WO2020186382A1 - 一种航空发动机燃油调节器机械液压装置的Simulink建模方法 - Google Patents

一种航空发动机燃油调节器机械液压装置的Simulink建模方法 Download PDF

Info

Publication number
WO2020186382A1
WO2020186382A1 PCT/CN2019/078244 CN2019078244W WO2020186382A1 WO 2020186382 A1 WO2020186382 A1 WO 2020186382A1 CN 2019078244 W CN2019078244 W CN 2019078244W WO 2020186382 A1 WO2020186382 A1 WO 2020186382A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pressure
oil
spring
output
Prior art date
Application number
PCT/CN2019/078244
Other languages
English (en)
French (fr)
Inventor
孙希明
杜宪
汪锐
马艳华
王欣悦
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/764,304 priority Critical patent/US11002212B1/en
Priority to PCT/CN2019/078244 priority patent/WO2020186382A1/zh
Publication of WO2020186382A1 publication Critical patent/WO2020186382A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/32Arrangement, mounting, or driving, of auxiliaries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • F02D2041/223Diagnosis of fuel pressure sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/406Transmission of power through hydraulic systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/81Modelling or simulation

Definitions

  • the invention proposes a modeling method for a mechanical hydraulic device of an aero engine fuel regulator based on Simulink, and belongs to the technical field of modeling of a mechanical hydraulic device of an aero engine.
  • the present invention relies on the MATLAB/Simulink modeling of the mechanical hydraulic device of a certain type of aviation engine fuel regulating system.
  • the fuel regulation system is the core component of the engine's automatic control, and it is also an area with a high incidence of failures. Under the current digital demand for aero-engine combustion control system, it is particularly important to establish a mathematical model of the combustion control system.
  • the aero-engine combustion control system mainly includes three parts: fuel pump, mechanical hydraulic device and fuel distributor.
  • the mechanical hydraulic device also contains precision parts such as metering valve, differential pressure valve, oil return valve, etc., which are complex in structure, long in design and manufacturing cycle, and high in cost. In order to shorten the development cycle and save costs, the mechanical hydraulic device of the combustion control system Modeling and simulation is very necessary.
  • the performance of the original scheme can be predicted, the pros and cons of the scheme can be evaluated, the defects in the system design can be found and corrected early, and the best design scheme can be determined; on the other hand, the direction of improvement, modification and optimization can be determined. Shorten the product development cycle and effectively avoid the danger of actual test runs.
  • the established model and simulation results can not only be used as a reference for the test and debugging of the mechanical hydraulic device of the combustion control system, but also can provide a reference for the innovative design of the product.
  • the constructed real-time model can also be further used for hardware-in-the-loop simulation of aero engine control system. Therefore, it is necessary to study the modeling and simulation of the mechanical hydraulic device of the engine combustion control system.
  • the modeling and simulation work of the mechanical hydraulic device of the engine combustion control system is mostly carried out on the AMESim platform.
  • the mechanical hydraulic device model established on the AMESim platform is more intuitive.
  • the simulation calculation speed is far inferior to Simulink.
  • modeling in Simulink involves complex double-layer nested algebraic loops.
  • the invention adopts the analytical method, based on the structure of the components and the principle of flow continuity and force balance, in MATLAB/Simulink, the mechanical hydraulic device of the aero engine combustion control system is modeled and simulated.
  • the method of inserting a high-frequency delay link in the feedback loop is used to disassemble the double-layer algebraic loop in the model to achieve high-precision simulation of the system.
  • the present invention provides an aero-engine fuel regulator mechanical Simulink modeling method of hydraulic device.
  • a Simulink modeling method for the mechanical hydraulic device of an aviation engine fuel regulator the steps are as follows:
  • the main differential pressure control loop includes the metering valve, the return valve and the differential pressure valve;
  • the input parameters include metering valve flow Qjiliang, metering valve expected displacement ExDisp, fuel density Density and post-metering valve oil pressure Pout_JL, output parameters including metering valve displacement Disp, metering valve front Oil pressure Pin_JL and metering valve flow FUEL_Supply;
  • the metering valve includes a displacement calculation module and a pressure calculation module.
  • the expected displacement ExDisp of the metering valve is input to the displacement calculation module, and the current input signal of the electro-hydraulic servo valve is obtained through PID control, and the output is obtained according to the input and output characteristics of the electro-hydraulic servo valve
  • the output flow rate is compared with the area to obtain the moving speed of the metering valve, and then the valve displacement is obtained through the integration link; for the pressure calculation module, according to the mass flow formula:
  • Q is the fuel mass flow rate of the metering valve
  • u is the flow coefficient
  • A is the flow area of the metering valve
  • ⁇ P is the pressure difference before and after the metering valve
  • is the fuel density
  • the input parameters include the oil pressure P 1 after the gear pump, the output oil pressure P 2 of the differential pressure valve, the oil pressure P 2P after the parking valve, the gear pump fuel supply Q_chilunbeng and the fuel density Density, the output parameters include the oil return valve quantity Q_huiyou, the oil return valve displacement X and the metering valve flow Q_jiliang;
  • the oil return valve includes a displacement calculation module and a flow calculation module.
  • the displacement calculation formula is as follows:
  • X is the displacement of the return valve
  • X 1 is the displacement of the left spring of the return valve
  • X 2 is the spring displacement of the return valve
  • P 1 is the front oil pressure of the metering valve, that is, the rear oil pressure of the gear pump;
  • a 1 is the oil pressure area of the gear pump,
  • P 2P is the oil pressure behind the parking valve;
  • a 2 is the left side area of the left spring cavity,
  • a 3 Is the effective area of the right side of the middle spring,
  • P 2 is the output oil pressure of the differential pressure valve,
  • a 4 is the effective area of the left spring cavity,
  • a 5 is the equivalent effective area of the middle spring
