WO2020183815A1 - Power transmission device - Google Patents

Power transmission device Download PDF

Info

Publication number
WO2020183815A1
WO2020183815A1 PCT/JP2019/047106 JP2019047106W WO2020183815A1 WO 2020183815 A1 WO2020183815 A1 WO 2020183815A1 JP 2019047106 W JP2019047106 W JP 2019047106W WO 2020183815 A1 WO2020183815 A1 WO 2020183815A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
motor
gear
power transmission
hollow shaft
Prior art date
Application number
PCT/JP2019/047106
Other languages
French (fr)
Japanese (ja)
Inventor
松尾 浩司
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Publication of WO2020183815A1 publication Critical patent/WO2020183815A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H48/40Constructional details characterised by features of the rotating cases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/12Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of electric gearing

Definitions

  • the present invention relates to a power transmission device.
  • Patent Documents 1 to 3 disclose a power transmission device.
  • the rotor of the motor is a hollow shaft, and the drive shaft penetrates the inside of the hollow shaft. Therefore, it is possible to reduce the size in the vertical direction compared to the 3-axis type, but because a large counter gear is arranged, the size is increased in the vertical direction (hereinafter referred to as the 2-axis type). ..
  • the power transmission device of Patent Document 3 uses a planetary reduction gear having a stepped pinion instead of a counter gear, and can be downsized in the vertical direction as compared with the 2-axis type (hereinafter referred to as the 1-axis type). I will call it).
  • the two-axis type and one-axis type power transmission devices can be reduced in size in the vertical direction (gravity direction), but there is a problem in reducing the size in the horizontal direction (axial direction). For example, it is required to reduce the size of the power transmission device applicable to the 2-axis type and the 1-axis type in the axial direction.
  • the present invention has a hollow shaft and A differential gear connected to the downstream of the hollow shaft via a reduction gear, With a drive shaft connected downstream of the differential gear, The drive shaft is arranged so as to penetrate the hollow shaft.
  • the differential case of the differential gear has a support portion for supporting the drive shaft.
  • the support portion of the differential case is a power transmission device having a configuration inserted in the inner circumference of the hollow shaft.
  • the size can be reduced in the lateral direction (axial direction).
  • FIG. 1 is a diagram illustrating a power transmission device 1 according to an embodiment.
  • FIG. 2 is an enlarged view around the planetary reduction gear 5 of the power transmission device 1.
  • FIG. 3 is an enlarged view of the power transmission device 1 around the differential device 6.
  • the power transmission device 1 includes a motor 2, a planetary reduction gear 5 (reduction mechanism) that decelerates the output rotation of the motor 2 and inputs it to the differential device 6, and a drive shaft 8 (8A, 8B). There is.
  • a planetary reduction gear 5, a differential device 6, and drive shafts 8 (8A, 8B) are provided along the transmission path of the output rotation of the motor 2.
  • the output rotation of the motor 2 is decelerated by the planetary reduction gear 5 and input to the differential device 6, and then the left and right drive of the vehicle on which the power transmission device 1 is mounted via the drive shafts 8 (8A, 8B). It is transmitted to the ring (not shown).
  • the drive shaft 8A is rotatably connected to the left wheel of the vehicle equipped with the power transmission device 1
  • the drive shaft 8B is rotatably connected to the right wheel.
  • the planetary reduction gear 5 is connected downstream of the motor 2
  • the differential device 6 is connected downstream of the planetary reduction gear 5
  • the drive shafts 8 (8A, 8B) are differential devices. It is connected to the downstream of 6.
  • the motor 2 has a cylindrical motor shaft 20, a cylindrical rotor core 21 extrapolated to the motor shaft 20, and a stator core 25 that surrounds the outer circumference of the rotor core 21 at predetermined intervals.
  • the motor shaft 20 is extrapolated to the drive shaft 8B. In this state, the motor shaft 20 is rotatable relative to the drive shaft 8B. In the motor shaft 20, bearings B1 and B1 are extrapolated and fixed to the outer periphery on one end 20a side and the other end 20b side in the longitudinal direction.
  • One end 20a side of the motor shaft 20 is rotatably supported by a cylindrical motor support portion 121 of the intermediate cover 12 via a bearing B1.
  • the other end 20b side of the motor shaft 20 is rotatably supported by a cylindrical motor support portion 111 fixed to the cover 11 via a bearing B1.
  • the motor 2 has a motor housing 10 that surrounds the outer circumference of the rotor core 21 at predetermined intervals.
  • the intermediate cover 12 is joined to one end 10a of the motor housing 10, and the cover 11 is joined to the other end 10b of the motor housing 10.
  • Seal rings S and S are provided on one end 10a and the other end 10b of the motor housing 10.
  • One end 10a of the motor housing 10 is joined to the annular base 120 of the intermediate cover 12 without a gap by a seal ring S provided at the one end 10a.
  • the other end 10b of the motor housing 10 is joined to the annular joint 110 of the cover 11 without a gap by the seal ring S provided on the other end 10b.
  • the base portion 120 and the motor support portion 121 are provided so as to be displaced from each other in the rotation axis X direction.
  • the motor support portion 121 is inserted inside the motor housing 10.
  • the motor support portion 121 is arranged on the inner diameter side of the coil end 253a, which will be described later, with one end portion 21a of the rotor core 21 facing each other with a gap in the rotation axis X direction (see FIG. 2). Then, as shown in FIG. 2, the connecting portion 123 connecting the base portion 120 and the motor support portion 121 is provided on the inner diameter side of the coil end 253a in a direction along the rotation axis X.
  • a bearing retainer 125 is fixed to the end surface 121a of the motor support portion 121 on the rotor core 21 side.
  • the bearing retainer 125 has a ring shape when viewed from the rotation axis X direction.
  • the inner diameter side of the bearing retainer 125 is in contact with the side surface of the outer race B1b of the bearing B1 supported by the motor support portion 121 from the rotation axis X direction.
  • the bearing retainer 125 prevents the bearing B1 from falling off from the motor support portion 121.
  • the motor support portion 111 is located on the inner diameter side of the joint portion 110.
  • the motor support portion 111 is fixed to the side wall portion 113 of the cover 11 via a tubular wall portion 115 formed integrally with the motor support portion 111.
  • the motor support 111 when the joint 110 of the cover 11 is fixed to the other end 10b of the motor housing 10, the motor support 111 is attached to the other end 21b of the rotor core 21 on the inner diameter side of the coil end 253b described later. They are arranged so as to face each other with a gap in the X direction. In this state, the cylinder wall portion 115 extending from the motor support portion 111 is located on the inner diameter side of the coil end 253b.
  • the rotor core 21 is arranged between the motor support portion 111 on the cover 11 side and the motor support portion 121 on the intermediate cover 12 side.
  • the rotor core 21 is formed by laminating a plurality of silicon steel plates, and each of the silicon steel plates is extrapolated to the motor shaft 20 in a state where the relative rotation with the motor shaft 20 is restricted.
  • the silicon steel plate When viewed from the rotation axis X direction of the motor shaft 20, the silicon steel plate has a ring shape, and on the outer peripheral side of the silicon steel plate, magnets of N pole and S pole (not shown) alternate in the circumferential direction around the rotation axis X. It is provided in.
  • One end 21a of the rotor core 21 in the X direction of the rotation axis is positioned by the large diameter portion 203 of the motor shaft 20.
  • the other end 21b of the rotor core 21 is positioned by a stopper 23 press-fitted into the motor shaft 20.
  • the stator core 25 is formed by laminating a plurality of electromagnetic steel plates, and each of the electromagnetic steel plates has a ring-shaped yoke portion 251 fixed to the inner circumference of the motor housing 10 and a rotor core from the inner circumference of the yoke portion 251. It has a teeth portion 252 that protrudes to the 21 side.
  • a stator core 25 having a configuration in which the winding 253 is distributed and wound across a plurality of tooth portions 252 is adopted, and the stator core 25 is a coil end 253a, 253b protruding in the rotation axis X direction.
  • the length in the rotation axis X direction is longer than that of the rotor core 21 by the amount.
  • stator core is not limited to a distributed winding configuration.
  • a stator core having a configuration in which windings are centrally wound may be adopted for each of the plurality of tooth portions 252 protruding toward the rotor core 21 side.
  • the bearing B1 is press-fitted onto the outer periphery of a region 20a at one end of the large diameter portion 203.
  • the inner race B1a of the bearing B1 one side surface in the rotation axis X direction is in contact with the step portion 204 provided on the outer periphery of the motor shaft 20.
  • the inner race B1a has a ring-shaped stopper 205 press-fitted onto the outer periphery of the motor shaft 20 in contact with the other side surface.
  • the bearing B1 is positioned by the stopper 205 at a position where the inner race B1a is in contact with the step portion 204.
  • One end 20a of the motor shaft 20 is located on the planetary reduction gear 5 side (left side in the figure) with respect to the stopper 205.
  • One end 20a faces the meshing portion between the sun gear 51 of the planetary reduction gear 5 and the large-diameter gear portion 531 of the stepped pinion gear 53 at intervals in the X direction of the rotation axis.
  • the cylindrical wall 122 is located on the radial outside of the motor shaft 20.
  • the cylindrical wall 122 projects from the motor support portion 121 toward the planetary reduction gear 5 (left side in the drawing).
  • the cylindrical wall 122 surrounds the outer circumference of the motor shaft 20 at predetermined intervals, and a lip seal RS is installed between the cylindrical wall 122 and the motor shaft 20.
  • the lip seal RS is provided to partition the space Sa on the inner diameter side of the motor housing 10 and the space Sb on the inner diameter side of the case 13.
  • Lubricating oil OL is sealed in the space Sb on the inner diameter side of the case 13.
  • the lip seal RS is provided to prevent the lubricating oil OL from flowing into the space Sa on the inner diameter side of the motor housing 10.
  • a recess 124 opened on the planetary reduction gear 5 side (left side in FIG. 2) is formed between the cylindrical wall 122 and the connection portion 123.
  • a step portion 123a for positioning the outer race B3b of the bearing B3 is provided on the connecting portion 123 side (outer diameter side) of the recess 124.
  • the inner race B3a of the bearing B3 is provided so as to avoid contact with the motor support portion 121, and the inner race B3a supports the outer circumference of the tubular portion 552 described later.
  • the motor housing 10, the cover 11, the intermediate cover 12, and the case 13 constitute the main body case 9 of the power transmission device 1.
  • the internal space of the main body case 9 is defined by the intermediate cover 12, and the space Sa on the motor housing 10 side serves as a motor chamber for accommodating the motor 2.
  • the space Sb on the case 13 side serves as a gear chamber for accommodating the planetary reduction gear 5 and the differential device 6.
  • the connecting portion 202 on the one end 20a side of the motor shaft 20 is formed with an inner diameter larger than the region 201 in which the rotor core 21 is extrapolated.
  • a cylindrical connecting portion 511 of the sun gear 51 is inserted inside the connecting portion 202. In this state, the connecting portion 202 on the one end 20a side of the motor shaft 20 and the connecting portion 511 of the sun gear 51 are spline-fitted so as not to rotate relative to each other.
  • the output rotation of the motor 2 is input to the sun gear 51 of the planetary reduction gear 5 via the motor shaft 20, and the sun gear 51 rotates around the rotation axis X by the rotational driving force of the motor 2.
  • the connecting portion 202 of the motor shaft 20 and the connecting portion 511 on the planetary reduction gear 5 side are connected on the inner diameter side of the coil end 253a of the motor 2.
  • the sun gear 51 has a connecting portion 511 extending in the rotation axis X direction from the side surface 51a on the inner diameter side.
  • the connecting portion 511 is integrally formed with the sun gear 51, and a through hole 510 is formed so as to straddle the inner diameter side of the sun gear 51 and the inner diameter side of the connecting portion 511.
  • the sun gear 51 and the connecting portion 511 constitute the hollow shaft 50 according to the invention.
  • the hollow shaft 50 is extrapolated to the drive shaft 8B. In this state, the hollow shaft 50 (sun gear 51) is rotatable relative to the drive shaft 8B.
  • the sun gear 51 meshes with the large-diameter gear portion 531 of the stepped pinion gear 53 on the extension of the motor shaft 20 described above.
  • the stepped pinion gear 53 has a large-diameter gear portion 531 that meshes with the sun gear 51, and a small-diameter gear portion 532 that has a smaller diameter than the large-diameter gear portion 531.
  • the stepped pinion gear 53 is a gear component in which a large-diameter gear portion 531 and a small-diameter gear portion 532 are integrally provided side by side in the direction of the axis X1 parallel to the rotation axis X.
  • the stepped pinion gear 53 has a through hole 530 penetrating the inner diameter side of the large-diameter gear portion 531 and the small-diameter gear portion 532 in the axis X1 direction.
  • the stepped pinion gear 53 is rotatably supported on the outer circumference of the pinion shaft 54 penetrating the through hole 530 via the needle bearing NB.
  • needle bearings NB are provided on the inner diameter side of the large diameter gear portion 531 and on the inner diameter side of the small diameter gear portion 532, respectively.
  • the needle bearings NB and NB are arranged in series in the axis X1 direction on the outer circumference of the pinion shaft 54.
  • One end and the other end of the pinion shaft 54 in the longitudinal direction are supported by a side plate portion 651 formed integrally with the differential case 60 and a side plate portion 551 arranged at intervals from the side plate portion 651.
  • the side plate portions 651 and 551 are plate-shaped members provided in a direction orthogonal to the rotation axis X.
  • the side plate portions 651 and 551 are provided in parallel with each other at intervals in the rotation axis X direction.
  • a plurality (for example, three) of a plurality of stepped pinion gears 53 are provided between the side plate portions 651 and 551 at predetermined intervals in the circumferential direction around the rotation axis X.
  • Each of the small diameter gear portions 532 meshes with the inner circumference of the ring gear 52.
  • the ring gear 52 is spline-fitted on the inner circumference of the case 13, and the ring gear 52 is restricted from rotating relative to the case 13.
  • a tubular portion 552 extending toward the motor 2 side is provided.
  • the tubular portion 552 is inserted into the recess 124 of the intermediate cover 12 from the rotation axis X direction. In the recess 124, the tubular portion 552 is provided so as to avoid contact with the motor support portion 121.
  • the tubular portion 552 is located on the radial outer side of the meshing portion between the connecting portion 202 of the motor shaft 20 and the connecting portion 511 on the planetary reduction gear 5 side.
