WO2020183735A1 - Quality determination device and quality determination method - Google Patents
Quality determination device and quality determination method Download PDFInfo
- Publication number
- WO2020183735A1 WO2020183735A1 PCT/JP2019/010711 JP2019010711W WO2020183735A1 WO 2020183735 A1 WO2020183735 A1 WO 2020183735A1 JP 2019010711 W JP2019010711 W JP 2019010711W WO 2020183735 A1 WO2020183735 A1 WO 2020183735A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- board
- work
- feature amount
- substrate
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/08—Monitoring manufacture of assemblages
Definitions
- This specification discloses a technique relating to a quality determination device and a quality determination method.
- the control device of each component mounting machine learns whether or not the learning result regarding the component supplied from the feeder at the start of production is stored in the storage device of the learning computer. Contact your computer. Then, when the learning result is stored in the storage device, the control device fetches the learning result from the storage device and performs the learning type super-resolution processing using the learning result from the beginning of production.
- the visual inspection support system described in Patent Document 2 refers to the accuracy of inspection data among a plurality of visual inspection devices.
- the visual inspection support system includes an evaluation unit, a grade data holding unit, and a grade providing unit.
- the evaluation unit evaluates the inspection accuracy based on the inspection data for each part based on the results of the inspection using the inspection data.
- the grade data holding unit holds information on the evaluated inspection accuracy as grade data for each part.
- the grade providing unit provides grade data to other inspection devices connected via a network.
- the learning result to be searched is related to the relationship between the low-resolution image and the high-resolution image, and does not judge the quality of the board-to-board work of the board-to-board working machine.
- the visual inspection support system described in Patent Document 2 refers to information on inspection accuracy among a plurality of visual inspection devices.
- the present specification acquires image-related information which is at least one of the reference image and the feature amount distribution, and uses the acquired image-related information to determine the quality of the work on the substrate.
- a pass / fail judgment device and a pass / fail judgment method capable of this are disclosed.
- This specification discloses a quality determination device including a storage unit, an acquisition unit, and a quality determination unit.
- a plurality of images taken by the image pickup device of the board-to-board work machine that performs a predetermined work on the substrate with the same image-taking conditions for the same type of object in the board-to-board work are used as reference images.
- the distribution of a plurality of the reference feature amounts when the reference feature amount, which is the feature amount of the entire image, is extracted for each image of the reference image is defined as the feature amount distribution.
- the storage unit acquires image-related information that is at least one of the reference image and the feature amount distribution, and information that can search the image-related information when the reference image is acquired.
- the search information including the condition is associated and stored in the storage device.
- the acquisition unit is the image-related information associated with the search information including acquisition conditions that match the acquisition conditions of the target image in which the object is imaged by the image pickup device of the board-to-board work machine. Is obtained from the storage device.
- the quality determination unit determines the quality of the work on the substrate when the target image is acquired by using the image-related information acquired by the acquisition unit.
- the present specification discloses a quality determination method including a storage process, an acquisition process, and a quality determination process.
- a plurality of images taken by the image pickup device of the board-to-board work machine that performs a predetermined work on the substrate with the same image-taking conditions for the same type of object in the board-to-board work are used as reference images.
- the distribution of a plurality of the reference feature amounts when the reference feature amount, which is the feature amount of the entire image, is extracted for each image of the reference image is defined as the feature amount distribution.
- the storage step acquires the image-related information that is at least one of the reference image and the feature amount distribution, and the information that can search the image-related information when the reference image is acquired.
- the search information including the condition is associated and stored in the storage device.
- the acquisition step is the image-related information associated with the search information including acquisition conditions that match the acquisition conditions of the target image in which the object is imaged by the image pickup device of the board-to-board work machine. Is obtained from the storage device.
- the quality determination step the quality of the work on the substrate when the target image is acquired is determined by using the image-related information acquired by the acquisition process.
- the pass / fail judgment device has a storage unit, an acquisition unit, and a pass / fail judgment unit.
- the quality determination device can acquire image-related information and determine the quality of the work on the substrate using the acquired image-related information. The same can be said for the pass / fail determination device for the pass / fail determination method.
- FIG. 5 is a schematic view showing an example of an image of the component 91 shown in FIG. 4A held by the holding member 30 taken by the component camera 14. It is a schematic diagram which shows an example of a feature amount distribution FD1. It is a histogram which shows an example of the relationship between the work result of the work on a substrate and the Mahalanobis distance MD1.
- Embodiment 1-1 Configuration example of the substrate work line WML
- a predetermined substrate work is performed on the substrate 90.
- the type and number of anti-board work machines WM constituting the anti-board work line WML are not limited.
- the board-to-board work line WML of this embodiment is a plurality (five) board-to-board work of a printing machine WM1, a printing inspection machine WM2, a component mounting machine WM3, a reflow furnace WM4, and an appearance inspection machine WM5.
- the machine WM is provided, and the substrate 90 is conveyed in this order by a substrate conveying device (not shown).
- the printing machine WM1 prints solder on the substrate 90 at each mounting position of the plurality of parts 91.
- the printing inspection machine WM2 inspects the printing state of the solder printed by the printing machine WM1.
- the component mounting machine WM3 mounts a plurality of components 91 on the substrate 90 (on the solder printed by the printing machine WM1).
- the number of component mounting machines WM3 may be one or more. When a plurality of component mounting machines WM3 are provided, the plurality of component mounting machines WM3 can share and mount the plurality of parts 91.
- the reflow furnace WM4 heats the substrate 90 on which a plurality of parts 91 are mounted by the parts mounting machine WM3, melts the solder, and performs soldering.
- the visual inspection machine WM5 inspects the mounting state of a plurality of parts 91 mounted by the component mounting machine WM3.
- the board-to-board work line WML uses a plurality of (five) board-to-board work machines WM to sequentially convey the boards 90 and execute a production process including an inspection process to produce the board product 900. Can be done.
- the work line to board WML includes, for example, a work machine WM such as a function inspection machine, a buffer device, a substrate supply device, a substrate reversing device, a shield mounting device, an adhesive coating device, and an ultraviolet irradiation device as necessary. You can also prepare.
- a work machine WM such as a function inspection machine, a buffer device, a substrate supply device, a substrate reversing device, a shield mounting device, an adhesive coating device, and an ultraviolet irradiation device as necessary. You can also prepare.
- the plurality of (five) anti-board work machines WM and the management device WMC constituting the anti-board work line WML are electrically connected by the communication unit LC.
- the communication unit LC can be connected to be communicable by wire, and can also be connected to be communicable by wireless.
- various communication methods can be adopted.
- a premises information communication network LAN: Local Area Network
- LAN Local Area Network
- the plurality (five) anti-board working machines WM can communicate with each other via the communication unit LC.
- the plurality (five) anti-board working machines WM can communicate with the management device WMC via the communication unit LC.
- the management device WMC controls a plurality of (five) anti-board work machines WM constituting the anti-board work line WML, and monitors the operating status of the anti-board work line WML.
- the management device WMC stores various control data for controlling a plurality of (five) anti-board working machines WM.
- the management device WMC transmits control data to each of a plurality (five) anti-board working machines WM. Further, each of the plurality (five) anti-board working machines WM transmits the operating status and the production status to the management device WMC.
- a data server 70 can be provided in the management device WMC.
- the data server 70 can store, for example, the acquired data acquired by the board-to-board work machine WM regarding the board-to-board work.
- various image data captured by the anti-board working machine WM are included in the acquired data.
- the record (log data) of the operating status acquired by the board working machine WM is included in the acquired data.
- the data server 70 can also store various production information related to the production of the substrate 90.
- component data such as information on the shape of each type of component 91, information on electrical characteristics, and information on how to handle the component 91 is included in the production information.
- the inspection results by inspection machines such as the print inspection machine WM2 and the appearance inspection machine WM5 are included in the production information.
- the component mounting machine WM3 mounts a plurality of components 91 on the substrate 90. As shown in FIG. 2, the component mounting machine WM3 includes a board transfer device 11, a component supply device 12, a component transfer device 13, a component camera 14, a board camera 15, and a control device 16.
- the substrate transfer device 11 is composed of, for example, a belt conveyor or the like, and conveys the substrate 90 in the transfer direction (X-axis direction).
- the substrate 90 is a circuit board, and at least one of an electronic circuit and an electric circuit is formed.
- the board transfer device 11 carries the board 90 into the component mounting machine WM3 and positions the board 90 at a predetermined position in the machine.
- the board transfer device 11 carries out the board 90 out of the component mounting machine WM3 after the mounting process of the plurality of components 91 by the component mounting machine WM3 is completed.
- the component supply device 12 supplies a plurality of components 91 mounted on the substrate 90.
- the component supply device 12 includes a plurality of feeders 121 provided along the transport direction (X-axis direction) of the substrate 90.
- Each of the plurality of feeders 121 is pitch-feeded with a carrier tape (not shown) in which the plurality of parts 91 are housed, so that the parts 91 can be collected at a supply position located on the tip side of the feeder 121.
- the component supply device 12 can also supply electronic components (for example, lead components) that are relatively large in size as compared with chip components and the like in a state of being arranged on the tray.
- the parts transfer device 13 includes a head drive device 131 and a moving table 132.
- the head drive device 131 is configured to be able to move the movable table 132 in the X-axis direction and the Y-axis direction by a linear motion mechanism.
- a mounting head 20 is detachably (replaceable) provided on the moving table 132 by a clamp member (not shown).
- the mounting head 20 uses at least one holding member 30 to collect and hold the component 91 supplied by the component supply device 12, and mounts the component 91 on the substrate 90 positioned by the substrate transfer device 11.
- the holding member 30 for example, a suction nozzle or a chuck can be used.
- a known imaging device can be used for the component camera 14 and the substrate camera 15.
- the component camera 14 is fixed to the base of the component mounting machine WM3 so that the optical axis is upward in the Z-axis direction (vertical upward direction).
- the component camera 14 can take an image of the component 91 held by the holding member 30 from below.
- the substrate camera 15 is provided on the moving table 132 of the component transfer device 13 so that the optical axis faces downward (vertically downward) in the Z-axis direction.
- the substrate camera 15 can image the substrate 90 from above.
- the component camera 14 and the substrate camera 15 perform imaging based on a control signal transmitted from the control device 16. Image data captured by the component camera 14 and the board camera 15 is transmitted to the control device 16.
- the control device 16 includes a known arithmetic unit and a storage device, and constitutes a control circuit (both are not shown). Information, image data, and the like output from various sensors provided in the component mounting machine WM3 are input to the control device 16.
- the control device 16 sends a control signal to each device based on a control program and a predetermined mounting condition set in advance.
- control device 16 causes the board camera 15 to image the board 90 positioned by the board transfer device 11.
- the control device 16 processes the image captured by the substrate camera 15 to recognize the positioning state of the substrate 90.
- control device 16 causes the holding member 30 to collect and hold the component 91 supplied by the component supply device 12, and causes the component camera 14 to image the component 91 held by the holding member 30.
- the control device 16 processes the image captured by the component camera 14 to recognize the suitability of the component 91 and the holding posture of the component 91.
- the control device 16 moves the holding member 30 toward the upper side of the expected mounting position preset by a control program or the like. Further, the control device 16 corrects the planned mounting position based on the positioning state of the board 90, the holding posture of the component 91, and the like, and sets the mounting position where the component 91 is actually mounted.
- the planned mounting position and the mounting position include the rotation angle in addition to the position (X-axis coordinate and Y-axis coordinate).
- the control device 16 corrects the target position (X-axis coordinate and Y-axis coordinate) and the rotation angle of the holding member 30 in accordance with the mounting position.
- the control device 16 lowers the holding member 30 at the corrected rotation angle at the corrected target position, and mounts the component 91 on the substrate 90.
- the control device 16 executes a mounting process of mounting the plurality of components 91 on the substrate 90 by repeating the above pick-and-place cycle.
- the component mounting machine WM3 processes the image captured by the component camera 14 to recognize the suitability of the component 91 and the holding posture of the component 91. ..
- the component 91 is held, such as the suitability of the component 91 and the holding posture of the component 91.
- the regular part 91 has a white circular shape, and the area of the part 91 (area of a circle) is a predetermined value.
- the component mounting machine WM3 sets only the color and area of the component 91 as determination conditions, for example, the color of the component 91 is white, the area is a predetermined value, but the external shape of the component 91 is quadrangular. , It is not possible to determine the suitability of the component 91. Further, if an attempt is made to reduce erroneous determination, the number of determination conditions to be set increases, and the work of setting the determination conditions becomes complicated.
- the quality determination device 40 determines the quality of the work on the substrate based on the feature amount of the entire image of each image captured by the image pickup device 80 of the substrate work machine WM.
- the pass / fail determination device 40 includes a distribution acquisition unit 41 and a pass / fail determination unit 42 when regarded as a control block. It is preferable that the quality determination device 40 further includes at least one of the threshold value setting unit 43 and the change unit 44.
- the quality determination device 40 of the present embodiment includes a distribution acquisition unit 41, a quality determination unit 42, a threshold value setting unit 43, and a change unit 44. Further, although the quality determination device 40 of the present embodiment is provided in the control device 16 of the component mounting machine WM3, it can also be provided in another board-to-board work machine WM. Further, the quality determination device 40 can be provided outside the board working machine WM (for example, the management device WMC).
- Distribution acquisition unit 41 The distribution acquisition unit 41 extracts the reference feature amount BF1 which is the feature amount of the entire image for each image of the reference image BP1 and acquires the feature amount distribution FD1 which is the distribution of the extracted plurality of reference feature amounts BF1.
- the reference image BP1 refers to a plurality of images taken by the image pickup device 80 of the board-to-board work machine WM that performs a predetermined work on the board 90 with the same type of imaging conditions for the same type of object in the work on the board.
- the image pickup device 80 is, for example, the component camera 14, and the object at this time is the component 91 held by the holding member 30.
- the board-to-board work is the holding work of the component 91.
- the reference image BP1 may be an image captured under the same imaging conditions for the component 91 having the same component type.
- the imaging conditions include, for example, the type of light source, the irradiation direction of light, the exposure time, the aperture value, and the like. It should be noted that, for example, it is difficult to completely match the imaging conditions due to the influence of natural light or the like, so the imaging conditions may be any acquisition conditions that can be specified by the substrate working machine WM (component mounting machine WM3).
- the reference image BP1 may be, for example, an image in which the region of each component 91 is extracted from one image simultaneously captured by the component camera 14 on a plurality of components 91 held by the rotary head or the line head. Further, the reference image BP1 may be an image obtained by sequentially capturing a plurality of parts 91 by the component camera 14. Further, the reference image BP1 may be an image in which these images are mixed.
- the image pickup device 80 may be, for example, a side camera (not shown) provided on the mounting head 20.
- the side camera is different from the component camera 14 in that the component 91 is imaged from the side surface side of the component 91, but the same can be said for the above.
- the image pickup device 80 may be, for example, the board camera 15.
- the object at this time is the substrate 90 positioned by the substrate transfer device 11.
- the board-to-board work is the positioning work of the board 90.
- the image pickup device 80 is a camera (not shown) provided in the appearance inspection machine WM5.
- the object at this time is the component 91 mounted on the substrate 90.
- the board-to-board work is the mounting work of the component 91 by the component mounting machine WM3.
- the image pickup device 80 is a camera (not shown) provided in the printing inspection machine WM2.
- the object at this time is the solder printed on the substrate 90.
- the board-to-board work is a solder printing work by the printing machine WM1.
- the substrate working machine WM, the image pickup apparatus 80, the object, and the substrate working are not limited.
- what has been described about the imaging conditions can be said in the same manner in any of the above cases.
- this specification describes a reference image BP1 in which the component camera 14 of the component mounting machine WM3 captures the component 91 held by the holding member 30.
- FIG. 4A is a bottom view showing an example of the component 91.
- FIG. 4B shows an example of an image of the component 91 shown in FIG. 4A held by the holding member 30 taken by the component camera 14.
- FIG. 4B a state in which a plurality of pixels constituting the image are arranged in a grid pattern is also shown.
- the component 91 is a chip resistor, a chip capacitor, or the like
- the component 91 includes an electrode region AR11 and an electrode region AR12, which are regions of the electrode portion, and a main body region AR13, which is a region of the main body portion.
- the electrode region AR11 and the electrode region AR12 are silver. Further, it is assumed that the main body region AR13 on the back surface (bottom surface) side of the component 91 is, for example, white, and the main body region AR13 on the front surface side of the component 91 is, for example, black. At this time, for example, if the holding member 30 mistakenly sucks the back surface (bottom surface) side of the component 91 (reversal of the component 91), the component camera 14 images the front surface side of the component 91.
- the electrode region AR11 and the electrode region AR12 are silver, and the main body region AR13 on the surface side is black. Therefore, the difference in brightness between these regions is that the holding member 30 adsorbs the surface side of the component 91. Compared with the case (in the normal adsorption state, the main body region AR13 to be imaged is white), it is larger. In this way, when at least one of the brightness and the color of the component 91 in the image changes, the characteristics of the entire image change as compared with the case of the normal adsorption state.
- the holding member 30 mistakenly sucks the end portion of the component 91 (standing suction of the component 91)
- the holding posture of the component 91 changes as compared with the normal suction state. Therefore, in the image, the electrode region AR11, The shapes (rectangular in FIG. 4B) of each of the electrode region AR12 and the main body region AR13 are deformed. Further, the area of each region of the component 91 changes as compared with the normal suction state. Further, the length of the outer circumference of each region of the component 91 changes as compared with the normal suction state.
- the characteristics of the entire image change as compared with the case of the normal suction state.
- the shape of each region is formed by at least one of the brightness and color of a plurality of pixels constituting the image.
- the inversion of the component 91 and the standing suction of the component 91 are examples of cases where the work result of the work on the substrate (in this case, the holding work of the component 91) is defective, and the cause of the defect is not limited to these.
- the chip resistor and the chip capacitor are examples of the component 91, and the component 91 is not limited thereto.
- the distribution acquisition unit 41 extracts the reference feature amount BF1 which is the feature amount of the entire image for each image of the reference image BP1 and acquires the feature amount distribution FD1 which is the distribution of the extracted plurality of reference feature amounts BF1.
- the outer edge of the reference image BP1 is aligned with the outer edge of the object (for example, one component 91).
- the feature amount of the entire image is preferably at least one of the brightness and color of a plurality of pixels constituting the image, the shape formed by these, and the area of the shape. Is.
- the distribution acquisition unit 41 can acquire the feature quantity distribution FD1 by, for example, a method known in multivariate analysis (for example, principal component analysis).
- FIG. 5 shows an example of the feature amount distribution FD1.
- the brightness and color of a plurality of pixels constituting the image shown in FIG. 4B, the shape formed by these (rectangle in the example shown in FIG. 4B), and the area of the shape are defined as the feature amount of the entire image.
- the plurality of points shown in the feature region FR1 of FIG. 5 image the reference feature amount BF1 of each image of the reference image BP1.
- the feature amount distribution FD1 can be represented by a two-dimensional feature region FR1 or a three-dimensional or higher feature region FR1.