  • K 1 is the stiffness coefficient of the middle spring
  • X 10 is the middle
  • the total displacement of the fuel return valve output by the displacement calculation module is calculated to obtain the fuel return valve flow area, and then the mass flow formula is substituted to obtain the fuel return volume of the fuel return valve.
  • the total flow after the gear pump minus the fuel return volume is the metered valve fuel flow;
  • the input parameters include the oil pressure P 1 after the gear pump and the oil pressure of the differential valve spring chamber P_tanhuangqiang.
  • the output parameter is the control oil pressure P 2 of the differential pressure valve;
  • the calculation of the differential pressure valve is mainly divided into a spring compression module and a pressure calculation module.
  • the mathematical model of the spring compression module is:
  • P tan is the hydraulic pressure in the spring chamber of the differential pressure valve
  • f 10 is the pre-tightening force of the differential pressure valve bellows
  • f 20 is the pre-tightening force of the differential pressure valve spring
  • S 1 is the action area of the bellows oil
  • S 2 is the spring Cavity oil action area
  • S 3 is the action area of low pressure oil at the upper end of the nozzle baffle
  • S 4 is the action area of low pressure oil at the lower end of the nozzle baffle
  • S 5 is the action area of control oil
  • K 2 is the spring stiffness coefficient
  • K 1 is the ripple Tube stiffness coefficient
  • the main modeling basis of the pressure calculation module is the partial pressure formula:
  • S 6 is the oil action area in front of the metering valve
  • S 7 is the spring cavity oil action area
  • P B is the inlet oil pressure of the high-pressure shut-off valve
  • D P is the diameter of the upper cavity of the valve
  • D R is the diameter of the upper cavity of the valve.
  • a L is the spring cavity oil action area
  • P sp is the spring cavity oil pressure
  • F 0 is the spring preload force
  • K s is the spring stiffness coefficient
  • X is the spring displacement, that is, the displacement of the high-pressure shut-off valve, and then by The displacement-area interpolation table obtains the flow area of the high-pressure shut-off valve and feeds it back to the mass flow equation of the pressure calculation module;
  • S1.12 Select the Swich module to switch the working status of the parking valve: When the input signal of the parking valve is 0, output low-pressure oil to the spring cavity of the high-pressure shut-off valve, and the high-pressure shut-off valve opens and works normally; when the input signal of the parking valve is greater than 0, The output is high-pressure oil to the spring cavity of the high-pressure shut-off valve, the high-pressure shut-off valve closes, and the combustion control system stops;
  • S4 addresses the problem of double-layer nested algebraic loops in model simulation, and uses the method of inserting high-frequency delay links to disassemble the algebraic loops while improving model simulation speed and accuracy;
  • the beneficial effects of the present invention can realize the high-precision simulation of the mechanical hydraulic device of the engine fuel adjustment system. Compared with the previous modeling simulation in AMESim, The simulation speed is greatly improved; and it solves the problem of double-layer nested algebraic loops when modeling mechanical hydraulic devices in Simulink, and improves the simulation accuracy of the system; in addition, the disassembly method of the double-layer nested algebraic loops has certain Universality can be extended to other types of algebraic loop problems; at the same time, the simulation model parameters provided by the present invention are convenient to modify, and can provide references for modeling and simulation of mechanical hydraulic devices of other types of engine combustion control systems.
  • Figure 1 is a schematic diagram of the modeling mechanism of the main control loop of the mechanical hydraulic device of the aero engine combustion control system
  • Figure 2 is a schematic diagram of the modeling mechanism of the main oil circuit of the mechanical hydraulic device of the aero engine combustion control system
  • Figure 3 is a schematic diagram of the disassembly method of the two-layer nested algebraic loop of the Simulink model of the mechanical hydraulic device of the aero engine combustion control system;
  • Figure 4 is the oscillation waveform diagram of the double-layer nested algebraic loop
  • Figure 5 is a waveform diagram of the disassembly effect of the double-layer nested algebraic loop.
  • a Simulink modeling method for a mechanical hydraulic device of an aero engine fuel regulator includes the following steps:
  • the main differential pressure control loop includes a metering valve, a return valve and a differential pressure valve;
  • the method of inserting high-frequency delay links is used to disassemble the algebraic loop while improving the model Simulation speed and accuracy;
  • the input parameters include metering valve flow Qjiliang, metering valve expected displacement ExDisp, fuel density Density, metering valve rear oil pressure Pout_JL, output parameters including metering valve displacement Disp, metering valve front oil pressure Pin_JL, Metering valve flow FUEL_Supply;
  • the S2 metering valve includes a displacement calculation module and a pressure calculation module.
  • the displacement calculation module makes the difference between the input expected displacement ExDisp of the metering valve and the displacement feedback signal, and then goes through the linear transformation and PID control links to obtain the current input of the electro-hydraulic servo valve
  • the signal is then calculated according to the proportional relationship between the input and output of the electro-hydraulic servo valve to obtain the output flow, and the output flow is converted into volume flow, which is proportional to the area to obtain the moving speed of the metering valve, and then the valve displacement and pressure calculation are obtained through the integral link
  • the main modeling basis of the module is the mass flow formula
  • Q is the fuel mass flow of the metering valve
  • flow coefficient ⁇ 0.71
  • A is the flow area of the metering valve
  • ⁇ P is the pressure difference between the front and rear of the metering valve
  • the fuel density ⁇ 780kg/m 3
  • Pin_JL is the fuel pressure before the metering valve
  • Pout_JL To measure the oil pressure behind the valve
  • the input parameters include the oil pressure P 1 after the gear pump, the oil pressure P 2 after the differential valve, the oil pressure P 2P after the conversion valve, the gear pump fuel supply Q_chilunbeng, the fuel density Density, and the output parameters Including the oil return amount of the return valve Q_huiyou, the return valve displacement X, and the metered valve flow Q_jiliang;
  • X is the total displacement of the return valve