  • a bearing B3 having an outer race B3b fixed to a recess 124 is in contact with the outer periphery of the tubular portion 552.
  • the tubular portion 552 of the side plate portion 551 is rotatably supported by the intermediate cover 12 via the bearing B3.
  • one side plate portion 651 of the side plate portion 551 and the side plate portion 651 constituting the carrier 55 is integrally formed with the differential case 60 of the differential device 6. Therefore, the carrier 55 (side plate portions 551, 651, pinion shaft 54) of the planetary reduction gear 5 is formed substantially integrally with the differential case 60.
  • the output rotation of the motor 2 is input to the sun gear 51.
  • the output rotation input to the sun gear 51 is input to the stepped pinion gear 53 via the large-diameter gear portion 531 that meshes with the sun gear 51, and the stepped pinion gear 53 rotates around the axis X1.
  • the small-diameter gear portion 532 integrally formed with the large-diameter gear portion 531 rotates around the axis X1 integrally with the large-diameter gear portion 531.
  • the small-diameter gear portion 532 meshes with the ring gear 52 fixed to the inner circumference of the case 13. Therefore, when the small-diameter gear portion 532 rotates around the axis X1, the stepped pinion gear 53 rotates around the axis X1 while rotating around the axis X1.
  • the differential case 60 is interlocked with the displacement of the stepped pinion gear 53 around the rotation axis X in the circumferential direction. It rotates around the rotation axis X.
  • the outer diameter R2 of the small diameter gear portion 532 is smaller than the outer diameter R1 of the large diameter gear portion 531 (see FIG. 3).
  • the sun gear 51 is an input unit for the output rotation of the motor 2
  • the carrier 55 that supports the stepped pinion gear 53 is an output unit for the input rotation. Then, the rotation input to the sun gear 51 of the planetary reduction gear 5 is greatly decelerated by the stepped pinion gear 53, and then output to the differential case 60 in which the side plate portion 651 of the carrier 55 is integrally formed.
  • the differential case 60 is formed in a hollow shape in which the shaft 61, the bevel gears 62A and 62B, and the side gears 63A and 63B are housed therein.
  • tubular support portions 601 and 602 are provided on both sides of the rotation axis X direction (left-right direction in the drawing). The support portions 601 and 602 extend along the rotation axis X in a direction away from the shaft 61.
  • connection piece 56 for connecting the side plate portion 651 and the side plate portion 551 of the carrier 55 is provided on the outer diameter side of the support portion 601.
  • One end of the connection piece 56 on the differential case 60 side is provided so as to straddle the side plate portion 651 and the outer circumference of the differential case 60, and the other end is connected to the side plate portion 551 from the rotation axis X direction.
  • connection piece 56 is provided at a position avoiding interference with the stepped pinion gear 53 described above. As described above, a plurality (for example, three) of the stepped pinion gears 53 are provided at predetermined intervals in the circumferential direction around the rotation axis X. The connecting piece 56 is provided between the stepped pinion gears 53 adjacent to each other in the circumferential direction around the rotation axis X.
  • the inner race B2a of the bearing B2 is press-fitted onto the outer periphery of the support portion 602 of the differential case 60.
  • the outer race B2b of the bearing B2 is held by the ring-shaped support portion 131 of the case 13, and the support portion 602 of the differential case 60 is rotatably supported by the case 13 via the bearing B2.
  • a drive shaft 8A penetrating the opening 130 of the case 13 is inserted into the support portion 602 from the rotation axis X direction, and the drive shaft 8A is rotatably supported by the support portion 602.
  • a lip seal RS is fixed to the inner circumference of the opening 130, and the lip portion (not shown) of the lip seal RS elastically contacts the outer circumference of the drive shaft 8A to open the outer circumference of the drive shaft 8A.
  • the gap between the inner circumference and the inner circumference of the portion 130 is sealed.
  • the outer diameter R3 of the support portion 601 is formed to have an outer diameter smaller than the inner diameter R4 of the hollow shaft 50 (sun gear 51).
  • the support portion 601 is inserted inside the hollow shaft 50 from the rotation axis X direction, and in a region where the support portion 601 and the hollow shaft 50 (sun gear 51) overlap when viewed from the radial direction of the rotation shaft X, the support portion 601 is a support portion.
  • a needle bearing NB is provided between the outer circumference of 601 and the inner circumference of the hollow shaft 50.
  • the sun gear 51 side of the hollow shaft 50 is rotatably supported by the support portion 601 of the differential case 60 via the needle bearing NB.
  • the end portion 50a of the hollow shaft 50 on the differential case 60 side faces the side edge portion 60c of the differential case 60 with a gap in the rotation axis X direction.
  • a drive shaft 8B penetrating the opening 114 of the cover 11 is inserted into the support portion 601 of the differential case 60 from the rotation axis X direction.
  • the drive shaft 8B is provided so as to cross the inner diameter side of the motor shaft 20 of the motor 2 and the inner diameter side of the hollow shaft 50 in the rotation axis X direction, and the tip end side of the drive shaft 8B is rotatably supported by the support portion 601. Has been done.
  • a lip seal RS is fixed to the inner circumference of the opening 114 of the cover 11, and the lip portion (not shown) of the lip seal RS elastically contacts the outer circumference of the drive shaft 8B, so that the drive shaft 8B has a lip seal RS.
  • the gap between the outer circumference and the inner circumference of the opening 114 is sealed.
  • side gears 63A and 63B are spline-fitted on the outer periphery of the tip portions of the drive shafts 8A and 8B, and the side gears 63A and 63B and the drive shaft 8 (8A and 8B) are fitted.
  • the differential case 60 is provided with shaft holes 60a and 60b penetrating in a direction orthogonal to the rotation axis X at positions symmetrical with respect to the rotation axis X.
  • the shaft holes 60a and 60b are located on the axis Y orthogonal to the rotation axis X, and one end 61a side and the other end 61b side of the shaft 61 are inserted.
  • One end 61a side and the other end 61b side of the shaft 61 are fixed to the differential case 60 by a pin P, and the shaft 61 is prohibited from rotating around the axis Y.
  • the shaft 61 is located between the side gears 63A and 63B in the differential case 60, and is arranged along the axis Y.
  • bevel gears 62A and 62B are externally inserted and rotatably supported on the shaft 61.
  • Two bevel gears 62A and 62B are provided at intervals in the longitudinal direction of the shaft 61 (the axial direction of the axis Y), and the bevel gears 62A and 62B are arranged so that their teeth face each other. ing.
  • the bevel gears 62A and 62B are provided so that the axes of the bevel gears 62A and 62B are aligned with the axes of the shaft 61.
  • side gears 63A and 63B are located on both sides of the bevel gears 62A and 62B in the rotation axis X direction.
  • Two side gears 63A and 63B are provided with their teeth facing each other at intervals in the X direction of the rotation axis, and the bevel gears 62A and 62B and the side gears 63A and 63B have teeth of each other. Is assembled in a meshed state.
  • the lower side of the differential case 60 is immersed in the lubricating oil inside the case 13.
  • the lubricating oil is contained in the case 13 until the height at which one end 61a or the other end 61b of the shaft 61 is located at least in the lubricating oil. Is stored.
  • a planetary reduction gear 5 In the power transmission device 1, a planetary reduction gear 5, a differential device 6, and drive shafts 8 (8A, 8B) are provided along the transmission path of the output rotation of the motor 2.
  • the sun gear 51 is an input unit for the output rotation of the planetary reduction gear 5
  • the carrier 55 that supports the stepped pinion gear 53 is an output unit for the input rotation.
  • the stepped pinion gear 53 (large diameter gear portion 531 and small diameter gear portion 532) rotates around the axis X1 by the rotation input from the sun gear 51 side.
  • the small-diameter gear portion 532 of the stepped pinion gear 53 meshes with the ring gear 52 fixed to the inner circumference of the case 13. Therefore, the stepped pinion gear 53 rotates around the rotation axis X while rotating around the axis X1.
  • the outer diameter R2 of the small diameter gear portion 532 is smaller than the outer diameter R1 of the large diameter gear portion 531 (see FIG. 3).
  • the carriers 55 (side plate portions 551 and 651) that support the stepped pinion gear 53 rotate around the rotation axis X at a rotation speed lower than the rotation input from the motor 2 side. Therefore, the rotation input to the sun gear 51 of the planetary reduction gear 5 is greatly reduced by the stepped pinion gear 53, and then the side plate portion 651 of the carrier 55 is integrally formed with the differential case 60 (differential device 6). Is output to.
  • the support portion 601 of the differential case 60 is formed with an outer diameter R3 smaller than the inner diameter R4 of the hollow shaft 50, and the support portion 601 of the differential case 60 is formed on the inner circumference of the hollow shaft 50. It has been inserted. Therefore, when viewed from the radial direction of the rotating shaft X, a part of the hollow shaft 50 on the sun gear 51 side and the support portion 601 of the differential case 60 are arranged so as to overlap each other. As a result, the length of the power transmission device 1 in the rotation axis X direction (axis length direction) can be shortened by the length Lx at which the hollow shaft 50 and the support portion 601 of the differential case 60 overlap in the rotation axis X direction.
  • the rotation shaft X of the support portion 601 is used in order to shorten the length of the power transmission device 1 in the rotation shaft X direction. It is necessary to shorten the length in the direction.
  • the support portion 601 of the differential case 60 is inserted into the inner circumference of the hollow shaft 50 and arranged to support the drive shaft 8B while suppressing the length of the power transmission device 1 in the rotation axis X direction.
  • the length of the part 601 is secured.
  • the inner circumference of the support portion 601 of the differential case 60 rotatably supports the drive shaft 8B inserted in the support portion 601 and the outer circumference of the support portion 601 is the hollow shaft 50 via the needle bearing NB. It is rotatably supported on the inner circumference of the sun gear 51 side. Therefore, the length of the power transmission device 1 in the rotation axis X direction is suppressed while ensuring the support stability of the drive shaft 8B.
  • the power transmission device 1 has the following configuration.
  • the power transmission device 1 is Hollow shaft 50 and A differential device 6 (differential gear) connected to the downstream of the hollow shaft 50 via a planetary reduction gear 5 (reduction gear), Drive shafts 8 (8A, 8B) connected downstream of the differential device 6 and Have.
  • the drive shaft 8B is arranged so as to penetrate the hollow shaft 50.
  • the differential case 60 (differential case) of the differential device 6 has a support portion 601 that supports the drive shaft 8B.
  • the support portion 601 of the differential case 60 is inserted into the inner circumference of the hollow shaft 50.
  • the lengths of the support portions 601 and 602 in the rotation axis X direction are longer than a predetermined length for the support stability of the drive shaft 8 (8A, 8B). Is preferable.
  • the diameters of the hollow shaft 50 and the support portion 601 are substantially the same, the hollow shaft 50 and the support portion 601 interfere with each other, which hinders the shortening of the power transmission device 1 in the axial length direction (rotation axis X direction). It becomes. Therefore, the outer diameter of the support portion 601 is set to the outer diameter R3 that can be inserted into the hollow shaft 50.
  • the support stability of the drive shaft 8B at the support portion 601 can be ensured, and the differential case 60 can be arranged closer to the hollow shaft 50 side, so that the power transmission device 1 can be shortened in the axial length direction. It will be possible.
  • the power transmission device 1 has the following configuration. (2) The support portion 601 is supported on the inner circumference of the hollow shaft 50 via a needle bearing NB (bearing).
  • the needle bearing NB (bearing) on the inner peripheral side of the hollow shaft 50
  • the hollow shaft 50 and the support portion 601 of the differential case 60 can be provided so as to overlap each other when viewed from the radial direction of the rotating shaft X.
  • the differential case 60 and the hollow shaft 50 from interfering with each other in the radial direction.
  • the case where the support portion 601 is supported on the inner circumference of the hollow shaft 50 via the needle bearing NB (bearing) is illustrated.
  • an annular bush may be provided so that the support portion 601 is supported on the inner circumference of the hollow shaft 50 via the bush.
  • the bush is, for example, a metal ring that allows relative rotation between the hollow shaft and the support portion.
  • the axial direction can be shortened. In other words, by providing a clearance between the hollow shaft 50 and the differential case 60 in the axial direction, the axial direction can be shortened.
  • the power transmission device 1 has the following configuration. (3) In the transmission path of the output rotation of the motor 2 in the power transmission device 1, the motor 2 is connected upstream of the hollow shaft 50.
  • the drive shaft 8B is arranged so as to penetrate the inner circumference of the motor 2.
  • FIG. 4 is an enlarged view of the power transmission device 1A around the differential device 6 according to the modified example.
  • the case where the end portion 50a of the hollow shaft 50 on the differential case 60 side faces the side edge portion 60c of the differential case 60 with a gap in the rotation axis X direction is exemplified (see FIG. 3).
  • a needle bearing NB thrust bearing
  • FIG. 4 a needle bearing NB (thrust bearing) may be provided between the end portion 50a of the hollow shaft 50 on the differential case 60 side and the side edge portion 60c of the differential case 60.
  • downstream connection in the present specification means that there is a connection relationship in which power is transmitted from a component arranged upstream to a component arranged downstream.
  • the case of the planetary reduction gear 5 connected downstream of the motor 2 means that power is transmitted from the motor 2 to the planetary reduction gear 5.
  • direct connection in the present specification means that the members are connected so as to be able to transmit power without the intervention of other members such as a reduction mechanism, a speed increase mechanism, and a transmission mechanism whose reduction ratio is converted. Means.
  • the planetary reduction gear 5 adopting the stepped pinion gear 53 is illustrated, but the planetary reduction gear adopting the non-stepped pinion gear may be adopted.
  • connection mode between the output unit (motor shaft 20) of the motor 2 and the input unit (sun gear 51) of the planetary reduction gear 5 is not limited to that of the above-described embodiment.
  • the output unit (motor shaft 20) of the motor 2 and the input unit (sun gear 51) of the planetary reduction gear 5 may be connected to each other so that rotation can be transmitted via another gear component or the like.
  • the reduction mechanism is a planetary reduction gear 5 including a stepped pinion gear 53 and one planetary reduction gear 5 is provided on the transmission path of the output rotation of the motor 2 is illustrated. ..
  • the present invention is not limited to this aspect.
  • a plurality of planetary reduction gears may be arranged in series on the transmission path of the output rotation of the motor 2.