- the feature region FR1 indicates the outer edge of a plurality of reference feature quantities BF1 and is also referred to as “unit space”.
- the work on the board by the board-to-board work machine WM usually has good work results, and the rate of poor work results is extremely low.
- the adsorption rate of the component 91 in the component mounting machine WM3 is extremely high. Therefore, even if the reference image BP1 includes an image when the work result of the work on the substrate is poor, the influence is small. Therefore, in the present specification, the work result of the work on the substrate when the reference image BP1 is acquired is treated as being good.
- the reference image BP1 may be limited to the image when the work result of the work on the substrate is good.
- the quality determination unit 42 extracts the target feature amount OF1 which is the feature amount of the entire image for each image of the target image OP1, and is based on the degree of deviation of the target feature amount OF1 with respect to the feature area FR1 defined by the feature amount distribution FD1. Then, the quality of the work on the substrate when the target image OP1 is acquired is determined.
- the target image OP1 is at least one image acquired after the reference image BP1 and refers to an image related to the reference image BP1.
- the target image OP1 is related to the reference image BP1 when the acquisition conditions that can be defined by the substrate working machine WM match the acquisition of the reference image BP1, and the acquisition conditions are the type of the object and the type of the image pickup apparatus 80. , And, it is preferable to include at least the type of the object among the types of imaging conditions of the image pickup apparatus 80.
- the type of the object when the reference image BP1 is acquired (in the example shown in FIG. 4B, the component type of the part 91) and the type when the target image OP1 is acquired.
- the type of the object (part type of the part 91) must at least match. Further, if at least one of the type and imaging conditions of the imaging device 80 (component camera 14 in the example shown in FIG. 4B) is different, there is a possibility that the acquired image will be different even if the same object is imaged. is there. Therefore, it is preferable that at least one of the type of the image pickup apparatus 80 and the image pickup condition is the same.
- the imaging conditions include, for example, the type of light source, the irradiation direction of light, the exposure time, the aperture value, and the like. Further, for example, since it is difficult to completely match the imaging conditions due to the influence of natural light or the like, the imaging conditions may be any acquisition conditions that can be specified by the substrate working machine WM.
- the quality determination unit 42 can extract the target feature amount OF1 which is the feature amount of the entire image for each image of the target image OP1 in the same manner as the distribution acquisition unit 41. Then, the quality determination unit 42 determines the quality of the work on the substrate when the target image OP1 is acquired, based on the degree of deviation of the target feature amount OF1 with respect to the feature region FR1 defined by the feature amount distribution FD1.
- the quality determination unit 42 can determine the quality of the work on the substrate when the target image OP1 is acquired by using various known methods.
- the quality determination unit 42 can use, for example, a method such as a neural network, deep learning, or a support vector. Further, the quality determination unit 42 can also use a method such as the Mahalanobis Taguchi method or the subspace method.
- the Mahalanobis Taguchi method requires a smaller number of reference image BP1s corresponding to training data than an artificial intelligence method such as a neural network.
- the quality determination unit 42 determines the quality of the work on the substrate based on whether or not the Mahalanobis distance MD1 from the feature region FR1 exceeds a predetermined threshold value TH1. Further, it is preferable that the quality determination unit 42 determines the quality of the work on the substrate by the RT method, which is one method of the Mahalanobis Taguchi method.
- the RT method Recognition Taguchi method
- the RT method is suitable for good / bad judgment using image data, and is suitable for use in the present embodiment.
- the quality determination unit 42 of the present embodiment determines the quality of the work on the substrate when the target image OP1 is acquired by the RT method.
- the quality determination unit 42 determines the quality of the work on the substrate based on whether or not the Mahalanobis distance MD1 from the feature region FR1 exceeds a predetermined threshold value TH1. Specifically, the quality determination unit 42 determines that the work result of the work on the substrate when the target image OP1 is acquired is good when the Mahalanobis distance MD1 is equal to or less than the predetermined threshold value TH1. Further, the quality determination unit 42 determines that the work result of the work on the substrate when the target image OP1 is acquired is defective when the Mahalanobis distance MD1 is larger than the predetermined threshold value TH1.
- the main body region AR13 shown in FIG. 4B is white if the work result of the work on the substrate (in this case, the holding work of the component 91) is good (if it is in a normal suction state). is there.
- the color of the main body region AR13 is white in most of the images, for example, when the component 91 is inverted and the color of the main body region AR13 becomes black, the Mahalanobis distance MD1 shown in FIG. 5 is significantly increased. Therefore, the quality determination unit 42 can determine that the work result of the work on the board (holding work of the component 91) is defective. The same can be said for other features.
- Threshold setting unit 43 The threshold setting unit 43 sets the threshold TH1 of the Mahalanobis distance MD1. It is preferable that the threshold value setting unit 43 sets the threshold value TH1 by using the outlier information acquired by the Smirnov-Grabs test.
- the Smirnov-Grabs test detects outliers in a data when it follows a normal distribution.
- the threshold value setting unit 43 of the present embodiment detects an outlier by the Smirnov-Grabs test, and sets the outlier as the threshold value TH1 of the Mahalanobis distance MD1. As a result, the threshold value setting unit 43 can easily set the threshold value TH1 of the Mahalanobis distance MD1.
- the threshold value setting unit 43 is used when the pass / fail determination unit 42 determines that the work with the substrate is good and the actual work with the substrate is poor, and the threshold setting unit 43 determines that the work with the substrate is good.
- the threshold TH1 can be modified so that the threshold TH1 is smaller than the Mahalanobis distance MD1 of.
- the quality determination unit 42 determines that the work on the substrate is good based on the target feature amount OF1 shown in FIG.
- the threshold setting unit 43 corrects the threshold TH1 so that the threshold TH1 is smaller than the Mahalanobis distance MD1 of the target feature amount OF1.
- the threshold value setting unit 43 can optimize the threshold value TH1 of the Mahalanobis distance MD1.
- the threshold value setting unit 43 uses the Mahalanobis of the target feature amount OF1 used when the pass / fail determination unit 42 determines that the work with the substrate is defective and the actual work with the substrate is good, and determines that the work with the substrate is defective.
- the threshold TH1 can also be modified so that the threshold TH1 is larger than the distance MD1. In this case as well, the threshold setting unit 43 can optimize the threshold TH1 of the Mahalanobis distance MD1.
- the threshold value setting unit 43 uses the target feature amount OF1 used when the pass / fail determination unit 42 determines that the work on the substrate is good when the number of times the work on the substrate is determined to be defective reaches a predetermined number of times.
- the threshold value TH1 can be corrected by the discriminant analysis method using the target feature amount OF1 used when the work on the substrate is judged to be defective.
- the threshold value setting unit 43 can optimize the threshold value TH1 of the Mahalanobis distance MD1.
- FIG. 6 is a histogram showing an example of the relationship between the work result of the work on the substrate and the Mahalanobis distance MD1.
- the horizontal axis of the figure shows the Mahalanobis distance MD1
- the vertical axis shows the frequency of the work result of the work on the substrate.
- the data D1 to the data D13 are the frequencies of the data when the work result of the work on the substrate is good.
- the data D14 to the data D23 are the frequencies of the data when the work result of the work on the substrate is defective.
- the work result of the work on the board shows the actual work result (good or bad).
- the holding work of the component 91 shown in FIG. 4A is good.
- the Mahalanobis distance MD1 is calculated based on the image (image shown in FIG. 4B) of the component 91 held by the holding member 30 taken by the component camera 14.
- the histogram shown in the figure can be obtained.
- the predetermined number of times is the number of data when the work result of the work on the board required in the discriminant analysis method is defective, and can be set arbitrarily.
- the threshold value setting unit 43 determines that the target feature amount OF1 used when the work with the board is good (data D1 to data D13) and the work with the board is bad (data D14 to data D23).
- the threshold value TH1 is corrected by the discriminant analysis method using the target feature amount OF1 used in.
- the threshold value TH1 has been modified by the discriminant analysis method.
- the methods themselves such as the Mahalanobis-Taguchi method, the RT method, the Smirnov-Grabs test, and the discriminant analysis method are known, and detailed description thereof is omitted in the present specification.
- the quality determination device 40 further includes a change unit 44.
- the change unit 44 switches the feature amount distribution FD1 used by the pass / fail determination unit 42 to the feature amount distribution FD1 that matches the part 91 after the vendor change at the timing when the vendor of the part 91 supplied to the component mounting machine WM3 is switched. ..
- the quality determination unit 42 can determine the quality of the work on the substrate by using the appropriate feature amount distribution FD1 regardless of the change of the vendor of the component 91.
- the change unit 44 determines whether or not it is the timing when the vendor of the component 91 is switched (step S11 shown in FIG. 7).
- the change unit 44 can know the timing at which the vendor of the component 91 is switched from, for example, the identification information of the feeder 121.
- the changing unit 44 switches the feature amount distribution FD1 used by the quality determination unit 42 to the feature amount distribution FD1 that matches the component 91 after the vendor change. (Step S12). Then, the control ends once.
- the control is temporarily terminated without executing the process shown in step S12.
- the reference image BP1 is a plurality of images captured by the image pickup device 80 of the board-to-board work machine WM that performs a predetermined anti-board work on the board 90 with the same type of imaging conditions for the same type of object in the anti-board work. To say.
- the feature amount distribution FD1 refers to the distribution of a plurality of reference feature amounts BF1 when the reference feature amount BF1 which is the feature amount of the entire image is extracted for each image of the reference image BP1. It is preferable that the feature amount of the entire image is at least one of the brightness and color of a plurality of pixels constituting the image, the shape formed by these, and the area of the shape.
- the quality determination device 40 of the present embodiment acquires the image-related information 50a and determines the quality of the work on the substrate by using the acquired image-related information 50a.
- the pass / fail determination device 40 includes a storage unit 51, an acquisition unit 52, and a pass / fail determination unit 42 when regarded as a control block.
- the quality determination device 40 further includes at least one of the providing unit 53, the distribution acquisition unit 41, the threshold value setting unit 43, and the changing unit 44.
- the quality determination device 40 of the present embodiment includes a storage unit 51, an acquisition unit 52, a provision unit 53, a distribution acquisition unit 41, a quality determination unit 42, a threshold value setting unit 43, and the like. It is provided with a change unit 44.
- the storage unit 51 stores the image-related information 50a and the search information 50b in the storage device 50m in association with each other.
- the image-related information 50a is at least one of the reference image BP1 and the feature amount distribution FD1.
- the search information 50b is information that can search the image-related information 50a, and includes acquisition conditions when the reference image BP1 is acquired.
- the search information 50b includes, for example, information such as a management number, a name, a creation date, a data capacity, and a creator of the image-related information 50a.
- the acquisition condition is a condition that can be specified by the substrate working machine WM, and is at least the object of the information about the object, the information about the image pickup device 80, and the information about the image pickup condition of the image pickup device 80. It is preferable to include information about.
- the information about the object includes, for example, information about the part type, model, vendor (manufacturer), production lot, etc. of the part 91.
- the information about the object may include, for example, information about the shape of the part 91, information about how to handle the part 91, and the like.
- the information about the image pickup apparatus 80 includes, for example, information about the model of the image pickup apparatus 80, the vendor (manufacturer), and the like.
- the imaging conditions of the imaging device 80 include, for example, the type of light source, the irradiation direction of light, the exposure time, the aperture value, and the like.
- the storage unit 51 stores the work result information 50c regarding the quality of the work on the substrate when the reference image BP1 is acquired in association with the image-related information 50a and the search information 50b.
- the storage device 50m can store the image-related information 50a, the search information 50b, and the work result information 50c in association with each other.
- the work result information 50c may include the work status (for example, work time, work place, equipment used, work conditions, etc.) of the work on the board in addition to the work result (good or bad) of the work on the board. ..
- the storage device 50m only needs to be able to store the image-related information 50a, the search information 50b, and the work result information 50c in association with each other, and a known storage device can be used.
- a non-volatile storage device capable of rewriting such information can be used.
- the storage device 50 m may be provided so as to be accessible from the board-to-board work machine WM connected to the network.
- the acquisition unit 52 obtains the image-related information 50a associated with the search information 50b including the acquisition conditions that match the acquisition conditions of the target image OP1 in which the image pickup device 80 of the board-to-board work machine WM imaged the object in the board-to-board work. , Obtained from the storage device 50 m.
- FIG. 8 schematically shows an example of image-related information 50a, search information 50b, and work result information 50c stored in the storage device 50m.
- Reference numeral 1 denotes a reference image BP1 represented by data 5D1 obtained by capturing an object represented by data 5A1 by the imaging device 80 indicated by data 5B1 under the imaging conditions indicated by data 5C1 and stored in the storage device 50m. It is shown that.
- No. 1 indicates that the feature amount distribution FD1 shown in the data 5E1 acquired from the reference image BP1 is stored in the storage device 50m together with the reference image BP1. Furthermore, No. 1 indicates that the work result information 50c of the work on the substrate when the reference image BP1 is acquired is shown in the data 5F1. No. The above-mentioned thing about No. 1 is No. The same can be said for 2 and later.
- No. Reference numeral 3 shows that the reference image BP1 shown in the data 5D3 is stored in the storage device 50m, but the feature amount distribution FD1 acquired from the reference image BP1 is not stored in the storage device 50m.
- No. 4 indicates that the feature amount distribution FD1 shown in the data 5E3 is stored in the storage device 50 m, but the reference image BP1 when the feature amount distribution FD1 is acquired is not stored in the storage device 50 m. ing.
- the acquisition condition of the target image OP1 when the image pickup device 80 of the substrate working machine WM images the target image OP1 is No. It is assumed that the object, the imaging device, and the imaging conditions of 1 are matched. Further, it is assumed that the substrate working machine WM does not hold the reference image BP1 or the feature amount distribution FD1 corresponding to the acquisition condition. At this time, the acquisition unit 52 can acquire the reference image BP1 represented by the data 5D1 from the storage device 50m.
- the acquisition unit 52 can also acquire the feature amount distribution FD1 shown in the data 5E1 from the storage device 50m. Further, the acquisition unit 52 can also acquire both the reference image BP1 shown in the data 5D1 and the feature amount distribution FD1 shown in the data 5E1 from the storage device 50m. Further, in any case, the acquisition unit 52 can acquire the work result information 50c indicated by the data 5F1 from the storage device 50m.
- the acquisition unit 52 can acquire the reference image BP1 represented by the data 5D2 from the storage device 50m. Further, the acquisition unit 52 can also acquire the feature amount distribution FD1 shown in the data 5E2 from the storage device 50m.
- the acquisition unit 52 can also acquire both the reference image BP1 shown in the data 5D2 and the feature amount distribution FD1 shown in the data 5E2 from the storage device 50m. Further, in any case, the acquisition unit 52 can acquire the work result information 50c indicated by the data 5F2 from the storage device 50m.
- the acquisition unit 52 can acquire the image-related information 50a associated with the search information 50b including the acquisition condition matching the acquisition condition of the target image OP1 from the storage device 50m. If there is no image-related information 50a that matches all the acquisition conditions, the acquisition unit 52 can acquire at least the image-related information 50a that matches the type of the object from the storage device 50m.
- the quality determination device 40 includes the distribution acquisition unit 41 described above. For example, No. 8 shown in FIG. As in the case of 3, it is assumed that the acquisition unit 52 acquires the reference image BP1 or the reference image BP1 and the work result information 50c, and does not acquire the feature amount distribution FD1.
- the distribution acquisition unit 41 acquires the feature quantity distribution FD1 by using the reference image BP1 acquired by the acquisition unit 52.
- the quality determination unit 42 uses the image-related information 50a (feature amount distribution FD1 acquired from the reference image BP1) acquired by the acquisition unit 52 to acquire the quality of the work on the substrate when the target image OP1 is acquired. Can be judged.
- the acquisition unit 52 acquires at least the feature amount distribution FD1 which is the image-related information 50a from the storage device 50m, the quality determination device 40 does not need the distribution acquisition unit 41 described above. For example, No. 8 shown in FIG. As in the case of 4, it is assumed that the acquisition unit 52 acquires the feature amount distribution FD1 or the feature amount distribution FD1 and the work result information 50c.
- the quality determination unit 42 can determine the quality of the work on the substrate when the target image OP1 is acquired by using the image-related information 50a (feature amount distribution FD1) acquired by the acquisition unit 52. In either case, the pass / fail determination unit 42 extracts the target feature amount OF1 which is the feature amount of the entire image for each image of the target image OP1, and the target feature amount OF1 with respect to the feature area FR1 defined by the feature amount distribution FD1. It is preferable to judge the quality of the work on the substrate when the target image OP1 is acquired, based on the degree of deviation of.
- the quality determination unit 42 determines the quality of the work on the substrate based on whether or not the Mahalanobis distance MD1 from the feature region FR1 exceeds a predetermined threshold value TH1. Further, it is preferable that the quality determination unit 42 determines the quality of the work on the substrate by the RT method, which is one of the Mahalanobis Taguchi methods. Further, as described above, it is preferable that the quality determination device 40 includes the threshold value setting unit 43.
- the acquisition unit 52 acquires the image-related information 50a from the storage device 50m.
- the quality determination unit 42 can determine the quality of the work on the substrate by using the appropriate feature amount distribution FD1 regardless of the change of the vendor of the component 91.
- the quality determination device 40 includes the change unit 44.
- the change unit 44 switches the feature amount distribution FD1 used by the quality determination unit 42 to the feature amount distribution FD1 that matches the part 91 after the vendor change at the timing when the vendor of the part 91 supplied to the component mounting machine WM3 is switched. ..
- the providing unit 53 stores the target image OP1 and at least one of the feature amount distribution FD1 acquired by using the target image OP1 and the reference image BP1 in the storage device 50m.
- the distribution acquisition unit 41 acquires the feature amount distribution FD1 by using the target image OP1 and the reference image BP1.
- Reference numeral 101 denotes a state in which the providing unit 53 stores both the target image OP1 and the feature amount distribution FD1 acquired by using the target image OP1 and the reference image BP1 in the storage device 50 m.
- the target image OP1 represented by the data 5Dx obtained by capturing the object represented by the data 5A1 by the imaging device 80 indicated by the data 5B1 under the imaging conditions shown by the data 5C3 is stored in the storage device 50m. ing.
- the feature amount distribution FD1 shown by the data 5Ex is stored in the storage device 50 m together with the target image OP1. Further, the work result information 50c indicated by the data 5Fx when the target image OP1 is acquired is stored in the storage device 50m.
- the providing unit 53 stores the stored image. It is preferable to store the image-related information 50a and the like in addition to the related information 50a. As a result, the learning data is increased, and the determination accuracy by the quality determination device 40 is improved.
- the storage unit 51 and the storage device 50 m are provided on the data server 70 capable of communicating with the board working machine WM, and the acquisition unit 52 and the pass / fail judgment unit 42 are paired with each other. It is preferable that it is provided in the substrate working machine WM.