  • X 1 is the left spring displacement of the return valve
  • X 2 is the spring displacement of the return valve
  • for the left spring
  • P 1 is the front oil pressure of the metering valve, that is, the rear oil pressure of the gear pump
  • a 1 is the oil pressure of the gear pump
  • P 2P is the oil pressure behind the parking valve
  • a 2 is the left side of the left spring chamber
  • a 3 Is the effective area of the right side of the middle spring
  • P 2 is the output oil pressure of the differential pressure valve
  • a 4 is the effective area of the left spring cavity
  • a 5 is the equivalent effective area of the middle spring
  • K 1 is the stiffness coefficient of the middle spring
  • X 10 is the middle
  • K 2 is the stiffness coefficient of the left spring
  • X 20 is the initial compression of the left spring
  • S5 calculates the fuel return valve flow area from the total displacement of the fuel return valve output by the displacement calculation module, and then substitutes the mass flow formula to obtain the fuel return volume of the fuel return valve.
  • the total flow after the gear pump minus the fuel return volume is the metered valve fuel flow;
  • the input parameters include the gear pump rear oil pressure P1, the differential pressure valve spring cavity oil pressure P_tanhuangqiang, and the output parameter is the differential pressure valve control oil pressure P2;
  • S7 differential pressure valve calculation is mainly divided into spring compression module and pressure calculation module.
  • the mathematical model of spring compression module is:
  • P tan is the hydraulic pressure in the spring chamber of the differential pressure valve
  • f 10 is the pre-tightening force of the differential pressure valve bellows
  • f 20 is the pre-tightening force of the differential pressure valve spring
  • S 1 is the action area of the bellows oil
  • S 2 is the spring chamber Oil action area
  • S 3 is the action area of low pressure oil at the upper end of the nozzle baffle
  • S 4 is the action area of low pressure oil at the lower end of the nozzle baffle
  • S 5 is the control oil action area
  • K 2 is the spring stiffness coefficient
  • K 1 is the bellows Stiffness coefficient
  • the main modeling basis of the pressure calculation module is the partial pressure formula:
  • S 6 is the oil action area in front of the metering valve
  • S 7 is the spring cavity oil action area
  • S8 adds a displacement-area interpolation table to the metering valve and pressure difference valve module in the main differential pressure loop.
  • the displacement-area interpolation table converts the displacement of the metering valve core into the flow area of the valve, and the pressure difference valve is .
  • the displacement-area interpolation table converts the pressure difference valve spring compression into the nozzle flapper valve oil action area, and then connects the three valves according to the input and output relationship between the metering valve, the oil return valve and the pressure difference valve, Form the main pressure difference control loop;
  • S1 determines the main oil circuit composition modules according to the flow direction of the main oil circuit, including gear pump, oil return valve, metering valve, high pressure shut-off valve, throttle nozzle, combustion chamber;
  • S2 determines the flow pressure differential equation of each module by the reverse pressure idea of the pressure difference, and realizes it in Simulink;
  • the mathematical model of the S3 high pressure shut-off valve in addition to the mass flow equation, also includes a displacement calculation module.
  • the pressure of the upper cavity oil is:
  • P B is the inlet oil pressure of the high-pressure shut-off valve
  • D P is the diameter of the upper cavity of the valve
  • D R is the diameter of the upper cavity of the valve.
  • a L is the action area of the spring cavity oil
  • P sp is the spring cavity oil pressure
  • F 0 is the spring preload
  • K s is the spring stiffness coefficient
  • X is the spring displacement, that is, the displacement of the high-pressure shut-off valve, and then by The displacement-area interpolation table obtains the flow area of the high-pressure shut-off valve and feeds it back to the mass flow equation of the pressure calculation module;
  • S1 selects the Swich module to switch the working state of the parking valve: when the input signal of the parking valve is 0, the low-pressure oil is output to the spring cavity of the high-pressure shut-off valve, the high-pressure shut-off valve opens, and the engine works normally; when the input signal of the parking valve is greater than 0 When the output is high-pressure oil to the high-pressure shut-off valve spring cavity, the high-pressure shut-off valve closes, and the combustion control system stops;
  • S2 selects the Swich module to switch the working state of the over-rotation protection device: when the over-rotation signal is 0, that is, when the engine is working normally, the over-rotation protection device does not act, and the control oil after the switching valve is directly input to the differential pressure valve spring cavity;
  • the over-rotation signal is not 0, that is, when the engine is over-rotating, the over-rotation protection device connects low-pressure oil into the spring cavity of the differential pressure valve, resulting in a decrease in the flow rate of the metering valve and realizing the over-rotation protection function;
  • S3 also selects the Swich module to switch the working state of the switching valve: in the non-parking state, the upper and lower chambers of the switching valve are connected to the fuel tank, so low-pressure oil is output to the spring chamber of the differential pressure valve; in the parking state, the lower valve cavity and high-pressure oil are switched Connected, at this time, according to the partial pressure formula, the calculation method of the oil pressure output by the conversion valve is as follows:
  • P is converted to the output oil pressure of the conversion valve
  • S 8 is the throttle area of the upper chamber of the conversion valve
  • S 9 is the throttle area of the lower chamber of the conversion valve
  • Pcb is the oil pressure of the low-pressure fuel tank
  • the low-pressure fuel tank is connected to the upper chamber of the conversion valve
  • Psp It is the hydraulic pressure of the high-pressure oil output by the parking valve in the parking state, and the output of the parking valve is connected with the lower cavity of the switching valve
  • the modeling method of the mechanical hydraulic device of the aero engine fuel regulator based on Simulink proposed by the present invention is feasible. It can realize the high-speed and high-precision simulation of the mechanical hydraulic device of the aero-engine fuel control system, and can solve the modeling simulation.
  • the double-layer nested algebraic loop problem is feasible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