Abstract

A power transmission device (1) according to the present invention has: a hollow shaft (50); a differential device (6) connected via a planetary reduction gear (5) downstream from the hollow shaft (50); and drive shafts (8A), (8B) connected downstream from the differential device (6). The drive shaft (8B) is arranged so as to pass through the hollow shaft (50). A differential case (60) of the differential device (6) has a support section (601) supporting the drive shaft (8b). The support section (601) of the differential case (60) is inserted into the inner circumference of the hollow shaft (50).

Description

動力伝達装置Power transmission device
 本発明は、動力伝達装置に関する。 The present invention relates to a power transmission device.
 特許文献1から特許文献3には、動力伝達装置が開示されている。 Patent Documents 1 to 3 disclose a power transmission device.
 特許文献1の動力伝達装置は、回転伝達に関与する3つの回転軸が並列に並んでおり、縦方向(重力方向)にサイズアップしやすい(以下、3軸タイプと呼ぶこととする)。 In the power transmission device of Patent Document 1, three rotation axes involved in rotation transmission are arranged in parallel, and it is easy to increase the size in the vertical direction (gravity direction) (hereinafter, referred to as a three-axis type).
 特許文献2の動力伝達装置は、モータのロータが中空軸となっており、この中空軸の内部をドライブシャフトが貫通している。そのため、3軸タイプと比較して縦方向のサイズダウンが可能となるが、大きなカウンタギアを配置しているため、縦方向にサイズアップしてしまう(以下、2軸タイプと呼ぶこととする)。 In the power transmission device of Patent Document 2, the rotor of the motor is a hollow shaft, and the drive shaft penetrates the inside of the hollow shaft. Therefore, it is possible to reduce the size in the vertical direction compared to the 3-axis type, but because a large counter gear is arranged, the size is increased in the vertical direction (hereinafter referred to as the 2-axis type). ..
 特許文献3の動力伝達装置は、カウンタギアではなく、段付きピニオンを有する遊星減速ギアを用いており、2軸タイプと比較して縦方向のサイズダウンが可能となる(以下、1軸タイプと呼ぶこととする)。 The power transmission device of Patent Document 3 uses a planetary reduction gear having a stepped pinion instead of a counter gear, and can be downsized in the vertical direction as compared with the 2-axis type (hereinafter referred to as the 1-axis type). I will call it).
 2軸タイプおよび1軸タイプの動力伝達装置では、縦方向(重力方向)のサイズダウンが可能であるが、横方向(軸方向)のサイズダウンには課題がある。
 例えば、2軸タイプおよび1軸タイプなどに適用可能な動力伝達装置を、軸方向にサイズダウンすることが求められている。
The two-axis type and one-axis type power transmission devices can be reduced in size in the vertical direction (gravity direction), but there is a problem in reducing the size in the horizontal direction (axial direction).
For example, it is required to reduce the size of the power transmission device applicable to the 2-axis type and the 1-axis type in the axial direction.
特開2013-221566号公報Japanese Unexamined Patent Publication No. 2013-221566 特開2016-089860号公報Japanese Unexamined Patent Publication No. 2016-089860 特開2018-103676号公報Japanese Unexamined Patent Publication No. 2018-103676
 本発明は 中空軸と、
 前記中空軸の下流に減速ギアを介して接続されたデファレンシャルギアと、
 前記デファレンシャルギアの下流に接続されたドライブシャフトと、を有し、
 前記ドライブシャフトは、前記中空軸を貫通して配置されており、
 前記デファレンシャルギアのデファレンシャルケースは前記ドライブシャフトを支持する支持部を有し、
 前記デファレンシャルケースの前記支持部は、前記中空軸の内周に挿入されている構成の動力伝達装置とした。
The present invention has a hollow shaft and
A differential gear connected to the downstream of the hollow shaft via a reduction gear,
With a drive shaft connected downstream of the differential gear,
The drive shaft is arranged so as to penetrate the hollow shaft.
The differential case of the differential gear has a support portion for supporting the drive shaft.
The support portion of the differential case is a power transmission device having a configuration inserted in the inner circumference of the hollow shaft.
 本発明によれば、横方向(軸方向)にサイズダウンできる。 According to the present invention, the size can be reduced in the lateral direction (axial direction).
本実施形態にかかる動力伝達装置を説明する図である。It is a figure explaining the power transmission device which concerns on this embodiment. 動力伝達装置の減速機構周りの拡大図である。It is an enlarged view around the reduction mechanism of a power transmission device. 動力伝達装置の差動装置周りの拡大図である。It is an enlarged view around the differential device of a power transmission device. 変形例にかかる動力伝達装置の差動装置周りの拡大図である。It is an enlarged view around the differential device of the power transmission device which concerns on the modification.
 以下、本発明の実施形態を説明する。
 図1は、実施形態にかかる動力伝達装置1を説明する図である。
 図2は、動力伝達装置1の遊星減速ギア5周りの拡大図である。
 図3は、動力伝達装置1の差動装置6周りの拡大図である。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a diagram illustrating a power transmission device 1 according to an embodiment.
FIG. 2 is an enlarged view around the planetary reduction gear 5 of the power transmission device 1.
FIG. 3 is an enlarged view of the power transmission device 1 around the differential device 6.
 動力伝達装置1は、モータ2と、モータ2の出力回転を減速して差動装置6に入力する遊星減速ギア5(減速機構)と、ドライブシャフト8(8A、8B)と、を有している。 The power transmission device 1 includes a motor 2, a planetary reduction gear 5 (reduction mechanism) that decelerates the output rotation of the motor 2 and inputs it to the differential device 6, and a drive shaft 8 (8A, 8B). There is.
 動力伝達装置1では、モータ2の出力回転の伝達経路に沿って、遊星減速ギア5と、差動装置6と、ドライブシャフト8(8A、8B)と、が設けられている。
 モータ2の出力回転は、遊星減速ギア5で減速されて差動装置6に入力された後、ドライブシャフト8(8A、8B)を介して、動力伝達装置1が搭載された車両の左右の駆動輪(図示せず)に伝達される。図1では、ドライブシャフト8Aが、動力伝達装置1を搭載した車両の左輪に回転伝達可能に接続されていると共に、ドライブシャフト8Bが、右輪に回転伝達可能に接続されている。
In the power transmission device 1, a planetary reduction gear 5, a differential device 6, and drive shafts 8 (8A, 8B) are provided along the transmission path of the output rotation of the motor 2.
The output rotation of the motor 2 is decelerated by the planetary reduction gear 5 and input to the differential device 6, and then the left and right drive of the vehicle on which the power transmission device 1 is mounted via the drive shafts 8 (8A, 8B). It is transmitted to the ring (not shown). In FIG. 1, the drive shaft 8A is rotatably connected to the left wheel of the vehicle equipped with the power transmission device 1, and the drive shaft 8B is rotatably connected to the right wheel.
 ここで、遊星減速ギア5は、モータ2の下流に接続されており、差動装置6は、遊星減速ギア5の下流に接続されており、ドライブシャフト8(8A、8B)は、差動装置6の下流に接続されている。 Here, the planetary reduction gear 5 is connected downstream of the motor 2, the differential device 6 is connected downstream of the planetary reduction gear 5, and the drive shafts 8 (8A, 8B) are differential devices. It is connected to the downstream of 6.
 モータ2は、円筒状のモータシャフト20と、モータシャフト20に外挿された円筒状のロータコア21と、ロータコア21の外周を所定間隔で囲むステータコア25とを、有している。 The motor 2 has a cylindrical motor shaft 20, a cylindrical rotor core 21 extrapolated to the motor shaft 20, and a stator core 25 that surrounds the outer circumference of the rotor core 21 at predetermined intervals.
 モータシャフト20は、ドライブシャフト8Bに外挿されている。この状態においてモータシャフト20は、ドライブシャフト8Bに対して相対回転可能である。
 モータシャフト20では、長手方向の一端20a側と他端20b側の外周に、ベアリングB1、B1が外挿されて固定されている。
The motor shaft 20 is extrapolated to the drive shaft 8B. In this state, the motor shaft 20 is rotatable relative to the drive shaft 8B.
In the motor shaft 20, bearings B1 and B1 are extrapolated and fixed to the outer periphery on one end 20a side and the other end 20b side in the longitudinal direction.
 モータシャフト20の一端20a側は、ベアリングB1を介して、中間カバー12の円筒状のモータ支持部121で回転可能に支持されている。
 モータシャフト20の他端20b側は、ベアリングB1を介して、カバー11に固定された円筒状のモータ支持部111で回転可能に支持されている。
One end 20a side of the motor shaft 20 is rotatably supported by a cylindrical motor support portion 121 of the intermediate cover 12 via a bearing B1.
The other end 20b side of the motor shaft 20 is rotatably supported by a cylindrical motor support portion 111 fixed to the cover 11 via a bearing B1.
 モータ2は、ロータコア21の外周を所定間隔で囲むモータハウジング10を有している。本実施形態では、モータハウジング10の一端10aに、中間カバー12が接合されており、モータハウジング10の他端10bに、カバー11が接合されている。 The motor 2 has a motor housing 10 that surrounds the outer circumference of the rotor core 21 at predetermined intervals. In the present embodiment, the intermediate cover 12 is joined to one end 10a of the motor housing 10, and the cover 11 is joined to the other end 10b of the motor housing 10.
 モータハウジング10の一端10aと他端10bには、シールリングS、Sが設けられている。モータハウジング10の一端10aは、当該一端10aに設けたシールリングSにより、中間カバー12の環状の基部120に隙間なく接合されている。
 モータハウジング10の他端10bは、当該他端10bに設けたシールリングSにより、カバー11の環状の接合部110に隙間なく接合されている。
Seal rings S and S are provided on one end 10a and the other end 10b of the motor housing 10. One end 10a of the motor housing 10 is joined to the annular base 120 of the intermediate cover 12 without a gap by a seal ring S provided at the one end 10a.
The other end 10b of the motor housing 10 is joined to the annular joint 110 of the cover 11 without a gap by the seal ring S provided on the other end 10b.
 中間カバー12では、基部120とモータ支持部121とが、回転軸X方向で位置をずらして設けられている。
 本実施形態では、中間カバー12をモータハウジング10の一端10aに固定すると、モータ支持部121が、モータハウジング10の内側に挿入されるようになっている。
In the intermediate cover 12, the base portion 120 and the motor support portion 121 are provided so as to be displaced from each other in the rotation axis X direction.
In the present embodiment, when the intermediate cover 12 is fixed to one end 10a of the motor housing 10, the motor support portion 121 is inserted inside the motor housing 10.
 この状態においてモータ支持部121は、後記するコイルエンド253aの内径側で、ロータコア21の一端部21aに、回転軸X方向の隙間をあけて対向して配置される(図2参照)。
 そして、図2に示すように、基部120とモータ支持部121とを接続する接続部123は、コイルエンド253aの内径側で、回転軸Xに沿う向きに設けられている。
In this state, the motor support portion 121 is arranged on the inner diameter side of the coil end 253a, which will be described later, with one end portion 21a of the rotor core 21 facing each other with a gap in the rotation axis X direction (see FIG. 2).
Then, as shown in FIG. 2, the connecting portion 123 connecting the base portion 120 and the motor support portion 121 is provided on the inner diameter side of the coil end 253a in a direction along the rotation axis X.
 モータ支持部121のロータコア21側の端面121aには、ベアリングリテーナ125が固定されている。
 ベアリングリテーナ125は、回転軸X方向から見てリング状を成している。ベアリングリテーナ125の内径側は、モータ支持部121で支持されたベアリングB1のアウタレースB1bの側面に回転軸X方向から当接している。ベアリングリテーナ125は、モータ支持部121からのベアリングB1の脱落を阻止している。
A bearing retainer 125 is fixed to the end surface 121a of the motor support portion 121 on the rotor core 21 side.
The bearing retainer 125 has a ring shape when viewed from the rotation axis X direction. The inner diameter side of the bearing retainer 125 is in contact with the side surface of the outer race B1b of the bearing B1 supported by the motor support portion 121 from the rotation axis X direction. The bearing retainer 125 prevents the bearing B1 from falling off from the motor support portion 121.
