WO2020183583A1 - Composition for forming barrier material, barrier material and method for producing same, and product and method for producing same - Google Patents

Composition for forming barrier material, barrier material and method for producing same, and product and method for producing same Download PDF

Info

Publication number
WO2020183583A1
WO2020183583A1 PCT/JP2019/009785 JP2019009785W WO2020183583A1 WO 2020183583 A1 WO2020183583 A1 WO 2020183583A1 JP 2019009785 W JP2019009785 W JP 2019009785W WO 2020183583 A1 WO2020183583 A1 WO 2020183583A1
Authority
WO
WIPO (PCT)
Prior art keywords
barrier material
composition
group
forming
silane
Prior art date
Application number
PCT/JP2019/009785
Other languages
French (fr)
Japanese (ja)
Inventor
龍一郎 福田
崇之 鈴木
智彦 小竹
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2019/009785 priority Critical patent/WO2020183583A1/en
Priority to JP2021504656A priority patent/JP7447893B2/en
Publication of WO2020183583A1 publication Critical patent/WO2020183583A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/58Metal-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/10Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes

Definitions

  • the present invention relates to a composition for forming a barrier material, a barrier material and a method for producing the same, and a product and a method for producing the same.
  • Patent Document 1 describes a barrier film laminate in which a barrier film having an inorganic oxide layer is laminated.
  • an object of the present invention is to provide a barrier material having excellent moisture resistance, which can be applied to objects having various shapes. Another object of the present invention is to provide a composition for forming a barrier material for forming the barrier material. An object of the present invention is further to provide a method for producing the barrier material, a product provided with the barrier material, and a method for producing the product.
  • the present invention provides a composition for forming a barrier material, which comprises a silane oligomer and a silane monomer having a reactive functional group, and at least a part of the silane oligomer is modified with a metal alkoxide.
  • Such a composition can easily form a barrier material having excellent moisture resistance on the object by applying it to the object and heating it. Further, in the above composition, by containing a silane monomer having a reactive functional group, a barrier material having excellent followability and adhesion to an object is formed.
  • the reactive functional group may be selected from the group consisting of a vinyl group, an epoxy group, a glycidyl group, a (meth) acryloyl group, an amino group, an isocyanate group, an isocyanurate group and a mercapto group.
  • the reactive functional group may be an amino group.
  • the silane oligomer may contain a silicon atom bonded to three oxygen atoms.
  • the ratio of the total number of silicon atoms bonded to 3 oxygen atoms and the number of silicon atoms bonded to 4 oxygen atoms to the total number of silicon atoms in the silane oligomer may be 50% or more. ..
  • the content of the silane monomer may be 0.01 to 5 parts by mass with respect to 100 parts by mass of the silane oligomer.
  • composition according to one embodiment may further contain a second silane monomer selected from the group consisting of alkyltrialkoxysilanes, aryltrialkoxysilanes and tetraalkoxysilanes.
  • a second silane monomer selected from the group consisting of alkyltrialkoxysilanes, aryltrialkoxysilanes and tetraalkoxysilanes.
  • the content of the second silane monomer may be 5 to 40 parts by mass with respect to 100 parts by mass of the silane oligomer.
  • the metal alkoxide may be an aluminum alkoxide.
  • the present invention also comprises a first step of preparing a silane oligomer that is at least partially modified with a metal alkoxide, and a composition for forming a barrier material by mixing the silane oligomer with a silane monomer having a reactive functional group.
  • a method for producing a composition for forming a barrier material comprising a second step of obtaining the above.
  • the first step may include a step of reacting a silane oligomer with a metal alkoxide and modifying at least a part of the silane oligomer with a metal alkoxide.
  • the first step may include a step of reacting a silane monomer with a metal alkoxide to form a silane oligomer at least partially modified with a metal alkoxide.
  • the present invention also provides a method for producing a barrier material, which comprises a step of heating the composition for forming a barrier material to form the barrier material.
  • the present invention also provides a method for manufacturing a product having a moisture-proof treated member.
  • the process may be provided.
  • the present invention also comprises a first member and a second member joined to the first member, and the joint portion between the first member and the second member is moisture-proofed.
  • the barrier material is formed by heating the first step of arranging the barrier material forming composition between the first member and the second member and the barrier material forming composition.
  • the second step of joining the first member and the second member via the barrier material may be provided.
  • the present invention also provides a method for manufacturing a product including a moisture-proof member.
  • This manufacturing method includes a first step of heating the composition for forming a barrier material to produce a moisture-proof member having the barrier material, and a second step of assembling a plurality of members including the moisture-proof member. You can.
  • the present invention also provides a barrier material which is a cured product of the above-mentioned composition for forming a barrier material.
  • the water vapor transmission rate per 25 ⁇ m thick (40 °C, 95% RH) may be less 4000g / m 2 ⁇ day.
  • the barrier material according to one embodiment may have a transmittance of 90% or more with respect to light at 550 nm per 1 mm in thickness.
  • the present invention also provides a product comprising the member and the barrier material formed on the member.
  • the present invention also includes the first member, the second member, and the barrier material provided between the first member and the second member, and the first member and the first member.
  • the barrier material provided between the first member and the second member, and the first member and the first member.
  • a product in which the second member is joined via the barrier material is provided.
  • the present invention further provides a product which is an assembly of a plurality of members including the moisture-proof member having the barrier material.
  • a barrier material having excellent moisture resistance that can be applied to objects having various shapes is provided.
  • the present invention can also provide a composition for forming a barrier material for forming the barrier material.
  • the present invention can further provide a method for producing the barrier material, a product provided with the barrier material, and a method for producing the product.
  • the numerical range indicated by using “-” indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the term “A or B” may include either A or B, and may include both. Unless otherwise specified, the materials exemplified in this embodiment may be used alone or in combination of two or more.
  • composition for forming barrier material contains a silane oligomer and a silane monomer having a reactive functional group (hereinafter, also referred to as a first silane monomer), and at least a part of the silane oligomer is contained. It is modified with a metal alkoxide.
  • Such a composition can easily form a barrier material having excellent moisture resistance on the object by applying it to the object and heating it. Further, in the above composition, by containing a silane monomer having a reactive functional group, a barrier material having excellent followability and adhesion to an object is formed.
  • the composition for forming the barrier material may be in the form of a liquid or a paste, and is preferably in the form of a liquid from the viewpoint of facilitating application to the object.
  • a silane oligomer is a polymer of a silane monomer and has a structure in which a plurality of silicon atoms are linked via oxygen atoms.
  • the silane oligomer represents a polymer having a molecular weight of 100,000 or less.
  • the silane oligomer modified with a metal alkoxide is a compound formed by the reaction of the silane oligomer and the metal alkoxide, and a silicon atom derived from the silane oligomer and a metal atom derived from the metal alkoxide are interposed via an oxygen atom. It can also be said that the compound has a bonded structure.
  • the silane oligomer modified with the metal alkoxide may be a reaction product of the silane oligomer and the metal alkoxide, or may be a reaction product of the silane monomer and the metal alkoxide. Good. In the latter case, the silane monomer that has reacted with the metal alkoxide may further react with another silane monomer to form a silane oligomer structure, and the silane oligomer formed by the reaction between the silane monomers reacted with the metal alkoxide. It may be a thing.
  • composition according to the present embodiment it is not necessary that all the silane oligomers contained in the composition are modified with a metal alkoxide, and at least a part of the silane oligomers may be modified with a metal alkoxide.
  • the silicon atom contained in the silane oligomer is a silicon atom bonded to one oxygen atom (M unit), a silicon atom bonded to two oxygen atoms (D unit), and a silicon atom bonded to three oxygen atoms (M unit). It can be distinguished into a silicon atom (Q unit) bonded to four oxygen atoms (T unit). Examples of the M unit, the D unit, the T unit, and the Q unit include the following equations (M), (D), (T), and (Q), respectively.
  • R represents an atom (hydrogen atom or the like) or an atomic group (alkyl group or the like) other than the oxygen atom bonded to silicon. Information on the content of these units can be obtained by Si-NMR.
  • the ratio of the total number of T units and Q units to the total number of silicon atoms is preferably 50% or more, more preferably 70% or more, further preferably 90% or more. It may be 100%. According to such a silane oligomer, a barrier material having more excellent moisture resistance can be obtained.
  • the silane oligomer preferably contains T units.
  • the content of T units in the silane oligomer is, for example, 10% or more, preferably 20% or more, 30% or more, 40% or more, 50% or more, 70% or more, 80% or more with respect to the total number of silicon atoms. Alternatively, it is 90% or more, and may be 100%.
  • Such silane oligomers tend to be more flexible.
  • the content of Q units in the silane oligomer is, for example, 50% or more, preferably 70% or more, and more preferably 80% or more, based on the total number of silicon atoms. It is preferably 90% or more, and may be 100%.
  • Such silane oligomers tend to have better moisture resistance and transparency.
  • the silane oligomer preferably has an alkyl group or an aryl group as R in the above formulas (M), (D), (T) and (Q).
  • an alkyl group having 6 or less carbon atoms is preferable, and an alkyl group having 4 or less carbon atoms is more preferable.
  • Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group and the like, of which a methyl group, an ethoxy group and a propyl group are preferable, and a methyl group is more preferable.
  • Examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group and a cyano group.
  • a phenyl group is preferable.
  • the weight average molecular weight of the silane oligomer may be, for example, 400 or more, preferably 600 or more, and more preferably 1000 or more.
  • the weight average molecular weight of the silane oligomer may be, for example, 30,000 or less, preferably 10,000 or less, and more preferably 6000 or less.
  • a large weight average molecular weight of the silane oligomer tends to improve flexibility, and a small weight average molecular weight tends to improve moisture resistance and transparency.
  • the weight average molecular weight of the silane oligomer indicates the value of the weight average molecular weight expressed in polystyrene conversion measured by gel permeation chromatography (GPC).
  • the metal alkoxide can be represented by, for example, M (OR 1 ) n .
  • M represents an n-valent metal atom and R 1 represents an alkyl group.
  • n represents a positive number of 1 or more.
  • N is preferably 2 to 5, and more preferably 3 to 4.
  • Examples of M include aluminum, titanium, zirconium, niobium and the like, of which aluminum, titanium and zirconium are preferable, and aluminum is more preferable.
  • examples of the metal alkoxide include aluminum alkoxide, titanium alkoxide, zirconium alkoxide, niobium alkoxide and the like, of which aluminum alkoxide, titanium alkoxide and zirconium alkoxide are preferable, and aluminum alkoxide is more preferable.
  • an alkyl group having 1 to 6 carbon atoms is preferable, and an alkyl group having 2 to 4 carbon atoms is more preferable.
  • Specific examples of the alkyl group of R 1 include a methyl group, an ethyl group, a propyl group, a butyl group and the like, of which an ethyl group, a propyl group and a butyl group are preferable, and a propyl group and a butyl group are more preferable.
  • the composition according to the present embodiment may contain a modified silane oligomer in which a silane oligomer is modified with 0.001 to 30 parts by mass of a metal alkoxide with respect to 100 parts by mass of the silane oligomer.
  • the amount of the metal alkoxide is preferably 0.02 parts by mass or more, more preferably 0.05 parts by mass or more, preferably 10 parts by mass or less, and more preferably 5 parts by mass or less with respect to 100 parts by mass of the silane oligomer. Is. Higher amounts of metal alkoxides tend to result in better curability, and lower amounts of metal alkoxides tend to improve transparency.
  • the reactive functional group contained in the first silane monomer examples include a vinyl group, an epoxy group, a glycidyl group, a (meth) acryloyl group, an amino group, an isocyanate group, an isocyanurate group, a mercapto group and the like.
  • the reactive functional group includes a vinyl group, an epoxy group (more preferably a glycidyl group), a (meth) acryloyl group, an amino group, and an isocyanate group. It is preferably selected from the group consisting of an isocyanurate group and a mercapto group, and an amino group is more preferable.
  • the first silane monomer preferably has a silicon atom bonded to three oxygen atoms.
  • a silane monomer represented by the following formula (A-1) can be preferably used.
  • R A1 represents a reactive functional group
  • L 1 is alkanediyl group or an oxy alkanediyl group - indicates (-OL 2.
  • Group, L 2 represented by the showing the alkanediyl group), p is It represents an integer greater than or equal to 0 (preferably an integer of 0 to 3), where RA2 represents an alkyl or aryl group.
  • p is preferably 0 to 3, and more preferably 0.
  • RA1 is an epoxy group, a glycidyl group, a (meth) acryloyl group, an amino group, an isocyanate group, an isocyanurate group or a mercapto group
  • p is preferably an integer of 1 or more, and preferably 1 to 3. More preferably, it is further preferably 1.
  • R A1 is a vinyl group, a glycidyl group, or (meth) acryloyl group
  • L 1 is oxy alkanediyl group
  • R A1 is an amino group, isocyanate group, isocyanurate group or a mercapto group, it is preferred that L 1 is alkanediyl group.
  • an alkane diyl group having 2 to 10 carbon atoms is preferable, and an alkane diyl group having 2 to 8 carbon atoms is more preferable.
  • an alkyl group having 6 or less carbon atoms is preferable, and an alkyl group having 4 or less carbon atoms is more preferable.
  • Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group (n-propyl group, isopropyl group), a butyl group (n-butyl group, sec-butyl group, isobutyl group, tert-butyl group) and the like. Be done.
  • a phenyl group is preferable.
  • RA2 is preferably an alkyl group.
  • the content of the first silane monomer may be, for example, 0.01 part by mass or more, preferably 0.05 part by mass or more, and more preferably 0.1 part by mass or more with respect to 100 parts by mass of the silane oligomer. is there. As a result, the followability and the adhesion tend to be further improved.
  • the content of the first silane monomer may be, for example, 5 parts by mass or less, preferably 4 parts by mass or less, and more preferably 2 parts by mass or less. This tends to further improve the thermal stability of the cured product.
  • silane oligomer does not include the mass of the metal alkoxide that modifies the silane oligomer, and the total amount of the silane oligomer portion of the modified silane oligomer and the unmodified silane oligomer is 100 parts by mass. Means that.
  • composition according to the present embodiment may further contain a silane monomer other than the first silane monomer.
  • the composition according to this embodiment may further contain a second silane monomer selected from the group consisting of alkyltrialkoxysilanes, aryltrialkoxysilanes and tetraalkoxysilanes.
  • the contents of T unit and Q unit in the barrier material can be adjusted, and the barrier material can be imparted with effects such as transparency and flexibility depending on the application. Can be done. Further, by blending the second silane monomer, a barrier material having more excellent moisture resistance tends to be obtained.
  • the content of the second silane monomer is not particularly limited, but may be, for example, 5 parts by mass or more, preferably 8 parts by mass or more, and more preferably 10 parts by mass or more with respect to 100 parts by mass of the silane oligomer. This tends to further improve the flexibility of the cured product.
  • the content of the first silane monomer may be, for example, 40 parts by mass or less, preferably 35 parts by mass or less, and more preferably 30 parts by mass or less. As a result, the volatility of the coating liquid is reduced, and the workability tends to be further improved.
  • Alkoxytrialkoxysilane is a silane compound in which one alkyl group and three alkoxy groups are bonded to a silicon atom.
  • alkyl group of the alkyltrialkoxysilane an alkyl group having 6 or less carbon atoms is preferable, and an alkyl group having 4 or less carbon atoms is more preferable.
  • Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group and the like, of which a methyl group, an ethyl group and a propyl group are preferable, and a methyl group is more preferable.
  • alkoxy group of the alkyltrialkoxysilane an alkoxy group having 6 or less carbon atoms is preferable, and an alkoxy group having 4 or less carbon atoms is more preferable.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like. Of these, a methoxy group, an ethoxy group and a propoxy group are preferable, and a methoxy group and an ethoxy group are more preferable.
  • Aryltrialkoxysilane is a silane compound in which one aryl group and three alkoxy groups are bonded to a silicon atom.
  • Examples of the aryl group of the aryltrialkoxysilane include a phenyl group and a substituted phenyl group.
  • Examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group and a cyano group.
  • the aryl group is preferably a phenyl group.
  • an alkoxy group of the aryltrialkoxysilane an alkoxy group having 6 or less carbon atoms is preferable, and an alkoxy group having 4 or less carbon atoms is more preferable.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like. Of these, a methoxy group, an ethoxy group and a propoxy group are preferable, and a methoxy group and an ethoxy group are more preferable.
  • Tetraalkoxysilane is a silane compound in which four alkoxy groups are bonded to a silicon atom.
  • an alkoxy group having 6 or less carbon atoms is preferable, and an alkoxy group having 4 or less carbon atoms is more preferable.
  • Specific examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like. Of these, a methoxy group, an ethoxy group and a propoxy group are preferable, and a methoxy group and an ethoxy group are more preferable.
  • the second silane monomer examples include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, and tetra.
  • Examples thereof include propoxysilane and tetrabutoxysilane.
  • composition according to this embodiment may further contain a liquid medium.
  • liquid medium include water and an organic solvent.
  • organic solvent examples include alcohols, ethers, ketones, esters, hydrocarbons and the like.
  • acetonitrile, acetamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like can also be used.
  • the composition may contain water and alcohols as a liquid medium.
  • a liquid medium By using such a liquid medium, it becomes easy to obtain a barrier material having excellent transparency.
  • alcohols those that can be vaporized by heating at the time of forming the barrier material are preferable.
  • alcohols having 6 or less carbon atoms are preferable, and alcohols having 1 to 4 carbon atoms are more preferable.
  • alcohols corresponding to the alkoxy group of the metal alkoxide may be used. That is, for example, when the metal alkoxide has a tert-butoxy group, tert-butyl alcohol may be used as the alcohol. This tends to further improve transparency.
  • the content of the liquid medium is not particularly limited, and may be, for example, a content having a viscosity suitable for coating the composition.
  • the viscosity of the composition is not particularly limited, and may be appropriately adjusted according to the thickness of the barrier material to be produced, the coating method, the shape of the object, and the like.
  • the viscosity of the composition at 25 ° C. may be, for example, 1 to 6000 mPa ⁇ s, preferably 5 to 3000 mPa ⁇ s. According to such a composition, it becomes easier to apply the composition to the object and to form a barrier material on the object.
  • the molar ratio of the metal atom M derived from the metal alkoxide to the total number of silicon atoms derived from the silane oligomer and the silane monomer (the first silane monomer and the second silane monomer) (M / Si) may be, for example, 0.00001 or more, preferably 0.0001 or more. This tends to result in better curability.
  • the molar ratio (M / Si) may be, for example, 0.5 or less, preferably 0.2 or less. This tends to improve transparency.
  • composition according to this embodiment may further contain a curing catalyst.
  • the curing catalyst is not particularly limited as long as it promotes the polymerization reaction of the silane oligomer and the silane monomer.
  • the curing catalyst examples include acid catalysts containing hydrochloric acid, nitric acid, sulfuric acid, acetic acid, phosphoric acid and the like, metal catalysts containing tin, titanium, aluminum, zinc, iron, cobalt, manganese and the like, aliphatic amines, ammonium hydroxide and water.
  • acid catalysts containing hydrochloric acid, nitric acid, sulfuric acid, acetic acid, phosphoric acid and the like metal catalysts containing tin, titanium, aluminum, zinc, iron, cobalt, manganese and the like, aliphatic amines, ammonium hydroxide and water.
  • metal catalysts containing tin, titanium, aluminum, zinc, iron, cobalt, manganese and the like examples include a base catalyst containing tetraethylammonium oxide, sodium carbonate, sodium hydroxide and the like.
  • the content of the curing catalyst may be, for example, 0.02 parts by mass or more, preferably 0.05 parts by mass or more, and may be 20 parts by mass or less, and 10 parts by mass with respect to 100 parts by mass of the silane oligomer. The following is preferable.
  • the composition according to this embodiment may further contain components other than the above.
  • other components include resins having a hydroxyl group in the molecular structure, metal oxide particles, metal oxide fibers, and the like.
  • the resin having a hydroxyl group in the molecular structure include polyvinyl alcohol and the like.
  • the metal oxide particles include silica particles and alumina particles, and these particles are preferably nano-sized (for example, the particle size is 1 nm or more and less than 1000 nm) (that is, nanosilica particles, nanoalumina). Particles are preferred).
  • the metal oxide fiber examples include alumina fiber, and the fiber diameter of these metal oxide fibers is preferably nano-sized (for example, the fiber diameter is 1 nm or more and less than 1000 nm) (that is, alumina nanofiber is preferable). .).
  • the content of the above other components is not particularly limited as long as the above effects can be obtained, and may be, for example, 50 parts by mass or less, preferably 40 parts by mass or less with respect to 100 parts by mass of the silane oligomer. Is. Further, the content of the other components may be, for example, 10 parts by mass or more, or 20 parts by mass or more, based on 100 parts by mass of the silane oligomer.
  • Examples of the method for producing the composition according to the present embodiment include the following methods.
  • the present production method comprises a modification step of reacting a silane oligomer with a metal alkoxide to modify at least a part of the silane oligomer with the metal alkoxide.
  • the metal alkoxide reacts with the silane oligomer to form a metal atom-oxygen atom-silicon atom bond.
  • the above reaction may be carried out in a liquid medium.
  • the liquid medium include the same as above.