本发明属于航空发动机机械液压装置建模技术领域,提出了一种航空发动机燃油调节器机械液压装置的Simulink建模方法,该Simulink建模方法能够实现发动机燃调系统机械液压装置的高精度仿真,和以往的AMESim中的建模仿真相比,仿真速度大大提升;并且解决了机械液压装置在Simulink中建模时出现的双层嵌套代数环问题,提高了系统的仿真精度;此外,双层嵌套代数环问题的拆解方法具有一定的普适性,可以推广到其他类型的代数环问题;同时,本发明提供的仿真模型参数修改方便,可为其他型号的发动机燃调系统机械液压装置的建模仿真提供参考。

Description

一种航空发动机燃油调节器机械液压装置的Simulink建模方法 技术领域
本发明提出了一种基于Simulink的航空发动机燃油调节器机械液压装置的建模方法,属于航空发动机机械液压装置建模技术领域。
背景技术
本发明依托背景为某型航空发动机燃油调节系统机械液压装置的MATLAB/Simulink建模。
燃油调节系统是发动机自动控制的核心部件,同时也是故障高发区。在目前航空发动机燃调系统数字化需求下,建立燃调系统数学模型显的尤为重要。航空发动机燃调系统主要包括燃油泵、机械液压装置和燃油分配器三个部分。其中,机械液压装置中又包含了计量活门、压差活门、回油活门等精密零部件,结构复杂、设计制造周期长、成本高,为了缩短研制周期,节约成本,对燃调系统机械液压装置进行建模仿真是十分必要的。通过建模仿真一方面可以对原有方案的性能进行预测,评估方案的优劣,及早发现并修正系统设计中的缺陷,确定最佳的设计方案;另一方面确定改进改型和优化方向,缩短产品研制周期,有效避免实际试车的危险。所建立的模型和仿真结果,不仅可以作为燃调系统机械液压装置试验调试时的参考,也可以为产品的创新设计提供参考依据。构建的实时模型还可以进一步用于航空发动机控制系统硬件在环仿真。因此,对发动机燃调系统机械液压装置建模仿真的研究很有必要。
依据现有的文献,对发动机燃调系统机械液压装置的建模和仿真工作多数是在AMESim平台上进行的,与MATLAB/Simulink平台相比,在AMESim平台建立的机械液压装置模型更为直观,但仿真计算速度却远不如Simulink。而 由于机械液压装置中各元部件互相影响,所以在Simulink中建模涉及到复杂的双层嵌套代数环问题。本发明采用解析法,根据元部件的结构和流量连续及力平衡的原理,在MATLAB/Simulink中对航空发动机燃调系统的机械液压装置进行建模,并进行仿真。同时,采用在反馈回路中插入高频延迟环节的方法,拆解模型中的双层代数环,实现系统的高精度仿真。
发明内容
为了实现航空发动机燃调系统机械液压装置的高速、高精度仿真,以及针对燃调系统机械液压装置建模仿真中的双层嵌套代数环问题,本发明提供了一种航空发动机燃油调节器机械液压装置的Simulink建模方法。
本发明的技术方案为:
一种航空发动机燃油调节器机械液压装置的Simulink建模方法,步骤如下:
S1采用解析法,对发动机燃调系统机械液压装置中的主压差控制回路进行建模,主压差控制回路包括计量活门、回油活门以及压差活门;
机械液压装置主压差控制回路建模步骤如下:
S1.1 首先确定计量活门的输入和输出参数,输入参数包括计量活门流量Qjiliang、计量活门期望位移ExDisp、燃油密度Density和计量活门后油压Pout_JL,输出参数包括计量活门位移Disp、计量活门前油压Pin_JL和计量活门流量FUEL_Supply;
S1.2 计量活门内部包括位移计算模块和压力计算模块,将计量活门期望位移ExDisp输入到位移计算模块,经过PID控制得到电液伺服阀电流输入信号,再根据电液伺服阀输入输出特性得到输出流量,将输出流量与面积作比得到计量活门移动速度,再通过积分环节得到活门位移;对于压力计算模块,根据质量流量公式:
Figure PCTCN2019078244-appb-000001
得到
Figure PCTCN2019078244-appb-000002
其中:Q为计量活门燃油质量流量,u是流量系数,A为计量活门流通面积,ΔP为计量活门前后压差,ρ为燃油密度;
S1.3 确定回油活门的输入和输出参数,输入参数包括齿轮泵后油压P 1、压差活门输出油压P 2、停车活门后油压P 2P、齿轮泵供油量Q_chilunbeng和燃油密度Density,输出参数包括回油活门回油量Q_huiyou、回油活门位移X和计量活门流量Q_jiliang;
S1.4 回油活门内部包括位移计算模块和流量计算模块,位移计算公式如下:
X=X 1+X 2
其中,X为回油活门的位移,X 1为回油活门左弹簧位移,X 2为回油活门中弹簧位移,而对于左弹簧,有
P 1*A 1+P 2P*A 2-P 2P*A 3-P 2*A 4=K 2*(X 2+X 20)
对于中弹簧,有
P 1*A 5-P 2P*A 5=K 1*(X 1+X 10)
其中,P 1为计量活门前油压,即齿轮泵后油压;A 1为齿轮泵油作用面积,P 2P为停车活门后油压;A 2为左弹簧腔左侧作用面积,A 3为中弹簧右侧作用面积,P 2为压差活门输出油压,A 4为左弹簧腔作用面积,A 5为中弹簧等效作用面积,K 1为中弹簧劲度系数,X 10为中弹簧初始压缩量,K 2为左弹簧劲度系数,X 20为左弹簧初始压缩量;
S1.5 由位移计算模块输出的回油活门总位移计算得到回油活门流通面积,然后代入质量流量公式得到回油活门回油量,齿轮泵后总流量减去回油量即为 计量活门燃油流量;
S1.6 确定压差活门的输入和输出参数,输入参数包括齿轮泵后油压P 1和压差活门弹簧腔油压P_tanhuangqiang,输出参数为压差活门控制油油压P 2
S1.7 压差活门计算主要分为弹簧压缩模块和压力计算模块,其中,弹簧压缩模块数学模型为:
P 1*S 1+P tan*(S 4-S 2-S 3)+P 2*S 5+K 1*(X-0.0001)*(X≥0.0001)+f 10-f 20=(K 1+K 2)*X
其中:P tan为压差活门弹簧腔油压,f 10为压差活门波纹管预紧力,f 20为压差活门弹簧预紧力,S 1为波纹管油液作用面积,S 2为弹簧腔油液作用面积,S 3为喷嘴挡板上端低压油作用面积,S 4为喷嘴挡板下端低压油作用面积,S 5为控制油作用面积,K 2为弹簧劲度系数,K 1为波纹管劲度系数,压力计算模块的主要建模依据是分压公式:
Figure PCTCN2019078244-appb-000003
其中:S 6为计量活门前油液作用面积,S 7为弹簧腔油液作用面积;
