WO2020181697A1 - 一种基于可穿戴设备的网络优化方法及可穿戴设备 - Google Patents

一种基于可穿戴设备的网络优化方法及可穿戴设备 Download PDF

Info

Publication number
WO2020181697A1
WO2020181697A1 PCT/CN2019/095274 CN2019095274W WO2020181697A1 WO 2020181697 A1 WO2020181697 A1 WO 2020181697A1 CN 2019095274 W CN2019095274 W CN 2019095274W WO 2020181697 A1 WO2020181697 A1 WO 2020181697A1
Authority
WO
WIPO (PCT)
Prior art keywords
wearable device
network
network standard
adjustment
index value
Prior art date
Application number
PCT/CN2019/095274
Other languages
English (en)
French (fr)
Inventor
刘鹏飞
Original Assignee
广东小天才科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东小天才科技有限公司 filed Critical 广东小天才科技有限公司
Priority to EP19918556.2A priority Critical patent/EP3941113A4/en
Priority to SG11202109954W priority patent/SG11202109954WA/en
Publication of WO2020181697A1 publication Critical patent/WO2020181697A1/zh
Priority to US17/470,983 priority patent/US12052624B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/165Performing reselection for specific purposes for reducing network power consumption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/249Reselection being triggered by specific parameters according to timing information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/304Reselection being triggered by specific parameters by measured or perceived connection quality data due to measured or perceived resources with higher communication quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/322Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communication technology, in particular to a wearable device-based network optimization method and a wearable device.
  • wearable devices such as smart watches and smart bracelets
  • the power consumption problem is particularly prominent. If the user’s network environment is more complex, for example, when the user enters the border of two cells or the area covered by multiple cells, there will be a ping-pong handover effect of two or more cells, which will consume resources at this time. The power consumption increases sharply, thereby reducing the battery life of the wearable device.
  • the embodiment of the invention discloses a network optimization method based on a wearable device and a wearable device, which can reduce power consumption in a ping-pong switching network environment and prolong the battery life of the wearable device.
  • the first aspect of the embodiments of the present invention discloses a wearable device-based network optimization method, and the method includes:
  • the state information includes call state information, data network state information, screen state information, and positioning information;
  • the network standard is the type of the data network
  • the adjustment information includes adjustment time and adjustment effect indication information
  • the adjustment parameter group related to the network standard in the wearable device is dynamically adjusted according to the adjustment information to obtain a target adjustment parameter group, so as to adjust the network standard according to the target adjustment parameter group.
  • the detecting whether the wearable device is in a ping-pong handover network environment includes:
  • the signal switching index value is greater than or equal to the preset signal switching index value, determining that the wearable device is in the ping-pong switching network environment; and when the signal switching index value is less than the preset signal switching index value , Determining that the wearable device is not in the ping-pong handover network environment.
  • the adjusting the network standard according to the state information includes:
  • the initial network standard is switched to the first network standard;
  • the first network The duration of the standard is based on a preset time attenuation gradient list, and the signal transmission rate of the initial network standard is higher than the signal transmission rate of the first network standard;
  • the first network standard is switched to the initial network standard.
  • the method further includes:
  • switch the initial network standard to the second network standard and when the wearable device is in a weak network environment and the screen status information indicates that the wearable device is not in the bright screen state and the wearable device is not
  • switch the second network standard to the initial network standard wherein the signal transmission rate of the initial network standard is higher than the signal transmission rate of the second network standard.
  • the adjustment parameter group related to the network standard in the wearable device is dynamically adjusted according to the adjustment information to obtain a target adjustment parameter group , To adjust the network standard according to the target adjustment parameter group, including:
  • a second preset algorithm and an adjustment frequency determined according to the network environment where the wearable device is located are used to dynamically adjust the adjustment parameter group related to the network standard in the wearable device to obtain the target adjustment A parameter group to adjust the network standard according to the target adjustment parameter group.
  • the first aspect of the embodiments of the present invention discloses a wearable device, and the wearable device includes:
  • the detecting unit is used to detect whether the wearable device is in a ping-pong handover network environment
  • the state monitoring unit is configured to monitor the state of the wearable device to obtain state information of the wearable device when the detection unit detects that the wearable device is in the ping-pong switching network environment; wherein, the state information Including call status information, data network status information, screen status information and positioning information;
  • the adjustment unit is configured to adjust the network standard according to the state information;
  • the network standard is the type of the data network;
  • the dynamic adjustment unit is configured to dynamically adjust the adjustment parameter group related to the network standard in the wearable device according to the adjustment information to obtain a target adjustment parameter group, so as to adjust the network standard according to the target adjustment parameter group.
  • the detection unit includes:
  • the first obtaining subunit is used to obtain an abnormal holding time index value measuring the ping-pong handover network environment
  • the conversion subunit is used to convert the abnormal holding time index value into a data time index value through a first preset algorithm
  • a monitoring subunit configured to monitor the signal switching index value of the cell where the wearable device is located when the data time index value is greater than the first preset time value
  • the determining subunit is configured to determine that the wearable device is in the ping-pong switching network environment when the signal switching index value is greater than or equal to the preset signal switching index value; and when the signal switching index value is less than the predetermined signal switching index value When the signal switching index value is set, it is determined that the wearable device is not in the ping-pong switching network environment.
  • the adjustment unit includes:
  • the first switching subunit is configured to switch the initial network standard to the first when the call status information indicates that the wearable device does not have a call and the data network status information indicates that the wearable device does not have data services.
  • Network standard the duration of the first network standard is based on a preset time attenuation gradient list, the signal transmission rate of the initial network standard is higher than the signal transmission rate of the first network standard; and when the positioning information indicates When the moving distance of the wearable device is greater than a preset distance value, the first network standard is switched to the initial network standard.
  • the adjustment unit further includes:
  • the second acquisition subunit is configured to acquire the current signal strength when the wearable device is within a preset time node and the positioning information indicates that the wearable device has not moved within a second preset time value;
  • the judging subunit is used to judge whether the current signal strength is less than the preset signal strength
  • the data service subunit is used to turn off the data service when the judgment subunit judges that the current signal strength is less than the preset signal strength, and when the wearable device is in a weak network environment and the screen status information indicates Opening the data service when the wearable device is in a bright screen state;
  • the second switching subunit is configured to switch the initial network standard to the second network standard when the judging subunit determines that the current signal strength is greater than or equal to the preset signal strength, and when the wearable device is weak When the network environment and the screen state information indicate that the wearable device is not in the bright screen state and the wearable device is not within the preset time node, switch the second network standard to the initial network standard ; Wherein, the signal transmission rate of the initial network standard is higher than the signal transmission rate of the second network standard.
  • the dynamic adjustment unit is configured to dynamically adjust the adjustment parameter group related to the network standard in the wearable device according to the adjustment information
  • the method of obtaining the target adjustment parameter group to adjust the network standard according to the target adjustment parameter group is specifically:
  • the dynamic adjustment unit is configured to dynamically adjust the wearable device related to the network standard by using a second preset algorithm and an adjustment frequency determined according to the network environment in which the wearable device is located based on the adjustment information To obtain a target adjustment parameter set to adjust the network standard according to the target adjustment parameter set.
  • the third aspect of the embodiments of the present invention discloses a wearable device, including:
  • a memory storing executable program codes
  • a processor coupled with the memory
  • the processor invokes the executable program code stored in the memory to execute a wearable device-based network optimization method disclosed in the first aspect of the embodiment of the present invention.
  • the fourth aspect of the embodiments of the present invention discloses a computer-readable storage medium storing a computer program, wherein the computer program causes a computer to execute a wearable device-based network optimization method disclosed in the first aspect of the embodiments of the present invention.
  • a fifth aspect of the embodiments of the present invention discloses a computer program product, which when the computer program product runs on a computer, causes the computer to execute part or all of the steps of any method in the first aspect.
  • an application publishing platform is disclosed.
  • the application publishing platform is used to publish a computer program product, wherein when the computer program product runs on a computer, the computer executes any of the first aspect Part or all of the steps of a method.
  • the network standard when it is detected that the wearable device is in a ping-pong switching network environment, the network standard is adjusted by the monitored device status information, and then the adjustment parameter group related to the network standard is dynamically adjusted according to the adjustment information of the network standard.
  • the target adjustment parameter set most suitable for the device, so that when the device enters the ping-pong switching network environment, the target adjustment parameter set is used to adjust the network standard for network optimization, which can reduce power consumption and extend the battery life rate of the wearable device.
  • FIG. 1 is a schematic flowchart of a wearable device-based network optimization method disclosed in an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of another wearable device-based network optimization method disclosed in an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of another wearable device-based network optimization method disclosed in an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a wearable device disclosed in an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another wearable device disclosed in an embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of another wearable device disclosed in an embodiment of the present invention.
  • the embodiment of the invention discloses a network optimization method based on a wearable device and a wearable device, so that when the device enters the ping-pong switching network environment, the target adjustment parameter group is used to adjust the network standard for network optimization, which can reduce power consumption and extend the wearable device Battery life.
  • FIG. 1 is a schematic flowchart of a wearable device-based network optimization method disclosed in an embodiment of the present invention. As shown in Figure 1, the wearable device-based network optimization method may include the following steps.
  • the wearable device detects whether the wearable device is in a ping-pong switching network environment; if so, execute step 102; if not, end this process.
  • wearable devices may include smart watches, smart bracelets, smart glasses, etc.
  • the ping-pong network environment means that in a mobile communication system, if the signal strength of two base stations changes drastically in a certain area, the terminal device will Switching back and forth between the two base stations produces the so-called "ping-pong effect.” For example, when a user wearing a wearable device is at the boundary of two cells or a location covered by multiple cells, a ping-pong handover effect of two or more cells will occur, and the power consumption of the wearable device will increase sharply.
  • the wearable device when detecting whether the wearable device is in the ping-pong handover network environment, it can be detected whether the wearable device is connected to at least two serving cells within a preset time period, and if so, the status of the wearable device is obtained.
  • the service duration of at least two serving cells is calculated to calculate the average service duration of each serving cell. When the average service duration is less than the preset service duration, it is determined that the wearable device is in a ping-pong handover network environment.
  • the implementation of this embodiment can reduce the detection range, reduce the amount of calculation, quickly determine whether the wearable device is in a ping-pong network environment, and improve the detection efficiency.
  • the wearable device monitors the state of the wearable device to obtain state information of the wearable device; wherein the state information includes call state information, data network state information, screen state information, and positioning information.
  • the call status information can indicate whether the wearable device has a call and the duration of the call when the call occurs
  • the data network status information can indicate whether the wearable device has a data service and the serving cell that the wearable device accesses when the data service occurs
  • the screen status information can be Indicates whether the wearable device is in the on-screen state and the duration of the on-screen state.
  • the positioning information can indicate whether the wearable device is moving and the movement distance generated during the movement.
  • the positioning information can be obtained through the motion sensor in the wearable device It can also be obtained through the Global Positioning System (Global Positioning System, GPS), which is not limited in the embodiment of the present invention.
  • the wearable device adjusts the network standard according to the state information; the network standard is the type of the data network.
  • the network standards used by China Mobile can include GSM (2G), TD-SCDMA (3G) and TD-LTE (4G);
  • the network standards used by China Unicom can include GSM (2G), WCDMA (3G), TD- LTE (4G) and FDD-LTE (4G);