  • the amount of the liquid medium is not particularly limited, and may be, for example, an amount such that the concentration of the silane oligomer in the reaction solution is 50 to 99% by mass (preferably 80 to 95% by mass).
  • reaction conditions for the above reaction are not particularly limited.
  • the reaction temperature of the above reaction may be 60 to 100 ° C. or 70 to 90 ° C.
  • the reaction time of the above reaction may be, for example, 0.5 to 5.0 hours, or 1.0 to 3.0 hours.
  • the present production method may further include a step of adding a silane oligomer to the reaction solution after the modification step.
  • a composition containing a silane oligomer modified with a metal alkoxide and an unmodified silane oligomer can be obtained.
  • the present production method may further include a step of adding a first silane monomer (and a second silane monomer, if necessary) to the reaction solution after the modification step. That is, in this production method, the first step of preparing a silane oligomer at least partially modified with a metal alkoxide and the modified silane oligomer and the first silane monomer are mixed to prepare a composition for forming a barrier material. It may be a method including the second step of obtaining, and the first step may be the modification step. As a result, a composition containing the first silane monomer is obtained.
  • the present production method may further include a step of adding other components to the reaction solution after the modification step.
  • the present production method may further include a step of adding a liquid medium to the reaction solution after the modification step, or a step of replacing the liquid medium in the reaction solution after the modification step with another liquid medium.
  • the production method comprises a modification step of reacting a silane monomer with a metal alkoxide to form a silane oligomer that is at least partially modified with the metal alkoxide.
  • a silane oligomer is formed by polymerization of the silane monomer, and the formed silane oligomer may be modified with a metal alkoxide.
  • a silane oligomer moiety may be formed by the reaction of the modified silane monomer with another silane monomer.
  • the above reaction may be carried out in a liquid medium.
  • the liquid medium include the same as above.
  • the amount of the liquid medium is not particularly limited, and may be, for example, an amount such that the concentration of the silane monomer in the reaction solution is 50 to 99% by mass (preferably 80 to 95% by mass).
  • reaction conditions for the above reaction are not particularly limited.
  • the reaction temperature of the above reaction may be 60 to 100 ° C. or 70 to 90 ° C.
  • the reaction time of the above reaction may be, for example, 0.5 to 5.0 hours, or 1.0 to 3.0 hours.
  • the present production method may further include a step of adding a silane oligomer to the reaction solution after the modification step.
  • a composition containing a silane oligomer modified with a metal alkoxide and an unmodified silane oligomer can be obtained.
  • the present production method may further include a step of adding a first silane monomer (and a second silane monomer, if necessary) to the reaction solution after the modification step. That is, in this production method, the first step of preparing a silane oligomer at least partially modified with a metal alkoxide and the modified silane oligomer and the first silane monomer are mixed to prepare a composition for forming a barrier material. It may be a method including the second step of obtaining, and the first step may be the modification step. As a result, a composition containing the first silane monomer is obtained.
  • the present production method may further include a step of adding other components to the reaction solution after the modification step.
  • the present production method may further include a step of adding a liquid medium to the reaction solution after the modification step, or a step of replacing the liquid medium in the reaction solution after the modification step with another liquid medium.
  • the barrier material according to this embodiment contains a polysiloxane compound doped with a metal atom.
  • This barrier material may be a cured product of the above-mentioned composition for forming a barrier material. Further, this barrier material may be formed by heating the above-mentioned composition for forming a barrier material. By the heating, the silane oligomer and the silane monomer in the composition are polymerized to form a polysiloxane compound. At this time, since the silane oligomer is modified with the metal alkoxide, the metal atom derived from the metal alkoxide is doped in the formed polysiloxane compound.
  • the polysiloxane compound has a siloxane skeleton. Further, in the polysiloxane compound, the metal atom is bonded to the silicon atom constituting the polysiloxane skeleton via the oxygen atom.
  • the silicon atom contained in the polysiloxane compound is a silicon atom bonded to one oxygen atom (M unit), a silicon atom bonded to two oxygen atoms (D unit), and a silicon atom bonded to three oxygen atoms. It can be distinguished into (T unit) and a silicon atom (Q unit) bonded to four oxygen atoms.
  • M unit silicon atom bonded to one oxygen atom
  • D unit silicon atom bonded to two oxygen atoms
  • Q unit silicon atom bonded to four oxygen atoms.
  • Examples of the M unit, the D unit, the T unit, and the Q unit include the above formulas (M), (D), (T), and (Q), respectively.
  • the ratio of the total number of T units and Q units to the total number of silicon atoms is preferably 50% or more, more preferably 70% or more, still more preferably 90% or more. , 100%. According to such a polysiloxane compound, the moisture resistance of the barrier material is further improved.
  • the polysiloxane compound preferably contains T units.
  • the content of T units in the polysiloxane compound may be, for example, 10% or more, 20% or more, 30% or more, 40% or more or 50% or more, and 70% or more, based on the total number of silicon atoms. Is more preferable, 80% or more is more preferable, 90% or more is further preferable, and 100% may be used. Such polysiloxane compounds tend to further improve flexibility.
  • the content of Q units in the polysiloxane compound may be, for example, 50% or more, preferably 70% or more, and preferably 80% or more, based on the total number of silicon atoms. More preferably, it is more preferably 90% or more, and it may be 100%. According to such a polysiloxane compound, the moisture resistance and transparency tend to be further improved.
  • the molar ratio (M / Si) of the metal atom M to the total number of silicon atoms (Si) may be, for example, 0.0001 or more, preferably 0.001 or more. This tends to result in better curability.
  • the molar ratio (M / Si) may be, for example, 0.5 or less, preferably 0.2 or less. This tends to make the transparency even better.
  • the oxygen atoms of the polysiloxane compound are bonded to at least one silicon atom.
  • the polysiloxane compound contains a small amount of alcoholic hydroxyl groups (C—OH), ether bonds (COC), etc.
  • the moisture resistance tends to be further improved.
  • the oxygen atoms in the polysiloxane compound for example, 90% or more is preferably bonded to a silicon atom, 95% or more is preferably bonded to a silicon atom, and 99% or more is bonded to a silicon atom. It is more preferable that they are bonded.
  • the barrier material has a low water vapor permeability and is excellent in moisture resistance.
  • Water vapor permeability of the barrier material per thickness 25 ⁇ m (40 °C, RH 95% ) for example 4000g / m 2 ⁇ day may be less, is preferably not more than 3500g / m 2 ⁇ day, 3000g / m It is more preferably 2. day or less.
  • the water vapor permeability of the barrier material per 25 ⁇ m thick (40 °C, RH 95%), for example may be at 500g / m 2 ⁇ day or more, preferably 1000g / m 2 ⁇ day or more.
  • a barrier material has a dehumidifying property, and even when used in a high temperature environment, it can sufficiently suppress destruction due to expansion of water that has entered the inside.
  • the water vapor transmittance of the barrier material is based on JIS K7129 and indicates a value measured by the humidity sensor method (Lyssy method).
  • the barrier material may have transparency.
  • Such a barrier material can be suitably used as a coating material for covering an image sensor in an application that requires transparency, for example, an image sensor package.
  • having transparency here means that the visible light transmittance (light transmittance of 550 nm) per 1 mm of thickness is 95% or more.
  • the barrier material has a visible light transmittance (light transmittance of 550 nm) per 1 mm of thickness preferably 95% or more, more preferably 97% or more, still more preferably 99% or more. ..
  • the visible light transmittance of the barrier material is measured by a spectrophotometer.
  • the shape of the barrier material is not particularly limited.
  • the barrier material may be formed into a film, for example, and such a barrier material can be used as a moisture-proof barrier film. Further, the barrier material may be formed so as to fill the gaps between the members, and in this case, the intrusion of moisture from the gaps can be prevented. Further, the barrier material may be formed so as to cover the member, and in this case, contact with the moisture of the member can be prevented.
  • the method for producing a barrier material according to the present embodiment includes a heating step of heating the above-mentioned composition to form a barrier material.
  • the silane oligomer and the first silane monomer in the composition are polymerized by heating to form a polysiloxane compound.
  • a metal atom derived from the metal alkoxide is doped in the polysiloxane compound.
  • the first silane monomer since the first silane monomer has a reactive functional group, a crosslinked structure other than the siloxane bond is formed by the reaction between the reactive functional groups, the reaction between the reactive functional group and the silanol group, and the like. It is believed that this will provide excellent moisture resistance and flexibility. Further, in the present embodiment, since the first silane monomer has a reactive functional group, it is considered that the reactive functional group is bonded to the functional group existing on the surface of the object, thereby providing better moisture resistance and moisture resistance. Flexibility is expected to be achieved.
  • the liquid medium in the composition may be removed by heating. That is, the heating step may be a step of forming a barrier material containing a polysiloxane compound by heating and drying the composition.
  • the heating temperature in the heating step is not particularly limited as long as the silane oligomer can be polymerized.
  • the heating temperature is preferably a temperature at which the liquid medium volatilizes.
  • the heating temperature may be, for example, 70 ° C. or higher, preferably 100 ° C. or higher.
  • the heating temperature may be, for example, 200 ° C. or lower, preferably 180 ° C. or lower.
  • the present production method may further include a coating step of coating the composition.
  • the heating step can be said to be a step of heating the applied composition.
  • the method of applying the composition is not particularly limited, and may be appropriately changed depending on the shape of the object to be applied, the thickness of the barrier material, and the like.
  • the composition may be applied to an object to which moisture resistance is to be imparted, and a barrier material may be formed on the object. Further, in the present manufacturing method, a barrier material having a predetermined shape may be manufactured and then the manufactured barrier material may be applied onto the object.
  • barrier material ⁇ Use of barrier material>
  • the use of the barrier material according to the present embodiment is not particularly limited, and it can be suitably applied to various uses requiring moisture resistance.
  • the barrier material can be suitably used as a moisture-proof barrier material for electronic parts.
  • the barrier material according to this embodiment has excellent moisture resistance even in a high temperature environment (for example, 100 ° C. or higher). Therefore, the barrier material according to the present embodiment is suitably used for, for example, a moisture-proof barrier material for electronic parts used in a high-temperature environment, a moisture-proof barrier material for electronic parts that undergo a high-temperature process at the time of mounting, and the like. Can be done. Specifically, for example, it can be suitably used as a moisture-proof barrier material for power semiconductors, a moisture-proof barrier material for image sensors, a moisture-proof barrier material for displays, and the like.
  • barrier material The preferred form of the use of the barrier material will be described in detail below, but the use of the barrier material is not limited to the following.
  • the application according to one form relates to a product having a moisture-proof treated member.
  • Such products include a member and a barrier material formed on the member.
  • the barrier material may be formed on one member or may be formed on a plurality of members.
  • the barrier material may be formed, for example, to cover one or more members, or may be formed to cover the joint between the two members.
  • Such a product includes a first step of applying the barrier material forming composition on the member and a second step of heating the applied composition to form the barrier material on the member. Manufactured by the manufacturing method.
  • the electronic components include a substrate, a cover glass, an image sensor arranged between the substrate and the cover glass, a support member for supporting the cover glass and the image sensor on the substrate, and a cover glass and a support member.
  • the barrier material provided on the joint portion of the above is provided.
  • a coating step of applying a barrier material forming composition to a joint portion between a support member and a cover glass and a coating step of heating the applied composition to form a barrier material on the joint portion can be manufactured by a manufacturing method including a barrier material forming step.
  • the electronic component includes a substrate, an image sensor arranged on the substrate, and the barrier material provided on the image sensor.
  • the barrier material can be excellent in moisture resistance and transparency. Therefore, the barrier material can also be suitably used as a sealing material for sealing the image sensor. Since such an electronic component can form an image sensor package without using a cover glass, it can be expected that the component size can be reduced and the handleability can be improved.
  • the visible light transmittance (550 nm) of the barrier material per 1 mm of thickness is preferably 95% or more, more preferably 97% or more, and further preferably 99% or more.
  • Such electronic components include, for example, a coating step of applying a barrier material forming composition on an image sensor and a barrier material forming step of heating the applied composition to form a barrier material on the image sensor.
  • a coating step of applying a barrier material forming composition on an image sensor and a barrier material forming step of heating the applied composition to form a barrier material on the image sensor.
  • the application according to one embodiment relates to a product having a first member and a second member joined to the first member, and the joint portion between the first member and the second member is moisture-proofed.
  • a product comprises a first member, a second member, and a barrier material provided between the first member and the second member, and the first member and the second member. Is joined via a barrier material.
  • the first step of arranging the composition for forming a barrier material between the first member and the second member and the first step of heating the composition to form the barrier material are performed. It can be manufactured by a manufacturing method including a second step of joining a member and a second member via a barrier material.
  • the electronic components include a substrate, a cover glass, an image sensor arranged between the substrate and the cover glass, a support member for supporting the cover glass and the image sensor on the substrate, and a cover glass and a support member. It is provided with a barrier material for joining.
  • a step of arranging a composition for forming a barrier material between a support member and a cover glass and a step of heating the composition to form a barrier material, and the support member and the cover glass are formed. It can be manufactured by a manufacturing method including a step of joining via a barrier material.
  • the application according to one form relates to a product provided with a moisture-proof member.
  • a product includes a moisture-proof member made of a barrier material, and may be, for example, an assembly of a plurality of members including the moisture-proof member.
  • Such a product includes a first step of heating the composition for forming a barrier material to produce a moisture-proof member made of the barrier material, and a second step of assembling a plurality of members including the moisture-proof member. It can be manufactured by a manufacturing method.
  • the electronic component includes a substrate, at least one component selected from the group consisting of a MEMS sensor, a wireless module, and a camera module, and a moisture-proof member having a barrier material.
  • the above barrier material has excellent moisture resistance. Therefore, the electronic component has excellent moisture resistance, and deterioration of sensing characteristics due to moisture absorption is sufficiently prevented.
  • Such electronic components are manufactured by, for example, a manufacturing method including a step of producing a moisture-proof member having a barrier material by heating a composition for forming a barrier material, and a step of assembling a plurality of members including the moisture-proof member.
  • the barrier material may be formed independently of the substrate and the component, and may be integrally formed with the component by heating the barrier material forming composition applied on the component.
  • Example A-1 [Composition for Forming Barrier Material A-1] 7.
  • Aluminum sec-butoxide (manufactured by Matsumoto Fine Chemical Industries, Ltd., product name: AL-3001, hereinafter abbreviated as "AL-3001") by 3.8 parts by mass, tert-butyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) 7.
  • tert-butyl alcohol manufactured by Wako Pure Chemical Industries, Ltd.
  • silane oligomer manufactured by Momentive Performance Materials, product name: XC31-B2733
  • TEOS tetraethoxysilane
  • N-2- (aminoethyl) -3-aminopropyltriethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBE-603, hereinafter abbreviated as "KBE-603" was mixed.
  • a composition for forming a barrier material A-1 was obtained.
  • the barrier material forming composition A-1 was applied to both sides of a 0.125 mm thick polyimide film (manufactured by Toray DuPont Co., Ltd., product name Kapton (registered trademark) 500H) so that the thickness after drying was 15 ⁇ m. It was applied and dried at 150 ° C. for 4 hours. As a result, a barrier material was formed on the base material, and an evaluation film A-1 with a barrier material was obtained.
  • a 0.125 mm thick polyimide film manufactured by Toray DuPont Co., Ltd., product name Kapton (registered trademark) 500H
  • the hygroscopicity (%) and adhesion of the evaluation film A-1 with a barrier material were evaluated by the following methods.
  • Example A-2 Composition A for forming a barrier material in the same manner as in Example A-1 except that 64.9 parts by mass of a silane oligomer (manufactured by Momentive Performance Materials, product name: TSR165) was used instead of TSR165. I got -2.
  • a silane oligomer manufactured by Momentive Performance Materials, product name: TSR165
  • Example A-3 Instead of TSR165, 64.9 parts by mass of silane oligomer (manufactured by Momentive Performance Materials, product name: TSR165) was used, and instead of KBE-603, 3-aminopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) was used. , Product name: KBE-903) A barrier material forming composition A-3 was obtained in the same manner as in Example A-1 except that 1 part by mass was used.
  • Example A-4 64.9 parts by mass of silane oligomer (manufactured by Momentive Performance Materials, product name: TSR165) was used instead of TSR165, and phenyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM) was used instead of TEOS. -103, hereinafter abbreviated as "PTMS”)
  • PTMS phenyltrimethoxysilane
  • the barrier material forming composition A- 4 was applied and dried at 150 ° C. for 4 hours. As a result, a barrier material was formed on the base material, and an evaluation film A-4 with a barrier material was obtained. The hygroscopicity and adhesion of the obtained evaluation film A-4 with a barrier material were evaluated in the same manner as in Example A-1.
  • composition X-1 was obtained in the same manner as in Example A-1 except that KBE-603 was not added.
  • the barrier material forming composition X-so that the thickness after drying is 15 ⁇ m for both sides of a polyimide film having a thickness of 0.125 mm (manufactured by Toray DuPont Co., Ltd., product name Kapton (registered trademark) 500H). 1 was applied and dried at 150 ° C. for 4 hours. As a result, a barrier material was formed on the base material, and an evaluation film X-1 with a barrier material was obtained. The hygroscopicity and adhesion of the obtained evaluation film X-1 with a barrier material were evaluated in the same manner as in Example A-1.
  • Example 1 For a polyimide film having a thickness of 0.125 mm (manufactured by Toray DuPont Co., Ltd., product name Kapton (registered trademark) 500H), the moisture absorption rate of Example A-1 was evaluated without forming a barrier material. The results are shown in Table 1.
  • Example B-1 Example A-4 except that 1 part by mass of vinyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-1003, hereinafter abbreviated as "KBM-1003") was used instead of KBE-603.
  • KBM-1003 vinyltrimethoxysilane
  • the barrier material forming composition B- was applied to both sides of a polyimide film having a thickness of 0.125 mm (manufactured by Toray DuPont Co., Ltd., product name: Kapton (registered trademark) 500H) so that the thickness after drying was 20 ⁇ m. 1 was applied and dried at 150 ° C. for 4 hours. As a result, a barrier material was formed on the base material, and an evaluation film B-1 with a barrier material was obtained. The hygroscopicity of the obtained evaluation film B-1 with a barrier material was measured by the following method. Further, the adhesion of the obtained evaluation film B-1 with a barrier material was evaluated in the same manner as in Example A-1.
  • Example B-2 Except that 1 part by mass of 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-403, hereinafter abbreviated as "KBM-403") was used instead of KBM-1003.
  • a composition for forming a barrier material and an evaluation film with a barrier material were prepared and evaluated in the same manner as in Example B-1.
  • Example B-3 (Example B-3) Implemented except that 1 part by mass of 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-503, hereinafter abbreviated as "KBM-503") was used instead of KBM-1003.
  • a composition for forming a barrier material and an evaluation film with a barrier material were prepared and evaluated in the same manner as in Example B-1.
  • Example B-4 (Example B-4) Implemented except that 1 part by mass of 3-acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-5103, hereinafter abbreviated as "KBM-5103") was used instead of KBM-1003.
  • KBM-5103 3-acryloxypropyltrimethoxysilane
  • Example B-573 N-phenyl-3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-573, hereinafter abbreviated as "KBM-573") instead of KBM-1003.
  • KBM-573 N-phenyl-3-aminopropyltrimethoxysilane
  • Example B-6 Examples except that 1 part by mass of 3-isocyanatepropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBE-9007N, hereinafter abbreviated as "KBE-9007N") was used instead of KBM-1003.
  • a composition for forming a barrier material and an evaluation film with a barrier material were prepared and evaluated in the same manner as in B-1.
  • Example B-7 Except for the use of 1 part by mass of tris- (trimethoxysilylpropyl) isocyanurate (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-9569, hereinafter abbreviated as "KBM-9655”) instead of KBM-1003. , A composition for forming a barrier material and an evaluation film with a barrier material were prepared and evaluated in the same manner as in Example B-1.
  • Example B-803 Examples except that 1 part by mass of 3-mercaptopropylmethyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-803, hereinafter abbreviated as "KBM-803") was used instead of KBM-1003.
  • a composition for forming a barrier material and an evaluation film with a barrier material were prepared and evaluated in the same manner as in B-1.
  • Example B-1 The hygroscopicity of Example B-1 was evaluated for a polyimide film having a thickness of 0.125 mm (manufactured by Toray DuPont Co., Ltd., product name Kapton (registered trademark) 500H) without forming a barrier material. The results are shown in Table 2.