- the data server 70 is preferably a shared server capable of sharing information among a plurality of board-to-board work machines WM. As shown in FIG. 3, the providing unit 53, the distribution acquisition unit 41, the threshold value setting unit 43, and the changing unit 44 can be appropriately provided on the substrate working machine WM.
- the plurality of board-to-board work machines WM and the data server 70 are communicably connected by the communication unit 70N.
- the communication unit 70N can connect them by wire, and can also connect them wirelessly.
- various communication methods can be adopted.
- a wide area network (WAN: Wide Area Network) is configured by a plurality of board-to-board work machines WM and a data server 70.
- the data server 70 is a shared server capable of sharing information among a plurality of board-to-board work machines WM.
- the shared server is a cloud server that can be accessed by a plurality of companies
- the storage amount of the image-related information 50a is likely to increase as compared with the shared server configured by one company. Therefore, the acquisition unit 52 can easily acquire the desired image-related information 50a. It also improves the reliability and stability of the data.
- acquisition conditions object, imaging device, imaging conditions, etc.
- image-related information 50a work result information 50c, and the like are disclosed to other companies.
- the data server 70 may include a control unit corresponding to the distribution acquisition unit 41. it can.
- the control unit acquires the feature amount distribution FD1 by using the target image OP1 and the reference image BP1.
- the pass / fail judgment method includes a storage step, an acquisition step, and a pass / fail judgment step.
- the storage process corresponds to the control performed by the storage unit 51.
- the acquisition process corresponds to the control performed by the acquisition unit 52.
- the quality determination step corresponds to the control performed by the quality determination unit 42.
- the pass / fail determination method further includes at least one of a providing step, a distribution acquisition step, a threshold setting step, and a changing step.
- the providing process corresponds to the control performed by the providing unit 53.
- the distribution acquisition step corresponds to the control performed by the distribution acquisition unit 41.
- the threshold value setting step corresponds to the control performed by the threshold value setting unit 43.
- the change step corresponds to the control performed by the change unit 44.
- the quality determination device 40 According to the quality determination device 40, a storage unit 51, an acquisition unit 52, and a quality determination unit 42 are provided. As a result, the quality determination device 40 can acquire the image-related information 50a and determine the quality of the work on the substrate using the acquired image-related information 50a. The same can be said for the quality determination device 40 as for the quality determination method.
- 40 Good / bad judgment device
- 51 Storage unit
- 52 Acquisition unit
- 50a Image-related information
- 50b Search information
- 50c Work result information
- 50m storage device
- 41 distribution acquisition unit
- 42 pass / fail judgment unit
- 90: Board 91: Parts
- BP1 Reference image
- BF1 Reference feature amount
- FD1 Feature amount distribution
- FR1 Feature region
- MD1 Mahalanobis distance
- TH1 Threshold
- OP1 Target image
- OF1 Target feature amount
- WM anti-board work machine
- WM3 parts mounting machine.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Theoretical Computer Science (AREA)
- Operations Research (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Supply And Installment Of Electrical Components (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Analysis (AREA)
Abstract
This quality determination device is equipped with a storage unit, an acquisition unit, and a quality determination unit. The distribution of a plurality of base feature amounts at the time of extraction, from each base image, of a base feature amount that is an overall image feature amount is set as a feature amount distribution. At such time, the storage unit associates together and stores, in a storage device, image-related information that is at least one among the base images and the feature amount distribution, and search information that enables searching of the image-related information and includes the acquisition conditions at the time of acquisition of the base images. The acquisition unit acquires, from the storage device, image-related information that is associated with the search information that includes acquisition conditions matching the acquisition conditions of an object image captured of an object during substrate work by an imaging device of a substrate work machine. The quality determination unit uses the image-related information acquired by the acquisition unit to determine the quality of substrate work performed at the time of acquisition of the object image.
Description
本明細書は、良否判定装置および良否判定方法に関する技術を開示する。
This specification discloses a technique relating to a quality determination device and a quality determination method.
特許文献1に記載の画像処理システムでは、各部品実装機の制御装置は、生産開始時にフィーダから供給される部品に関する学習結果が、学習用コンピュータの記憶装置に保存されているか否かを、学習用コンピュータに問い合わせる。そして、制御装置は、記憶装置に当該学習結果が保存されているときに、当該学習結果を記憶装置から取り寄せて、生産開始当初から当該学習結果を用いて学習型超解像処理を行う。
In the image processing system described in Patent Document 1, the control device of each component mounting machine learns whether or not the learning result regarding the component supplied from the feeder at the start of production is stored in the storage device of the learning computer. Contact your computer. Then, when the learning result is stored in the storage device, the control device fetches the learning result from the storage device and performs the learning type super-resolution processing using the learning result from the beginning of production.
特許文献2に記載の外観検査支援システムは、複数の外観検査装置の間で検査データの精度を互いに参照する。具体的には、外観検査支援システムは、評価ユニットと、成績データ保持ユニットと、成績提供ユニットとを備えている。評価ユニットは、検査データを用いた検査の実績に基づいて、当該検査データによる検査精度を部品ごとに評価する。成績データ保持ユニットは、評価された検査精度に関する情報を、部品ごとに成績データとして保持する。成績提供ユニットは、ネットワークを介して接続された他の検査装置へ成績データを提供する。
The visual inspection support system described in Patent Document 2 refers to the accuracy of inspection data among a plurality of visual inspection devices. Specifically, the visual inspection support system includes an evaluation unit, a grade data holding unit, and a grade providing unit. The evaluation unit evaluates the inspection accuracy based on the inspection data for each part based on the results of the inspection using the inspection data. The grade data holding unit holds information on the evaluated inspection accuracy as grade data for each part. The grade providing unit provides grade data to other inspection devices connected via a network.
しかしながら、特許文献1に記載の画像処理システムは、検索する学習結果が、低解像度画像および高解像度画像との関係に関するものであり、対基板作業機の対基板作業の良否を判断するものではない。また、特許文献2に記載の外観検査支援システムは、複数の外観検査装置の間で、検査精度に関する情報を互いに参照するものである。
However, in the image processing system described in Patent Document 1, the learning result to be searched is related to the relationship between the low-resolution image and the high-resolution image, and does not judge the quality of the board-to-board work of the board-to-board working machine. .. Further, the visual inspection support system described in Patent Document 2 refers to information on inspection accuracy among a plurality of visual inspection devices.
このような事情に鑑みて、本明細書は、基準画像および特徴量分布のうちの少なくとも一方である画像関連情報を取得して、取得した画像関連情報を用いて対基板作業の良否を判断することが可能な良否判定装置および良否判定方法を開示する。
In view of such circumstances, the present specification acquires image-related information which is at least one of the reference image and the feature amount distribution, and uses the acquired image-related information to determine the quality of the work on the substrate. A pass / fail judgment device and a pass / fail judgment method capable of this are disclosed.
本明細書は、記憶部と、取得部と、良否判断部とを備える良否判定装置を開示する。ここで、基板に所定の対基板作業を行う対基板作業機の撮像装置が前記対基板作業において同種の対象物について同種の撮像条件で撮像した複数の画像を基準画像とする。前記基準画像の各画像について画像全体の特徴量である基準特徴量が抽出されたときの複数の前記基準特徴量の分布を特徴量分布とする。このとき、前記記憶部は、前記基準画像および前記特徴量分布のうちの少なくとも一方である画像関連情報と、前記画像関連情報を検索可能な情報であって前記基準画像が取得されたときの取得条件を含む検索情報と、を関連付けて記憶装置に記憶させる。前記取得部は、前記対基板作業機の前記撮像装置が前記対基板作業において前記対象物を撮像した対象画像の取得条件と一致する取得条件を含む前記検索情報に関連付けられている前記画像関連情報を、前記記憶装置から取得する。前記良否判断部は、前記取得部によって取得された前記画像関連情報を用いて、前記対象画像を取得したときの前記対基板作業の良否を判断する。
This specification discloses a quality determination device including a storage unit, an acquisition unit, and a quality determination unit. Here, a plurality of images taken by the image pickup device of the board-to-board work machine that performs a predetermined work on the substrate with the same image-taking conditions for the same type of object in the board-to-board work are used as reference images. The distribution of a plurality of the reference feature amounts when the reference feature amount, which is the feature amount of the entire image, is extracted for each image of the reference image is defined as the feature amount distribution. At this time, the storage unit acquires image-related information that is at least one of the reference image and the feature amount distribution, and information that can search the image-related information when the reference image is acquired. The search information including the condition is associated and stored in the storage device. The acquisition unit is the image-related information associated with the search information including acquisition conditions that match the acquisition conditions of the target image in which the object is imaged by the image pickup device of the board-to-board work machine. Is obtained from the storage device. The quality determination unit determines the quality of the work on the substrate when the target image is acquired by using the image-related information acquired by the acquisition unit.
また、本明細書は、記憶工程と、取得工程と、良否判断工程とを備える良否判定方法を開示する。ここで、基板に所定の対基板作業を行う対基板作業機の撮像装置が前記対基板作業において同種の対象物について同種の撮像条件で撮像した複数の画像を基準画像とする。前記基準画像の各画像について画像全体の特徴量である基準特徴量が抽出されたときの複数の前記基準特徴量の分布を特徴量分布とする。このとき、前記記憶工程は、前記基準画像および前記特徴量分布のうちの少なくとも一方である画像関連情報と、前記画像関連情報を検索可能な情報であって前記基準画像が取得されたときの取得条件を含む検索情報と、を関連付けて記憶装置に記憶させる。前記取得工程は、前記対基板作業機の前記撮像装置が前記対基板作業において前記対象物を撮像した対象画像の取得条件と一致する取得条件を含む前記検索情報に関連付けられている前記画像関連情報を、前記記憶装置から取得する。前記良否判断工程は、前記取得工程によって取得された前記画像関連情報を用いて、前記対象画像を取得したときの前記対基板作業の良否を判断する。
Further, the present specification discloses a quality determination method including a storage process, an acquisition process, and a quality determination process. Here, a plurality of images taken by the image pickup device of the board-to-board work machine that performs a predetermined work on the substrate with the same image-taking conditions for the same type of object in the board-to-board work are used as reference images. The distribution of a plurality of the reference feature amounts when the reference feature amount, which is the feature amount of the entire image, is extracted for each image of the reference image is defined as the feature amount distribution. At this time, the storage step acquires the image-related information that is at least one of the reference image and the feature amount distribution, and the information that can search the image-related information when the reference image is acquired. The search information including the condition is associated and stored in the storage device. The acquisition step is the image-related information associated with the search information including acquisition conditions that match the acquisition conditions of the target image in which the object is imaged by the image pickup device of the board-to-board work machine. Is obtained from the storage device. In the quality determination step, the quality of the work on the substrate when the target image is acquired is determined by using the image-related information acquired by the acquisition process.
上記の良否判定装置によれば、記憶部、取得部および良否判断部を備えている。これにより、良否判定装置は、画像関連情報を取得して、取得した画像関連情報を用いて対基板作業の良否を判断することができる。良否判定装置について上述したことは、良否判定方法についても同様に言える。
According to the above-mentioned pass / fail judgment device, it has a storage unit, an acquisition unit, and a pass / fail judgment unit. As a result, the quality determination device can acquire image-related information and determine the quality of the work on the substrate using the acquired image-related information. The same can be said for the pass / fail determination device for the pass / fail determination method.
1.実施形態
1-1.対基板作業ラインWMLの構成例
対基板作業ラインWMLでは、基板90に所定の対基板作業を行う。対基板作業ラインWMLを構成する対基板作業機WMの種類および数は、限定されない。図1に示すように、本実施形態の対基板作業ラインWMLは、印刷機WM1、印刷検査機WM2、部品装着機WM3、リフロー炉WM4および外観検査機WM5の複数(5つ)の対基板作業機WMを備えており、基板90は、基板搬送装置(図示略)によって、この順に搬送される。 1. 1. Embodiment 1-1. Configuration example of the substrate work line WML In the substrate work line WML, a predetermined substrate work is performed on thesubstrate 90. The type and number of anti-board work machines WM constituting the anti-board work line WML are not limited. As shown in FIG. 1, the board-to-board work line WML of this embodiment is a plurality (five) board-to-board work of a printing machine WM1, a printing inspection machine WM2, a component mounting machine WM3, a reflow furnace WM4, and an appearance inspection machine WM5. The machine WM is provided, and the substrate 90 is conveyed in this order by a substrate conveying device (not shown).
1-1.対基板作業ラインWMLの構成例
対基板作業ラインWMLでは、基板90に所定の対基板作業を行う。対基板作業ラインWMLを構成する対基板作業機WMの種類および数は、限定されない。図1に示すように、本実施形態の対基板作業ラインWMLは、印刷機WM1、印刷検査機WM2、部品装着機WM3、リフロー炉WM4および外観検査機WM5の複数(5つ)の対基板作業機WMを備えており、基板90は、基板搬送装置(図示略)によって、この順に搬送される。 1. 1. Embodiment 1-1. Configuration example of the substrate work line WML In the substrate work line WML, a predetermined substrate work is performed on the
印刷機WM1は、基板90において、複数の部品91の各々の装着位置に、はんだを印刷する。印刷検査機WM2は、印刷機WM1によって印刷されたはんだの印刷状態を検査する。部品装着機WM3は、基板90(印刷機WM1によって印刷されたはんだの上)に複数の部品91を装着する。部品装着機WM3は、一つであっても良く、複数であっても良い。部品装着機WM3が複数設けられる場合は、複数の部品装着機WM3が分担して、複数の部品91を装着することができる。
The printing machine WM1 prints solder on the substrate 90 at each mounting position of the plurality of parts 91. The printing inspection machine WM2 inspects the printing state of the solder printed by the printing machine WM1. The component mounting machine WM3 mounts a plurality of components 91 on the substrate 90 (on the solder printed by the printing machine WM1). The number of component mounting machines WM3 may be one or more. When a plurality of component mounting machines WM3 are provided, the plurality of component mounting machines WM3 can share and mount the plurality of parts 91.
リフロー炉WM4は、部品装着機WM3によって複数の部品91が装着された基板90を加熱し、はんだを溶融させて、はんだ付けを行う。外観検査機WM5は、部品装着機WM3によって装着された複数の部品91の装着状態などを検査する。このように、対基板作業ラインWMLは、複数(5つ)の対基板作業機WMを用いて、基板90を順に搬送し、検査処理を含む生産処理を実行して基板製品900を生産することができる。なお、対基板作業ラインWMLは、例えば、機能検査機、バッファ装置、基板供給装置、基板反転装置、シールド装着装置、接着剤塗布装置、紫外線照射装置などの対基板作業機WMを必要に応じて備えることもできる。
The reflow furnace WM4 heats the substrate 90 on which a plurality of parts 91 are mounted by the parts mounting machine WM3, melts the solder, and performs soldering. The visual inspection machine WM5 inspects the mounting state of a plurality of parts 91 mounted by the component mounting machine WM3. In this way, the board-to-board work line WML uses a plurality of (five) board-to-board work machines WM to sequentially convey the boards 90 and execute a production process including an inspection process to produce the board product 900. Can be done. In addition, the work line to board WML includes, for example, a work machine WM such as a function inspection machine, a buffer device, a substrate supply device, a substrate reversing device, a shield mounting device, an adhesive coating device, and an ultraviolet irradiation device as necessary. You can also prepare.
対基板作業ラインWMLを構成する複数(5つ)の対基板作業機WMおよび管理装置WMCは、通信部LCによって電気的に接続されている。通信部LCは、有線によって通信可能に接続することができ、無線によって通信可能に接続することもできる。また、通信方法は、種々の方法をとり得る。本実施形態では、複数(5つ)の対基板作業機WMおよび管理装置WMCによって、構内情報通信網(LAN:Local Area Network)が構成されている。これにより、複数(5つ)の対基板作業機WMは、通信部LCを介して、互いに通信することができる。また、複数(5つ)の対基板作業機WMは、通信部LCを介して、管理装置WMCと通信することができる。
The plurality of (five) anti-board work machines WM and the management device WMC constituting the anti-board work line WML are electrically connected by the communication unit LC. The communication unit LC can be connected to be communicable by wire, and can also be connected to be communicable by wireless. In addition, various communication methods can be adopted. In the present embodiment, a premises information communication network (LAN: Local Area Network) is configured by a plurality of (five) anti-board work machines WM and management device WMC. As a result, the plurality (five) anti-board working machines WM can communicate with each other via the communication unit LC. Further, the plurality (five) anti-board working machines WM can communicate with the management device WMC via the communication unit LC.
管理装置WMCは、対基板作業ラインWMLを構成する複数(5つ)の対基板作業機WMの制御を行い、対基板作業ラインWMLの動作状況を監視する。管理装置WMCには、複数(5つ)の対基板作業機WMを制御する種々の制御データが記憶されている。管理装置WMCは、複数(5つ)の対基板作業機WMの各々に制御データを送信する。また、複数(5つ)の対基板作業機WMの各々は、管理装置WMCに動作状況および生産状況を送信する。
The management device WMC controls a plurality of (five) anti-board work machines WM constituting the anti-board work line WML, and monitors the operating status of the anti-board work line WML. The management device WMC stores various control data for controlling a plurality of (five) anti-board working machines WM. The management device WMC transmits control data to each of a plurality (five) anti-board working machines WM. Further, each of the plurality (five) anti-board working machines WM transmits the operating status and the production status to the management device WMC.
管理装置WMCには、例えば、データサーバ70を設けることができる。データサーバ70は、例えば、対基板作業機WMが対基板作業に関して取得した取得データを保存することができる。例えば、対基板作業機WMによって撮像された種々の画像データなどは、取得データに含まれる。対基板作業機WMによって取得された稼働状況の記録(ログデータ)などは、取得データに含まれる。
For example, a data server 70 can be provided in the management device WMC. The data server 70 can store, for example, the acquired data acquired by the board-to-board work machine WM regarding the board-to-board work. For example, various image data captured by the anti-board working machine WM are included in the acquired data. The record (log data) of the operating status acquired by the board working machine WM is included in the acquired data.
また、データサーバ70は、基板90の生産に関する種々の生産情報を保存することもできる。例えば、部品91の種類ごとの形状に関する情報、電気的特性に関する情報、部品91の取り扱い方法に関する情報などの部品データは、生産情報に含まれる。印刷検査機WM2、外観検査機WM5などの検査機による検査結果は、生産情報に含まれる。
The data server 70 can also store various production information related to the production of the substrate 90. For example, component data such as information on the shape of each type of component 91, information on electrical characteristics, and information on how to handle the component 91 is included in the production information. The inspection results by inspection machines such as the print inspection machine WM2 and the appearance inspection machine WM5 are included in the production information.
1-2.部品装着機WM3の構成例
部品装着機WM3は、基板90に複数の部品91を装着する。図2に示すように、部品装着機WM3は、基板搬送装置11、部品供給装置12、部品移載装置13、部品カメラ14、基板カメラ15および制御装置16を備えている。 1-2. Configuration example of the component mounting machine WM3 The component mounting machine WM3 mounts a plurality ofcomponents 91 on the substrate 90. As shown in FIG. 2, the component mounting machine WM3 includes a board transfer device 11, a component supply device 12, a component transfer device 13, a component camera 14, a board camera 15, and a control device 16.