 図1に示すように、カバー11では、接合部110の内径側にモータ支持部111が位置している。
 モータ支持部111は、当該モータ支持部111と一体に形成された筒壁部115を介して、カバー11の側壁部113に固定されている。
As shown in FIG. 1, in the cover 11, the motor support portion 111 is located on the inner diameter side of the joint portion 110.
The motor support portion 111 is fixed to the side wall portion 113 of the cover 11 via a tubular wall portion 115 formed integrally with the motor support portion 111.
 本実施形態では、カバー11の接合部110をモータハウジング10の他端10bに固定すると、モータ支持部111が、後記するコイルエンド253bの内径側で、ロータコア21の他端部21bに、回転軸X方向の隙間をあけて対向して配置される。
 この状態において、モータ支持部111から延びる筒壁部115は、コイルエンド253bの内径側に位置している。
In the present embodiment, when the joint 110 of the cover 11 is fixed to the other end 10b of the motor housing 10, the motor support 111 is attached to the other end 21b of the rotor core 21 on the inner diameter side of the coil end 253b described later. They are arranged so as to face each other with a gap in the X direction.
In this state, the cylinder wall portion 115 extending from the motor support portion 111 is located on the inner diameter side of the coil end 253b.
 図1に示すように、モータハウジング10の内側では、カバー11側のモータ支持部111と、中間カバー12側のモータ支持部121との間に、ロータコア21が配置されている。 As shown in FIG. 1, inside the motor housing 10, the rotor core 21 is arranged between the motor support portion 111 on the cover 11 side and the motor support portion 121 on the intermediate cover 12 side.
 ロータコア21は、複数の珪素鋼板を積層して形成したものであり、珪素鋼板の各々は、モータシャフト20との相対回転が規制された状態で、モータシャフト20に外挿されている。
 モータシャフト20の回転軸X方向から見て、珪素鋼板はリング状を成しており、珪素鋼板の外周側では、図示しないN極とS極の磁石が、回転軸X周りの周方向に交互に設けられている。
The rotor core 21 is formed by laminating a plurality of silicon steel plates, and each of the silicon steel plates is extrapolated to the motor shaft 20 in a state where the relative rotation with the motor shaft 20 is restricted.
When viewed from the rotation axis X direction of the motor shaft 20, the silicon steel plate has a ring shape, and on the outer peripheral side of the silicon steel plate, magnets of N pole and S pole (not shown) alternate in the circumferential direction around the rotation axis X. It is provided in.
 回転軸X方向におけるロータコア21の一端部21aは、モータシャフト20の大径部203で位置決めされている。ロータコア21の他端部21bは、モータシャフト20に圧入されたストッパ23で位置決めされている。 One end 21a of the rotor core 21 in the X direction of the rotation axis is positioned by the large diameter portion 203 of the motor shaft 20. The other end 21b of the rotor core 21 is positioned by a stopper 23 press-fitted into the motor shaft 20.
 ステータコア25は、複数の電磁鋼板を積層して形成したものであり、電磁鋼板の各々は、モータハウジング10の内周に固定されたリング状のヨーク部251と、ヨーク部251の内周からロータコア21側に突出するティース部252を、有している。
 本実施形態では、巻線253を、複数のティース部252に跨がって分布巻きした構成のステータコア25を採用しており、ステータコア25は、回転軸X方向に突出するコイルエンド253a、253bの分だけ、ロータコア21よりも回転軸X方向の長さが長くなっている。
The stator core 25 is formed by laminating a plurality of electromagnetic steel plates, and each of the electromagnetic steel plates has a ring-shaped yoke portion 251 fixed to the inner circumference of the motor housing 10 and a rotor core from the inner circumference of the yoke portion 251. It has a teeth portion 252 that protrudes to the 21 side.
In the present embodiment, a stator core 25 having a configuration in which the winding 253 is distributed and wound across a plurality of tooth portions 252 is adopted, and the stator core 25 is a coil end 253a, 253b protruding in the rotation axis X direction. The length in the rotation axis X direction is longer than that of the rotor core 21 by the amount.
 なお、ステータコアは、分布巻きした構成のみに限定されない。ロータコア21側に突出する複数のティース部252の各々に、巻線を集中巻きした構成のステータコアを採用しても良い。 Note that the stator core is not limited to a distributed winding configuration. A stator core having a configuration in which windings are centrally wound may be adopted for each of the plurality of tooth portions 252 protruding toward the rotor core 21 side.
 モータシャフト20では、大径部203よりも一端20a側の領域の外周に、ベアリングB1が圧入されている。
 図2に示すように、ベアリングB1のインナレースB1aは、回転軸X方向の一方の側面が、モータシャフト20の外周に設けた段部204に当接している。インナレースB1aは、他方の側面に、モータシャフト20の外周に圧入されたリング状のストッパ205が当接している。
 ストッパ205によりベアリングB1は、インナレースB1aを、段部204に当接させた位置で位置決めされている。
In the motor shaft 20, the bearing B1 is press-fitted onto the outer periphery of a region 20a at one end of the large diameter portion 203.
As shown in FIG. 2, in the inner race B1a of the bearing B1, one side surface in the rotation axis X direction is in contact with the step portion 204 provided on the outer periphery of the motor shaft 20. The inner race B1a has a ring-shaped stopper 205 press-fitted onto the outer periphery of the motor shaft 20 in contact with the other side surface.
The bearing B1 is positioned by the stopper 205 at a position where the inner race B1a is in contact with the step portion 204.
 モータシャフト20の一端20aは、ストッパ205よりも遊星減速ギア5側(図中、左側)に位置している。回転軸X方向において一端20aは、遊星減速ギア5のサンギア51と、段付きピニオンギア53の大径歯車部531との噛み合い部分に、間隔をあけて対向している。 One end 20a of the motor shaft 20 is located on the planetary reduction gear 5 side (left side in the figure) with respect to the stopper 205. One end 20a faces the meshing portion between the sun gear 51 of the planetary reduction gear 5 and the large-diameter gear portion 531 of the stepped pinion gear 53 at intervals in the X direction of the rotation axis.
 モータシャフト20の一端20a側では、モータシャフト20の径方向外側に、円筒壁122が位置している。円筒壁122は、モータ支持部121から遊星減速ギア5側(図中、左側)に突出している。 On one end 20a side of the motor shaft 20, the cylindrical wall 122 is located on the radial outside of the motor shaft 20. The cylindrical wall 122 projects from the motor support portion 121 toward the planetary reduction gear 5 (left side in the drawing).
 円筒壁122は、モータシャフト20の外周を所定間隔で囲んでおり、円筒壁122とモータシャフト20との間には、リップシールRSが設置されている。
 リップシールRSは、モータハウジング10の内径側の空間Saと、ケース13の内径側の空間Sbとを、区画するために設けられている。
The cylindrical wall 122 surrounds the outer circumference of the motor shaft 20 at predetermined intervals, and a lip seal RS is installed between the cylindrical wall 122 and the motor shaft 20.
The lip seal RS is provided to partition the space Sa on the inner diameter side of the motor housing 10 and the space Sb on the inner diameter side of the case 13.
 ケース13の内径側の空間Sbには、潤滑油OLが封入されている。リップシールRSは、モータハウジング10の内径側の空間Saへの潤滑油OLの流入を阻止するために設けられている。 Lubricating oil OL is sealed in the space Sb on the inner diameter side of the case 13. The lip seal RS is provided to prevent the lubricating oil OL from flowing into the space Sa on the inner diameter side of the motor housing 10.
 図2に示すように、円筒壁122の外径側では、前記した接続部123との間に、遊星減速ギア5側(図2における左側)に開口した凹部124が形成されている。
 凹部124の接続部123側(外径側)には、ベアリングB3のアウタレースB3bを位置決めする段部123aが設けられている。凹部124内において、ベアリングB3のインナレースB3aは、モータ支持部121との接触を避けて設けられており、インナレースB3aは、後記する筒状部552の外周を支持している。
As shown in FIG. 2, on the outer diameter side of the cylindrical wall 122, a recess 124 opened on the planetary reduction gear 5 side (left side in FIG. 2) is formed between the cylindrical wall 122 and the connection portion 123.
A step portion 123a for positioning the outer race B3b of the bearing B3 is provided on the connecting portion 123 side (outer diameter side) of the recess 124. In the recess 124, the inner race B3a of the bearing B3 is provided so as to avoid contact with the motor support portion 121, and the inner race B3a supports the outer circumference of the tubular portion 552 described later.
 図1に示すように、本実施形態では、モータハウジング10と、カバー11と、中間カバー12と、ケース13とで、動力伝達装置1の本体ケース9を構成している。
 本体ケース9の内部空間は、中間カバー12を境にして、モータハウジング10側の空間Saが、モータ2を収容するモータ室となっている。そして、ケース13側の空間Sbが、遊星減速ギア5と差動装置6を収容するギア室となっている。
As shown in FIG. 1, in the present embodiment, the motor housing 10, the cover 11, the intermediate cover 12, and the case 13 constitute the main body case 9 of the power transmission device 1.
The internal space of the main body case 9 is defined by the intermediate cover 12, and the space Sa on the motor housing 10 side serves as a motor chamber for accommodating the motor 2. The space Sb on the case 13 side serves as a gear chamber for accommodating the planetary reduction gear 5 and the differential device 6.
 図2に示すように、モータシャフト20の一端20a側の連結部202は、ロータコア21が外挿された領域201よりも大きい内径で形成されている。
 連結部202の内側には、サンギア51の円筒状の連結部511が挿入されている。この状態において、モータシャフト20の一端20a側の連結部202と、サンギア51の連結部511とが、相対回転不能にスプライン嵌合している。
As shown in FIG. 2, the connecting portion 202 on the one end 20a side of the motor shaft 20 is formed with an inner diameter larger than the region 201 in which the rotor core 21 is extrapolated.
A cylindrical connecting portion 511 of the sun gear 51 is inserted inside the connecting portion 202. In this state, the connecting portion 202 on the one end 20a side of the motor shaft 20 and the connecting portion 511 of the sun gear 51 are spline-fitted so as not to rotate relative to each other.
 そのため、モータ2の出力回転が、モータシャフト20を介して、遊星減速ギア5のサンギア51に入力されて、サンギア51がモータ2の回転駆動力で、回転軸X回りに回転する。
 本実施形態では、モータ2のコイルエンド253aの内径側で、モータシャフト20の連結部202と、遊星減速ギア5側の連結部511とが連結されている。
Therefore, the output rotation of the motor 2 is input to the sun gear 51 of the planetary reduction gear 5 via the motor shaft 20, and the sun gear 51 rotates around the rotation axis X by the rotational driving force of the motor 2.
In the present embodiment, the connecting portion 202 of the motor shaft 20 and the connecting portion 511 on the planetary reduction gear 5 side are connected on the inner diameter side of the coil end 253a of the motor 2.
 サンギア51は、内径側の側面51aから回転軸X方向に延びる連結部511を有している。連結部511は、サンギア51と一体に形成されおり、サンギア51の内径側と連結部511の内径側とに跨がって、貫通孔510が形成されている。
 ここで、サンギア51と連結部511とで、発明にかかる中空軸50を構成している。
The sun gear 51 has a connecting portion 511 extending in the rotation axis X direction from the side surface 51a on the inner diameter side. The connecting portion 511 is integrally formed with the sun gear 51, and a through hole 510 is formed so as to straddle the inner diameter side of the sun gear 51 and the inner diameter side of the connecting portion 511.
Here, the sun gear 51 and the connecting portion 511 constitute the hollow shaft 50 according to the invention.
 中空軸50は、ドライブシャフト8Bに外挿されている。この状態において、中空軸50(サンギア51)は、ドライブシャフト8Bに対して相対回転可能である。 The hollow shaft 50 is extrapolated to the drive shaft 8B. In this state, the hollow shaft 50 (sun gear 51) is rotatable relative to the drive shaft 8B.
 サンギア51は、前記したモータシャフト20の延長上で、段付きピニオンギア53の大径歯車部531に噛合している。 The sun gear 51 meshes with the large-diameter gear portion 531 of the stepped pinion gear 53 on the extension of the motor shaft 20 described above.
