WO2020181592A1 - 矩阵式二维码、其生成、解码方法及其设备 - Google Patents

矩阵式二维码、其生成、解码方法及其设备 Download PDF

Info

Publication number
WO2020181592A1
WO2020181592A1 PCT/CN2019/080729 CN2019080729W WO2020181592A1 WO 2020181592 A1 WO2020181592 A1 WO 2020181592A1 CN 2019080729 W CN2019080729 W CN 2019080729W WO 2020181592 A1 WO2020181592 A1 WO 2020181592A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
dimensional code
module
image
corresponds
Prior art date
Application number
PCT/CN2019/080729
Other languages
English (en)
French (fr)
Inventor
张扬
李琳琳
Original Assignee
杭州百伴生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州百伴生物技术有限公司 filed Critical 杭州百伴生物技术有限公司
Priority to US17/634,696 priority Critical patent/US20220327302A1/en
Publication of WO2020181592A1 publication Critical patent/WO2020181592A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • G06K7/1404Methods for optical code recognition
    • G06K7/1408Methods for optical code recognition the method being specifically adapted for the type of code
    • G06K7/14172D bar codes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06037Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking multi-dimensional coding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06046Constructional details
    • G06K19/0614Constructional details the marking being selective to wavelength, e.g. color barcode or barcodes only visible under UV or IR
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • G06K7/1404Methods for optical code recognition
    • G06K7/1439Methods for optical code recognition including a method step for retrieval of the optical code
    • G06K7/1456Methods for optical code recognition including a method step for retrieval of the optical code determining the orientation of the optical code with respect to the reader and correcting therefore
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K2019/06215Aspects not covered by other subgroups
    • G06K2019/06225Aspects not covered by other subgroups using wavelength selection, e.g. colour code

Definitions

  • the invention belongs to the technical field of two-dimensional codes, and specifically relates to a matrix-type two-dimensional code, its generation and decoding method and equipment.
  • Datamatrix matrix two-dimensional code is widely used because of its high coding density and small size.
  • the information capacity required by the QR code is also increasing.
  • the space that can be used to mark two-dimensional codes is very limited.
  • storage tubes used to store pharmaceutical compounds, nucleic acids or trace samples are small in size, but the number is large and cannot be repeated.
  • increasing the number of two-dimensional code matrices to increase the encoding information capacity is approaching the limit, and it is impossible to increase the encoding information capacity by increasing the number of encoding matrices.
  • the 1-byte data represented by the original single color block is increased to three bytes, and the encoding capacity is increased to three times of the original. That is, in the encoding matrix and the identification symbol (symbol ) Under the condition of the same size, the original two-dimensional code encoding 12-bit information can hold 36-bit information, and the corresponding error correction code capacity has also increased three times, which not only completely solves the problem of insufficient encoding capacity of small-area two-dimensional codes, but also Increased the reliability of QR code analysis.
  • their encoding and decoding methods are not well compatible with the existing Datamatrix standards, which makes it difficult for user systems to convert.
  • the purpose of the present invention is to overcome the deficiencies in the prior art and provide a matrix two-dimensional code, its generation and decoding method and equipment, by adding 6 colors to the original Datamatrix data structure and the original black and white two colors A new color channel is formed to construct a color two-dimensional code, which increases the encoding capacity to 3 times the original, while maintaining compatibility with the existing black and white Datamatrix encoding system to the greatest extent.
  • the present invention discloses a matrix two-dimensional code.
  • the image of the matrix two-dimensional code is composed of a plurality of color blocks arranged in a rectangular array, and the edge of the image is formed by a circle of color blocks.
  • Area, the inner color blocks constitute a coding area;
  • the positioning area includes an "L"-shaped side and a positioning side opposite to the "L"-shaped side;
  • the color of the color block includes at least three of the eight colors of three standard colors of RGB, four standard colors of CMYK, and white.
  • the positioning edge is formed by alternately arranging color blocks of two colors that are black after being filtered through any color channel of RGB and that are white after being filtered through the same color channel.