Abstract

The present invention provides a composition for forming a barrier material containing a silane oligomer and a silane monomer having a reactive functional group. At least part of the silane oligomer is modified by a metal alkoxide.

Description

バリア材形成用組成物、バリア材及びその製造方法、並びに製品及びその製造方法Barrier material forming composition, barrier material and its manufacturing method, and product and its manufacturing method
 本発明は、バリア材形成用組成物、バリア材及びその製造方法、並びに製品及びその製造方法に関する。 The present invention relates to a composition for forming a barrier material, a barrier material and a method for producing the same, and a product and a method for producing the same.
 従来から、電子部品に形成された空隙部に湿気が混入することを避けるため、バリアフィルム等によって電子部品を封止することが検討されている。例えば、特許文献1には、無機酸化物層を備えるバリアフィルムを積層させた、バリアフィルム積層体が記載されている。 Conventionally, it has been studied to seal an electronic component with a barrier film or the like in order to prevent moisture from entering the voids formed in the electronic component. For example, Patent Document 1 describes a barrier film laminate in which a barrier film having an inorganic oxide layer is laminated.
特開2011-093195号公報Japanese Unexamined Patent Publication No. 2011-093195
 しかし、特許文献1に記載のバリアフィルム積層体は、フィルム状であるため適用可能な対象が限定されている。 However, since the barrier film laminate described in Patent Document 1 is in the form of a film, the applicable objects are limited.
 そこで本発明は、様々な形状の対象物に適用可能な、防湿性に優れるバリア材を提供することを目的とする。本発明はまた、上記バリア材を形成するための、バリア材形成用組成物を提供することを目的とする。本発明は更に、上記バリア材の製造方法、上記バリア材を備える製品、及び当該製品の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a barrier material having excellent moisture resistance, which can be applied to objects having various shapes. Another object of the present invention is to provide a composition for forming a barrier material for forming the barrier material. An object of the present invention is further to provide a method for producing the barrier material, a product provided with the barrier material, and a method for producing the product.
 本発明は、シランオリゴマーと、反応性官能基を有するシランモノマーと、を含み、上記シランオリゴマーの少なくとも一部が金属アルコキシドで修飾されている、バリア材形成用組成物を提供する。 The present invention provides a composition for forming a barrier material, which comprises a silane oligomer and a silane monomer having a reactive functional group, and at least a part of the silane oligomer is modified with a metal alkoxide.
 このような組成物は、対象物への塗布及び加熱により、容易に対象物上に防湿性に優れたバリア材を形成できる。また、上記組成物では、反応性官能基を有するシランモノマーを含むことで、対象物への追従性及び密着性に優れたバリア材が形成される。 Such a composition can easily form a barrier material having excellent moisture resistance on the object by applying it to the object and heating it. Further, in the above composition, by containing a silane monomer having a reactive functional group, a barrier material having excellent followability and adhesion to an object is formed.
 一態様において、上記反応性官能基は、ビニル基、エポキシ基、グリシジル基、(メタ)アクリロイル基、アミノ基、イソシアネート基、イソシアヌレート基及びメルカプト基からなる群より選択されてよい。 In one embodiment, the reactive functional group may be selected from the group consisting of a vinyl group, an epoxy group, a glycidyl group, a (meth) acryloyl group, an amino group, an isocyanate group, an isocyanurate group and a mercapto group.
 一態様において、上記反応性官能基は、アミノ基であってよい。 In one embodiment, the reactive functional group may be an amino group.
 一態様において、上記シランオリゴマーは、3個の酸素原子と結合したケイ素原子を含有していてよい。 In one embodiment, the silane oligomer may contain a silicon atom bonded to three oxygen atoms.
 一態様において、上記シランオリゴマー中のケイ素原子の総数に対する、3個の酸素原子と結合したケイ素原子及び4個の酸素原子と結合したケイ素原子の合計数の割合は、50%以上であってよい。 In one embodiment, the ratio of the total number of silicon atoms bonded to 3 oxygen atoms and the number of silicon atoms bonded to 4 oxygen atoms to the total number of silicon atoms in the silane oligomer may be 50% or more. ..
 一態様において、上記シランモノマーの含有量は、上記シランオリゴマー100質量部に対して0.01~5質量部であってよい。 In one embodiment, the content of the silane monomer may be 0.01 to 5 parts by mass with respect to 100 parts by mass of the silane oligomer.
 一態様に係る組成物は、アルキルトリアルコキシシラン、アリールトリアルコキシシラン及びテトラアルコキシシランからなる群より選択される第二のシランモノマーを更に含んでいてよい。 The composition according to one embodiment may further contain a second silane monomer selected from the group consisting of alkyltrialkoxysilanes, aryltrialkoxysilanes and tetraalkoxysilanes.
 一態様において,上記第二のシランモノマーの含有量は、上記シランオリゴマー100質量部に対して5~40質量部であってよい。 In one embodiment, the content of the second silane monomer may be 5 to 40 parts by mass with respect to 100 parts by mass of the silane oligomer.
 一態様において、上記金属アルコキシドは、アルミニウムアルコキシドであってよい。 In one embodiment, the metal alkoxide may be an aluminum alkoxide.
 本発明はまた、少なくとも一部が金属アルコキシドで修飾されたシランオリゴマーを準備する第一の工程と、上記シランオリゴマーと反応性官能基を有するシランモノマーとを混合して、バリア材形成用組成物を得る第二の工程と、を備える、バリア材形成用組成物の製造方法を提供する。 The present invention also comprises a first step of preparing a silane oligomer that is at least partially modified with a metal alkoxide, and a composition for forming a barrier material by mixing the silane oligomer with a silane monomer having a reactive functional group. Provided is a method for producing a composition for forming a barrier material, comprising a second step of obtaining the above.
 一態様において、上記第一の工程は、シランオリゴマーと金属アルコキシドとを反応させて、前記シランオリゴマーの少なくとも一部を金属アルコキシドで修飾する工程を含むものであってよい。 In one aspect, the first step may include a step of reacting a silane oligomer with a metal alkoxide and modifying at least a part of the silane oligomer with a metal alkoxide.
 一態様において、上記第一の工程は、シランモノマーと金属アルコキシドとを反応させて、少なくとも一部が金属アルコキシドで修飾されたシランオリゴマーを形成する工程を含むものであってもよい。 In one aspect, the first step may include a step of reacting a silane monomer with a metal alkoxide to form a silane oligomer at least partially modified with a metal alkoxide.
 本発明はまた、上記バリア材形成用組成物を加熱して、バリア材を形成する工程を備える、バリア材の製造方法を提供する。 The present invention also provides a method for producing a barrier material, which comprises a step of heating the composition for forming a barrier material to form the barrier material.
 本発明はまた、防湿処理された部材を有する製品の製造方法を提供する。この製造方法は、部材上に上記バリア材形成用組成物を塗布する第一の工程と、塗布された上記バリア材形成用組成物を加熱して、上記部材上にバリア材を形成する第二の工程と、を備えていてよい。 The present invention also provides a method for manufacturing a product having a moisture-proof treated member. In this production method, the first step of applying the barrier material forming composition on the member and the second step of heating the applied barrier material forming composition to form the barrier material on the member. The process may be provided.
 本発明はまた、第一の部材と上記第一の部材に接合された第二の部材とを有し、上記第一の部材と上記第二の部材との接合部が防湿処理された製品の製造方法を提供する。この製造方法は、第一の部材と第二の部材との間に上記バリア材形成用組成物を配置する第一の工程と、上記バリア材形成用組成物を加熱してバリア材を形成し、上記第一の部材と上記第二の部材とを前記バリア材を介して接合する第二の工程と、を備えていてよい。 The present invention also comprises a first member and a second member joined to the first member, and the joint portion between the first member and the second member is moisture-proofed. Provide a manufacturing method. In this manufacturing method, the barrier material is formed by heating the first step of arranging the barrier material forming composition between the first member and the second member and the barrier material forming composition. , The second step of joining the first member and the second member via the barrier material may be provided.
 本発明はまた、防湿部材を備える製品の製造方法を提供する。この製造方法は、上記バリア材形成用組成物を加熱してバリア材を有する防湿部材を作製する第一の工程と、上記防湿部材を含む複数の部材を組み立てる第二の工程と、を備えていてよい。 The present invention also provides a method for manufacturing a product including a moisture-proof member. This manufacturing method includes a first step of heating the composition for forming a barrier material to produce a moisture-proof member having the barrier material, and a second step of assembling a plurality of members including the moisture-proof member. You can.
 本発明はまた、上記バリア材形成用組成物の硬化物である、バリア材を提供する。 The present invention also provides a barrier material which is a cured product of the above-mentioned composition for forming a barrier material.
 一態様に係るバリア材は、厚さ25μm当たりの水蒸気透過率(40℃、95%RH)が、4000g/m・day以下であってよい。 Barrier material according to one embodiment, the water vapor transmission rate per 25μm thick (40 ℃, 95% RH) may be less 4000g / m 2 · day.
 一態様に係るバリア材は、厚さ1mm当たりの550nmの光に対する透過率が、90%以上であってよい。 The barrier material according to one embodiment may have a transmittance of 90% or more with respect to light at 550 nm per 1 mm in thickness.
 本発明はまた、部材と、上記部材上に形成された上記バリア材と、を備える、製品を提供する。 The present invention also provides a product comprising the member and the barrier material formed on the member.
 本発明はまた、第一の部材と、第二の部材と、上記第一の部材及び上記第二の部材の間に設けられた上記バリア材と、を備え、上記第一の部材と上記第二の部材とが上記バリア材を介して接合されている、製品を提供する。 The present invention also includes the first member, the second member, and the barrier material provided between the first member and the second member, and the first member and the first member. Provided is a product in which the second member is joined via the barrier material.
 本発明は更に、上記バリア材を有する防湿部材を含む複数の部材の組立品である、製品を提供する。 The present invention further provides a product which is an assembly of a plurality of members including the moisture-proof member having the barrier material.
 本発明によれば、様々な形状の対象物に適用可能な、防湿性に優れるバリア材が提供される。本発明はまた、上記バリア材を形成するための、バリア材形成用組成物を提供できる。本発明は更に、上記バリア材の製造方法、上記バリア材を備える製品、及び当該製品の製造方法を提供できる。 According to the present invention, a barrier material having excellent moisture resistance that can be applied to objects having various shapes is provided. The present invention can also provide a composition for forming a barrier material for forming the barrier material. The present invention can further provide a method for producing the barrier material, a product provided with the barrier material, and a method for producing the product.
 以下、本発明の好適な実施形態について説明する。本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。「A又はB」とは、A及びBのいずれか一方を含んでいればよく、両方を含んでいてもよい。本実施形態で例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。 Hereinafter, preferred embodiments of the present invention will be described. In the present specification, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively. The term "A or B" may include either A or B, and may include both. Unless otherwise specified, the materials exemplified in this embodiment may be used alone or in combination of two or more.
<バリア材形成用組成物>
 本実施形態に係るバリア材形成用組成物は、シランオリゴマーと、反応性官能基を有するシランモノマー(以下、第一のシランモノマーともいう。)と、を含み、当該シランオリゴマーの少なくとも一部は金属アルコキシドで修飾されている。
<Composition for forming barrier material>
The composition for forming a barrier material according to the present embodiment contains a silane oligomer and a silane monomer having a reactive functional group (hereinafter, also referred to as a first silane monomer), and at least a part of the silane oligomer is contained. It is modified with a metal alkoxide.
 このような組成物は、対象物への塗布及び加熱により、容易に対象物上に防湿性に優れたバリア材を形成できる。また、上記組成物では、反応性官能基を有するシランモノマーを含むことで、対象物への追従性及び密着性に優れたバリア材が形成される。 Such a composition can easily form a barrier material having excellent moisture resistance on the object by applying it to the object and heating it. Further, in the above composition, by containing a silane monomer having a reactive functional group, a barrier material having excellent followability and adhesion to an object is formed.
 バリア材形成用組成物は、液状であってもペースト状であってもよく、対象物への塗布がより容易となる観点からは、液状であることが好ましい。 The composition for forming the barrier material may be in the form of a liquid or a paste, and is preferably in the form of a liquid from the viewpoint of facilitating application to the object.
 シランオリゴマーはシランモノマーの重合体であり、複数のケイ素原子が酸素原子を介して連結された構造を有する。本明細書中、シランオリゴマーは、分子量が100000以下の重合体を示す。 A silane oligomer is a polymer of a silane monomer and has a structure in which a plurality of silicon atoms are linked via oxygen atoms. In the present specification, the silane oligomer represents a polymer having a molecular weight of 100,000 or less.
 本明細書中、金属アルコキシドで修飾されたシランオリゴマーとは、シランオリゴマーと金属アルコキシドの反応により形成される化合物であり、シランオリゴマー由来のケイ素原子と金属アルコキシド由来の金属原子とが酸素原子を介して結合した構造を有する化合物ということもできる。 In the present specification, the silane oligomer modified with a metal alkoxide is a compound formed by the reaction of the silane oligomer and the metal alkoxide, and a silicon atom derived from the silane oligomer and a metal atom derived from the metal alkoxide are interposed via an oxygen atom. It can also be said that the compound has a bonded structure.
 金属アルコキシドで修飾されたシランオリゴマー(以下、場合により「修飾シランオリゴマー」と称する)は、シランオリゴマーと金属アルコキシドとの反応物であってよく、シランモノマーと金属アルコキシドとの反応物であってもよい。後者の場合、金属アルコキシドと反応したシランモノマーが更に他のシランモノマーと反応してシランオリゴマー構造を形成したものであってよく、シランモノマー同士の反応により形成されたシランオリゴマーが金属アルコキシドと反応したものであってもよい。 The silane oligomer modified with the metal alkoxide (hereinafter, sometimes referred to as “modified silane oligomer”) may be a reaction product of the silane oligomer and the metal alkoxide, or may be a reaction product of the silane monomer and the metal alkoxide. Good. In the latter case, the silane monomer that has reacted with the metal alkoxide may further react with another silane monomer to form a silane oligomer structure, and the silane oligomer formed by the reaction between the silane monomers reacted with the metal alkoxide. It may be a thing.
 なお、本実施形態に係る組成物は、組成物に含まれるシランオリゴマーの全てが金属アルコキシドで修飾されている必要はなく、シランオリゴマーの少なくとも一部が金属アルコキシドで修飾されていればよい。 In the composition according to the present embodiment, it is not necessary that all the silane oligomers contained in the composition are modified with a metal alkoxide, and at least a part of the silane oligomers may be modified with a metal alkoxide.
 シランオリゴマーに含まれるケイ素原子は、1個の酸素原子と結合したケイ素原子(M単位)、2個の酸素原子と結合したケイ素原子(D単位)、3個の酸素原子と結合したケイ素原子(T単位)及び4個の酸素原子と結合したケイ素原子(Q単位)に区別することができる。M単位、D単位、T単位及びQ単位としては、それぞれ以下の式(M)、(D)、(T)及び(Q)が例示できる。 The silicon atom contained in the silane oligomer is a silicon atom bonded to one oxygen atom (M unit), a silicon atom bonded to two oxygen atoms (D unit), and a silicon atom bonded to three oxygen atoms (M unit). It can be distinguished into a silicon atom (Q unit) bonded to four oxygen atoms (T unit). Examples of the M unit, the D unit, the T unit, and the Q unit include the following equations (M), (D), (T), and (Q), respectively.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式中、Rはケイ素に結合する酸素原子以外の原子(水素原子等)又は原子団(アルキル基等)を示す。これらの単位の含有量に関する情報は、Si-NMRにより得ることができる。 In the above formula, R represents an atom (hydrogen atom or the like) or an atomic group (alkyl group or the like) other than the oxygen atom bonded to silicon. Information on the content of these units can be obtained by Si-NMR.
 シランオリゴマーにおいて、ケイ素原子の総数に対するT単位及びQ単位の合計数の割合は、50%以上であることが好ましく、70%以上であることがより好ましく、90%以上であることが更に好ましく、100%であってもよい。このようなシランオリゴマーによれば、防湿性に一層優れたバリア材が得られる。 In the silane oligomer, the ratio of the total number of T units and Q units to the total number of silicon atoms is preferably 50% or more, more preferably 70% or more, further preferably 90% or more. It may be 100%. According to such a silane oligomer, a barrier material having more excellent moisture resistance can be obtained.
 好適な一態様において、シランオリゴマーはT単位を含有していることが好ましい。シランオリゴマーにおけるT単位の含有量は、ケイ素原子の総数に対して、例えば10%以上であり、好ましくは20%以上、30%以上、40%以上、50%以上、70%以上、80%以上又は90%以上であり、100%であってもよい。このようなシランオリゴマーは、柔軟性がより向上する傾向がある。 In a preferred embodiment, the silane oligomer preferably contains T units. The content of T units in the silane oligomer is, for example, 10% or more, preferably 20% or more, 30% or more, 40% or more, 50% or more, 70% or more, 80% or more with respect to the total number of silicon atoms. Alternatively, it is 90% or more, and may be 100%. Such silane oligomers tend to be more flexible.
 好適な他の一態様において、シランオリゴマーにおけるQ単位の含有量は、ケイ素原子の総数に対して、例えば50%以上であり、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましく、100%であってもよい。このようなシランオリゴマーは、防湿性及び透明性がより向上する傾向がある。 In another preferred embodiment, the content of Q units in the silane oligomer is, for example, 50% or more, preferably 70% or more, and more preferably 80% or more, based on the total number of silicon atoms. It is preferably 90% or more, and may be 100%. Such silane oligomers tend to have better moisture resistance and transparency.
 シランオリゴマーは、上述の式(M)、(D)、(T)及び(Q)中のRとして、アルキル基又はアリール基を有していることが好ましい。 The silane oligomer preferably has an alkyl group or an aryl group as R in the above formulas (M), (D), (T) and (Q).
 アルキル基としては、炭素数6以下のアルキル基が好ましく、炭素数4以下のアルキル基がより好ましい。アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられ、これらのうちメチル基、エトキシ基、プロピル基が好ましく、メチル基がより好ましい。 As the alkyl group, an alkyl group having 6 or less carbon atoms is preferable, and an alkyl group having 4 or less carbon atoms is more preferable. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group and the like, of which a methyl group, an ethoxy group and a propyl group are preferable, and a methyl group is more preferable.
 アリール基としては、フェニル基、置換フェニル基等が挙げられる。置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。アリール基としては、フェニル基が好ましい。 Examples of the aryl group include a phenyl group and a substituted phenyl group. Examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group and a cyano group. As the aryl group, a phenyl group is preferable.
 シランオリゴマーの重量平均分子量は、例えば400以上であってよく、好ましくは600以上、より好ましくは1000以上である。また、シランオリゴマーの重量平均分子量は、例えば30000以下であってよく、好ましくは10000以下、より好ましくは6000以下である。シランオリゴマーの重量平均分子量が大きいと柔軟性がより向上する傾向があり、小さいと防湿性及び透明性がより向上する傾向がある。なお、本明細書中、シランオリゴマーの重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)により測定したポリスチレン換算で表される重量平均分子量の値を示す。 The weight average molecular weight of the silane oligomer may be, for example, 400 or more, preferably 600 or more, and more preferably 1000 or more. The weight average molecular weight of the silane oligomer may be, for example, 30,000 or less, preferably 10,000 or less, and more preferably 6000 or less. A large weight average molecular weight of the silane oligomer tends to improve flexibility, and a small weight average molecular weight tends to improve moisture resistance and transparency. In the present specification, the weight average molecular weight of the silane oligomer indicates the value of the weight average molecular weight expressed in polystyrene conversion measured by gel permeation chromatography (GPC).
 金属アルコキシドは、例えば、M(ORで表すことができる。Mはn価の金属原子を示し、Rはアルキル基を示す。nは1以上の正数を示す。 The metal alkoxide can be represented by, for example, M (OR 1 ) n . M represents an n-valent metal atom and R 1 represents an alkyl group. n represents a positive number of 1 or more.
 nは好ましくは2~5であり、より好ましくは3~4である。 N is preferably 2 to 5, and more preferably 3 to 4.
 Mとしては、アルミニウム、チタン、ジルコニウム、ニオブ等が挙げられ、これらのうちアルミニウム、チタン、ジルコニウムが好ましく、アルミニウムがより好ましい。すなわち、金属アルコキシドとしては、アルミニウムアルコキシド、チタンアルコキシド、ジルコニウムアルコキシド、ニオブアルコキシド等が挙げられ、これらのうちアルミニウムアルコキシド、チタンアルコキシド、ジルコニウムアルコキシドが好ましく、アルミニウムアルコキシドがより好ましい。 Examples of M include aluminum, titanium, zirconium, niobium and the like, of which aluminum, titanium and zirconium are preferable, and aluminum is more preferable. That is, examples of the metal alkoxide include aluminum alkoxide, titanium alkoxide, zirconium alkoxide, niobium alkoxide and the like, of which aluminum alkoxide, titanium alkoxide and zirconium alkoxide are preferable, and aluminum alkoxide is more preferable.
 Rとしては、炭素数1~6アルキル基が好ましく、炭素数2~4のアルキル基がより好ましい。Rのアルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられ、これらのうちエチル基、プロピル基、ブチル基が好ましく、プロピル基、ブチル基がより好ましい。 As R 1 , an alkyl group having 1 to 6 carbon atoms is preferable, and an alkyl group having 2 to 4 carbon atoms is more preferable. Specific examples of the alkyl group of R 1 include a methyl group, an ethyl group, a propyl group, a butyl group and the like, of which an ethyl group, a propyl group and a butyl group are preferable, and a propyl group and a butyl group are more preferable.
 本実施形態に係る組成物は、シランオリゴマーを、当該シランオリゴマー100質量部に対して0.001~30質量部の金属アルコキシドで修飾した修飾シランオリゴマーを含むものであってよい。金属アルコキシドの量は、シランオリゴマー100質量部に対して、好ましくは0.02質量部以上、より好ましくは0.05質量部以上であり、好ましくは10質量部以下、より好ましくは5質量部以下である。金属アルコキシドの量が多いと硬化性がより良好になる傾向があり、金属アルコキシドの量を少なくすることで透明性がより向上する傾向がある。 The composition according to the present embodiment may contain a modified silane oligomer in which a silane oligomer is modified with 0.001 to 30 parts by mass of a metal alkoxide with respect to 100 parts by mass of the silane oligomer. The amount of the metal alkoxide is preferably 0.02 parts by mass or more, more preferably 0.05 parts by mass or more, preferably 10 parts by mass or less, and more preferably 5 parts by mass or less with respect to 100 parts by mass of the silane oligomer. Is. Higher amounts of metal alkoxides tend to result in better curability, and lower amounts of metal alkoxides tend to improve transparency.
