WO2020184840A1 - 기지국 공용화 장치 - Google Patents

기지국 공용화 장치 Download PDF

Info

Publication number
WO2020184840A1
WO2020184840A1 PCT/KR2020/001632 KR2020001632W WO2020184840A1 WO 2020184840 A1 WO2020184840 A1 WO 2020184840A1 KR 2020001632 W KR2020001632 W KR 2020001632W WO 2020184840 A1 WO2020184840 A1 WO 2020184840A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
transmission
ports
filter unit
signal
Prior art date
Application number
PCT/KR2020/001632
Other languages
English (en)
French (fr)
Inventor
김병철
정종윤
이상수
도은빈
원정희
Original Assignee
주식회사 케이엠더블유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이엠더블유 filed Critical 주식회사 케이엠더블유
Publication of WO2020184840A1 publication Critical patent/WO2020184840A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention is an apparatus that allows a plurality of systems to share a single base station, and more specifically, a base station that enables three or more systems to share a single base station by selectively filtering the frequency bands of each system using a filter. It relates to a common device.
  • Each service provider that provides a mobile communication system and a wireless communication system installs an independent base station separately to provide a wireless communication service. Therefore, problems such as redundant investment due to the installation of individual base stations occur, it is difficult to secure a space for installing multiple base stations, or the radio wave quality is deteriorated due to mutual interference between multiple base stations installed in a narrow place. Are doing.
  • the filter unit 1 and the filter unit 2 are set to filter the frequency band of the system 2 (system 2). Accordingly, the transmission signal of the system 2 is distributed by the combination divider 2, passes through the filter units 1 and 2, is synthesized by the combination divider 1, and is transmitted through the antenna ANT. Correspondingly, the received signal of the system 2 received through the antenna is distributed by the combination divider 1, passes through the filter units 1 and 2, is synthesized by the combination divider 2, and is received by the system 2.
  • the filter unit 1 and the filter unit 2 filter only the frequency band of the system 2, the transmission signal of the system 1 distributed from the synthesis divider 1 does not pass through the filter unit 1 and the filter unit 2, and the total reflection ( return), it is synthesized again in the synthesizer 1 and transmitted through the antenna.
  • the received signal of the system 1 received through the antenna is distributed by the synthesis divider 1, is totally reflected by the filter unit 1 and the filter unit 2, is synthesized again by the synthesis divider 1, and is received by the system 1.
  • the conventional base station commonization method provides some alternatives to the above-described problems in terms of being able to service transmission/reception signals of different frequency bands in a single base station.
  • the conventional base station sharing method limits the number of frequency bands that can be shared to two. Since the number of channels is limited to 2). Therefore, it can be said that the conventional base station sharing method has a limit in terms of the number of sharable frequency bands.
  • An embodiment of the present invention has a main object to provide a new base station sharing apparatus that enables a larger number of channels to share a single base station compared to a conventional method.
  • an apparatus for allowing first to third systems using signals of different frequency bands to share a single base station it is connected to the first and third systems, and A diplexer for separating and passing the transmission/reception signal and the transmission/reception signal of the third system; A first composite distributor connected to the diplexer through a first port; A second synthesis distributor connected to the second system through a fifth port; And respectively connected to the third and second ports of the first combination divider, each connected to the 7th and 6th ports of the second combination divider, and selectively passing or blocking the transmission/reception signals of the second system.
  • first and second filter units wherein the first combination divider distributes a signal input to a fourth port or the first port and outputs the distributed signal to the second and third ports, and the second and third ports The signal input to the signal is synthesized and output to the fourth port or the first port, and the second combining divider distributes the signal input to the eighth port or the fifth port and outputs the signal to the seventh and sixth ports. And synthesizing the signals input through the seventh and sixth ports and outputting them to the eighth or fifth ports.
  • the present invention is configured so that three or more wireless communication signals can share a single base station, redundant investment, difficulty in securing space, and deterioration of radio wave quality can be solved at once.
  • FIG. 1 is a block diagram schematically showing an example of a conventional base station sharing apparatus.
  • FIG. 2 is a block diagram schematically showing an example of a base station sharing apparatus according to the present invention.
  • FIG. 3 is a block diagram schematically showing another example of an apparatus for sharing a base station according to the present invention.
  • 4 is a diagram for explaining the operation of the hybrid coupler.
  • FIG. 5 is a block diagram schematically showing another example of an apparatus for sharing a base station according to the present invention.
  • FIG. 6 is a block diagram schematically showing another example of an apparatus for sharing a base station according to the present invention.
  • FIG. 7 is a view for explaining the operation of the magic tea.
  • FIG. 8 is a diagram showing a simulation result obtained by separating transmission/reception signals of two systems using a diplexer.
  • FIG. 9 is a diagram showing a simulation result of separating transmission/reception signals of systems using the apparatus for common use of a base station according to the present invention.
  • the apparatus for common use of a base station (hereinafter, referred to as a'common use device') 200 includes first to first using different frequency bands. It corresponds to an apparatus for servicing transmission/reception signals of the three systems 250, 260, and 270 through a single base station.
  • the first to third systems 250, 260, and 270 may correspond to wireless communication systems operated or managed by the same or different operators or subscribers. That is, the three systems 250, 260, and 270 may be managed by a single operator, or one or more of the three systems 250, 260, and 270 may be managed by the same operator.
  • the first to third systems 250, 260, and 270 may perform wireless communication using transmission/reception signals (channels) having different frequency bands.
  • the first system 250 uses a channel of the relatively lowest band (low)
  • the third system 270 uses a channel of the relatively highest band (high)
  • the second system Compared with the first system 250 and the third system 270, 260 may use a channel of a middle band.
  • each of the first system 250, the second system 260, and the third system 270 is high/middle/low, middle/low/high, middle/high/low, low/high/middle, and High/low/middle channels can be used.
  • the commonization apparatus 200 includes a diplexer 240, a filter unit 230, and a first synthesis divider 210-1. ) And a second synthesis distributor 210-2.
  • the diplexer 240 corresponds to a configuration that separates or separates a channel of the first system 250 and a channel of the third system 270.
  • the diplexer 240 may be configured with two filters 242 and 244 that pass signals of different frequency bands.
  • the diplexer 240 includes a third filter unit 242 for passing a channel of the first system 250 and a fourth filter unit 244 for passing a channel of the third system 270. It can be configured to include.
  • each of the third filter unit 242 and the fourth filter unit 244 may be implemented with LPF, HPF, or the like.
  • the present invention separates the signal totally reflected from the filter unit 230 into two different channels as described later through the operation or function of the diplexer 240.
  • the filter unit 230 may be configured to selectively pass or block a channel of the second system 260. If the channel of the second system 260 can be selectively passed or blocked, the filter unit 230 may be implemented as a BPF, BRF, LPF, or HPF.
  • the filter unit 230 may be configured as a filter having a fixed filtering band, and may be configured as a band shift filter capable of varying the filtering band according to embodiments.
  • the commonization apparatus 200 of the present invention can provide an effect of reducing installation time, installation cost, and the like according to system replacement or change.
  • Each of the filters constituting the filter unit 230 may be implemented as one of a cavity (Cavity) filter, a DR (Dielectric Resonator) filter, and a DR-cavity (DR-Cavity) filter .
  • the DR filter or the DR-cavity filter may operate in any one of TE mode (transverse electric mode), TM mode (transverse magnetic mode), and NRD mode (Non-Radiative Dielectric waveguide).
  • the first and second combining dividers 210-1 and 210-2 are configured to synthesize and output two signals input through specific ports, and distribute and output a single signal input through a specific port.
  • the first and second combining dividers 210-1 and 210-2 of the present invention are hybrid couplers, hybrid rings, and branch lines. It can be implemented with a directional coupler, a 3dB directional coupler, and a magic tee.
  • first and second synthesizing dividers 210-1 and 210-2 of the present invention are implemented with a hybrid ring, a branch line directional coupler, a 3dB directional coupler, a magic tee, etc., a phase for generating a phase difference in signals
  • One or more shifters may be further included.
  • TERM corresponds to a load resistance for improving the isolation of the common device 200.
  • the filter unit 230 is composed of a BPF or BRF that selectively passes or blocks the channel of the second system 260, and the third filter unit 242 selectively selects the channel of the first system 250.
  • the BPF is configured to pass through
  • the fourth filter unit 244 is configured as a BPF that selectively passes the channel of the third system 270.
  • the filter unit 230 may be composed of BPF, BRF, LPF, HPF, etc., and the third and fourth filter units 240 ) In addition, it may be composed of LPF, HPF, etc.
  • FIG. 2 is a block diagram schematically showing an example of a common device 200 according to the present invention
  • FIG. 3 is a block diagram schematically showing another example of a common device 200 according to the present invention
  • 4 is a diagram for explaining the operation of the hybrid couplers 220-1 and 220-2.
  • hybrid couplers 220-1 and 220-2 will be first described with reference to FIG. 4, and then the common use apparatus 200 of the present invention with reference to FIGS. 2 and 3 is a hybrid coupler 220-1. , 220-2) will be described in detail with respect to Embodiment 1-1 and Embodiment 1-2.
  • the hybrid couplers 220-1 and 220-2 are generally used to extract part of a specific signal power or to distribute a specific signal power into two or more equal signal powers. Among them, the former extracts (samples) a part of the signal power in order to grasp the characteristics of a specific signal, and thus the functions of the hybrid couplers 220-1 and 220-2 used in the present invention correspond to the latter.
  • the hybrid coupler (220-1, 220-2) may be composed of a total of four ports (A, B, C, and D).
  • A, B, C, and D When a signal is input to the A port, the input signal is divided in half by the coupling phenomenon and is output to the B and C ports.
  • the signals output to the B and C ports have a phase difference of 90 degrees from each other. do.
  • the two input signals are combined and output to the A port or D port.
  • the output port (A port or D port) is determined by the phase difference between the two input signals.
  • phase of the signal input to the B port is 90 degrees and the phase of the signal input to the C port is 180 degrees
  • the two signals are combined and output to the D port.
  • the phase of the signal input to the B port is 180 degrees and the phase of the signal input to the C port is 90 degrees
  • the two signals are combined and output to the A port.
  • the antenna ANT is connected to the fourth port (port 4) of the first hybrid coupler 220-1, and the second hybrid coupler 220-2
  • the TERM is connected to the 8th port (port 8) of, and the filter unit 230 is configured with two BPFs 232 and 234 for selectively passing the channel of the second system 260. .
  • the first hybrid coupler 220-1 synthesizes or distributes all the transmission/reception signals of the first system 250, the transmission/reception signals of the second system 260, and the transmission/reception signals of the third system 270.
  • the second hybrid coupler 220-2 synthesizes or distributes only the transmission/reception signals of the second system 260.
  • the transmission signal of the second system 260 is input to the second hybrid coupler 220-2 through the fifth port, and this transmission signal is in a state with a phase difference of 90 degrees in the second hybrid coupler 220-2. It is distributed and outputted to each of the 7th and 6th ports.
  • the filter unit 230 is configured to selectively pass the channel of the second system 260, the distributed and output transmission signal passes through each of the first filter unit 232 and the second filter unit 234 , Are input to the third port and the second port of the first hybrid coupler 220-1, respectively.
  • the transmission signals input to each of the third and second ports have a phase difference, they are synthesized by the first hybrid coupler 220-1 and then output to the fourth port and transmitted through the antenna ANT.
  • the received signal of the second system 260 input through the antenna ANT is distributed in a state with a phase difference of 90 degrees in the first hybrid coupler 220-1, and the distributed received signals are the first hybrid coupler 220 Output to each of the 3rd and 2nd ports of -1).
  • the received signals output from each of the third and second ports pass through the first filter unit 232 and the second filter unit 234, and then the seventh and sixth ports of the second hybrid coupler 220-2. It is input to the port.
  • the input signals are synthesized by the second hybrid coupler 220-2 by the phase difference and output to the fifth port, and then received by the second system 260.
  • the transmission signal of the first system 250 passes through the third filter unit 242 of the diplexer 240. Since the port opposite to the diplexer 240 is connected to the first port of the first hybrid coupler 220-1, the transmission signal of the first system 250 passing through the third filter unit 242 is the first It is input through the first port of the hybrid coupler 220-1.
  • the transmission signal input to the first port is distributed in a state with a phase difference of 90 degrees in the first hybrid coupler 220-1, and then output to the second port and the third port, respectively. Since the filter unit 230 selectively passes only the channel of the second system 260, the transmission signals of the first system 250 output from the second and third ports are totally reflected by the filter unit 230 and are then removed again. 1 It is re-inputted to the second and third ports of the hybrid coupler 220-1.
