WO2020182790A1 - Procédé pour la commande du fonctionnement d'une pale de rotor d'éolienne et éolienne - Google Patents

Procédé pour la commande du fonctionnement d'une pale de rotor d'éolienne et éolienne Download PDF

Info

Publication number
WO2020182790A1
WO2020182790A1 PCT/EP2020/056303 EP2020056303W WO2020182790A1 WO 2020182790 A1 WO2020182790 A1 WO 2020182790A1 EP 2020056303 W EP2020056303 W EP 2020056303W WO 2020182790 A1 WO2020182790 A1 WO 2020182790A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor blade
wind energy
energy installation
wind turbine
optical
Prior art date
Application number
PCT/EP2020/056303
Other languages
German (de)
English (en)
Inventor
Dennis Dietz
Original Assignee
Wobben Properties Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wobben Properties Gmbh filed Critical Wobben Properties Gmbh
Publication of WO2020182790A1 publication Critical patent/WO2020182790A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0296Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce noise emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/331Mechanical loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/334Vibration measurements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/804Optical devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a method for controlling the operation of a wind energy installation rotor blade and a wind energy installation.
  • the rotor blades of a wind energy installation are typically exposed to the most varied of loads during operation of the wind energy installation.
  • the load on the rotor blades can be detected, for example, by means of strain gauges in the area of the hub of the wind energy installation.
  • EP 3 339 640 A1 shows a LIDAR system for capturing a 3D image of a rotor blade. The condition of the rotor blade is monitored on the basis of this data. If necessary, it is possible to intervene in the operation of the wind energy installation.
  • German Patent and Trade Mark Office researched the following documents in the priority German patent application: DE 10 2006 002 708 A1, DE 102011 116 551 A1 and EP 3 339 640 A1.
  • This object is achieved by a method for controlling the operation of a wind power plant rotor blade according to claim 1 and by a wind power plant according to claim 3.
  • intervention in the control of the wind energy installation takes place when the oscillation frequency is within at least one defined range.
  • the invention relates to the idea of providing an optical measuring system in the interior of the wind turbine rotor blade.
  • several reflectors and a light source are provided inside the rotor blade.
  • the light from the light source is directed onto the reflectors and reflected by the reflectors.
  • Blade vibration monitoring (in terms of amplitude and frequency) of the rotor blade can be carried out using the reflected light. If the blade oscillation (for example the absolute deflection of the blade) reaches a threshold value, the operation of the wind energy installation can be intervened or the operation can be restricted or the wind energy installation can be stopped.
  • the optical detection of the movement of the rotor blade according to the invention can determine the actual or absolute deflection of the rotor blade.
  • a frequency analysis can be carried out in order to also determine the frequencies of the blade vibrations.
  • the optical measurement can be carried out continuously or at fixed intervals.
  • the measuring system thus has at least one reflector, at least one transmitter for emitting light, at least one detector (for example a camera) for capturing the reflected light and a control unit for receiving the output signal of the detector and for performing an analysis of the received data.
  • the transmitter can emit infrared light which is reflected back again by the mirrors or reflectors and can then be detected by the sensor. From this, conclusions can be drawn about the movement of the rotor blade and in particular about the frequency of the rotor blade vibrations.
  • At least one optical reflector in a respective rotor blade is detected by a system with regard to its current position in the rotor blade.
  • the current position of the reflector serves as a source for additional information on the deflection of the rotor blade and the vibration behavior, so that this information enables intervention in the system control in order to avoid critical operating conditions.
  • the sensitivity for control-relevant information can be increased significantly and unnecessary shutdowns can be avoided.
  • no complex measuring systems such.
  • B. LIDAR is required to obtain the oscillation frequency and / or the deflections of the rotor blade. Rather, a simple and robust measuring system is provided.
  • Fig. 1 shows a schematic representation of a wind turbine according to the invention
  • FIG. 2 shows a schematic illustration of the optical measuring system according to the invention within the rotor blade
  • FIG. 3 shows a schematic illustration of an optical reflector according to an aspect of the present invention.
  • Fig. 1 shows a schematic representation of a wind energy installation according to the invention.
  • 1 shows a wind energy installation 100 with a tower 102 and a nacelle 104.
  • a rotor 106 with three rotor blades 200 and a spinner 110 is arranged on the nacelle 104.
  • the rotor 106 is set in rotation by the wind during operation and thereby drives a generator in the nacelle 104.
  • FIG. 2 shows a schematic representation of the optical measuring system according to the invention within the rotor blade.
  • 2 shows a rotor blade 200 with an optical measuring system 300 according to the invention.
  • a number of reflectors or mirrors 340 are distributed in the interior of the rotor blade 200.
  • the optical measuring system 300 furthermore has at least one transmitter 310 for transmitting or emitting light such as infrared light.
  • the transmitter or the light source 310 can be provided in the area of a rotor blade root 210 of the rotor blade.
  • the measuring system 300 has at least one detector 320, which can detect the light reflected by the reflectors 340 and convert it into electrical signals.
  • the output signal of the at least one detector 320 is output to a control unit 330, where the data can be analyzed.
  • the measuring system 300 can thus optically enable the movement of the rotor blade to be detected and can thus detect the vibrations of the rotor blade 200 (in terms of frequency and deflection).
  • the actual oscillation path or the actual deflection and the oscillation frequency of the rotor blade can be determined at the respective locations at which the reflectors 340 are arranged.
  • the control unit 330 can also carry out a frequency analysis of these data in order to determine the respective frequencies at which the rotor blade or sections of the rotor blade 200 vibrate. If these frequencies fall in the range, for example, of the resonance frequency, then the operation of the wind energy installation can be intervened and, for example, the pitch angle of the rotor blade can be adjusted. If this is not sufficient, the rotor of the wind energy installation can be stopped.
  • the invention relates to a method for optically monitoring a wind turbine rotor blade, in particular for monitoring blade vibrations by means of an optical measuring system which is provided in the interior of the rotor blade and can detect vibrations of the rotor blade.
  • the optical measuring system can be coupled to a central control unit 400 of the wind energy installation.
  • the central control unit 400 can be used to intervene in the operation of the wind energy installation, e.g. B. the pitch angle of the rotor blade and / or the speed of the aerodynamic rotor can be controlled.
  • the central control unit 400 can be used to switch off the wind energy installation or to stop the aerodynamic rotor (i.e. to reduce the speed of the rotor). This can be done, for example, if, based on the data of the optical measuring system 300, it can be assumed that the loads on the rotor blades are too great, in particular because the blade vibrations are too great in their amplitude or because the vibrations affect a critical frequency range.
  • the optical measuring system 300 can output warnings to the central control unit 400 when the amplitudes or deflections of the oscillations of the rotor blade exceed a threshold value and / or when the frequency of the oscillations of the rotor blade reach a certain critical frequency range.
  • the reflectors 340 can be provided in the first third or up to 50% of the length of the rotor blade as seen from the rotor blade root.
  • a deflection or deformation of the rotor blade can be detected in three directions. Especially if several At least two reflectors 340 are arranged at a section along the length of the rotor blade, a torsion of the rotor blade can also be detected.
  • the natural frequencies of the rotor blade and torsional vibrations can be recorded.
  • deflections in three different deformation directions namely hitting, pivoting and torsion
  • These three different directions of deformation can be evaluated individually or in combination with one another in order to determine the actual deflection and the frequency of the deflections.
  • different limit values for the respective directions of deformation impact, pivoting and torsion can be established and checked. The same applies to the frequencies of the deformations impact, pivoting and torsion. In this way, according to the invention, a detailed monitoring of the deformations or deflections of the rotor blade can be made possible.
  • control unit 330 can determine both the actual deflection or amplitude and the frequency of the deflections and can then output a warning to the central control unit 400 accordingly.
  • the optical reflector 340 has a first end 341 for fastening in the interior of the rotor blade 200.
  • the optical reflector 340 also has at least one, preferably two, arms 342, 343, each of which has at least one reflective section 344 with a reflective material.
  • the reflective section 344 is configured round, for example.
  • two reflective portions 344 are provided on the first arm 342 and on the second arm 343.
  • the first and second arms 342, 343 can each be configured straight and the first and second arms 342, 343 can be oriented in a straight line. The angle between the straight line consisting of the first and second arms 342, 343 and the inner surface of the rotor blade is selected or determined in advance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