  • the invention also discloses a method for generating a matrix two-dimensional code, which includes the following processes:
  • the coding mapping rule is: equate 1 in each data segment to 255, and 0 to 0; and sequentially convert data segments in a specific coloring order
  • the 0 and 255 in RGB correspond to each color channel of RGB to generate a specific color
  • 000 corresponds to black
  • 001 corresponds to blue
  • 010 corresponds to green
  • 011 corresponds to azure
  • 100 corresponds to red
  • 101 corresponds to magenta
  • 110 corresponds to yellow
  • 000 corresponds to white.
  • the invention also discloses a method for decoding matrix two-dimensional codes, which includes the following processes:
  • the process of determining the positioning area and the coding area of the two-dimensional code image is:
  • the color of each color block is converted into a data segment containing three binary values.
  • the decoding mapping rule is: the gray value close to 0 is equivalent to 0, and the gray value close to 255 is equivalent to 1.
  • the gray value of the color block is corresponded to a specific data segment composed of 0 and 1;
  • all data segments are sequentially ungrouped to form a complete binary data code stream.
  • Black corresponds to 000, blue corresponds to 001, green corresponds to 010, azure corresponds to 011, red corresponds to 100, magenta corresponds to 101, yellow corresponds to 110, and white corresponds to 111.
  • the two-dimensional code image is a black-and-white two-dimensional code
  • the two-dimensional code image is decoded according to the Datamatrix decoding rules to obtain the source data information; if the two-dimensional code image is a color two-dimensional code, Then turn to the step of converting the color of each color block into a data segment containing three binary values according to the mapping rule.
  • the process of performing color discrimination on the obtained two-dimensional code image is:
  • the two-dimensional code image is determined to be a black and white two-dimensional code, otherwise it is a color two-dimensional code.
  • the process of determining the positioning area and the coding area of the two-dimensional code image according to the obtained grayscale image is:
  • the invention also discloses a matrix type two-dimensional code generating device
  • the source data information reading module is used to read source data information
  • the encoding module is used to convert the source data information into a binary data code stream according to the corresponding rules in the Datamtrix encoding rules;
  • the grouping module is used for grouping the binary data code stream according to a group of three values in sequence to obtain several data segments;
  • the conversion module is used to convert each data segment into a corresponding color according to the encoding mapping rule.
  • the encoding mapping rule is: equating 1 in each data segment to 255, and 0 to 0; The color sequence sequentially corresponds to 0 and 255 in the data segment to each color channel of RGB to generate a specific color;
  • the generating module is used to fill the color blocks according to the converted color and the filling rule in the Datamtrix coding rule to generate a two-dimensional code image.
  • the invention also discloses a matrix type two-dimensional code decoding equipment
  • QR code reading module Including QR code reading module, filtering module, positioning module, overlay module, sorting module and decoding module
  • the two-dimensional code reading module is used for reading two-dimensional code images
  • the filtering module is used to sequentially filter through the three color channels of RGB to obtain three coded grayscale images respectively corresponding to each color channel;
  • the positioning module is used to determine the positioning area and the coding area of the two-dimensional code image according to the obtained grayscale image;
  • the superposition module is used to convert the color of each color block into a data segment containing three binary values according to the decoding mapping rule.
  • the decoding mapping rule is: the gray value close to 0 is equivalent to 0, and the gray value The value close to 255 is equal to 1, and the gray value of the color block corresponds to a specific data segment composed of 0 and 1 according to a specific filtering order;
  • the sorting module is used to ungroup all the data segments in sequence according to the sequence of the data segments to form a complete binary data code stream;
  • the decoding module is used to convert the binary data stream into source data information according to the corresponding rules in the Datamtrix decoding rules.
  • the invention has the beneficial effects: by adding 6 colors and the original black and white two colors to form a new color channel to construct a color two-dimensional code on the original Datamatrix data structure, the coding capacity is increased to 3 times the original, while maximizing It maintains compatibility with the existing black and white Datamatrix encoding system.