 第一のシランモノマーが有する反応性官能基としては、ビニル基、エポキシ基、グリシジル基、(メタ)アクリロイル基、アミノ基、イソシアネート基、イソシアヌレート基、メルカプト基等が挙げられる。バリア材の柔軟性及び部材への密着性がより向上する観点からは、反応性官能基は、ビニル基、エポキシ基(より好ましくはグリシジル基)、(メタ)アクリロイル基、アミノ基、イソシアネート基、イソシアヌレート基及びメルカプト基からなる群より選択されることが好ましく、アミノ基がより好ましい。 Examples of the reactive functional group contained in the first silane monomer include a vinyl group, an epoxy group, a glycidyl group, a (meth) acryloyl group, an amino group, an isocyanate group, an isocyanurate group, a mercapto group and the like. From the viewpoint of further improving the flexibility of the barrier material and the adhesion to the member, the reactive functional group includes a vinyl group, an epoxy group (more preferably a glycidyl group), a (meth) acryloyl group, an amino group, and an isocyanate group. It is preferably selected from the group consisting of an isocyanurate group and a mercapto group, and an amino group is more preferable.
 第一のシランモノマーは、3個の酸素原子と結合したケイ素原子を有していることが好ましい。 The first silane monomer preferably has a silicon atom bonded to three oxygen atoms.
 第一のシランモノマーとしては、例えば、下記式(A-1)で表されるシランモノマーを好適に用いることができる。 As the first silane monomer, for example, a silane monomer represented by the following formula (A-1) can be preferably used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式中、RA1は反応性官能基を示し、Lはアルカンジイル基又はオキシアルカンジイル基(-OL-で表される基、Lはアルカンジイル基を示す。)を示し、pは0以上の整数(好ましくは0~3の整数)を示し、RA2はアルキル基又はアリール基を示す。 Wherein, R A1 represents a reactive functional group, L 1 is alkanediyl group or an oxy alkanediyl group - indicates (-OL 2. Group, L 2 represented by the showing the alkanediyl group), p is It represents an integer greater than or equal to 0 (preferably an integer of 0 to 3), where RA2 represents an alkyl or aryl group.
 RA1がビニル基であるとき、pは0~3であることが好ましく、0であることがより好ましい。 When RA1 is a vinyl group, p is preferably 0 to 3, and more preferably 0.
 RA1がエポキシ基、グリシジル基、(メタ)アクリロイル基、アミノ基、イソシアネート基、イソシアヌレート基又はメルカプト基であるとき、pは1以上の整数であることが好ましく、1~3であることがより好ましく、1であることが更に好ましい。 When RA1 is an epoxy group, a glycidyl group, a (meth) acryloyl group, an amino group, an isocyanate group, an isocyanurate group or a mercapto group, p is preferably an integer of 1 or more, and preferably 1 to 3. More preferably, it is further preferably 1.
 RA1がビニル基、グリシジル基又は(メタ)アクリロイル基であるとき、Lはオキシアルカンジイル基であることが好ましい。 When R A1 is a vinyl group, a glycidyl group, or (meth) acryloyl group, it is preferred that L 1 is oxy alkanediyl group.
 RA1がアミノ基、イソシアネート基、イソシアヌレート基又はメルカプト基であるとき、Lはアルカンジイル基であることが好ましい。 When R A1 is an amino group, isocyanate group, isocyanurate group or a mercapto group, it is preferred that L 1 is alkanediyl group.
 L及びLおけるアルカンジイル基としては、炭素数2~10のアルカンジイル基が好ましく、炭素数2~8のアルカンジイル基がより好ましい。 As the alkanediyl group in L 1 and L 2, an alkane diyl group having 2 to 10 carbon atoms is preferable, and an alkane diyl group having 2 to 8 carbon atoms is more preferable.
 RA2におけるアルキル基としては、炭素数6以下のアルキル基が好ましく、炭素数4以下のアルキル基がより好ましい。アルキル基の具体例としては、メチル基、エチル基、プロピル基(n-プロピル基、イソプロピル基)、ブチル基(n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基)等が挙げられる。 As the alkyl group in RA2, an alkyl group having 6 or less carbon atoms is preferable, and an alkyl group having 4 or less carbon atoms is more preferable. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group (n-propyl group, isopropyl group), a butyl group (n-butyl group, sec-butyl group, isobutyl group, tert-butyl group) and the like. Be done.
 RA2におけるアリール基としては、フェニル基が好ましい。 The aryl group in R A2, a phenyl group is preferable.
 RA2はアルキル基であることが好ましい。 RA2 is preferably an alkyl group.
 第一のシランモノマーの含有量は、シランオリゴマー100質量部に対して、例えば0.01質量部以上であってよく、好ましくは0.05質量部以上、より好ましくは0.1質量部以上である。これにより、追従性及び密着性がより向上する傾向がある。また、第一のシランモノマーの含有量は、例えば5質量部以下であってよく、好ましくは4質量部以下、より好ましくは2質量部以下である。これにより、硬化物の熱安定性がより向上する傾向がある。 The content of the first silane monomer may be, for example, 0.01 part by mass or more, preferably 0.05 part by mass or more, and more preferably 0.1 part by mass or more with respect to 100 parts by mass of the silane oligomer. is there. As a result, the followability and the adhesion tend to be further improved. The content of the first silane monomer may be, for example, 5 parts by mass or less, preferably 4 parts by mass or less, and more preferably 2 parts by mass or less. This tends to further improve the thermal stability of the cured product.
 なお、本明細書中、「シランオリゴマー100質量部」は、シランオリゴマーを修飾する金属アルコキシドの質量は含まず、修飾シランオリゴマーのシランオリゴマー部分と未修飾シランオリゴマーの合計量を100質量部とすることを意味する。 In the present specification, "100 parts by mass of silane oligomer" does not include the mass of the metal alkoxide that modifies the silane oligomer, and the total amount of the silane oligomer portion of the modified silane oligomer and the unmodified silane oligomer is 100 parts by mass. Means that.
 本実施形態に係る組成物は、第一のシランモノマー以外のシランモノマーを更に含んでいてよい。例えば、本実施形態に係る組成物は、アルキルトリアルコキシシラン、アリールトリアルコキシシラン及びテトラアルコキシシランからなる群より選択される第二のシランモノマーを更に含んでいてよい。 The composition according to the present embodiment may further contain a silane monomer other than the first silane monomer. For example, the composition according to this embodiment may further contain a second silane monomer selected from the group consisting of alkyltrialkoxysilanes, aryltrialkoxysilanes and tetraalkoxysilanes.
 第二のシランモノマーを配合することで、例えば、バリア材におけるT単位及びQ単位の含有量を調整することができ、用途に応じてバリア材に透明性、柔軟性等の効果を付与することができる。また、第二のシランモノマーを配合することで、防湿性に一層優れるバリア材が得られる傾向がある。 By blending the second silane monomer, for example, the contents of T unit and Q unit in the barrier material can be adjusted, and the barrier material can be imparted with effects such as transparency and flexibility depending on the application. Can be done. Further, by blending the second silane monomer, a barrier material having more excellent moisture resistance tends to be obtained.
 第二のシランモノマーの含有量は特に限定されないが、シランオリゴマー100質量部に対して、例えば5質量部以上であってよく、好ましくは8質量部以上、より好ましくは10質量部以上である。これにより、硬化物の柔軟性がより向上する傾向がある。また、第一のシランモノマーの含有量は、例えば40質量部以下であってよく、好ましくは35質量部以下、より好ましくは30質量部以下である。これにより、塗液の揮発性が低減し、作業性がより向上する傾向がある。 The content of the second silane monomer is not particularly limited, but may be, for example, 5 parts by mass or more, preferably 8 parts by mass or more, and more preferably 10 parts by mass or more with respect to 100 parts by mass of the silane oligomer. This tends to further improve the flexibility of the cured product. The content of the first silane monomer may be, for example, 40 parts by mass or less, preferably 35 parts by mass or less, and more preferably 30 parts by mass or less. As a result, the volatility of the coating liquid is reduced, and the workability tends to be further improved.
 アルキルトリアルコキシシランは、ケイ素原子に1つのアルキル基と3つのアルコキシ基が結合したシラン化合物である。 Alkoxytrialkoxysilane is a silane compound in which one alkyl group and three alkoxy groups are bonded to a silicon atom.
 アルキルトリアルコキシシランのアルキル基としては、炭素数6以下のアルキル基が好ましく、炭素数4以下のアルキル基がより好ましい。アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられ、これらのうちメチル基、エチル基、プロピル基が好ましく、メチル基がより好ましい。また、アルキルトリアルコキシシランのアルコキシ基としては、炭素数6以下のアルコキシ基が好ましく、炭素数4以下のアルコキシ基がより好ましい。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられ、これらのうちメトキシ基、エトキシ基、プロポキシ基が好ましく、メトキシ基、エトキシ基がより好ましい。 As the alkyl group of the alkyltrialkoxysilane, an alkyl group having 6 or less carbon atoms is preferable, and an alkyl group having 4 or less carbon atoms is more preferable. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group and the like, of which a methyl group, an ethyl group and a propyl group are preferable, and a methyl group is more preferable. Further, as the alkoxy group of the alkyltrialkoxysilane, an alkoxy group having 6 or less carbon atoms is preferable, and an alkoxy group having 4 or less carbon atoms is more preferable. Specific examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like. Of these, a methoxy group, an ethoxy group and a propoxy group are preferable, and a methoxy group and an ethoxy group are more preferable.
 アリールトリアルコキシシランは、ケイ素原子に1つのアリール基と3つのアルコキシ基が結合したシラン化合物である。 Aryltrialkoxysilane is a silane compound in which one aryl group and three alkoxy groups are bonded to a silicon atom.
 アリールトリアルコキシシランのアリール基としては、フェニル基、置換フェニル基等が挙げられる。置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。当該アリール基としては、フェニル基が好ましい。また、アリールトリアルコキシシランのアルコキシ基としては、炭素数6以下のアルコキシ基が好ましく、炭素数4以下のアルコキシ基がより好ましい。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられ、これらのうちメトキシ基、エトキシ基、プロポキシ基が好ましく、メトキシ基、エトキシ基がより好ましい。 Examples of the aryl group of the aryltrialkoxysilane include a phenyl group and a substituted phenyl group. Examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group and a cyano group. The aryl group is preferably a phenyl group. Further, as the alkoxy group of the aryltrialkoxysilane, an alkoxy group having 6 or less carbon atoms is preferable, and an alkoxy group having 4 or less carbon atoms is more preferable. Specific examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like. Of these, a methoxy group, an ethoxy group and a propoxy group are preferable, and a methoxy group and an ethoxy group are more preferable.
 テトラアルコキシシランは、ケイ素原子に4つのアルコキシ基が結合したシラン化合物である。 Tetraalkoxysilane is a silane compound in which four alkoxy groups are bonded to a silicon atom.
 テトラアルコキシシランのアルコキシ基としては、炭素数6以下のアルコキシ基が好ましく、炭素数4以下のアルコキシ基がより好ましい。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられ、これらのうちメトキシ基、エトキシ基、プロポキシ基が好ましく、メトキシ基、エトキシ基がより好ましい。 As the alkoxy group of tetraalkoxysilane, an alkoxy group having 6 or less carbon atoms is preferable, and an alkoxy group having 4 or less carbon atoms is more preferable. Specific examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like. Of these, a methoxy group, an ethoxy group and a propoxy group are preferable, and a methoxy group and an ethoxy group are more preferable.
 第二のシランモノマーの具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等が挙げられる。 Specific examples of the second silane monomer include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, and tetra. Examples thereof include propoxysilane and tetrabutoxysilane.
 本実施形態に係る組成物は、液状媒体を更に含んでいてよい。液状媒体としては、水及び有機溶媒が挙げられる。 The composition according to this embodiment may further contain a liquid medium. Examples of the liquid medium include water and an organic solvent.
 有機溶媒としては、例えば、アルコール類、エーテル類、ケトン類、エステル類、炭化水素類等が挙げられる。また、これらの他に、アセトニトリル、アセトアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等も用いることができる。 Examples of the organic solvent include alcohols, ethers, ketones, esters, hydrocarbons and the like. In addition to these, acetonitrile, acetamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like can also be used.
 好適な一態様において、組成物は、液状媒体として水及びアルコ-ル類を含んでいてよい。このような液状媒体を用いることで、透明性に優れるバリア材が得られやすくなる。 In a preferred embodiment, the composition may contain water and alcohols as a liquid medium. By using such a liquid medium, it becomes easy to obtain a barrier material having excellent transparency.
 アルコール類としては、バリア材形成時の加熱によって気化させることができるものが好ましい。アルコール類としては、例えば、炭素数6以下のアルコール類が好ましく、炭素数1~4のアルコール類がより好ましい。 As the alcohols, those that can be vaporized by heating at the time of forming the barrier material are preferable. As the alcohols, for example, alcohols having 6 or less carbon atoms are preferable, and alcohols having 1 to 4 carbon atoms are more preferable.
 アルコール類としては、例えば、金属アルコキシドのアルコキシ基に対応するアルコール類を用いてもよい。すなわち、例えば金属アルコキシドがtert-ブトキシ基を有するとき、アルコール類としてtert-ブチルアルコールを用いてよい。これにより、透明性が一層向上する傾向がある。 As the alcohols, for example, alcohols corresponding to the alkoxy group of the metal alkoxide may be used. That is, for example, when the metal alkoxide has a tert-butoxy group, tert-butyl alcohol may be used as the alcohol. This tends to further improve transparency.
 液状媒体の含有量は特に限定されず、例えば、組成物の塗布に好適な粘度となる含有量としてよい。組成物の粘度は特に限定されず、作製するバリア材の厚さ、塗布方法、対象物の形状等に応じて適宜調整してよい。 The content of the liquid medium is not particularly limited, and may be, for example, a content having a viscosity suitable for coating the composition. The viscosity of the composition is not particularly limited, and may be appropriately adjusted according to the thickness of the barrier material to be produced, the coating method, the shape of the object, and the like.
 組成物の25℃における粘度は、例えば1~6000mPa・sであってよく、5~3000mPa・sであることが好ましい。このような組成物によれば、対象物への塗布及び対象物上へのバリア材の形成が一層容易となる。 The viscosity of the composition at 25 ° C. may be, for example, 1 to 6000 mPa · s, preferably 5 to 3000 mPa · s. According to such a composition, it becomes easier to apply the composition to the object and to form a barrier material on the object.
 本実施形態に係る組成物において、シランオリゴマー及びシランモノマー(第一のシランモノマー及び第二のシランモノマー)に由来するケイ素原子の総数に対する、金属アルコキシドに由来する金属原子Mのモル比(M/Si)は、例えば0.00001以上であってよく、0.0001以上であることが好ましい。これにより、硬化性がより良好になる傾向がある。また、上記モル比(M/Si)は、例えば0.5以下であってよく、0.2以下であることが好ましい。これにより、透明性がより向上する傾向がある。 In the composition according to the present embodiment, the molar ratio of the metal atom M derived from the metal alkoxide to the total number of silicon atoms derived from the silane oligomer and the silane monomer (the first silane monomer and the second silane monomer) (M / Si) may be, for example, 0.00001 or more, preferably 0.0001 or more. This tends to result in better curability. The molar ratio (M / Si) may be, for example, 0.5 or less, preferably 0.2 or less. This tends to improve transparency.
 本実施形態に係る組成物は、硬化触媒を更に含有していてよい。硬化触媒は、シランオリゴマー及びシランモノマーの重合反応を促進するものであればよく、特に限定されない。 The composition according to this embodiment may further contain a curing catalyst. The curing catalyst is not particularly limited as long as it promotes the polymerization reaction of the silane oligomer and the silane monomer.
 硬化触媒としては、例えば塩酸、硝酸、硫酸、酢酸、リン酸等を含む酸触媒、スズ、チタン、アルミ、亜鉛、鉄、コバルト、マンガン等を含む金属触媒、脂肪族アミン、水酸化アンモニウム、水酸化テトラエチルアンモニウム、炭酸ナトリウム、水酸化ナトリウム等を含む塩基触媒等が挙げられる。 Examples of the curing catalyst include acid catalysts containing hydrochloric acid, nitric acid, sulfuric acid, acetic acid, phosphoric acid and the like, metal catalysts containing tin, titanium, aluminum, zinc, iron, cobalt, manganese and the like, aliphatic amines, ammonium hydroxide and water. Examples thereof include a base catalyst containing tetraethylammonium oxide, sodium carbonate, sodium hydroxide and the like.
 硬化触媒の含有量は、例えば、シランオリゴマー100質量部に対して、0.02質量部以上であってよく、0.05質量部以上が好ましく、20質量部以下であってよく、10質量部以下が好ましい。 The content of the curing catalyst may be, for example, 0.02 parts by mass or more, preferably 0.05 parts by mass or more, and may be 20 parts by mass or less, and 10 parts by mass with respect to 100 parts by mass of the silane oligomer. The following is preferable.
 本実施形態に係る組成物は、上記以外の他の成分を更に含有していてよい。他の成分としては、例えば、分子構造中に水酸基を有する樹脂、金属酸化物粒子、金属酸化物ファイバー等が挙げられる。分子構造中に水酸基を有する樹脂としては、例えば、ポリビニルアルコール等が挙げられる。また、金属酸化物粒子としては、例えば、シリカ粒子、アルミナ粒子等が挙げられ、これらの粒子はナノサイズ(例えば粒径が1nm以上1000nm未満)であることが好ましい(すなわち、ナノシリカ粒子、ナノアルミナ粒子が好ましい。)。金属酸化物ファイバーとしては、例えば、アルミナファイバー等が挙げられ、これら金属酸化物ファイバーの繊維径はナノサイズ(例えば繊維径が1nm以上1000nm未満)であることが好ましい(すなわち、アルミナナノファイバーが好ましい。)。 The composition according to this embodiment may further contain components other than the above. Examples of other components include resins having a hydroxyl group in the molecular structure, metal oxide particles, metal oxide fibers, and the like. Examples of the resin having a hydroxyl group in the molecular structure include polyvinyl alcohol and the like. Further, examples of the metal oxide particles include silica particles and alumina particles, and these particles are preferably nano-sized (for example, the particle size is 1 nm or more and less than 1000 nm) (that is, nanosilica particles, nanoalumina). Particles are preferred). Examples of the metal oxide fiber include alumina fiber, and the fiber diameter of these metal oxide fibers is preferably nano-sized (for example, the fiber diameter is 1 nm or more and less than 1000 nm) (that is, alumina nanofiber is preferable). .).
 上記の他の成分の含有量は、上述の効果が得られる範囲であれば特に限定されず、例えば、シランオリゴマー100質量部に対して50質量部以下であってよく、好ましくは40質量部以下である。また、上記他の成分の含有量は、シランオリゴマー100質量部に対して、例えば10質量部以上であってよく、20質量部以上であってもよい。 The content of the above other components is not particularly limited as long as the above effects can be obtained, and may be, for example, 50 parts by mass or less, preferably 40 parts by mass or less with respect to 100 parts by mass of the silane oligomer. Is. Further, the content of the other components may be, for example, 10 parts by mass or more, or 20 parts by mass or more, based on 100 parts by mass of the silane oligomer.
 本実施形態に係る組成物の製造方法としては、以下の方法が挙げられる。 Examples of the method for producing the composition according to the present embodiment include the following methods.
<組成物の製造方法1>
 本製造方法は、シランオリゴマーと金属アルコキシドとを反応させて、シランオリゴマーの少なくとも一部を金属アルコキシドで修飾する修飾工程を備える。この修飾工程では、金属アルコキシドがシランオリゴマーと反応して、金属原子-酸素原子-ケイ素原子の結合が形成される。
<Production method 1 of composition>
The present production method comprises a modification step of reacting a silane oligomer with a metal alkoxide to modify at least a part of the silane oligomer with the metal alkoxide. In this modification step, the metal alkoxide reacts with the silane oligomer to form a metal atom-oxygen atom-silicon atom bond.
 上記反応は、液状媒体中で行ってよい。液状媒体としては、上記と同じものが例示できる。液状媒体の量は特に限定されず、例えば、反応液中のシランオリゴマーの濃度が50~99質量%(好ましくは80~95質量%)となる量であってよい。 The above reaction may be carried out in a liquid medium. Examples of the liquid medium include the same as above. The amount of the liquid medium is not particularly limited, and may be, for example, an amount such that the concentration of the silane oligomer in the reaction solution is 50 to 99% by mass (preferably 80 to 95% by mass).
 上記反応の反応条件は特に限定されない。例えば、上記反応の反応温度は、60~100℃であってよく、70~90℃であってもよい。また、上記反応の反応時間は、例えば0.5~5.0時間であってよく、1.0~3.0時間であってもよい。 The reaction conditions for the above reaction are not particularly limited. For example, the reaction temperature of the above reaction may be 60 to 100 ° C. or 70 to 90 ° C. The reaction time of the above reaction may be, for example, 0.5 to 5.0 hours, or 1.0 to 3.0 hours.
 本製造方法は、修飾工程後の反応液に、シランオリゴマーを添加する工程を更に備えていてもよい。これにより、金属アルコキシドで修飾されたシランオリゴマーと、未修飾のシランオリゴマーとを含有する組成物が得られる。 The present production method may further include a step of adding a silane oligomer to the reaction solution after the modification step. As a result, a composition containing a silane oligomer modified with a metal alkoxide and an unmodified silane oligomer can be obtained.
 本製造方法は、修飾工程後の反応液に、第一のシランモノマー(及び、必要に応じて第二のシランモノマー)を添加する工程を更に備えていてもよい。すなわち、本製造方法は、少なくとも一部が金属アルコキシドで修飾されたシランオリゴマーを準備する第一の工程と、修飾シランオリゴマーと第一のシランモノマーとを混合して、バリア材形成用組成物を得る第二の工程と、を備える方法であってよく、第一の工程が、上記修飾工程であってよい。これにより、第一のシランモノマーを含有する組成物が得られる。 The present production method may further include a step of adding a first silane monomer (and a second silane monomer, if necessary) to the reaction solution after the modification step. That is, in this production method, the first step of preparing a silane oligomer at least partially modified with a metal alkoxide and the modified silane oligomer and the first silane monomer are mixed to prepare a composition for forming a barrier material. It may be a method including the second step of obtaining, and the first step may be the modification step. As a result, a composition containing the first silane monomer is obtained.
 本製造方法はまた、修飾工程後の反応液に、他の成分を添加する工程を更に備えていてもよい。本製造方法はまた、修飾工程後の反応液に液状媒体を添加する工程、又は、修飾工程後の反応液中の液状媒体を他の液状媒体に置換する工程を更に備えていてもよい。これらの工程によって、修飾工程後の反応液から、上述の組成物の様々な態様を調製することができる。 The present production method may further include a step of adding other components to the reaction solution after the modification step. The present production method may further include a step of adding a liquid medium to the reaction solution after the modification step, or a step of replacing the liquid medium in the reaction solution after the modification step with another liquid medium. By these steps, various aspects of the above composition can be prepared from the reaction solution after the modification step.
<組成物の製造方法2>
 本製造方法は、シランモノマーと金属アルコキシドとを反応させて、少なくとも一部が金属アルコキシドで修飾されたシランオリゴマーを形成する、修飾工程を備える。修飾工程では、シランモノマーの重合によってシランオリゴマーが形成され、形成されたシランオリゴマーが金属アルコキシドにより修飾されてよい。また、修飾工程では、シランモノマーが金属アルコキシドによって修飾された後、修飾されたシランモノマーと他のシランモノマーとの反応によってシランオリゴマー部分が形成されてもよい。