S1.8 在计量活门和压差活门模块中加入位移-面积插值表,并根据计量活门、回油活门和压差活门的结构原理,将三个活门的输入输出相连接,组成主压差控制回路;
机械液压装置主油路建模步骤如下:
S1.9 根据主油路流量流动方向,确定主油路组成模块,包括齿轮泵、回油活门、计量活门、高压关断活门、节流喷嘴和燃烧室;
S1.10 根据主油路流量方程,由压差的逆推思想,确定各个模块的流量压差方程,并在Simulink中实现;
S1.11 高压关断活门的数学模型,除质量流量方程外,还包括位移计算模块,其上腔油液作用压力为:
Figure PCTCN2019078244-appb-000004
其中:P B为高压关断活门入口油压,D P为活门上腔直径,D R为活门上腔杆径,在平衡状态下,油液压力与弹簧力满足方程:
F I=P sp*A L+K s*X+F 0
其中:A L为弹簧腔油液作用面积,P sp为弹簧腔油压,F 0为弹簧预紧力,K s为弹簧劲度系数,X为弹簧位移,即高压关断活门位移,再由位移-面积插值表得到高压关断活门流通面积,反馈到压力计算模块的质量流量方程中;
机械液压装置中其他元部件建模步骤如下:
S1.12 选择Swich模块实现停车活门工作状态的切换:当停车活门输入信号为0,输出低压油至高压关断活门弹簧腔,高压关断活门打开,正常工作;当停车活门输入信号大于0,输出为高压油至高压关断活门弹簧腔,高压关断活门关闭,燃调系统停车;
S1.13 选择Swich模块实现超转保护装置工作状态的切换:当超转信号为0,即发动机正常工作时,超转保护装置不动作,直接将转换活门后控制油输入到压差活门弹簧腔;当发动机超转,超转信号不为0时,超转保护装置将低压油接入压差活门弹簧腔,导致计量活门流量减小,实现超转保护功能;
S1.14 选择Swich模块来实现转换活门工作状态的切换:非停车状态时,转换活门上下腔都与油箱连通,故输出低压油至压差活门弹簧腔;停车状态时,转换活门下腔与高压油连通,此时根据分压公式,与压差活门分压原理相同,求得转换活门输出的油压;
S2根据流量方程,对机械液压装置燃油主油路,即由齿轮泵输出,经过计量活门、高压关断活门和节流喷嘴,流向燃油分配器的油路,根据压力逆推思想进行建模;
S3完成主压差控制回路和主油路建模后,继续在Simulink中搭建机械液压装置中其他元部件的模型,包括停车活门和转换活门;
S4针对模型仿真中出现的双层嵌套代数环问题,采用插入高频延迟环节的方法,对代数环进行拆解的同时,提高模型仿真速度和精度;
拆解模型中双层嵌套代数环的步骤如下:
S4.1 在高压关断活门内层反馈回路中插入形如
Figure PCTCN2019078244-appb-000005
的高频延迟环节,其中
Figure PCTCN2019078244-appb-000006
设置参数k 1使高压关断活门输出正确结果;
S4.2 在压差活门内层反馈回路中插入形如
Figure PCTCN2019078244-appb-000007
的高频延迟环节,其中
Figure PCTCN2019078244-appb-000008
设置参数k 2使压差活门输出正确结果;
S4.3 在计量活门外层控制回路中插入形如
Figure PCTCN2019078244-appb-000009
的高频延迟环节,其中
Figure PCTCN2019078244-appb-000010
设置参数k 3使计量活门控制回路输出正确结果;
S4.4 调整参数k 1、k 2、k 3,使代数环内层频率高于外层频率,实现双层嵌套代数环的拆解,并调整至系统稳定运行且输出正确结果;
S5.对照实际试车数据,对模型内PID模块及系统输入输出进行修正,实现航空发动机燃调系统机械液压装置的高精度仿真。
本发明的有益效果:本发明提出的一种航空发动机燃油调节器机械液压装置的Simulink建模方法能够实现发动机燃调系统机械液压装置的高精度仿真,和以往的AMESim中的建模仿真相比,仿真速度大大提升;并且解决了机械液压装置在Simulink中建模时出现的双层嵌套代数环问题,提高了系统的仿真精度;此外,双层嵌套代数环问题的拆解方法具有一定的普适性,可以推广到其他类型的代数环问题;同时,本发明提供的仿真模型参数修改方便,可为其他型号的发动机燃调系统机械液压装置的建模仿真提供参考。
附图说明
图1为航空发动机燃调系统机械液压装置主控制回路建模机理示意图;
图2为航空发动机燃调系统机械液压装置主油路建模机理示意图;
图3为航空发动机燃调系统机械液压装置Simulink模型双层嵌套代数环拆解方法示意图;
图4为双层嵌套代数环震荡波形图;
图5为双层嵌套代数环拆解效果波形图。
具体实施方式
下面结合附图对本发明作进一步说明。
一种航空发动机燃油调节器机械液压装置的Simulink建模方法,包括以下步骤:
S1.采用解析法,对发动机燃调系统机械液压装置中的主压差控制回路进行建模,主压差控制回路包括计量活门、回油活门以及压差活门;
S2.根据流量方程,对机械液压装置燃油主油路,即由齿轮泵输出,经过计量活门、高压关断活门、节流喷嘴,流向燃油分配器的油路,根据压力逆推思想进行建模;
S3.完成主压差控制回路和主油路建模后,继续在Simulink中搭建机械液压装置中其他元部件的模型,包括停车活门、转换活门等;
S4.分别针对高压关断活门内层代数环、压差活门内层代数环、计量活门控制回路外层代数环,采用插入高频延迟环节的方法,对代数环进行拆解的同时,提高模型仿真速度和精度;
S5.对照实际试车数据,对模型内PID模块及系统输入输出进行修正,实现航空发动机燃调系统机械液压装置的高精度仿真;
其中,如图1所示,机械液压装置主压差控制回路建模步骤如下:
S1首先确定计量活门输入输出参数,输入参数包括计量活门流量Qjiliang、计量活门期望位移ExDisp、燃油密度Density、计量活门后油压Pout_JL,输出参数包括计量活门位移Disp、计量活门前油压Pin_JL、计量活门流量FUEL_Supply;
S2计量活门内部包括位移计算模块和压力计算模块,其中,位移计算模块将输入的计量活门期望位移ExDisp与位移反馈信号做差,再经过线性变换和PID控制环节,得到电液伺服阀的电流输入信号,然后根据电液伺服阀的输入与输出成正比的关系计算得到输出流量,并将输出流量转换为体积流量,与面积作比得到计量活门移动速度,再经过积分环节得到活门位移,压力计算模块的主要建模依据是质量流量公式
Figure PCTCN2019078244-appb-000011
由质量流量公式可以得到
Figure PCTCN2019078244-appb-000012