  • the re-input transmission signals are synthesized by the phase difference in the first hybrid coupler 220-1, output to the fourth port, and transmitted through the antenna ANT.
  • the phase difference of 90 degrees from the first hybrid coupler 220-1 It is distributed with the After the distributed received signals are output to the third and second ports, they are totally reflected by the filter unit 230 and re-input to the third and second ports.
  • the re-input received signals are synthesized by the first hybrid coupler 220-1 due to a phase difference between each other and output to the first port, and after passing through the third filter unit 242 of the diplexer 240, It is received by the first system 250.
  • the transmission signal of the third system 270 passes through the fourth filter unit 244 of the diplexer 240.
  • the transmission signal of the third system 270 that has passed through the fourth filter unit 244 is input to the first port of the first hybrid coupler 220-1.
  • the transmission signal input to the first port is distributed in a state with a phase difference of 90 degrees in the first hybrid coupler 220-1, and then output to the second port and the third port, respectively. Since the filter unit 230 passes only the channel of the second system 250, the transmission signals of the third system 270 output from the second port and the third port are totally reflected by the filter unit 230 and are again a first hybrid. It is re-inputted to the second and third ports of the coupler 220-1.
  • the re-input transmission signals are synthesized by the phase difference in the first hybrid coupler 220-1, output to the fourth port, and transmitted through the antenna ANT.
  • the phase difference of 90 degrees from the first hybrid coupler 220-1 It is distributed with the After the distributed received signals are output to the third and second ports, they are totally reflected by the filter unit 230 and re-input to the third and second ports.
  • the re-input received signals are synthesized by the first hybrid coupler 220-1 due to a phase difference between each other and output to the first port, and after passing through the fourth filter unit 244 of the diplexer 240, It is received by the third system 270.
  • the present invention can implement 3-channel commonization by separating the signals totally reflected from the first and second filter units 232 and 234 into 2-channels of low and high using the diplexer 240. do.
  • the first and second filter units 232 and 234 are composed of BPFs that selectively pass the channels of the second system 260
  • the third filter unit 242 is It is composed of a BPF that selectively passes the channel of the first system 250
  • the fourth filter unit 244 is composed of a BPF that selectively passes the channel of the third system 270
  • the width of the channel, the channel of the second system 260 and the guard band formed between the channels of the third system 270 may be minimized. Accordingly, the present invention can provide an effect of more efficiently utilizing the entire frequency band.
  • TERM is connected to the fourth port (port 4) of the first hybrid coupler 220-1, and the eighth of the second hybrid coupler 220-2.
  • the antenna ANT is connected to the port (port 8), and the filter unit 230 is configured of a BRF that selectively blocks a channel of the second system 260.
  • the first hybrid coupler 220-1 synthesizes or distributes only the transmission/reception signals of the first system 250 and the transmission/reception signals of the third system 270
  • the second hybrid coupler 220-2 Synthesizes or distributes all of the transmission/reception signals of the first system 250, the transmission/reception signals of the third system 270, and the transmission/reception signals of the second system 260.
  • the transmission signal of the second system 260 is input to the second hybrid coupler 220-2 through the fifth port, and this transmission signal is in a state with a phase difference of 90 degrees in the second hybrid coupler 220-2. It is distributed and outputted to each of the 7th and 6th ports.
  • the filter unit 230 is composed of BRF that selectively blocks the channel of the second system 260, the distributed and output transmission signal is total reflection in each of the first filter unit 232 and the second filter unit 234 After that, the second hybrid coupler 220-2 is re-inputted to each of the seventh and sixth ports.
  • the re-inputted transmission signals have a phase difference, they are synthesized by the second hybrid coupler 220-2 and then output through the eighth port to be transmitted through the antenna ANT.
  • the received signal of the second system 260 input through the antenna ANT is input to the eighth port of the second hybrid coupler 220-2, and the phase difference of 90 degrees is reduced by the second hybrid coupler 220-2. After being distributed with excitation, it is output to each of the 7th and 6th ports.
  • the seventh and sixth ports of the second hybrid coupler 220-2 are It is re-entered into the port.
  • the re-input signals are synthesized by the phase difference in the second hybrid coupler 220-2 and output to the fifth port, and then received by the second system 260.
  • the transmission signal of the first system 250 passes through the third filter unit 242 of the diplexer 240. Since the port opposite to the diplexer 240 is connected to the first port of the first hybrid coupler 220-1, the transmission signal of the first system 250 passing through the third filter unit 242 is the first It is input through the first port of the hybrid coupler 220-1.
  • the transmission signal input to the first port is distributed in a state with a phase difference of 90 degrees in the first hybrid coupler 220-1, and then output to the second port and the third port, respectively. Since the filter unit 230 selectively blocks only the channel of the second system 260, the transmission signals of the first system 250 output from the second and third ports pass through the filter unit 230 It is input to the sixth and seventh ports of the hybrid coupler 220-2.
  • Transmission signals input through the sixth and seventh ports are synthesized by the phase difference in the second hybrid coupler 220-2 and output to the eighth port, and are transmitted through the antenna ANT.
  • the received signal of the first system 250 input through the antenna ANT is input to the eighth port of the second hybrid coupler 220-2, and then has a phase difference in the second hybrid coupler 220-2. Distributed in the state.
  • the distributed received signals are output to the sixth and seventh ports, and then pass through the filter unit 230 and are input to the second and third ports of the first hybrid coupler 220-1, respectively.
  • the received signals input to each of the second and third ports are synthesized by the first hybrid coupler 220-1 by a phase difference between them and output to the first port, and a third filter unit of the diplexer 240 After passing through 242, it is received by the first system 250.
  • the transmission signal of the third system 270 passes through the fourth filter unit 244 of the diplexer 240.
  • the transmission signal of the third system 270 that has passed through the fourth filter unit 244 is input to the first port of the first hybrid coupler 220-1.
  • the transmission signal input to the first port is distributed in a state with a phase difference of 90 degrees in the first hybrid coupler 220-1, and then output to the second port and the third port, respectively. Since the filter unit 230 selectively blocks only the channel of the second system 260, the transmission signals of the third system 270 output from the second and third ports pass through the filter unit 230 It is input to the sixth and seventh ports of the hybrid coupler 220-2.
  • Transmission signals input through the sixth and seventh ports are synthesized by the phase difference in the second hybrid coupler 220-2 and output to the eighth port, and are transmitted through the antenna ANT.
  • the second hybrid coupler 220-2 After the received signal of the third system 270 input through the antenna ANT is input to the eighth port of the second hybrid coupler 220-2, the second hybrid coupler 220-2 has a phase difference. Distributed in the state. The distributed received signals are output to the sixth and seventh ports, and then pass through the filter unit 230 and are input to the second and third ports of the first hybrid coupler 220-1, respectively.
  • the received signals input to each of the second and third ports are synthesized by the first hybrid coupler 220-1 by a phase difference between them and output to the first port, and the fourth filter unit of the diplexer 240 After passing through 244, it is received by the third system 270.
  • FIG. 5 is a block diagram schematically showing another example of a common apparatus 200 according to the present invention
  • FIG. 6 is a block diagram schematically showing another example of a common apparatus 200 according to the present invention
  • 7 is a view for explaining the operation of the magic tea (520-1, 520-2).
  • the magic teas 520-1 and 520-2 may include a total of four ports A, B, C, and D.
  • the power is divided in half by the coupling phenomenon, and the input signal is output to the B and C ports, and the signals output to the B and C ports have a phase difference of 180 degrees from each other. do.
  • an antenna ANT is connected to a fourth port (port 4) of the first magicty 520-1, and the second magicty 520-2
  • the TERM is connected to the 8th port (port 8) of, and the filter unit 230 corresponds to an embodiment in which the BPF selectively passes the channel of the second system 260.
  • Embodiment 2-1 further includes a first phase changer 580 and a second phase changer 590 installed in the signal path between the second port and the sixth port.
  • the second phase changers 580 and 590 may be installed one by one on the left and right around the filter unit 230.
  • the first magic 520-1 synthesizes or distributes all of the transmission/reception signals of the first system 250, the transmission and reception signals of the second system 260, and the transmission and reception signals of the third system 270.
  • the second magic 520-2 synthesizes or distributes only the transmission/reception signals of the second system 260.
  • the transmission signal of the second system 260 is input to the second magic 520-2 through the fifth port, and this transmission signal is in a state with a phase difference of 180 degrees in the second magic 520-2. It is distributed and outputted to each of the 7th and 6th ports.
  • the filter unit 230 selectively passes the channel of the second system 260, the distributed and output transmission signal passes through each of the first filter unit 232 and the second filter unit 234, and then the first It is input to each of the third and second ports of the hybrid coupler 220-1.
  • the transmission signal output from the sixth port and input to the second port is changed in phase in the process of passing through the second phase variable 590 (90 degrees), and then passes through the first phase variable 580. In the process, the phase changes again (90 degrees). As a result, two transmission signals input to each of the second and third ports have the same phase.
  • transmission signals input to each of the third port and the second port are synthesized by the first magic 520-1, and then output to the fourth port and transmitted through the antenna ANT.
  • the received signal of the second system 260 received through the antenna ANT and input to the fourth port is distributed in a state with a phase difference of 180 degrees in the first magicty 520-1, and the distributed received signals are They are output to each of the third and second ports of the first magicty 520-1.
  • the received signals output from each of the third and second ports pass through the first filter unit 232 and the second filter unit 234, and then the seventh and sixth ports of the second magicty 520-2. It is input to the port.
  • the received signal output from the second port and input to the sixth port is changed in phase in the process of passing through the first phase variable 580 (90 degrees), and then passes through the second phase variable 590. In the process, the phase changes again (90 degrees).
  • two received signals input to each of the seventh and sixth ports have the same phase.
  • the received signals having the same phase are synthesized in the second magic 520-2 and output through the fifth port, and then received by the second system 260.
  • the transmission signal of the first system 250 passes through the third filter unit 242 of the diplexer 240. Since the port opposite to the diplexer 240 is connected to the first port of the first magicty 520-1, the transmission signal of the first system 250 passing through the third filter unit 242 is It is input through the first port of the magic tea 520-1.
  • the transmission signal input to the first port is distributed in a state with a phase difference of 180 degrees in the first magic 520-1, and then output to the second port and the third port, respectively. Since the filter unit 230 is configured to pass only the channel of the second system 260, the transmission signals of the first system 250 output from the second port and the third port are totally reflected by the filter unit 230 and are again It is re-inputted to the second and third ports of the first magicty 520-1.
  • the transmission signal output from the second port and re-inputted to the second port is changed in phase by 90 degrees by the first phase changer 580 in the process of going from the second port to the second filter unit 234 , In the process (total reflection) from the second filter unit 234 to the second port, the phase is changed again by 90 degrees by the first phase variable 580.
  • transmission signals re-inputted to each of the second and third ports have the same phase.
  • re-input transmission signals having the same phase are synthesized by the first magic 520-1, output to the fourth port, and transmitted through the antenna ANT.
  • the received signal of the first system 250 input through the antenna ANT is input to the fourth port of the first magic 520-1, and then a phase difference of 180 degrees in the first magic 520-1. It is distributed with the After the distributed received signals are output to the third and second ports, they are totally reflected by the filter unit 230 and re-input to the third and second ports.
  • the received signal output from the second port and re-inputted to the second port is changed in phase by 90 degrees by the first phase changer 580 in the process of going from the second port to the second filter unit 234 , In the process of going from the second filter unit 234 to the second port, the phase is changed again by 90 degrees by the first phase changer 580.
  • received signals re-inputted to each of the second and third ports have the same phase.
  • re-input received signals having the same phase are synthesized in the first magic 520-1 and output to the first port, and after passing through the third filter unit 242 of the diplexer 240, It is received by the first system 250.
  • the transmission signal of the third system 270 passes through the fourth filter unit 244 of the diplexer 240.