部品装着機WM3は、基板90に複数の部品91を装着する。図2に示すように、部品装着機WM3は、基板搬送装置11、部品供給装置12、部品移載装置13、部品カメラ14、基板カメラ15および制御装置16を備えている。 1-2. Configuration example of the component mounting machine WM3 The component mounting machine WM3 mounts a plurality of
基板搬送装置11は、例えば、ベルトコンベアなどによって構成され、基板90を搬送方向(X軸方向)に搬送する。基板90は、回路基板であり、電子回路および電気回路のうちの少なくとも一方が形成される。基板搬送装置11は、部品装着機WM3の機内に基板90を搬入し、機内の所定位置に基板90を位置決めする。基板搬送装置11は、部品装着機WM3による複数の部品91の装着処理が終了した後に、基板90を部品装着機WM3の機外に搬出する。
The substrate transfer device 11 is composed of, for example, a belt conveyor or the like, and conveys the substrate 90 in the transfer direction (X-axis direction). The substrate 90 is a circuit board, and at least one of an electronic circuit and an electric circuit is formed. The board transfer device 11 carries the board 90 into the component mounting machine WM3 and positions the board 90 at a predetermined position in the machine. The board transfer device 11 carries out the board 90 out of the component mounting machine WM3 after the mounting process of the plurality of components 91 by the component mounting machine WM3 is completed.
部品供給装置12は、基板90に装着される複数の部品91を供給する。部品供給装置12は、基板90の搬送方向(X軸方向)に沿って設けられる複数のフィーダ121を備えている。複数のフィーダ121の各々は、複数の部品91が収納されるキャリアテープ(図示略)をピッチ送りさせて、フィーダ121の先端側に位置する供給位置において部品91を採取可能に供給する。また、部品供給装置12は、チップ部品などと比べて比較的大型の電子部品(例えば、リード部品など)を、トレイ上に配置した状態で供給することもできる。
The component supply device 12 supplies a plurality of components 91 mounted on the substrate 90. The component supply device 12 includes a plurality of feeders 121 provided along the transport direction (X-axis direction) of the substrate 90. Each of the plurality of feeders 121 is pitch-feeded with a carrier tape (not shown) in which the plurality of parts 91 are housed, so that the parts 91 can be collected at a supply position located on the tip side of the feeder 121. Further, the component supply device 12 can also supply electronic components (for example, lead components) that are relatively large in size as compared with chip components and the like in a state of being arranged on the tray.
部品移載装置13は、ヘッド駆動装置131および移動台132を備えている。ヘッド駆動装置131は、直動機構によって移動台132を、X軸方向およびY軸方向に移動可能に構成されている。移動台132には、クランプ部材(図示略)によって装着ヘッド20が着脱可能(交換可能)に設けられている。装着ヘッド20は、少なくとも一つの保持部材30を用いて、部品供給装置12によって供給される部品91を採取し保持して、基板搬送装置11によって位置決めされた基板90に部品91を装着する。保持部材30は、例えば、吸着ノズル、チャックなどを用いることができる。
The parts transfer device 13 includes a head drive device 131 and a moving table 132. The head drive device 131 is configured to be able to move the movable table 132 in the X-axis direction and the Y-axis direction by a linear motion mechanism. A mounting head 20 is detachably (replaceable) provided on the moving table 132 by a clamp member (not shown). The mounting head 20 uses at least one holding member 30 to collect and hold the component 91 supplied by the component supply device 12, and mounts the component 91 on the substrate 90 positioned by the substrate transfer device 11. As the holding member 30, for example, a suction nozzle or a chuck can be used.
部品カメラ14および基板カメラ15は、公知の撮像装置を用いることができる。部品カメラ14は、光軸がZ軸方向の上向き(鉛直上方方向)になるように、部品装着機WM3の基台に固定されている。部品カメラ14は、保持部材30に保持されている部品91を下方から撮像することができる。基板カメラ15は、光軸がZ軸方向の下向き(鉛直下方方向)になるように、部品移載装置13の移動台132に設けられている。基板カメラ15は、基板90を上方から撮像することができる。部品カメラ14および基板カメラ15は、制御装置16から送出される制御信号に基づいて撮像を行う。部品カメラ14および基板カメラ15によって撮像された画像データは、制御装置16に送信される。
A known imaging device can be used for the component camera 14 and the substrate camera 15. The component camera 14 is fixed to the base of the component mounting machine WM3 so that the optical axis is upward in the Z-axis direction (vertical upward direction). The component camera 14 can take an image of the component 91 held by the holding member 30 from below. The substrate camera 15 is provided on the moving table 132 of the component transfer device 13 so that the optical axis faces downward (vertically downward) in the Z-axis direction. The substrate camera 15 can image the substrate 90 from above. The component camera 14 and the substrate camera 15 perform imaging based on a control signal transmitted from the control device 16. Image data captured by the component camera 14 and the board camera 15 is transmitted to the control device 16.
制御装置16は、公知の演算装置および記憶装置を備えており、制御回路が構成されている(いずれも図示略)。制御装置16には、部品装着機WM3に設けられる各種センサから出力される情報、画像データなどが入力される。制御装置16は、制御プログラムおよび予め設定されている所定の装着条件などに基づいて、各装置に対して制御信号を送出する。
The control device 16 includes a known arithmetic unit and a storage device, and constitutes a control circuit (both are not shown). Information, image data, and the like output from various sensors provided in the component mounting machine WM3 are input to the control device 16. The control device 16 sends a control signal to each device based on a control program and a predetermined mounting condition set in advance.
例えば、制御装置16は、基板搬送装置11によって位置決めされた基板90を基板カメラ15に撮像させる。制御装置16は、基板カメラ15によって撮像された画像を画像処理して、基板90の位置決め状態を認識する。また、制御装置16は、部品供給装置12によって供給された部品91を保持部材30に採取させ保持させて、保持部材30に保持されている部品91を部品カメラ14に撮像させる。制御装置16は、部品カメラ14によって撮像された画像を画像処理して、部品91の適否、部品91の保持姿勢を認識する。
For example, the control device 16 causes the board camera 15 to image the board 90 positioned by the board transfer device 11. The control device 16 processes the image captured by the substrate camera 15 to recognize the positioning state of the substrate 90. Further, the control device 16 causes the holding member 30 to collect and hold the component 91 supplied by the component supply device 12, and causes the component camera 14 to image the component 91 held by the holding member 30. The control device 16 processes the image captured by the component camera 14 to recognize the suitability of the component 91 and the holding posture of the component 91.
制御装置16は、制御プログラムなどによって予め設定される装着予定位置の上方に向かって、保持部材30を移動させる。また、制御装置16は、基板90の位置決め状態、部品91の保持姿勢などに基づいて、装着予定位置を補正して、実際に部品91を装着する装着位置を設定する。装着予定位置および装着位置は、位置(X軸座標およびY軸座標)の他に回転角度を含む。
The control device 16 moves the holding member 30 toward the upper side of the expected mounting position preset by a control program or the like. Further, the control device 16 corrects the planned mounting position based on the positioning state of the board 90, the holding posture of the component 91, and the like, and sets the mounting position where the component 91 is actually mounted. The planned mounting position and the mounting position include the rotation angle in addition to the position (X-axis coordinate and Y-axis coordinate).
制御装置16は、装着位置に合わせて、保持部材30の目標位置(X軸座標およびY軸座標)および回転角度を補正する。制御装置16は、補正された目標位置において補正された回転角度で保持部材30を下降させて、基板90に部品91を装着する。制御装置16は、上記のピックアンドプレースサイクルを繰り返すことによって、基板90に複数の部品91を装着する装着処理を実行する。
The control device 16 corrects the target position (X-axis coordinate and Y-axis coordinate) and the rotation angle of the holding member 30 in accordance with the mounting position. The control device 16 lowers the holding member 30 at the corrected rotation angle at the corrected target position, and mounts the component 91 on the substrate 90. The control device 16 executes a mounting process of mounting the plurality of components 91 on the substrate 90 by repeating the above pick-and-place cycle.
1-3.良否判定装置40の構成例
例えば、既述したように、部品装着機WM3は、部品カメラ14によって撮像された画像を画像処理して、部品91の適否、部品91の保持姿勢を認識している。このとき、例えば、画像から抽出される部品91についての特徴量(例えば、部品91の色、外形形状、面積など)に基づいて、部品91の適否、部品91の保持姿勢などの部品91の保持作業の良否を判定しようとすると、判定条件の漏れによる誤判定の可能性がある。 1-3. Configuration example of thequality determination device 40 For example, as described above, the component mounting machine WM3 processes the image captured by the component camera 14 to recognize the suitability of the component 91 and the holding posture of the component 91. .. At this time, for example, based on the feature amount (for example, the color, outer shape, area, etc.) of the component 91 extracted from the image, the component 91 is held, such as the suitability of the component 91 and the holding posture of the component 91. When trying to judge the quality of work, there is a possibility of erroneous judgment due to omission of judgment conditions.
例えば、既述したように、部品装着機WM3は、部品カメラ14によって撮像された画像を画像処理して、部品91の適否、部品91の保持姿勢を認識している。このとき、例えば、画像から抽出される部品91についての特徴量(例えば、部品91の色、外形形状、面積など)に基づいて、部品91の適否、部品91の保持姿勢などの部品91の保持作業の良否を判定しようとすると、判定条件の漏れによる誤判定の可能性がある。 1-3. Configuration example of the
例えば、正規の部品91は、白色の円形状であり、部品91の面積(円の面積)が所定値であったとする。このとき、部品装着機WM3が、部品91の色および面積のみを判定条件として設定すると、例えば、部品91の色は白色であり、面積は所定値であるが、外形形状が四角形の部品91について、部品91の不適を判定することができない。また、誤判定を低減しようとすると、設定すべき判定条件の数が増加し、判定条件の設定作業が煩雑になる。
For example, it is assumed that the regular part 91 has a white circular shape, and the area of the part 91 (area of a circle) is a predetermined value. At this time, if the component mounting machine WM3 sets only the color and area of the component 91 as determination conditions, for example, the color of the component 91 is white, the area is a predetermined value, but the external shape of the component 91 is quadrangular. , It is not possible to determine the suitability of the component 91. Further, if an attempt is made to reduce erroneous determination, the number of determination conditions to be set increases, and the work of setting the determination conditions becomes complicated.
そこで、本実施形態では、良否判定装置40を備えている。良否判定装置40は、対基板作業機WMの撮像装置80によって撮像された各画像の画像全体の特徴量に基づいて、対基板作業の良否を判断する。良否判定装置40は、制御ブロックとして捉えると、分布取得部41と、良否判断部42とを備えている。良否判定装置40は、閾値設定部43および変更部44のうちの少なくとも一方をさらに備えると好適である。
Therefore, in the present embodiment, the quality determination device 40 is provided. The quality determination device 40 determines the quality of the work on the substrate based on the feature amount of the entire image of each image captured by the image pickup device 80 of the substrate work machine WM. The pass / fail determination device 40 includes a distribution acquisition unit 41 and a pass / fail determination unit 42 when regarded as a control block. It is preferable that the quality determination device 40 further includes at least one of the threshold value setting unit 43 and the change unit 44.
図3に示すように、本実施形態の良否判定装置40は、分布取得部41と、良否判断部42と、閾値設定部43と、変更部44とを備えている。また、本実施形態の良否判定装置40は、部品装着機WM3の制御装置16に設けられているが、他の対基板作業機WMに設けることもできる。さらに、良否判定装置40は、対基板作業機WMの外部(例えば、管理装置WMCなど)に設けることもできる。
As shown in FIG. 3, the quality determination device 40 of the present embodiment includes a distribution acquisition unit 41, a quality determination unit 42, a threshold value setting unit 43, and a change unit 44. Further, although the quality determination device 40 of the present embodiment is provided in the control device 16 of the component mounting machine WM3, it can also be provided in another board-to-board work machine WM. Further, the quality determination device 40 can be provided outside the board working machine WM (for example, the management device WMC).
1-3-1.分布取得部41
分布取得部41は、基準画像BP1の各画像について画像全体の特徴量である基準特徴量BF1を抽出して、抽出された複数の基準特徴量BF1の分布である特徴量分布FD1を取得する。基準画像BP1は、基板90に所定の対基板作業を行う対基板作業機WMの撮像装置80が対基板作業において同種の対象物について同種の撮像条件で撮像した複数の画像をいう。 1-3-1.Distribution acquisition unit 41
Thedistribution acquisition unit 41 extracts the reference feature amount BF1 which is the feature amount of the entire image for each image of the reference image BP1 and acquires the feature amount distribution FD1 which is the distribution of the extracted plurality of reference feature amounts BF1. The reference image BP1 refers to a plurality of images taken by the image pickup device 80 of the board-to-board work machine WM that performs a predetermined work on the board 90 with the same type of imaging conditions for the same type of object in the work on the board.
分布取得部41は、基準画像BP1の各画像について画像全体の特徴量である基準特徴量BF1を抽出して、抽出された複数の基準特徴量BF1の分布である特徴量分布FD1を取得する。基準画像BP1は、基板90に所定の対基板作業を行う対基板作業機WMの撮像装置80が対基板作業において同種の対象物について同種の撮像条件で撮像した複数の画像をいう。 1-3-1.
The
対基板作業機WMが部品装着機WM3の場合、撮像装置80は、例えば、部品カメラ14であり、このときの対象物は、保持部材30に保持されている部品91である。この場合、対基板作業は、部品91の保持作業である。また、基準画像BP1は、部品種が同じ部品91について、同種の撮像条件で撮像された画像であれば良い。撮像条件には、例えば、光源の種類、光の照射方向、露光時間、絞り値などが含まれる。なお、例えば、自然光などの影響によって撮像条件を完全に一致させることは困難であるので、撮像条件は、対基板作業機WM(部品装着機WM3)によって規定可能な取得条件であれば良い。
When the anti-board working machine WM is the component mounting machine WM3, the image pickup device 80 is, for example, the component camera 14, and the object at this time is the component 91 held by the holding member 30. In this case, the board-to-board work is the holding work of the component 91. Further, the reference image BP1 may be an image captured under the same imaging conditions for the component 91 having the same component type. The imaging conditions include, for example, the type of light source, the irradiation direction of light, the exposure time, the aperture value, and the like. It should be noted that, for example, it is difficult to completely match the imaging conditions due to the influence of natural light or the like, so the imaging conditions may be any acquisition conditions that can be specified by the substrate working machine WM (component mounting machine WM3).
基準画像BP1は、例えば、ロータリヘッドまたはラインヘッドによって保持されている複数の部品91を部品カメラ14が同時に撮像した一の画像から、各部品91の領域が抽出された画像であっても良い。また、基準画像BP1は、複数の部品91を部品カメラ14が順に撮像した画像であっても良い。さらに、基準画像BP1は、これらの画像が混在する画像であっても良い。
The reference image BP1 may be, for example, an image in which the region of each component 91 is extracted from one image simultaneously captured by the component camera 14 on a plurality of components 91 held by the rotary head or the line head. Further, the reference image BP1 may be an image obtained by sequentially capturing a plurality of parts 91 by the component camera 14. Further, the reference image BP1 may be an image in which these images are mixed.
なお、対基板作業機WMが部品装着機WM3の場合、撮像装置80は、例えば、装着ヘッド20に設けられる側方カメラ(図示略)であっても良い。側方カメラは、部品91の側面側から部品91を撮像する点で、部品カメラ14と異なるが、上述したことが同様に言える。
When the board-to-board working machine WM is the component mounting machine WM3, the image pickup device 80 may be, for example, a side camera (not shown) provided on the mounting head 20. The side camera is different from the component camera 14 in that the component 91 is imaged from the side surface side of the component 91, but the same can be said for the above.
また、対基板作業機WMが部品装着機WM3の場合、撮像装置80は、例えば、基板カメラ15であっても良い。このときの対象物は、基板搬送装置11によって位置決めされた基板90である。この場合、対基板作業は、基板90の位置決め作業である。さらに、対基板作業機WMが外観検査機WM5の場合、撮像装置80は、外観検査機WM5に設けられるカメラ(図示略)である。このときの対象物は、基板90に装着されている部品91である。この場合、対基板作業は、部品装着機WM3による部品91の装着作業である。
Further, when the board working machine WM is the component mounting machine WM3, the image pickup device 80 may be, for example, the board camera 15. The object at this time is the substrate 90 positioned by the substrate transfer device 11. In this case, the board-to-board work is the positioning work of the board 90. Further, when the substrate working machine WM is the appearance inspection machine WM5, the image pickup device 80 is a camera (not shown) provided in the appearance inspection machine WM5. The object at this time is the component 91 mounted on the substrate 90. In this case, the board-to-board work is the mounting work of the component 91 by the component mounting machine WM3.
また、対基板作業機WMが印刷検査機WM2の場合、撮像装置80は、印刷検査機WM2に設けられるカメラ(図示略)である。このときの対象物は、基板90に印刷されているはんだである。この場合、対基板作業は、印刷機WM1によるはんだの印刷作業である。このように、対基板作業機WM、撮像装置80、対象物および対基板作業は、限定されない。また、撮像条件について既述したことは、上述したいずれの場合も、同様に言える。本明細書は、説明の便宜上、部品装着機WM3の部品カメラ14が、保持部材30に保持されている部品91を撮像した基準画像BP1について記述されている。
Further, when the substrate working machine WM is the printing inspection machine WM2, the image pickup device 80 is a camera (not shown) provided in the printing inspection machine WM2. The object at this time is the solder printed on the substrate 90. In this case, the board-to-board work is a solder printing work by the printing machine WM1. As described above, the substrate working machine WM, the image pickup apparatus 80, the object, and the substrate working are not limited. Moreover, what has been described about the imaging conditions can be said in the same manner in any of the above cases. For convenience of explanation, this specification describes a reference image BP1 in which the component camera 14 of the component mounting machine WM3 captures the component 91 held by the holding member 30.
図4Aは、部品91の一例を示す底面図である。図4Bは、保持部材30に保持されている図4Aに示す部品91を、部品カメラ14によって撮像した画像の一例を示している。図4Bでは、画像を構成する複数の画素が格子状に配置されている様子が合わせて図示されている。例えば、部品91がチップ抵抗器、チップコンデンサなどの場合、部品91は、電極部の領域である電極領域AR11および電極領域AR12と、本体部の領域である本体領域AR13とを備えている。
FIG. 4A is a bottom view showing an example of the component 91. FIG. 4B shows an example of an image of the component 91 shown in FIG. 4A held by the holding member 30 taken by the component camera 14. In FIG. 4B, a state in which a plurality of pixels constituting the image are arranged in a grid pattern is also shown. For example, when the component 91 is a chip resistor, a chip capacitor, or the like, the component 91 includes an electrode region AR11 and an electrode region AR12, which are regions of the electrode portion, and a main body region AR13, which is a region of the main body portion.