  • the network standards used by China Telecom can include CDMA1X (2G), EVDO (3G), TD-LTE (4G) and FDD-LTE (4G).
  • the wearable device can switch between the 2G, 3G, and 4G network standards based on the status information, thereby realizing the adjustment of the network standards.
  • the wearable device records adjustment information of the network standard; the adjustment information includes adjustment time and adjustment effect indication information.
  • the adjustment information of the network standard is recorded and saved to provide data support for the optimization of the network standard.
  • the adjustment time may indicate the time for the wearable device to enter the ping-pong switching network environment again after saving the optimization of the network system
  • the adjustment effect indication information may indicate the effect of the wearable device performing each round of network system optimization.
  • the wearable device dynamically adjusts the adjustment parameter group related to the network standard in the wearable device according to the adjustment information, obtains the target adjustment parameter group, and adjusts the network standard according to the target adjustment parameter group.
  • the adjustment parameter group related to the network standard can be continuously adjusted dynamically through adjustment information to obtain the target adjustment parameter group, so as to adjust the network standard of the wearable device in the ping-pong handover network environment according to the target adjustment parameter group, wherein,
  • the target adjustment parameter group is applicable to all ping-pong network switching environments, and therefore, can ensure the user experience with the lowest power consumption when the wearable device encounters the ping-pong network switching without affecting normal functions.
  • a large amount of adjustment information and adjustment parameter groups of each adjustment network system can be collected, and the adjustment information and adjustment parameter groups can be sent to the background server so that the background server can train according to the adjustment information and adjustment parameter groups.
  • the constructed ping-pong handover network optimization model When the performance parameter value of the ping-pong handover network optimization model is greater than the preset performance parameter value, the ping-pong handover network optimization model is derived from the background server, so that the wearable device can use the ping-pong handover network optimization model according to the device’s performance
  • the state information adjusts the network standard, which can make the adjustment of the network standard more precise and greatly reduce the power consumption.
  • implementing the wearable device-based network optimization method described in Figure 1 can adjust the network standard through the monitored device status information when it is detected that the wearable device is in the ping-pong network environment, and then adjust the information according to the network standard Dynamically adjust the adjustment parameter group related to the network standard to obtain the most suitable target adjustment parameter group for the device.
  • the target adjustment parameter group can adjust the network standard for network optimization, which can reduce power consumption and extend the performance The battery life of the wearable device.
  • FIG. 2 is a schematic flowchart of another wearable device-based network optimization method disclosed in an embodiment of the present invention. As shown in Figure 2, the wearable device-based network optimization method may include the following steps.
  • the wearable device obtains an index value of an abnormal holding time that measures a ping-pong handover network environment.
  • the long-term abnormal holding time index value can be obtained through Radio Resource Control (RRC), and used to measure the ping-pong handover network environment.
  • RRC Radio Resource Control
  • the RRC connection process includes the selection of available cells and the serving cell. Access permission control and signal link establishment.
  • the wearable device converts the abnormal holding time index value into the data time index value through the first preset algorithm.
  • the abnormal holding time index value can be converted into the data time index value through the first preset algorithm.
  • the data time index value is the time index activated in the measurable data channel. Therefore, the data time index value is Measurable, the time and reason of the ping-pong handover network can be accurately obtained through the data time index value.
  • the wearable device monitors the signal switching index value of the cell where the wearable device is located.
  • the wearable device determines that the wearable device is in a ping-pong switching network environment; and when the signal switching index value is less than the preset signal switching index value, the wearable device determines The wearable device is not in a ping-pong network environment.
  • the signal strength and cell handover indicators can be continuously monitored.
  • the cell handover indicators include the cell handover frequency and the number of cells. According to the signal strength and the cell handover indicators, the signal handover indicator value of the cell where the wearable device is located can be obtained.
  • the signal switching index value is used to determine whether the wearable device is in a ping-pong switching network environment, which can improve the accuracy and detection efficiency of the ping-pong switching network environment detection.
  • the wearable device monitors the state of the wearable device to obtain state information of the wearable device; wherein the state information includes call state information, data network state information, screen state information, and positioning information.
  • the wearable device adjusts the network standard according to the status information; the network standard is a data network type.
  • the wearable device records adjustment information of the network standard; the adjustment information includes adjustment time and adjustment effect indication information.
  • the wearable device uses the second preset algorithm and the adjustment frequency determined according to the network environment where the wearable device is located to dynamically adjust the adjustment parameter group related to the network standard in the wearable device to obtain the target adjustment parameter group. To adjust the network standard according to the target adjustment parameter group.
  • the frequency for dynamically adjusting the adjustment parameter group related to the network standard may be based on the network environment in which the wearable device is located. For example, when the wearable device is in a ping-pong handover network environment of two cells, the frequency is dynamically adjusted The frequency can be 10 minutes/time, and when the wearable device is in a ping-pong handover network environment of three cells, the dynamically adjusted frequency can be 5 minutes/time. Therefore, the use of the second preset algorithm and the adjustment frequency determined according to the network environment of the wearable device to dynamically adjust the adjustment parameter group related to the network standard can make the obtained target adjustment parameter group more suitable for the adjustment optimization of multi-party ping-pong handover. And improve the accuracy of ping-pong handover network adjustment.
  • the implementation of the wearable device-based network optimization method described in Figure 2 can adjust the network standard through the monitored device status information when the wearable device is detected in the ping-pong switching network environment, and then adjust the information according to the network standard Dynamically adjust the adjustment parameter group related to the network standard to obtain the most suitable target adjustment parameter group for the device, so that when the device enters the ping-pong switching network environment, the target adjustment parameter group is used to adjust the network standard for network optimization, which can reduce power consumption and extend the performance.
  • the battery life of the wearable device it is also possible to determine whether the wearable device is in a ping-pong handover network environment through the signal switching index value, which can improve the accuracy and detection efficiency of the ping-pong handover network environment detection.
  • FIG. 3 is a schematic flowchart of another wearable device-based network optimization method disclosed in an embodiment of the present invention.
  • the wearable device-based network optimization method may include the following steps.
  • the wearable device obtains an index value of an abnormal holding time that measures a ping-pong handover network environment.
  • the wearable device converts the abnormal holding time index value into the data time index value through the first preset algorithm.
  • the wearable device monitors the signal switching index value of the cell where the wearable device is located.
  • the wearable device determines that the wearable device is in a ping-pong switching network environment; and when the signal switching index value is less than the preset signal switching index value, the wearable device determines The wearable device is not in a ping-pong network environment.
  • the wearable device monitors the state of the wearable device to obtain state information of the wearable device; wherein the state information includes call state information, data network state information, screen state information, and positioning information.
  • the wearable device switches the initial network standard to the first network standard; the duration of the first network standard According to the preset time decay gradient list, the signal transmission rate of the initial network standard is higher than the signal transmission rate of the first network standard.
  • the network standard when the wearable device is in a ping-pong switching network environment and no call or data service occurs, the network standard is reduced, and the duration of the reduced network standard is based on a preset time attenuation gradient list, for example,
  • the preset time decay gradient list Q1 10 minutes, 20 minutes, 30 minutes, 40 minutes..., where Q1-1 is 10 minutes, Q1-2 is 20 minutes, the first time it occurs, the network standard is reduced and lasts for 10 minutes.
  • Q1-1 10 minutes
  • Q1-2 is 20 minutes
  • the wearable device switches the first network standard to the initial network standard, and jumps to step 312.
  • the network standard is restored to restore the normal data signal of the wearable device, so as to ensure the user experience without affecting normal functions.
  • the location range where the ping-pong handover network is located and the real-time location information of the wearable device are acquired.
  • the network standard is lowered; when the real-time location information indicates that the wearable device moves outside the range of the location where the ping-pong handover network is located, the network standard is restored.
  • the implementation of this embodiment can more accurately adjust the network standard based on real-time location information, and realize real-time optimization of the network.
  • the wearable device acquires the current signal strength.
  • the wearable device when the wearable device is in a static state at night (where the static state can be achieved by monitoring the state information of various sensors), the signal strength at this time is monitored to obtain the current signal strength.
  • the wearable device determines whether the current signal strength is less than the preset signal strength; if so, go to step 310; if not, go to step 311.
  • the wearable device closes the data service, and when the wearable device is in a weak network environment and the screen status information indicates that the wearable device is in a bright screen state, the data service is turned on.
  • the wearable device switches the initial network standard to the second network standard, and when the wearable device is in a weak network environment and the screen status information indicates that the wearable device is not in the bright screen state and the wearable device is not within the preset time node , Switch the second network standard to the initial network standard; wherein the signal transmission rate of the initial network standard is higher than the signal transmission rate of the second network standard.
  • the network standard is reduced, and then when the wearable device is in a weak network environment and the screen is in a black screen state, after the night mode ends, the network standard is restored to ensure normal Function operation.
  • the wearable device records adjustment information of the network standard; the adjustment information includes adjustment time and adjustment effect indication information.
  • the wearable device uses the second preset algorithm and the adjustment frequency determined according to the network environment where the wearable device is located to dynamically adjust the adjustment parameter group related to the network standard in the wearable device to obtain the target adjustment parameter group. To adjust the network standard according to the target adjustment parameter group.
  • implementing the wearable device-based network optimization method described in Figure 3 can adjust the network standard through the monitored device status information when the wearable device is detected in the ping-pong network environment, and then adjust the information according to the network standard Dynamically adjust the adjustment parameter group related to the network standard to obtain the most suitable target adjustment parameter group for the device.
  • the target adjustment parameter group can adjust the network standard for network optimization, which can reduce power consumption and extend the performance The battery life of the wearable device.
  • the wearable device can also judge whether the wearable device is in the ping-pong handover network environment through the signal switching index value, which can improve the accuracy and detection efficiency of the ping-pong handover network environment detection, and can also meet the adjustment and optimization of multi-party ping-pong handover, and improve the ping-pong handover network The precision of adjustment.
  • FIG. 4 is a schematic structural diagram of a wearable device disclosed in an embodiment of the present invention.
  • the wearable device may include:
  • the detection unit 401 is configured to detect whether the wearable device is in a ping-pong handover network environment.
  • wearable devices may include smart watches, smart bracelets, smart glasses, etc.
  • the ping-pong network environment means that in a mobile communication system, if the signal strength of two base stations changes drastically in a certain area, the terminal device will Switching back and forth between the two base stations produces the so-called "ping-pong effect.” For example, when a user wearing a wearable device is at the boundary of two cells or a location covered by multiple cells, a ping-pong handover effect of two or more cells will occur, and the power consumption of the wearable device will increase sharply.
  • the detection unit 401 is configured to detect whether the wearable device is connected to at least two serving cells within a preset time period when detecting whether the wearable device is in a ping-pong handover network environment. If so, Obtain the service duration of the wearable device in at least two serving cells to calculate the average service duration of each serving cell. When the average service duration is less than the preset service duration, it is determined that the wearable device is in a ping-pong handover network environment.
  • the implementation of this embodiment can reduce the detection range, reduce the amount of calculation, quickly determine whether the wearable device is in a ping-pong network environment, and improve the detection efficiency.
  • the state monitoring unit 402 is used to monitor the state of the wearable device and obtain state information of the wearable device when the detection unit detects that the wearable device is in the ping-pong switching network environment; wherein the state information includes call state information and data network state information , Screen status information and positioning information.