  • the transmission signal of the third system 270 that has passed through the fourth filter unit 244 is input to the first port of the first magic 520-1.
  • the transmission signal input to the first port is distributed in a state with a phase difference of 180 degrees in the first magic 520-1, and then output to the second port and the third port, respectively. Since the filter unit 230 is configured to pass only the channel of the second system 260, the transmission signals of the third system 270 output from the second port and the third port are totally reflected by the filter unit 230 and then again. It is re-inputted to the second and third ports of the first magicty 520-1.
  • transmission signals re-inputted to the second and third ports have the same phase by the first phase changer 580. Accordingly, re-input transmission signals having the same phase are synthesized by the first magic 520-1, output to the fourth port, and transmitted through the antenna ANT.
  • the received signal of the third system 270 input through the antenna ANT is input to the fourth port of the first magic 520-1, the phase difference of 180 degrees in the first magic 520-1 It is distributed with the The distributed received signals are output to the third port and the second port, and are then totally reflected by the filter unit 230 and then input to the third and second ports.
  • the received signals re-inputted to the second and third ports have the same phase by the first phase changer 580. Accordingly, re-input received signals having the same phase are synthesized in the first magic 520-1 and output to the first port, and after passing through the fourth filter unit 244 of the diplexer 240, It is received by the third system 270.
  • TERM is connected to the fourth port (port 4) of the first magicty 520-1, and the eighth of the second magical 520-2.
  • the antenna ANT is connected to the port (port 8), and the filter unit 230 is configured of a BRF that selectively blocks a channel of the second system 260.
  • Example 2-2 as in Example 2-1, the first phase changer 580 and the second phase changer 290 installed in the signal path between the second port and the sixth port are further included.
  • the first and second phase changers 580 and 590 are installed one by one on the left and right around the filter unit 230.
  • the first magicty 520-1 synthesizes or distributes only the transmission/reception signals of the first system 250 and the transmission/reception signals of the third system 270
  • the second magicty 520-2 Synthesizes or distributes all of the transmission/reception signals of the first system 250, the transmission/reception signals of the third system 270, and the transmission/reception signals of the second system 260.
  • the transmission signal of the second system 260 is input to the second magic 520-2 through the fifth port, and this transmission signal is in a state with a phase difference of 180 degrees in the second magic 520-2. It is distributed and outputted to each of the 7th and 6th ports.
  • the filter unit 230 is composed of a BRF that selectively blocks the channel of the second system 260, the transmitted signal distributed and output is total reflection from each of the first filter unit 232 and the second filter unit 234 After that, it is re-inputted to the sixth and seventh ports of the second magicty 520-2.
  • the transmission signal output from the sixth port and re-inputted to the sixth port is changed in phase by 90 degrees in the process of going from the sixth port to the second filter unit 234, and then the sixth from the second filter unit 234 In the process of heading to the port (total reflection), the phase changes again by 90 degrees.
  • two transmission signals re-inputted to each of the sixth and seventh ports have the same phase.
  • transmission signals re-inputted to each of the sixth and seventh ports are synthesized by the second magic 520-2, and then output to the eighth port and transmitted through the antenna ANT.
  • the received signal of the second system 260 received through the antenna ANT and input to the eighth port is distributed in a state with a phase difference of 180 degrees in the second magic 520-2, and the distributed received signals are They are output through the sixth and seventh ports of the second magic 520-2, respectively.
  • the received signals output from each of the sixth and seventh ports are totally reflected from the first filter unit 232 and the second filter unit 234 and are re-inputted to the sixth and seventh ports.
  • the received signal output from the sixth port and re-inputted to the sixth port is changed in phase by 90 degrees in the process of going from the sixth port to the second filter unit 234, and then the sixth from the second filter unit 234 In the process of heading to the port (total reflection), the phase changes again by 90 degrees.
  • two received signals re-inputted to each of the sixth and seventh ports have the same phase.
  • the received signals having the same phase are synthesized in the second magic 520-2 and output through the fifth port, and then received by the second system 260.
  • the transmission signal of the first system 250 passes through the third filter unit 242 of the diplexer 240. Since the port opposite to the diplexer 240 is connected to the first port of the first magicty 520-1, the transmission signal of the first system 250 passing through the third filter unit 242 is It is input through the first port of the magic tea 520-1.
  • the transmission signal input to the first port is distributed in a state with a phase difference of 180 degrees in the first magic 520-1, and then output to the second port and the third port, respectively. Since the filter unit 230 is composed of a BRF that selectively blocks only the channel of the second system 260, the transmission signals of the first system 250 output from the second and third ports are the filter unit 230 Pass through and are input to the sixth and seventh ports of the second magicty 520-2.
  • the transmission signal output from the second port and input to the sixth port is changed in phase by 90 degrees by the first phase changer 580 in the process of going from the second port to the second filter unit 234, In the process of going from the second filter unit 234 to the sixth port, the phase is changed again by 90 degrees by the second phase changer 590.
  • transmission signals input to each of the sixth and seventh ports have the same phase.
  • transmission signals having the same phase are synthesized in the second magic 520-2 and output through the eighth port, and transmitted through the antenna ANT.
  • the phase difference of 180 degrees in the second magic 520-2 It is distributed with the The distributed received signals are output to the sixth and seventh ports, and then pass through the filter unit 230 and are respectively input to the second and third ports of the first magicty 520-1.
  • the received signal output from the sixth port and input to the second port is changed in phase by 90 degrees by the second phase changer 590 in the process of going from the second port to the second filter unit 234, 2
  • the phase is changed again by 90 degrees by the first phase changer 580.
  • received signals input to each of the second port and the third port have the same phase.
  • the received signals having the same phase are synthesized in the first magic 520-1 and output to the first port, and after passing through the third filter unit 242 of the diplexer 240, the first system It is received as 250.
  • the transmission signal of the third system 270 passes through the fourth filter unit 244 of the diplexer 240.
  • the transmission signal of the third system 270 that has passed through the fourth filter unit 244 is input to the first port of the first magic 520-1.
  • the transmission signal input to the first port is distributed in a state with a phase difference of 180 degrees in the first magic 520-1, and then output to the second port and the third port, respectively.
  • Transmission signals of the third system 270 output from the second and third ports pass through the filter unit 230 and are then input to the sixth and seventh ports of the second magicty 520-2, respectively. do.
  • transmission signals input through the sixth and seventh ports have the same phase by the first and second phase changers 580 and 590. Accordingly, transmission signals having the same phase are synthesized in the second magic 520-2 and output through the eighth port, and transmitted through the antenna ANT.
  • the received signal of the third system 270 input through the antenna ANT is input to the 8th port of the second magic 520-2, the phase difference of 180 degrees in the second magic 520-2 It is distributed with the The distributed received signals are output to the sixth and seventh ports, and then pass through the filter unit 230 and are input to the second and third ports of the first magic 520-1.
  • the received signals input to the second and third ports have the same phase by the first and second phase changers 580 and 590. Accordingly, the received signals having the same phase are synthesized in the first magic 520-1 and output to the first port, and after passing through the fourth filter unit 244 of the diplexer 240, the third system It is received at 270.
  • Embodiment 2 has been described focusing on an example in which the first phase changer 580 and the second phase changer 590 are located in the signal path between the second port and the sixth port.
  • the variator 580 and the second phase variator 590 may be located in a signal path between the third and seventh ports. That is, the first phase changer 580 and the second phase changer 590 are installed in the signal path between the third port and the seventh port, and are installed one by one on the left and right around the first filter unit 232. May be.
  • the transmission signal output from the seventh port and input to the third port is changed in phase by 90 degrees in the second phase variable 590 and then in the first phase variable 580.
  • the 90 degree phase is changed.
  • the transmission signal input to the third port and the transmission signal input to the second port have the same phase.
  • the received signals of the second system 260 are changed in phase by 90 degrees in both the first phase changer 580 and the second phase changer 590. do. Accordingly, the reception signal input through the seventh port and the reception signal input through the sixth port have the same phase.
  • a transmission signal (transmission signal reflected from the first filter unit) output from the third port and re-inputted to the third port is transmitted from the third port.
  • the phase is changed by 90 degrees by the first phase changer 580.
  • the transmission signal re-inputted to the third port has the same phase as the transmission signal re-inputted to the second port.
  • the received signal (received signal reflected from the first filter unit) output from the third port and re-inputted to the third port is received from the third port.
  • the phase is changed by 90 degrees in each of the process toward the filter unit 232 and the process from the first filter unit 232 to the third port.
  • the received signal re-inputted to the third port has the same phase as the received signal re-inputted to the second port.
  • the transmission/reception signals output from the 7th port and re-inputted to the 7th port are transmitted from the 7th port to the first filter unit 232 and the first filter unit 234
  • the phase changes by 90 degrees each in the process of heading to the 7 port.
  • the transmission/reception signal re-inputted to the seventh port and the transmission/reception signal re-inputted to the sixth port have the same phase.
  • the transmission/reception signals output from the third port and input to the 7th port among the transmission/reception signals of the first system 250 and the third system 270 are directed from the third port to the first filter unit 232 and the first filter.
  • the phase is changed by 90 degrees by each of the first and second phase variators 580 and 590.
  • the transmission/reception signal input through the seventh port has the same phase as the transmission/reception signal input through the sixth port.
  • the ports of the first and second synthesis distributors 210-1 and 210-2 are referred to by arbitrary numbers for convenience of description. Accordingly, ports of each of the synthesis distributors 210-1 and 210-2 may be referred to by using numbers other than those referred to herein.
  • the first system 250 is set to use a transmission/reception signal of a relatively low band
  • the third system 270 is set to use a transmission/reception signal of a relatively high band
  • the second system 260 is set to use a transmission/reception signal of a relatively intermediate band.
  • FIG. 8(A) shows the pass band of the third filter unit 242 constituting the diplexer 240
  • FIG. 8(B) shows the fourth filter unit constituting the diplexer 240
  • the pass band of 244 is shown
  • FIG. 8C shows both the pass band of the third filter unit 242 and the pass band of the fourth filter unit 244.
  • the third filter unit 242 passes a transmission/reception signal of the first system 250 corresponding to a relatively low band (for example, 3.4 GHz), but a different band (for example, For example, it blocks or blocks the transmission/reception signal of 3.5GHz or higher.
  • the fourth filter unit 244 passes a transmission/reception signal of the third system 270 corresponding to a relatively high band (eg, 3.6 GHz), but a different band (eg, 3.6 GHz) For example, it blocks or blocks transmission and reception signals of 3.5GHz or less.
  • the diplexer 240 including the third filter unit 242 and the fourth filter unit 244 transmits and receives the first system 250 corresponding to a relatively low band. Only the transmission/reception signal of the third system 270 corresponding to the high band relative to the signal is passed, and the transmission/reception signal (middle band) of another band is blocked or blocked.
  • the present invention selectively passes only the relative low band and the relative high band using the diplexer 240 that blocks or blocks the frequency band of the second system 260, thereby allowing the channel of the first system 250 And the channels of the third system 270 can be divided into two channels of low and high.
  • a dashed line represents a low channel and a high channel separated into two channels through the diplexer 240, and the solid line represents a middle channel having an intermediate frequency band.
  • the low channel corresponds to the frequency band used by the first system 250
  • the high channel corresponds to the frequency band used by the third system 270
  • the middle channel corresponds to the frequency band used by the second system 260.
  • the low channel and the high channel are separated through the diplexer 240 and the middle channel is selectively passed or blocked through the filter unit 230, the low channel, the middle channel and the high channel are It can be seen that each channel can be shared by a single base station.
  • the simulation of FIG. 9 was performed using a filter unit 230 having a high order and a diplexer 240 having a low order.
  • the filter unit 230 having a high order makes it possible to secure a high skirt characteristic for each channel, and as a result, excellent channel separation and a low (narrow) guard band ( G1, G2) can be implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