電極領域AR11および電極領域AR12は、銀色である。また、部品91の裏面(底面)側の本体領域AR13は、例えば、白色であり、部品91の表面側の本体領域AR13は、例えば、黒色であるとする。このときに、例えば、保持部材30が部品91の裏面(底面)側を誤って吸着すると(部品91の反転)、部品カメラ14は、部品91の表面側を撮像する。
The electrode region AR11 and the electrode region AR12 are silver. Further, it is assumed that the main body region AR13 on the back surface (bottom surface) side of the component 91 is, for example, white, and the main body region AR13 on the front surface side of the component 91 is, for example, black. At this time, for example, if the holding member 30 mistakenly sucks the back surface (bottom surface) side of the component 91 (reversal of the component 91), the component camera 14 images the front surface side of the component 91.
この場合、電極領域AR11および電極領域AR12は、銀色であり、表面側の本体領域AR13は、黒色であるので、これらの領域の輝度の差は、保持部材30が部品91の表面側を吸着する場合(正規の吸着状態であり、撮像される本体領域AR13は、白色)と比べて、大きくなる。このように、画像における部品91の輝度および色のうちの少なくとも一方が変化すると、画像全体の特徴が、正規の吸着状態のときと比べて変化する。
In this case, the electrode region AR11 and the electrode region AR12 are silver, and the main body region AR13 on the surface side is black. Therefore, the difference in brightness between these regions is that the holding member 30 adsorbs the surface side of the component 91. Compared with the case (in the normal adsorption state, the main body region AR13 to be imaged is white), it is larger. In this way, when at least one of the brightness and the color of the component 91 in the image changes, the characteristics of the entire image change as compared with the case of the normal adsorption state.
また、例えば、保持部材30が部品91の端部を誤って吸着すると(部品91の立ち吸着)、部品91の保持姿勢が正規の吸着状態と比べて変化するので、画像において、電極領域AR11、電極領域AR12および本体領域AR13の各領域の形状(図4Bでは、長方形)が変形する。また、部品91の各領域の面積が正規の吸着状態と比べて変化する。さらに、部品91の各領域の外周の長さが正規の吸着状態と比べて変化する。
Further, for example, if the holding member 30 mistakenly sucks the end portion of the component 91 (standing suction of the component 91), the holding posture of the component 91 changes as compared with the normal suction state. Therefore, in the image, the electrode region AR11, The shapes (rectangular in FIG. 4B) of each of the electrode region AR12 and the main body region AR13 are deformed. Further, the area of each region of the component 91 changes as compared with the normal suction state. Further, the length of the outer circumference of each region of the component 91 changes as compared with the normal suction state.
このように、画像における部品91の形状および形状の面積のうちの少なくとも一方が変化すると、画像全体の特徴が、正規の吸着状態のときと比べて変化する。なお、各領域の形状は、画像を構成する複数の画素の輝度および色のうちの少なくとも一方によって形成される。また、部品91の反転、部品91の立ち吸着は、対基板作業(この場合、部品91の保持作業)の作業結果が不良の場合の一例であり、不良の要因は、これらに限定されない。また、チップ抵抗器、チップコンデンサは、部品91の一例であり、部品91は、これらに限定されない。
In this way, when at least one of the shape and the area of the shape of the component 91 in the image changes, the characteristics of the entire image change as compared with the case of the normal suction state. The shape of each region is formed by at least one of the brightness and color of a plurality of pixels constituting the image. Further, the inversion of the component 91 and the standing suction of the component 91 are examples of cases where the work result of the work on the substrate (in this case, the holding work of the component 91) is defective, and the cause of the defect is not limited to these. Further, the chip resistor and the chip capacitor are examples of the component 91, and the component 91 is not limited thereto.
上述したように、対基板作業の作業結果が不良のときには、画像全体の特徴が、作業結果が良好のときと比べて変化する。そこで、分布取得部41は、基準画像BP1の各画像について画像全体の特徴量である基準特徴量BF1を抽出して、抽出された複数の基準特徴量BF1の分布である特徴量分布FD1を取得する。図4Bに示すように、基準画像BP1の外縁は、対象物(例えば、一つの部品91)の外縁と一致させる。また、既述したように、画像全体の特徴量は、画像を構成する複数の画素の輝度および色、並びに、これらによって形成される形状および当該形状の面積のうちの少なくとも一つであると好適である。
As described above, when the work result of the work on the board is poor, the characteristics of the entire image change as compared with when the work result is good. Therefore, the distribution acquisition unit 41 extracts the reference feature amount BF1 which is the feature amount of the entire image for each image of the reference image BP1 and acquires the feature amount distribution FD1 which is the distribution of the extracted plurality of reference feature amounts BF1. To do. As shown in FIG. 4B, the outer edge of the reference image BP1 is aligned with the outer edge of the object (for example, one component 91). Further, as described above, the feature amount of the entire image is preferably at least one of the brightness and color of a plurality of pixels constituting the image, the shape formed by these, and the area of the shape. Is.
分布取得部41は、例えば、多変量解析において公知の方法(例えば、主成分分析など)によって、特徴量分布FD1を取得することができる。図5は、特徴量分布FD1の一例を示している。同図は、図4Bに示す画像を構成する複数の画素の輝度および色、並びに、これらによって形成される形状(図4Bに示す例では、長方形)および当該形状の面積を画像全体の特徴量としたときの特徴量分布FD1の一例を示している。
The distribution acquisition unit 41 can acquire the feature quantity distribution FD1 by, for example, a method known in multivariate analysis (for example, principal component analysis). FIG. 5 shows an example of the feature amount distribution FD1. In the figure, the brightness and color of a plurality of pixels constituting the image shown in FIG. 4B, the shape formed by these (rectangle in the example shown in FIG. 4B), and the area of the shape are defined as the feature amount of the entire image. An example of the feature amount distribution FD1 at the time of
また、図5の特徴領域FR1に図示されている複数の点は、基準画像BP1の各画像の基準特徴量BF1をイメージしている。同図に示すように、特徴量分布FD1は、二次元の特徴領域FR1によって表すこともでき、三次元以上の特徴領域FR1によって表すこともできる。特徴領域FR1は、複数の基準特徴量BF1の外縁を示しており、「単位空間」ともいう。
Further, the plurality of points shown in the feature region FR1 of FIG. 5 image the reference feature amount BF1 of each image of the reference image BP1. As shown in the figure, the feature amount distribution FD1 can be represented by a two-dimensional feature region FR1 or a three-dimensional or higher feature region FR1. The feature region FR1 indicates the outer edge of a plurality of reference feature quantities BF1 and is also referred to as “unit space”.
なお、対基板作業機WMによる対基板作業は、通常、作業結果が良好であり、作業結果が不良の割合は、極めて低い。例えば、部品装着機WM3における部品91の吸着率は、極めて高い。そのため、対基板作業の作業結果が不良のときの画像が基準画像BP1に含まれていても、その影響は少ない。そこで、本明細書では、基準画像BP1を取得したときの対基板作業の作業結果は、良好であるとして取り扱っている。良否判定装置40による判定精度を向上させるためには、基準画像BP1は、対基板作業の作業結果が良好のときの画像に限定すると良い。
Note that the work on the board by the board-to-board work machine WM usually has good work results, and the rate of poor work results is extremely low. For example, the adsorption rate of the component 91 in the component mounting machine WM3 is extremely high. Therefore, even if the reference image BP1 includes an image when the work result of the work on the substrate is poor, the influence is small. Therefore, in the present specification, the work result of the work on the substrate when the reference image BP1 is acquired is treated as being good. In order to improve the determination accuracy by the quality determination device 40, the reference image BP1 may be limited to the image when the work result of the work on the substrate is good.
1-3-2.良否判断部42
良否判断部42は、対象画像OP1の各画像について画像全体の特徴量である対象特徴量OF1を抽出して、特徴量分布FD1によって規定される特徴領域FR1に対する対象特徴量OF1の外れ度合いに基づいて、対象画像OP1を取得したときの対基板作業の良否を判断する。 1-3-2. Good /bad judgment unit 42
Thequality determination unit 42 extracts the target feature amount OF1 which is the feature amount of the entire image for each image of the target image OP1, and is based on the degree of deviation of the target feature amount OF1 with respect to the feature area FR1 defined by the feature amount distribution FD1. Then, the quality of the work on the substrate when the target image OP1 is acquired is determined.
良否判断部42は、対象画像OP1の各画像について画像全体の特徴量である対象特徴量OF1を抽出して、特徴量分布FD1によって規定される特徴領域FR1に対する対象特徴量OF1の外れ度合いに基づいて、対象画像OP1を取得したときの対基板作業の良否を判断する。 1-3-2. Good /
The
対象画像OP1は、基準画像BP1より後に取得される少なくとも一つの画像であって基準画像BP1と関連する画像をいう。対象画像OP1は、対基板作業機WMによって規定可能な取得条件が基準画像BP1を取得したときと一致するときに基準画像BP1と関連し、取得条件は、対象物の種類、撮像装置80の種類、および、撮像装置80の撮像条件の種類のうちの少なくとも対象物の種類を含むと好適である。
The target image OP1 is at least one image acquired after the reference image BP1 and refers to an image related to the reference image BP1. The target image OP1 is related to the reference image BP1 when the acquisition conditions that can be defined by the substrate working machine WM match the acquisition of the reference image BP1, and the acquisition conditions are the type of the object and the type of the image pickup apparatus 80. , And, it is preferable to include at least the type of the object among the types of imaging conditions of the image pickup apparatus 80.
基準画像BP1と対象画像OP1を比較するためには、基準画像BP1を取得したときの対象物の種類(図4Bに示す例では、部品91の部品種)と、対象画像OP1を取得したときの対象物の種類(部品91の部品種)とが少なくとも一致している必要がある。また、撮像装置80(図4Bに示す例では、部品カメラ14)の種類および撮像条件のうちの少なくとも一方が異なると、同一の対象物を撮像しても取得した画像に差異が生じる可能性がある。そのため、撮像装置80の種類および撮像条件のうちの少なくとも一方が一致していると良い。
In order to compare the reference image BP1 and the target image OP1, the type of the object when the reference image BP1 is acquired (in the example shown in FIG. 4B, the component type of the part 91) and the type when the target image OP1 is acquired. The type of the object (part type of the part 91) must at least match. Further, if at least one of the type and imaging conditions of the imaging device 80 (component camera 14 in the example shown in FIG. 4B) is different, there is a possibility that the acquired image will be different even if the same object is imaged. is there. Therefore, it is preferable that at least one of the type of the image pickup apparatus 80 and the image pickup condition is the same.
なお、基準画像BP1について既述したように、撮像条件には、例えば、光源の種類、光の照射方向、露光時間、絞り値などが含まれる。また、例えば、自然光などの影響によって撮像条件を完全に一致させることは困難であるので、撮像条件は、対基板作業機WMによって規定可能な取得条件であれば良い。
As described above for the reference image BP1, the imaging conditions include, for example, the type of light source, the irradiation direction of light, the exposure time, the aperture value, and the like. Further, for example, since it is difficult to completely match the imaging conditions due to the influence of natural light or the like, the imaging conditions may be any acquisition conditions that can be specified by the substrate working machine WM.
良否判断部42は、分布取得部41と同様にして、対象画像OP1の各画像について画像全体の特徴量である対象特徴量OF1を抽出することができる。そして、良否判断部42は、特徴量分布FD1によって規定される特徴領域FR1に対する対象特徴量OF1の外れ度合いに基づいて、対象画像OP1を取得したときの対基板作業の良否を判断する。
The quality determination unit 42 can extract the target feature amount OF1 which is the feature amount of the entire image for each image of the target image OP1 in the same manner as the distribution acquisition unit 41. Then, the quality determination unit 42 determines the quality of the work on the substrate when the target image OP1 is acquired, based on the degree of deviation of the target feature amount OF1 with respect to the feature region FR1 defined by the feature amount distribution FD1.
良否判断部42は、公知の種々の方法を用いて、対象画像OP1を取得したときの対基板作業の良否を判断することができる。良否判断部42は、例えば、ニューラルネットワーク、ディープラーニング、サポートベクターなどの手法を用いることができる。また、良否判断部42は、マハラノビス・タグチ法、部分空間法などの手法を用いることもできる。マハラノビス・タグチ法は、ニューラルネットワークなどの人工知能的な手法と比べて、学習データに相当する基準画像BP1の数が少なく済む。
The quality determination unit 42 can determine the quality of the work on the substrate when the target image OP1 is acquired by using various known methods. The quality determination unit 42 can use, for example, a method such as a neural network, deep learning, or a support vector. Further, the quality determination unit 42 can also use a method such as the Mahalanobis Taguchi method or the subspace method. The Mahalanobis Taguchi method requires a smaller number of reference image BP1s corresponding to training data than an artificial intelligence method such as a neural network.
そこで、良否判断部42は、特徴領域FR1からのマハラノビス距離MD1が所定の閾値TH1を超えるか否かに基づいて、対基板作業の良否を判断すると好適である。また、良否判断部42は、マハラノビス・タグチ法の一手法であるRT法によって、対基板作業の良否を判断すると好適である。RT法(Recognition Taguchi method)は、画像データを用いた良否判断に適しており、本実施形態に用いると好適である。
Therefore, it is preferable that the quality determination unit 42 determines the quality of the work on the substrate based on whether or not the Mahalanobis distance MD1 from the feature region FR1 exceeds a predetermined threshold value TH1. Further, it is preferable that the quality determination unit 42 determines the quality of the work on the substrate by the RT method, which is one method of the Mahalanobis Taguchi method. The RT method (Recognition Taguchi method) is suitable for good / bad judgment using image data, and is suitable for use in the present embodiment.
本実施形態の良否判断部42は、RT法によって、対象画像OP1を取得したときの対基板作業の良否を判断する。良否判断部42は、特徴領域FR1からのマハラノビス距離MD1が所定の閾値TH1を超えるか否かに基づいて、対基板作業の良否を判断する。具体的には、良否判断部42は、マハラノビス距離MD1が所定の閾値TH1以下のときに、対象画像OP1を取得したときの対基板作業の作業結果を良好と判断する。また、良否判断部42は、マハラノビス距離MD1が所定の閾値TH1より大きいときに、対象画像OP1を取得したときの対基板作業の作業結果を不良と判断する。
The quality determination unit 42 of the present embodiment determines the quality of the work on the substrate when the target image OP1 is acquired by the RT method. The quality determination unit 42 determines the quality of the work on the substrate based on whether or not the Mahalanobis distance MD1 from the feature region FR1 exceeds a predetermined threshold value TH1. Specifically, the quality determination unit 42 determines that the work result of the work on the substrate when the target image OP1 is acquired is good when the Mahalanobis distance MD1 is equal to or less than the predetermined threshold value TH1. Further, the quality determination unit 42 determines that the work result of the work on the substrate when the target image OP1 is acquired is defective when the Mahalanobis distance MD1 is larger than the predetermined threshold value TH1.
既述したように、例えば、図4Bに示す本体領域AR13は、対基板作業(この場合、部品91の保持作業)の作業結果が良好であれば(正規の吸着状態であれば)、白色である。大多数の画像において本体領域AR13の色が白色のときに、例えば、部品91の反転が生じて、本体領域AR13の色が黒色になると、図5に示すマハラノビス距離MD1は、著しく増加する。よって、良否判断部42は、対基板作業(部品91の保持作業)の作業結果を不良と判断することができる。上述したことは、他の特徴量についても同様に言える。
As described above, for example, the main body region AR13 shown in FIG. 4B is white if the work result of the work on the substrate (in this case, the holding work of the component 91) is good (if it is in a normal suction state). is there. When the color of the main body region AR13 is white in most of the images, for example, when the component 91 is inverted and the color of the main body region AR13 becomes black, the Mahalanobis distance MD1 shown in FIG. 5 is significantly increased. Therefore, the quality determination unit 42 can determine that the work result of the work on the board (holding work of the component 91) is defective. The same can be said for other features.
1-3-3.閾値設定部43
閾値設定部43は、マハラノビス距離MD1の閾値TH1を設定する。閾値設定部43は、スミルノフ・グラブス検定によって取得された外れ値情報を用いて、閾値TH1を設定すると好適である。スミルノフ・グラブス検定は、データが正規分布に従うときに、データに含まれる外れ値を検出する。本実施形態の閾値設定部43は、スミルノフ・グラブス検定によって外れ値を検出し、当該外れ値をマハラノビス距離MD1の閾値TH1として設定する。これにより、閾値設定部43は、マハラノビス距離MD1の閾値TH1を容易に設定することができる。 1-3-3.Threshold setting unit 43
Thethreshold setting unit 43 sets the threshold TH1 of the Mahalanobis distance MD1. It is preferable that the threshold value setting unit 43 sets the threshold value TH1 by using the outlier information acquired by the Smirnov-Grabs test. The Smirnov-Grabs test detects outliers in a data when it follows a normal distribution. The threshold value setting unit 43 of the present embodiment detects an outlier by the Smirnov-Grabs test, and sets the outlier as the threshold value TH1 of the Mahalanobis distance MD1. As a result, the threshold value setting unit 43 can easily set the threshold value TH1 of the Mahalanobis distance MD1.
閾値設定部43は、マハラノビス距離MD1の閾値TH1を設定する。閾値設定部43は、スミルノフ・グラブス検定によって取得された外れ値情報を用いて、閾値TH1を設定すると好適である。スミルノフ・グラブス検定は、データが正規分布に従うときに、データに含まれる外れ値を検出する。本実施形態の閾値設定部43は、スミルノフ・グラブス検定によって外れ値を検出し、当該外れ値をマハラノビス距離MD1の閾値TH1として設定する。これにより、閾値設定部43は、マハラノビス距離MD1の閾値TH1を容易に設定することができる。 1-3-3.
The
また、閾値設定部43は、良否判断部42によって対基板作業が良好と判断され且つ実際の対基板作業が不良のときに、当該対基板作業を良好と判断したときに用いた対象特徴量OF1のマハラノビス距離MD1より閾値TH1が小さくなるように、閾値TH1を修正することができる。
Further, the threshold value setting unit 43 is used when the pass / fail determination unit 42 determines that the work with the substrate is good and the actual work with the substrate is poor, and the threshold setting unit 43 determines that the work with the substrate is good. The threshold TH1 can be modified so that the threshold TH1 is smaller than the Mahalanobis distance MD1 of.
例えば、図5に示す対象特徴量OF1に基づいて、良否判断部42が対基板作業を良好と判断したとする。実際の対基板作業が不良のときに、閾値設定部43は、当該対象特徴量OF1のマハラノビス距離MD1より閾値TH1が小さくなるように、閾値TH1を修正する。これにより、閾値設定部43は、マハラノビス距離MD1の閾値TH1を適正化することができる。
For example, it is assumed that the quality determination unit 42 determines that the work on the substrate is good based on the target feature amount OF1 shown in FIG. When the actual work on the substrate is poor, the threshold setting unit 43 corrects the threshold TH1 so that the threshold TH1 is smaller than the Mahalanobis distance MD1 of the target feature amount OF1. As a result, the threshold value setting unit 43 can optimize the threshold value TH1 of the Mahalanobis distance MD1.