L'invention concerne un procédé pour la commande d'un fonctionnement d'une éolienne (100), laquelle présente au moins une pale de rotor d'éolienne (200). Au moins un réflecteur optique (340) est prévu à l'intérieur de la pale de rotor d'éolienne (200). De la lumière est émise vers l'au moins un réflecteur optique (340) et la lumière réfléchie par l'au moins un réflecteur (340) est détectée par un détecteur (320). Les signaux de sortie du détecteur (320) sont analysés pour la détection d'une déviation absolue et d'une fréquence de vibration de la pale de rotor (200). Une intervention est effectuée dans la commande de l'éolienne (100) lorsque la déviation absolue de la pale de rotor (200) dépasse une valeur limite.
PCT/EP2020/056303 2019-03-14 2020-03-10 Procédé pour la commande du fonctionnement d'une pale de rotor d'éolienne et éolienne WO2020182790A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019106491.0 2019-03-14
DE102019106491.0A DE102019106491A1 (de) 2019-03-14 2019-03-14 Verfahren zum Steuern des Betriebs eines Windenergieanlagen-Rotorblattes und Windenergieanlage

Publications (1)

Publication Number Publication Date
WO2020182790A1 true WO2020182790A1 (fr) 2020-09-17

Family

ID=69784451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/056303 WO2020182790A1 (fr) 2019-03-14 2020-03-10 Procédé pour la commande du fonctionnement d'une pale de rotor d'éolienne et éolienne

Country Status (2)

