次入料所产生的上浮气泡相逆流碰撞,原料中未被粘附的颗粒,包括矸石颗粒和部分未粘附的煤粒,随液体下沉至扫选段(8),之后重复上述步骤进行浮选;而被粘附在上浮气泡的颗粒则会直接上升至泡沫层,经泡沫淋水装置(1)的二次分选后,作为合格的煤粒由溢流槽(2)排出,泡沫层中矸石颗粒则下沉至浮选柱的矿浆中。
PCT/CN2019/106918 2019-03-15 2019-09-20 一种高灰细粒煤泥分选装置及方法 WO2020186716A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910196301.9 2019-03-15
CN201910196301.9A CN109746125B (zh) 2019-03-15 2019-03-15 一种高灰细粒煤泥分选装置及方法

Publications (1)

Publication Number Publication Date
WO2020186716A1 true WO2020186716A1 (zh) 2020-09-24

Family

ID=66408788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106918 WO2020186716A1 (zh) 2019-03-15 2019-09-20 一种高灰细粒煤泥分选装置及方法

Country Status (2)

Country Link
CN (1) CN109746125B (zh)
WO (1) WO2020186716A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109746125B (zh) * 2019-03-15 2019-11-29 中国矿业大学 一种高灰细粒煤泥分选装置及方法
CN111468258B (zh) * 2020-04-17 2021-08-13 西安交通大学 一种物理分离动力煤厂煤泥的简易装置与方法
CN112113398B (zh) * 2020-08-31 2021-09-21 中国矿业大学 一种煤泥干燥脱水装置及干燥脱水方法
CN112337655B (zh) * 2020-09-27 2021-09-10 中国矿业大学 一种适用于高灰细粒级煤泥的三产品浮选柱及方法
CN114534927A (zh) * 2022-01-14 2022-05-27 淮北矿业股份有限公司 一种降低煤中硫分和灰分的分选工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3707905C1 (en) * 1987-03-12 1988-08-18 Santrade Ltd Process and apparatus for flotation, in particular for waste water purification
US5643459A (en) * 1995-04-26 1997-07-01 Cominco Engineering Services Ltd. Flotation method and apparatus
CN1209360A (zh) * 1997-08-22 1999-03-03 中国矿业大学 静态微泡浮选柱强化分选方法及装置
CN102179314A (zh) * 2011-05-24 2011-09-14 中国矿业大学 充气旋流微泡浮选柱分选设备及方法
CN204122256U (zh) * 2014-10-09 2015-01-28 陕西延长石油集团氟硅化工有限公司 一种萤石矿分选装置
CN205253375U (zh) * 2015-10-19 2016-05-25 中国矿业大学 一种柱式浮选设备
CN105834011A (zh) * 2016-06-03 2016-08-10 武汉工程大学 具有填料结构的浮选柱强化分选装置及分选方法
CN109453902A (zh) * 2018-12-29 2019-03-12 江苏大丰新安德矿业有限公司 一种浮磁选柱装置及组合式气泡发生器
CN109746125A (zh) * 2019-03-15 2019-05-14 中国矿业大学 一种高灰细粒煤泥分选装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1063265A (en) * 1963-03-08 1967-03-30 Kh Gorny I A wet jig
CN101773873B (zh) * 2010-03-04 2013-10-30 中国矿业大学 一种煤泥分选方法与设备
CN103041926A (zh) * 2013-01-30 2013-04-17 唐山国华科技国际工程有限公司 高灰分细煤泥的浮选工艺方法
CN103480502B (zh) * 2013-09-10 2016-01-20 中国矿业大学 三产品旋流微泡浮选柱分选设备与方法
CN106076660A (zh) * 2016-06-03 2016-11-09 武汉工程大学 一种浮选柱分选设备及分选方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3707905C1 (en) * 1987-03-12 1988-08-18 Santrade Ltd Process and apparatus for flotation, in particular for waste water purification
US5643459A (en) * 1995-04-26 1997-07-01 Cominco Engineering Services Ltd. Flotation method and apparatus
CN1209360A (zh) * 1997-08-22 1999-03-03 中国矿业大学 静态微泡浮选柱强化分选方法及装置
CN102179314A (zh) * 2011-05-24 2011-09-14 中国矿业大学 充气旋流微泡浮选柱分选设备及方法
CN204122256U (zh) * 2014-10-09 2015-01-28 陕西延长石油集团氟硅化工有限公司 一种萤石矿分选装置
CN205253375U (zh) * 2015-10-19 2016-05-25 中国矿业大学 一种柱式浮选设备
CN105834011A (zh) * 2016-06-03 2016-08-10 武汉工程大学 具有填料结构的浮选柱强化分选装置及分选方法
CN109453902A (zh) * 2018-12-29 2019-03-12 江苏大丰新安德矿业有限公司 一种浮磁选柱装置及组合式气泡发生器
CN109746125A (zh) * 2019-03-15 2019-05-14 中国矿业大学 一种高灰细粒煤泥分选装置及方法

Also Published As

Publication number Publication date
CN109746125B (zh) 2019-11-29
CN109746125A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
WO2020186716A1 (zh) 一种高灰细粒煤泥分选装置及方法
CN109731698B (zh) 一种高灰易浮细粒煤泥柱分选装置及方法
CN102716814B (zh) 提高浮选粒度上限的一种新型浮选柱串联试验系统
CN109731696B (zh) 一种适于粗颗粒回收的静态浮选方法
CN200963607Y (zh) 组合式浮选柱
CN101773873B (zh) 一种煤泥分选方法与设备
CN102179314B (zh) 充气旋流微泡浮选柱分选设备及方法
WO2020220584A1 (zh) 一种流体协同强化浮选分离装置及方法
CN104815770A (zh) 一种全粒级煤泥分选设备
CN103480502B (zh) 三产品旋流微泡浮选柱分选设备与方法
CN210207231U (zh) 一种流体协同强化浮选分离装置
US10994228B2 (en) Reverse flow type multi-stage sedimentation rake-free thickening device
CN103056028A (zh) 磁性矿物分选设备及方法
US11602704B2 (en) Rake-free thickening device including driving area
CN103447159B (zh) 内置倾斜板旋流微泡浮选柱分选设备与方法
CN202061717U (zh) 胶磷矿双柱浮选装置
US11319215B2 (en) Multi-stage sedimentation rake-free thickening device
CN106334627A (zh) 浮选柱及使用其进行分选矿浆的方法
CN206334765U (zh) 浮选柱
CN202129149U (zh) 充气旋流微泡浮选柱分选设备
CN107537698A (zh) 一种强化粗煤泥浮选装置
CN106391292A (zh) 液固流化床分选机及使用其进行分选物料的方法
CN207287777U (zh) 一种强化粗煤泥浮选装置
CN209338349U (zh) 一种污泥水洗分离装置
CN207266900U (zh) 具有填料的变径浮选柱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920019

Country of ref document: EP

Kind code of ref document: A1