기지국 공용화 장치를 개시한다. 본 발명의 일 실시예에 의하면, 서로 다른 주파수 대역의 신호를 사용하는 제1 내지 제3시스템이 단일 기지국을 공용화하도록 하는 장치로서, 상기 제1 및 제3시스템과 연결되며, 상기 제1시스템의 송수신 신호 및 상기 제3시스템의 송수신 신호를 분리하여 통과시키는 다이플렉서(diplexer); 제1포트를 통해, 상기 다이플렉서와 연결된 제1합성분배기; 제5포트를 통해, 상기 제2시스템과 연결된 제2합성분배기; 및 상기 제1합성분배기의 제3 및 제2포트에 각각 연결되고, 상기 제2합성분배기의 제7 및 제6포트에 각각 연결되며, 상기 제2시스템의 송수신 신호를 선택적으로 통과시키거나 저지하는 제1 및 제2필터부를 포함하는 것을 특징으로 하는 기지국 공용화 장치를 제공한다.

Description

기지국 공용화 장치
본 발명은 복수 개의 시스템들이 단일의 기지국을 공용화하도록 하는 장치로서, 더욱 구체적으로는 필터를 이용하여 각 시스템들의 주파수 대역을 선택적으로 필터링함으로써 3개 이상의 시스템들이 단일의 기지국을 공유할 수 있도록 하는 기지국 공용화 장치에 관한 것이다.
이 부분에 기술된 내용은 단순히 본 발명에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
이동통신 시스템과 무선통신 시스템을 서비스하는 각 사업자들은 독립된 기지국을 개별적으로 설치하여 무선통신 서비스를 제공하고 있다. 따라서, 개별 기지국 설치에 따른 중복 투자가 발생하거나, 다수의 기지국을 설치하기 위한 공간 확보가 어렵거나, 협소한 장소에 설치된 다수의 기지국들 상호 간의 간섭에 따른 전파 품질이 저하되는 등의 문제점이 발생하고 있다.
이러한 문제를 해결하기 위한 방안으로, 도 1과 같이 서로 다른 주파수 대역(서로 다른 채널)을 활용하는 시스템들이 단일의 기지국을 공용화하는 방법이 구현되고 있다.
도 1에 도시된 바와 같이, 필터부 1 및 필터부 2는 시스템 2(system 2)의 주파수 대역을 필터링하도록 설정된다. 따라서, 시스템 2(system 2)의 송신 신호는 합성분배기 2에서 분배되고, 필터부 1 및 2를 통과한 후, 합성분배기 1에서 합성되어 안테나(ANT)를 통해 송신된다. 이와 대응적으로, 안테나를 통해 수신된 시스템 2의 수신 신호는 합성분배기 1에서 분배되고, 필터부 1 및 2를 통과한 후, 합성분배기 2에서 합성되어 시스템 2로 수신된다.
필터부 1 및 필터부 2는 시스템 2(system 2)의 주파수 대역만을 필터링하므로, 합성분배기 1에서 분배된 시스템 1(system 1)의 송신 신호는 필터부 1 및 필터부 2를 통과하지 못하고 전반사(return)된 후, 다시 합성분배기 1에서 합성되어 안테나를 통해 송신된다. 이와 대응적으로, 안테나를 통해 수신된 시스템 1의 수신 신호는 합성분배기 1에서 분배되고, 필터부 1 및 필터부 2에 의해 전반사된 후, 다시 합성분배기 1에서 합성되어 시스템 1로 수신된다.
이와 같이, 종래 기지국 공용화 방법은 서로 다른 주파수 대역의 송수신 신호를 단일의 기지국에서 서비스할 수 있다는 측면에서, 전술된 문제점들에 대한 일부 대안을 제시하고 있다고 볼 수 있다.
그러나, 3G, 4G, 5G 등과 같이, 무선통신 시스템이 서비스해야 하는 주파수 대역의 수가 점차 증가함에 반하여, 종래 기지국 공용화 방법은 공유할 수 있는 주파수 대역의 개수가 2개로 제한되어 있다(공유할 수 있는 채널의 개수가 2개로 제한되어 있으므로). 따라서, 종래 기지국 공용화 방법은 공유 가능한 주파수 대역의 개수 측면에서 한계를 가진다고 할 수 있다.
따라서, 단일 기지국을 공유하는 주파수 대역의 개수를 무선통신 시스템의 발전에 맞추어 증가시킬 수 있는 새로운 방법이 요구되고 있다.
본 발명의 일 실시예는, 종래 방법에 비해 더욱 많은 수의 채널이 단일의 기지국을 공용화할 수 있도록 하는 새로운 기지국 공용화 장치를 제공하는 데 주된 목적이 있다.
본 발명의 일 실시예에 의하면, 서로 다른 주파수 대역의 신호를 사용하는 제1 내지 제3시스템이 단일 기지국을 공용화하도록 하는 장치로서, 상기 제1 및 제3시스템과 연결되며, 상기 제1시스템의 송수신 신호 및 상기 제3시스템의 송수신 신호를 분리하여 통과시키는 다이플렉서(diplexer); 제1포트를 통해, 상기 다이플렉서와 연결된 제1합성분배기; 제5포트를 통해, 상기 제2시스템과 연결된 제2합성분배기; 및 상기 제1합성분배기의 제3 및 제2포트에 각각 연결되고, 상기 제2합성분배기의 제7 및 제6포트에 각각 연결되며, 상기 제2시스템의 송수신 신호를 선택적으로 통과시키거나 저지하는 제1 및 제2필터부를 포함하고, 상기 제1합성분배기는, 제4포트 또는 상기 제1포트로 입력된 신호를 분배하여 상기 제2 및 제3포트로 출력하고, 상기 제2 및 제3포트로 입력된 신호를 합성하여 상기 제4포트 또는 제1포트로 출력하며, 상기 제2합성분배기는, 제8포트 또는 상기 제5포트로 입력된 신호를 분배하여 상기 제7 및 제6포트로 출력하고, 상기 제7 및 제6포트로 입력된 신호를 합성하여 상기 제8포트 또는 제5포트로 출력하는 것을 특징으로 하는 기지국 공용화 장치를 제공한다.
본 발명은 서로 다른 주파수 대역을 가지는 3개 이상의 무선통신 신호들이 단일의 기지국을 공유할 수 있도록 구성되므로, 무선통신의 발전 또는 증가에 최적화된 공용화를 구현할 수 있다.
또한, 본 발명은 3개 이상의 무선통신 신호들이 단일의 기지국을 공유할 수 있도록 구성되므로, 중복 투자, 공간 확보의 어려움, 전파 품질의 저하 등을 일거에 해결할 수 있다.
도 1은 종래 기지국 공용화 장치의 일 예를 개략적으로 나타낸 블록 구성도이다.
도 2는 본 발명에 의한 기지국 공용화 장치의 일 예를 개략적으로 나타낸 블록 구성도이다.
도 3은 본 발명에 의한 기지국 공용화 장치의 다른 일 예를 개략적으로 나타낸 블록 구성도이다.
도 4는 하이브리드 커플러의 동작을 설명하기 위한 도면이다.
도 5는 본 발명에 의한 기지국 공용화 장치의 또 다른 일 예를 개략적으로 나타낸 블록 구성도이다.
도 6은 본 발명에 의한 기지국 공용화 장치의 또 다른 일 예를 개략적으로 나타낸 블록 구성도이다.
도 7은 매직티의 동작을 설명하기 위한 도면이다.
도 8은 다이플렉서를 이용하여 두 시스템의 송수신 신호를 분리한 시뮬레이션 결과를 나타낸 도면이다.
도 9는 본 발명에 의한 기지국 공용화 장치를 이용하여 시스템들의 송수신 신호를 분리한 시뮬레이션 결과를 나타낸 도면이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 '포함', '구비'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 '…부', '모듈' 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
도 2, 도 3, 도 5 및 도 6에 도시된 바와 같이, 본 발명에 의한 기지국 공용화 장치(이하 '공용화장치'라 지칭하도록 한다)(200)는 서로 다른 주파수 대역을 사용하는 제1 내지 제3시스템(250, 260, 270)의 송수신 신호를 단일의 기지국을 통해 서비스하기 위한 장치에 해당한다.
제1 내지 제3 시스템들(250, 260, 270)은 동일하거나 서로 다른 사업자 또는 가입자들에 의해 운용 또는 관리되는 무선통신 시스템에 해당할 수 있다. 즉, 3개의 시스템들(250, 260, 270)이 단일 사업자에 의해 관리되거나, 3개의 시스템들(250, 260, 270) 중 하나 이상이 동일 사업자에 의해 관리될 수도 있다.
제1 내지 제3시스템들(250, 260, 270)은 서로 다른 주파수 대역을 가지는 송수신 신호(채널)을 이용하여 무선통신을 수행할 수 있다. 예를 들어, 제1시스템(250)은 상대적으로 가장 낮은 대역(low)의 채널을 이용하며, 제3시스템(270)은 상대적으로 가장 높은 대역(high)의 채널을 이용하고, 제2시스템(260)은 제1시스템(250) 및 제3시스템(270)과 비교하여 중간 대역(middle)의 채널을 이용할 수 있다.
또 다른 예로, 제1시스템(250), 제2시스템(260) 및 제3시스템(270) 각각은 high/middle/low, middle/low/high, middle/high/low, low/high/middle 및 high/low/middle의 채널을 이용할 수 있다.
도 2, 도 3, 도 5 및 도 6에 도시된 바와 같이, 본 발명에 의한 공용화 장치(200)는 다이플렉서(diplexer, 240), 필터부(230), 제1합성분배기(210-1) 및 제2합성분배기(210-2)를 포함하여 구성될 수 있다.
다이플렉서(240)는 제1시스템(250)의 채널과 제3시스템(270)의 채널을 분리 또는 구분하는 구성에 해당한다. 두 시스템(250, 270)의 채널을 분리하기 위하여, 다이플렉서(240)는 서로 다른 주파수 대역의 신호를 통과시키는 두 개의 필터(242, 244)로 구성될 수 있다. 예를 들어, 다이플렉서(240)는 제1시스템(250)의 채널을 통과시키는 제3필터부(242)와, 제3시스템(270)의 채널을 통과시키는 제4필터부(244)를 포함하여 구성될 수 있다.
도 2, 도 3, 도 5 및 도 6에는 제3필터부(242)와 제4필터부(244)가 BPF로 구현되는 실시예가 표현되어 있으나, 제1시스템(250)의 채널과 제3시스템(270)의 채널을 선택적으로 통과시킬 수 있다면, 제3필터부(242)와 제4필터부(244) 각각은 LPF, HPF 등으로 구현될 수 있다.
본 발명은 다이플렉서(240)의 동작 또는 기능을 통해 후술되는 바와 같이 필터부(230)에서 전반사되는 신호를 2개의 서로 다른 채널로 분리한다.
필터부(230)는 제2시스템(260)의 채널을 선택적으로 통과시키거나 저지하도록 구성될 수 있다. 제2시스템(260)의 채널을 선택적으로 통과시키거나 저지할 수 있다면, 필터부(230)는 BPF, BRF, LPF, HPF 등으로 구현될 수 있다.
필터부(230)는 필터링 대역이 고정된 필터로 구성될 수 있으며, 실시형태에 따라, 필터링 대역을 가변할 수 있는 대역 천이 필터로 구성될 수도 있다.
필터부(230)가 대역 천이 필터로 구성되면, 종래 설치되었던 필터의 통과 대역 또는 저지 대역을 조정하는 간단한 작업만으로도 새롭게 연결되는 시스템을 활용할 수 있게 된다. 따라서, 본 발명의 공용화 장치(200)는 시스템의 교체 또는 변경에 따른 설치 시간, 설치 비용 등을 절감할 수 있는 효과를 제공할 수 있다.
필터부(230)를 구성하는 각 필터들은 캐비티(Cavity) 필터, DR(Dielectric Resonator) 필터 및 DR-캐비티(DR-Cavity) 필터 중 어느 하나로 구현될 수 있다. DR 필터 또는 DR-캐비티 필터는 TE 모드(transverse electric mode), TM 모드(transverse magnetic mode) 및 NRD 모드(Non-Radiative Dielectric waveguide) 중 어느 하나의 모드로 동작할 수 있다.
제1 및 제2합성분배기(210-1, 210-2)는 특정 포트들로 입력된 두 개의 신호를 합성하여 출력하고, 특정 포트로 입력된 단일의 신호를 분배하여 출력하는 구성에 해당한다.
입력된 단일 신호를 분배하여 출력하거나 입력된 두 개의 신호를 합성하여 출력할 수 있다면, 본 발명의 제1 및 제2합성분배기(210-1, 210-2)는 하이브리드 커플러, 하이브리드 링, 브랜치라인 방향성 커플러, 3dB 방향성 커플러, 매직티 등으로 구현될 수 있다.
본 발명의 제1 및 제2합성분배기(210-1, 210-2)가 하이브리드 링, 브랜치라인 방향성 커플러, 3dB 방향성 커플러, 매직티 등으로 구현되는 경우, 신호들에 위상 차를 발생시키기 위한 페이즈 쉬프터(위상 가변기)가 하나 이상 더 포함될 수 있다.
TERM은 공용화 장치(200)의 격리도(isolation)을 향상시키기 위한 로드저항에 해당한다.
이하에서는 필터부(230)가 제2시스템(260)의 채널을 선택적으로 통과시키거나 저지하는 BPF 또는 BRF로 구성되며, 제3필터부(242)가 제1시스템(250)의 채널을 선택적으로 통과시키는 BPF로 구성되고, 제4필터부(244)가 제3시스템(270)의 채널을 선택적으로 통과시키는 BPF로 구성됨을 전제로 본 발명의 다양한 실시예들에 대해 설명하도록 한다.