Country Link
DE (1) DE102019106491A1 (fr)
WO (1) WO2020182790A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006002708A1 (de) 2006-01-19 2007-07-26 Siemens Ag Rotor einer Windenergieanlage
WO2009143849A2 (fr) * 2008-05-30 2009-12-03 Vestas Wind System A/S Rotor d'éolienne, et éolienne et son utilisation
DE102011016868A1 (de) * 2010-04-13 2011-10-13 Baumer Innotec Ag Messvorrichtung zum Messen von Verformungen elastisch verformbarer Objekte
EP2511524A1 (fr) * 2011-04-11 2012-10-17 Baumer Innotec AG Procédé et dispositif de surveillance d'une pale de rotor pour une éolienne
EP2530302A1 (fr) * 2011-06-03 2012-12-05 Wilic S.Ar.L Éolienne et procédé de contrôle associé
DE102011116551A1 (de) 2011-10-21 2013-04-25 Baumer Electric Ag Verfahren zur Messung der Verformung eines Rotorblattes
EP3339640A1 (fr) 2016-12-21 2018-06-27 Vestas Wind Systems A/S Procédé de commande pour éolienne

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006002708A1 (de) 2006-01-19 2007-07-26 Siemens Ag Rotor einer Windenergieanlage
WO2009143849A2 (fr) * 2008-05-30 2009-12-03 Vestas Wind System A/S Rotor d'éolienne, et éolienne et son utilisation
DE102011016868A1 (de) * 2010-04-13 2011-10-13 Baumer Innotec Ag Messvorrichtung zum Messen von Verformungen elastisch verformbarer Objekte
EP2511524A1 (fr) * 2011-04-11 2012-10-17 Baumer Innotec AG Procédé et dispositif de surveillance d'une pale de rotor pour une éolienne
EP2530302A1 (fr) * 2011-06-03 2012-12-05 Wilic S.Ar.L Éolienne et procédé de contrôle associé
DE102011116551A1 (de) 2011-10-21 2013-04-25 Baumer Electric Ag Verfahren zur Messung der Verformung eines Rotorblattes
EP3339640A1 (fr) 2016-12-21 2018-06-27 Vestas Wind Systems A/S Procédé de commande pour éolienne

Also Published As

Publication number Publication date
DE102019106491A1 (de) 2020-09-17

Similar Documents

Publication Publication Date Title
EP2956661B1 (fr) Procédé permettant de contrôler le fonctionnement d'une éolienne et éolienne
EP2131037B1 (fr) Surveillance du fonctionnement d'une éolienne par analyse sonore
EP2021890B1 (fr) Procede de surveillance des contraintes de pales de rotor d'eoliennes
DE10065314B4 (de) Verfahren und Einrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen
DE102005016524B4 (de) Verfahren und Vorrichtung zur Erkennung von Rotorblatteis
EP3227690B1 (fr) Procédé pour surveiller une éolienne, procédé pour détecter la présence de givre sur une éolienne, capteur d'accélération pour une pale de rotor, pale de rotor équipée d'un capteur d'accélération, et profil pour une pale de rotor
EP2565444B1 (fr) Procédé et dispositif de surveillance d'état de pales de rotor
EP3227552B1 (fr) Procédé pour réguler individuellement le pas de pales de rotor d'une éolienne et éoliennes
WO2019229172A1 (fr) Arrangement de capteur pour un aérogénérateur
EP2761249A1 (fr) Dispositif et procédé pour détecter une valeur de distance
EP3430257B1 (fr) Procédé de détermination de la vitesse du vent et installation de mise en oeuvre
DE102014014386A1 (de) Verfahren und Vorrichtung zum Bestimmen von Betriebsparametern einer Windkraftanlage
WO2016087451A2 (fr) Procédé de détection d'une instabilité en torsion d'une pale de rotor d'éolienne et profilé pour une pale de rotor
DE102011016868B4 (de) Messvorrichtung zum Messen von Verformungen elastisch verformbarer Objekte
WO2017198481A1 (fr) Procédé de détermination d'une oscillation d'une tour d'éolienne
DE202013007142U1 (de) Vorrichtung zur Zustandsüberwachung von Windenergieanlagen
DE202008006322U1 (de) Windkraftanlage
WO2022013032A1 (fr) Dispositif d'identification d'une accumulation de glace sur des pales de rotor d'une éolienne et procédé d'entraînement d'un tel dispositif
DE102010023250A1 (de) Messvorrichtung zum Messen von Verformungen elastisch verformbarer Objekte
WO2020182790A1 (fr) Procédé pour la commande du fonctionnement d'une pale de rotor d'éolienne et éolienne
DE102018116941B4 (de) Vorrichtung und Verfahren zum Erkennen der Anlagerung oder der Eisart von Eis an einem Rotorblatt eines Rotors einer Windkraftanlage
DE102012015456A1 (de) Vorrichtung und Verfahren zum Erfassen einer Verformung zumindest eines Rotorblatts eines Rotors einer Windenergieanlage
WO2021170434A1 (fr) Procédé pour contrôler l'état de la chaîne cinématique ou de la tour d'une turbine éolienne, et turbine éolienne
WO2022157303A1 (fr) Procédé et dispositif de détection et de surveillance d'un changement structural de composants structuraux de turbines éoliennes
EP4086454A1 (fr) Procédé de fonctionnement d'une éolienne, éolienne et parc éolien

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20710494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20710494

Country of ref document: EP

Kind code of ref document: A1