 段付きピニオンギア53は、サンギア51に噛合する大径歯車部531と、大径歯車部531よりも小径の小径歯車部532とを有している。
 段付きピニオンギア53は、大径歯車部531と小径歯車部532が、回転軸Xに平行な軸線X1方向で並んで、一体に設けられたギア部品である。
The stepped pinion gear 53 has a large-diameter gear portion 531 that meshes with the sun gear 51, and a small-diameter gear portion 532 that has a smaller diameter than the large-diameter gear portion 531.
The stepped pinion gear 53 is a gear component in which a large-diameter gear portion 531 and a small-diameter gear portion 532 are integrally provided side by side in the direction of the axis X1 parallel to the rotation axis X.
 段付きピニオンギア53は、大径歯車部531と小径歯車部532の内径側を軸線X1方向に貫通した貫通孔530を有している。
 段付きピニオンギア53は、貫通孔530を貫通したピニオン軸54の外周で、ニードルベアリングNBを介して回転可能に支持されている。
The stepped pinion gear 53 has a through hole 530 penetrating the inner diameter side of the large-diameter gear portion 531 and the small-diameter gear portion 532 in the axis X1 direction.
The stepped pinion gear 53 is rotatably supported on the outer circumference of the pinion shaft 54 penetrating the through hole 530 via the needle bearing NB.
 ピニオン軸54の外周では、大径歯車部531の内径側と、小径歯車部532の内径側に、ニードルベアリングNBがそれぞれ設けられている。ピニオン軸54の外周においてニードルベアリングNB、NBは、軸線X1方向に直列に並んでいる。 On the outer circumference of the pinion shaft 54, needle bearings NB are provided on the inner diameter side of the large diameter gear portion 531 and on the inner diameter side of the small diameter gear portion 532, respectively. The needle bearings NB and NB are arranged in series in the axis X1 direction on the outer circumference of the pinion shaft 54.
 ピニオン軸54の長手方向の一端と他端は、デフケース60と一体に形成された側板部651と、この側板部651に間隔をあけて配置された側板部551で支持されている。
 側板部651、551は、回転軸Xに直交する向きで設けられた板状部材である。側板部651、551は、回転軸X方向に間隔をあけて互いに平行に設けられている。
 側板部651、551の間では、複数の段付きピニオンギア53が、回転軸X周りの周方向に所定間隔で複数(例えば、3つ)設けられている。
One end and the other end of the pinion shaft 54 in the longitudinal direction are supported by a side plate portion 651 formed integrally with the differential case 60 and a side plate portion 551 arranged at intervals from the side plate portion 651.
The side plate portions 651 and 551 are plate-shaped members provided in a direction orthogonal to the rotation axis X. The side plate portions 651 and 551 are provided in parallel with each other at intervals in the rotation axis X direction.
A plurality (for example, three) of a plurality of stepped pinion gears 53 are provided between the side plate portions 651 and 551 at predetermined intervals in the circumferential direction around the rotation axis X.
 小径歯車部532の各々は、リングギア52の内周に噛合している。リングギア52は、ケース13の内周にスプライン嵌合しており、リングギア52は、ケース13との相対回転が規制されている。 Each of the small diameter gear portions 532 meshes with the inner circumference of the ring gear 52. The ring gear 52 is spline-fitted on the inner circumference of the case 13, and the ring gear 52 is restricted from rotating relative to the case 13.
 ピニオン軸54を支持する側板部551の内径側には、モータ2側に延びる筒状部552が設けられている。筒状部552は、中間カバー12の凹部124に、回転軸X方向から挿入されている。凹部124内において、筒状部552は、モータ支持部121との接触を避けて設けられている。 On the inner diameter side of the side plate portion 551 that supports the pinion shaft 54, a tubular portion 552 extending toward the motor 2 side is provided. The tubular portion 552 is inserted into the recess 124 of the intermediate cover 12 from the rotation axis X direction. In the recess 124, the tubular portion 552 is provided so as to avoid contact with the motor support portion 121.
 筒状部552は、モータシャフト20の連結部202と、遊星減速ギア5側の連結部511との噛み合い部分の径方向外側に位置している。筒状部552の外周には、凹部124にアウタレースB3bが固定されたベアリングB3が接触している。側板部551の筒状部552は、ベアリングB3を介して、中間カバー12で回転可能に支持されている。 The tubular portion 552 is located on the radial outer side of the meshing portion between the connecting portion 202 of the motor shaft 20 and the connecting portion 511 on the planetary reduction gear 5 side. A bearing B3 having an outer race B3b fixed to a recess 124 is in contact with the outer periphery of the tubular portion 552. The tubular portion 552 of the side plate portion 551 is rotatably supported by the intermediate cover 12 via the bearing B3.
 遊星減速ギア5では、キャリア55を構成する側板部551と側板部651のうちの一方の側板部651が、差動装置6のデフケース60と一体に形成されている。
 そのため、遊星減速ギア5のキャリア55(側板部551、651、ピニオン軸54)は、デフケース60と実質的に一体に形成されている。
In the planetary reduction gear 5, one side plate portion 651 of the side plate portion 551 and the side plate portion 651 constituting the carrier 55 is integrally formed with the differential case 60 of the differential device 6.
Therefore, the carrier 55 ( side plate portions 551, 651, pinion shaft 54) of the planetary reduction gear 5 is formed substantially integrally with the differential case 60.
 遊星減速ギア5では、モータ2の出力回転が、サンギア51に入力される。
 サンギア51に入力された出力回転は、サンギア51に噛合する大径歯車部531を介して、段付きピニオンギア53に入力されて、段付きピニオンギア53が軸線X1回りに回転する。
In the planetary reduction gear 5, the output rotation of the motor 2 is input to the sun gear 51.
The output rotation input to the sun gear 51 is input to the stepped pinion gear 53 via the large-diameter gear portion 531 that meshes with the sun gear 51, and the stepped pinion gear 53 rotates around the axis X1.
 そうすると、大径歯車部531と一体に形成された小径歯車部532は、大径歯車部531と一体に軸線X1周りに回転する。
 ここで、小径歯車部532は、ケース13の内周に固定されたリングギア52に噛合している。そのため、小径歯車部532が軸線X1回りに回転すると、段付きピニオンギア53は、軸線X1回りに自転しながら、回転軸X周りに回転する。
Then, the small-diameter gear portion 532 integrally formed with the large-diameter gear portion 531 rotates around the axis X1 integrally with the large-diameter gear portion 531.
Here, the small-diameter gear portion 532 meshes with the ring gear 52 fixed to the inner circumference of the case 13. Therefore, when the small-diameter gear portion 532 rotates around the axis X1, the stepped pinion gear 53 rotates around the axis X1 while rotating around the axis X1.
 そうすると、ピニオン軸54の一端が、デフケース60と一体に形成された側板部651に支持されているので、段付きピニオンギア53の回転軸X周りの周方向の変位に連動して、デフケース60が回転軸X回りに回転する。 Then, since one end of the pinion shaft 54 is supported by the side plate portion 651 formed integrally with the differential case 60, the differential case 60 is interlocked with the displacement of the stepped pinion gear 53 around the rotation axis X in the circumferential direction. It rotates around the rotation axis X.
 ここで、段付きピニオンギア53では、小径歯車部532の外径R2が大径歯車部531の外径R1よりも小さくなっている(図3参照)。
 そして、遊星減速ギア5では、サンギア51が、モータ2の出力回転の入力部となっており、段付きピニオンギア53を支持するキャリア55が、入力された回転の出力部となっている。
 そうすると、遊星減速ギア5のサンギア51に入力された回転は、段付きピニオンギア53により大きく減速されたのちに、キャリア55の側板部651が一体に形成されたデフケース60に出力される。
Here, in the stepped pinion gear 53, the outer diameter R2 of the small diameter gear portion 532 is smaller than the outer diameter R1 of the large diameter gear portion 531 (see FIG. 3).
In the planetary reduction gear 5, the sun gear 51 is an input unit for the output rotation of the motor 2, and the carrier 55 that supports the stepped pinion gear 53 is an output unit for the input rotation.
Then, the rotation input to the sun gear 51 of the planetary reduction gear 5 is greatly decelerated by the stepped pinion gear 53, and then output to the differential case 60 in which the side plate portion 651 of the carrier 55 is integrally formed.
 図3に示すように、デフケース60は、シャフト61と、かさ歯車62A、62Bと、サイドギア63A、63Bとを、内部に収納する中空状に形成されている。
 デフケース60では、回転軸X方向(図中、左右方向)の両側部に、筒状の支持部601、602が設けられている。支持部601、602は、シャフト61から離れる方向に、回転軸Xに沿って延出している。
As shown in FIG. 3, the differential case 60 is formed in a hollow shape in which the shaft 61, the bevel gears 62A and 62B, and the side gears 63A and 63B are housed therein.
In the differential case 60, tubular support portions 601 and 602 are provided on both sides of the rotation axis X direction (left-right direction in the drawing). The support portions 601 and 602 extend along the rotation axis X in a direction away from the shaft 61.
 支持部601の外径側には、キャリア55の側板部651と側板部551とを接続する接続片56が設けられている。
 接続片56のデフケース60側の一端は、側板部651とデフケース60の外周とに跨がって設けられており、他端は、回転軸X方向から側板部551に接続されている。
On the outer diameter side of the support portion 601, a connection piece 56 for connecting the side plate portion 651 and the side plate portion 551 of the carrier 55 is provided.
One end of the connection piece 56 on the differential case 60 side is provided so as to straddle the side plate portion 651 and the outer circumference of the differential case 60, and the other end is connected to the side plate portion 551 from the rotation axis X direction.
 接続片56は、前記した段付きピニオンギア53との干渉を避けた位置に設けられている。前記したように、段付きピニオンギア53は、回転軸X周りの周方向に所定間隔で複数(例えば、3つ)設けられている。
 接続片56は、回転軸X回りの周方向で隣接する段付きピニオンギア53の間に設けられている。
The connection piece 56 is provided at a position avoiding interference with the stepped pinion gear 53 described above. As described above, a plurality (for example, three) of the stepped pinion gears 53 are provided at predetermined intervals in the circumferential direction around the rotation axis X.
The connecting piece 56 is provided between the stepped pinion gears 53 adjacent to each other in the circumferential direction around the rotation axis X.
 デフケース60の支持部602の外周には、ベアリングB2のインナレースB2aが圧入されている。
 ベアリングB2のアウタレースB2bは、ケース13のリング状の支持部131で保持されており、デフケース60の支持部602は、ベアリングB2を介して、ケース13で回転可能に支持されている。
The inner race B2a of the bearing B2 is press-fitted onto the outer periphery of the support portion 602 of the differential case 60.
The outer race B2b of the bearing B2 is held by the ring-shaped support portion 131 of the case 13, and the support portion 602 of the differential case 60 is rotatably supported by the case 13 via the bearing B2.
 支持部602には、ケース13の開口部130を貫通したドライブシャフト8Aが、回転軸X方向から挿入されており、ドライブシャフト8Aは、支持部602で回転可能に支持されている。
 開口部130の内周には、リップシールRSが固定されており、リップシールRSの図示しないリップ部が、ドライブシャフト8Aの外周に弾発的に接触することで、ドライブシャフト8Aの外周と開口部130の内周との隙間が封止されている。
A drive shaft 8A penetrating the opening 130 of the case 13 is inserted into the support portion 602 from the rotation axis X direction, and the drive shaft 8A is rotatably supported by the support portion 602.
A lip seal RS is fixed to the inner circumference of the opening 130, and the lip portion (not shown) of the lip seal RS elastically contacts the outer circumference of the drive shaft 8A to open the outer circumference of the drive shaft 8A. The gap between the inner circumference and the inner circumference of the portion 130 is sealed.
 図3に示すように、本実施形態では、支持部601の外径R3は、中空軸50(サンギア51)の内径R4よりも小さい外径で形成されている。
 支持部601は、中空軸50の内側に回転軸X方向から挿入されており、回転軸Xの径方向から見て、支持部601と中空軸50(サンギア51)とが重なる領域では、支持部601の外周と中空軸50の内周との間に、ニードルベアリングNBが設けられている。