다만, 이러한 전제는 본 발명을 더욱 용이하게 설명하기 위한 것이며, 전술된 바와 같이, 필터부(230)는 BPF, BRF, LPF, HPF 등으로 구성될 수 있으며, 제3 및 제4필터부(240) 또한, LPF, HPF 등으로 구성될 수 있다.
실시예 1
도 2는 본 발명에 의한 공용화장치(200)의 일 예를 개략적으로 나타낸 블록 구성도이며, 도 3은 본 발명에 의한 공용화 장치(200)의 다른 일 예를 개략적으로 나타낸 블록 구성도이고, 도 4는 하이브리드 커플러(220-1, 220-2)의 동작을 설명하기 위한 도면이다.
이하에서는, 도 4를 참조하여 하이브리드 커플러(220-1, 220-2)의 동작에 대해 먼저 설명한 후, 도 2 및 도 3을 참조하여 본 발명의 공용화장치(200)가 하이브리드 커플러(220-1, 220-2)를 기반으로 구현되는 실시예 1-1 및 실시예 1-2에 대해 상세히 설명하도록 한다.
하이브리드 커플러(220-1, 220-2)는 일반적으로 특정 신호 전력의 일부를 추출하거나, 특정 신호 전력을 두 개 이상의 균등한 신호 전력으로 분배하기 위해 이용된다. 이 중 전자는 특정 신호의 특성을 파악하기 위해 신호 전력의 일부를 추출(표본 추출)하는 것이므로, 본 발명에서 이용되는 하이브리드 커플러(220-1, 220-2)의 기능은 후자에 해당한다.
도 4에 도시된 바와 같이, 하이브리드 커플러(220-1, 220-2)는 총 4개의 포트(A, B, C 및 D)로 구성될 수 있다. A 포트로 신호가 입력되면, 입력된 신호는 커플링 현상에 의해 전력이 반으로 분배되어 B 포트 및 C 포트로 출력되는 데, B 포트 및 C 포트로 출력되는 신호들은 서로 90도의 위상 차를 가지게 된다.
이와 반대로, 두 개의 특정 신호가 B 포트 및 C 포트 각각으로 입력되면, 입력된 두 신호는 합성되어 A 포트 또는 D 포트로 출력된다. 출력되는 포트(A 포트 또는 D 포트)는 입력된 두 신호 사이의 위상 차에 의해 결정된다.
예를 들어, B 포트로 입력되는 신호의 위상이 90도이고 C 포트로 입력되는 신호의 위상이 180도인 경우, 두 신호는 합성되어 D 포트로 출력된다. 이와 달리, B 포트로 입력되는 신호의 위상이 180도이고 C 포트로 입력되는 신호의 위상이 90도인 경우, 두 신호는 합성되어 A 포트로 출력된다.
실시예 1-1
도 2에 도시된 바와 같이, 실시예 1-1은 제1하이브리드 커플러(220-1)의 제4포트(4번 포트)에 안테나(ANT)가 연결되고, 제2하이브리드 커플러(220-2)의 제8포트(8번 포트)에 TERM이 연결되며, 필터부(230)가 제2시스템(260)의 채널을 선택적으로 통과시키는 두 개의 BPF(232, 234)로 구성되는 실시예에 해당한다.
이 실시예에서, 제1하이브리드 커플러(220-1)는 제1시스템(250)의 송수신 신호, 제2시스템(260)의 송수신 신호 및 제3시스템(270)의 송수신 신호 모두를 합성 또는 분배하는 반면, 제2하이브리드 커플러(220-2)는 제2시스템(260)의 송수신 신호만을 합성 또는 분배한다.
제2시스템(260)의 송수신 과정
제2시스템(260)의 송신신호는 제5포트를 통해 제2하이브리드 커플러(220-2)로 입력되고, 이 송신신호는 제2하이브리드 커플러(220-2)에서 90도의 위상 차를 가진 상태로 분배되어 제7포트 및 제6포트 각각으로 출력된다.
필터부(230)는 제2시스템(260)의 채널을 선택적으로 통과시키도록 구성되므로, 분배되어 출력된 송신신호는 제1필터부(232)와 제2필터부(234) 각각을 통과한 후, 제1하이브리드 커플러(220-1)의 제3포트 및 제2포트 각각으로 입력된다.
제3포트 및 제2포트 각각으로 입력된 송신신호들은 위상 차를 가지고 있으므로 제1하이브리드 커플러(220-1)에서 합성된 후, 제4포트로 출력되어 안테나(ANT)를 통해 송신되게 된다.
안테나(ANT)를 통해 입력된 제2시스템(260)의 수신신호는 제1하이브리드 커플러(220-1)에서 90도의 위상 차를 가진 상태로 분배되고, 분배된 수신신호들은 제1하이브리드 커플러(220-1)의 제3포트 및 제2포트 각각으로 출력된다.
제3포트 및 제2포트 각각으로부터 출력된 수신신호들은 제1필터부(232) 및 제2필터부(234)를 통과한 후, 제2하이브리드 커플러(220-2)의 제7포트 및 제6포트로 입력된다. 입력된 신호들은 제2하이브리드 커플러(220-2)에서 위상 차에 의해 합성되어 제5포트로 출력된 후, 제2시스템(260)으로 수신된다.
제1시스템(250)의 송수신 과정
제1시스템(250)의 송신신호는 다이플렉서(240)의 제3필터부(242)를 통과한다. 다이플렉서(240)의 반대편 포트는 제1하이브리드 커플러(220-1)의 제1포트와 연결되어 있으므로, 제3필터부(242)를 통과한 제1시스템(250)의 송신신호는 제1하이브리드 커플러(220-1)의 제1포트로 입력된다.
제1포트로 입력된 송신신호는 제1하이브리드 커플러(220-1)에서 90도의 위상 차를 가진 상태로 분배된 후, 제2포트 및 제3포트로 각각 출력된다. 필터부(230)는 제2시스템(260)의 채널만을 선택적으로 통과시키므로, 제2포트 및 제3포트로부터 출력된 제1시스템(250)의 송신신호들은 필터부(230)에서 전반사되어 다시 제1하이브리드 커플러(220-1)의 제2포트 및 제3포트로 재입력된다.
재입력된 송신신호들은 제1하이브리드 커플러(220-1)에서 위상 차에 의해 합성되어 제4포트로 출력되고, 안테나(ANT)를 통해 송신된다.
안테나(ANT)를 통해 입력된 제1시스템(250)의 수신신호는 제1하이브리드 커플러(220-1)의 제4포트로 입력된 후, 제1하이브리드 커플러(220-1)에서 90도의 위상 차를 가진 상태로 분배된다. 분배된 수신신호들은 제3포트 및 제2포트로 출력된 후, 필터부(230)에서 전반사되어 다시 제3포트 및 제2포트로 재입력된다.
재입력된 수신신호들은 서로 간의 위상 차에 의해 제1하이브리드 커플러(220-1)에서 합성되어 제1포트로 출력되고, 다이플렉서(240)의 제3필터부(242)를 통과한 후, 제1시스템(250)으로 수신된다.
제3시스템(270)의 송수신 과정
제3시스템(270)의 송신신호는 다이플렉서(240)의 제4필터부(244)를 통과한다. 제4필터부(244)를 통과한 제3시스템(270)의 송신신호는 제1하이브리드 커플러(220-1)의 제1포트로 입력된다.
제1포트로 입력된 송신신호는 제1하이브리드 커플러(220-1)에서 90도의 위상 차를 가진 상태로 분배된 후, 제2포트 및 제3포트로 각각 출력된다. 필터부(230)는 제2시스템(250)의 채널만을 통과시키므로, 제2포트 및 제3포트로부터 출력된 제3시스템(270)의 송신신호들은 필터부(230)에서 전반사되어 다시 제1하이브리드 커플러(220-1)의 제2포트 및 제3포트로 재입력된다.
재입력된 송신신호들은 제1하이브리드 커플러(220-1)에서 위상 차에 의해 합성되어 제4포트로 출력되고, 안테나(ANT)를 통해 송신된다.
안테나(ANT)를 통해 입력된 제3시스템(270)의 수신신호는 제1하이브리드 커플러(220-1)의 제4포트로 입력된 후, 제1하이브리드 커플러(220-1)에서 90도의 위상 차를 가진 상태로 분배된다. 분배된 수신신호들은 제3포트 및 제2포트로 출력된 후, 필터부(230)에서 전반사되어 다시 제3포트 및 제2포트로 재입력된다.
재입력된 수신신호들은 서로 간의 위상 차에 의해 제1하이브리드 커플러(220-1)에서 합성되어 제1포트로 출력되고, 다이플렉서(240)의 제4필터부(244)를 통과한 후, 제3시스템(270)으로 수신된다.
이와 같이, 본 발명은 다이플렉서(240)를 이용하여 제1 및 제2필터부(232, 234)에서 전반사되는 신호들을 low와 high의 2-채널로 분리함으로써 3-채널 공용화를 구현할 수 있게 된다.
또한, 실시예 1-1과 같이, 제1 및 제2필터부(232, 234)가 제2시스템(260)의 채널을 선택적으로 통과시키는 BPF로 구성되고, 제3필터부(242)가 제1시스템(250)의 채널을 선택적으로 통과시키는 BPF로 구성되며, 제4필터부(244)가 제3시스템(270)의 채널을 선택적으로 통과시키는 BPF로 구성되면, 제1시스템(250)의 채널, 제2시스템(260)의 채널 및 제3시스템(270)의 채널들 사이에 형성되는 가드 밴드(guard band)의 폭이 최소화될 수 있다. 따라서, 본 발명은 전체 주파수 대역을 더욱 효율적으로 활용하는 효과를 제공할 수 있다.
실시예 1-2
도 3에 도시된 바와 같이, 실시예 1-2는 제1하이브리드 커플러(220-1)의 제4포트(4번 포트)에 TERM이 연결되고, 제2하이브리드 커플러(220-2)의 제8포트(8번 포트)에 안테나(ANT)가 연결되며, 필터부(230)가 제2시스템(260)의 채널을 선택적으로 저지하는 BRF로 구성되는 실시예에 해당한다.
이 실시예에서, 제1하이브리드 커플러(220-1)는 제1시스템(250)의 송수신 신호 및 제3시스템(270)의 송수신 신호만을 합성 또는 분배하는 반면, 제2하이브리드 커플러(220-2)는 제1시스템(250)의 송수신 신호, 제3시스템(270)의 송수신 신호 및 제2시스템(260)의 송수신 신호 모두를 합성 또는 분배한다.
제2시스템(260)의 송수신 과정
제2시스템(260)의 송신신호는 제5포트를 통해 제2하이브리드 커플러(220-2)로 입력되고, 이 송신신호는 제2하이브리드 커플러(220-2)에서 90도의 위상 차를 가진 상태로 분배되어 제7포트 및 제6포트 각각으로 출력된다.
필터부(230)는 제2시스템(260)의 채널을 선택적으로 저지하는 BRF로 구성되어 있으므로, 분배되어 출력된 송신신호는 제1필터부(232)와 제2필터부(234) 각각에서 전반사된 후, 제2하이브리드 커플러(220-2)의 제7포트 및 제6포트 각각으로 재입력된다.
재입력된 송신신호들은 위상 차를 가지고 있으므로, 제2하이브리드 커플러(220-2)에서 합성된 후, 제8포트로 출력되어 안테나(ANT)를 통해 송신되게 된다.
안테나(ANT)를 통해 입력된 제2시스템(260)의 수신신호는 제2하이브리드 커플러(220-2)의 제8포트로 입력되고, 제2하이브리드 커플러(220-2)에서 90도의 위상 차를 가진 상태로 분배된 후, 제7포트 및 제6포트 각각으로 출력된다.
제7포트 및 제6포트 각각으로부터 출력된 수신신호들은 제1필터부(232) 및 제2필터부(234)에서 전반사된 후, 제2하이브리드 커플러(220-2)의 제7포트 및 제6포트로 재입력된다. 재입력된 신호들은 제2하이브리드 커플러(220-2)에서 위상 차에 의해 합성되어 제5포트로 출력된 후, 제2시스템(260)으로 수신된다.
제1시스템(250)의 송수신 과정
제1시스템(250)의 송신신호는 다이플렉서(240)의 제3필터부(242)를 통과한다. 다이플렉서(240)의 반대편 포트는 제1하이브리드 커플러(220-1)의 제1포트와 연결되어 있으므로, 제3필터부(242)를 통과한 제1시스템(250)의 송신신호는 제1하이브리드 커플러(220-1)의 제1포트로 입력된다.
제1포트로 입력된 송신신호는 제1하이브리드 커플러(220-1)에서 90도의 위상 차를 가진 상태로 분배된 후, 제2포트 및 제3포트로 각각 출력된다. 필터부(230)는 제2시스템(260)의 채널만을 선택적으로 저지하므로, 제2포트 및 제3포트로부터 출력된 제1시스템(250)의 송신신호들은 필터부(230)를 통과하여 제2하이브리드 커플러(220-2)의 제6포트 및 제7포트로 입력된다.
제6포트 및 제7포트로 입력된 송신신호들은 제2하이브리드 커플러(220-2)에서 위상 차에 의해 합성되어 제8포트로 출력되고, 안테나(ANT)를 통해 송신된다.
안테나(ANT)를 통해 입력된 제1시스템(250)의 수신신호는 제2하이브리드 커플러(220-2)의 제8포트로 입력된 후, 제2하이브리드 커플러(220-2)에서 위상 차를 가진 상태로 분배된다. 분배된 수신신호들은 제6포트 및 제7포트로 출력된 후, 필터부(230)를 통과하여 제1하이브리드 커플러(220-1)의 제2포트 및 제3포트 각각으로 입력된다.
제2포트 및 제3포트 각각으로 입력된 수신신호들은 서로 간의 위상 차에 의해 제1하이브리드 커플러(220-1)에서 합성되어 제1포트로 출력되고, 다이플렉서(240)의 제3필터부(242)를 통과한 후, 제1시스템(250)으로 수신된다.
제3시스템(270)의 송수신 과정