<Production method 2 of composition>
The production method comprises a modification step of reacting a silane monomer with a metal alkoxide to form a silane oligomer that is at least partially modified with the metal alkoxide. In the modification step, a silane oligomer is formed by polymerization of the silane monomer, and the formed silane oligomer may be modified with a metal alkoxide. Further, in the modification step, after the silane monomer is modified with a metal alkoxide, a silane oligomer moiety may be formed by the reaction of the modified silane monomer with another silane monomer.
 上記反応は、液状媒体中で行ってよい。液状媒体としては、上記と同じものが例示できる。液状媒体の量は特に限定されず、例えば、反応液中のシランモノマーの濃度が50~99質量%(好ましくは80~95質量%)となる量であってよい。 The above reaction may be carried out in a liquid medium. Examples of the liquid medium include the same as above. The amount of the liquid medium is not particularly limited, and may be, for example, an amount such that the concentration of the silane monomer in the reaction solution is 50 to 99% by mass (preferably 80 to 95% by mass).
 上記反応の反応条件は特に限定されない。例えば、上記反応の反応温度は、60~100℃であってよく、70~90℃であってもよい。また、上記反応の反応時間は、例えば0.5~5.0時間であってよく、1.0~3.0時間であってもよい。 The reaction conditions for the above reaction are not particularly limited. For example, the reaction temperature of the above reaction may be 60 to 100 ° C. or 70 to 90 ° C. The reaction time of the above reaction may be, for example, 0.5 to 5.0 hours, or 1.0 to 3.0 hours.
 本製造方法は、修飾工程後の反応液に、シランオリゴマーを添加する工程を更に備えていてもよい。これにより、金属アルコキシドで修飾されたシランオリゴマーと、未修飾のシランオリゴマーとを含有する組成物が得られる。 The present production method may further include a step of adding a silane oligomer to the reaction solution after the modification step. As a result, a composition containing a silane oligomer modified with a metal alkoxide and an unmodified silane oligomer can be obtained.
 本製造方法は、修飾工程後の反応液に、第一のシランモノマー(及び、必要に応じて第二のシランモノマー)を添加する工程を更に備えていてもよい。すなわち、本製造方法は、少なくとも一部が金属アルコキシドで修飾されたシランオリゴマーを準備する第一の工程と、修飾シランオリゴマーと第一のシランモノマーとを混合して、バリア材形成用組成物を得る第二の工程と、を備える方法であってよく、第一の工程が、上記修飾工程であってよい。これにより、第一のシランモノマーを含有する組成物が得られる。 The present production method may further include a step of adding a first silane monomer (and a second silane monomer, if necessary) to the reaction solution after the modification step. That is, in this production method, the first step of preparing a silane oligomer at least partially modified with a metal alkoxide and the modified silane oligomer and the first silane monomer are mixed to prepare a composition for forming a barrier material. It may be a method including the second step of obtaining, and the first step may be the modification step. As a result, a composition containing the first silane monomer is obtained.
 本製造方法はまた、修飾工程後の反応液に、他の成分を添加する工程を更に備えていてもよい。本製造方法はまた、修飾工程後の反応液に液状媒体を添加する工程、又は、修飾工程後の反応液中の液状媒体を他の液状媒体に置換する工程を更に備えていてもよい。これらの工程によって、修飾工程後の反応液から、上述の組成物の様々な態様を調製することができる。 The present production method may further include a step of adding other components to the reaction solution after the modification step. The present production method may further include a step of adding a liquid medium to the reaction solution after the modification step, or a step of replacing the liquid medium in the reaction solution after the modification step with another liquid medium. By these steps, various aspects of the above composition can be prepared from the reaction solution after the modification step.
<バリア材>
 本実施形態に係るバリア材は、金属原子がドープされたポリシロキサン化合物を含む。このバリア材は、上述のバリア材形成用組成物の硬化物であってよい。また、このバリア材は、上述のバリア材形成用組成物を加熱して形成されたものであってよい。当該加熱によって、組成物中のシランオリゴマー及びシランモノマーが重合して、ポリシロキサン化合物が形成される。このとき、シランオリゴマーは金属アルコキシドで修飾されているため、形成されたポリシロキサン化合物中には、金属アルコキシド由来の金属原子がドープされる。
<Barrier material>
The barrier material according to this embodiment contains a polysiloxane compound doped with a metal atom. This barrier material may be a cured product of the above-mentioned composition for forming a barrier material. Further, this barrier material may be formed by heating the above-mentioned composition for forming a barrier material. By the heating, the silane oligomer and the silane monomer in the composition are polymerized to form a polysiloxane compound. At this time, since the silane oligomer is modified with the metal alkoxide, the metal atom derived from the metal alkoxide is doped in the formed polysiloxane compound.
 ポリシロキサン化合物は、シロキサン骨格を有している。また、ポリシロキサン化合物中、金属原子は、酸素原子を介してポリシロキサン骨格を構成するケイ素原子と結合している。 The polysiloxane compound has a siloxane skeleton. Further, in the polysiloxane compound, the metal atom is bonded to the silicon atom constituting the polysiloxane skeleton via the oxygen atom.
 ポリシロキサン化合物に含まれるケイ素原子は、1個の酸素原子と結合したケイ素原子(M単位)、2個の酸素原子と結合したケイ素原子(D単位)、3個の酸素原子と結合したケイ素原子(T単位)及び4個の酸素原子と結合したケイ素原子(Q単位)に区別することができる。M単位、D単位、T単位及びQ単位としては、それぞれ上記式(M)、(D)、(T)及び(Q)が例示できる。 The silicon atom contained in the polysiloxane compound is a silicon atom bonded to one oxygen atom (M unit), a silicon atom bonded to two oxygen atoms (D unit), and a silicon atom bonded to three oxygen atoms. It can be distinguished into (T unit) and a silicon atom (Q unit) bonded to four oxygen atoms. Examples of the M unit, the D unit, the T unit, and the Q unit include the above formulas (M), (D), (T), and (Q), respectively.
 ポリシロキサン化合物において、ケイ素原子の総数に対するT単位及びQ単位の合計数の割合は、50%以上であることが好ましく、70%以上であることがより好ましく、90%以上であることが更に好ましく、100%であってもよい。このようなポリシロキサン化合物によれば、バリア材の防湿性が一層向上する。 In the polysiloxane compound, the ratio of the total number of T units and Q units to the total number of silicon atoms is preferably 50% or more, more preferably 70% or more, still more preferably 90% or more. , 100%. According to such a polysiloxane compound, the moisture resistance of the barrier material is further improved.
 好適な一態様において、ポリシロキサン化合物はT単位を含有していることが好ましい。ポリシロキサン化合物におけるT単位の含有量は、ケイ素原子の総数に対して、例えば10%以上、20%以上、30%以上、40%以上又は50%以上であってよく、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましく、100%であってもよい。このようなポリシロキサン化合物によれば、柔軟性が一層向上する傾向がある。 In a preferred embodiment, the polysiloxane compound preferably contains T units. The content of T units in the polysiloxane compound may be, for example, 10% or more, 20% or more, 30% or more, 40% or more or 50% or more, and 70% or more, based on the total number of silicon atoms. Is more preferable, 80% or more is more preferable, 90% or more is further preferable, and 100% may be used. Such polysiloxane compounds tend to further improve flexibility.
 好適な他の一態様において、ポリシロキサン化合物におけるQ単位の含有量は、ケイ素原子の総数に対して、例えば50%以上であってよく、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましく、100%であってもよい。このようなポリシロキサン化合物によれば、防湿性及び透明性が一層向上する傾向がある。 In another preferred embodiment, the content of Q units in the polysiloxane compound may be, for example, 50% or more, preferably 70% or more, and preferably 80% or more, based on the total number of silicon atoms. More preferably, it is more preferably 90% or more, and it may be 100%. According to such a polysiloxane compound, the moisture resistance and transparency tend to be further improved.
 ポリシロキサン化合物において、ケイ素原子(Si)の総数に対する金属原子Mのモル比(M/Si)は、例えば0.0001以上であってよく、0.001以上であることが好ましい。これにより、硬化性がより良好になる傾向がある。また、上記モル比(M/Si)は、例えば0.5以下であってよく、0.2以下であることが好ましい。これにより、透明性が一層良好になる傾向がある。 In the polysiloxane compound, the molar ratio (M / Si) of the metal atom M to the total number of silicon atoms (Si) may be, for example, 0.0001 or more, preferably 0.001 or more. This tends to result in better curability. The molar ratio (M / Si) may be, for example, 0.5 or less, preferably 0.2 or less. This tends to make the transparency even better.
 ポリシロキサン化合物は、酸素原子の大部分が少なくとも1つのケイ素原子と結合していることが好ましい。ポリシロキサン化合物中に、アルコール性水酸基(C-OH)、エーテル結合(C-O-C)等が少ないことで、防湿性が一層向上する傾向がある。例えば、ポリシロキサン化合物中の酸素原子のうち、例えば90%以上がケイ素原子と結合していることが好ましく、95%以上がケイ素原子と結合していることが好ましく、99%以上がケイ素原子と結合していることが更に好ましい。 It is preferable that most of the oxygen atoms of the polysiloxane compound are bonded to at least one silicon atom. When the polysiloxane compound contains a small amount of alcoholic hydroxyl groups (C—OH), ether bonds (COC), etc., the moisture resistance tends to be further improved. For example, of the oxygen atoms in the polysiloxane compound, for example, 90% or more is preferably bonded to a silicon atom, 95% or more is preferably bonded to a silicon atom, and 99% or more is bonded to a silicon atom. It is more preferable that they are bonded.
 バリア材は低い水蒸気透過率を有しており、防湿性に優れる。厚さ25μm当たりのバリア材の水蒸気透過率(40℃、95%RH)は、例えば4000g/m・day以下であってよく、3500g/m・day以下であることが好ましく、3000g/m・day以下であることが更に好ましい。 The barrier material has a low water vapor permeability and is excellent in moisture resistance. Water vapor permeability of the barrier material per thickness 25μm (40 ℃, RH 95% ) , for example 4000g / m 2 · day may be less, is preferably not more than 3500g / m 2 · day, 3000g / m It is more preferably 2. day or less.
 また、厚さ25μm当たりのバリア材の水蒸気透過率(40℃、95%RH)は、例えば500g/m・day以上であってよく、1000g/m・day以上であることが好ましい。このようなバリア材は脱湿性を有し、高温環境下で使用しても内部に侵入した水分の膨張による破壊を十分に抑制できる。 The water vapor permeability of the barrier material per 25μm thick (40 ℃, RH 95%), for example may be at 500g / m 2 · day or more, preferably 1000g / m 2 · day or more. Such a barrier material has a dehumidifying property, and even when used in a high temperature environment, it can sufficiently suppress destruction due to expansion of water that has entered the inside.
 なお、バリア材の水蒸気透過率は、JIS K7129に準拠し、感湿センサー法(Lyssy法)の方法で測定される値を示す。 The water vapor transmittance of the barrier material is based on JIS K7129 and indicates a value measured by the humidity sensor method (Lyssy method).
 バリア材は透明性を有していてもよい。このようなバリア材は、透明性が要求される用途、例えばイメージセンサパッケージにおけるイメージセンサ上を被覆する被覆材として、好適に用いることができる。なお、ここで透明性を有するとは、厚さ1mm当たりの可視光透過率(550nmの光透過率)が95%以上であることを示す。 The barrier material may have transparency. Such a barrier material can be suitably used as a coating material for covering an image sensor in an application that requires transparency, for example, an image sensor package. In addition, having transparency here means that the visible light transmittance (light transmittance of 550 nm) per 1 mm of thickness is 95% or more.
 バリア材は、厚さ1mm当たりの可視光透過率(550nmの光透過率)が、95%以上であることが好ましく、97%以上であることがより好ましく、99%以上であることが更に好ましい。バリア材の可視光透過率は、分光光度計により測定される。 The barrier material has a visible light transmittance (light transmittance of 550 nm) per 1 mm of thickness preferably 95% or more, more preferably 97% or more, still more preferably 99% or more. .. The visible light transmittance of the barrier material is measured by a spectrophotometer.
 バリア材の形状は特に限定されない。バリア材は、例えば、フィルム状に成形されていてよく、このようなバリア材は防湿バリアフィルムとして用いることができる。また、バリア材は、部材間の空隙を充填するように形成されていてよく、この場合、当該空隙からの湿気の侵入を防止できる。また、バリア材は、部材を被覆するように形成されていてよく、この場合、部材の湿気との接触を防止することができる。 The shape of the barrier material is not particularly limited. The barrier material may be formed into a film, for example, and such a barrier material can be used as a moisture-proof barrier film. Further, the barrier material may be formed so as to fill the gaps between the members, and in this case, the intrusion of moisture from the gaps can be prevented. Further, the barrier material may be formed so as to cover the member, and in this case, contact with the moisture of the member can be prevented.
<バリア材の製造方法>
 本実施形態に係るバリア材の製造方法は、上述の組成物を加熱して、バリア材を形成する加熱工程を備える。この製造方法では、加熱により組成物中のシランオリゴマー及び第一のシランモノマーが重合してポリシロキサン化合物が形成される。このとき、上記組成物ではシランオリゴマーの少なくとも一部が金属アルコキシドで修飾されているため、ポリシロキサン化合物中には当該金属アルコキシド由来の金属原子がドープされる。また、本実施形態では、第一のシランモノマーが反応性官能基を有するため、反応性官能基同士の反応、反応性官能基とシラノール基との反応等によって、シロキサン結合以外の架橋構造が形成されると考えられ、これにより、優れた防湿性及び柔軟性が実現されると考えられる。更に、本実施形態では、第一のシランモノマーが反応性官能基を有するため、当該反応性官能基が対象物表面に存在する官能基と結合すると考えられ、これにより、より優れた防湿性及び柔軟性が実現されると考えられる。
<Manufacturing method of barrier material>
The method for producing a barrier material according to the present embodiment includes a heating step of heating the above-mentioned composition to form a barrier material. In this production method, the silane oligomer and the first silane monomer in the composition are polymerized by heating to form a polysiloxane compound. At this time, since at least a part of the silane oligomer is modified with a metal alkoxide in the above composition, a metal atom derived from the metal alkoxide is doped in the polysiloxane compound. Further, in the present embodiment, since the first silane monomer has a reactive functional group, a crosslinked structure other than the siloxane bond is formed by the reaction between the reactive functional groups, the reaction between the reactive functional group and the silanol group, and the like. It is believed that this will provide excellent moisture resistance and flexibility. Further, in the present embodiment, since the first silane monomer has a reactive functional group, it is considered that the reactive functional group is bonded to the functional group existing on the surface of the object, thereby providing better moisture resistance and moisture resistance. Flexibility is expected to be achieved.
 加熱工程では、加熱により組成物中の液体媒体が除去されてよい。すなわち、加熱工程は、組成物の加熱乾燥により、ポリシロキサン化合物を含むバリア材を形成する工程であってよい。 In the heating step, the liquid medium in the composition may be removed by heating. That is, the heating step may be a step of forming a barrier material containing a polysiloxane compound by heating and drying the composition.
 加熱工程における加熱温度は特に限定されず、シランオリゴマーが重合可能な温度であればよい。また、組成物が液状媒体を含む場合は、加熱温度は、液状媒体が揮発する温度であることが好ましい。加熱温度は、例えば70℃以上であってよく、好ましくは100℃以上である。また、加熱温度は、例えば200℃以下であってよく、好ましくは180℃以下である。 The heating temperature in the heating step is not particularly limited as long as the silane oligomer can be polymerized. When the composition contains a liquid medium, the heating temperature is preferably a temperature at which the liquid medium volatilizes. The heating temperature may be, for example, 70 ° C. or higher, preferably 100 ° C. or higher. The heating temperature may be, for example, 200 ° C. or lower, preferably 180 ° C. or lower.
 本製造方法は、組成物を塗布する塗布工程を更に備えていてよい。このとき、加熱工程は、塗布された組成物を加熱する工程ということができる。 The present production method may further include a coating step of coating the composition. At this time, the heating step can be said to be a step of heating the applied composition.
 組成物の塗布方法は特に限定されず、塗布する対象物の形状、バリア材の厚み等に応じて適宜変更してよい。 The method of applying the composition is not particularly limited, and may be appropriately changed depending on the shape of the object to be applied, the thickness of the barrier material, and the like.
 本製造方法では、防湿性を付与したい対象物に組成物を塗布して、当該対象物上にバリア材を形成してよい。また、本製造方法では、所定形状のバリア材を製造してから、製造されたバリア材を対象物上に適用してもよい。 In this production method, the composition may be applied to an object to which moisture resistance is to be imparted, and a barrier material may be formed on the object. Further, in the present manufacturing method, a barrier material having a predetermined shape may be manufactured and then the manufactured barrier material may be applied onto the object.
<バリア材の用途>
 本実施形態に係るバリア材の用途は特に限定されず、防湿性が要求される種々の用途に好適に適用できる。例えば、バリア材は、電子部品用の防湿バリア材として好適に用いることができる。
<Use of barrier material>
The use of the barrier material according to the present embodiment is not particularly limited, and it can be suitably applied to various uses requiring moisture resistance. For example, the barrier material can be suitably used as a moisture-proof barrier material for electronic parts.
 本実施形態に係るバリア材は、高温環境下(例えば100℃以上)においても優れた防湿性を有する。このため、本実施形態に係るバリア材は、例えば、高温環境下で使用される電子部品用の防湿バリア材、実装時に高温工程を経る電子部品用の防湿バリア材等の用途に好適に用いることができる。具体的には、例えば、パワー半導体用防湿バリア材、イメージセンサ用防湿バリア材、ディスプレイ用防湿バリア材等として好適に用いることができる。 The barrier material according to this embodiment has excellent moisture resistance even in a high temperature environment (for example, 100 ° C. or higher). Therefore, the barrier material according to the present embodiment is suitably used for, for example, a moisture-proof barrier material for electronic parts used in a high-temperature environment, a moisture-proof barrier material for electronic parts that undergo a high-temperature process at the time of mounting, and the like. Can be done. Specifically, for example, it can be suitably used as a moisture-proof barrier material for power semiconductors, a moisture-proof barrier material for image sensors, a moisture-proof barrier material for displays, and the like.
 以下に、バリア材の用途の好適な一形態について詳述するが、バリア材の用途は以下に限定されない。 The preferred form of the use of the barrier material will be described in detail below, but the use of the barrier material is not limited to the following.
<用途例1>
 一形態に係る用途は、防湿処理された部材を有する製品に関する。このような製品は、部材と、部材上に形成されたバリア材とを備える。バリア材は、一つの部材上に形成されていてよく、複数の部材上に形成されていてもよい。バリア材は、例えば、一つ又は複数の部材を被覆するように形成されていてよく、二つの部材間の接合部を覆うように形成されていてもよい。
<Application example 1>
The application according to one form relates to a product having a moisture-proof treated member. Such products include a member and a barrier material formed on the member. The barrier material may be formed on one member or may be formed on a plurality of members. The barrier material may be formed, for example, to cover one or more members, or may be formed to cover the joint between the two members.
 このような製品は、部材上に上記バリア材形成用組成物を塗布する第一の工程と、塗布された組成物を加熱して部材上にバリア材を形成する第二の工程と、を備える製造方法によって製造される。 Such a product includes a first step of applying the barrier material forming composition on the member and a second step of heating the applied composition to form the barrier material on the member. Manufactured by the manufacturing method.
 このような用途の具体例として、例えば、以下の電子部品が挙げられる。 Specific examples of such applications include the following electronic components.
(電子部品A-1)
 一形態に係る電子部品は、基板と、カバーガラスと、基板及びカバーガラスの間に配置されたイメージセンサと、カバーガラス及びイメージセンサを基板上に支持する支持部材と、カバーガラスと支持部材との接合部上に設けられた上記バリア材と、を備える。
(Electronic component A-1)
The electronic components according to one form include a substrate, a cover glass, an image sensor arranged between the substrate and the cover glass, a support member for supporting the cover glass and the image sensor on the substrate, and a cover glass and a support member. The barrier material provided on the joint portion of the above is provided.
 このような電子部品は、例えば、支持部材とカバーガラスとの接合部にバリア材形成用組成物を塗布する塗布工程と、塗布された組成物を加熱して、接合部上にバリア材を形成するバリア材形成工程と、を備える製造方法によって製造することができる。 For such electronic components, for example, a coating step of applying a barrier material forming composition to a joint portion between a support member and a cover glass and a coating step of heating the applied composition to form a barrier material on the joint portion. It can be manufactured by a manufacturing method including a barrier material forming step.
(電子部品A-2)
 一形態に係る電子部品は、基板と、基板上に配置されたイメージセンサと、イメージセンサ上に設けられた上記バリア材と、を備える。
(Electronic component A-2)
The electronic component according to one form includes a substrate, an image sensor arranged on the substrate, and the barrier material provided on the image sensor.
 上記バリア材は、防湿性及び透明性に優れたものとすることができる。このため、上記バリア材は、イメージセンサを封止する封止材としても好適に用いることができる。このような電子部品は、カバーガラスを用いずにイメージセンサパッケージを構成できるため、部品サイズの縮小化、取扱い性の向上等が期待できる。 The barrier material can be excellent in moisture resistance and transparency. Therefore, the barrier material can also be suitably used as a sealing material for sealing the image sensor. Since such an electronic component can form an image sensor package without using a cover glass, it can be expected that the component size can be reduced and the handleability can be improved.
 この用途において、厚さ1mm当たりのバリア材の可視光透過率(550nm)は、95%以上であることが好ましく、97%以上であることがより好ましく、99%以上であることが更に好ましい。 In this application, the visible light transmittance (550 nm) of the barrier material per 1 mm of thickness is preferably 95% or more, more preferably 97% or more, and further preferably 99% or more.
 このような電子部品は、例えば、イメージセンサ上にバリア材形成用組成物を塗布する塗布工程と、塗布された組成物を加熱して、イメージセンサ上にバリア材を形成するバリア材形成工程と、を備える製造方法によって製造することができる。 Such electronic components include, for example, a coating step of applying a barrier material forming composition on an image sensor and a barrier material forming step of heating the applied composition to form a barrier material on the image sensor. , Can be manufactured by a manufacturing method comprising.
<用途例2>