 中空軸50のサンギア51側は、デフケース60の支持部601で、ニードルベアリングNBを介して回転可能に支持されている。
As shown in FIG. 3, in the present embodiment, the outer diameter R3 of the support portion 601 is formed to have an outer diameter smaller than the inner diameter R4 of the hollow shaft 50 (sun gear 51).
The support portion 601 is inserted inside the hollow shaft 50 from the rotation axis X direction, and in a region where the support portion 601 and the hollow shaft 50 (sun gear 51) overlap when viewed from the radial direction of the rotation shaft X, the support portion 601 is a support portion. A needle bearing NB is provided between the outer circumference of 601 and the inner circumference of the hollow shaft 50.
The sun gear 51 side of the hollow shaft 50 is rotatably supported by the support portion 601 of the differential case 60 via the needle bearing NB.
 中空軸50のデフケース60側の端部50aは、デフケース60の側縁部60cに、回転軸X方向の隙間をあけて対向している。 The end portion 50a of the hollow shaft 50 on the differential case 60 side faces the side edge portion 60c of the differential case 60 with a gap in the rotation axis X direction.
 図1に示すように、デフケース60の支持部601には、カバー11の開口部114を貫通したドライブシャフト8Bが、回転軸X方向から挿入されている。
 ドライブシャフト8Bは、モータ2のモータシャフト20の内径側と中空軸50の内径側を、回転軸X方向に横切って設けられており、ドライブシャフト8Bの先端側が、支持部601で回転可能に支持されている。
As shown in FIG. 1, a drive shaft 8B penetrating the opening 114 of the cover 11 is inserted into the support portion 601 of the differential case 60 from the rotation axis X direction.
The drive shaft 8B is provided so as to cross the inner diameter side of the motor shaft 20 of the motor 2 and the inner diameter side of the hollow shaft 50 in the rotation axis X direction, and the tip end side of the drive shaft 8B is rotatably supported by the support portion 601. Has been done.
 カバー11の開口部114の内周には、リップシールRSが固定されており、リップシールRSの図示しないリップ部が、ドライブシャフト8Bの外周に弾発的に接触することで、ドライブシャフト8Bの外周と開口部114の内周との隙間が封止されている。 A lip seal RS is fixed to the inner circumference of the opening 114 of the cover 11, and the lip portion (not shown) of the lip seal RS elastically contacts the outer circumference of the drive shaft 8B, so that the drive shaft 8B has a lip seal RS. The gap between the outer circumference and the inner circumference of the opening 114 is sealed.
 図3に示すように、デフケース60の内部では、ドライブシャフト8A、8Bの先端部の外周に、サイドギア63A、63Bがスプライン嵌合しており、サイドギア63A、63Bとドライブシャフト8(8A、8B)とが、回転軸X周りに一体回転可能に連結されている。 As shown in FIG. 3, inside the differential case 60, side gears 63A and 63B are spline-fitted on the outer periphery of the tip portions of the drive shafts 8A and 8B, and the side gears 63A and 63B and the drive shaft 8 (8A and 8B) are fitted. Are rotatably connected around the rotation shaft X.
 デフケース60には、回転軸Xに直交する方向に貫通した軸孔60a、60bが、回転軸Xを挟んで対称となる位置に設けられている。
 軸孔60a、60bは、回転軸Xに直交する軸線Y上に位置しており、シャフト61の一端61a側および他端61b側が挿入されている。
The differential case 60 is provided with shaft holes 60a and 60b penetrating in a direction orthogonal to the rotation axis X at positions symmetrical with respect to the rotation axis X.
The shaft holes 60a and 60b are located on the axis Y orthogonal to the rotation axis X, and one end 61a side and the other end 61b side of the shaft 61 are inserted.
 シャフト61の一端61a側および他端61b側は、ピンPでデフケース60に固定されており、シャフト61は、軸線Y周りの自転が禁止されている。
 シャフト61は、デフケース60内において、サイドギア63A、63Bの間に位置しており、軸線Yに沿って配置されている。
One end 61a side and the other end 61b side of the shaft 61 are fixed to the differential case 60 by a pin P, and the shaft 61 is prohibited from rotating around the axis Y.
The shaft 61 is located between the side gears 63A and 63B in the differential case 60, and is arranged along the axis Y.
 デフケース60内においてシャフト61には、かさ歯車62A、62Bが外挿して回転可能に支持されている。
 かさ歯車62A、62Bは、シャフト61の長手方向(軸線Yの軸方向)で間隔を空けて2つ設けられており、かさ歯車62A、62Bは、互いの歯部を対向させた状態で配置されている。
 シャフト61においてかさ歯車62A、62Bは、当該かさ歯車62A、62Bの軸心を、シャフト61の軸心と一致させて設けられている。
In the differential case 60, bevel gears 62A and 62B are externally inserted and rotatably supported on the shaft 61.
Two bevel gears 62A and 62B are provided at intervals in the longitudinal direction of the shaft 61 (the axial direction of the axis Y), and the bevel gears 62A and 62B are arranged so that their teeth face each other. ing.
In the shaft 61, the bevel gears 62A and 62B are provided so that the axes of the bevel gears 62A and 62B are aligned with the axes of the shaft 61.
 デフケース60内において、回転軸X方向におけるかさ歯車62A、62Bの両側には、サイドギア63A、63Bが位置している。
 サイドギア63A、63Bは、互いの歯部を対向させた状態で、回転軸X方向に間隔を空けて2つ設けられており、かさ歯車62A、62Bとサイドギア63A、63Bとは、互いの歯部を噛合させた状態で組み付けられている。
In the differential case 60, side gears 63A and 63B are located on both sides of the bevel gears 62A and 62B in the rotation axis X direction.
Two side gears 63A and 63B are provided with their teeth facing each other at intervals in the X direction of the rotation axis, and the bevel gears 62A and 62B and the side gears 63A and 63B have teeth of each other. Is assembled in a meshed state.
 デフケース60の下部側は、ケース13内の潤滑油に浸っている。
 実施の形態では、シャフト61の一端61aまたは他端61bが最も下部側に位置した際に、シャフト61の一端61aまたは他端61bが少なくとも潤滑油内に位置する高さまで、ケース13内に潤滑油が貯留されている。
The lower side of the differential case 60 is immersed in the lubricating oil inside the case 13.
In the embodiment, when one end 61a or the other end 61b of the shaft 61 is located on the lowermost side, the lubricating oil is contained in the case 13 until the height at which one end 61a or the other end 61b of the shaft 61 is located at least in the lubricating oil. Is stored.
 かかる構成の動力伝達装置1の作用を説明する。
 動力伝達装置1では、モータ2の出力回転の伝達経路に沿って、遊星減速ギア5と、差動装置6と、ドライブシャフト8(8A、8B)と、が設けられている。
The operation of the power transmission device 1 having such a configuration will be described.
In the power transmission device 1, a planetary reduction gear 5, a differential device 6, and drive shafts 8 (8A, 8B) are provided along the transmission path of the output rotation of the motor 2.
 モータ2の駆動により、ロータコア21が回転軸X回りに回転すると、ロータコア21と一体に回転するモータシャフト20を介して、遊星減速ギア5のサンギア51(中空軸50)に回転が入力される。 When the rotor core 21 rotates around the rotation shaft X by driving the motor 2, the rotation is input to the sun gear 51 (hollow shaft 50) of the planetary reduction gear 5 via the motor shaft 20 that rotates integrally with the rotor core 21.
 遊星減速ギア5では、サンギア51が、遊星減速ギア5の出力回転の入力部となっており、段付きピニオンギア53を支持するキャリア55が、入力された回転の出力部となっている。 In the planetary reduction gear 5, the sun gear 51 is an input unit for the output rotation of the planetary reduction gear 5, and the carrier 55 that supports the stepped pinion gear 53 is an output unit for the input rotation.
 サンギア51が入力された回転で回転軸X回りに回転すると、段付きピニオンギア53(大径歯車部531、小径歯車部532)が、サンギア51側から入力される回転で、軸線X1回りに回転する。
 ここで、段付きピニオンギア53の小径歯車部532は、ケース13の内周に固定されたリングギア52に噛合している。そのため、段付きピニオンギア53は、軸線X1回りに自転しながら、回転軸X周りに回転する。
When the sun gear 51 rotates around the rotation axis X by the input rotation, the stepped pinion gear 53 (large diameter gear portion 531 and small diameter gear portion 532) rotates around the axis X1 by the rotation input from the sun gear 51 side. To do.
Here, the small-diameter gear portion 532 of the stepped pinion gear 53 meshes with the ring gear 52 fixed to the inner circumference of the case 13. Therefore, the stepped pinion gear 53 rotates around the rotation axis X while rotating around the axis X1.
 ここで、段付きピニオンギア53では、小径歯車部532の外径R2が大径歯車部531の外径R1よりも小さくなっている(図3参照)。
 これにより、段付きピニオンギア53を支持するキャリア55(側板部551、651)が、モータ2側から入力された回転よりも低い回転速度で回転軸X回りに回転する。
 そのため、遊星減速ギア5のサンギア51に入力された回転は、段付きピニオンギア53により、大きく減速されたのちに、キャリア55の側板部651が一体に形成されたデフケース60(差動装置6)に出力される。
Here, in the stepped pinion gear 53, the outer diameter R2 of the small diameter gear portion 532 is smaller than the outer diameter R1 of the large diameter gear portion 531 (see FIG. 3).
As a result, the carriers 55 (side plate portions 551 and 651) that support the stepped pinion gear 53 rotate around the rotation axis X at a rotation speed lower than the rotation input from the motor 2 side.
Therefore, the rotation input to the sun gear 51 of the planetary reduction gear 5 is greatly reduced by the stepped pinion gear 53, and then the side plate portion 651 of the carrier 55 is integrally formed with the differential case 60 (differential device 6). Is output to.
 そして、デフケース60が入力された回転で回転軸X回りに回転することにより、ドライブシャフト8(8A、8B)が回転軸X回りに回転して、動力伝達装置1が搭載された車両の左右の駆動輪(図示せず)に伝達される。 Then, when the differential case 60 rotates around the rotation axis X by the input rotation, the drive shafts 8 (8A, 8B) rotate around the rotation axis X, and the left and right sides of the vehicle on which the power transmission device 1 is mounted are left and right. It is transmitted to the drive wheels (not shown).
 ここで、動力伝達装置1では、デフケース60の支持部601が、中空軸50の内径R4よりも小さい外径R3で形成されており、デフケース60の支持部601は、中空軸50の内周に挿入されている。
 そのため、回転軸Xの径方向から見ると、中空軸50のサンギア51側も一部と、デフケース60の支持部601とが、重なるよう配置される。これにより、中空軸50とデフケース60の支持部601とが回転軸X方向で重なった長さ分Lxだけ、動力伝達装置1の回転軸X方向(軸長方向)の長さを短くできる。
Here, in the power transmission device 1, the support portion 601 of the differential case 60 is formed with an outer diameter R3 smaller than the inner diameter R4 of the hollow shaft 50, and the support portion 601 of the differential case 60 is formed on the inner circumference of the hollow shaft 50. It has been inserted.
Therefore, when viewed from the radial direction of the rotating shaft X, a part of the hollow shaft 50 on the sun gear 51 side and the support portion 601 of the differential case 60 are arranged so as to overlap each other. As a result, the length of the power transmission device 1 in the rotation axis X direction (axis length direction) can be shortened by the length Lx at which the hollow shaft 50 and the support portion 601 of the differential case 60 overlap in the rotation axis X direction.
 ここで、支持部601と中空軸50とが略同じ外径で形成されている場合には、動力伝達装置1の回転軸X方向の長さを短くするために、支持部601の回転軸X方向の長さを短くする必要がある。 Here, when the support portion 601 and the hollow shaft 50 are formed to have substantially the same outer diameter, the rotation shaft X of the support portion 601 is used in order to shorten the length of the power transmission device 1 in the rotation shaft X direction. It is necessary to shorten the length in the direction.
 本実施形態では、デフケース60の支持部601を中空軸50の内周に挿入して配置することで、動力伝達装置1の回転軸X方向の長さを抑えつつ、ドライブシャフト8Bを支持する支持部601の長さを確保している。
 特に、デフケース60の支持部601の内周は、当該支持部601に挿入されたドライブシャフト8Bを回転可能に支持しており、支持部601の外周は、ニードルベアリングNBを介して、中空軸50のサンギア51側の内周で回転可能に支持されている。
 そのため、ドライブシャフト8Bの支持安定性を確保しつつ、動力伝達装置1の回転軸X方向の長さを抑えている。