제3시스템(270)의 송신신호는 다이플렉서(240)의 제4필터부(244)를 통과한다. 제4필터부(244)를 통과한 제3시스템(270)의 송신신호는 제1하이브리드 커플러(220-1)의 제1포트로 입력된다.
제1포트로 입력된 송신신호는 제1하이브리드 커플러(220-1)에서 90도의 위상 차를 가진 상태로 분배된 후, 제2포트 및 제3포트로 각각 출력된다. 필터부(230)는 제2시스템(260)의 채널만을 선택적으로 저지하므로, 제2포트 및 제3포트로부터 출력된 제3시스템(270)의 송신신호들은 필터부(230)를 통과하여 제2하이브리드 커플러(220-2)의 제6포트 및 제7포트로 입력된다.
제6포트 및 제7포트로 입력된 송신신호들은 제2하이브리드 커플러(220-2)에서 위상 차에 의해 합성되어 제8포트로 출력되고, 안테나(ANT)를 통해 송신된다.
안테나(ANT)를 통해 입력된 제3시스템(270)의 수신신호는 제2하이브리드 커플러(220-2)의 제8포트로 입력된 후, 제2하이브리드 커플러(220-2)에서 위상 차를 가진 상태로 분배된다. 분배된 수신신호들은 제6포트 및 제7포트로 출력된 후, 필터부(230)를 통과하여 제1하이브리드 커플러(220-1)의 제2포트 및 제3포트 각각으로 입력된다.
제2포트 및 제3포트 각각으로 입력된 수신신호들은 서로 간의 위상 차에 의해 제1하이브리드 커플러(220-1)에서 합성되어 제1포트로 출력되고, 다이플렉서(240)의 제4필터부(244)를 통과한 후, 제3시스템(270)으로 수신된다.
실시예 2
도 5는 본 발명에 의한 공용화장치(200)의 또 다른 일 예를 개략적으로 나타낸 블록 구성도이며, 도 6은 본 발명에 의한 공용화장치(200)의 또 다른 일 예를 개략적으로 나타낸 블록 구성도이고, 도 7은 매직티(520-1, 520-2)의 동작을 설명하기 위한 도면이다.
이하에서는, 도 7을 참조하여 매직티(520-1, 520-2)의 동작에 대해 먼저 설명한 후, 도 5 및 도 6을 참조하여 본 발명의 공용화장치(200)가 매직티(520-1, 520-2)를 기반으로 구현되는 실시예 2-1 및 실시예 2-2에 대해 상세히 설명하도록 한다.
도 7에 도시된 바와 같이, 매직티(520-1, 520-2)는 총 4개의 포트(A, B, C 및 D)로 구성될 수 있다. A 포트로 신호가 입력되면, 입력된 신호는 커플링 현상에 의해 전력이 반으로 분배되어 B 포트 및 C 포트로 출력되는 데, B 포트 및 C 포트로 출력되는 신호들은 서로 180도의 위상 차를 가지게 된다.
D 포트로 신호가 입력되면, 입력된 신호는 커플링 현상에 의해 전력이 반으로 분배되어 B 포트 및 C 포트로 출력되나, B 포트 및 C 포트로 출력되는 신호들은 서로 동일한 위상을 가지게 된다.
180도의 위상 차를 가지는 두 개의 특정 신호가 B 포트 및 C 포트 각각으로 입력되면, 입력된 두 신호는 합성되어 A 포트로 출력된다. 이와 달리, 동일한 위상을 가지는 두 개의 특정 신호가 B 포트 및 C 포트 각각으로 입력되면, 입력된 두 신호는 합성되어 D 포트로 출력된다.
실시예 2-1
도 5에 도시된 바와 같이, 실시예 2-1은 제1매직티(520-1)의 제4포트(4번 포트)에 안테나(ANT)가 연결되고, 제2매직티(520-2)의 제8포트(8번 포트)에 TERM이 연결되며, 필터부(230)가 제2시스템(260)의 채널을 선택적으로 통과시키는 BPF로 구성되는 실시예에 해당한다.
또한, 실시예 2-1은 제2포트와 제6포트 사이의 신호 경로에 설치되는 제1위상 가변기(580) 및 제2위상 가변기(590)가 더 포함되어 구성되는 데, 제1 및 제2위상 가변기(580, 590)는 필터부(230)를 중심으로 좌우에 하나씩 설치될 수 있다.
이 실시예에서, 제1매직티(520-1)는 제1시스템(250)의 송수신 신호, 제2시스템(260)의 송수신 신호 및 제3시스템(270)의 송수신 신호 모두를 합성 또는 분배하는 반면, 제2매직티(520-2)는 제2시스템(260)의 송수신 신호만을 합성 또는 분배한다.
제2시스템(260)의 송수신 과정
제2시스템(260)의 송신신호는 제5포트를 통해 제2매직티(520-2)로 입력되고, 이 송신신호는 제2매직티(520-2)에서 180도의 위상 차를 가진 상태로 분배되어 제7포트 및 제6포트 각각으로 출력된다.
필터부(230)는 제2시스템(260)의 채널을 선택적으로 통과시키므로, 분배되어 출력된 송신신호는 제1필터부(232)와 제2필터부(234) 각각을 통과한 후, 제1하이브리드 커플러(220-1)의 제3포트 및 제2포트 각각으로 입력된다.
여기서, 제6포트로부터 출력되어 제2포트로 입력되는 송신신호는 제2위상 가변기(590)를 통과하는 과정에서 위상이 변경된 후(90도), 제1위상 가변기(580)를 통과하는 과정에서 다시 위상이 변경된다(90도). 결국, 제2포트 및 제3포트 각각으로 입력되는 두 송신신호는 동일 위상을 가지게 된다.
따라서, 제3포트 및 제2포트 각각으로 입력된 송신신호들은 제1매직티(520-1)에서 합성된 후, 제4포트로 출력되어 안테나(ANT)를 통해 송신되게 된다.
안테나(ANT)를 통해 수신되어 제4포트로 입력된 제2시스템(260)의 수신신호는 제1매직티(520-1)에서 180도의 위상 차를 가진 상태로 분배되고, 분배된 수신신호들은 제1매직티(520-1)의 제3포트 및 제2포트 각각으로 출력된다.
제3포트 및 제2포트 각각으로부터 출력된 수신신호들은 제1필터부(232) 및 제2필터부(234)를 통과한 후, 제2매직티(520-2)의 제7포트 및 제6포트로 입력된다. 여기서, 제2포트로부터 출력되어 제6포트로 입력되는 수신신호는 제1위상 가변기(580)를 통과하는 과정에서 위상이 변경된 후(90도), 제2위상 가변기(590)를 통과하는 과정에서 다시 위상이 변경된다(90도). 결국, 제7포트 및 제6포트 각각으로 입력되는 두 수신신호는 동일 위상을 가지게 된다.
따라서, 동일 위상을 가지는 수신신호들은 제2매직티(520-2)에서 합성되어 제5포트로 출력된 후, 제2시스템(260)으로 수신된다.
제1시스템(250)의 송수신 과정
제1시스템(250)의 송신신호는 다이플렉서(240)의 제3필터부(242)를 통과한다. 다이플렉서(240)의 반대편 포트는 제1매직티(520-1)의 제1포트와 연결되어 있으므로, 제3필터부(242)를 통과한 제1시스템(250)의 송신신호는 제1매직티(520-1)의 제1포트로 입력된다.
제1포트로 입력된 송신신호는 제1매직티(520-1)에서 180도의 위상 차를 가진 상태로 분배된 후, 제2포트 및 제3포트로 각각 출력된다. 필터부(230)는 제2시스템(260)의 채널만을 통과시키도록 구성되므로, 제2포트 및 제3포트로부터 출력된 제1시스템(250)의 송신신호들은 필터부(230)에서 전반사되어 다시 제1매직티(520-1)의 제2포트 및 제3포트로 재입력된다.
여기서, 제2포트로부터 출력되어 다시 제2포트로 재입력된 송신신호는 제2포트로부터 제2필터부(234)로 향하는 과정에서 제1위상 가변기(580)에 의해 90도 위상이 변경되고, 제2필터부(234)로부터 제2포트로 향하는 과정(전반사)에서 제1위상 가변기(580)에 의해 다시 90도 위상이 변경되게 된다. 결국, 제2포트 및 제3포트 각각으로 재입력되는 송신신호들은 동일한 위상을 가지게 된다.
따라서, 동일한 위상을 가지는 재입력된 송신신호들은 제1매직티(520-1)에서 합성되어 제4포트로 출력되고, 안테나(ANT)를 통해 송신된다.
안테나(ANT)를 통해 입력된 제1시스템(250)의 수신신호는 제1매직티(520-1)의 제4포트로 입력된 후, 제1매직티(520-1)에서 180도의 위상 차를 가진 상태로 분배된다. 분배된 수신신호들은 제3포트 및 제2포트로 출력된 후, 필터부(230)에서 전반사되어 다시 제3포트 및 제2포트로 재입력된다.
여기서, 제2포트로부터 출력되어 다시 제2포트로 재입력된 수신신호는 제2포트로부터 제2필터부(234)로 향하는 과정에서 제1위상 가변기(580)에 의해 90도 위상이 변경되고, 제2필터부(234)로부터 제2포트로 향하는 과정에서 제1위상 가변기(580)에 의해 다시 90도 위상이 변경되게 된다. 결국, 제2포트 및 제3포트 각각으로 재입력되는 수신신호들은 동일한 위상을 가지게 된다.
따라서, 동일한 위상을 가지는 재입력된 수신신호들은 제1매직티(520-1)에서 합성되어 제1포트로 출력되고, 다이플렉서(240)의 제3필터부(242)를 통과한 후, 제1시스템(250)으로 수신된다.
제3시스템(270)의 송수신 과정
제3시스템(270)의 송신신호는 다이플렉서(240)의 제4필터부(244)를 통과한다. 제4필터부(244)를 통과한 제3시스템(270)의 송신신호는 제1매직티(520-1)의 제1포트로 입력된다.
제1포트로 입력된 송신신호는 제1매직티(520-1)에서 180도의 위상 차를 가진 상태로 분배된 후, 제2포트 및 제3포트로 각각 출력된다. 필터부(230)는 제2시스템(260)의 채널만을 통과시키도록 구성되므로, 제2포트 및 제3포트로부터 출력된 제3시스템(270)의 송신신호들은 필터부(230)에서 전반사되어 다시 제1매직티(520-1)의 제2포트 및 제3포트로 재입력된다.
여기서, 제2포트 및 제3포트로 재입력되는 송신신호들은 제1위상 가변기(580)에 의해 동일한 위상을 가지게 된다. 따라서, 동일한 위상을 가지는 재입력된 송신신호들은 제1매직티(520-1)에서 합성되어 제4포트로 출력되고, 안테나(ANT)를 통해 송신된다.
안테나(ANT)를 통해 입력된 제3시스템(270)의 수신신호는 제1매직티(520-1)의 제4포트로 입력된 후, 제1매직티(520-1)에서 180도의 위상 차를 가진 상태로 분배된다. 분배된 수신신호들은 제3포트 및 제2포트로 출력된 후, 필터부(230)에서 전반사되어 다시 제3포트 및 제2포트로 입력된다.
여기서, 제2포트 및 제3포트로 재입력되는 수신신호들은 제1위상 가변기(580)에 의해 동일한 위상을 가지게 된다. 따라서, 동일한 위상을 가지는 재입력된 수신신호들은 제1매직티(520-1)에서 합성되어 제1포트로 출력되고, 다이플렉서(240)의 제4필터부(244)를 통과한 후, 제3시스템(270)으로 수신된다.
실시예 2-2
도 6에 도시된 바와 같이, 실시예 2-2는 제1매직티(520-1)의 제4포트(4번 포트)에 TERM이 연결되고, 제2매직터(520-2)의 제8포트(8번 포트)에 안테나(ANT)가 연결되며, 필터부(230)가 제2시스템(260)의 채널을 선택적으로 저지하는 BRF로 구성되는 실시예에 해당한다.
또한, 실시예 2-2에서는 실시예 2-1에서와 마찬가지로, 제2포트와 제6포트 사이의 신호 경로에 설치되는 제1위상 가변기(580) 및 제2위상 가변기(290)가 더 포함되어 구성되며, 제1 및 제2위상 가변기(580, 590)는 필터부(230)를 중심으로 좌우에 하나씩 설치된다.
이 실시예에서, 제1매직티(520-1)는 제1시스템(250)의 송수신 신호 및 제3시스템(270)의 송수신 신호만을 합성 또는 분배하는 반면, 제2매직티(520-2)는 제1시스템(250)의 송수신 신호, 제3시스템(270)의 송수신 신호 및 제2시스템(260)의 송수신 신호 모두를 합성 또는 분배한다.
제2시스템(260)의 송수신 과정
제2시스템(260)의 송신신호는 제5포트를 통해 제2매직티(520-2)로 입력되고, 이 송신신호는 제2매직티(520-2)에서 180도의 위상 차를 가진 상태로 분배되어 제7포트 및 제6포트 각각으로 출력된다.
필터부(230)는 제2시스템(260)의 채널을 선택적으로 저지하는 BRF로 구성되어 있으므로, 분배되어 출력된 송신신호는 제1필터부(232)와 제2필터부(234) 각각으로부터 전반사된 후, 제2매직티(520-2)의 제6포트 및 제7포트로 재입력된다.
여기서, 제6포트로부터 출력되어 제6포트로 재입력되는 송신신호는 제6포트로부터 제2필터부(234)로 향하는 과정에서 90도 위상이 변경된 후, 제2필터부(234)로부터 제6포트로 향하는 과정(전반사)에서 다시 90도 위상이 변경된다. 결국, 제6포트 및 제7포트 각각으로 재입력되는 두 송신신호는 동일한 위상을 가지게 된다.
따라서, 제6포트 및 제7포트 각각으로 재입력된 송신신호들은 제2매직티(520-2)에서 합성된 후, 제8포트로 출력되어 안테나(ANT)를 통해 송신되게 된다.
안테나(ANT)를 통해 수신되어 제8포트로 입력된 제2시스템(260)의 수신신호는 제2매직티(520-2)에서 180도의 위상 차를 가진 상태로 분배되고, 분배된 수신신호들은 제2매직티(520-2)의 제6포트 및 제7포트 각각으로 출력된다.