  • Figure 1 is a schematic diagram of a two-dimensional code generated by the present invention
  • Figure 2 shows the binary information corresponding to each two-dimensional code color block
  • Fig. 3 is a binary image obtained by filtering the two-dimensional code shown in Fig. 1 using the red channel;
  • Fig. 4 is a binary image obtained by filtering the two-dimensional code shown in Fig. 1 using the green channel;
  • Fig. 5 is a binary image obtained by filtering the two-dimensional code shown in Fig. 1 using the blue channel;
  • the color generation involved in the present invention is divided into two categories: transmission and reflection.
  • Transmission is usually used in displays and CCD imaging. Its characteristics are that light with the same color as the transmission filter passes through, and light with a color different from the transmission filter. absorbed.
  • a transmission filter is placed in front of the electric coupling element (CCD).
  • Each pixel usually consists of at least one pixel of red R, green G, and blue B, because only the same color as the filter , Perceived by the CCD element, the sensed signal is divided into several levels according to the intensity, and then the original color is restored by the intensity of the three primary colors of RGB and its single primary color.
  • the reflection is usually used for printing.
  • yellow ink usually reflects yellow.
  • the basic primary colors used are azure C, magenta M, yellow Y and black.
  • the three primary colors RGB in transmission and the CMY primary colors in printing can be adjusted and converted in equal proportions. This provides reliable and distinguishable color information.
  • a matrix type two-dimensional code the image of the matrix type two-dimensional code is composed of a plurality of color blocks arranged in a rectangular array, and the colors of the color blocks include three standard colors of RGB, four standard colors of CMYK and white. At least three of the three colors, a circle of color blocks at the edge of the image constitutes a positioning area, and the inner color blocks constitute a coding area.
  • the positioning area includes an "L"-shaped side and a positioning side opposite to the "L"-shaped side, and the positioning side is alternately formed by two color blocks of black and white filtered through any color channel of RGB Arranged.
  • the two-dimensional code image formed in this way is filtered through the three color channels in RGB, and three corresponding gray-scale images are obtained respectively.
  • there is at least one of the "L"-shaped edges of the image and the gray value of the background color is relatively different Obviously, there is at least one image where the positioning edges are alternately black and white, so that identification of the positioning area is realized.
  • the color block on the positioning side can be set to green and red, and the color blocks of the two colors are arranged alternately.
  • the images shown in Figure 3, Figure 4 and Figure 5 can be obtained respectively.
  • the "L" edge is black, and the positioning edge is black and white.
  • the positioning edge is black. Therefore, the positioning area of the image can be identified and located through Figure 3 and Figure 4.
  • the color block color of the coding area is set to the corresponding color according to the actual coding situation, and is arranged in the datamatrixECC200 mode, that is, the coding is even-numbered rows and even-numbered columns.
  • the coding unit of the coding area is the same as the 8-bit color block of Datamatrix, that is, the 3*3 square matrix lacks the upper right corner. It can be seen that the color blocks in the two-dimensional code image are increased from the black and white of the standard Datamatrix to 8 colors, and each color block represents three different binary codes instead of a traditional single binary number.
  • the present invention also provides a generating method, including the following processes:
  • Step 1 Read the source data information.
  • Step 2 Convert the source data information into a binary data code stream according to the corresponding rules in the Datamatrix encoding rules. This process can be completed by using methods in the prior art.
  • a nutshell Encode the source data information according to computer coding rules.
  • the header data identifier and the tail data identifier are added to form a total data codeword, and then the data codeword is converted into a binary data code stream.
  • Step 3 The binary data code stream is sequentially grouped according to a group of three values to obtain several data segments.
  • Step 4 Convert each data segment into a corresponding color according to the coding mapping rule.
  • the printing system uses the CMYK color system
  • the four colors are standard colors for printing
  • the color image acquisition uses the RGB color system.
  • CMYK color system azure and magenta are mixed at one time to get red; magenta and yellow are mixed in equal amounts at one time to get green; yellow and azure are mixed in equal amounts to get blue at one time. Therefore, the colors between the two color systems constitute a definite conversion relationship to ensure the reliability of the information conversion between the color bar code printing color and the identification color.