 一形態に係る用途は、第一の部材と第一の部材に接合された第二の部材とを有し、第一の部材と第二の部材との接合部が防湿処理された製品に関する。このような製品は、第一の部材と、第二の部材と、第一の部材と第二の部材との間に設けられたバリア材と、を備え、第一の部材と第二の部材とがバリア材を介して接合されている。
<Application example 2>
The application according to one embodiment relates to a product having a first member and a second member joined to the first member, and the joint portion between the first member and the second member is moisture-proofed. Such a product comprises a first member, a second member, and a barrier material provided between the first member and the second member, and the first member and the second member. Is joined via a barrier material.
 このような製品は、第一の部材と第二の部材との間にバリア材形成用組成物を配置する第一の工程と、当該組成物を加熱してバリア材を形成し、第一の部材と第二の部材とをバリア材を介して接合する第二の工程と、を備える製造方法によって製造することができる。 In such a product, the first step of arranging the composition for forming a barrier material between the first member and the second member and the first step of heating the composition to form the barrier material are performed. It can be manufactured by a manufacturing method including a second step of joining a member and a second member via a barrier material.
 このような用途の具体例として、例えば、以下の電子部品が挙げられる。 Specific examples of such applications include the following electronic components.
(電子部品B-1)
 一形態に係る電子部品は、基板と、カバーガラスと、基板及びカバーガラスの間に配置されたイメージセンサと、カバーガラス及びイメージセンサを基板上に支持する支持部材と、カバーガラスと支持部材とを接合するバリア材と、を備える。
(Electronic component B-1)
The electronic components according to one form include a substrate, a cover glass, an image sensor arranged between the substrate and the cover glass, a support member for supporting the cover glass and the image sensor on the substrate, and a cover glass and a support member. It is provided with a barrier material for joining.
 このような電子部品は、例えば、支持部材とカバーガラスとの間にバリア材形成用組成物を配置する工程と、当該組成物を加熱してバリア材を形成し、支持部材とカバーガラスとをバリア材を介して接合する工程と、を備える製造方法によって製造することができる。 For such electronic components, for example, a step of arranging a composition for forming a barrier material between a support member and a cover glass and a step of heating the composition to form a barrier material, and the support member and the cover glass are formed. It can be manufactured by a manufacturing method including a step of joining via a barrier material.
<用途例3>
 一形態に係る用途は、防湿部材を備える製品に関する。このような製品は、バリア材からなる防湿部材を備え、例えば、当該防湿部材を含む複数の部材の組立品であってよい。
<Application example 3>
The application according to one form relates to a product provided with a moisture-proof member. Such a product includes a moisture-proof member made of a barrier material, and may be, for example, an assembly of a plurality of members including the moisture-proof member.
 このような製品は、上記バリア材形成用組成物を加熱して、バリア材からなる防湿部材を作製する第一の工程と、防湿部材を含む複数の部材を組み立てる第二の工程と、を備える製造方法によって製造することができる。 Such a product includes a first step of heating the composition for forming a barrier material to produce a moisture-proof member made of the barrier material, and a second step of assembling a plurality of members including the moisture-proof member. It can be manufactured by a manufacturing method.
 このような用途の具体例として、例えば、以下の電子部品が挙げられる。 Specific examples of such applications include the following electronic components.
(電子部品C-1)
 一形態に係る電子部品は、基板と、MEMSセンサー、ワイヤレスモジュール及びカメラモジュールからなる群より選択される少なくとも一種の部品と、バリア材を有する防湿部材と、を備える。
(Electronic component C-1)
The electronic component according to one form includes a substrate, at least one component selected from the group consisting of a MEMS sensor, a wireless module, and a camera module, and a moisture-proof member having a barrier material.
 上記バリア材は、防湿性に優れる。このため、上記電子部品は、耐湿性に優れ、吸湿によるセンシング特性の低下が十分に防止される。 The above barrier material has excellent moisture resistance. Therefore, the electronic component has excellent moisture resistance, and deterioration of sensing characteristics due to moisture absorption is sufficiently prevented.
 このような電子部品は、例えば、バリア材形成用組成物を加熱することでバリア材を有する防湿部材を作製する工程と、防湿部材を含む複数の部材を組み立てる工程と、を備える製造方法によって製造することができる。ここで、バリア材は、上記基板及び上記部品と独立して形成されてよく、上記部品上に塗布されたバリア材形成用組成物の加熱により、上記部品と一体化して形成されてもよい。 Such electronic components are manufactured by, for example, a manufacturing method including a step of producing a moisture-proof member having a barrier material by heating a composition for forming a barrier material, and a step of assembling a plurality of members including the moisture-proof member. can do. Here, the barrier material may be formed independently of the substrate and the component, and may be integrally formed with the component by heating the barrier material forming composition applied on the component.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
(実施例A-1)
[バリア材形成用組成物A-1]
 アルミニウムsec-ブトキシド(マツモトファインケミカル株式会社製、製品名:AL-3001、以下「AL-3001」と略記)を3.8質量部、tert-ブチルアルコール(和光純薬工業株式会社製)を7.6質量部、水を0.3質量部、酢酸を0.3質量部、シランオリゴマー(モメンティブ・パフォーマンス・マテリアルズ社製、製品名:XC31-B2733)を64.9質量部混合した後、70℃で1時間反応させた。次いで、テトラエトキシシラン(富士フイルム和光純薬株式会社製、以下「TEOS」と略記)を23.4質量部混合した後、25℃で2時間反応させた。次いで、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン(信越化学工業株式会社製、製品名:KBE-603、以下「KBE-603」と略記)を1質量部混合して、バリア材形成用組成物A-1を得た。
(Example A-1)
[Composition for Forming Barrier Material A-1]
7. Aluminum sec-butoxide (manufactured by Matsumoto Fine Chemical Industries, Ltd., product name: AL-3001, hereinafter abbreviated as "AL-3001") by 3.8 parts by mass, tert-butyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) 7. After mixing 6 parts by mass, 0.3 parts by mass of water, 0.3 parts by mass of acetic acid, and 64.9 parts by mass of silane oligomer (manufactured by Momentive Performance Materials, product name: XC31-B2733), 70 parts by mass. The reaction was carried out at ° C. for 1 hour. Next, 23.4 parts by mass of tetraethoxysilane (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., hereinafter abbreviated as "TEOS") was mixed, and then reacted at 25 ° C. for 2 hours. Next, 1 part by mass of N-2- (aminoethyl) -3-aminopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBE-603, hereinafter abbreviated as "KBE-603") was mixed. A composition for forming a barrier material A-1 was obtained.
[バリア材付き評価フィルムA-1]
 厚さ0.125mmのポリイミドフィルム(東レ・デュポン株式会社製、製品名カプトン(登録商標)500H)の両面に対し、乾燥後の厚みが15μmとなるようにバリア材形成用組成物A-1を塗布し、150℃で4時間乾燥した。これにより、基材上にバリア材が形成され、バリア材付き評価フィルムA-1が得られた。
[Evaluation film A-1 with barrier material]
The barrier material forming composition A-1 was applied to both sides of a 0.125 mm thick polyimide film (manufactured by Toray DuPont Co., Ltd., product name Kapton (registered trademark) 500H) so that the thickness after drying was 15 μm. It was applied and dried at 150 ° C. for 4 hours. As a result, a barrier material was formed on the base material, and an evaluation film A-1 with a barrier material was obtained.
[評価方法]
 バリア材付き評価フィルムA-1について、以下の方法で吸湿率(%)及び密着性を評価した。
<吸湿率の評価(1)>
 バリア材付き評価フィルムを、セーフティーオーブン(エスペック株式会社製、製品名:SPHH-202)を用いて130℃で1時間乾燥し、測定サンプルを得た。得られた測定サンプルの質量を測定し、初期質量m1を求めた。次に、恒温恒湿槽(株式会社カトー製、製品名:SE-44CI-A)を用いて、85℃/85%RHの雰囲気下で40時間処理することで、恒温恒湿処理後のサンプルを得た。恒温恒湿処理後の測定サンプルの質量を測定し、恒温恒湿処理後の質量m2を求めた。初期質量m1及び恒温恒湿処理後の質量m2から、下記式によって、吸湿率Q(%)を求めた。
   Q=100×(m1-m2)/m2
<密着性>
 バリア材付き評価フィルムを目視で観察し、バリア材の剥離の有無を確認した。剥離がなかった場合をA、剥離があった場合をBとして評価した。
[Evaluation method]
The hygroscopicity (%) and adhesion of the evaluation film A-1 with a barrier material were evaluated by the following methods.
<Evaluation of hygroscopicity (1)>
The evaluation film with a barrier material was dried at 130 ° C. for 1 hour using a safety oven (manufactured by ESPEC CORPORATION, product name: SPHH-202) to obtain a measurement sample. The mass of the obtained measurement sample was measured, and the initial mass m1 was determined. Next, a sample after the constant temperature and humidity treatment was performed by treating for 40 hours in an atmosphere of 85 ° C./85% RH using a constant temperature and humidity chamber (manufactured by Kato Co., Ltd., product name: SE-44CI-A). Got The mass of the measurement sample after the constant temperature and humidity treatment was measured, and the mass m2 after the constant temperature and humidity treatment was determined. From the initial mass m1 and mass m2 after constant temperature and humidity treatment, according to the following formula to determine the moisture ratio Q A (%).
Q A = 100 × (m1- m2) / m2
<Adhesion>
The evaluation film with a barrier material was visually observed to confirm the presence or absence of peeling of the barrier material. The case where there was no peeling was evaluated as A, and the case where there was peeling was evaluated as B.
(実施例A-2)
 TSR165に代えて、シランオリゴマー(モメンティブ・パフォーマンス・マテリアルズ社製、製品名:TSR165)64.9質量部を用いたこと以外は、実施例A-1と同様にしてバリア材形成用組成物A-2を得た。
(Example A-2)
Composition A for forming a barrier material in the same manner as in Example A-1 except that 64.9 parts by mass of a silane oligomer (manufactured by Momentive Performance Materials, product name: TSR165) was used instead of TSR165. I got -2.
 次いで、厚さ0.125mmのポリイミドフィルム(東レ・デュポン株式会社製、製品名カプトン(登録商標)500H)の両面に対し、乾燥後の厚みが10μmとなるようにバリア材形成用組成物A-2を塗布し、150℃で4時間乾燥した。これにより、基材上にバリア材が形成され、バリア材付き評価フィルムA-2が得られた。得られたバリア材付き評価フィルムA-2における吸湿率及び密着性を、実施例A-1と同様にして評価した。 Next, the composition A-for forming a barrier material so that the thickness after drying is 10 μm for both sides of a polyimide film having a thickness of 0.125 mm (manufactured by Toray DuPont Co., Ltd., product name Kapton (registered trademark) 500H). 2 was applied and dried at 150 ° C. for 4 hours. As a result, a barrier material was formed on the base material, and an evaluation film A-2 with a barrier material was obtained. The hygroscopicity and adhesion of the obtained evaluation film A-2 with a barrier material were evaluated in the same manner as in Example A-1.
(実施例A-3)
 TSR165に代えて、シランオリゴマー(モメンティブ・パフォーマンス・マテリアルズ社製、製品名:TSR165)64.9質量部を用い、KBE-603に代えて3-アミノプロピルトリエトキシシラン(信越化学工業株式会社製、製品名:KBE-903)1質量部を用いたこと以外は、実施例A-1と同様にしてバリア材形成用組成物A-3を得た。
(Example A-3)
Instead of TSR165, 64.9 parts by mass of silane oligomer (manufactured by Momentive Performance Materials, product name: TSR165) was used, and instead of KBE-603, 3-aminopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) was used. , Product name: KBE-903) A barrier material forming composition A-3 was obtained in the same manner as in Example A-1 except that 1 part by mass was used.
 次いで、厚さ0.125mmのポリイミドフィルム(東レ・デュポン株式会社製、製品名カプトン(登録商標)500H)の両面に対し、乾燥後の厚みが10μmとなるようにバリア材形成用組成物A-3を塗布し、150℃で4時間乾燥した。これにより、基材上にバリア材が形成され、バリア材付き評価フィルムA-3が得られた。得られたバリア材付き評価フィルムA-3における吸湿率及び密着性を、実施例A-1と同様にして評価した。 Next, the composition A-for forming a barrier material so that the thickness after drying is 10 μm for both sides of a polyimide film having a thickness of 0.125 mm (manufactured by Toray DuPont Co., Ltd., product name Kapton (registered trademark) 500H). 3 was applied and dried at 150 ° C. for 4 hours. As a result, a barrier material was formed on the base material, and an evaluation film A-3 with a barrier material was obtained. The hygroscopicity and adhesion of the obtained evaluation film A-3 with a barrier material were evaluated in the same manner as in Example A-1.
(実施例A-4)
 TSR165に代えて、シランオリゴマー(モメンティブ・パフォーマンス・マテリアルズ社製、製品名:TSR165)64.9質量部を用い、TEOSに代えてフェニルトリメトキシシラン(信越化学工業株式会社製、製品名:KBM-103、以下「PTMS」と略記)23.4質量部を用いたこと以外は、実施例A-1と同様にしてバリア材形成用組成物A-4を得た。
(Example A-4)
64.9 parts by mass of silane oligomer (manufactured by Momentive Performance Materials, product name: TSR165) was used instead of TSR165, and phenyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM) was used instead of TEOS. -103, hereinafter abbreviated as "PTMS") A composition for forming a barrier material A-4 was obtained in the same manner as in Example A-1 except that 23.4 parts by mass was used.
 次いで、厚さ0.125mmのポリイミドフィルム(東レ・デュポン株式会社製、製品名カプトン(登録商標)500H)の両面に対し、乾燥後の厚みが10μmとなるようにバリア材形成用組成物A-4を塗布し、150℃で4時間乾燥した。これにより、基材上にバリア材が形成され、バリア材付き評価フィルムA-4が得られた。得られたバリア材付き評価フィルムA-4における吸湿率及び密着性を、実施例A-1と同様にして評価した。 Next, the barrier material forming composition A- 4 was applied and dried at 150 ° C. for 4 hours. As a result, a barrier material was formed on the base material, and an evaluation film A-4 with a barrier material was obtained. The hygroscopicity and adhesion of the obtained evaluation film A-4 with a barrier material were evaluated in the same manner as in Example A-1.
(比較例X-1)
 KBE-603を添加しなかったこと以外は、実施例A-1と同様にしてバリア材形成用組成物X-1を得た。
(Comparative Example X-1)
A barrier material forming composition X-1 was obtained in the same manner as in Example A-1 except that KBE-603 was not added.
 次いで、厚さ0.125mmのポリイミドフィルム(東レ・デュポン株式会社製、製品名カプトン(登録商標)500H)の両面に対し、乾燥後の厚みが15μmとなるようにバリア材形成用組成物X-1を塗布し、150℃で4時間乾燥した。これにより、基材上にバリア材が形成され、バリア材付き評価フィルムX-1が得られた。得られたバリア材付き評価フィルムX-1における吸湿率及び密着性を、実施例A-1と同様にして評価した。 Next, the barrier material forming composition X-so that the thickness after drying is 15 μm for both sides of a polyimide film having a thickness of 0.125 mm (manufactured by Toray DuPont Co., Ltd., product name Kapton (registered trademark) 500H). 1 was applied and dried at 150 ° C. for 4 hours. As a result, a barrier material was formed on the base material, and an evaluation film X-1 with a barrier material was obtained. The hygroscopicity and adhesion of the obtained evaluation film X-1 with a barrier material were evaluated in the same manner as in Example A-1.
(参考例1)
 厚さ0.125mmのポリイミドフィルム(東レ・デュポン株式会社製、製品名カプトン(登録商標)500H)について、バリア材を形成せず、実施例A-1の吸湿率評価を行った。結果を表1に示す。
(Reference example 1)
For a polyimide film having a thickness of 0.125 mm (manufactured by Toray DuPont Co., Ltd., product name Kapton (registered trademark) 500H), the moisture absorption rate of Example A-1 was evaluated without forming a barrier material. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例B-1)
 KBE-603に代えて、ビニルトリメトキシシラン(信越化学工業株式会社製、製品名:KBM-1003、以下「KBM-1003」と略記)1質量部を用いたこと以外は、実施例A-4と同様にしてバリア材形成用組成物B-1を得た。
(Example B-1)
Example A-4 except that 1 part by mass of vinyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-1003, hereinafter abbreviated as "KBM-1003") was used instead of KBE-603. The barrier material forming composition B-1 was obtained in the same manner as in the above.
 次いで、厚さ0.125mmのポリイミドフィルム(東レ・デュポン株式会社製、製品名カプトン(登録商標)500H)の両面に対し、乾燥後の厚みが20μmとなるようにバリア材形成用組成物B-1を塗布し、150℃で4時間乾燥した。これにより、基材上にバリア材が形成され、バリア材付き評価フィルムB-1が得られた。得られたバリア材付き評価フィルムB-1における吸湿率を以下の方法で行った。また、得られたバリア材付き評価フィルムB-1における密着性を実施例A-1と同様にして評価した。 Next, the barrier material forming composition B- was applied to both sides of a polyimide film having a thickness of 0.125 mm (manufactured by Toray DuPont Co., Ltd., product name: Kapton (registered trademark) 500H) so that the thickness after drying was 20 μm. 1 was applied and dried at 150 ° C. for 4 hours. As a result, a barrier material was formed on the base material, and an evaluation film B-1 with a barrier material was obtained. The hygroscopicity of the obtained evaluation film B-1 with a barrier material was measured by the following method. Further, the adhesion of the obtained evaluation film B-1 with a barrier material was evaluated in the same manner as in Example A-1.
<吸湿率の評価(2)>
 バリア材付き評価フィルムを、セーフティーオーブン(エスペック株式会社製、製品名:SPHH-202)を用いて130℃で1時間乾燥し、測定サンプルを得た。得られた測定サンプルの質量を測定し、初期質量m3を求めた。次に、恒温恒湿槽(株式会社カトー製、製品名:SE-44CI-A)を用いて、85℃/85%RHの雰囲気下で190時間処理することで、恒温恒湿処理後のサンプルを得た。恒温恒湿処理後の測定サンプルの質量を測定し、恒温恒湿処理後の質量m4を求めた。初期質量m3及び恒温恒湿処理後の質量m4から、下記式によって、吸湿率Q(%)を求めた。
   Q=100×(m3-m4)/m4
<Evaluation of hygroscopicity (2)>
The evaluation film with a barrier material was dried at 130 ° C. for 1 hour using a safety oven (manufactured by ESPEC CORPORATION, product name: SPHH-202) to obtain a measurement sample. The mass of the obtained measurement sample was measured, and the initial mass m3 was determined. Next, a sample after the constant temperature and humidity treatment was performed by treating for 190 hours in an atmosphere of 85 ° C./85% RH using a constant temperature and humidity chamber (manufactured by Kato Co., Ltd., product name: SE-44CI-A). Got The mass of the measurement sample after the constant temperature and humidity treatment was measured, and the mass m4 after the constant temperature and humidity treatment was determined. From initial mass m3 and constant temperature and humidity treatment after the mass m4, by the following equation to determine the moisture ratio Q B (%).
Q B = 100 × (m3- m4) / m4
(実施例B-2)
 KBM-1003に代えて、3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製、製品名:KBM-403、以下「KBM-403」と略記)1質量部を用いたこと以外は、実施例B-1と同様にしてバリア材形成用組成物及びバリア材付き評価フィルムの作製及び評価を行った。
(Example B-2)
Except that 1 part by mass of 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-403, hereinafter abbreviated as "KBM-403") was used instead of KBM-1003. A composition for forming a barrier material and an evaluation film with a barrier material were prepared and evaluated in the same manner as in Example B-1.
(実施例B-3)
 KBM-1003に代えて、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製、製品名:KBM-503、以下「KBM-503」と略記)1質量部を用いたこと以外は、実施例B-1と同様にしてバリア材形成用組成物及びバリア材付き評価フィルムの作製及び評価を行った。
(Example B-3)
Implemented except that 1 part by mass of 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-503, hereinafter abbreviated as "KBM-503") was used instead of KBM-1003. A composition for forming a barrier material and an evaluation film with a barrier material were prepared and evaluated in the same manner as in Example B-1.
(実施例B-4)
 KBM-1003に代えて、3-アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製、製品名:KBM-5103、以下「KBM-5103」と略記)1質量部を用いたこと以外は、実施例B-1と同様にしてバリア材形成用組成物及びバリア材付き評価フィルムの作製及び評価を行った。
(Example B-4)
Implemented except that 1 part by mass of 3-acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-5103, hereinafter abbreviated as "KBM-5103") was used instead of KBM-1003. A composition for forming a barrier material and an evaluation film with a barrier material were prepared and evaluated in the same manner as in Example B-1.
(実施例B-5)
 KBM-1003に代えて、N-フェニル-3-アミノプロピルトリメトキシシラン(信越化学工業株式会社製、製品名:KBM-573、以下「KBM-573」と略記)1質量部を用いたこと以外は、実施例B-1と同様にしてバリア材形成用組成物及びバリア材付き評価フィルムの作製及び評価を行った。
(Example B-5)
Except for the use of 1 part by mass of N-phenyl-3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-573, hereinafter abbreviated as "KBM-573") instead of KBM-1003. Made and evaluated a composition for forming a barrier material and an evaluation film with a barrier material in the same manner as in Example B-1.
(実施例B-6)
 KBM-1003に代えて、3-イソシアネートプロピルトリエトキシシラン(信越化学工業株式会社製、製品名:KBE-9007N、以下「KBE-9007N」と略記)1質量部を用いたこと以外は、実施例B-1と同様にしてバリア材形成用組成物及びバリア材付き評価フィルムの作製及び評価を行った。
(Example B-6)
Examples except that 1 part by mass of 3-isocyanatepropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBE-9007N, hereinafter abbreviated as "KBE-9007N") was used instead of KBM-1003. A composition for forming a barrier material and an evaluation film with a barrier material were prepared and evaluated in the same manner as in B-1.
(実施例B-7)
 KBM-1003に代えて、トリス-(トリメトキシシリルプロピル)イソシアヌレート(信越化学工業株式会社製、製品名:KBM-9659、以下「KBM-9659」と略記)1質量部を用いたこと以外は、実施例B-1と同様にしてバリア材形成用組成物及びバリア材付き評価フィルムの作製及び評価を行った。
(Example B-7)
Except for the use of 1 part by mass of tris- (trimethoxysilylpropyl) isocyanurate (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-9569, hereinafter abbreviated as "KBM-9655") instead of KBM-1003. , A composition for forming a barrier material and an evaluation film with a barrier material were prepared and evaluated in the same manner as in Example B-1.
(実施例B-8)
 KBM-1003に代えて、3-メルカプトプロピルメチルジメトキシシラン(信越化学工業株式会社製、製品名:KBM-803、以下「KBM-803」と略記)1質量部を用いたこと以外は、実施例B-1と同様にしてバリア材形成用組成物及びバリア材付き評価フィルムの作製及び評価を行った。
(Example B-8)
Examples except that 1 part by mass of 3-mercaptopropylmethyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-803, hereinafter abbreviated as "KBM-803") was used instead of KBM-1003. A composition for forming a barrier material and an evaluation film with a barrier material were prepared and evaluated in the same manner as in B-1.
(参考例2)
 厚さ0.125mmのポリイミドフィルム(東レ・デュポン株式会社製、製品名カプトン(登録商標)500H)について、バリア材を形成せず、実施例B-1の吸湿率評価を行った。結果を表2に示す。
(Reference example 2)
The hygroscopicity of Example B-1 was evaluated for a polyimide film having a thickness of 0.125 mm (manufactured by Toray DuPont Co., Ltd., product name Kapton (registered trademark) 500H) without forming a barrier material. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (22)