제6포트 및 제7포트 각각으로부터 출력된 수신신호들은 제1필터부(232) 및 제2필터부(234)로부터 전반사되어 제6포트 및 제7포트로 재입력된다. 여기서, 제6포트로부터 출력되어 제6포트로 재입력되는 수신신호는 제6포트로부터 제2필터부(234)로 향하는 과정에서 90도 위상이 변경된 후, 제2필터부(234)로부터 제6포트로 향하는 과정(전반사)에서 다시 90도 위상이 변경된다. 결국, 제6포트 및 제7포트 각각으로 재입력되는 두 수신신호는 동일한 위상을 가지게 된다.
따라서, 동일 위상을 가지는 수신신호들은 제2매직티(520-2)에서 합성되어 제5포트로 출력된 후, 제2시스템(260)으로 수신된다.
제1시스템(250)의 송수신 과정
제1시스템(250)의 송신신호는 다이플렉서(240)의 제3필터부(242)를 통과한다. 다이플렉서(240)의 반대편 포트는 제1매직티(520-1)의 제1포트와 연결되어 있으므로, 제3필터부(242)를 통과한 제1시스템(250)의 송신신호는 제1매직티(520-1)의 제1포트로 입력된다.
제1포트로 입력된 송신신호는 제1매직티(520-1)에서 180도의 위상 차를 가진 상태로 분배된 후, 제2포트 및 제3포트로 각각 출력된다. 필터부(230)는 제2시스템(260)의 채널만을 선택적으로 저지하는 BRF로 구성되어 있으므로, 제2포트 및 제3포트로부터 출력된 제1시스템(250)의 송신신호들은 필터부(230)를 통과하여 제2매직티(520-2)의 제6포트 및 제7포트로 입력된다.
여기서, 제2포트로부터 출력되어 제6포트로 입력된 송신신호는 제2포트로부터 제2필터부(234)로 향하는 과정에서 제1위상 가변기(580)에 의해 90도 위상이 변경되고, 제2필터부(234)로부터 제6포트로 향하는 과정에서 제2위상 가변기(590)에 의해 다시 90도 위상이 변경되게 된다. 결국, 제6포트 및 제7포트 각각으로 입력되는 송신신호들은 동일한 위상을 가지게 된다.
따라서, 동일한 위상을 가지는 송신신호들은 제2매직티(520-2)에서 합성되어 제8포트로 출력되고, 안테나(ANT)를 통해 송신된다.
안테나(ANT)를 통해 입력된 제1시스템(250)의 수신신호는 제2매직티(520-2)의 제8포트로 입력된 후, 제2매직티(520-2)에서 180도의 위상 차를 가진 상태로 분배된다. 분배된 수신신호들은 제6포트 및 제7포트로 출력된 후, 필터부(230)를 통과하여 제1매직티(520-1)의 제2포트 및 제3포트로 각각 입력된다.
여기서, 제6포트로부터 출력되어 제2포트로 입력된 수신신호는 제2포트로부터 제2필터부(234)로 향하는 과정에서 제2위상 가변기(590)에 의해 90도 위상이 변경되고, 제2필터부(234)로부터 제2포트로 향하는 과정에서 제1위상 가변기(580)에 의해 다시 90도 위상이 변경되게 된다. 결국, 제2포트 및 제3포트 각각으로 입력되는 수신신호들은 동일한 위상을 가지게 된다.
따라서, 동일한 위상을 가지는 수신신호들은 제1매직티(520-1)에서 합성되어 제1포트로 출력되고, 다이플렉서(240)의 제3필터부(242)를 통과한 후, 제1시스템(250)으로 수신된다.
제3시스템(270)의 송수신 과정
제3시스템(270)의 송신신호는 다이플렉서(240)의 제4필터부(244)를 통과한다. 제4필터부(244)를 통과한 제3시스템(270)의 송신신호는 제1매직티(520-1)의 제1포트로 입력된다.
제1포트로 입력된 송신신호는 제1매직티(520-1)에서 180도의 위상 차를 가진 상태로 분배된 후, 제2포트 및 제3포트로 각각 출력된다. 제2포트 및 제3포트로부터 출력된 제3시스템(270)의 송신신호들은 필터부(230)를 통과한 후, 제2매직티(520-2)의 제6포트 및 제7포트로 각각 입력된다.
여기서, 제6포트 및 제7포트로 입력되는 송신신호들은 제1 및 제2위상 가변기(580, 590)에 의해 동일한 위상을 가지게 된다. 따라서, 동일한 위상을 가지는 송신신호들은 제2매직티(520-2)에서 합성되어 제8포트로 출력되고, 안테나(ANT)를 통해 송신된다.
안테나(ANT)를 통해 입력된 제3시스템(270)의 수신신호는 제2매직티(520-2)의 제8포트로 입력된 후, 제2매직티(520-2)에서 180도의 위상 차를 가진 상태로 분배된다. 분배된 수신신호들은 제6포트 및 제7포트로 출력된 후, 필터부(230)를 통과하여 제1매직티(520-1)의 제2포트 및 제3포트로 입력된다.
여기서, 제2포트 및 제3포트로 입력되는 수신신호들은 제1 및 제2위상 가변기(580, 590)에 의해 동일한 위상을 가지게 된다. 따라서, 동일한 위상을 가지는 수신신호들은 제1매직티(520-1)에서 합성되어 제1포트로 출력되고, 다이플렉서(240)의 제4필터부(244)를 통과한 후, 제3시스템(270)으로 수신된다.
이상에서, 제1위상 가변기(580)와 제2위상 가변기(590)가 제2포트와 제6포트 사이의 신호 경로에 위치하는 예를 중심으로 실시예 2에 대해 설명하였으나, 제1위상 가변기(580)와 제2위상 가변기(590)는 제3포트와 제7포트 사이의 신호 경로에 위치할 수도 있다. 즉, 제1위상 가변기(580)와 제2위상 가변기(590)는 제3포트와 제7포트 사이의 신호 경로에 설치되되, 제1필터부(232)를 중심으로 좌우에 하나씩 설치될 수도 있다.
제1위상 가변기(580)와 제2위상 가변기(590)가 제3포트와 제7포트 사이의 신호 경로에 설치되는 경우, 실시예 2-1의 제1 내지 제3시스템(250, 260, 270) 각각의 송수신신호에 대한 위상 변화 관계는 아래와 같다.
제2시스템(260)의 송신신호 중 제7포트로부터 출력되어 제3포트로 입력되는 송신신호는 제2위상 가변기(590)에서 90도 위상이 변경된 후, 제1위상 가변기(580)에서 90도 위상이 변경된다. 결과적으로, 제3포트로 입력되는 송신신호와 제2포트로 입력되는 송신신호는 동일한 위상을 가지게 된다.
제2시스템(260)의 수신신호 중 제3포트로부터 출력되어 제7포트로 입력되는 수신신호는 제1위상 가변기(580)와 제2위상 가변기(590) 모두에서 각각 90도 위상이 변경된다. 따라서, 제7포트로 입력되는 수신신호와 제6포트로 입력되는 수신신호는 동일한 위상을 가지게 된다.
제1시스템(250) 및 제3시스템(270)의 송신신호 중 제3포트로부터 출력되어 제3포트로 재입력되는 송신신호(제1필터부에서 반사된 송신신호)는 제3포트로부터 제1필터부(232)로 향하는 과정과 제1필터부(232)로부터 제3포트로 향하는 과정 각각에서 제1위상 가변기(580)에 의해 90도씩 위상이 변경된다. 결과적으로, 제3포트로 재입력되는 송신신호는 제2포트로 재입력되는 송신신호와 동일한 위상을 가지게 된다.
제1시스템(250) 및 제3시스템(270)의 수신신호 중 제3포트로부터 출력되어 제3포트로 재입력되는 수신신호(제1필터부에서 반사된 수신신호)는 제3포트로부터 제1필터부(232)로 향하는 과정과 제1필터부(232)로부터 제3포트로 향하는 과정 각각에서 90도씩 위상이 변경된다. 결과적으로, 제3포트로 재입력되는 수신신호는 제2포트로 재입력되는 수신신호와 동일한 위상을 가지게 된다.
제1위상 가변기(580)와 제2위상 가변기(590)가 제3포트와 제7포트 사이의 신호 경로에 설치되는 경우, 실시예 2-2의 제1 내지 제3시스템(250, 260, 270) 각각의 송수신신호에 대한 위상 변화 관계는 아래와 같다.
제2시스템(260)의 송수신신호 중 제7포트로부터 출력되어 제7포트로 재입력되는 송수신신호는 제7포트로부터 제1필터부(232)로 향하는 과정과 제1필터부(234)로부터 제7포트로 향하는 과정 각각에서 90도씩 위상이 변경된다. 결과적으로, 제7포트로 재입력되는 송수신신호와 제6포트로 재입력되는 송수신신호는 동일한 위상을 가지게 된다.
제1시스템(250) 및 제3시스템(270)의 송수신신호 중 제3포트로부터 출력되어 제7포트로 입력되는 송수신신호는 제3포트로부터 제1필터부(232)로 향하는 과정과 제1필터부(232)로부터 제7포트로 향하는 과정 각각에서 제1위상 가변기(580)와 제2위상 가변기(590) 각각에 의해 90도씩 위상이 변경된다. 결과적으로, 제7포트로 입력되는 송수신신호는 제6포트로 입력되는 송수신신호와 동일한 위상을 가지게 된다. 한편, 이상에서는 제1 및 제2합성분배기(210-1, 210-2)의 포트들을 임의의 번호로 지칭함으로써 설명의 편의를 도모하였다. 따라서, 각 합성분배기들(210-1, 210-2)의 포트들은 본 명세서에서 지칭된 번호 이외의 다른 번호들을 이용하여 지칭될 수 있다.
이하에서는, 도 8 및 도 9를 참조하여 다이플렉서(240)를 이용하여 두 시스템(제1시스템 및 제3시스템)의 송수신 신호를 분리한 시뮬레이션 결과와 본 발명에 의한 공용화 장치(200)를 이용하여 시스템들(제1 내지 제3시스템)의 송수신 신호를 분리한 시뮬레이션 결과에 대해 설명하도록 한다.
도 8 및 도 9를 통해 설명되는 시뮬레이션에서, 제1시스템(250)은 상대적으로 낮은 대역의 송수신 신호를 이용하도록 설정되었으며, 제3시스템(270)은 상대적으로 높은 대역의 송수신 신호를 이용하도록 설정되었고, 제2시스템(260)은 상대적으로 중간 대역의 송수신 신호를 이용하도록 설정되었다.
먼저, 도 8 (A)는 다이플렉서(240)를 구성하는 제3필터부(242)의 통과 대역을 나타내며, 도 8 (B)는 다이플렉서(240)를 구성하는 제4필터부(244)의 통과 대역을 나타내고, 도 8 (C)는 제3필터부(242)의 통과 대역과 제4필터부(244)의 통과 대역 모두를 나타낸다.
도 8 (A)에 표현된 바와 같이, 제3필터부(242)는 상대적인 저대역(예를 들어, 3.4GHz)에 해당하는 제1시스템(250)의 송수신 신호를 통과시키나, 다른 대역(예를 들어, 3.5GHz 이상)의 송수신 신호를 저지 또는 차단한다. 도 8 (B)에 표현된 바와 같이, 제4필터부(244)는 상대적인 고대역(예를 들어, 3.6GHz)에 해당하는 제3시스템(270)의 송수신 신호를 통과시키나, 다른 대역(예를 들어, 3.5GHz 이하)의 송수신 신호를 저지 또는 차단한다.
도 8 (C)에 표현된 바와 같이, 제3필터부(242)와 제4필터부(244)로 구성되는 다이플렉서(240)는 상대적인 저대역에 해당하는 제1시스템(250)의 송수신 신호와 상대적인 고대역에 해당하는 제3시스템(270)의 송수신 신호만을 통과시키고, 다른 대역의 송수신 신호(중간 대역)를 차단 또는 저지한다.
이와 같이, 본 발명은 제2시스템(260)의 주파수 대역을 차단 또는 저지하는 다이플렉서(240)를 이용하여 상대적인 저대역과 상대적인 고대역만을 선택적으로 통과시킴으로써, 제1시스템(250)의 채널과 제3시스템(270)의 채널을 low와 high의 2-채널로 분리할 수 있게 된다.
도 9에서, 일점 쇄선은 다이플렉서(240)를 통해 2-채널로 분리된 low 채널과 high 채널을 나타내며, 실선은 중간 주파수 대역을 가지는 middle 채널을 나타낸다. low 채널은 제1시스템(250)이 사용하는 주파수 대역에 해당하고, high 채널은 제3시스템(270)이 사용하는 주파수 대역에 해당하며, middle 채널은 제2시스템(260)이 사용하는 주파수 대역에 해당한다.
도 9에 표현된 바와 같이, 다이플렉서(240)를 통해 low 채널과 high 채널을 분리하고, 필터부(230)를 통해 middle 채널을 선택적으로 통과시키거나 차단하면, low 채널, middle 채널 및 high 채널 각각이 단일의 기지국에서 공유될 수 있게 됨을 알 수 있다.
또한, 도 9의 시뮬레이션은 높은 차수(order)를 가지는 필터부(230)와 낮은 차수를 가지는 다이플렉서(240)를 이용하여 수행되었다. 이와 같은 경우, 높은 차수를 가지는 필터부(230)가 각 채널에 대해 높은 스커트(skirt) 특성을 확보할 수 있게 하며, 그 결과, 우수한 채널 분리와 낮은(협소한) 가드 밴드(guard band)(G1, G2)를 구현할 수 있다.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은, 본 명세서에 그 전체가 참고로서 포함되는, 2019년 3월 14일에 한국에 출원한 특허출원번호 제10-2019-0029434호 및, 2019년 3월 29일에 한국에 출원한 특허출원번호 제10-2019-0036846호에 대해 우선권을 주장한다.