  • the call status information can indicate whether the wearable device has a call and the duration of the call when the call occurs
  • the data network status information can indicate whether the wearable device has a data service and the serving cell that the wearable device accesses when the data service occurs
  • the screen status information can be Indicates whether the wearable device is in the on-screen state and the duration of the on-screen state.
  • the positioning information can indicate whether the wearable device is moving and the movement distance generated during the movement.
  • the positioning information can be obtained through the motion sensor in the wearable device It can also be obtained through the Global Positioning System (Global Positioning System, GPS), which is not limited in the embodiment of the present invention.
  • the adjusting unit 403 is used to adjust the network standard according to the status information; the network standard is the type of the data network.
  • the network standards used by China Mobile can include GSM (2G), TD-SCDMA (3G) and TD-LTE (4G);
  • the network standards used by China Unicom can include GSM (2G), WCDMA (3G), TD- LTE (4G) and FDD-LTE (4G);
  • the network standards used by China Telecom can include CDMA1X (2G), EVDO (3G), TD-LTE (4G) and FDD-LTE (4G).
  • the wearable device can switch between the 2G, 3G, and 4G network standards based on the status information, thereby realizing the adjustment of the network standards.
  • the recording unit 404 is used to record adjustment information of the network standard; the adjustment information includes adjustment time and adjustment effect indication information.
  • the recording unit 404 is configured to record and save the adjustment information of the network standard after each round of adjustment of the network standard, so as to provide data support for the optimization of the network standard.
  • the adjustment time may indicate the time for the wearable device to enter the ping-pong switching network environment again after saving the optimization of the network system
  • the adjustment effect indication information may indicate the effect of the wearable device performing each round of network system optimization.
  • the dynamic adjustment unit 405 is configured to dynamically adjust the adjustment parameter group related to the network standard in the wearable device according to the adjustment information to obtain the target adjustment parameter group, so as to adjust the network standard according to the target adjustment parameter group.
  • the dynamic adjustment unit 405 is configured to dynamically adjust the adjustment parameter group related to the network standard through adjustment information to obtain the target adjustment parameter group, so as to adjust the wearable device in the ping-pong handover network environment according to the target adjustment parameter group.
  • the network standard in which the target adjustment parameter group is applicable to all ping-pong network switching environments, so that the wearable device can ensure the user experience with the lowest power consumption when encountering the ping-pong network switching without affecting normal functions.
  • a large amount of adjustment information and adjustment parameter groups of each adjustment network system can be collected, and the adjustment information and adjustment parameter groups can be sent to the background server so that the background server can train according to the adjustment information and adjustment parameter groups.
  • the constructed ping-pong handover network optimization model When the performance parameter value of the ping-pong handover network optimization model is greater than the preset performance parameter value, the ping-pong handover network optimization model is derived from the background server, so that the wearable device can use the ping-pong handover network optimization model according to the device’s performance
  • the state information adjusts the network standard, which can make the adjustment of the network standard more precise and greatly reduce the power consumption.
  • implementing the wearable device described in Figure 4 can adjust the network standard through the monitored device status information when the wearable device is detected in the ping-pong network environment, and then dynamically adjust the network standard according to the adjustment information of the network standard
  • the relevant adjustment parameter group can obtain the target adjustment parameter group most suitable for the device, so that when the device enters the ping-pong switching network environment, the target adjustment parameter group is used to adjust the network standard for network optimization, which can reduce power consumption and extend the battery life of the wearable device .
  • FIG. 5 is a schematic structural diagram of another wearable device disclosed in an embodiment of the present invention.
  • the wearable device shown in Fig. 5 is optimized by the wearable device shown in Fig. 4.
  • the wearable device shown in FIG. 5 may further include:
  • the foregoing detection unit 401 includes:
  • the first obtaining subunit 4011 is configured to obtain an abnormal holding time index value measuring the ping-pong handover network environment
  • the first obtaining subunit 4011 is configured to obtain the long-term abnormal holding time index value through Radio Resource Control (RRC), which is used to measure the ping-pong handover network environment, where the RRC connection process includes Selection of available cells, access permission control of serving cells and establishment of signal links.
  • RRC Radio Resource Control
  • the conversion subunit 4012 is configured to convert the abnormal holding time index value into the data time index value through the first preset algorithm
  • the conversion subunit 4012 is used to convert the abnormal holding time index value into the data time index value through the first preset algorithm.
  • the data time index value is the time index activated in the measurable data channel. Therefore, The data time index value is measurable, and the time and cause of the ping-pong handover network can be accurately obtained through the data time index value.
  • the monitoring subunit 4013 is configured to monitor the signal switching index value of the cell where the wearable device is located when the data time index value is greater than the first preset time value;
  • the determining subunit 4014 is used to determine that the wearable device is in a ping-pong switching network environment when the signal switching index value is greater than or equal to the preset signal switching index value; and when the signal switching index value is less than the preset signal switching index value, determining that The wearable device is not in a ping-pong switching network environment.
  • the monitoring subunit 4013 is used to continuously monitor the signal strength and cell handover indicators, where the cell handover indicators include cell handover frequency and the number of cells, and obtain the signal handover indicators of the cell where the wearable device is located according to the signal strength and cell handover indicators
  • the determination subunit 4014 is used to determine whether the wearable device is in a ping-pong handover network environment through the signal switching index value, which can improve the accuracy and detection efficiency of the ping-pong handover network environment detection.
  • the foregoing adjustment unit 403 includes:
  • the first switching subunit 4031 is used to switch the initial network standard to the first network standard when the call status information indicates that the wearable device is not calling and the data network status information indicates that the wearable device does not have data services; According to the preset time attenuation gradient list, the signal transmission rate of the initial network standard is higher than the signal transmission rate of the first network standard; and when the positioning information indicates that the movement distance of the wearable device is greater than the preset distance value, the first The network standard is switched to the initial network standard.
  • the first switching subunit 4031 is used to reduce the network standard when the wearable device is in a ping-pong switching network environment and no call and data services occur, and the duration of the reduced network standard attenuates according to a preset time Gradient list, for example, such as the preset time decay gradient list Q1: 10 minutes, 20 minutes, 30 minutes, 40 minutes..., where Q1-1 is 10 minutes, Q1-2 is 20 minutes, and it decreases when it first occurs
  • the network standard lasts for 10 minutes.
  • the network standard is lowered and lasts for 20 minutes.
  • the network standard is restored to restore the normal data signal of the wearable device, so as to ensure the user experience without affecting normal functions.
  • the first handover subunit 4031 is used to obtain the location range of the ping-pong handover network and the real-time location information of the wearable device, when the real-time location information of the wearable device is located in the location range of the ping-pong handover network
  • the network standard is reduced; when the real-time location information indicates that the wearable device moves outside the range of the location where the ping-pong switching network is located, the network standard is restored.
  • the implementation of this embodiment can more accurately adjust the network standard based on real-time location information, and realize real-time optimization of the network.
  • the aforementioned adjustment unit 403 further includes:
  • the second acquiring subunit 4032 is used to acquire the current signal strength when the wearable device is within the preset time node and the positioning information indicates that the wearable device has not moved within the second preset time value;
  • the second acquiring subunit 4032 is used to monitor the signal strength at this time when the wearable device is in a static state at night (where the static state can be achieved by monitoring the state information of various sensors), and obtain the current Signal strength.
  • the judging subunit 4033 is used to judge whether the current signal strength is less than the preset signal strength
  • the data service subunit 4034 is used to turn off the data service when the judging subunit determines that the current signal strength is less than the preset signal strength, and when the wearable device is in a weak network environment and the screen status information indicates that the wearable device is in a bright screen state To start data services;
  • the second switching subunit 4035 is used to switch the initial network standard to the second network standard when the judging subunit determines that the current signal strength is greater than or equal to the preset signal strength, and when the wearable device is in a weak network environment and screen state When the information indicates that the wearable device is not in the bright screen state and the wearable device is not within the preset time node, switch the second network standard to the initial network standard; wherein the signal transmission rate of the initial network standard is higher than that of the second network standard Signal transmission rate.
  • the second switching subunit 4035 is used to reduce the network standard when the current signal strength is greater than or equal to the preset signal strength, and then when the wearable device is in a weak network environment and the screen is in a black screen state, after the night mode ends , To restore the network standard to ensure normal function operation.
  • the above-mentioned dynamic adjustment unit 405 is configured to dynamically adjust the adjustment parameter group related to the network standard in the wearable device according to the adjustment information to obtain the target adjustment parameter group.
  • the method of adjusting the network standard according to the target adjustment parameter group is specifically:
  • the dynamic adjustment unit 405 is configured to dynamically adjust the adjustment parameter group related to the network standard in the wearable device based on the adjustment information, using the second preset algorithm and the adjustment frequency determined according to the network environment where the wearable device is located, to obtain the target adjustment parameter Group to adjust the network standard according to the target adjustment parameter group.
  • the frequency for dynamically adjusting the adjustment parameter group related to the network standard may be based on the network environment in which the wearable device is located. For example, when the wearable device is in a ping-pong handover network environment of two cells, the frequency is dynamically adjusted The frequency can be 10 minutes/time, and when the wearable device is in a ping-pong handover network environment of three cells, the dynamically adjusted frequency can be 5 minutes/time. Therefore, the use of the second preset algorithm and the adjustment frequency determined according to the network environment of the wearable device to dynamically adjust the adjustment parameter group related to the network standard can make the obtained target adjustment parameter group more suitable for the adjustment optimization of multi-party ping-pong handover. And improve the accuracy of ping-pong handover network adjustment.
  • the implementation of the wearable device described in Figure 5 can adjust the network standard through the monitored device status information when the wearable device is detected in the ping-pong network environment, and then dynamically adjust the network standard according to the adjustment information of the network standard
  • the relevant adjustment parameter group can obtain the target adjustment parameter group most suitable for the device, so that when the device enters the ping-pong switching network environment, the target adjustment parameter group is used to adjust the network standard for network optimization, which can reduce power consumption and extend the battery life of the wearable device .
  • the wearable device can also judge whether the wearable device is in the ping-pong handover network environment through the signal switching index value, which can improve the accuracy and detection efficiency of the ping-pong handover network environment detection, and can also meet the adjustment and optimization of multi-party ping-pong handover, and improve the ping-pong handover network The precision of adjustment.
  • FIG. 6 is a schematic structural diagram of another wearable device disclosed in an embodiment of the present invention.
  • the wearable device may include:
  • a memory 601 storing executable program codes
  • a processor 602 coupled with the memory 601;
  • the processor 602 calls the executable program code stored in the memory 601 to execute any one of the wearable device-based network optimization methods in FIGS. 1 to 3.
  • the embodiment of the present invention discloses a computer-readable storage medium that stores a computer program, where the computer program causes a computer to execute any one of the wearable device-based network optimization methods shown in FIGS. 1 to 3.
  • the embodiment of the present invention also discloses a computer program product, wherein when the computer program product runs on a computer, the computer is caused to execute part or all of the steps of the method in the above method embodiments.
  • the program can be stored in a computer-readable storage medium.
  • the storage medium includes read-only Memory (Read-Only Memory, ROM), Random Access Memory (RAM), Programmable Read-only Memory (PROM), Erasable Programmable Read Only Memory, EPROM), One-time Programmable Read-Only Memory (OTPROM), Electronically-Erasable Programmable Read-Only Memory (EEPROM), CD-ROM (Compact Disc) Read-Only Memory, CD-ROM) or other optical disk storage, magnetic disk storage, tape storage, or any other computer-readable medium that can be used to carry or store data.
  • Read-Only Memory ROM
  • RAM Random Access Memory
  • PROM Programmable Read-only Memory
  • EPROM Erasable Programmable Read Only Memory
  • OTPROM One-time Programmable Read-Only Memory
  • EEPROM Electronically-Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