其中,Q为计量活门燃油质量流量,流量系数μ=0.71,A为计量活门流通面积,ΔP为计量活门前后压差,燃油密度ρ=780kg/m 3,Pin_JL为计量活门前油压,Pout_JL为计量活门后油压;
S3确定回油活门输入输出参数,输入参数包括齿轮泵后油压P 1、压差活门后油压P 2、转换活门后油压P 2P、齿轮泵供油量Q_chilunbeng、燃油密度Density,输出参数包括回油活门回油量Q_huiyou、回油活门位移X、计量活门流量Q_jiliang;
S4回油活门的位移计算公式如下:
X=X 1+X 2
其中,X为回油活门的总位移,X 1为回油活门左弹簧位移,X 2为回油活门中弹簧位移,而对于左弹簧,有
P 1*A 1+P 2P*A 2-P 2P*A 3-P 2*A 4=K 2*(X 2+X 20)
对于中弹簧,有
P 1*A 5-P 2P*A 5=K 1*(X 1+X 10)
其中,P 1为计量活门前油压,即齿轮泵后油压,A 1为齿轮泵油作用面积,P 2P为停车活门后油压,A 2为左弹簧腔左侧作用面积,A 3为中弹簧右侧作用面积,P 2为压差活门输出油压,A 4为左弹簧腔作用面积,A 5为中弹簧等效作用面积,K 1为中弹簧劲度系数,X 10为中弹簧初始压缩量,K 2为左弹簧劲度系数,X 20为左弹簧初始压缩量;
S5由位移计算模块输出的回油活门总位移计算得到回油活门流通面积,然后代入质量流量公式得到回油活门回油量,齿轮泵后总流量减去回油量即为计量活门燃油流量;
S6确定压差活门输入输出参数,输入参数包括齿轮泵后油压P1、压差活门弹簧腔油压P_tanhuangqiang、输出参数为压差活门控制油油压P2;
S7压差活门计算主要分为弹簧压缩模块和压力计算模块,其中,弹簧压缩模块数学模型为:
P 1*S 1+P tan*(S 4-S 2-S 3)+P 2*S 5+K 1*(X-0.0001)*(X≥0.0001)+f 10-f 20=(K 1+K 2)*X
其中P tan为压差活门弹簧腔油压,f 10为压差活门波纹管预紧力,f 20为压差活门弹簧预紧力,S 1为波纹管油液作用面积,S 2为弹簧腔油液作用面积,S 3为喷嘴挡板上端低压油作用面积,S 4为喷嘴挡板下端低压油作用面积,S 5为控制油作用面积,K 2为弹簧劲度系数,K 1为波纹管劲度系数,压力计算模块的主要建模依据是分压公式:
Figure PCTCN2019078244-appb-000013
其中,S 6为计量活门前油液作用面积,S 7为弹簧腔油液作用面积;
S8在主压差回路中的计量活门和压差活门模块中加入位移-面积插值表,其中,计量活门中,位移-面积插值表将计量活门阀芯位移转换为活门流通面积,压差活门中,位移-面积插值表将压差活门弹簧压缩量转换为喷嘴挡板阀油液作用面积,然后根据计量活门、回油活门和压差活门之间的输入输出关系,将三个活门相连接,组成主压差控制回路;
如图2所示,机械液压装置主油路建模步骤如下:
S1根据主油路流量流动方向,确定主油路组成模块,包括齿轮泵,回油活门,计量活门,高压关断活门,节流喷嘴,燃烧室;
S2根据质量流量方程,由压差的逆推思想,分别确定各个模块的流量压差方程,并在Simulink中实现;
S3高压关断活门的数学模型,除质量流量方程外,还包括位移计算模块,其上腔油液作用压力为:
Figure PCTCN2019078244-appb-000014
其中,P B为高压关断活门入口油压,D P为活门上腔直径,D R为活门上腔杆径,在平衡状态下,油液压力与弹簧力满足方程:
F I=P sp*A L+K s*X+F 0
其中,A L为弹簧腔油液作用面积,P sp为弹簧腔油压,F 0为弹簧预紧力,K s为弹簧劲度系数,X为弹簧位移,即高压关断活门位移,再由位移-面积插值表得到高压关断活门流通面积,反馈到压力计算模块的质量流量方程中;
机械液压装置中其他元部件建模步骤如下:
S1选择Swich模块实现停车活门工作状态的切换:当停车活门输入信号为 0时,将低压油输出至高压关断活门弹簧腔,高压关断活门打开,发动机正常工作;当停车活门输入信号大于0时,输出为高压油至高压关断活门弹簧腔,高压关断活门关闭,燃调系统停车;
S2选择Swich模块实现超转保护装置工作状态的切换:当超转信号为0,即发动机正常工作时,超转保护装置不动作,直接将转换活门后控制油输入到压差活门弹簧腔;当超转信号不为0,即发动机超转时,超转保护装置将低压油接入压差活门弹簧腔,导致计量活门流量减小,实现超转保护功能;
S3同样选择Swich模块来实现转换活门工作状态的切换:非停车状态时,转换活门上下腔都与油箱连通,故输出低压油至压差活门弹簧腔;停车状态时,转换活门下腔与高压油连通,此时根据分压公式,转换活门输出的油压计算方法如下:
Figure PCTCN2019078244-appb-000015
其中,P 转换为转换活门输出油压,S 8为转换活门上腔节流面积,S 9为转换活门下腔节流面积,Pcb为低压油箱油压,低压油箱与转换活门上腔连通,Psp为停车活门在停车状态下输出的高压油的油压,停车活门输出与转换活门下腔连通;
如图3所示,拆解模型中双层嵌套代数环的步骤如下:
S1在高压关断活门内层反馈回路中插入形如
Figure PCTCN2019078244-appb-000016
的高频延迟环节,其中
Figure PCTCN2019078244-appb-000017
设置参数k 1=1000使高压关断活门输出正确结果;
S2在压差活门内层反馈回路中插入形如
Figure PCTCN2019078244-appb-000018
的高频延迟环节,其中
Figure PCTCN2019078244-appb-000019
设置参数k 2=1000使压差活门输出正确结果;
S3在计量活门外层控制回路中插入形如
Figure PCTCN2019078244-appb-000020
的高频延迟环节,其中
Figure PCTCN2019078244-appb-000021
设置参数k 3=200使计量活门控制回路输出正确结果;
S4参数k 1、k 2、k 3满足代数环内层频率高于外层频率的要求,能够实现双层嵌套代数环的拆解,由双层嵌套代数环引起的系统震荡的波形图如图4所示,通过插入高频延迟环节对代数环进行拆解后的系统输出波形图如图5所示,最后调整至系统稳定运行且输出正确结果;
综上可见本发明提出的基于Simulink的航空发动机燃油调节器机械液压装置的建模方法是可行的,能够实现航空发动机燃调系统机械液压装置的高速、高精度仿真,并且能够解决建模仿真中的双层嵌套代数环问题。