  • the RGB color system includes the brightness of the color from 0-255.
  • the selected 8 colors can have two signals of 0 or 255 in any of the RGB monochromatic channels, and the corresponding can be used as 1 or 0, which is greatly simplified Improved the color channel's treatment of pollution clutter interference.
  • the coding mapping rule is: equating 1 in each data segment to 255, and equating 0 to 0; in order to correspond to 0 and 255 in the data segment to each color channel of RGB in a specific coloring order So as to generate a specific color.
  • colour RGB color value CIE-Lab color value CMYK color value Binary black (0,0,0) 100,0.005,-0.01 0,0,0,0 000 blue (0,0,255) 97.6, -15.8, 93.4 0,0,100,0 001 green (0,255,0) 60.32,98.254,-60.843 0,100,0,0 010 Azure (0,255,255) 53.233,80.109,67.22 0,100,100,0 011 red (255,0,0) 91.117, -48.08, -14.138 100,0,0,0 100 Magenta (255,0,255) 87.737,-86.185,83.181 100,0,100,0 101 yellow (255,255,0) 32.303,79.197,-107.864 100,100,0,0 110 white (255,255,255) 0,0,0,0,100 111
  • Step 5 Fill the color blocks according to the color converted in step 4 and the filling rule in the Datamtrix coding rule to generate a QR code image.
  • the present invention also provides a decoding method, including the following processes:
  • Step 1 Read the QR code image.
  • Step 2 Determine the positioning area and coding area of the two-dimensional code image.
  • the process is specifically as follows: use the three color channels of RGB to filter the two-dimensional code image to obtain three grayscale images corresponding to each color channel, and then perform Sobel operator convolution calculation and hough transform on each image to determine the two-dimensional
  • the positioning area of the code image, inside the positioning area is the coding area of the two-dimensional code image.
  • Step 3 Restore the coding area to a binary data code stream.
  • the process is specifically as follows: according to the decoding and mapping rules, the color of each color block is converted into a data segment containing three binary values; according to the sequence of the data segments, all the data segments are sequentially ungrouped to form a complete binary data stream .
  • the decoding mapping rule is: the gray value close to 0 is equivalent to 0, and the gray value close to 255 is equivalent to 1; the gray values obtained according to a specific filtering order correspond to specific data composed of 0 and 1 in turn segment.
  • the filtering order is consistent with the coloring order in the encoding process, which is explained in a specific embodiment below:
  • the color of the color block in the upper left corner of the coding area of the two-dimensional code image is green.
  • the image is filtered in the order of red, green, and blue, and three corresponding images are obtained.
  • the grayscale image of the green color block in each grayscale image is 0, 255, 0, which are equivalent to 0, 1, 0, so the data segment corresponding to the color block is 010. In this way, all color blocks can be sequentially converted into data segments composed of 1 and 0.
  • the data segment 010 is equivalent to 02550, and then it is colored in the order of red, green, and blue, that is, the value of the red channel is 0, the value of the green channel is 255, and the value of the blue channel is If it is 0, the color corresponding to the data segment is green. In this way, all data segments can be sequentially converted into color patches of corresponding colors.
  • Step 4 Convert the binary data stream into source data information according to the corresponding rules in the Datamtrix decoding rules.
  • a two-dimensional code image that only includes black or/and white may be generated, so the following process is also included:
  • the color of the obtained two-dimensional code image is determined. If the two-dimensional code image is black and white, the two-dimensional code image is directly decoded according to the existing Datamatrix decoding rules to obtain the source data information; if the two-dimensional code image is color For the QR code, follow the relevant steps in step three to decode. Further, the process of performing color discrimination on the obtained two-dimensional code image is: if the gray values of all the color blocks whose gray value is not 0 in the three gray-scale images are equal, then the two-dimensional code image is determined to be Black and white QR code, otherwise it is color QR code.
  • the process of determining the positioning area and coding area of the two-dimensional code image according to the obtained gray-scale image is: performing Sobel operator convolution calculation and hough transform on each gray-scale image to determine the positioning of the two-dimensional code image
  • the area within the positioning area is the coding area of the two-dimensional code image.
  • the present invention also provides a matrix type two-dimensional code generating device, which includes a source data information reading module, an encoding module, a grouping module, a conversion module and a generating module.
  • the source data information reading module is used to read the source data information; the encoding module is used to convert the source data information into a binary data code stream according to the corresponding rules in the Datamtrix encoding rules; the grouping module is used to convert the data
  • the binary data code stream is sequentially grouped according to a group of three values to obtain several data segments; the conversion module is used to convert each data segment into a corresponding color according to the coding mapping rule, and the coding mapping rule is: 1 in each data segment is equivalent to 255, and 0 is equivalent to 0; according to a specific coloring sequence, 0 and 255 in the data segment are sequentially corresponded to each color channel of RGB to generate a specific color; the generation The module is used to fill the color blocks according to the converted colors and the filling rules in the Datamtrix coding rules to generate a QR code image.
  • the invention also provides a matrix-type two-dimensional code decoding device, which includes a two-dimensional code reading module, a filtering module, a positioning module, an overlay module, a sorting module and a decoding module.
  • the two-dimensional code reading module is used to read a two-dimensional code image; the filtering module is used to sequentially filter through three RGB color channels to obtain three coded grayscale images corresponding to each color channel; the positioning module It is used to determine the positioning area and coding area of the two-dimensional code image according to the obtained grayscale image; the superposition module is used to convert the color of each color block into a data segment containing three binary values according to the decoding and mapping rules, so
  • the decoding mapping rule is: the gray value close to 0 is equal to 0, the gray value close to 255 is equal to 1, and the gray value of the color block is corresponding to the specific data composed of 0 and 1 according to a specific filtering order Segment; the sorting module is used to ungroup all data segments in sequence according to the sequence of the data segments to form a complete binary data code stream; the decoding module is used to convert the binary data code according to the corresponding rules in the Datamtrix decoding rules The stream is converted to source data information.