本发明实施例涉及通信技术领域,公开了一种基于可穿戴设备的网络优化方法及可穿戴设备,该方法包括:检测可穿戴设备是否处于乒乓切换网络环境;如果是,监控可穿戴设备的状态,获得可穿戴设备的状态信息,其中,状态信息包括通话状态信息、数据网络状态信息、屏幕状态信息和定位信息;根据状态信息调节网络制式,该网络制式为数据网络的类型;记录网络制式的调节信息,该调节信息包括调节时间和调节效果指示信息;根据调节信息动态调整可穿戴设备中与网络制式相关的调节参数组,获得目标调节参数组,以根据目标调节参数组调节网络制式。实施本发明实施例,能够在乒乓切换网络环境下降低功耗,延长可穿戴设备的续航时间。

Description

一种基于可穿戴设备的网络优化方法及可穿戴设备 技术领域
本发明涉及通信技术领域,尤其涉及一种基于可穿戴设备的网络优化方法及可穿戴设备。
背景技术
当前可穿戴设备(如智能手表、智能手环)越来越小型化,由于可穿戴设备的体积小,电池容量也小,因此功耗问题就显得特别突出。如果用户所处的网络环境比较复杂,例如,当用户进入两个小区的边界位置或者多个小区覆盖的区域时,会出现两个或多个小区乒乓切换效应,此时将非常耗费资源,使得功耗急剧增加,从而降低可穿戴设备的续航时长。
发明内容
本发明实施例公开了一种基于可穿戴设备的网络优化方法及可穿戴设备,能够在乒乓切换网络环境下降低功耗,延长可穿戴设备的续航时间。
本发明实施例第一方面公开一种基于可穿戴设备的网络优化方法,所述方法包括:
检测所述可穿戴设备是否处于乒乓切换网络环境;
如果是,监控所述可穿戴设备的状态,获得所述可穿戴设备的状态信息;其中,所述状态信息包括通话状态信息、数据网络状态信息、屏幕状态信息和定位信息;
根据所述状态信息调节网络制式;所述网络制式为数据网络的类型;
记录所述网络制式的调节信息;所述调节信息包括调节时间和调节效果指示信息;
根据所述调节信息动态调整所述可穿戴设备中与所述网络制式相关的调节参数组,获得目标调节参数组,以根据所述目标调节参数组调节所述网络制式。
作为一种可选的实施方式,在本发明实施例第一方面中,所述检测所述可穿戴设备是否处于乒乓切换网络环境,包括:
获取度量乒乓切换网络环境的异常持有时间指标值;
通过第一预设算法将所述异常持有时间指标值转化为数据时间指标值;
当所述数据时间指标值大于第一预设时间值时,监控所述可穿戴设备所在小区的信号切换指标值;
当所述信号切换指标值大于或等于预设信号切换指标值时,判定所述可穿戴设备处于所述乒乓切换网络环境;以及当所述信号切换指标值小于所述预设信号 切换指标值时,判定所述可穿戴设备未处于所述乒乓切换网络环境。
作为一种可选的实施方式,在本发明实施例第一方面中,所述根据所述状态信息调节网络制式,包括:
当所述通话状态信息指示所述可穿戴设备未发生通话以及所述数据网络状态信息指示所述可穿戴设备未发生数据业务时,将初始网络制式切换为第一网络制式;所述第一网络制式的持续时间依据预设时间衰减梯度列表,所述初始网络制式的信号传输速率高于所述第一网络制式的信号传输速率;
当所述定位信息指示所述可穿戴设备的移动距离大于预设距离值时,将所述第一网络制式切换为所述初始网络制式。
作为一种可选的实施方式,在本发明实施例第一方面中,所述方法还包括:
当所述可穿戴设备在预设时间节点内以及所述定位信息指示所述可穿戴设备在第二预设时间值内未移动时,获取当前信号强度;
判断所述当前信号强度是否小于预设信号强度;
如果是,关闭数据业务,以及当所述可穿戴设备处于弱网环境以及所述屏幕状态信息指示所述可穿戴设备处于亮屏状态时,开启所述数据业务;
如果否,将初始网络制式切换为第二网络制式,以及当所述可穿戴设备处于弱网环境以及所述屏幕状态信息指示所述可穿戴设备未处于亮屏状态以及所述可穿戴设备未在所述预设时间节点内时,将所述第二网络制式切换为所述初始网络制式;其中,所述初始网络制式的信号传输速率高于所述第二网络制式的信号传输速率。
作为一种可选的实施方式,在本发明实施例第一方面中,所述根据所述调节信息动态调整所述可穿戴设备中与所述网络制式相关的调节参数组,获得目标调节参数组,以根据所述目标调节参数组调节所述网络制式,包括:
基于所述调节信息,利用第二预设算法和根据所述可穿戴设备所处的网络环境确定的调整频率动态调整所述可穿戴设备中与所述网络制式相关的调节参数组,获得目标调节参数组,以根据所述目标调节参数组调节所述网络制式。
本发明实施例第一方面公开一种可穿戴设备,所述可穿戴设备包括:
检测单元,用于检测所述可穿戴设备是否处于乒乓切换网络环境;
状态监控单元,用于在所述检测单元检测出所述可穿戴设备处于乒乓切换网络环境时,监控所述可穿戴设备的状态,获得所述可穿戴设备的状态信息;其中,所述状态信息包括通话状态信息、数据网络状态信息、屏幕状态信息和定位信息;
调节单元,用于根据所述状态信息调节网络制式;所述网络制式为数据网络的类型;
记录单元,用于记录所述网络制式的调节信息;所述调节信息包括调节时间和调节效果指示信息;
动态调整单元,用于根据所述调节信息动态调整所述可穿戴设备中与所述网 络制式相关的调节参数组,获得目标调节参数组,以根据所述目标调节参数组调节所述网络制式。
作为一种可选的实施方式,在本发明实施例第二方面中,所述检测单元包括:
第一获取子单元,用于获取度量乒乓切换网络环境的异常持有时间指标值;
转化子单元,用于通过第一预设算法将所述异常持有时间指标值转化为数据时间指标值;
监控子单元,用于当所述数据时间指标值大于第一预设时间值时,监控所述可穿戴设备所在小区的信号切换指标值;
判定子单元,用于当所述信号切换指标值大于或等于预设信号切换指标值时,判定所述可穿戴设备处于所述乒乓切换网络环境;以及当所述信号切换指标值小于所述预设信号切换指标值时,判定所述可穿戴设备未处于所述乒乓切换网络环境。
作为一种可选的实施方式,在本发明实施例第二方面中,所述调节单元包括:
第一切换子单元,用于当所述通话状态信息指示所述可穿戴设备未发生通话以及所述数据网络状态信息指示所述可穿戴设备未发生数据业务时,将初始网络制式切换为第一网络制式;所述第一网络制式的持续时间依据预设时间衰减梯度列表,所述初始网络制式的信号传输速率高于所述第一网络制式的信号传输速率;以及当所述定位信息指示所述可穿戴设备的移动距离大于预设距离值时,将所述第一网络制式切换为所述初始网络制式。
作为一种可选的实施方式,在本发明实施例第二方面中,所述调节单元还包括:
第二获取子单元,用于当所述可穿戴设备在预设时间节点内以及所述定位信息指示所述可穿戴设备在第二预设时间值内未移动时,获取当前信号强度;
判断子单元,用于判断所述当前信号强度是否小于预设信号强度;
数据业务子单元,用于在所述判断子单元判断出所述当前信号强度小于预设信号强度时,关闭数据业务,以及当所述可穿戴设备处于弱网环境以及所述屏幕状态信息指示所述可穿戴设备处于亮屏状态时,开启所述数据业务;
第二切换子单元,用于在所述判断子单元判断出所述当前信号强度大于或等于预设信号强度时,将初始网络制式切换为第二网络制式,以及当所述可穿戴设备处于弱网环境以及所述屏幕状态信息指示所述可穿戴设备未处于亮屏状态以及所述可穿戴设备未在所述预设时间节点内时,将所述第二网络制式切换为所述初始网络制式;其中,所述初始网络制式的信号传输速率高于所述第二网络制式的信号传输速率。
作为一种可选的实施方式,在本发明实施例第二方面中,所述动态调整单元用于根据所述调节信息动态调整所述可穿戴设备中与所述网络制式相关的调节参数组,获得目标调节参数组,以根据所述目标调节参数组调节所述网络制式的 方式具体为:
所述动态调整单元,用于基于所述调节信息,利用第二预设算法和根据所述可穿戴设备所处的网络环境确定的调整频率动态调整所述可穿戴设备中与所述网络制式相关的调节参数组,获得目标调节参数组,以根据所述目标调节参数组调节所述网络制式。
本发明实施例第三方面公开一种可穿戴设备,包括:
存储有可执行程序代码的存储器;
与所述存储器耦合的处理器;
所述处理器调用所述存储器中存储的所述可执行程序代码,执行本发明实施例第一方面公开的一种基于可穿戴设备的网络优化方法。
本发明实施例第四方面公开一种计算机可读存储介质,其存储计算机程序,其中,所述计算机程序使得计算机执行本发明实施例第一方面公开的一种基于可穿戴设备的网络优化方法。
本发明实施例第五方面公开一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行第一方面的任意一种方法的部分或全部步骤。
本发明实施例第六方面公开一种应用发布平台,所述应用发布平台用于发布计算机程序产品,其中,当所述计算机程序产品在计算机上运行时,使得所述计算机执行第一方面的任意一种方法的部分或全部步骤。
与现有技术相比,本发明实施例具有以下有益效果:
本发明实施例中,在检测到可穿戴设备处于乒乓切换网络环境时,通过监控到的设备的状态信息调节网络制式,然后根据网络制式的调节信息动态调整与网络制式相关的调节参数组,可以获得最适合该设备的目标调节参数组,使得设备进入乒乓切换网络环境时使用目标调节参数组调节网络制式进行网络优化,能够降低功耗,延长可穿戴设备的续航时间率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种基于可穿戴设备的网络优化方法的流程示意图;
图2是本发明实施例公开的另一种基于可穿戴设备的网络优化方法的流程示意图;
图3是本发明实施例公开的另一种基于可穿戴设备的网络优化方法的流程示意图;
图4是本发明实施例公开的一种可穿戴设备的结构示意图;
图5是本发明实施例公开的另一种可穿戴设备的结构示意图;
图6是本发明实施例公开的另一种可穿戴设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书中的术语“第一”、“第二”等是用于区别不同的对象,而不是用于描述特定顺序。本发明实施例的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例公开了一种基于可穿戴设备的网络优化方法及可穿戴设备,使得设备进入乒乓切换网络环境时使用目标调节参数组调节网络制式进行网络优化,能够降低功耗,延长可穿戴设备的续航时间。以下结合附图,从可穿戴设备角度出发进行详细描述。
实施例一
请参阅图1,图1是本发明实施例公开的一种基于可穿戴设备的网络优化方法的流程示意图。如图1所示,该基于可穿戴设备的网络优化方法可以包括以下步骤。
101、可穿戴设备检测可穿戴设备是否处于乒乓切换网络环境;如果是,执行步骤102;如果否,结束本流程。
本发明实施例中,可穿戴设备可以包括智能手表,智能手环,智能眼镜等,乒乓切换网络环境是指在移动通信系统中,如果在一定区域内两基站信号强度剧烈变化,终端设备就会在两个基站间来回切换,产生所谓的“乒乓效应”。比如,当佩戴可穿戴设备的用户处于两个小区的边界位置或者多个小区覆盖的位置,会出现两个或多个小区乒乓切换效应,此时可穿戴设备的功耗会急剧增加。
作为一种可选的实施方式,在检测可穿戴设备是否处于乒乓切换网络环境时,可以检测可穿戴设备在预设时间段内是否接入至少两个服务小区,如果是,获取可穿戴设备在至少两个服务小区的服务时长,从而计算出各个服务小区的平均服务时长,当平均服务时长小于预设服务时长时,确定可穿戴设备处于乒乓切 换网络环境。实施该实施方式,能够缩小检测范围,减少运算量,快捷地判定可穿戴设备是否处于乒乓切换网络环境,提高检测效率。