Claims (1)

  1. 一种航空发动机燃油调节器机械液压装置的Simulink建模方法,其特征在于,步骤如下:
    S1采用解析法,对发动机燃调系统机械液压装置中的主压差控制回路进行建模,主压差控制回路包括计量活门、回油活门以及压差活门;
    机械液压装置主压差控制回路建模步骤如下:
    S1.1首先确定计量活门的输入和输出参数,输入参数包括计量活门流量Qjiliang、计量活门期望位移ExDisp、燃油密度Density和计量活门后油压Pout_JL,输出参数包括计量活门位移Disp、计量活门前油压Pin_JL和计量活门流量FUEL_Supply;
    S1.2计量活门内部包括位移计算模块和压力计算模块,将计量活门期望位移ExDisp输入到位移计算模块,经过PID控制得到电液伺服阀电流输入信号,再根据电液伺服阀输入输出特性得到输出流量,将输出流量与面积作比得到计量活门移动速度,再通过积分环节得到活门位移;对于压力计算模块,根据质量流量公式:
    Figure PCTCN2019078244-appb-100001
    得到
    Figure PCTCN2019078244-appb-100002
    其中:Q为计量活门燃油质量流量,u是流量系数,A为计量活门流通面积,ΔP为计量活门前后压差,ρ为燃油密度;
    S1.3确定回油活门的输入和输出参数,输入参数包括齿轮泵后油压P 1、压差活门输出油压P 2、停车活门后油压P 2P、齿轮泵供油量Q_chilunbeng和燃油密度Density,输出参数包括回油活门回油量Q_huiyou、回油活门位移X和计量活门流量Q_jiliang;
    S1.4回油活门内部包括位移计算模块和流量计算模块,位移计算公式如下:
    X=X 1+X 2
    其中,X为回油活门的位移,X 1为回油活门左弹簧位移,X 2为回油活门中弹簧位移,而对于左弹簧,有
    P 1*A 1+P 2P*A 2-P 2P*A 3-P 2*A 4=K 2*(X 2+X 20)
    对于中弹簧,有
    P 1*A 5-P 2P*A 5=K 1*(X 1+X 10)
    其中,P 1为计量活门前油压,即齿轮泵后油压;A 1为齿轮泵油作用面积,P 2P为停车活门后油压;A 2为左弹簧腔左侧作用面积,A 3为中弹簧右侧作用面积,P 2为压差活门输出油压,A 4为左弹簧腔作用面积,A 5为中弹簧等效作用面积,K 1为中弹簧劲度系数,X 10为中弹簧初始压缩量,K 2为左弹簧劲度系数,X 20为左弹簧初始压缩量;
    S1.5由位移计算模块输出的回油活门总位移计算得到回油活门流通面积,然后代入质量流量公式得到回油活门回油量,齿轮泵后总流量减去回油量即为计量活门燃油流量;
    S1.6确定压差活门的输入和输出参数,输入参数包括齿轮泵后油压P 1和压差活门弹簧腔油压P_tanhuangqiang,输出参数为压差活门控制油油压P 2
    S1.7压差活门计算主要分为弹簧压缩模块和压力计算模块,其中,弹簧压缩模块数学模型为:
    P 1*S 1+P tan*(S 4-S 2-S 3)+P 2*S 5+K 1*(X-0.0001)*(X≥0.0001)+f 10-f 20=(K 1+K 2)*X
    其中:P tan为压差活门弹簧腔油压,f 10为压差活门波纹管预紧力,f 20为压差活门弹簧预紧力,S 1为波纹管油液作用面积,S 2为弹簧腔油液作用面积,S 3为喷嘴挡板上端低压油作用面积,S 4为喷嘴挡板下端低压油作用面积,S 5为控制 油作用面积,K 2为弹簧劲度系数,K 1为波纹管劲度系数,压力计算模块的主要建模依据是分压公式:
    Figure PCTCN2019078244-appb-100003
    其中:S 6为计量活门前油液作用面积,S 7为弹簧腔油液作用面积;
    S1.8在计量活门和压差活门模块中加入位移-面积插值表,并根据计量活门、回油活门和压差活门的结构原理,将三个活门的输入输出相连接,组成主压差控制回路;
    机械液压装置主油路建模步骤如下:
    S1.9根据主油路流量流动方向,确定主油路组成模块,包括齿轮泵、回油活门、计量活门、高压关断活门、节流喷嘴和燃烧室;
    S1.10根据主油路流量方程,由压差的逆推思想,确定各个模块的流量压差方程,并在Simulink中实现;
    S1.11高压关断活门的数学模型,除质量流量方程外,还包括位移计算模块,其上腔油液作用压力为:
    Figure PCTCN2019078244-appb-100004
    其中:P B为高压关断活门入口油压,D P为活门上腔直径,D R为活门上腔杆径,在平衡状态下,油液压力与弹簧力满足方程:
    F I=P sp*A L+K s*X+F 0
    其中:A L为弹簧腔油液作用面积,P sp为弹簧腔油压,F 0为弹簧预紧力,K s为弹簧劲度系数,X为弹簧位移,即高压关断活门位移,再由位移-面积插值表得到高压关断活门流通面积,反馈到压力计算模块的质量流量方程中;
    机械液压装置中其他元部件建模步骤如下:
    S1.12选择Swich模块实现停车活门工作状态的切换:当停车活门输入信号 为0,输出低压油至高压关断活门弹簧腔,高压关断活门打开,正常工作;当停车活门输入信号大于0,输出为高压油至高压关断活门弹簧腔,高压关断活门关闭,燃调系统停车;
    S1.13选择Swich模块实现超转保护装置工作状态的切换:当超转信号为0,即发动机正常工作时,超转保护装置不动作,直接将转换活门后控制油输入到压差活门弹簧腔;当发动机超转,超转信号不为0时,超转保护装置将低压油接入压差活门弹簧腔,导致计量活门流量减小,实现超转保护功能;
    S1.14选择Swich模块来实现转换活门工作状态的切换:非停车状态时,转换活门上下腔都与油箱连通,故输出低压油至压差活门弹簧腔;停车状态时,转换活门下腔与高压油连通,此时根据分压公式,与压差活门分压原理相同,求得转换活门输出的油压;
    S2根据流量方程,对机械液压装置燃油主油路,即由齿轮泵输出,经过计量活门、高压关断活门和节流喷嘴,流向燃油分配器的油路,根据压力逆推思想进行建模;
    S3完成主压差控制回路和主油路建模后,继续在Simulink中搭建机械液压装置中其他元部件的模型,包括停车活门和转换活门;
    S4针对模型仿真中出现的双层嵌套代数环问题,采用插入高频延迟环节的方法,对代数环进行拆解的同时,提高模型仿真速度和精度;
    拆解模型中双层嵌套代数环的步骤如下:
    S4.1在高压关断活门内层反馈回路中插入形如
    Figure PCTCN2019078244-appb-100005
    的高频延迟环节,其中
    Figure PCTCN2019078244-appb-100006
    设置参数k 1使高压关断活门输出正确结果;
    S4.2在压差活门内层反馈回路中插入形如
    Figure PCTCN2019078244-appb-100007
    的高频延迟环节,其中
    Figure PCTCN2019078244-appb-100008
    设置参数k 2使压差活门输出正确结果;
    S4.3在计量活门外层控制回路中插入形如
    Figure PCTCN2019078244-appb-100009
    的高频延迟环节,其中
    Figure PCTCN2019078244-appb-100010
    设置参数k 3使计量活门控制回路输出正确结果;
    S4.4调整参数k 1、k 2、k 3,使代数环内层频率高于外层频率,实现双层嵌套代数环的拆解,并调整至系统稳定运行且输出正确结果;
    S5.对照实际试车数据,对模型内PID模块及系统输入输出进行修正,实现航空发动机燃调系统机械液压装置的高精度仿真。
PCT/CN2019/078244 2019-03-15 2019-03-15 一种航空发动机燃油调节器机械液压装置的Simulink建模方法 WO2020186382A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/764,304 US11002212B1 (en) 2019-03-15 2019-03-15 Simulink modeling method for mechanical hydraulic device of aeroengine fuel regulator
PCT/CN2019/078244 WO2020186382A1 (zh) 2019-03-15 2019-03-15 一种航空发动机燃油调节器机械液压装置的Simulink建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/078244 WO2020186382A1 (zh) 2019-03-15 2019-03-15 一种航空发动机燃油调节器机械液压装置的Simulink建模方法