閾値設定部43は、良否判断部42によって対基板作業が不良と判断され且つ実際の対基板作業が良好のときに、当該対基板作業を不良と判断したときに用いた対象特徴量OF1のマハラノビス距離MD1より閾値TH1が大きくなるように、閾値TH1を修正することもできる。この場合も、閾値設定部43は、マハラノビス距離MD1の閾値TH1を適正化することができる。
The threshold value setting unit 43 uses the Mahalanobis of the target feature amount OF1 used when the pass / fail determination unit 42 determines that the work with the substrate is defective and the actual work with the substrate is good, and determines that the work with the substrate is defective. The threshold TH1 can also be modified so that the threshold TH1 is larger than the distance MD1. In this case as well, the threshold setting unit 43 can optimize the threshold TH1 of the Mahalanobis distance MD1.
また、閾値設定部43は、良否判断部42によって対基板作業が不良と判断された回数が所定回数に達したときに、対基板作業を良好と判断したときに用いた対象特徴量OF1と、対基板作業を不良と判断したときに用いた対象特徴量OF1とを使用して判別分析法によって閾値TH1を修正することができる。これにより、閾値設定部43は、マハラノビス距離MD1の閾値TH1を適正化することができる。
Further, the threshold value setting unit 43 uses the target feature amount OF1 used when the pass / fail determination unit 42 determines that the work on the substrate is good when the number of times the work on the substrate is determined to be defective reaches a predetermined number of times. The threshold value TH1 can be corrected by the discriminant analysis method using the target feature amount OF1 used when the work on the substrate is judged to be defective. As a result, the threshold value setting unit 43 can optimize the threshold value TH1 of the Mahalanobis distance MD1.
図6は、対基板作業の作業結果とマハラノビス距離MD1との関係の一例を示すヒストグラムである。同図の横軸は、マハラノビス距離MD1を示し、縦軸は、対基板作業の作業結果の度数を示している。データD1~データD13は、対基板作業の作業結果が良好のときのデータの度数である。データD14~データD23は、対基板作業の作業結果が不良のときのデータの度数である。
FIG. 6 is a histogram showing an example of the relationship between the work result of the work on the substrate and the Mahalanobis distance MD1. The horizontal axis of the figure shows the Mahalanobis distance MD1, and the vertical axis shows the frequency of the work result of the work on the substrate. The data D1 to the data D13 are the frequencies of the data when the work result of the work on the substrate is good. The data D14 to the data D23 are the frequencies of the data when the work result of the work on the substrate is defective.
対基板作業の作業結果は、実際の作業結果(良否)を示している。例えば、図4Aに示す部品91の保持作業が良好であったとする。このときに、保持部材30に保持されている部品91を部品カメラ14によって撮像した画像(図4Bに示す画像)に基づいて、マハラノビス距離MD1を算出する。これにより、マハラノビス距離MD1に対応する距離において、対基板作業の作業結果が良好のときのデータが一つ取得される。これを繰り返すことにより、同図に示すヒストグラムが得られる。
The work result of the work on the board shows the actual work result (good or bad). For example, it is assumed that the holding work of the component 91 shown in FIG. 4A is good. At this time, the Mahalanobis distance MD1 is calculated based on the image (image shown in FIG. 4B) of the component 91 held by the holding member 30 taken by the component camera 14. As a result, at a distance corresponding to the Mahalanobis distance MD1, one data is acquired when the work result of the work on the substrate is good. By repeating this, the histogram shown in the figure can be obtained.
所定回数は、判別分析法において必要な対基板作業の作業結果が不良のときのデータ数であり、任意に設定することができる。良否判断部42によって対基板作業が不良と判断された回数が所定回数に達すると、対基板作業の作業結果が不良のときのデータが所定数、蓄積する。このとき、閾値設定部43は、対基板作業を良好と判断したとき(データD1~データD13)に用いた対象特徴量OF1と、対基板作業を不良と判断したとき(データD14~データD23)に用いた対象特徴量OF1とを使用して判別分析法によって閾値TH1を修正する。図6に示す閾値TH1は、判別分析法によって閾値TH1が修正されたことを示している。なお、マハラノビス・タグチ法、RT法、スミルノフ・グラブス検定、判別分析法などの手法自体は、公知であり、本明細書では、これらの詳細な説明が省略されている。
The predetermined number of times is the number of data when the work result of the work on the board required in the discriminant analysis method is defective, and can be set arbitrarily. When the number of times that the quality determination unit 42 determines that the work on the substrate is defective reaches a predetermined number of times, a predetermined number of data when the work result of the work on the substrate is defective is accumulated. At this time, the threshold value setting unit 43 determines that the target feature amount OF1 used when the work with the board is good (data D1 to data D13) and the work with the board is bad (data D14 to data D23). The threshold value TH1 is corrected by the discriminant analysis method using the target feature amount OF1 used in. The threshold value TH1 shown in FIG. 6 indicates that the threshold value TH1 has been modified by the discriminant analysis method. The methods themselves such as the Mahalanobis-Taguchi method, the RT method, the Smirnov-Grabs test, and the discriminant analysis method are known, and detailed description thereof is omitted in the present specification.
1-3-4.変更部44
部品91の部品種が同じであっても、ベンダ(製造メーカ)が異なると、部品91の外形形状、外形寸法、色などが若干異なる場合がある。そこで、良否判定装置40は、変更部44をさらに備えていると好適である。 1-3-4.Change part 44
Even if the component type of thecomponent 91 is the same, if the vendor (manufacturer) is different, the external shape, external dimensions, color, etc. of the component 91 may be slightly different. Therefore, it is preferable that the quality determination device 40 further includes a change unit 44.
部品91の部品種が同じであっても、ベンダ(製造メーカ)が異なると、部品91の外形形状、外形寸法、色などが若干異なる場合がある。そこで、良否判定装置40は、変更部44をさらに備えていると好適である。 1-3-4.
Even if the component type of the
変更部44は、部品装着機WM3に供給される部品91のベンダが切り替わるタイミングで、良否判断部42が使用する特徴量分布FD1を、ベンダ変更後の部品91に合致する特徴量分布FD1に切り替える。但し、部品装着機WM3に供給される部品91のベンダが変更され、且つ、ベンダ変更後の部品91に合致する特徴量分布FD1を良否判定装置40が保持しているものとする。これにより、良否判断部42は、部品91のベンダの変更に関わらず、適切な特徴量分布FD1を用いて、対基板作業の良否を判断することができる。
The change unit 44 switches the feature amount distribution FD1 used by the pass / fail determination unit 42 to the feature amount distribution FD1 that matches the part 91 after the vendor change at the timing when the vendor of the part 91 supplied to the component mounting machine WM3 is switched. .. However, it is assumed that the vendor of the component 91 supplied to the component mounting machine WM3 is changed, and the feature quantity distribution FD1 that matches the vendor-changed component 91 is held by the quality determination device 40. As a result, the quality determination unit 42 can determine the quality of the work on the substrate by using the appropriate feature amount distribution FD1 regardless of the change of the vendor of the component 91.
具体的には、変更部44は、部品91のベンダが切り替わるタイミングであるか否かを判断する(図7に示すステップS11)。変更部44は、例えば、フィーダ121の識別情報などから、部品91のベンダが切り替わるタイミングを知得することができる。ベンダの切り替わりタイミングのとき(ステップS11で「Yes」の場合)、変更部44は、良否判断部42が使用する特徴量分布FD1を、ベンダ変更後の部品91に合致する特徴量分布FD1に切り替える(ステップS12)。そして、制御は、一旦、終了する。ベンダの切り替わりタイミングでないとき(ステップS11で「No」の場合)、ステップS12に示す処理を実行しないで、制御は、一旦、終了する。
Specifically, the change unit 44 determines whether or not it is the timing when the vendor of the component 91 is switched (step S11 shown in FIG. 7). The change unit 44 can know the timing at which the vendor of the component 91 is switched from, for example, the identification information of the feeder 121. At the vendor switching timing (in the case of “Yes” in step S11), the changing unit 44 switches the feature amount distribution FD1 used by the quality determination unit 42 to the feature amount distribution FD1 that matches the component 91 after the vendor change. (Step S12). Then, the control ends once. When it is not the vendor switching timing (when “No” in step S11), the control is temporarily terminated without executing the process shown in step S12.
1-4.対基板作業機WMが画像関連情報50aを保持していない場合の良否判定装置40の構成例
ここで、基準画像BP1および特徴量分布FD1のうちの少なくとも一方を画像関連情報50aとする。既述したように、基準画像BP1は、基板90に所定の対基板作業を行う対基板作業機WMの撮像装置80が対基板作業において同種の対象物について同種の撮像条件で撮像した複数の画像をいう。 1-4. Configuration example of thequality determination device 40 when the substrate working machine WM does not hold the image-related information 50a Here, at least one of the reference image BP1 and the feature amount distribution FD1 is defined as the image-related information 50a. As described above, the reference image BP1 is a plurality of images captured by the image pickup device 80 of the board-to-board work machine WM that performs a predetermined anti-board work on the board 90 with the same type of imaging conditions for the same type of object in the anti-board work. To say.
ここで、基準画像BP1および特徴量分布FD1のうちの少なくとも一方を画像関連情報50aとする。既述したように、基準画像BP1は、基板90に所定の対基板作業を行う対基板作業機WMの撮像装置80が対基板作業において同種の対象物について同種の撮像条件で撮像した複数の画像をいう。 1-4. Configuration example of the
また、特徴量分布FD1は、基準画像BP1の各画像について画像全体の特徴量である基準特徴量BF1が抽出されたときの複数の基準特徴量BF1の分布をいう。画像全体の特徴量は、画像を構成する複数の画素の輝度および色、並びに、これらによって形成される形状および当該形状の面積のうちの少なくとも一つであると好適である。
Further, the feature amount distribution FD1 refers to the distribution of a plurality of reference feature amounts BF1 when the reference feature amount BF1 which is the feature amount of the entire image is extracted for each image of the reference image BP1. It is preferable that the feature amount of the entire image is at least one of the brightness and color of a plurality of pixels constituting the image, the shape formed by these, and the area of the shape.
対基板作業機WMが画像関連情報50aを保持していない場合、対基板作業機WMは、画像関連情報50aを用いて、画像を取得したときの対基板作業の良否を判断することが困難である。そこで、本実施形態の良否判定装置40は、画像関連情報50aを取得して、取得した画像関連情報50aを用いて対基板作業の良否を判断する。良否判定装置40は、制御ブロックとして捉えると、記憶部51と、取得部52と、良否判断部42とを備えている。
When the anti-board working machine WM does not hold the image-related information 50a, it is difficult for the anti-board working machine WM to judge the quality of the anti-board work when the image is acquired by using the image-related information 50a. is there. Therefore, the quality determination device 40 of the present embodiment acquires the image-related information 50a and determines the quality of the work on the substrate by using the acquired image-related information 50a. The pass / fail determination device 40 includes a storage unit 51, an acquisition unit 52, and a pass / fail determination unit 42 when regarded as a control block.
良否判定装置40は、提供部53、分布取得部41、閾値設定部43および変更部44のうちの少なくとも一つをさらに備えると好適である。図3に示すように、本実施形態の良否判定装置40は、記憶部51と、取得部52と、提供部53と、分布取得部41と、良否判断部42と、閾値設定部43と、変更部44とを備えている。
It is preferable that the quality determination device 40 further includes at least one of the providing unit 53, the distribution acquisition unit 41, the threshold value setting unit 43, and the changing unit 44. As shown in FIG. 3, the quality determination device 40 of the present embodiment includes a storage unit 51, an acquisition unit 52, a provision unit 53, a distribution acquisition unit 41, a quality determination unit 42, a threshold value setting unit 43, and the like. It is provided with a change unit 44.
1-4-1.記憶部51
記憶部51は、画像関連情報50aと、検索情報50bとを関連付けて記憶装置50mに記憶させる。画像関連情報50aは、既述したように、基準画像BP1および特徴量分布FD1のうちの少なくとも一方である。検索情報50bは、画像関連情報50aを検索可能な情報であって、基準画像BP1が取得されたときの取得条件を含む。検索情報50bには、例えば、画像関連情報50aの管理番号、名称、作成日、データ容量、作成者などの情報が含まれる。既述したように、取得条件は、対基板作業機WMによって規定可能な条件であり、対象物に関する情報、撮像装置80に関する情報、および、撮像装置80の撮像条件に関する情報のうちの少なくとも対象物に関する情報を含むと好適である。 1-4-1.Memory 51
Thestorage unit 51 stores the image-related information 50a and the search information 50b in the storage device 50m in association with each other. As described above, the image-related information 50a is at least one of the reference image BP1 and the feature amount distribution FD1. The search information 50b is information that can search the image-related information 50a, and includes acquisition conditions when the reference image BP1 is acquired. The search information 50b includes, for example, information such as a management number, a name, a creation date, a data capacity, and a creator of the image-related information 50a. As described above, the acquisition condition is a condition that can be specified by the substrate working machine WM, and is at least the object of the information about the object, the information about the image pickup device 80, and the information about the image pickup condition of the image pickup device 80. It is preferable to include information about.
記憶部51は、画像関連情報50aと、検索情報50bとを関連付けて記憶装置50mに記憶させる。画像関連情報50aは、既述したように、基準画像BP1および特徴量分布FD1のうちの少なくとも一方である。検索情報50bは、画像関連情報50aを検索可能な情報であって、基準画像BP1が取得されたときの取得条件を含む。検索情報50bには、例えば、画像関連情報50aの管理番号、名称、作成日、データ容量、作成者などの情報が含まれる。既述したように、取得条件は、対基板作業機WMによって規定可能な条件であり、対象物に関する情報、撮像装置80に関する情報、および、撮像装置80の撮像条件に関する情報のうちの少なくとも対象物に関する情報を含むと好適である。 1-4-1.
The
例えば、対象物が部品91の場合、対象物に関する情報には、例えば、部品91の部品種、型式、ベンダ(製造メーカ)、製造ロットなどに関する情報が含まれる。また、対象物に関する情報は、例えば、部品91の形状、部品91の取り扱い方法に関する情報などを含むこともできる。撮像装置80に関する情報には、例えば、撮像装置80の型式、ベンダ(製造メーカ)などに関する情報が含まれる。撮像装置80の撮像条件には、例えば、光源の種類、光の照射方向、露光時間、絞り値などが含まれる。
For example, when the object is a part 91, the information about the object includes, for example, information about the part type, model, vendor (manufacturer), production lot, etc. of the part 91. Further, the information about the object may include, for example, information about the shape of the part 91, information about how to handle the part 91, and the like. The information about the image pickup apparatus 80 includes, for example, information about the model of the image pickup apparatus 80, the vendor (manufacturer), and the like. The imaging conditions of the imaging device 80 include, for example, the type of light source, the irradiation direction of light, the exposure time, the aperture value, and the like.
また、記憶部51は、基準画像BP1を取得したときの対基板作業の良否に関する作業結果情報50cを、画像関連情報50aおよび検索情報50bと関連付けて記憶させると好適である。これにより、記憶装置50mは、画像関連情報50a、検索情報50bおよび作業結果情報50cを関連付けて記憶することができる。作業結果情報50cには、対基板作業の作業結果(良好または不良)の他に、対基板作業の作業状況(例えば、作業時刻、作業場所、使用機器、作業条件など)などが含まれると良い。
Further, it is preferable that the storage unit 51 stores the work result information 50c regarding the quality of the work on the substrate when the reference image BP1 is acquired in association with the image-related information 50a and the search information 50b. As a result, the storage device 50m can store the image-related information 50a, the search information 50b, and the work result information 50c in association with each other. The work result information 50c may include the work status (for example, work time, work place, equipment used, work conditions, etc.) of the work on the board in addition to the work result (good or bad) of the work on the board. ..
記憶装置50mは、画像関連情報50a、検索情報50bおよび作業結果情報50cを関連付けて記憶することができれば良く、公知の記憶装置を用いることができる。記憶装置50mは、これらの情報を書き換え可能な不揮発性の記憶装置を用いることができる。また、記憶装置50mは、後述するように、ネットワークに接続されている対基板作業機WMからアクセス可能に設けられると良い。
The storage device 50m only needs to be able to store the image-related information 50a, the search information 50b, and the work result information 50c in association with each other, and a known storage device can be used. As the storage device 50m, a non-volatile storage device capable of rewriting such information can be used. Further, as will be described later, the storage device 50 m may be provided so as to be accessible from the board-to-board work machine WM connected to the network.
1-4-2.取得部52
取得部52は、対基板作業機WMの撮像装置80が対基板作業において対象物を撮像した対象画像OP1の取得条件と一致する取得条件を含む検索情報50bに関連付けられている画像関連情報50aを、記憶装置50mから取得する。 1-4-2.Acquisition unit 52
Theacquisition unit 52 obtains the image-related information 50a associated with the search information 50b including the acquisition conditions that match the acquisition conditions of the target image OP1 in which the image pickup device 80 of the board-to-board work machine WM imaged the object in the board-to-board work. , Obtained from the storage device 50 m.
取得部52は、対基板作業機WMの撮像装置80が対基板作業において対象物を撮像した対象画像OP1の取得条件と一致する取得条件を含む検索情報50bに関連付けられている画像関連情報50aを、記憶装置50mから取得する。 1-4-2.
The
図8は、記憶装置50mに記憶されている画像関連情報50a、検索情報50bおよび作業結果情報50cの一例を模式的に示している。No.1は、データ5A1で示される対象物を、データ5B1で示される撮像装置80によって、データ5C1で示される撮像条件で撮像したデータ5D1で示される基準画像BP1が、記憶装置50mに記憶されていることを示している。
FIG. 8 schematically shows an example of image-related information 50a, search information 50b, and work result information 50c stored in the storage device 50m. No. Reference numeral 1 denotes a reference image BP1 represented by data 5D1 obtained by capturing an object represented by data 5A1 by the imaging device 80 indicated by data 5B1 under the imaging conditions indicated by data 5C1 and stored in the storage device 50m. It is shown that.
また、No.1は、当該基準画像BP1から取得されるデータ5E1で示される特徴量分布FD1が、基準画像BP1と合わせて記憶装置50mに記憶されていることを示している。さらに、No.1は、当該基準画像BP1を取得したときの対基板作業の作業結果情報50cがデータ5F1で示されることを示している。No.1について上述したことは、No.2以降においても同様に言える。
Also, No. 1 indicates that the feature amount distribution FD1 shown in the data 5E1 acquired from the reference image BP1 is stored in the storage device 50m together with the reference image BP1. Furthermore, No. 1 indicates that the work result information 50c of the work on the substrate when the reference image BP1 is acquired is shown in the data 5F1. No. The above-mentioned thing about No. 1 is No. The same can be said for 2 and later.