102、可穿戴设备监控可穿戴设备的状态,获得可穿戴设备的状态信息;其中,状态信息包括通话状态信息、数据网络状态信息、屏幕状态信息和定位信息。
具体地,通话状态信息可以指示可穿戴设备是否发生通话以及发生通话时的通话时长,数据网络状态信息可以指示可穿戴设备是否发生数据业务以及发生数据业务时接入的服务小区,屏幕状态信息可以指示可穿戴设备是否处于亮屏状态以及处于亮屏状态持续的时间,定位信息可以指示可穿戴设备是否发生移动以及移动时产生的移动距离,其中,定位信息可以通过可穿戴设备中的运动传感器获得,也可以通过全球定位系统(Global Positioning System,GPS)进行获得,本发明实施例不作限定。
103、可穿戴设备根据状态信息调节网络制式;该网络制式为数据网络的类型。
举例来说,中国移动使用的网络制式可以包括GSM(2G)、TD-SCDMA(3G)和TD-LTE(4G);中国联通使用网络制式可以包括GSM(2G)、WCDMA(3G)、TD-LTE(4G)和FDD-LTE(4G);中国电信使用的网络制式可以包括CDMA1X(2G)、EVDO(3G)、TD-LTE(4G)和FDD-LTE(4G)。比如,假设可穿戴设备接入中国移动的网络,可穿戴设备可以根据状态信息在2G、3G和4G的网络制式之间进行切换,进而实现对网络制式的调节。
104、可穿戴设备记录网络制式的调节信息;该调节信息包括调节时间和调节效果指示信息。
本发明实施例中,在每一轮对网络制式进行调节之后,将网络制式的调节信息记录并保存下来,为网络制式的优化提供数据支持。其中,调节时间可以指示可穿戴设备保存网络制式的优化后再次进入乒乓切换网络环境的时间,调节效果指示信息可以指示可穿戴设备进行每一轮的网络制式的优化产生的效果。
105、可穿戴设备根据调节信息动态调整可穿戴设备中与网络制式相关的调节参数组,获得目标调节参数组,以根据目标调节参数组调节网络制式。
本发明实施例中,可以不断通过调节信息动态调整与网络制式相关的调节参数组,获得目标调节参数组,以根据目标调节参数组调节处于乒乓切换网络环境中可穿戴设备的网络制式,其中,该目标调节参数群适用于所有的乒乓网络切换环境,因此,能够使可穿戴设备在遇到乒乓切换网络时以最低的功耗保证用户体验且不影响正常功能。
作为一种可选的实施方式,可以采集大量的调节信息和每一次调节网络制式的调节参数组,将调节信息和调节参数组发送至后台服务器,以使后台服务器根据调节信息和调节参数组训练构建的乒乓切换网络优化模型,当乒乓切换网络优化模型的性能参数值大于预设性能参数值时,从后台服务器导出乒乓切换网络优 化模型,使得可穿戴设备可以利用乒乓切换网络优化模型根据设备的状态信息调节网络制式,能够使网络制式的调节更加精准,极大地降低功耗。
可见,实施图1所描述的基于可穿戴设备的网络优化方法,能够在检测到可穿戴设备处于乒乓切换网络环境时,通过监控到的设备的状态信息调节网络制式,然后根据网络制式的调节信息动态调整与网络制式相关的调节参数组,可以获得最适合该设备的目标调节参数组,使得设备进入乒乓切换网络环境时使用目标调节参数组调节网络制式进行网络优化,能够降低功耗,延长可穿戴设备的续航时间。
实施例二
请参阅图2,图2是本发明实施例公开的另一种基于可穿戴设备的网络优化方法的流程示意图。如图2所示,该基于可穿戴设备的网络优化方法可以包括以下步骤。
201、可穿戴设备获取度量乒乓切换网络环境的异常持有时间指标值。
本发明实施例中,可以通过无线资源控制(Radio Resource Control,RRC)获取长时间的异常持有时间指标值,用于度量乒乓切换网络环境,其中,RRC连接过程包括可用小区的选择、服务小区的接入许可控制和信号链路的建立。
202、可穿戴设备通过第一预设算法将异常持有时间指标值转化为数据时间指标值。
本发明实施例中,可以通过第一预设算法将异常持有时间指标值转化为数据时间指标值,数据时间指标值是在可度量的数据通道激活的时间指标,因此,数据时间指标值是可度量的,通过数据时间指标值可以精准地获取乒乓切换网络发生的时间和原因。
203、当数据时间指标值大于第一预设时间值时,可穿戴设备监控可穿戴设备所在小区的信号切换指标值。
204、当信号切换指标值大于或等于预设信号切换指标值时,可穿戴设备判定可穿戴设备处于乒乓切换网络环境;以及当信号切换指标值小于预设信号切换指标值时,可穿戴设备判定可穿戴设备未处于乒乓切换网络环境。
本发明实施例中,可以持续监控信号强度和小区切换指标,其中小区切换指标包括小区切换频率以及小区数量,根据信号强度和小区切换指标获得可穿戴设备所在小区的信号切换指标值,进而可以通过信号切换指标值来判断可穿戴设备是否处于乒乓切换网络环境,能够提高乒乓切换网络环境检测的精准度以及检测效率。
205、当可穿戴设备处于乒乓切换网络环境时,可穿戴设备监控可穿戴设备的状态,获得可穿戴设备的状态信息;其中,状态信息包括通话状态信息、数据网络状态信息、屏幕状态信息和定位信息。
206、可穿戴设备根据状态信息调节网络制式;该网络制式为数据网络的类 型。
207、可穿戴设备记录网络制式的调节信息;该调节信息包括调节时间和调节效果指示信息。
208、可穿戴设备基于调节信息,利用第二预设算法和根据可穿戴设备所处的网络环境确定的调整频率动态调整可穿戴设备中与网络制式相关的调节参数组,获得目标调节参数组,以根据目标调节参数组调节网络制式。
本发明实施例中,对与网络制式相关的调节参数组进行动态调整的频率可以基于可穿戴设备所处的网络环境,比如,当可穿戴设备处于两个小区的乒乓切换网络环境时,动态调整的频率可以是10分钟/次,当可穿戴设备处于三个小区的乒乓切换网络环境时,动态调整的频率可以是5分钟/次。因此,利用第二预设算法和根据可穿戴设备所处的网络环境确定的调整频率动态调整与网络制式相关的调节参数组可以使获得的目标调节参数组更能满足多方乒乓切换的调节优化,并提高乒乓切换网络调节的精准度。
可见,实施图2所描述的基于可穿戴设备的网络优化方法,能够在检测到可穿戴设备处于乒乓切换网络环境时,通过监控到的设备的状态信息调节网络制式,然后根据网络制式的调节信息动态调整与网络制式相关的调节参数组,可以获得最适合该设备的目标调节参数组,使得设备进入乒乓切换网络环境时使用目标调节参数组调节网络制式进行网络优化,能够降低功耗,延长可穿戴设备的续航时间。此外,还能够通过信号切换指标值来判断可穿戴设备是否处于乒乓切换网络环境,能够提高乒乓切换网络环境检测的精准度以及检测效率。
实施例三
请参阅图3,图3是本发明实施例公开的另一种基于可穿戴设备的网络优化方法的流程示意图。如图3所示,该基于可穿戴设备的网络优化方法可以包括以下步骤。
301、可穿戴设备获取度量乒乓切换网络环境的异常持有时间指标值。
302、可穿戴设备通过第一预设算法将异常持有时间指标值转化为数据时间指标值。
303、当数据时间指标值大于第一预设时间值时,可穿戴设备监控可穿戴设备所在小区的信号切换指标值。
304、当信号切换指标值大于或等于预设信号切换指标值时,可穿戴设备判定可穿戴设备处于乒乓切换网络环境;以及当信号切换指标值小于预设信号切换指标值时,可穿戴设备判定可穿戴设备未处于乒乓切换网络环境。
305、当可穿戴设备处于乒乓切换网络环境时,可穿戴设备监控可穿戴设备的状态,获得可穿戴设备的状态信息;其中,状态信息包括通话状态信息、数据网络状态信息、屏幕状态信息和定位信息。
306、当通话状态信息指示可穿戴设备未发生通话以及数据网络状态信息指 示可穿戴设备未发生数据业务时,可穿戴设备将初始网络制式切换为第一网络制式;该第一网络制式的持续时间依据预设时间衰减梯度列表,初始网络制式的信号传输速率高于第一网络制式的信号传输速率。
本发明实施例中,当可穿戴设备处于乒乓切换网络环境,没有发生通话和数据业务时,降低网络制式,且降低后的网络制式的持续时间依据预设时间衰减梯度列表,举例来说,比如预设时间衰减梯度列表Q1:10分钟、20分钟、30分钟、40分钟…,其中Q1-1就是10分钟,Q1-2就是20分钟,第一次发生时降低网络制式并持续10分钟,第二次发生时降低网络制式并持续20分钟。
307、当定位信息指示可穿戴设备的移动距离大于预设距离值时,可穿戴设备将第一网络制式切换为初始网络制式,并跳转至步骤312。
具体地,当可穿戴设备移动一定的距离时,恢复网络制式,以恢复可穿戴设备正常的数据信号,从而保证用户使用体验且不影响正常功能。
作为一种可选的实施方式,获取乒乓切换网络所在的位置范围以及可穿戴设备的实时位置信息,当可穿戴设备的实时位置信息位于乒乓切换网络所在的位置范围内时,如果未发生通话和数据业务时,降低网络制式;当实时位置信息指示可穿戴设备移动至乒乓切换网络所在的位置范围外时,恢复网络制式。实施该实施方式,能够根据实时位置信息更加准确地对网络制式进行调节,实现对网络的实时优化。
308、当可穿戴设备在预设时间节点内以及定位信息指示可穿戴设备在第二预设时间值内未移动时,可穿戴设备获取当前信号强度。
本发明实施例中,当可穿戴设备处于夜间且静止状态时(其中静止状态可以通过监控各类传感器的状态信息来实现),监控此时的信号强度,获得当前信号强度。
309、可穿戴设备判断当前信号强度是否小于预设信号强度;如果是,执行步骤310;如果否,执行步骤311。
310、可穿戴设备关闭数据业务,以及当可穿戴设备处于弱网环境以及屏幕状态信息指示可穿戴设备处于亮屏状态时,开启数据业务。
311、可穿戴设备将初始网络制式切换为第二网络制式,以及当可穿戴设备处于弱网环境以及屏幕状态信息指示可穿戴设备未处于亮屏状态以及可穿戴设备未在预设时间节点内时,将第二网络制式切换为初始网络制式;其中,初始网络制式的信号传输速率高于第二网络制式的信号传输速率。
具体地,在当前信号强度大于或等于预设信号强度时,降低网络制式,然后当可穿戴设备处于弱网环境,且屏幕处于黑屏状态时,等夜间模式结束后,恢复网络制式,以保证正常功能的运行。
312、可穿戴设备记录网络制式的调节信息;调节信息包括调节时间和调节效果指示信息。
313、可穿戴设备基于调节信息,利用第二预设算法和根据可穿戴设备所处的网络环境确定的调整频率动态调整可穿戴设备中与网络制式相关的调节参数组,获得目标调节参数组,以根据目标调节参数组调节网络制式。
可见,实施图3所描述的基于可穿戴设备的网络优化方法,能够在检测到可穿戴设备处于乒乓切换网络环境时,通过监控到的设备的状态信息调节网络制式,然后根据网络制式的调节信息动态调整与网络制式相关的调节参数组,可以获得最适合该设备的目标调节参数组,使得设备进入乒乓切换网络环境时使用目标调节参数组调节网络制式进行网络优化,能够降低功耗,延长可穿戴设备的续航时间。此外,还能够通过信号切换指标值来判断可穿戴设备是否处于乒乓切换网络环境,能够提高乒乓切换网络环境检测的精准度以及检测效率,也能够满足多方乒乓切换的调节优化,并提高乒乓切换网络调节的精准度。
实施例四
请参阅图4,图4是本发明实施例公开的一种可穿戴设备的结构示意图。如图4所示,该可穿戴设备可以包括:
检测单元401,用于检测可穿戴设备是否处于乒乓切换网络环境。