In the present embodiment, the support portion 601 of the differential case 60 is inserted into the inner circumference of the hollow shaft 50 and arranged to support the drive shaft 8B while suppressing the length of the power transmission device 1 in the rotation axis X direction. The length of the part 601 is secured.
In particular, the inner circumference of the support portion 601 of the differential case 60 rotatably supports the drive shaft 8B inserted in the support portion 601 and the outer circumference of the support portion 601 is the hollow shaft 50 via the needle bearing NB. It is rotatably supported on the inner circumference of the sun gear 51 side.
Therefore, the length of the power transmission device 1 in the rotation axis X direction is suppressed while ensuring the support stability of the drive shaft 8B.
 以上の通り、本実施形態にかかる動力伝達装置1は、以下の構成を有している。
(1)動力伝達装置1は、
 中空軸50と、
 中空軸50の下流に遊星減速ギア5(減速ギア)を介して接続された差動装置6(デファレンシャルギア)と、
 差動装置6の下流に接続されたドライブシャフト8(8A、8B)と、
 を有する。
 ドライブシャフト8Bは、中空軸50を貫通して配置されている。
 差動装置6のデフケース60(デファレンシャルケース)は、ドライブシャフト8Bを支持する支持部601を有する。
 デフケース60の支持部601は、中空軸50の内周に挿入されている。
As described above, the power transmission device 1 according to the present embodiment has the following configuration.
(1) The power transmission device 1 is
Hollow shaft 50 and
A differential device 6 (differential gear) connected to the downstream of the hollow shaft 50 via a planetary reduction gear 5 (reduction gear),
Drive shafts 8 (8A, 8B) connected downstream of the differential device 6 and
Have.
The drive shaft 8B is arranged so as to penetrate the hollow shaft 50.
The differential case 60 (differential case) of the differential device 6 has a support portion 601 that supports the drive shaft 8B.
The support portion 601 of the differential case 60 is inserted into the inner circumference of the hollow shaft 50.
 デフケース60でドライブシャフト8(8A、8B)を支持する場合、ドライブシャフト8(8A、8B)の支持安定性のために、支持部601、602の回転軸X方向の長さが、所定以上あることが好ましい。
 しかし、中空軸50と支持部601の径が略同じであると、中空軸50と支持部601とが干渉するために、動力伝達装置1の軸長方向(回転軸X方向)の短縮の妨げとなる。
 そこで、支持部601の外径を、中空軸50内に挿入可能な外径R3に設定した。これにより、ドライブシャフト8Bの支持部601での支持安定性を確保しつつ、かつ、デフケース60を中空軸50側に寄せて配置することができるので、動力伝達装置1の軸長方向の短縮が可能となる。
When the drive shaft 8 (8A, 8B) is supported by the differential case 60, the lengths of the support portions 601 and 602 in the rotation axis X direction are longer than a predetermined length for the support stability of the drive shaft 8 (8A, 8B). Is preferable.
However, if the diameters of the hollow shaft 50 and the support portion 601 are substantially the same, the hollow shaft 50 and the support portion 601 interfere with each other, which hinders the shortening of the power transmission device 1 in the axial length direction (rotation axis X direction). It becomes.
Therefore, the outer diameter of the support portion 601 is set to the outer diameter R3 that can be inserted into the hollow shaft 50. As a result, the support stability of the drive shaft 8B at the support portion 601 can be ensured, and the differential case 60 can be arranged closer to the hollow shaft 50 side, so that the power transmission device 1 can be shortened in the axial length direction. It will be possible.
 本実施形態にかかる動力伝達装置1は、以下の構成を有している。
(2)支持部601は、ニードルベアリングNB(軸受)を介して、中空軸50の内周に支持されている。
The power transmission device 1 according to the present embodiment has the following configuration.
(2) The support portion 601 is supported on the inner circumference of the hollow shaft 50 via a needle bearing NB (bearing).
 ニードルベアリングNB(軸受)を、中空軸50の内周側に設けることで、中空軸50とデフケース60の支持部601とが、回転軸Xの径方向から見て重なるように設けることができる。これにより、デフケース60と中空軸50との径方向における干渉を防止することができる。
 なお、前記した実施形態では、支持部601が、ニードルベアリングNB(軸受)を介して中空軸50の内周に支持されている場合を例示した。ニードルベアリングNBに代えて、円環状のブッシュを設けて、支持部601が、ブッシュを介して中空軸50の内周に支持されている構成としても良い。
 ここで、ブッシュとは、例えば、中空軸と支持部との相対回転を許容する金属の環である。
 また、軸方向から視たときにおいて中空軸50とデフケース60との間にスラスト軸受としてのニードルベアリングNBを配置しない場合は軸方向の短縮化が可能となる。
 言い換えると、軸方向において中空軸50とデフケース60との間にクリアランスを設けることにより、軸方向の短縮化が可能となる。
By providing the needle bearing NB (bearing) on the inner peripheral side of the hollow shaft 50, the hollow shaft 50 and the support portion 601 of the differential case 60 can be provided so as to overlap each other when viewed from the radial direction of the rotating shaft X. As a result, it is possible to prevent the differential case 60 and the hollow shaft 50 from interfering with each other in the radial direction.
In the above-described embodiment, the case where the support portion 601 is supported on the inner circumference of the hollow shaft 50 via the needle bearing NB (bearing) is illustrated. Instead of the needle bearing NB, an annular bush may be provided so that the support portion 601 is supported on the inner circumference of the hollow shaft 50 via the bush.
Here, the bush is, for example, a metal ring that allows relative rotation between the hollow shaft and the support portion.
Further, when the needle bearing NB as a thrust bearing is not arranged between the hollow shaft 50 and the differential case 60 when viewed from the axial direction, the axial direction can be shortened.
In other words, by providing a clearance between the hollow shaft 50 and the differential case 60 in the axial direction, the axial direction can be shortened.
 本実施形態にかかる動力伝達装置1は、以下の構成を有している。
(3)動力伝達装置1におけるモータ2の出力回転の伝達経路では、中空軸50の上流にモータ2が接続されている。
 ドライブシャフト8Bは、モータ2の内周を貫通して配置されている。
The power transmission device 1 according to the present embodiment has the following configuration.
(3) In the transmission path of the output rotation of the motor 2 in the power transmission device 1, the motor 2 is connected upstream of the hollow shaft 50.
The drive shaft 8B is arranged so as to penetrate the inner circumference of the motor 2.
 筒状のモータシャフト20を貫通して、ドライブシャフト8Bを配置することで、動力伝達装置1の縦方向(重力方向)にダウンサイジングが可能である。 By arranging the drive shaft 8B through the tubular motor shaft 20, it is possible to downsize the power transmission device 1 in the vertical direction (gravity direction).
 図4は、変形例にかかる動力伝達装置1Aの差動装置6周りの拡大図である。
 前記した実施形態では、中空軸50のデフケース60側の端部50aが、デフケース60の側縁部60cに、回転軸X方向の隙間をあけて対向している場合を例示した(図3参照)。
 ここで、図4に示すように、中空軸50のデフケース60側の端部50aと、デフケース60の側縁部60cとの間に、ニードルベアリングNB(スラスト軸受)を設けた構成としても良い。
 このように構成すると、中空軸50に、デフケース60側に近づける方向の押しつけ力が作用した場合に、中空軸50とデフケース60とが直接接触することを好適に防止できる。中空軸50とデフケース60とが接触すると、モータ2の出力回転の伝達経路におけるトルク伝達に対する抵抗となり、動力伝達装置1Aを搭載した車両の電費に影響が生ずるが、かかる事態の発生を好適に防止できる。
FIG. 4 is an enlarged view of the power transmission device 1A around the differential device 6 according to the modified example.
In the above-described embodiment, the case where the end portion 50a of the hollow shaft 50 on the differential case 60 side faces the side edge portion 60c of the differential case 60 with a gap in the rotation axis X direction is exemplified (see FIG. 3). ..
Here, as shown in FIG. 4, a needle bearing NB (thrust bearing) may be provided between the end portion 50a of the hollow shaft 50 on the differential case 60 side and the side edge portion 60c of the differential case 60.
With this configuration, when a pressing force in the direction of approaching the differential case 60 acts on the hollow shaft 50, it is possible to preferably prevent the hollow shaft 50 and the differential case 60 from coming into direct contact with each other. When the hollow shaft 50 and the differential case 60 come into contact with each other, it becomes a resistance to torque transmission in the transmission path of the output rotation of the motor 2, which affects the electricity cost of the vehicle equipped with the power transmission device 1A, but preferably prevents such a situation from occurring. it can.
 ここで、本明細書における用語「下流に接続」とは、上流に配置された部品から下流に配置された部品へと動力が伝達される接続関係にあることを意味する。
 例えば、モータ2の下流に接続された遊星減速ギア5という場合は、モータ2から遊星減速ギア5へと動力が伝達されることを意味する。
 また、本明細書における用語「直接接続」とは、他の減速機構、増速機構、変速機構などの減速比が変換される部材を介さずに部材同士が動力伝達可能に接続されていることを意味する。
Here, the term "downstream connection" in the present specification means that there is a connection relationship in which power is transmitted from a component arranged upstream to a component arranged downstream.
For example, the case of the planetary reduction gear 5 connected downstream of the motor 2 means that power is transmitted from the motor 2 to the planetary reduction gear 5.
Further, the term "direct connection" in the present specification means that the members are connected so as to be able to transmit power without the intervention of other members such as a reduction mechanism, a speed increase mechanism, and a transmission mechanism whose reduction ratio is converted. Means.
 前記した実施形態では、段付きピニオンギア53を採用した遊星減速ギア5を例示したが、段付きでないピニオンギアを採用した遊星減速ギアを採用しても良い。 In the above-described embodiment, the planetary reduction gear 5 adopting the stepped pinion gear 53 is illustrated, but the planetary reduction gear adopting the non-stepped pinion gear may be adopted.
 なお、モータ2の出力部(モータシャフト20)と遊星減速ギア5の入力部(サンギア51)との連結態様は、前記した実施形態のものに限定されない。
 モータ2の出力部(モータシャフト20)と遊星減速ギア5の入力部(サンギア51)とを、別のギア部品などを介して回転伝達可能に連結した構成としても良い。
The connection mode between the output unit (motor shaft 20) of the motor 2 and the input unit (sun gear 51) of the planetary reduction gear 5 is not limited to that of the above-described embodiment.
The output unit (motor shaft 20) of the motor 2 and the input unit (sun gear 51) of the planetary reduction gear 5 may be connected to each other so that rotation can be transmitted via another gear component or the like.
 さらに、実施形態では、減速機構が、段付きピニオンギア53を備える遊星減速ギア5であり、モータ2の出力回転の伝達経路上に、ひとつの遊星減速ギア5が設けられている場合を例示した。
 本発明は、この態様にのみに限定されない。モータ2の出力回転の伝達経路上に、複数の遊星減速ギアが直列に配置されている構成としても良い。
Further, in the embodiment, the case where the reduction mechanism is a planetary reduction gear 5 including a stepped pinion gear 53 and one planetary reduction gear 5 is provided on the transmission path of the output rotation of the motor 2 is illustrated. ..
The present invention is not limited to this aspect. A plurality of planetary reduction gears may be arranged in series on the transmission path of the output rotation of the motor 2.
 以上、本願発明の実施形態を説明したが、本願発明は、これら実施形態に示した態様のみに限定されるものではない。発明の技術的な思想の範囲内で、適宜変更可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments shown in these embodiments. It can be changed as appropriate within the scope of the technical idea of the invention.