  • the two-dimensional code image also includes a judgment module for color discrimination of the obtained two-dimensional code image. If the two-dimensional code image is black and white, the two-dimensional code image is decoded according to the Datamatrix decoding rules to obtain source data information; If the two-dimensional code image is a color two-dimensional code, turn to the step of sequentially filtering the two-dimensional code image according to the mapping rule to obtain a binary image corresponding to each color channel.
  • the Datamatrix encoding rules and the Datamatrix decoding rules are both existing rules, so the corresponding rules are the rules corresponding to the corresponding steps, and the specific process will not be described in detail.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)
  • Image Processing (AREA)

Abstract

一种矩阵式二维码,所述矩阵式二维码的图像由若干色块以矩形阵列方式排列构成,所述图像的边缘一圈色块构成定位区,其内部色块构成编码区;所述定位区包括"L"型边和与所述"L"型边相对的定位边,其特征在于:所述色块的颜色包括RGB三种标准色、CMYK四种标准色和白色共八种颜色中的至少三种颜色,所述定位边由通过RGB中任一颜色通道过滤后为黑色和通过同一颜色通道过滤后为白色的两种颜色的色块交替排列而成。上述矩阵式二维码通过在原有Datamatrix数据结构上,增加6种颜色与原有的黑白二色组成新的颜色通道构建彩色二维码,提高编码容量至原有的3倍,同时最大限度的保持了与现有黑白Datamatrix编码体系兼容。

Description

矩阵式二维码、其生成、解码方法及其设备 技术领域
本发明属于二维码技术领域,具体涉及一种矩阵式二维码、其生成、解码方法及其设备。
背景技术
Datamatrix矩阵二维码因其编码密度高,体积小的优势而被广泛应用。但随着二维码应用领域越来越多,需要二维码带有的信息容量也越来越大。但在某些领域能用于标记二维码的空间非常有限,例如,用于保存药物化合物,核酸或痕量样品的保存管体积很小,但数量很大且不能重复。受限于读码设备的分辨率和管底面积的限制,靠增加二维码矩阵数量来提高编码信息容量已近极限,无法通过增加编码矩阵的数量来增加编码信息容量。通过引入8种颜色构建彩色二维码,使原有单一色块所代表的1字节数据提高到三个字节,提高编码容量至原有的三倍,即在编码矩阵和识别符号(symbol)大小不变的条件下,原本编码12位信息的二维码可容纳36位信息,同时相应的纠错码容量也增加了三倍,不仅彻底解决小面积二维码编码容量不足的问题还增加了二维码解析的可靠性。尽管市面上已有一些彩色二维码的设计方法,但其编码和解码方法均不能很好的兼容现有的Datamatrix标准,造成用户系统在转换时存在一定的难度。
综上所述,需要发明一种新的彩色二维码编码和解码方法,能够更好的兼容Datamatrix标准,提高编码容量。
发明内容
本发明的目的在于克服现有技术中的不足,提供一种矩阵式二维码、其生成、解码方法及其设备,通过在原有Datamatrix数据结构上,增加6种颜色与原有的黑白二色组成新的颜色通道构建彩色二维码,提高编码容量至原有的3倍,同时最大限度的保持了与现有黑白Datamatrix编码体系兼容。
为解决现有技术问题,本发明公开了一种矩阵式二维码,所述矩阵式二维码的图像由若干色块以矩形阵列方式排列构成,所述图像的边缘一圈色块构成定位区,其内部色块构成编码区;所述定位区包括“L”型边和与所述“L”型边相对的定位边;
所述色块的颜色包括RGB三种标准色、CMYK四种标准色和白色共八种颜色中的至少三种颜色,
所述定位边由通过RGB中任一颜色通道过滤后为黑色和通过同一颜色通道过滤后为白色的两种颜色的色块交替排列而成。
本发明还公开了一种矩阵式二维码的生成方法,包括如下过程:
读取源数据信息;
根据Datamtrix编码规则中的相应规则将源数据信息转换为二进制的数据码流;
还包括如下过程:
将所述二进制的数据码流按三个值为一组依次进行分组得到若干数据段;