本发明实施例中,可穿戴设备可以包括智能手表,智能手环,智能眼镜等,乒乓切换网络环境是指在移动通信系统中,如果在一定区域内两基站信号强度剧烈变化,终端设备就会在两个基站间来回切换,产生所谓的“乒乓效应”。比如,当佩戴可穿戴设备的用户处于两个小区的边界位置或者多个小区覆盖的位置,会出现两个或多个小区乒乓切换效应,此时可穿戴设备的功耗会急剧增加。
作为一种可选的实施方式,检测单元401用于在检测可穿戴设备是否处于乒乓切换网络环境时,可以检测可穿戴设备在预设时间段内是否接入至少两个服务小区,如果是,获取可穿戴设备在至少两个服务小区的服务时长,从而计算出各个服务小区的平均服务时长,当平均服务时长小于预设服务时长时,确定可穿戴设备处于乒乓切换网络环境。实施该实施方式,能够缩小检测范围,减少运算量,快捷地判定可穿戴设备是否处于乒乓切换网络环境,提高检测效率。
状态监控单元402,用于在检测单元检测出可穿戴设备处于乒乓切换网络环境时,监控可穿戴设备的状态,获得可穿戴设备的状态信息;其中,状态信息包括通话状态信息、数据网络状态信息、屏幕状态信息和定位信息。
具体地,通话状态信息可以指示可穿戴设备是否发生通话以及发生通话时的通话时长,数据网络状态信息可以指示可穿戴设备是否发生数据业务以及发生数据业务时接入的服务小区,屏幕状态信息可以指示可穿戴设备是否处于亮屏状态以及处于亮屏状态持续的时间,定位信息可以指示可穿戴设备是否发生移动以及移动时产生的移动距离,其中,定位信息可以通过可穿戴设备中的运动传感器获得,也可以通过全球定位系统(Global Positioning System,GPS)进行获得,本发明实施例不作限定。
调节单元403,用于根据状态信息调节网络制式;网络制式为数据网络的类型。
举例来说,中国移动使用的网络制式可以包括GSM(2G)、TD-SCDMA(3G)和TD-LTE(4G);中国联通使用网络制式可以包括GSM(2G)、WCDMA(3G)、TD-LTE(4G)和FDD-LTE(4G);中国电信使用的网络制式可以包括CDMA1X(2G)、EVDO(3G)、TD-LTE(4G)和FDD-LTE(4G)。比如,假设可穿戴设备接入中国移动的网络,可穿戴设备可以根据状态信息在2G、3G和4G的网络制式之间进行切换,进而实现对网络制式的调节。
记录单元404,用于记录网络制式的调节信息;调节信息包括调节时间和调节效果指示信息。
本发明实施例中,记录单元404用于在每一轮对网络制式进行调节之后,将网络制式的调节信息记录并保存下来,为网络制式的优化提供数据支持。其中,调节时间可以指示可穿戴设备保存网络制式的优化后再次进入乒乓切换网络环境的时间,调节效果指示信息可以指示可穿戴设备进行每一轮的网络制式的优化产生的效果。
动态调整单元405,用于根据调节信息动态调整可穿戴设备中与网络制式相关的调节参数组,获得目标调节参数组,以根据目标调节参数组调节网络制式。
本发明实施例中,动态调整单元405用于不断通过调节信息动态调整与网络制式相关的调节参数组,获得目标调节参数组,以根据目标调节参数组调节处于乒乓切换网络环境中可穿戴设备的网络制式,其中,该目标调节参数群适用于所有的乒乓网络切换环境,因此,能够使可穿戴设备在遇到乒乓切换网络时以最低的功耗保证用户体验且不影响正常功能。
作为一种可选的实施方式,可以采集大量的调节信息和每一次调节网络制式的调节参数组,将调节信息和调节参数组发送至后台服务器,以使后台服务器根据调节信息和调节参数组训练构建的乒乓切换网络优化模型,当乒乓切换网络优化模型的性能参数值大于预设性能参数值时,从后台服务器导出乒乓切换网络优化模型,使得可穿戴设备可以利用乒乓切换网络优化模型根据设备的状态信息调节网络制式,能够使网络制式的调节更加精准,极大地降低功耗。
可见,实施图4所描述的可穿戴设备,能够在检测到可穿戴设备处于乒乓切换网络环境时,通过监控到的设备的状态信息调节网络制式,然后根据网络制式的调节信息动态调整与网络制式相关的调节参数组,可以获得最适合该设备的目标调节参数组,使得设备进入乒乓切换网络环境时使用目标调节参数组调节网络制式进行网络优化,能够降低功耗,延长可穿戴设备的续航时间。
实施例五
请参阅图5,图5是本发明实施例公开的另一种可穿戴设备的结构示意图。如图5所示,其中,图5所示的可穿戴设备是由图4所示的可穿戴设备进行优化得到 的。与图4所示的可穿戴设备相比较,图5所示的可穿戴设备还可以包括:
作为一种可选的实施方式,上述检测单元401包括:
第一获取子单元4011,用于获取度量乒乓切换网络环境的异常持有时间指标值;
本发明实施例中,第一获取子单元4011用于通过无线资源控制(Radio Resource Control,RRC)获取长时间的异常持有时间指标值,用于度量乒乓切换网络环境,其中,RRC连接过程包括可用小区的选择、服务小区的接入许可控制和信号链路的建立。
转化子单元4012,用于通过第一预设算法将异常持有时间指标值转化为数据时间指标值;
本发明实施例中,转化子单元4012用于通过第一预设算法将异常持有时间指标值转化为数据时间指标值,数据时间指标值是在可度量的数据通道激活的时间指标,因此,数据时间指标值是可度量的,通过数据时间指标值可以精准地获取乒乓切换网络发生的时间和原因。
监控子单元4013,用于当数据时间指标值大于第一预设时间值时,监控可穿戴设备所在小区的信号切换指标值;
判定子单元4014,用于当信号切换指标值大于或等于预设信号切换指标值时,判定可穿戴设备处于乒乓切换网络环境;以及当信号切换指标值小于预设信号切换指标值时,判定可穿戴设备未处于乒乓切换网络环境。
本发明实施例中,监控子单元4013用于持续监控信号强度和小区切换指标,其中小区切换指标包括小区切换频率以及小区数量,根据信号强度和小区切换指标获得可穿戴设备所在小区的信号切换指标值,判定子单元4014用于通过信号切换指标值来判断可穿戴设备是否处于乒乓切换网络环境,能够提高乒乓切换网络环境检测的精准度以及检测效率。
作为一种可选的实施方式,上述调节单元403包括:
第一切换子单元4031,用于当通话状态信息指示可穿戴设备未发生通话以及数据网络状态信息指示可穿戴设备未发生数据业务时,将初始网络制式切换为第一网络制式;第一网络制式的持续时间依据预设时间衰减梯度列表,初始网络制式的信号传输速率高于第一网络制式的信号传输速率;以及当定位信息指示可穿戴设备的移动距离大于预设距离值时,将第一网络制式切换为初始网络制式。
本发明实施例中,第一切换子单元4031用于当可穿戴设备处于乒乓切换网络环境,没有发生通话和数据业务时,降低网络制式,且降低后的网络制式的持续时间依据预设时间衰减梯度列表,举例来说,比如预设时间衰减梯度列表Q1:10分钟、20分钟、30分钟、40分钟…,其中Q1-1就是10分钟,Q1-2就是20分钟,第一次发生时降低网络制式并持续10分钟,第二次发生时降低网络制式并持续20分钟。
具体地,当可穿戴设备移动一定的距离时,恢复网络制式,以恢复可穿戴设备正常的数据信号,从而保证用户使用体验且不影响正常功能。
作为一种可选的实施方式,第一切换子单元4031用于获取乒乓切换网络所在的位置范围以及可穿戴设备的实时位置信息,当可穿戴设备的实时位置信息位于乒乓切换网络所在的位置范围内时,如果未发生通话和数据业务时,降低网络制式;当实时位置信息指示可穿戴设备移动至乒乓切换网络所在的位置范围外时,恢复网络制式。实施该实施方式,能够根据实时位置信息更加准确地对网络制式进行调节,实现对网络的实时优化。
作为一种可选的实施方式,上述调节单元403还包括:
第二获取子单元4032,用于当可穿戴设备在预设时间节点内以及定位信息指示可穿戴设备在第二预设时间值内未移动时,获取当前信号强度;
本发明实施例中,第二获取子单元4032用于当可穿戴设备处于夜间且静止状态时(其中静止状态可以通过监控各类传感器的状态信息来实现),监控此时的信号强度,获得当前信号强度。
判断子单元4033,用于判断当前信号强度是否小于预设信号强度;
数据业务子单元4034,用于在判断子单元判断出当前信号强度小于预设信号强度时,关闭数据业务,以及当可穿戴设备处于弱网环境以及屏幕状态信息指示可穿戴设备处于亮屏状态时,开启数据业务;
第二切换子单元4035,用于在判断子单元判断出当前信号强度大于或等于预设信号强度时,将初始网络制式切换为第二网络制式,以及当可穿戴设备处于弱网环境以及屏幕状态信息指示可穿戴设备未处于亮屏状态以及可穿戴设备未在预设时间节点内时,将第二网络制式切换为初始网络制式;其中,初始网络制式的信号传输速率高于第二网络制式的信号传输速率。
具体地,第二切换子单元4035用于在当前信号强度大于或等于预设信号强度时,降低网络制式,然后当可穿戴设备处于弱网环境,且屏幕处于黑屏状态时,等夜间模式结束后,恢复网络制式,以保证正常功能的运行。
上述动态调整单元405用于根据调节信息动态调整可穿戴设备中与网络制式相关的调节参数组,获得目标调节参数组,以根据目标调节参数组调节网络制式的方式具体为:
动态调整单元405,用于基于调节信息,利用第二预设算法和根据可穿戴设备所处的网络环境确定的调整频率动态调整可穿戴设备中与网络制式相关的调节参数组,获得目标调节参数组,以根据目标调节参数组调节网络制式。
本发明实施例中,对与网络制式相关的调节参数组进行动态调整的频率可以基于可穿戴设备所处的网络环境,比如,当可穿戴设备处于两个小区的乒乓切换网络环境时,动态调整的频率可以是10分钟/次,当可穿戴设备处于三个小区的乒乓切换网络环境时,动态调整的频率可以是5分钟/次。因此,利用第二预设算 法和根据可穿戴设备所处的网络环境确定的调整频率动态调整与网络制式相关的调节参数组可以使获得的目标调节参数组更能满足多方乒乓切换的调节优化,并提高乒乓切换网络调节的精准度。
可见,实施图5所描述的可穿戴设备,能够在检测到可穿戴设备处于乒乓切换网络环境时,通过监控到的设备的状态信息调节网络制式,然后根据网络制式的调节信息动态调整与网络制式相关的调节参数组,可以获得最适合该设备的目标调节参数组,使得设备进入乒乓切换网络环境时使用目标调节参数组调节网络制式进行网络优化,能够降低功耗,延长可穿戴设备的续航时间。此外,还能够通过信号切换指标值来判断可穿戴设备是否处于乒乓切换网络环境,能够提高乒乓切换网络环境检测的精准度以及检测效率,也能够满足多方乒乓切换的调节优化,并提高乒乓切换网络调节的精准度。
实施例六
请参阅图6,图6是本发明实施例公开的另一种可穿戴设备的结构示意图。如图6所示,该可穿戴设备可以包括:
存储有可执行程序代码的存储器601;
与存储器601耦合的处理器602;
其中,处理器602调用存储器601中存储的可执行程序代码,执行图1~图3任意一种基于可穿戴设备的网络优化方法。
本发明实施例公开一种计算机可读存储介质,其存储计算机程序,其中,该计算机程序使得计算机执行图1~图3任意一种基于可穿戴设备的网络优化方法。
本发明实施例还公开一种计算机程序产品,其中,当计算机程序产品在计算机上运行时,使得计算机执行如以上各方法实施例中的方法的部分或全部步骤。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
以上对本发明实施例公开的一种基于可穿戴设备的网络优化方法及可穿戴设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上 均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (12)

  1. 一种基于可穿戴设备的网络优化方法,其特征在于,所述方法包括:
    检测所述可穿戴设备是否处于乒乓切换网络环境;
    如果是,监控所述可穿戴设备的状态,获得所述可穿戴设备的状态信息;其中,所述状态信息包括通话状态信息、数据网络状态信息、屏幕状态信息和定位信息;
    根据所述状态信息调节网络制式;所述网络制式为数据网络的类型;
    记录所述网络制式的调节信息;所述调节信息包括调节时间和调节效果指示信息;
    根据所述调节信息动态调整所述可穿戴设备中与所述网络制式相关的调节参数组,获得目标调节参数组,以根据所述目标调节参数组调节所述网络制式。
  2. 根据权利要求1所述的方法,其特征在于,所述检测所述可穿戴设备是否处于乒乓切换网络环境,包括:
    获取度量乒乓切换网络环境的异常持有时间指标值;
    通过第一预设算法将所述异常持有时间指标值转化为数据时间指标值;
    当所述数据时间指标值大于第一预设时间值时,监控所述可穿戴设备所在小区的信号切换指标值;
    当所述信号切换指标值大于或等于预设信号切换指标值时,判定所述可穿戴设备处于所述乒乓切换网络环境;以及当所述信号切换指标值小于所述预设信号切换指标值时,判定所述可穿戴设备未处于所述乒乓切换网络环境。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述状态信息调节网络制式,包括:
    当所述通话状态信息指示所述可穿戴设备未发生通话以及所述数据网络状态信息指示所述可穿戴设备未发生数据业务时,将初始网络制式切换为第一网络制式;所述第一网络制式的持续时间依据预设时间衰减梯度列表,所述初始网络制式的信号传输速率高于所述第一网络制式的信号传输速率;
    当所述定位信息指示所述可穿戴设备的移动距离大于预设距离值时,将所述第一网络制式切换为所述初始网络制式。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    当所述可穿戴设备在预设时间节点内以及所述定位信息指示所述可穿戴设备在第二预设时间值内未移动时,获取当前信号强度;
    判断所述当前信号强度是否小于预设信号强度;
    如果是,关闭数据业务,以及当所述可穿戴设备处于弱网环境以及所述屏幕状态信息指示所述可穿戴设备处于亮屏状态时,开启所述数据业务;
    如果否,将初始网络制式切换为第二网络制式,以及当所述可穿戴设备处于弱网环境以及所述屏幕状态信息指示所述可穿戴设备未处于亮屏状态以及所述 可穿戴设备未在所述预设时间节点内时,将所述第二网络制式切换为所述初始网络制式;其中,所述初始网络制式的信号传输速率高于所述第二网络制式的信号传输速率。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述根据所述调节信息动态调整所述可穿戴设备中与所述网络制式相关的调节参数组,获得目标调节参数组,以根据所述目标调节参数组调节所述网络制式,包括:
    基于所述调节信息,利用第二预设算法和根据所述可穿戴设备所处的网络环境确定的调整频率动态调整所述可穿戴设备中与所述网络制式相关的调节参数组,获得目标调节参数组,以根据所述目标调节参数组调节所述网络制式。
  6. 一种可穿戴设备,其特征在于,所述可穿戴设备包括:
    检测单元,用于检测所述可穿戴设备是否处于乒乓切换网络环境;
    状态监控单元,用于在所述检测单元检测出所述可穿戴设备处于乒乓切换网络环境时,监控所述可穿戴设备的状态,获得所述可穿戴设备的状态信息;其中,所述状态信息包括通话状态信息、数据网络状态信息、屏幕状态信息和定位信息;
    调节单元,用于根据所述状态信息调节网络制式;所述网络制式为数据网络的类型;
    记录单元,用于记录所述网络制式的调节信息;所述调节信息包括调节时间和调节效果指示信息;
    动态调整单元,用于根据所述调节信息动态调整所述可穿戴设备中与所述网络制式相关的调节参数组,获得目标调节参数组,以根据所述目标调节参数组调节所述网络制式。
  7. 根据权利要求6所述的可穿戴设备,其特征在于,所述检测单元包括:
    第一获取子单元,用于获取度量乒乓切换网络环境的异常持有时间指标值;
    转化子单元,用于通过第一预设算法将所述异常持有时间指标值转化为数据时间指标值;
    监控子单元,用于当所述数据时间指标值大于第一预设时间值时,监控所述可穿戴设备所在小区的信号切换指标值;
    判定子单元,用于当所述信号切换指标值大于或等于预设信号切换指标值时,判定所述可穿戴设备处于所述乒乓切换网络环境;以及当所述信号切换指标值小于所述预设信号切换指标值时,判定所述可穿戴设备未处于所述乒乓切换网络环境。
  8. 根据权利要求7所述的可穿戴设备,其特征在于,所述调节单元包括:
    第一切换子单元,用于当所述通话状态信息指示所述可穿戴设备未发生通话以及所述数据网络状态信息指示所述可穿戴设备未发生数据业务时,将初始网络制式切换为第一网络制式;所述第一网络制式的持续时间依据预设时间衰减梯度列表,所述初始网络制式的信号传输速率高于所述第一网络制式的信号传输速 率;以及当所述定位信息指示所述可穿戴设备的移动距离大于预设距离值时,将所述第一网络制式切换为所述初始网络制式。
  9. 根据权利要求7所述的可穿戴设备,其特征在于,所述调节单元还包括:
    第二获取子单元,用于当所述可穿戴设备在预设时间节点内以及所述定位信息指示所述可穿戴设备在第二预设时间值内未移动时,获取当前信号强度;
    判断子单元,用于判断所述当前信号强度是否小于预设信号强度;
    数据业务子单元,用于在所述判断子单元判断出所述当前信号强度小于预设信号强度时,关闭数据业务,以及当所述可穿戴设备处于弱网环境以及所述屏幕状态信息指示所述可穿戴设备处于亮屏状态时,开启所述数据业务;
    第二切换子单元,用于在所述判断子单元判断出所述当前信号强度大于或等于预设信号强度时,将初始网络制式切换为第二网络制式,以及当所述可穿戴设备处于弱网环境以及所述屏幕状态信息指示所述可穿戴设备未处于亮屏状态以及所述可穿戴设备未在所述预设时间节点内时,将所述第二网络制式切换为所述初始网络制式;其中,所述初始网络制式的信号传输速率高于所述第二网络制式的信号传输速率。
  10. 根据权利要求6-9任一项所述的可穿戴设备,其特征在于,所述动态调整单元用于根据所述调节信息动态调整所述可穿戴设备中与所述网络制式相关的调节参数组,获得目标调节参数组,以根据所述目标调节参数组调节所述网络制式的方式具体为:
    所述动态调整单元,用于基于所述调节信息,利用第二预设算法和根据所述可穿戴设备所处的网络环境确定的调整频率动态调整所述可穿戴设备中与所述网络制式相关的调节参数组,获得目标调节参数组,以根据所述目标调节参数组调节所述网络制式。
  11. 一种可穿戴设备,其特征在于,包括:
    存储有可执行程序代码的存储器;
    与所述存储器耦合的处理器;
    所述处理器调用所述存储器中存储的所述可执行程序代码,用于执行权利要求1-5任一项所述的一种基于可穿戴设备的网络优化方法。
  12. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储计算机程序,其中,所述计算机程序使得计算机执行权利要求1-5任一项所述的一种基于可穿戴设备的网络优化方法。
PCT/CN2019/095274 2019-03-14 2019-07-09 一种基于可穿戴设备的网络优化方法及可穿戴设备 WO2020181697A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19918556.2A EP3941113A4 (en) 2019-03-14 2019-07-09 HABITRONIC DEVICE-BASED NETWORK OPTIMIZATION METHOD, AND HABITRONIC DEVICE
SG11202109954W SG11202109954WA (en) 2019-03-14 2019-07-09 Network optimization method based on wearable device and wearable device
US17/470,983 US12052624B2 (en) 2019-03-14 2021-09-09 Network optimization method based on wearable device and wearable device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910191528.4A CN111148166B (zh) 2019-03-14 2019-03-14 一种基于可穿戴设备的网络优化方法及可穿戴设备
CN201910191528.4 2019-03-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/470,983 Continuation US12052624B2 (en) 2019-03-14 2021-09-09 Network optimization method based on wearable device and wearable device