但し、No.3は、データ5D3で示される基準画像BP1が記憶装置50mに記憶されているが、当該基準画像BP1から取得される特徴量分布FD1は、記憶装置50mに記憶されていないことを示している。逆に、No.4は、データ5E3で示される特徴量分布FD1が記憶装置50mに記憶されているが、当該特徴量分布FD1が取得されたときの基準画像BP1は、記憶装置50mに記憶されていないことを示している。
However, No. Reference numeral 3 shows that the reference image BP1 shown in the data 5D3 is stored in the storage device 50m, but the feature amount distribution FD1 acquired from the reference image BP1 is not stored in the storage device 50m. On the contrary, No. 4 indicates that the feature amount distribution FD1 shown in the data 5E3 is stored in the storage device 50 m, but the reference image BP1 when the feature amount distribution FD1 is acquired is not stored in the storage device 50 m. ing.
例えば、対基板作業機WMの撮像装置80が対象画像OP1を撮像したときの対象画像OP1の取得条件が、No.1の対象物、撮像装置および撮像条件と一致したとする。また、当該対基板作業機WMは、当該取得条件に対応する基準画像BP1または特徴量分布FD1を保持していないとする。このとき、取得部52は、データ5D1で示される基準画像BP1を記憶装置50mから取得することができる。
For example, the acquisition condition of the target image OP1 when the image pickup device 80 of the substrate working machine WM images the target image OP1 is No. It is assumed that the object, the imaging device, and the imaging conditions of 1 are matched. Further, it is assumed that the substrate working machine WM does not hold the reference image BP1 or the feature amount distribution FD1 corresponding to the acquisition condition. At this time, the acquisition unit 52 can acquire the reference image BP1 represented by the data 5D1 from the storage device 50m.
また、取得部52は、データ5E1で示される特徴量分布FD1を記憶装置50mから取得することもできる。さらに、取得部52は、データ5D1で示される基準画像BP1およびデータ5E1で示される特徴量分布FD1の両方を記憶装置50mから取得することもできる。また、取得部52は、いずれの場合も、データ5F1で示される作業結果情報50cを記憶装置50mから取得することができる。
Further, the acquisition unit 52 can also acquire the feature amount distribution FD1 shown in the data 5E1 from the storage device 50m. Further, the acquisition unit 52 can also acquire both the reference image BP1 shown in the data 5D1 and the feature amount distribution FD1 shown in the data 5E1 from the storage device 50m. Further, in any case, the acquisition unit 52 can acquire the work result information 50c indicated by the data 5F1 from the storage device 50m.
上記の例において、例えば、対象画像OP1の取得条件のうち、撮像条件がデータ5C2で示される撮像条件と一致したとする。この場合、取得部52は、データ5D2で示される基準画像BP1を記憶装置50mから取得することができる。また、取得部52は、データ5E2で示される特徴量分布FD1を記憶装置50mから取得することもできる。
In the above example, for example, it is assumed that among the acquisition conditions of the target image OP1, the imaging conditions match the imaging conditions shown in the data 5C2. In this case, the acquisition unit 52 can acquire the reference image BP1 represented by the data 5D2 from the storage device 50m. Further, the acquisition unit 52 can also acquire the feature amount distribution FD1 shown in the data 5E2 from the storage device 50m.
さらに、取得部52は、データ5D2で示される基準画像BP1およびデータ5E2で示される特徴量分布FD1の両方を記憶装置50mから取得することもできる。また、取得部52は、いずれの場合も、データ5F2で示される作業結果情報50cを記憶装置50mから取得することができる。
Further, the acquisition unit 52 can also acquire both the reference image BP1 shown in the data 5D2 and the feature amount distribution FD1 shown in the data 5E2 from the storage device 50m. Further, in any case, the acquisition unit 52 can acquire the work result information 50c indicated by the data 5F2 from the storage device 50m.
このように、取得部52は、対象画像OP1の取得条件と一致する取得条件を含む検索情報50bに関連付けられている画像関連情報50aを、記憶装置50mから取得することができる。なお、取得条件がすべて一致する画像関連情報50aが存在しない場合、取得部52は、少なくとも対象物の種類が一致する画像関連情報50aを記憶装置50mから取得することができる。
In this way, the acquisition unit 52 can acquire the image-related information 50a associated with the search information 50b including the acquisition condition matching the acquisition condition of the target image OP1 from the storage device 50m. If there is no image-related information 50a that matches all the acquisition conditions, the acquisition unit 52 can acquire at least the image-related information 50a that matches the type of the object from the storage device 50m.
取得部52が、少なくとも画像関連情報50aである基準画像BP1を記憶装置50mから取得するとき、良否判定装置40は、既述した分布取得部41を備える。例えば、図8に示すNo.3の場合のように、取得部52が、基準画像BP1、または、基準画像BP1と作業結果情報50cを取得し、特徴量分布FD1を取得しない場合が想定される。
When the acquisition unit 52 acquires at least the reference image BP1 which is the image-related information 50a from the storage device 50m, the quality determination device 40 includes the distribution acquisition unit 41 described above. For example, No. 8 shown in FIG. As in the case of 3, it is assumed that the acquisition unit 52 acquires the reference image BP1 or the reference image BP1 and the work result information 50c, and does not acquire the feature amount distribution FD1.
この場合、既述したように、分布取得部41は、取得部52によって取得された基準画像BP1を用いて、特徴量分布FD1を取得する。これにより、良否判断部42は、取得部52によって取得された画像関連情報50a(基準画像BP1から取得された特徴量分布FD1)を用いて、対象画像OP1を取得したときの対基板作業の良否を判断することができる。
In this case, as described above, the distribution acquisition unit 41 acquires the feature quantity distribution FD1 by using the reference image BP1 acquired by the acquisition unit 52. As a result, the quality determination unit 42 uses the image-related information 50a (feature amount distribution FD1 acquired from the reference image BP1) acquired by the acquisition unit 52 to acquire the quality of the work on the substrate when the target image OP1 is acquired. Can be judged.
取得部52が、少なくとも画像関連情報50aである特徴量分布FD1を記憶装置50mから取得するとき、良否判定装置40は、既述した分布取得部41が不要である。例えば、図8に示すNo.4の場合のように、取得部52が、特徴量分布FD1、または、特徴量分布FD1と作業結果情報50cを取得する場合が想定される。
When the acquisition unit 52 acquires at least the feature amount distribution FD1 which is the image-related information 50a from the storage device 50m, the quality determination device 40 does not need the distribution acquisition unit 41 described above. For example, No. 8 shown in FIG. As in the case of 4, it is assumed that the acquisition unit 52 acquires the feature amount distribution FD1 or the feature amount distribution FD1 and the work result information 50c.
この場合、良否判断部42は、取得部52によって取得された画像関連情報50a(特徴量分布FD1)を用いて、対象画像OP1を取得したときの対基板作業の良否を判断することができる。いずれの場合も、良否判断部42は、対象画像OP1の各画像について画像全体の特徴量である対象特徴量OF1を抽出して、特徴量分布FD1によって規定される特徴領域FR1に対する対象特徴量OF1の外れ度合いに基づいて、対象画像OP1を取得したときの対基板作業の良否を判断すると好適である。
In this case, the quality determination unit 42 can determine the quality of the work on the substrate when the target image OP1 is acquired by using the image-related information 50a (feature amount distribution FD1) acquired by the acquisition unit 52. In either case, the pass / fail determination unit 42 extracts the target feature amount OF1 which is the feature amount of the entire image for each image of the target image OP1, and the target feature amount OF1 with respect to the feature area FR1 defined by the feature amount distribution FD1. It is preferable to judge the quality of the work on the substrate when the target image OP1 is acquired, based on the degree of deviation of.
また、既述したように、良否判断部42は、特徴領域FR1からのマハラノビス距離MD1が所定の閾値TH1を超えるか否かに基づいて、対基板作業の良否を判断すると好適である。さらに、良否判断部42は、マハラノビス・タグチ法の一手法であるRT法によって、対基板作業の良否を判断すると好適である。また、既述したように、良否判定装置40は、閾値設定部43を備えると好適である。
Further, as described above, it is preferable that the quality determination unit 42 determines the quality of the work on the substrate based on whether or not the Mahalanobis distance MD1 from the feature region FR1 exceeds a predetermined threshold value TH1. Further, it is preferable that the quality determination unit 42 determines the quality of the work on the substrate by the RT method, which is one of the Mahalanobis Taguchi methods. Further, as described above, it is preferable that the quality determination device 40 includes the threshold value setting unit 43.
なお、対基板作業機WMが部品装着機WM3の場合、部品装着機WM3に供給される部品91のベンダが変更され、且つ、ベンダ変更後の部品91に合致する画像関連情報50aを保持しないときに、取得部52は、画像関連情報50aを記憶装置50mから取得すると好適である。これにより、良否判断部42は、部品91のベンダの変更に関わらず、適切な特徴量分布FD1を用いて、対基板作業の良否を判断することができる。
When the board working machine WM is the component mounting machine WM3, when the vendor of the component 91 supplied to the component mounting machine WM3 is changed and the image-related information 50a matching the component 91 after the vendor change is not retained. In addition, it is preferable that the acquisition unit 52 acquires the image-related information 50a from the storage device 50m. As a result, the quality determination unit 42 can determine the quality of the work on the substrate by using the appropriate feature amount distribution FD1 regardless of the change of the vendor of the component 91.
この場合、既述したように、良否判定装置40は、変更部44を備えると好適である。変更部44は、部品装着機WM3に供給される部品91のベンダが切り替わるタイミングで、良否判断部42が使用する特徴量分布FD1を、ベンダ変更後の部品91に合致する特徴量分布FD1に切り替える。
In this case, as described above, it is preferable that the quality determination device 40 includes the change unit 44. The change unit 44 switches the feature amount distribution FD1 used by the quality determination unit 42 to the feature amount distribution FD1 that matches the part 91 after the vendor change at the timing when the vendor of the part 91 supplied to the component mounting machine WM3 is switched. ..
1-4-3.提供部53
提供部53は、対象画像OP1、および、対象画像OP1と基準画像BP1を用いて取得される特徴量分布FD1のうちの少なくとも一方を、記憶装置50mに記憶させる。なお、提供部53が特徴量分布FD1を記憶装置50mに記憶させる場合、分布取得部41は、対象画像OP1と基準画像BP1を用いて、特徴量分布FD1を取得する。 1-4-3.Provision 53
The providingunit 53 stores the target image OP1 and at least one of the feature amount distribution FD1 acquired by using the target image OP1 and the reference image BP1 in the storage device 50m. When the providing unit 53 stores the feature amount distribution FD1 in the storage device 50m, the distribution acquisition unit 41 acquires the feature amount distribution FD1 by using the target image OP1 and the reference image BP1.
提供部53は、対象画像OP1、および、対象画像OP1と基準画像BP1を用いて取得される特徴量分布FD1のうちの少なくとも一方を、記憶装置50mに記憶させる。なお、提供部53が特徴量分布FD1を記憶装置50mに記憶させる場合、分布取得部41は、対象画像OP1と基準画像BP1を用いて、特徴量分布FD1を取得する。 1-4-3.
The providing
図8に示すNo.101は、提供部53が、対象画像OP1、および、対象画像OP1と基準画像BP1を用いて取得される特徴量分布FD1の両方を、記憶装置50mに記憶させた状態を示している。具体的には、データ5A1で示される対象物を、データ5B1で示される撮像装置80によって、データ5C3で示される撮像条件で撮像したデータ5Dxで示される対象画像OP1が、記憶装置50mに記憶されている。
No. shown in FIG. Reference numeral 101 denotes a state in which the providing unit 53 stores both the target image OP1 and the feature amount distribution FD1 acquired by using the target image OP1 and the reference image BP1 in the storage device 50 m. Specifically, the target image OP1 represented by the data 5Dx obtained by capturing the object represented by the data 5A1 by the imaging device 80 indicated by the data 5B1 under the imaging conditions shown by the data 5C3 is stored in the storage device 50m. ing.
また、データ5Exで示される特徴量分布FD1が、対象画像OP1と合わせて記憶装置50mに記憶されている。さらに、当該対象画像OP1を取得したときのデータ5Fxで示される作業結果情報50cが、記憶装置50mに記憶されている。なお、提供部53は、対象画像OP1の取得条件と一致する取得条件を含む検索情報50bに関連付けられている画像関連情報50aが、既に記憶装置50mに記憶されている場合、記憶されている画像関連情報50aに追加して、画像関連情報50aなどを記憶させると良い。これにより、学習データが増加し、良否判定装置40による判定精度が向上する。
Further, the feature amount distribution FD1 shown by the data 5Ex is stored in the storage device 50 m together with the target image OP1. Further, the work result information 50c indicated by the data 5Fx when the target image OP1 is acquired is stored in the storage device 50m. In addition, when the image-related information 50a associated with the search information 50b including the acquisition condition matching the acquisition condition of the target image OP1 is already stored in the storage device 50m, the providing unit 53 stores the stored image. It is preferable to store the image-related information 50a and the like in addition to the related information 50a. As a result, the learning data is increased, and the determination accuracy by the quality determination device 40 is improved.
1-4-4.良否判定装置40の配置例
図9に示すように、記憶部51および記憶装置50mは、対基板作業機WMと通信可能なデータサーバ70に設けられ、取得部52および良否判断部42は、対基板作業機WMに設けられると好適である。また、データサーバ70は、複数の対基板作業機WMの間で情報を共有可能な共有サーバであると好適である。なお、図3に示すように、提供部53、分布取得部41、閾値設定部43および変更部44は、適宜、対基板作業機WMに設けることができる。 1-4-4. Example of Arrangement of Pass /Fail Judgment Device 40 As shown in FIG. 9, the storage unit 51 and the storage device 50 m are provided on the data server 70 capable of communicating with the board working machine WM, and the acquisition unit 52 and the pass / fail judgment unit 42 are paired with each other. It is preferable that it is provided in the substrate working machine WM. Further, the data server 70 is preferably a shared server capable of sharing information among a plurality of board-to-board work machines WM. As shown in FIG. 3, the providing unit 53, the distribution acquisition unit 41, the threshold value setting unit 43, and the changing unit 44 can be appropriately provided on the substrate working machine WM.
図9に示すように、記憶部51および記憶装置50mは、対基板作業機WMと通信可能なデータサーバ70に設けられ、取得部52および良否判断部42は、対基板作業機WMに設けられると好適である。また、データサーバ70は、複数の対基板作業機WMの間で情報を共有可能な共有サーバであると好適である。なお、図3に示すように、提供部53、分布取得部41、閾値設定部43および変更部44は、適宜、対基板作業機WMに設けることができる。 1-4-4. Example of Arrangement of Pass /
同図に示すように、複数の対基板作業機WMおよびデータサーバ70は、通信部70Nによって通信可能に接続されている。通信部70Nは、有線によってこれらを接続することができ、無線によってこれらを接続することもできる。また、通信方法は、種々の方法をとり得る。本実施形態では、複数の対基板作業機WMおよびデータサーバ70によって、広域通信網(WAN:Wide Area Network)が構成されている。さらに、データサーバ70は、複数の対基板作業機WMの間で情報を共有可能な共有サーバである。
As shown in the figure, the plurality of board-to-board work machines WM and the data server 70 are communicably connected by the communication unit 70N. The communication unit 70N can connect them by wire, and can also connect them wirelessly. In addition, various communication methods can be adopted. In the present embodiment, a wide area network (WAN: Wide Area Network) is configured by a plurality of board-to-board work machines WM and a data server 70. Further, the data server 70 is a shared server capable of sharing information among a plurality of board-to-board work machines WM.
例えば、共有サーバが複数の企業からアクセス可能なクラウドサーバの場合、一の企業において構成される共有サーバと比べて、画像関連情報50aの記憶量が増加し易い。そのため、取得部52は、所望の画像関連情報50aを取得し易い。また、データの信頼性および安定性が向上する。しかしながら、取得条件(対象物、撮像装置、撮像条件など)、画像関連情報50a、作業結果情報50cなどが他の企業に公開されるデメリットがある。
For example, when the shared server is a cloud server that can be accessed by a plurality of companies, the storage amount of the image-related information 50a is likely to increase as compared with the shared server configured by one company. Therefore, the acquisition unit 52 can easily acquire the desired image-related information 50a. It also improves the reliability and stability of the data. However, there is a demerit that acquisition conditions (object, imaging device, imaging conditions, etc.), image-related information 50a, work result information 50c, and the like are disclosed to other companies.
逆に、一の企業において構成される共有サーバの場合、クラウドサーバと比べて、取得条件(対象物、撮像装置、撮像条件など)、画像関連情報50a、作業結果情報50cなどの情報の秘匿性が高い。しかしながら、画像関連情報50aの記憶量が少なくなり易いので、取得部52は、画像関連情報50aを取得し難くなるデメリットがある。
On the contrary, in the case of a shared server configured by one company, the confidentiality of information such as acquisition conditions (object, imaging device, imaging conditions, etc.), image-related information 50a, work result information 50c, etc., as compared with a cloud server. Is high. However, since the storage amount of the image-related information 50a tends to be small, there is a demerit that it becomes difficult for the acquisition unit 52 to acquire the image-related information 50a.
なお、提供部53が対象画像OP1を記憶装置50mに記憶させ、特徴量分布FD1を記憶装置50mに記憶させない場合、例えば、データサーバ70は、分布取得部41に相当する制御部を備えることもできる。当該制御部は、対象画像OP1と基準画像BP1を用いて、特徴量分布FD1を取得する。
When the providing unit 53 stores the target image OP1 in the storage device 50m and does not store the feature amount distribution FD1 in the storage device 50m, for example, the data server 70 may include a control unit corresponding to the distribution acquisition unit 41. it can. The control unit acquires the feature amount distribution FD1 by using the target image OP1 and the reference image BP1.
2.良否判定方法
良否判定装置40について既述したことは、良否判定方法についても同様に言える。具体的には、良否判定方法は、記憶工程と、取得工程と、良否判断工程とを備える。記憶工程は、記憶部51が行う制御に相当する。取得工程は、取得部52が行う制御に相当する。良否判断工程は、良否判断部42が行う制御に相当する。また、良否判定方法は、提供工程、分布取得工程、閾値設定工程および変更工程のうちの少なくとも一つをさらに備えると好適である。提供工程は、提供部53が行う制御に相当する。分布取得工程は、分布取得部41が行う制御に相当する。閾値設定工程は、閾値設定部43が行う制御に相当する。変更工程は、変更部44が行う制御に相当する。 2. 2. Pass / Fail Judgment Method The same applies to the pass / fail determination method as described above for the pass /fail determination device 40. Specifically, the pass / fail judgment method includes a storage step, an acquisition step, and a pass / fail judgment step. The storage process corresponds to the control performed by the storage unit 51. The acquisition process corresponds to the control performed by the acquisition unit 52. The quality determination step corresponds to the control performed by the quality determination unit 42. Further, it is preferable that the pass / fail determination method further includes at least one of a providing step, a distribution acquisition step, a threshold setting step, and a changing step. The providing process corresponds to the control performed by the providing unit 53. The distribution acquisition step corresponds to the control performed by the distribution acquisition unit 41. The threshold value setting step corresponds to the control performed by the threshold value setting unit 43. The change step corresponds to the control performed by the change unit 44.