Claims (3)

  1.  中空軸と、
     前記中空軸の下流に減速ギアを介して接続されたデファレンシャルギアと、
     前記デファレンシャルギアの下流に接続されたドライブシャフトと、を有し、
     前記ドライブシャフトは、前記中空軸を貫通して配置されており、
     前記デファレンシャルギアのデファレンシャルケースは前記ドライブシャフトを支持する支持部を有し、
     前記デファレンシャルケースの前記支持部は、前記中空軸の内周に挿入されている、動力伝達装置。
    Hollow shaft and
    A differential gear connected to the downstream of the hollow shaft via a reduction gear,
    With a drive shaft connected downstream of the differential gear,
    The drive shaft is arranged so as to penetrate the hollow shaft.
    The differential case of the differential gear has a support portion for supporting the drive shaft.
    The support portion of the differential case is a power transmission device inserted into the inner circumference of the hollow shaft.
  2.  請求項1に記載の動力伝達装置において、
     前記支持部は、軸受又はブッシュを介して前記中空軸の内周に支持されている、動力伝達装置。
    In the power transmission device according to claim 1,
    The support portion is a power transmission device supported on the inner circumference of the hollow shaft via a bearing or a bush.
  3.  請求項1又は請求項2に記載の動力伝達装置において、
     前記中空軸の上流にモータが接続され、
     前記ドライブシャフトは、前記モータの内周を貫通して配置されている、動力伝達装置。
    In the power transmission device according to claim 1 or 2.
    A motor is connected upstream of the hollow shaft,
    The drive shaft is a power transmission device arranged so as to penetrate the inner circumference of the motor.
PCT/JP2019/047106 2019-03-10 2019-12-03 Power transmission device WO2020183815A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-043241 2019-03-10
JP2019043241A JP2022074169A (en) 2019-03-10 2019-03-10 Power transmission device

Publications (1)

Publication Number Publication Date
WO2020183815A1 true WO2020183815A1 (en) 2020-09-17

Family

ID=72427908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047106 WO2020183815A1 (en) 2019-03-10 2019-12-03 Power transmission device

Country Status (2)

Country Link
JP (1) JP2022074169A (en)
WO (1) WO2020183815A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257463A (en) * 1998-03-06 1999-09-21 Zexel:Kk Parallel shaft differential gear device
JP2005133758A (en) * 2003-10-28 2005-05-26 Toyoda Mach Works Ltd Power transmitting device for vehicles
JP2013029195A (en) * 2011-06-24 2013-02-07 Jtekt Corp Motor driving force transmission device
WO2018147161A1 (en) * 2017-02-08 2018-08-16 武蔵精密工業株式会社 Power transmitting device
WO2019039599A1 (en) * 2017-08-25 2019-02-28 アイシン・エィ・ダブリュ株式会社 Vehicle drive device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257463A (en) * 1998-03-06 1999-09-21 Zexel:Kk Parallel shaft differential gear device
JP2005133758A (en) * 2003-10-28 2005-05-26 Toyoda Mach Works Ltd Power transmitting device for vehicles
JP2013029195A (en) * 2011-06-24 2013-02-07 Jtekt Corp Motor driving force transmission device
WO2018147161A1 (en) * 2017-02-08 2018-08-16 武蔵精密工業株式会社 Power transmitting device
WO2019039599A1 (en) * 2017-08-25 2019-02-28 アイシン・エィ・ダブリュ株式会社 Vehicle drive device

Also Published As

Publication number Publication date
JP2022074169A (en) 2022-05-18

Similar Documents

Publication Publication Date Title
JP2015123843A (en) Hybrid vehicle driving system
JPWO2020183816A1 (en) Power transmission device
JP2020142774A (en) Power transmission device
JP6973966B2 (en) Power transmission device
WO2020183815A1 (en) Power transmission device
JP2019052685A (en) Vehicle driving device
WO2020161979A1 (en) Power transmission device
JP6973965B2 (en) Power transmission device
JP2017137896A (en) Stationary support structure of rolling bearing
JP2020128789A (en) Power transmission apparatus
JP2020143776A (en) Power transmission device
JP7210108B2 (en) power transmission device
JP5659588B2 (en) Wheel bearing and electric vehicle drive device
JP2020128788A (en) Power transmission apparatus
JP2020128792A (en) Power transmission apparatus
JP2020128790A (en) Power transmission apparatus
JP2020142773A (en) Power transmission device
JP5228533B2 (en) Support structure for rotating shaft member
JP7135639B2 (en) In-wheel motor type vehicle drive system
JP2020128793A (en) Power transmission device
JP4999978B2 (en) Eccentric differential reducer
JP2016200218A (en) Planetary roller type power transmission device
JP2020204331A (en) Power transmission device
JP6568749B2 (en) Planetary roller type power transmission device
JP2022057875A (en) Speed reduction device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP