WO2020181656A1 - 一种积木式的电动汽车直流充电设施检测装置 - Google Patents
一种积木式的电动汽车直流充电设施检测装置 Download PDFInfo
- Publication number
- WO2020181656A1 WO2020181656A1 PCT/CN2019/087475 CN2019087475W WO2020181656A1 WO 2020181656 A1 WO2020181656 A1 WO 2020181656A1 CN 2019087475 W CN2019087475 W CN 2019087475W WO 2020181656 A1 WO2020181656 A1 WO 2020181656A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- interface
- module
- charging
- plug
- splicing
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/04—Housings; Supporting members; Arrangements of terminals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
Definitions
- This application relates to the field of electric vehicle charging technology, and in particular to a building block type electric vehicle DC charging facility detection device.
- One existing technology is a container-type detection device, which is too bulky and too complicated in wiring, and is seriously unsuitable for on-site detection of charging piles/machines.
- the embodiment of the present application provides a building block type electric vehicle DC charging facility detection device to overcome or at least alleviate at least one of the above-mentioned defects in the prior art.
- the embodiment of the application provides a building block type electric vehicle DC charging facility detection device.
- the building block type electric vehicle DC charging facility detection device includes at least two splicing modules, each splicing module having a first plug interface and The second plug-in interface, the first plug-in interface of one splicing module is adapted to be inserted into the second plug-in interface of another splicing module in a repeatable disassembly and assembly manner to form a circuit connection between splicing modules, wherein The first plug-in interface and the second plug-in interface of the splicing module are electrically connected to each other through a bus, and the internal circuit of the splicing module is electrically connected to the bus.
- the number of the first plug-in interface and the second plug-in interface provided for each splicing module is one, and the first plug-in interface is provided on the upper side of the splicing module, and the second plug-in interface is provided in the splicing module. The corresponding position on the lower side.
- the shells of the first plug-in interface and the second plug-in interface are located within the outer contour of the splicing module housing, and heavy loads are provided at the first plug-in interface and the second plug-in interface.
- Terminal, one of the first plug-in interface and the second plug-in interface is a movable plug-in interface, and the other is a fixed plug-in interface, and the heavy-duty terminal of the movable plug-in interface is in transmission connection with the drive handle.
- the heavy-duty terminal moves between a retracted position and an extended connection position. In the retracted position, the heavy-duty terminal is located within the outer contour of the splicing module housing.
- the device further includes a load module, wherein the load module includes a first load module and a second load module.
- the detection system host module controls the load module and the power supply module to realize the detection of DC charging facilities for electric vehicles
- the power supply module provides power for the detection system host module and the load module.
- the detection system host module includes at least one of a control unit and a network router unit, and includes a DC power acquisition unit, a channel gating unit, an oscilloscope unit, and a BMS simulator;
- the DC power collection unit collects DC voltage, DC current, and DC power signals in the detection process, and transmits the collected results to the control unit through the serial bus;
- the oscilloscope unit collects and processes the signals of each channel in the detection process in real time, and uploads the results to the control unit and/or the network router unit;
- the BMS simulator simulates the internal battery and battery management system of the electric vehicle during the detection process, and communicates with the DC charging device.
- the detection device does not need to be connected externally, except that the detection system host module is connected to the charger and the electric vehicle through the first charging interface and the second charging interface to introduce the signal under test.
- the first charging interface is in the form of a charging gun holder, which is suitable for mating with the charging gun head of a DC charging facility;
- the second charging interface is in the form of a charging gun head, which is suitable for connecting with the charging gun of an electric vehicle. Seat fit.
- the power supply module includes a battery, a battery charging module, a first switch array, AC/DC, a second switch array, and DC/DC;
- the battery charging module charges the battery and provides power to the detection system host module and the load module.
- the AC/DC is connected to the mains or the AC charging device through the second switch array; the DC/DC is connected to the DC charging device The AC/DC and DC/DC are connected to the battery charging module through the first switch array to charge the battery.
- the first plug-in interface and/or the second plug-in interface protrude from the splicing module housing and serve as a guiding and positioning structure for splicing the splicing module.
- the present application solves the problem of inconvenience in on-site installation through a modular assembly method, so that convenient on-site inspection of the charging pile/machine becomes possible.
- the circuits of each splicing module are connected to each other through a bus, so that there is no special requirement for the connection sequence between the modules.
- the device greatly improves the convenience of on-site installation.
- the circuit connection between the splicing modules is completely connected through the bus, and no external connection is required.
- Figure 2 is a schematic circuit diagram of the host module of the detection system
- Figure 3 is a schematic circuit diagram of the power module
- FIG. 4 is a schematic diagram of a structural form of a building block type electric vehicle DC charging facility detection device in a plug-in assembly state
- Figure 5 is a schematic diagram of a structure of a single splicing module
- FIG. 6 is a schematic diagram of a second structural form of a building block type electric vehicle DC charging facility detection device in a plug-in assembly state
- Figure 7 is a schematic diagram of a second structure of a single splicing module
- Figure 8 is a schematic diagram of the internal circuit of the splicing module
- Figure 9 is a schematic top view of a splicing module
- Figure 10 is a schematic diagram of a movable heavy-duty terminal.
- the present application solves the problem of inconvenience in on-site installation through a modular assembly method, so that convenient on-site inspection of the charging pile/machine becomes possible.
- this application solves the problem of the power supply of the detection system by equipping the power module, and solves the problem of cumbersome wiring of the detection system by using a heavy-duty connector to replace the conventional flexible wire connection.
- the building block type electric vehicle DC charging facility detection device includes: at least two splicing modules, each splicing module has a first plug interface 51 and a second plug interface 52, The first plug-in interface 51 of one splicing module is adapted to be inserted into the second plug-in interface 52 of another splicing module in a repeatable disassembly and assembly manner to form a circuit connection between splicing modules, wherein the first plug The connection interface 51 and the second plug interface 52 form a plug connection structure 5.
- the present application solves the problem of inconvenience in on-site installation through a modular assembly method, so that convenient on-site inspection of the charging pile/machine becomes possible. It is particularly advantageous that there is no special requirement for the connection sequence between the modules. This is achieved through the "bus connection” method of this application. Please see below for details.
- the number, shape and structure of the splicing modules can be set as required.
- the volume and weight of each splicing module are relatively close.
- the whole detection device is divided into a detection system host module 1, a load module and a power supply module 4, so that the detection device is easy to transport and handle, and the parts with the same function are integrated together, which is convenient for production and debugging.
- the load module includes a first load module 2 and a second load module 3, so that the load module with a larger volume and weight is divided into two parts, so that the separated first load module 2 and the second load module
- the volume and weight of the second load module 3 are small, which is close to the volume and weight of the power module.
- the first plug-in interface 51 and the second plug-in interface 52 of the splicing module are electrically connected to each other through a bus 57, and the internal circuit of the splicing module is electrically connected to the bus 57.
- the internal circuit of the splicing module is connected to the bus 57 through the power line 571 and the signal line 572.
- the multi-segment bus 57 is assembled into a complete bus, and the circuits of each spliced module are connected to each other through the bus, and the connection sequence between the modules is not specifically limited here.
- the device improves the convenience of on-site installation. For example, in a design scheme that is stacked on top of each other, it is only necessary to align the modules and stack them together in the order of transportation, and then the assembly of each part is completed, and the inspection can be carried out.
- the number of the first plug interface 51 and the second plug interface 52 provided for each splicing module is one, and the first plug interface 51 is provided on the splicing module.
- the second plug-in interface 52 is arranged at a corresponding position on the lower side of the splicing module.
- the shells of the first plug interface 51 and the second plug interface 52 are located within the outer contour of the splicing module housing. This helps to improve the strength requirements of the plug-in interface. Avoid breakage of the plug-in interface during transportation or installation.
- the conventional flexible wire connection between the modules is replaced, which makes the assembly of the system modules convenient and reliable, and reduces on-site
- the difficulty of the test improves the reliability of the test.
- All the cords in the conventional test system are implemented inside the module.
- the electrical connection is completed between the modules through heavy-duty connectors.
- a bus is used to connect the various modules in the detection system so that the order of the modules in the system is consistent. The position can be changed arbitrarily without affecting its stability.
- one of the first plug-in interface 51 and the second plug-in interface 52 is a movable plug-in interface
- the other is a fixed plug-in interface
- the heavy-duty terminal 53 of the movable plug-in interface is connected to
- the drive handle 54 is in a transmission connection.
- the heavy-duty terminal 53 moves between a retracted position and an extended connection position.
- the heavy-duty terminal 53 is located at the splicing Within the outer contour of the module housing
- the second plug-in interface 52 is connected with the wire 56 to match the drive handle 54
- an elastic locking structure can also be provided to lock the heavy-duty terminal 53 in the retracted position and/ Or extend the connection position.
- the elastic locking structure can adopt any prior art structure.
- a limit hole 55 is provided on the top of each splicing module.
- a corresponding limit protrusion is provided at the bottom. It is understandable that a limiting protrusion can also be provided at the top, and a corresponding limiting hole 55 can be provided at the bottom.
- the first plug-in interface 51 and/or the second plug-in interface 52 protrude from the splicing module housing and serve as a guiding and positioning structure.
- the modules can be accurately and easily positioned during assembly. And equipped with a spring buckle, so that the detection system modules are firmly connected.
- the detection system host module 1 includes a DC power acquisition unit 11, a channel gating unit 12, an oscilloscope unit 13, a BMS simulator 14, a control unit 15, a network router unit 16 and a signal input and output interface 20.
- the channel gating unit 12 passes the signal to be monitored through an analog switch to establish a physical and electrical connection channel between it and the oscilloscope unit 13, wherein the signal to be monitored includes DC voltage, DC current, CC1 voltage, CC2 voltage, and auxiliary power supply voltage. And auxiliary power current.
- the oscilloscope unit 13 collects and processes the signals of each channel in the detection process in real time, and uploads the results to the control unit 15 and/or the network router unit 16.
- the BMS simulator 14 simulates the internal battery and battery management system of the electric vehicle during the detection process, and communicates with the DC charging device.
- the BMS simulator 14 is also controlled by the control unit 15.
- the detection system host module 1 includes a first charging interface 18 for connecting with DC charging facilities, and a second charging interface 19 for connecting with electric vehicles.
- An interface simulation unit 17 is arranged between the two charging interfaces 19, and the interface simulation unit 17 is controlled by the control unit 15, and during the detection process, it simulates the switching, change and other states of the resistance in the DC charging interface of the electric vehicle.
- the first charging interface 18 is in the form of a charging gun holder, which is suitable for cooperating with the charging gun head of a DC charging facility;
- the second charging interface 19 is in the form of a charging gun head, which is suitable for being used with electric vehicles.
- the charging gun holder matches.
- the charging detection connection method is further simplified.
- the network router unit 16 is a channel for network information interaction between various functional modules.
- the network router unit 16 is responsible for forwarding and sending corresponding network data to the designated destination address.
- the power module 4 includes a battery 41, a battery charging module 42, a first switch array 43, AC/DC 44, a second switch array 45, and DC/DC 46.
- the battery charging module 42 charges the battery 41 and provides electrical energy for the detection system host module 1 and the load module.
- the AC/DC 44 is connected to the mains or AC charging device through the second switch array 45; the DC/DC 46 is connected to The DC charging device is connected; the output of the AC/DC 44 and the DC/DC 46 is connected to the battery charging module 42 through the first switch array 43 to charge the battery 41.
- the power supply to the detection system is always supplied by the power supply module. It can realize power supply to the detection system host module 1 and load module while charging. When there is no external power supply, the battery 41 supplies power.
- the electrical energy required for the operation of the detection system is provided by its battery module.
- the detection system can work normally.
- the following methods are used to charge the battery and provide the required power for the test system.
- the available power is divided into mains, AC charging pile (near the tested charger) and the tested DC charger.
- the external AC mains can be used to charge the power module and the detection device, and an external AC charging pile can also be used to charge the power module and the detection device.
- the detection system can complete the interoperability, electrical and communication consistency detection of the DC charging facilities of electric vehicles, and can realize the monitoring and fault analysis of the DC charging process of electric vehicles.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
本申请公开了一种积木式的电动汽车直流充电设施检测装置。所述积木式的电动汽车直流充电设施检测装置包括:至少两个拼接模块,每个拼接模块具有第一插接接口(51)和第二插接接口(52),一个拼接模块的第一插接接口(51)适于以能够重复拆装的方式插入到另一个拼接模块的第二插接接口(52)内,形成拼接模块之间的电路连接,其中,所述拼接模块自身的第一插接接口(51)和第二插接接口(52)之间通过总线(57)相互电连接,所述拼接模块自身的内部电路与所述总线(57)电连接。本申请通过积木式的组装方式和各模块总线连接的结构来解决现场安装不便的问题,使得充电桩/机的现场便捷检测成为可能。
Description
[根据细则91更正 27.12.2019]
本申请要求在2019年03月08日提交中国专利局、申请号为201910175585.3、申请名称为“一种积木式的电动汽车直流充电设施检测装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求在2019年03月08日提交中国专利局、申请号为201910175585.3、申请名称为“一种积木式的电动汽车直流充电设施检测装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及电动汽车充电技术领域,尤其涉及一种积木式的电动汽车直流充电设施检测装置。
随着国家对电动汽车政策利好,电动汽车辅助设备需求日益剧增。作为电动汽车充电的关键设备-电动汽车充电桩/机的品质直接影响电动汽车的推广速度,影响国家电动汽车战略发展的实现。所以,对电动汽车充电桩/机的检测,必须认真执行。但是,受限于电动汽车充电桩所处环境的复杂性,目前,充电桩/机的检测主要在实验室中进行,无法方便的对充电桩进行现场检测。
一种现有技术为集装箱式的检测装置,体积过于庞大,接线过于复杂,严重不适合充电桩/机的现场检测。
在如下图所示的电动汽车直流充电机检测系统,其对现场环境的依赖程度依旧很高(对供电电源的需求,对测试系统接线的需求,体积庞大,运输与安装不便等),依然不能实现电动汽车现场便捷、高效的检测。而且,检测系统模块之间的接线繁多,通常模块供电及模块之间的线缆连接在20根以上。此现状严重增加了现场检测的难度,不利于现场检测的开展。
因此,希望有一种技术方案来克服或至少减轻现有技术的上述缺陷中的至少一个。
发明内容
本申请实施例提供了一种积木式的电动汽车直流充电设施检测装置,用以克服或至少减轻现有技术的上述缺陷中的至少一个。
本申请实施例提供了一种积木式的电动汽车直流充电设施检测装置,所述积木式的电动汽车直流充电设施检测装置包括:至少两个拼接模块,每个拼接模块具有第一插接接口和第二插接接口,一个拼接模块的第一插接接口适于以能够重复拆装的方式插入到另一个拼接模块的第二插接接口内,形成拼接模块之间的电路连接,其中,所述拼接模块自身的第一插接接口和第二插接接口之间通过总线相互电连接,所述拼接模块自身的内部电路与所述总线电连接。
可选地,每个拼接模块设置的第一插接接口和第二插接接口的数量均为一个,且第一插接接口设置在拼接模块的上侧,第二插接接口设置在拼接模块的下侧的相对应位置处。
可选地,所述第一插接接口和第二插接接口的外壳位于所述拼接模块壳体的外轮廓之内,所述第一插接接口和第二插接接口处设置有重载端子,所述第一插接接口和第二插接接口中的一个为活动插接接口,另一个为固定插接接口,所述活动插接接口的重载端子与驱动手柄传动连接,在所述驱动手柄的驱动下,重载端子在收回位置与伸出连接位置之间运动,在所述收回位置,所述重载端子位于所述拼接模块壳体的外轮廓之内。
通过使用重载连接器取代常规的软线连接的方式解决检测系统接线繁琐的问题。
可选地,所述装置还包括负载模块,其中,所述负载模块包括第一负载模块和第二负载模块。
可选地,所述至少两个拼接模块包括:能够相互拼接的检测系统主机模块、负载模块和电源模块;
所述检测系统主机模块控制所述负载模块和所述电源模块,实现对电动汽车直流充电设施的检测;
所述负载模块内设置有电阻矩阵,用作功率吸收单元,在检测系统主机模块的控制下,投切内部的电阻矩阵,实现不同阻值负载的投切;
所述电源模块为所述检测系统主机模块和负载模块提供电源。
可选地,所述检测系统主机模块包括控制单元和网络路由器单元中的至少一种,并包括直流电能采集单元、通道选通单元、示波器单元、BMS模拟器;
所述直流电能采集单元采集检测过程中的直流电压、直流电流和直流电能信号,并将采集结果通过串行总线传送给控制单元;
所述通道选通单元将待监测信号通过模拟开关,建立其与示波器单元13的物理电气连接通道,其中,所述待监测信号包括直流电压、直流电流、CC1电压、CC2电压、辅助电源电压和辅助电源电流;
所述示波器单元对检测过程的各通道信号进行实时采集、处理,并将其结果上传给控制单元和/或网络路由器单元;
所述BMS模拟器在检测过程中模拟电动汽车内部的电池和电池管理系统,与直流充电装置通讯。
可选地,所述检测系统主机模块包括用于与直流充电设施连接的第一充电接口,以及用于与电动汽车连接的第二充电接口,在第一充电接口和第二充电接口之间设置有接口模拟单元,所述接口模拟单元由控制单元控制,在检测过程中,模拟电动汽车直流充电接口中电阻的投切、变化等状态。
从而,在检测过程中,除检测系统主机模块通过第一充电接口和第二充电接口分别连接充电机和电动汽车,以引入被测信号外,检测装置无需外接连线。
可选地,所述第一充电接口的形式为充电枪座,适于与直流充电设施的充电枪头配合;所述第二充电接口的形式为充电枪头,适于与电动汽车的充电枪座配合。
可选地,所述电源模块包括电池、电池充电模块、第一开关阵列、AC/DC、第二开关阵列和DC/DC;
所述电池充电模块为电池充电,并为检测系统主机模块、负载模块提供电能,所述AC/DC通过第二开关阵列与市电或交流充电装置连接;所述DC/DC与直流充电装置连接;所述AC/DC和DC/DC的通过第一开关阵列与电池充电模块连接,以对电池充电。
对检测系统的供电,始终是由电源模块进行供电。能够实现一边充电,一边向检测系统主机模块、负载模块供电。在没有外部供电的情况下,由电池进行供电。
可选地,所述第一插接接口和/或第二插接接口凸出于拼接模块壳体,并用作拼接模块拼接的导引和定位结构。
本申请通过积木式的组装方式解决现场安装不便的问题,使得充电桩/机的现场便捷检测成为可能。各个拼接模块的电路都通过总线相互连接起来,从而使得各模块之间的连接顺序没有特别的要求。该装置大大提高了现场安装的便捷性。此外,各拼接模块之间的电路连接完全通过所述总线连接,无需再外接连线。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本申请一实施例的电动汽车直流充电设施检测装置的电路示意图;
图2是检测系统主机模块的电路示意图;
图3是电源模块的电路示意图;
图4是处于插接组装状态下的积木式的电动汽车直流充电设施检测装置的一种结构形式的示意图;
图5为单个拼接模块的一种结构形式的示意图;
图6是处于插接组装状态下的积木式的电动汽车直流充电设施检测装置的第二种结构形式的示意图;
图7为单个拼接模块的第二种结构形式的示意图;
图8是拼接模块的内部电路的示意图;
图9是拼接模块的俯视示意图;
图10是活动式重载端子的示意图。
附图标记:
1-检测系统主机模块;2-第一负载模块;3-第二负载模块;4-电源模块;5-插接连接结构;11-直流电能采集单元;12-通道选通单元;13-示波器单元;14-BMS模拟器;15-控制单元;16-网络路由器单元;17-接口模拟单元;18-第一充电接口;19-第二充电接口;20-信号输入输出接口;41-电池;42-电池充电模块;43-第一开关阵列;44-AC/DC;45-第二开关阵列;46-DC/DC;51-第一插接接口;52-第二插接接口;53-重载端子;54-驱动手柄;55-限位孔;56-导线;57-总线;571-电力线;572-信号线。
在附图中,使用相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面结合附图对本申请的实施例进行详细说明。
在本申请的描述中,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制。
本申请通过积木式的组装方式解决现场安装不便的问题,使得充电桩/机的现场便捷检测成为可能。针对当前电动汽车充电机/桩检测系统存在的问题,本申请通过配备电源模组解决检测系统电源的问题,通过使用重载连接器取代常规的软线连接的方式解决检测系统接线繁琐的问题。
参见图1-10,根据本申请一实施例的积木式的电动汽车直流充电设施检测装置包括:至少两个拼接模块,每个拼接模块具有第一插接接口51和第二插接接口52,一个拼接模块的第一插接接口51适于以能够重复拆装的方式插入到另一个拼接模块的第二插接接口52内,形成拼接模块之间的电路连接,其中,所述第一插接接口51和第二插接接口52形成插接连接结构5。
本申请通过积木式的组装方式解决现场安装不便的问题,使得充电桩/机的现场便捷检测成为可能。尤其有利的是,对各模块之间的连接顺序没有特别的要求。这是通过本申请的“总线连接”方式实现的。具体请参见下文。
拼接模块的数量、形状与结构等可以根据需要设置。有利的是,各个拼接模块的体积与重量较为接近。
参见图1,所述至少两个拼接模块包括:能够相互拼接的检测系统主机模块1、负载模块和电源模块4。所述检测系统主机模块1控制所述负载模块和所述电源模块4,实现对电动汽车直流充电设施的检测。所述负载模块内设置有电阻矩阵,用作功率吸收单元,在检测系统主机模块1的控制下,投切内部的电阻矩阵,实现不同阻值负载的投切。所述电源模块4为所述检测系统主机模块1和负载模块提供电源。
将整个检测装置分为检测系统主机模块1、负载模块和电源模块4,使得检测装置便于运输、搬运,且使得功能相同的部分集成在一起,便于生产与调试。
在一个实施例中,所述负载模块包括第一负载模块2和第二负载模块3,从而,使得体积和重量较大的负载模块分为两部分,使得分开后的第一负载模块2和第二负载模块3的体积和重量较小,接近电源模块的体积和重量。
参见图8,所述拼接模块自身的第一插接接口51和第二插接接口52之间通过总线57相互电连接,所述拼接模块自身的内部电路与总线57电连接。拼接模块的内部电路通过电力线571以及信号线572与总线57连接。这样,多段总线57拼合成一条完整的总线,各个拼接模块的电路都通过总线相互连接起来,各模块之间的连接顺序在此不做具体限定。该装置提高了现场安装 的便捷性。例如,在上下叠置的设计方案中,仅需按照搬运的顺序将各个模块对准摞在一起,就完成了各部分的组装,即可以进行检测。
为降低现场测试的复杂程度,本申请采用内部总线的方式,将检测时所需的所有连线,在系统内部连接。且以总线的方式进行连接,测试系统中的负载的数量(在功率允许的范围内)可以不受限制的通过叠加的方式实现增加或者较少,满足不同测试功率的需求。
在一个实施例中,如图5所示,每个拼接模块设置的第一插接接口51和第二插接接口52的数量均为一个,且第一插接接口51设置在拼接模块的上侧,第二插接接口52设置在拼接模块的下侧的相对应位置处。
参见图7-图10,所述第一插接接口51和第二插接接口52的外壳位于所述拼接模块壳体的外轮廓之内。这样有利于提高对插接接口的强度要求。避免插接接口在运输过程中或安装过程中断裂。
所述第一插接接口51和第二插接接口52处设置有重载端子53。通过使用重载连接器取代常规的软线连接的方式解决检测系统接线繁琐的问题。
进一步地,通过积木式的组装方式,重载端子(例如工业级的重载连接器)连接的方式,取代模块之间常规的软线连接,使得系统模块的组装变得便捷,可靠,减少现场测试的难度,提高检测的可靠性。将常规测试系统中的软线,都在模块内部实现。模块之间通过重载连接器的插接,完成电气的连接。为使模块在以积木的方式组装连接时,不受限于其次序,具备充分的灵活性,本申请中使用总线的方式,将检测系统中的各个模块连接起来,使得模块在系统的次序和位置可以任意的改变,而不影响其稳定性。
在一个实施例中,所述第一插接接口51和第二插接接口52中的一个为活动插接接口,另一个为固定插接接口,所述活动插接接口的重载端子53与驱动手柄54传动连接,在所述驱动手柄54的驱动下,所述重载端子53在收回位置与伸出连接位置之间运动,在所述收回位置,所述重载端子53位于所述拼接模块壳体的外轮廓之内,第二插接接口52与导线56连接,与所述驱动手柄54相匹配,还可以设置弹性锁位结构,以将重载端子53锁止在收回 位置和/或伸出连接位置。弹性锁位结构可以采用任何现有技术的结构。
为了便于安装中的定位,在每个拼接模块的顶部设置有限位孔55。相应地,在底部设置有对应的限位凸起。可以理解的是,还可以在顶部设置限位凸起,而在底部设置对应的限位孔55。
在一个实施例中,所述第一插接接口51和/或第二插接接口52凸出于拼接模块壳体,并用作导引和定位结构。
在一个实施例中,通过嵌位槽的导引和定位,使得模块之间组装时能够准确、轻松定位。并配备弹簧卡扣,使得检测系统模块之间牢固的连接起来。
参见图2,所述检测系统主机模块1包括直流电能采集单元11、通道选通单元12、示波器单元13、BMS模拟器14、控制单元15、网络路由器单元16以及信号输入输出接口20。
所述直流电能采集单元11采集检测过程中的直流电压、直流电流和直流电能信号,并将采集结果通过串行总线传送给控制单元15。
所述通道选通单元12将待监测信号通过模拟开关,建立其与示波器单元13的物理电气连接通道,其中,所述待监测信号包括直流电压、直流电流、CC1电压、CC2电压、辅助电源电压和辅助电源电流。
所述示波器单元13对检测过程的各通道信号进行实时采集、处理,并将其结果上传给控制单元15和/或网络路由器单元16。
所述BMS模拟器14在检测过程中模拟电动汽车内部的电池和电池管理系统,与直流充电装置通讯。BMS模拟器14同样受控于控制单元15。
在一个实施例中,所述检测系统主机模块1包括用于与直流充电设施连接的第一充电接口18,以及用于与电动汽车连接的第二充电接口19,在第一充电接口18和第二充电接口19之间设置有接口模拟单元17,所述接口模拟单元17由控制单元15控制,在检测过程中,模拟电动汽车直流充电接口中电阻的投切、变化等状态。
更具体地,所述第一充电接口18的形式为充电枪座,适于与直流充电设施的充电枪头配合;所述第二充电接口19的形式为充电枪头,适于与电动汽 车的充电枪座配合。从而,进一步简化充电检测连接方式。
网络路由器单元16是各个功能模块之间的网络信息交互的通道。网络路由器单元16负责转接发送相应的网络数据到指定的目标地址。
参见图3,所述电源模块4包括电池41、电池充电模块42、第一开关阵列43、AC/DC 44、第二开关阵列45和DC/DC 46。
所述电池充电模块42为电池41充电,并为检测系统主机模块1、负载模块提供电能,所述AC/DC44通过第二开关阵列45与市电或交流充电装置连接;所述DC/DC46与直流充电装置连接;所述AC/DC44和DC/DC46的输出通过第一开关阵列43与电池充电模块42连接,以对电池41充电。
对检测系统的供电,始终是由电源模块进行供电。能够实现一边充电,一边向检测系统主机模块1、负载模块供电。在没有外部供电的情况下,由电池41进行供电。
本申请中,检测系统的运行所需的电能通过其电池模组提供,在电池内部电量充足时,检测系统能够正常工作。在电池内部电能不足时,通过以下方式,为电池充电,并为测试系统提供所需的电能。将可获取的电源分为市电、交流充电桩(在被检测充电机附近)和被测的直流充电机。
检测现场,受限于试验环境,多数情况下,无法方便的获取交流市电作为检测设施的电源。本申请中,提供尽量多的方法为检测设施提供电能,使其适应现场检测的要求,完成检测工作。
可以使用外部交流市电为电源模块充电和为检测装置供电,也可以使用外部的交流充电桩为电源模块充电和检测装置供电。
本检测系统可以完成对电动汽车直流充电设施的互操作性、电气性和通讯一致性检测,及能够实现电动汽车直流充电过程的监测和故障分析。
最后需要指出的是:以上实施例仅用以说明本申请的技术方案,而非对其限制。本领域的普通技术人员应当理解:可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (10)
- 一种积木式的电动汽车直流充电设施检测装置,其特征在于,包括:至少两个拼接模块,每个拼接模块具有第一插接接口(51)和第二插接接口(52),一个拼接模块的第一插接接口(51)适于以能够重复拆装的方式插入到另一个拼接模块的第二插接接口(52)内,形成拼接模块之间的电路连接,其中,所述拼接模块自身的第一插接接口(51)和第二插接接口(52)之间通过总线(57)相互电连接,所述拼接模块自身的内部电路与所述总线(57)电连接。
- 根据权利要求1所述的积木式的电动汽车直流充电设施检测装置,其特征在于,每个拼接模块设置的第一插接接口(51)和第二插接接口(52)的数量均为一个,且第一插接接口(51)设置在拼接模块的上侧,第二插接接口(52)设置在拼接模块的下侧的相对应位置处。
- 根据权利要求2所述的积木式的电动汽车直流充电设施检测装置,其特征在于,所述第一插接接口(51)和第二插接接口(52)的外壳位于所述拼接模块壳体的外轮廓之内,所述第一插接接口(51)和第二插接接口(52)处设置有重载端子(53),所述第一插接接口(51)和第二插接接口(52)中的一个为活动插接接口,另一个为固定插接接口,所述活动插接接口的重载端子(53)与驱动手柄(54)传动连接,在所述驱动手柄(54)的驱动下,所述重载端子(53)在收回位置与伸出连接位置之间运动,在所述收回位置,所述重载端子(53)位于所述拼接模块壳体的外轮廓之内。
- 根据权利要求1所述的积木式的电动汽车直流充电设施检测装置,其特征在于,还包括:负载模块,其中,所述负载模块包括第一负载模块(2)和第二负载模块(3)。
- 根据权利要求1-4中任一项所述的积木式的电动汽车直流充电设施检测装置,其特征在于,所述至少两个拼接模块包括:能够相互拼接的检测系统主机模块(1)、负载模块和电源模块(4);所述检测系统主机模块(1)控制所述负载模块和所述电源模块(4),实现对电动汽车直流充电设施的检测;所述负载模块内设置有电阻矩阵,用作功率吸收单元,在检测系统主机模块(1)的控制下,投切内部的电阻矩阵,实现不同阻值负载的投切;所述电源模块(4)为所述检测系统主机模块(1)和负载模块提供电源。
- 根据权利要求5所述的积木式的电动汽车直流充电设施检测装置,其特征在于,所述检测系统主机模块(1)包括控制单元(15)和网络路由器单元(16)中的至少一种,并包括直流电能采集单元(11)、通道选通单元(12)、示波器单元(13)、BMS模拟器(14)所述直流电能采集单元(11)采集检测过程中的直流电压、直流电流和直流电能信号,并将采集结果通过串行总线传送给控制单元(15);所述通道选通单元(12)将待监测信号通过模拟开关,建立其与示波器单元13的物理电气连接通道,其中,所述待监测信号包括直流电压、直流电流、CC1电压、CC2电压、辅助电源电压和辅助电源电流;所述示波器单元(13)对检测过程的各通道信号进行实时采集、处理,并将其结果上传给控制单元(15)和/或网络路由器单元(16);所述BMS模拟器(14)在检测过程中模拟电动汽车内部的电池和电池管理系统,与直流充电装置通讯。
- 根据权利要求6所述的积木式的电动汽车直流充电设施检测装置,其特征在于,所述检测系统主机模块(1)包括用于与直流充电设施连接的第一充电接口(18),以及用于与电动汽车连接的第二充电接口(19),在第一充电接口(18)和第二充电接口(19)之间设置有接口模拟单元(17),所述接口模拟单元(17)由控制单元(15)控制,在检测过程中,模拟电动汽车直流充电接口中电阻的投切、变化状态。
- 根据权利要求7所述的积木式的电动汽车直流充电设施检测装置,其特征在于,所述第一充电接口(18)的形式为充电枪座,适于与直流充电设 施的充电枪头配合;所述第二充电接口(19)的形式为充电枪头,适于与电动汽车的充电枪座配合。
- 根据权利要求5所述的积木式的电动汽车直流充电设施检测装置,其特征在于,所述电源模块(4)包括电池(41)、电池充电模块(42)、第一开关阵列(43)、AC/DC(44)、第二开关阵列(45)和DC/DC(46);所述电池充电模块(42)为电池(41)充电,并为检测系统主机模块(1)、负载模块提供电能,所述AC/DC(44)通过第二开关阵列(45)与市电或交流充电装置连接;所述DC/DC(46)与直流充电装置连接;所述AC/DC(44)和DC/DC(46)的通过第一开关阵列(43)与电池充电模块(42)连接,以对电池(41)充电。
- 根据权利要求1-3中任一项所述的积木式的电动汽车直流充电设施检测装置,其特征在于,所述第一插接接口(51)和/或第二插接接口(52)凸出于拼接模块壳体,并用作拼接模块拼接的导引和定位结构。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910175585.3 | 2019-03-08 | ||
CN201910175585.3A CN109884431B (zh) | 2019-03-08 | 2019-03-08 | 一种积木式的电动汽车直流充电设施检测装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020181656A1 true WO2020181656A1 (zh) | 2020-09-17 |
Family
ID=66931390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/087475 WO2020181656A1 (zh) | 2019-03-08 | 2019-05-17 | 一种积木式的电动汽车直流充电设施检测装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109884431B (zh) |
WO (1) | WO2020181656A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4079567A1 (en) * | 2021-04-21 | 2022-10-26 | Sungrow Power Supply Co., Ltd. | Charging pile and testing device, system and method thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109747468A (zh) * | 2019-03-08 | 2019-05-14 | 北京博电新力电气股份有限公司 | 一种电动汽车直流充电检测装置 |
CN112269040A (zh) * | 2020-09-29 | 2021-01-26 | 国网浙江省电力有限公司营销服务中心 | 一种非车载充电机电能检定方法 |
CN112269039A (zh) * | 2020-09-29 | 2021-01-26 | 国网浙江省电力有限公司营销服务中心 | 一种交流充电桩虚负荷电能检定方法 |
CN112731251A (zh) * | 2020-12-31 | 2021-04-30 | 国网浙江省电力有限公司营销服务中心 | 一种非车载充电机虚负荷测试系统及方法以及枪座 |
CN114863664A (zh) * | 2022-04-29 | 2022-08-05 | 浙江卡巴尔电气有限公司 | 一种用于盾构机的无线控制装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106183880A (zh) * | 2016-09-12 | 2016-12-07 | 山东优赛新能源科技有限公司 | 电动汽车积木式直流充电桩及其应用 |
CN106501642A (zh) * | 2016-10-21 | 2017-03-15 | 天津市普迅电力信息技术有限公司 | 一种直流充电桩便携检测设备 |
CN206012364U (zh) * | 2016-08-31 | 2017-03-15 | 青岛特来电新能源有限公司 | 一种具有插接接口的模块化总控箱 |
CN109001560A (zh) * | 2018-06-15 | 2018-12-14 | 北京博电新力电气股份有限公司 | 便携式电动汽车直流新能源汽车测试装置及系统 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203013044U (zh) * | 2012-12-20 | 2013-06-19 | 西安海舟信息技术有限公司 | 模块化多功能实验箱 |
CN104790171B (zh) * | 2014-01-22 | 2019-05-31 | 青岛海尔洗衣机有限公司 | 一种电脑板模块化的洗衣机 |
WO2017012124A1 (zh) * | 2015-07-23 | 2017-01-26 | 吉林省华电自动化工程有限责任公司 | 电动车充电桩 |
CN205283197U (zh) * | 2015-12-26 | 2016-06-01 | 惠州市蓝微新源技术有限公司 | 一种电池管理系统供电电路 |
CN105846334A (zh) * | 2016-03-29 | 2016-08-10 | 梁作鹏 | 一种可抽出式小型开关柜 |
CN105974243B (zh) * | 2016-06-29 | 2020-02-14 | 国网山东省电力公司 | 一种应用于现场的供电及充电设备的检测系统及方法 |
CN205864004U (zh) * | 2016-08-04 | 2017-01-04 | 深圳市辉腾创新科技有限公司 | 一种新型模块化充电桩 |
CN106771701A (zh) * | 2016-11-15 | 2017-05-31 | 中国电力科学研究院 | 一种电动汽车充电接口一致性自动化检测系统和方法 |
CN207549974U (zh) * | 2017-08-09 | 2018-06-29 | 四川蔚宇电气有限责任公司 | 一种充电桩控制系统的一体化组合结构 |
CN207198257U (zh) * | 2017-08-28 | 2018-04-06 | 深圳市星龙科技股份有限公司 | 一种直流充电机检测装置和直流充电机检测系统 |
CN107807290B (zh) * | 2017-10-30 | 2020-06-12 | 国网浙江省电力公司电动汽车服务分公司 | 直流充电桩检测系统及检测方法 |
CN207488816U (zh) * | 2017-11-16 | 2018-06-12 | 兰州海红技术股份有限公司 | 具有自检功能的直流充电桩系统 |
-
2019
- 2019-03-08 CN CN201910175585.3A patent/CN109884431B/zh active Active
- 2019-05-17 WO PCT/CN2019/087475 patent/WO2020181656A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN206012364U (zh) * | 2016-08-31 | 2017-03-15 | 青岛特来电新能源有限公司 | 一种具有插接接口的模块化总控箱 |
CN106183880A (zh) * | 2016-09-12 | 2016-12-07 | 山东优赛新能源科技有限公司 | 电动汽车积木式直流充电桩及其应用 |
CN106501642A (zh) * | 2016-10-21 | 2017-03-15 | 天津市普迅电力信息技术有限公司 | 一种直流充电桩便携检测设备 |
CN109001560A (zh) * | 2018-06-15 | 2018-12-14 | 北京博电新力电气股份有限公司 | 便携式电动汽车直流新能源汽车测试装置及系统 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4079567A1 (en) * | 2021-04-21 | 2022-10-26 | Sungrow Power Supply Co., Ltd. | Charging pile and testing device, system and method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN109884431B (zh) | 2020-07-10 |
CN109884431A (zh) | 2019-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020181656A1 (zh) | 一种积木式的电动汽车直流充电设施检测装置 | |
CN105548784A (zh) | 一种电动汽车直流车辆接口电路模拟器 | |
CN105548780A (zh) | 一种电动汽车直流充电桩接口电路模拟器 | |
CN109470961B (zh) | 一种基于模块化设计的电力设备质量万能检测工位 | |
WO2024114760A1 (zh) | 电能传输连接机构 | |
CN204497850U (zh) | 智能变电站二次设备组合模块与转接模块标准化接口装置 | |
CN212323361U (zh) | 动力电池组检测用插头组件、全自动连接装置和检测线 | |
CN208085501U (zh) | 一种集成信号线路的直流充电枪 | |
CN208621695U (zh) | 一种基于42u标准柜的充电模块检测工装 | |
CN111025175B (zh) | 一种高轨通信卫星一次电源子系统自动化联试方法 | |
CN206710539U (zh) | 一种适用于无通讯信号区域的电缆对线器 | |
CN208962895U (zh) | 多功能充放电连接装置 | |
CN219044288U (zh) | 带检定枪座的内置一体化直流电能表的直流充电桩 | |
CN220019671U (zh) | 铁路客车39芯通信座的对线装置 | |
CN203422613U (zh) | Ecu快速原型开发平台 | |
CN113721590B (zh) | 一种标准化电芯配置切换系统 | |
CN204376541U (zh) | 一种电力综合自动化系统遥信雪崩测试装置 | |
CN218099402U (zh) | 用于功能测试的直流充电桩仿真装置 | |
CN219267161U (zh) | 一种电池模组均衡充放电仪 | |
CN218678511U (zh) | 一种锂电池组充电均衡修复控制系统 | |
CN216082965U (zh) | 用于车辆的直流充电性能测试设备 | |
CN211206675U (zh) | 一种无线充电检测治具 | |
CN221041583U (zh) | 一种连接装置及电池包 | |
CN220701056U (zh) | Can通讯数据及设备供电采集盒 | |
CN219456257U (zh) | 电压采样治具和电压测试系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19918558 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.01.2022) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19918558 Country of ref document: EP Kind code of ref document: A1 |