Publications (1)

Publication Number Publication Date
WO2020186382A1 true WO2020186382A1 (zh) 2020-09-24

Family

ID=72519448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078244 WO2020186382A1 (zh) 2019-03-15 2019-03-15 一种航空发动机燃油调节器机械液压装置的Simulink建模方法

Country Status (2)

Country Link
US (1) US11002212B1 (zh)
WO (1) WO2020186382A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112945561A (zh) * 2021-01-15 2021-06-11 北京动力机械研究所 一种高焓值发动机试车台煤油调节系统及调节方法
WO2023000361A1 (zh) * 2021-07-19 2023-01-26 武汉理工大学 气压制动系统元件压力响应仿真模型库建构方法
CN116882314A (zh) * 2023-07-06 2023-10-13 昆明理工大学 一种对高强化柴油机钢活塞头部进行热优化设计的方法
CN118051075A (zh) * 2024-04-15 2024-05-17 上海海维工业控制有限公司 一种流体系统中压力控制阀的压力控制方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820953B (zh) * 2021-09-26 2024-04-02 北京航空航天大学 导叶伺服系统的建模方法、装置及电子设备
CN114326439A (zh) * 2021-12-31 2022-04-12 中国第一汽车股份有限公司 一种自动变速器虚拟标定的模型实时化及虚拟标定方法
CN117216899B (zh) * 2023-09-11 2024-05-17 中国人民解放军国防科技大学 一种基于irc方法的液氧煤油发动机预燃室建模方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201606091U (zh) * 2010-01-27 2010-10-13 三一重型装备有限公司 一种控制掘进机锚杆动力的液压装置
WO2014039800A1 (en) * 2012-09-08 2014-03-13 Purdue Research Foundation Rapid estimation of piezoelectric fuel injection events
CN104314696A (zh) * 2014-08-26 2015-01-28 北京动力机械研究所 燃油计量活门控制系统及燃油调节器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2441686C (en) * 2003-09-23 2004-12-21 Westport Research Inc. Method for controlling combustion in an internal combustion engine and predicting performance and emissions
DE102008002490A1 (de) * 2008-06-18 2009-12-24 Robert Bosch Gmbh Verfahren und Vorrichtung zur Druckbestimmung
DE102015207252A1 (de) * 2015-04-21 2016-10-27 Avl List Gmbh Verfahren und Vorrichtung zur modellbasierten Optimierung einer technischen Einrichtung
US20190309656A1 (en) * 2016-06-14 2019-10-10 Borgwarner Inc. Waste heat recovery system with parallel evaporators and method of operating
US10665039B2 (en) * 2016-12-09 2020-05-26 Traffilog Ltd. Distributed monitoring and control of a vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201606091U (zh) * 2010-01-27 2010-10-13 三一重型装备有限公司 一种控制掘进机锚杆动力的液压装置
WO2014039800A1 (en) * 2012-09-08 2014-03-13 Purdue Research Foundation Rapid estimation of piezoelectric fuel injection events
CN104314696A (zh) * 2014-08-26 2015-01-28 北京动力机械研究所 燃油计量活门控制系统及燃油调节器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENG, WUSHENG ET AL.: "Pneumatic Control Hydraulic Back Pressure Valve Simulation and Design Based on Simulink", CONTROL ENGINEERING OF CHINA, vol. 21, no. 2, 20 March 2014 (2014-03-20), DOI: 20190712154538A *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112945561A (zh) * 2021-01-15 2021-06-11 北京动力机械研究所 一种高焓值发动机试车台煤油调节系统及调节方法
WO2023000361A1 (zh) * 2021-07-19 2023-01-26 武汉理工大学 气压制动系统元件压力响应仿真模型库建构方法
CN116882314A (zh) * 2023-07-06 2023-10-13 昆明理工大学 一种对高强化柴油机钢活塞头部进行热优化设计的方法
CN116882314B (zh) * 2023-07-06 2024-04-30 昆明理工大学 一种对高强化柴油机钢活塞头部进行热优化设计的方法
CN118051075A (zh) * 2024-04-15 2024-05-17 上海海维工业控制有限公司 一种流体系统中压力控制阀的压力控制方法及系统

Also Published As

Publication number Publication date
US11002212B1 (en) 2021-05-11
US20210140382A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
WO2020186382A1 (zh) 一种航空发动机燃油调节器机械液压装置的Simulink建模方法
CN109783998B (zh) 一种航空发动机燃油调节器机械液压装置的Simulink建模方法
CN104200062B (zh) 一种航空发动机气路故障的融合诊断方法
CN109002680A (zh) 一种新型轴流泵叶轮多学科自动优化设计方法
CN105247434A (zh) 流量控制装置和流量控制程序
CN111079308B (zh) 一种船用低速机两级柱塞增压式共轨燃油系统仿真方法
CN108180180B (zh) 双液压缸流量补偿同步起竖装置及其控制方法
CN111666648B (zh) 一种航空发动机动态特性模拟方法
CN106285980A (zh) 一种天然气发动机扭矩闭环响应方法
CN111680357A (zh) 一种变循环发动机机载实时模型的部件级无迭代构建方法
CN103593501A (zh) 一种航空发动机滑油系统设计方法
CN102880757A (zh) 一种基于流固耦合数值计算的微灌压力调节器设计方法
US9261024B2 (en) Method and a device for producing a setpoint signal
CN212272670U (zh) 一种基于两种不同阀并联控制液压缸的电液力控制系统
RU2010107528A (ru) Способ управления расходом топлива в многоколлекторную камеру сгорания газотурбинного двигателя
CN104090495A (zh) 大功率电控柴油机泵喷嘴供油系统建模方法
CN103292004A (zh) 锻造液压机的快锻阀控制装置
CN114809174B (zh) 液压系统控制方法、装置及挖掘机
Hang et al. Design and simulation of large flowrate fuel metering valve of aero engine based on AMESim
CN105928004A (zh) 一种高温燃烧器的燃油流量控制方法及其系统
CN116220921A (zh) 一种喷口控制回路执行机构动态特性评估指标生成方法
CN111413867B (zh) 一种在Flowmaster平台上液压控制机构等效控制器快速建模及优化方法
CN112572739A (zh) 一种浮力调节装置
Sun et al. Modeling and Simulation of an Aeroengine Pressure Ratio Regulator
CN110219902B (zh) 确定离合器运行参数的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919683

Country of ref document: EP

Kind code of ref document: A1