Publications (1)

Publication Number Publication Date
WO2020181697A1 true WO2020181697A1 (zh) 2020-09-17

Family

ID=70516632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095274 WO2020181697A1 (zh) 2019-03-14 2019-07-09 一种基于可穿戴设备的网络优化方法及可穿戴设备

Country Status (5)

Country Link
US (1) US12052624B2 (zh)
EP (1) EP3941113A4 (zh)
CN (1) CN111148166B (zh)
SG (1) SG11202109954WA (zh)
WO (1) WO2020181697A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113840376A (zh) * 2020-06-23 2021-12-24 中兴通讯股份有限公司 调整切换条件的方法、电子设备及存储介质
CN112689310B (zh) * 2020-12-08 2022-11-15 深圳市广和通无线股份有限公司 网络切换方法、装置、计算机设备和存储介质
CN113329436A (zh) * 2021-05-21 2021-08-31 Oppo广东移动通信有限公司 一种连接控制方法、终端及存储介质
CN115413004A (zh) * 2022-08-30 2022-11-29 歌尔科技有限公司 设备功耗控制方法、装置、终端设备及介质
CN116489146A (zh) * 2023-06-25 2023-07-25 荣耀终端有限公司 文件传输方法、电子设备及存储介质
CN118368338A (zh) * 2024-06-19 2024-07-19 深圳市善行医疗科技有限公司 数据传输方法、装置、电子设备、介质及计算机程序产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140073289A1 (en) * 2012-09-11 2014-03-13 Wavemax Corp. 3g/4g mobile data offload via roaming in a network of shared protected/locked wi-fi access points
CN105142188A (zh) * 2015-06-19 2015-12-09 联想(北京)有限公司 一种网络制式切换方法及电子设备
CN108650692A (zh) * 2018-05-07 2018-10-12 广东小天才科技有限公司 一种网络制式切换的方法、装置及智能穿戴设备
CN108834190A (zh) * 2018-09-26 2018-11-16 广东小天才科技有限公司 一种弱网功耗优化方法和智能终端

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8509780B2 (en) * 2011-08-15 2013-08-13 Alcatel Lucent Method and apparatus for determining handover parameters in wireless overlay networks
US20130210481A1 (en) * 2012-02-15 2013-08-15 Sachin Sane Methods and apparatus for intelligent wirless technology selection
ES2576630T3 (es) * 2012-03-02 2016-07-08 Telefonaktiebolaget Lm Ericsson (Publ) Métodos y aparatos para detectar un posible traspaso repetitivo entre diferentes tecnologías de acceso de radio
US9736744B2 (en) * 2012-08-03 2017-08-15 Lg Electronics Inc. Method and apparatus for transmitting indication in wireless communication system
MY188887A (en) * 2014-03-21 2022-01-12 Ericsson Telefon Ab L M Mobility robustness in a cellular network
CN104394564B (zh) * 2014-11-12 2017-09-19 广东欧珀移动通信有限公司 一种减少终端乒乓切换的方法及设备
CN105873149A (zh) 2015-01-23 2016-08-17 宇龙计算机通信科技(深圳)有限公司 通信终端及网络切换处理方法
US10057823B2 (en) * 2015-05-18 2018-08-21 Apple Inc. Packet-switched wireless communication for link budget limited wireless devices
DK3209067T3 (da) * 2016-02-18 2020-02-24 Deutsche Telekom Ag Forbedret effektforbrugshåndtering af en brugerindretning
CN105992290B (zh) * 2016-04-28 2019-11-08 努比亚技术有限公司 一种用户设备及其网络切换方法
CN105848189A (zh) 2016-05-24 2016-08-10 努比亚技术有限公司 一种终端及其网络模式管理方法
CN105873145B (zh) * 2016-05-31 2019-05-24 努比亚技术有限公司 一种实现网络制式切换的方法及装置
WO2018018513A1 (en) * 2016-07-28 2018-02-01 Qualcomm Incorporated Method and apparatus for signal characteristics aided handover
EP3603160B1 (en) * 2017-03-23 2022-08-17 Nokia Technologies Oy Management of handover candidate cells
CN108471636A (zh) * 2018-03-16 2018-08-31 广东小天才科技有限公司 可穿戴设备的搜网方法、装置、可穿戴设备及存储介质
CN109379767A (zh) * 2018-12-29 2019-02-22 出门问问信息科技有限公司 网络切换方法、装置、可穿戴设备及计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140073289A1 (en) * 2012-09-11 2014-03-13 Wavemax Corp. 3g/4g mobile data offload via roaming in a network of shared protected/locked wi-fi access points
CN105142188A (zh) * 2015-06-19 2015-12-09 联想(北京)有限公司 一种网络制式切换方法及电子设备
CN108650692A (zh) * 2018-05-07 2018-10-12 广东小天才科技有限公司 一种网络制式切换的方法、装置及智能穿戴设备
CN108834190A (zh) * 2018-09-26 2018-11-16 广东小天才科技有限公司 一种弱网功耗优化方法和智能终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3941113A4 *

Also Published As

Publication number Publication date
EP3941113A1 (en) 2022-01-19
EP3941113A4 (en) 2022-12-07
US12052624B2 (en) 2024-07-30
US20210410036A1 (en) 2021-12-30
SG11202109954WA (en) 2021-10-28
CN111148166A (zh) 2020-05-12
CN111148166B (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
WO2020181697A1 (zh) 一种基于可穿戴设备的网络优化方法及可穿戴设备
US11140605B2 (en) Cell access method and apparatus, and device
US20120108252A1 (en) Methods and Arrangements for Mobility Management
US20230254742A1 (en) Cell search method, chip, and mobile terminal
CN111787563A (zh) 一种执行放松测量的方法及终端设备
US20080318643A1 (en) Method of reducing power consumption in a ue when the ue is in idle mode
US20170163795A1 (en) Method for Controlling Wearable Electronic Devices, Central Apparatus, and Central Device
CN112689310B (zh) 网络切换方法、装置、计算机设备和存储介质
WO2015139575A1 (zh) 一种飞行模式的自动控制方法、装置及移动设备
US20180352492A1 (en) Cell signal strength prediction method, cell signal strength reporting method, and user equipment
CN112188576B (zh) 5g终端在业务并发时的功耗优化方法、装置、设备及介质
CN105208609B (zh) 小区重选方法及装置
JP2013062853A (ja) 端末の移動状態を設定する方法
US9980313B2 (en) Radio communication device and method for operation thereof
WO2016187929A1 (zh) 一种基于eHRPD网络切换LTE网络的方法及系统
CN107835519B (zh) 通话处理方法、装置及移动终端
WO2014134953A1 (zh) 一种小区选择方法、装置及终端
CN110022405B (zh) 射频参数调整方法、装置及存储介质
WO2024140544A1 (zh) 乒乓场景检测方法、装置及电子设备
JP2022008797A (ja) 端末の電力消費を低減するための方法、および端末
KR20120037602A (ko) 이동통신 단말 및 이동통신 단말의 엠디티 관련 데이터 관리 방법
CN111787584B (zh) 一种基于物联网的数据采集方法及系统
CN115412988A (zh) 终端设备选小区的方法、装置、终端设备及存储介质
CN112566206B (zh) 小区变更的控制方法、装置、终端设备及存储介质
CN113038506A (zh) 测量方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019918556

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019918556

Country of ref document: EP

Effective date: 20211014