  1.  シランオリゴマーと、反応性官能基を有するシランモノマーと、を含み、
     前記シランオリゴマーの少なくとも一部が金属アルコキシドで修飾されている、バリア材形成用組成物。
    Containing a silane oligomer and a silane monomer having a reactive functional group,
    A composition for forming a barrier material, wherein at least a part of the silane oligomer is modified with a metal alkoxide.
  2.  前記反応性官能基が、ビニル基、エポキシ基、グリシジル基、(メタ)アクリロイル基、アミノ基、イソシアネート基、イソシアヌレート基及びメルカプト基からなる群より選択される、請求項1に記載のバリア材形成用組成物。 The barrier material according to claim 1, wherein the reactive functional group is selected from the group consisting of a vinyl group, an epoxy group, a glycidyl group, a (meth) acryloyl group, an amino group, an isocyanate group, an isocyanurate group and a mercapto group. Composition for formation.
  3.  前記反応性官能基が、アミノ基である、請求項1又は2に記載のバリア材形成用組成物。 The composition for forming a barrier material according to claim 1 or 2, wherein the reactive functional group is an amino group.
  4.  前記シランオリゴマーが、3個の酸素原子と結合したケイ素原子を含有する、請求項1~3のいずれか一項に記載のバリア材形成用組成物。 The composition for forming a barrier material according to any one of claims 1 to 3, wherein the silane oligomer contains a silicon atom bonded to three oxygen atoms.
  5.  前記シランオリゴマー中のケイ素原子の総数に対する、3個の酸素原子と結合したケイ素原子及び4個の酸素原子と結合したケイ素原子の合計数の割合が、50%以上である、請求項1~4のいずれか一項に記載のバリア材形成用組成物。 Claims 1 to 4 in which the ratio of the total number of silicon atoms bonded to 3 oxygen atoms and the total number of silicon atoms bonded to 4 oxygen atoms to the total number of silicon atoms in the silane oligomer is 50% or more. The composition for forming a barrier material according to any one of the above.
  6.  前記シランモノマーの含有量が、前記シランオリゴマー100質量部に対して0.01~5質量部である、請求項1~5のいずれか一項に記載のバリア材形成用組成物。 The composition for forming a barrier material according to any one of claims 1 to 5, wherein the content of the silane monomer is 0.01 to 5 parts by mass with respect to 100 parts by mass of the silane oligomer.
  7.  アルキルトリアルコキシシラン、アリールトリアルコキシシラン及びテトラアルコキシシランからなる群より選択される第二のシランモノマーを更に含む、請求項1~6のいずれか一項に記載のバリア材形成用組成物。 The composition for forming a barrier material according to any one of claims 1 to 6, further comprising a second silane monomer selected from the group consisting of alkyltrialkoxysilanes, aryltrialkoxysilanes and tetraalkoxysilanes.
  8.  前記第二のシランモノマーの含有量が、前記シランオリゴマー100質量部に対して5~40質量部である、請求項7に記載のバリア材形成用組成物。 The composition for forming a barrier material according to claim 7, wherein the content of the second silane monomer is 5 to 40 parts by mass with respect to 100 parts by mass of the silane oligomer.
  9.  前記金属アルコキシドが、アルミニウムアルコキシドである、請求項1~8のいずれか一項に記載のバリア材形成用組成物。 The composition for forming a barrier material according to any one of claims 1 to 8, wherein the metal alkoxide is an aluminum alkoxide.
  10.  少なくとも一部が金属アルコキシドで修飾されたシランオリゴマーを準備する第一の工程と、
     前記シランオリゴマーと反応性官能基を有するシランモノマーとを混合して、バリア材形成用組成物を得る第二の工程と、
    を備える、バリア材形成用組成物の製造方法。
    The first step of preparing a silane oligomer that is at least partially modified with metal alkoxide,
    The second step of mixing the silane oligomer with the silane monomer having a reactive functional group to obtain a composition for forming a barrier material, and
    A method for producing a composition for forming a barrier material.
  11.  前記第一の工程が、シランオリゴマーと金属アルコキシドとを反応させて、前記シランオリゴマーの少なくとも一部を金属アルコキシドで修飾する工程を含む、請求項10に記載の製造方法。 The production method according to claim 10, wherein the first step includes a step of reacting a silane oligomer with a metal alkoxide and modifying at least a part of the silane oligomer with a metal alkoxide.
  12.  前記第一の工程が、シランモノマーと金属アルコキシドとを反応させて、少なくとも一部が金属アルコキシドで修飾されたシランオリゴマーを形成する工程を含む、請求項10に記載の製造方法。 The production method according to claim 10, wherein the first step includes a step of reacting a silane monomer with a metal alkoxide to form a silane oligomer at least partially modified with the metal alkoxide.
  13.  請求項1~9のいずれか一項に記載のバリア材形成用組成物を加熱して、バリア材を形成する工程を備える、バリア材の製造方法。 A method for producing a barrier material, comprising a step of heating the composition for forming a barrier material according to any one of claims 1 to 9 to form the barrier material.
  14.  防湿処理された部材を有する製品の製造方法であって、
     部材上に請求項1~9のいずれか一項に記載のバリア材形成用組成物を塗布する第一の工程と、
     塗布された前記バリア材形成用組成物を加熱して、前記部材上にバリア材を形成する第二の工程と、
    を備える、製造方法。
    A method for manufacturing a product having a moisture-proof treated member.
    The first step of applying the barrier material forming composition according to any one of claims 1 to 9 onto the member, and
    A second step of heating the applied composition for forming a barrier material to form a barrier material on the member, and
    A manufacturing method.
  15.  第一の部材と前記第一の部材に接合された第二の部材とを有し、前記第一の部材と前記第二の部材との接合部が防湿処理された製品の製造方法であって、
     第一の部材と第二の部材との間に請求項1~9のいずれか一項に記載のバリア材形成用組成物を配置する第一の工程と、
     前記バリア材形成用組成物を加熱してバリア材を形成し、前記第一の部材と前記第二の部材とを前記バリア材を介して接合する第二の工程と、
    を備える、製造方法。
    A method for manufacturing a product having a first member and a second member joined to the first member, and a joint portion between the first member and the second member being moisture-proofed. ,
    The first step of arranging the barrier material forming composition according to any one of claims 1 to 9 between the first member and the second member,
    A second step of heating the barrier material forming composition to form a barrier material and joining the first member and the second member via the barrier material.
    A manufacturing method.
  16.  防湿部材を備える製品の製造方法であって、
     請求項1~9のいずれか一項に記載のバリア材形成用組成物を加熱してバリア材を有する防湿部材を作製する第一の工程と、
     前記防湿部材を含む複数の部材を組み立てる第二の工程と、
    を備える、製造方法。
    A method of manufacturing a product equipped with a moisture-proof member.
    The first step of heating the barrier material forming composition according to any one of claims 1 to 9 to prepare a moisture-proof member having a barrier material, and
    A second step of assembling a plurality of members including the moisture-proof member, and
    A manufacturing method.
  17.  請求項1~9のいずれか一項に記載のバリア材形成用組成物の硬化物である、バリア材。 A barrier material which is a cured product of the composition for forming a barrier material according to any one of claims 1 to 9.
  18.  厚さ25μm当たりの水蒸気透過率(40℃、95%RH)が、4000g/m・day以下である、請求項17に記載のバリア材。 Water vapor transmission rate per thickness 25μm (40 ℃, 95% RH ) is not more than 4000g / m 2 · day, barrier material of claim 17.
  19.  厚さ1mm当たりの550nmの光に対する透過率が、90%以上である、請求項17又は18に記載のバリア材。 The barrier material according to claim 17 or 18, wherein the transmittance for light at 550 nm per 1 mm of thickness is 90% or more.
  20.  部材と、
     前記部材上に形成された請求項17~19のいずれか一項に記載のバリア材と、
    を備える、製品。
    Members and
    The barrier material according to any one of claims 17 to 19 formed on the member.
    The product.
  21.  第一の部材と、第二の部材と、前記第一の部材及び前記第二の部材の間に設けられた請求項17~19のいずれか一項に記載のバリア材と、を備え、
     前記第一の部材と前記第二の部材とが前記バリア材を介して接合されている、製品。
    The barrier material according to any one of claims 17 to 19 provided between the first member, the second member, and the first member and the second member is provided.
    A product in which the first member and the second member are joined via the barrier material.
  22.  請求項17~19のいずれか一項に記載のバリア材を有する防湿部材を含む複数の部材の組立品である、製品。
     
    A product which is an assembly of a plurality of members including a moisture-proof member having the barrier material according to any one of claims 17 to 19.
PCT/JP2019/009785 2019-03-11 2019-03-11 Composition for forming barrier material, barrier material and method for producing same, and product and method for producing same WO2020183583A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/009785 WO2020183583A1 (en) 2019-03-11 2019-03-11 Composition for forming barrier material, barrier material and method for producing same, and product and method for producing same
JP2021504656A JP7447893B2 (en) 2019-03-11 2019-03-11 Composition for forming barrier material, barrier material and method for producing the same, product and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/009785 WO2020183583A1 (en) 2019-03-11 2019-03-11 Composition for forming barrier material, barrier material and method for producing same, and product and method for producing same

Publications (1)

Publication Number Publication Date
WO2020183583A1 true WO2020183583A1 (en) 2020-09-17

Family

ID=72426214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009785 WO2020183583A1 (en) 2019-03-11 2019-03-11 Composition for forming barrier material, barrier material and method for producing same, and product and method for producing same

Country Status (2)

Country Link
JP (1) JP7447893B2 (en)
WO (1) WO2020183583A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445129A (en) * 1990-06-11 1992-02-14 Daihachi Chem Ind Co Ltd Paint composition for coating
JP2002046208A (en) * 2000-08-02 2002-02-12 Dainippon Printing Co Ltd Barrier laminated film
JP2013049834A (en) * 2011-08-02 2013-03-14 Ishizuka Glass Co Ltd Sealing material for led

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2783389B1 (en) 2011-11-21 2021-03-10 Brewer Science, Inc. Structure comprising assist layers for euv lithography and method for forming it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445129A (en) * 1990-06-11 1992-02-14 Daihachi Chem Ind Co Ltd Paint composition for coating
JP2002046208A (en) * 2000-08-02 2002-02-12 Dainippon Printing Co Ltd Barrier laminated film
JP2013049834A (en) * 2011-08-02 2013-03-14 Ishizuka Glass Co Ltd Sealing material for led

Also Published As

Publication number Publication date
JPWO2020183583A1 (en) 2020-09-17
JP7447893B2 (en) 2024-03-12

Similar Documents

Publication Publication Date Title
EP2141188B1 (en) Silicon-containing compound, curable composition and cured product
US8840999B2 (en) Silicone composition and a method for preparing the same
US8815404B2 (en) Protective film and encapsulation material comprising the same
US9453105B2 (en) Epoxy and alkoxysilyl group-containing silsesquioxane and composition thereof
JP5610379B2 (en) Siloxane polymer, siloxane-based crosslinkable composition, and silicone film
JP6430940B2 (en) Antireflection coating composition containing siloxane compound and antireflection film using the same
KR101523821B1 (en) Anti-reflection coating composition containing siloxane compound, anti-reflection film having controlled surface energy using the same
CA2806383A1 (en) Branched polysiloxanes and use of these
JP5031436B2 (en) Low moisture permeability polyorganosiloxane composition
US11713375B2 (en) Barrier material formation composition, barrier material, production method for barrier material, product, and production method for product
KR101772549B1 (en) Insulation coating composition and manufacturing method thereof
JP7447893B2 (en) Composition for forming barrier material, barrier material and method for producing the same, product and method for producing the same
JP7338678B2 (en) Barrier material and products comprising the same
JP2020186377A (en) Barrier material forming composition, barrier material and method for producing the same, and product and method for producing the same
WO2021145064A1 (en) Resin composition, method for producing same, and multi-component curable resin composition
JP2021195381A (en) Barrier material formation composition, method for manufacturing the same, barrier material, method for manufacturing the same, product and method for manufacturing the same
JP2022034852A (en) Barrier material forming composition and method for producing the same, barrier material and method for producing the same, and product and method for producing the same
WO2020235524A1 (en) Resin composition, method for producing same, and multi-component curable resin composition
JP5170396B2 (en) Gas barrier film coating agent and gas barrier film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504656

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.12.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19918880

Country of ref document: EP

Kind code of ref document: A1