良否判定装置40について既述したことは、良否判定方法についても同様に言える。具体的には、良否判定方法は、記憶工程と、取得工程と、良否判断工程とを備える。記憶工程は、記憶部51が行う制御に相当する。取得工程は、取得部52が行う制御に相当する。良否判断工程は、良否判断部42が行う制御に相当する。また、良否判定方法は、提供工程、分布取得工程、閾値設定工程および変更工程のうちの少なくとも一つをさらに備えると好適である。提供工程は、提供部53が行う制御に相当する。分布取得工程は、分布取得部41が行う制御に相当する。閾値設定工程は、閾値設定部43が行う制御に相当する。変更工程は、変更部44が行う制御に相当する。 2. 2. Pass / Fail Judgment Method The same applies to the pass / fail determination method as described above for the pass /
3.実施形態の効果の一例
良否判定装置40によれば、記憶部51、取得部52および良否判断部42を備えている。これにより、良否判定装置40は、画像関連情報50aを取得して、取得した画像関連情報50aを用いて対基板作業の良否を判断することができる。良否判定装置40について上述したことは、良否判定方法についても同様に言える。 3. 3. An example of the effect of the embodiment According to thequality determination device 40, a storage unit 51, an acquisition unit 52, and a quality determination unit 42 are provided. As a result, the quality determination device 40 can acquire the image-related information 50a and determine the quality of the work on the substrate using the acquired image-related information 50a. The same can be said for the quality determination device 40 as for the quality determination method.
良否判定装置40によれば、記憶部51、取得部52および良否判断部42を備えている。これにより、良否判定装置40は、画像関連情報50aを取得して、取得した画像関連情報50aを用いて対基板作業の良否を判断することができる。良否判定装置40について上述したことは、良否判定方法についても同様に言える。 3. 3. An example of the effect of the embodiment According to the
40:良否判定装置、51:記憶部、52:取得部、53:提供部、
50a:画像関連情報、50b:検索情報、50c:作業結果情報、
50m:記憶装置、41:分布取得部、42:良否判断部、
70:データサーバ、80:撮像装置、90:基板、91:部品、
BP1:基準画像、BF1:基準特徴量、FD1:特徴量分布、
FR1:特徴領域、MD1:マハラノビス距離、TH1:閾値、
OP1:対象画像、OF1:対象特徴量、
WM:対基板作業機、WM3:部品装着機。 40: Good / bad judgment device, 51: Storage unit, 52: Acquisition unit, 53: Provision unit,
50a: Image-related information, 50b: Search information, 50c: Work result information,
50m: storage device, 41: distribution acquisition unit, 42: pass / fail judgment unit,
70: Data server, 80: Imaging device, 90: Board, 91: Parts,
BP1: Reference image, BF1: Reference feature amount, FD1: Feature amount distribution,
FR1: Feature region, MD1: Mahalanobis distance, TH1: Threshold,
OP1: Target image, OF1: Target feature amount,
WM: anti-board work machine, WM3: parts mounting machine.
50a:画像関連情報、50b:検索情報、50c:作業結果情報、
50m:記憶装置、41:分布取得部、42:良否判断部、
70:データサーバ、80:撮像装置、90:基板、91:部品、
BP1:基準画像、BF1:基準特徴量、FD1:特徴量分布、
FR1:特徴領域、MD1:マハラノビス距離、TH1:閾値、
OP1:対象画像、OF1:対象特徴量、
WM:対基板作業機、WM3:部品装着機。 40: Good / bad judgment device, 51: Storage unit, 52: Acquisition unit, 53: Provision unit,
50a: Image-related information, 50b: Search information, 50c: Work result information,
50m: storage device, 41: distribution acquisition unit, 42: pass / fail judgment unit,
70: Data server, 80: Imaging device, 90: Board, 91: Parts,
BP1: Reference image, BF1: Reference feature amount, FD1: Feature amount distribution,
FR1: Feature region, MD1: Mahalanobis distance, TH1: Threshold,
OP1: Target image, OF1: Target feature amount,
WM: anti-board work machine, WM3: parts mounting machine.
Claims (13)
- 基板に所定の対基板作業を行う対基板作業機の撮像装置が前記対基板作業において同種の対象物について同種の撮像条件で撮像した複数の画像を基準画像とし、前記基準画像の各画像について画像全体の特徴量である基準特徴量が抽出されたときの複数の前記基準特徴量の分布を特徴量分布とするとき、
前記基準画像および前記特徴量分布のうちの少なくとも一方である画像関連情報と、
前記画像関連情報を検索可能な情報であって前記基準画像が取得されたときの取得条件を含む検索情報と、
を関連付けて記憶装置に記憶させる記憶部と、
前記対基板作業機の前記撮像装置が前記対基板作業において前記対象物を撮像した対象画像の取得条件と一致する取得条件を含む前記検索情報に関連付けられている前記画像関連情報を、前記記憶装置から取得する取得部と、
前記取得部によって取得された前記画像関連情報を用いて、前記対象画像を取得したときの前記対基板作業の良否を判断する良否判断部と、
を備える良否判定装置。 A plurality of images taken by the image pickup device of the board-to-board work machine that performs a predetermined work on the board under the same imaging conditions for the same type of object in the board-to-board work are used as reference images, and each image of the reference image is an image. When the distribution of a plurality of the reference feature amounts when the reference feature amount, which is the total feature amount, is extracted as the feature amount distribution,
Image-related information that is at least one of the reference image and the feature distribution,
Search information that is searchable for the image-related information and includes acquisition conditions when the reference image is acquired, and
A storage unit that associates and stores in a storage device,
The storage device stores the image-related information associated with the search information including acquisition conditions that match the acquisition conditions of the target image in which the object is imaged by the image pickup device of the board-to-board work machine. With the acquisition department to acquire from
Using the image-related information acquired by the acquisition unit, a quality determination unit that determines the quality of the work on the substrate when the target image is acquired, and a quality determination unit.
A pass / fail judgment device. - 前記画像全体の特徴量は、画像を構成する複数の画素の輝度および色、並びに、これらによって形成される形状および前記形状の面積のうちの少なくとも一つである請求項1に記載の良否判定装置。 The quality determination device according to claim 1, wherein the feature amount of the entire image is at least one of the brightness and color of a plurality of pixels constituting the image, the shape formed by these, and the area of the shape. ..
- 前記取得条件は、前記対基板作業機によって規定可能な条件であり、前記対象物に関する情報、前記撮像装置に関する情報、および、前記撮像装置の撮像条件に関する情報のうちの少なくとも前記対象物に関する情報を含む請求項1または請求項2に記載の良否判定装置。 The acquisition condition is a condition that can be defined by the substrate working machine, and includes information on the object, information on the imaging device, and at least information on the object among information on imaging conditions of the imaging device. The pass / fail determination device according to claim 1 or 2.
- 前記記憶部は、前記基準画像を取得したときの前記対基板作業の良否に関する作業結果情報を、前記画像関連情報および前記検索情報と関連付けて記憶させる請求項1~請求項3のいずれか一項に記載の良否判定装置。 Any one of claims 1 to 3 in which the storage unit stores work result information regarding the quality of the work on the substrate when the reference image is acquired in association with the image-related information and the search information. The pass / fail judgment device described in.
- 前記取得部は、少なくとも前記画像関連情報である前記基準画像を前記記憶装置から取得し、
前記取得部によって取得された前記基準画像を用いて前記特徴量分布を取得する分布取得部をさらに備え、
前記良否判断部は、前記対象画像の各画像について画像全体の特徴量である対象特徴量を抽出して、前記特徴量分布によって規定される特徴領域に対する前記対象特徴量の外れ度合いに基づいて、前記対象画像を取得したときの前記対基板作業の良否を判断する請求項1~請求項4のいずれか一項に記載の良否判定装置。 The acquisition unit acquires at least the reference image, which is the image-related information, from the storage device.
A distribution acquisition unit for acquiring the feature amount distribution using the reference image acquired by the acquisition unit is further provided.
The pass / fail determination unit extracts the target feature amount, which is the feature amount of the entire image, for each image of the target image, and based on the degree of deviation of the target feature amount with respect to the feature area defined by the feature amount distribution. The quality determination device according to any one of claims 1 to 4, which determines the quality of the work on the substrate when the target image is acquired. - 前記取得部は、少なくとも前記画像関連情報である前記特徴量分布を前記記憶装置から取得し、
前記良否判断部は、前記対象画像の各画像について画像全体の特徴量である対象特徴量を抽出して、前記特徴量分布によって規定される特徴領域に対する前記対象特徴量の外れ度合いに基づいて、前記対象画像を取得したときの前記対基板作業の良否を判断する請求項1~請求項4のいずれか一項に記載の良否判定装置。 The acquisition unit acquires at least the feature amount distribution, which is the image-related information, from the storage device.
The pass / fail determination unit extracts the target feature amount, which is the feature amount of the entire image, for each image of the target image, and based on the degree of deviation of the target feature amount with respect to the feature area defined by the feature amount distribution. The quality determination device according to any one of claims 1 to 4, which determines the quality of the work on the substrate when the target image is acquired. - 前記良否判断部は、前記特徴領域からのマハラノビス距離が所定の閾値を超えるか否かに基づいて、前記対基板作業の良否を判断する請求項5または請求項6に記載の良否判定装置。 The quality determination device according to claim 5 or 6, wherein the quality determination unit determines the quality of the work on the substrate based on whether or not the Mahalanobis distance from the feature region exceeds a predetermined threshold value.
- 前記良否判断部は、マハラノビス・タグチ法の一手法であるRT法によって、前記対基板作業の良否を判断する請求項7に記載の良否判定装置。 The quality determination device according to claim 7, wherein the quality determination unit determines the quality of the work on the substrate by the RT method, which is a method of the Mahalanobis Taguchi method.
- 前記対象画像、および、前記対象画像と前記基準画像を用いて取得される前記特徴量分布のうちの少なくとも一方を、前記記憶装置に記憶させる提供部をさらに備える請求項1~請求項8のいずれか一項に記載の良否判定装置。 Any of claims 1 to 8, further comprising a providing unit that stores the target image and at least one of the feature amount distribution acquired by using the target image and the reference image in the storage device. The pass / fail judgment device described in item 1.
- 前記対基板作業機は、基板に前記対象物である部品を装着する部品装着機であり、
前記部品装着機に供給される前記部品のベンダが変更され且つベンダ変更後の前記部品に合致する前記画像関連情報を保持しないときに、
前記取得部は、前記画像関連情報を前記記憶装置から取得する請求項1~請求項9のいずれか一項に記載の良否判定装置。 The board-to-board working machine is a component mounting machine that mounts the component that is the object on the board.
When the vendor of the component supplied to the component mounting machine is changed and the image-related information matching the component after the vendor change is not retained.
The quality determination device according to any one of claims 1 to 9, wherein the acquisition unit acquires the image-related information from the storage device. - 前記記憶部および前記記憶装置は、前記対基板作業機と通信可能なデータサーバに設けられ、
前記取得部および前記良否判断部は、前記対基板作業機に設けられる請求項1~請求項10のいずれか一項に記載の良否判定装置。 The storage unit and the storage device are provided in a data server capable of communicating with the board working machine.
The quality determination device according to any one of claims 1 to 10, wherein the acquisition unit and the quality determination unit are provided on the substrate working machine. - 前記データサーバは、複数の前記対基板作業機の間で情報を共有可能な共有サーバである請求項11に記載の良否判定装置。 The pass / fail determination device according to claim 11, wherein the data server is a shared server capable of sharing information between a plurality of the board-to-board working machines.
- 基板に所定の対基板作業を行う対基板作業機の撮像装置が前記対基板作業において同種の対象物について同種の撮像条件で撮像した複数の画像を基準画像とし、前記基準画像の各画像について画像全体の特徴量である基準特徴量が抽出されたときの複数の前記基準特徴量の分布を特徴量分布とするとき、
前記基準画像および前記特徴量分布のうちの少なくとも一方である画像関連情報と、
前記画像関連情報を検索可能な情報であって前記基準画像が取得されたときの取得条件を含む検索情報と、
を関連付けて記憶装置に記憶させる記憶工程と、
前記対基板作業機の前記撮像装置が前記対基板作業において前記対象物を撮像した対象画像の取得条件と一致する取得条件を含む前記検索情報に関連付けられている前記画像関連情報を、前記記憶装置から取得する取得工程と、
前記取得工程によって取得された前記画像関連情報を用いて、前記対象画像を取得したときの前記対基板作業の良否を判断する良否判断工程と、
を備える良否判定方法。 A plurality of images taken by the image pickup device of the board-to-board work machine that performs a predetermined work on the board under the same imaging conditions for the same type of object in the board-to-board work are used as reference images, and each image of the reference image is an image. When the distribution of a plurality of the reference feature amounts when the reference feature amount, which is the total feature amount, is extracted as the feature amount distribution,
Image-related information that is at least one of the reference image and the feature distribution,
Search information that is searchable for the image-related information and includes acquisition conditions when the reference image is acquired, and
And the storage process of associating and storing in the storage device,
The storage device stores the image-related information associated with the search information including acquisition conditions that match the acquisition conditions of the target image in which the object is imaged by the image pickup device of the board-to-board work machine. The acquisition process to be acquired from
Using the image-related information acquired in the acquisition step, a quality determination step of determining the quality of the work on the substrate when the target image is acquired, and a quality determination step.
A pass / fail judgment method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021505479A JP7153127B2 (en) | 2019-03-14 | 2019-03-14 | Pass/Fail Judgment Device and Pass/Fail Judgment Method |
PCT/JP2019/010711 WO2020183735A1 (en) | 2019-03-14 | 2019-03-14 | Quality determination device and quality determination method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/010711 WO2020183735A1 (en) | 2019-03-14 | 2019-03-14 | Quality determination device and quality determination method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020183735A1 true WO2020183735A1 (en) | 2020-09-17 |
Family
ID=72427001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/010711 WO2020183735A1 (en) | 2019-03-14 | 2019-03-14 | Quality determination device and quality determination method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7153127B2 (en) |
WO (1) | WO2020183735A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004085216A (en) * | 2002-08-22 | 2004-03-18 | Toyota Motor Corp | Quality determining apparatus, quality determining program, and quality determining method |
JP2006292725A (en) * | 2005-03-17 | 2006-10-26 | Omron Corp | Substrate inspection device, its inspection logic setting method, and inspection logic setting device |
JP2009002743A (en) * | 2007-06-20 | 2009-01-08 | Hitachi High-Technologies Corp | Visual inspection method, device therefor, and image processing evaluation system |
JP2012151251A (en) * | 2011-01-18 | 2012-08-09 | Omron Corp | Criterion value suitability determination method and its proper value specification method, component mounting board inspection system, and simulation method at production site and simulation system |
JP2013168538A (en) * | 2012-02-16 | 2013-08-29 | Fuji Mach Mfg Co Ltd | Board appearance inspection machine and board appearance inspection method |
JP2014230146A (en) * | 2013-05-23 | 2014-12-08 | 富士ゼロックス株式会社 | Image evaluation method, image evaluation device and image evaluation program |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08254501A (en) * | 1995-03-16 | 1996-10-01 | Hitachi Denshi Ltd | Method and apparatus for visual inspection |
JP3918854B2 (en) * | 2004-09-06 | 2007-05-23 | オムロン株式会社 | Substrate inspection method and substrate inspection apparatus |
JP4645422B2 (en) | 2005-11-18 | 2011-03-09 | オムロン株式会社 | Determination device, determination device control program, and recording medium recording determination device control program |
JP5298978B2 (en) | 2009-03-12 | 2013-09-25 | トヨタ自動車株式会社 | Object detection device |
JP2017215239A (en) | 2016-06-01 | 2017-12-07 | ティー・エス・ビー株式会社 | Solar cell inspection system |
-
2019
- 2019-03-14 WO PCT/JP2019/010711 patent/WO2020183735A1/en active Application Filing
- 2019-03-14 JP JP2021505479A patent/JP7153127B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004085216A (en) * | 2002-08-22 | 2004-03-18 | Toyota Motor Corp | Quality determining apparatus, quality determining program, and quality determining method |
JP2006292725A (en) * | 2005-03-17 | 2006-10-26 | Omron Corp | Substrate inspection device, its inspection logic setting method, and inspection logic setting device |
JP2009002743A (en) * | 2007-06-20 | 2009-01-08 | Hitachi High-Technologies Corp | Visual inspection method, device therefor, and image processing evaluation system |
JP2012151251A (en) * | 2011-01-18 | 2012-08-09 | Omron Corp | Criterion value suitability determination method and its proper value specification method, component mounting board inspection system, and simulation method at production site and simulation system |
JP2013168538A (en) * | 2012-02-16 | 2013-08-29 | Fuji Mach Mfg Co Ltd | Board appearance inspection machine and board appearance inspection method |
JP2014230146A (en) * | 2013-05-23 | 2014-12-08 | 富士ゼロックス株式会社 | Image evaluation method, image evaluation device and image evaluation program |
Also Published As
Publication number | Publication date |
---|---|
JP7153127B2 (en) | 2022-10-13 |
JPWO2020183735A1 (en) | 2021-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6310058B2 (en) | Image processing apparatus and substrate production system | |
US20050268460A1 (en) | Component feeder exchange diagnostic tool | |
JP2002024804A (en) | Part recognition data forming method, forming apparatus electronic component mounting apparatus, and recording medium | |
JP2010050338A (en) | Surface mounting apparatus | |
WO2022064585A1 (en) | Picking possibility determination device and picking possibility determination method | |
JP2017152651A (en) | Component inspection device and component mounting device | |
KR20140016789A (en) | Component mounting system, component mounting device and component inspecting device | |
JP6648252B2 (en) | Image processing system and image processing method | |
JP6734868B2 (en) | Image processing apparatus and image processing method for substrate | |
JP6646916B2 (en) | Image processing apparatus and image processing method for substrate | |
JP2012132836A (en) | Three-dimensional shape measuring apparatus, component transfer apparatus and three-dimensional shape measuring method | |
JPWO2020079753A1 (en) | Data management device and data management method | |
JP4896855B2 (en) | Component mounting system | |
WO2020183735A1 (en) | Quality determination device and quality determination method | |
US20220151120A1 (en) | Correction amount calculating device and correction amount calculating method | |
JP6904978B2 (en) | Parts mounting machine | |
JP7153126B2 (en) | Pass/Fail Judgment Device and Pass/Fail Judgment Method | |
JP2010050337A (en) | Surface mounter | |
US11886701B2 (en) | Data management device | |
JP4473012B2 (en) | Transfer device, surface mounter, IC handler, illumination level determination method and threshold value determination method | |
JP6407433B2 (en) | Model data creation device, model data creation method, mounting reference point determination device, mounting reference point determination method | |
WO2023175831A1 (en) | Image confirmation device and image confirmation method | |
JP7142169B2 (en) | Image data management device and image data management method | |
WO2023162142A1 (en) | Image confirmation device and image confirmation method | |
JP7063995B2 (en) | Parts recognition device and parts recognition method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19918683 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021505479 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19918683 Country of ref document: EP Kind code of ref document: A1 |