Claims (7)

  1. 서로 다른 주파수 대역의 신호를 사용하는 제1 내지 제3시스템이 단일 기지국을 공용화하도록 하는 장치로서,
    상기 제1 및 제3시스템과 연결되며, 상기 제1시스템의 송수신 신호 및 상기 제3시스템의 송수신 신호를 분리하여 통과시키는 다이플렉서(diplexer);
    제1포트를 통해, 상기 다이플렉서와 연결된 제1합성분배기;
    제5포트를 통해, 상기 제2시스템과 연결된 제2합성분배기; 및
    상기 제1합성분배기의 제3 및 제2포트에 각각 연결되고, 상기 제2합성분배기의 제7 및 제6포트에 각각 연결되며, 상기 제2시스템의 송수신 신호를 선택적으로 통과시키거나 저지하는 제1 및 제2필터부를 포함하고,
    상기 제1합성분배기는,
    제4포트 또는 상기 제1포트로 입력된 신호를 분배하여 상기 제2 및 제3포트로 출력하고, 상기 제2 및 제3포트로 입력된 신호를 합성하여 상기 제4포트 또는 제1포트로 출력하며,
    상기 제2합성분배기는,
    제8포트 또는 상기 제5포트로 입력된 신호를 분배하여 상기 제7 및 제6포트로 출력하고, 상기 제7 및 제6포트로 입력된 신호를 합성하여 상기 제8포트 또는 제5포트로 출력하는 것을 특징으로 하는 기지국 공용화 장치.
  2. 제1항에 있어서,
    상기 제1 및 제2필터부는,
    상기 제2시스템의 송수신 신호를 선택적으로 통과시키는 대역 통과 필터이며,
    상기 제2합성분배기는,
    상기 제5포트로 입력된 신호를 분배하여 상기 제7 및 제6포트로 출력하고, 상기 제7 및 제6포트로 입력된 신호를 합성하여 상기 제5포트로 출력하는 것을 특징으로 하는 기지국 공용화 장치.
  3. 제1항에 있어서,
    상기 제1 및 제2필터부는,
    상기 제2시스템의 송수신 신호를 선택적으로 저지하는 대역 차단 필터이며,
    상기 제1합성분배기는,
    상기 제1포트로 입력된 신호를 분배하여 상기 제3 및 제2포트로 출력하고, 상기 제3 및 제2포트로 입력된 신호를 합성하여 상기 제1포트로 출력하는 것을 특징으로 하는 기지국 공용화 장치.
  4. 제1항에 있어서,
    상기 다이플렉서는,
    상기 제1시스템의 송수신 신호를 선택적으로 통과시키는 대역 통과 필터로 구성된 제3필터부; 및
    상기 제3시스템의 송수신 신호를 선택적으로 통과시키는 대역 통과 필터로 구성된 제4필터부를 포함하는 것을 특징으로 하는 기지국 공용화 장치.
  5. 제1항에 있어서,
    상기 제1 및 제2합성분배기는,
    하이브리드 커플러(hybrid coupler)인 것을 특징으로 하는 기지국 공용화 장치.
  6. 제1항에 있어서,
    상기 제1 및 제2합성분배기는,
    매직티(magic tee)이며,
    상기 제3포트와 상기 제7포트 사이의 신호 경로 및 상기 제2포트와 상기 제6포트 사이의 신호 경로 중 어느 하나에 위치하되, 상기 제1필터부 또는 제2필터부를 중심으로 좌측 및 우측에 분배되어 위치하는 제1 및 제2위상 가변기를 더 포함하는 것을 특징으로 하는 기지국 공용화 장치.
  7. 제1항에 있어서,
    상기 제1 및 제2필터부는,
    주파수 대역 가변 필터로 구성되는 것을 특징으로 하는 기지국 공용화 장치.
PCT/KR2020/001632 2019-03-14 2020-02-04 기지국 공용화 장치 WO2020184840A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190029434 2019-03-14
KR10-2019-0029434 2019-03-14
KR10-2019-0036846 2019-03-29
KR1020190036846 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020184840A1 true WO2020184840A1 (ko) 2020-09-17

Family

ID=72427433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001632 WO2020184840A1 (ko) 2019-03-14 2020-02-04 기지국 공용화 장치

Country Status (1)

Country Link
WO (1) WO2020184840A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010010344A (ko) * 1999-07-19 2001-02-05 김영환 이동통신 기지국 시스템에서의 고주파처리 유니트 원격 제어장치
KR100316693B1 (ko) * 1999-12-22 2001-12-20 박종섭 이동통신 기지국의 rf블록
KR20110031887A (ko) * 2009-09-21 2011-03-29 주식회사 케이엠더블유 무선통신 기지국 공용화 장치
US20180062693A1 (en) * 2016-08-26 2018-03-01 Samsung Electro-Mechanics Co., Ltd. Unified communications apparatus
KR101945344B1 (ko) * 2016-03-01 2019-02-08 인피니언 테크놀로지스 아게 스위칭 유닛을 구비한 디바이스 및 그 애플리케이션

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010010344A (ko) * 1999-07-19 2001-02-05 김영환 이동통신 기지국 시스템에서의 고주파처리 유니트 원격 제어장치
KR100316693B1 (ko) * 1999-12-22 2001-12-20 박종섭 이동통신 기지국의 rf블록
KR20110031887A (ko) * 2009-09-21 2011-03-29 주식회사 케이엠더블유 무선통신 기지국 공용화 장치
KR101945344B1 (ko) * 2016-03-01 2019-02-08 인피니언 테크놀로지스 아게 스위칭 유닛을 구비한 디바이스 및 그 애플리케이션
US20180062693A1 (en) * 2016-08-26 2018-03-01 Samsung Electro-Mechanics Co., Ltd. Unified communications apparatus

Similar Documents

Publication Publication Date Title
WO2011034373A2 (en) Apparatus for sharing a wireless communication base station
WO2015120624A1 (zh) 一种天线切换系统以及方法
WO2017171487A2 (en) Method and apparatus for synchronization for vehicle-to-x communication
WO2014193051A1 (ko) 멀티 밴드 안테나 시스템
WO2011162524A2 (ko) 무선 네트워크에서 채널 정보를 식별하기 위한 방법 및 장치
WO2011053099A2 (ko) 무선 주파수 필터
WO2016171298A1 (ko) 분산 안테나 시스템
WO2019066581A1 (ko) Srs를 전송 및 수신하는 방법과 이를 위한 통신 장치
WO2018012863A1 (ko) 차세대 인빌딩 중계 시스템 및 방법
WO2020149632A1 (en) Wireless power relaying device and display system that distributes power wirelessly
WO2021230419A1 (ko) 다채널 빔포밍 시스템에서 채널 간 위상 및 이득을 보상하는 보정 회로, 이를 포함하는 다채널 빔포밍 시스템 및 이를 이용한 채널 보정 방법
WO2017213342A1 (ko) 동기신호 전송 장치 및 동기신호 전송 방법
WO2020184840A1 (ko) 기지국 공용화 장치
WO2018093061A1 (ko) 단상 다분기 공사용개폐기를 이용한 바이패스케이블 중간접속개소가 없는 무정전 배전공법
KR20000013050A (ko) 광 결합 및 분리 장치, 그리고 이를 구비한 파장분할 다중화 광링크
WO2012165823A2 (en) Repeater
WO2019226012A1 (ko) 클럭 동기화를 수행하는 통신 노드 및 통신 시스템
WO2020184841A1 (ko) 기지국 공용화 장치
WO2014137132A1 (ko) 무선통신 네트워크에서 무선 접속 노드 시스템의 안테나 공용화 장치
WO2015069035A1 (ko) 무선 통신 시스템에서 다중 빔을 이용하여 신호를 송수신하기 위한 방법 및 장치
WO2019093580A1 (ko) 위상 천이기
WO2012106939A1 (zh) 一种高速光传输系统、设备及数据处理方法
WO2010098572A9 (ko) 공공 무선망 통합장치
WO2016052786A1 (ko) 다중 주파수 대역을 지원하는 무선 주파수 송신기 및 수신기
WO2019143001A1 (en) Hybrid antenna system and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20770383

Country of ref document: EP

Kind code of ref document: A1