按照编码映射规则将每个数据段转换为相应的颜色,所述编码映射规则为:将每个数据段中的1等同于255,将0等同于0;按照特定的上色顺序依次将数据段中的0和255对应到RGB每个颜色通道中从而生成为特定的颜色;
按照转换的颜色和Datamtrix编码规则里的填充规则填充色块生成二维码图像。
进一步地,
所述编码映射规则中,所述特定的上色顺序依次为红、绿、蓝时,数据段与每种颜色的对应关系为:
000对应黑色,001对应蓝色,010对应绿色,011对应天青色,100对应红色,101对应品红色,110对应黄色,000对应白色。
本发明还公开了一种矩阵式二维码的解码方法,包括如下过程:
读取二维码图像;
确定二维码图像的定位区和编码区;
将所述编码区恢复为二进制的数据码流;
根据Datamtrix解码规则中的相应规则将二进制的数据码流转换为源数据信息;
所述确定二维码图像的定位区和编码区的过程为:
通过RGB三个颜色通道依次过滤得到三个分别对应每个颜色通道的编码灰度图像;
根据获得的灰度图像确定二维码图像的定位区和编码区;
所述将所述编码区恢复为二进制的数据码流的过程为:
根据解码映射规则将每个色块的颜色转化为一个包含三个二进制值的数据段,所述解码映射规则为:将灰度值接近0的等同于0,灰度值接近255的等同于1,按照特定的过滤顺序将色块的灰度值对应为由0和1构成的特定的数据段;
根据数据段的排列顺序,将所有数据段依次取消分组形成完整的二进制的数据码流。
进一步地,
所述解码映射规则中,所述特定的过滤顺序依次为红、绿、蓝时,每种颜色与数据段的对应关系为:
黑色对应000,蓝色对应001,绿色对应010,天青色对应011,红色对应100,品红色 对应101,黄色对应110,白色对应111。
进一步地,
还包括如下过程:
对获得的二维码图像进行颜色判别,若二维码图像黑白二维码,则根据Datamatrix解码规则对二维码图像进行解码,得到源数据信息;若二维码图像为彩色二维码,则转向根据映射规则将每个色块的颜色转化为一个包含三个二进制值的数据段的步骤。
进一步地,
所述对获得的二维码图像进行颜色判别的过程为:
若三个灰度图像中所有灰度值不为0的色块的灰度值均相等,则判别二维码图像为黑白二维码,否则为彩色二维码。
进一步地,
所述根据获得的灰度图像确定二维码图像的定位区和编码区的过程为:
分别对每个灰度图像进行Sobel算子卷积计算和hough变换确定二维码图像的定位区,定位区以内为二维码图像的编码区。
本发明还公开了一种矩阵式二维码的生成设备,
包括源数据信息读取模块、编码模块、分组模块、转换模块和生成模块;
所述源数据信息读取模块用于读取源数据信息;
所述编码模块用于根据Datamtrix编码规则中的相应规则将源数据信息转换为二进制的数据码流;
所述分组模块用于将所述二进制的数据码流按三个值为一组依次进行分组得到若干数据段;
所述转换模块用于按照编码映射规则将每个数据段转换为相应的颜色,所述编码映射规则为:将每个数据段中的1等同于255,将0等同于0;按照特定的上色顺序依次将数据段中的0和255对应到RGB每个颜色通道中从而生成为特定的颜色;
所述生成模块用于按照转换的颜色和Datamtrix编码规则里的填充规则填充色块生成二维码图像。
本发明还公开了一种矩阵式二维码的解码设备,
包括二维码读取模块、过滤模块、定位模块、叠加模块、排序模块和解码模块;
所述二维码读取模块用于读取二维码图像;
所述过滤模块用于通过RGB三个颜色通道依次过滤得到三个分别对应每个颜色通道的 编码灰度图像;
所述定位模块用于根据获得的灰度图像确定二维码图像的定位区和编码区;
所述叠加模块用于根据解码映射规则将每个色块的颜色转化为一个包含三个二进制值的数据段,所述解码映射规则为:将灰度值接近0的等同于0,灰度值接近255的等同于1,按照特定的过滤顺序将色块的灰度值对应为由0和1构成的特定的数据段;
所述排序模块用于根据数据段的排列顺序,将所有数据段依次取消分组形成完整的二进制的数据码流;
所述解码模块用于根据Datamtrix解码规则中的相应规则将二进制的数据码流转换为源数据信息。
进一步地,
还包括判断模块,用于对获得的二维码图像进行颜色判别,若二维码图像黑白二维码,则根据Datamatrix解码规则对二维码图像进行解码,得到源数据信息;若二维码图像为彩色二维码,则转向根据映射规则将每个色块的颜色转化为一个包含三个二进制值的数据段的步骤。
本发明具有的有益效果:通过在原有Datamatrix数据结构上,增加6种颜色与原有的黑白二色组成新的颜色通道构建彩色二维码,提高编码容量至原有的3倍,同时最大限度的保持了与现有黑白Datamatrix编码体系兼容。
附图说明
图1为本发明生成的二维码的示意图;
图2为对每个二维码色块对应的的二进制信息;
图3为对图1所示的二维码使用红色通道过滤所得二值化图像;
图4为对图1所示的二维码使用绿色通道过滤所得二值化图像;
图5为对图1所示的二维码使用蓝色通道过滤所得二值化图像;
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
为更好的理解本发明的内容,须了解本发明之所用色彩的基本常识。本发明所涉及的颜色的产生分透射和反射两大类,透射通常用于显示器,CCD成像,其特点为,与透射滤光片颜色相同的光线透过,与透射滤光片颜色不同的光线被吸收。典型的如RGB色彩体系,在电耦合元件(CCD)前置透射滤光片,每个像素通常由至少包括红色R,绿色G,蓝色B各一 个像素点组成,因为只有与滤镜相同颜色,被CCD元件感知,感知的信号按强度分为若干等级,再由RGB三原色及其单一原色的强度共同还原为初始颜色。而反射通常用于印刷,比如黄色的油墨通常将黄色反射,所用的基本原色有天青C,品红M,黄色Y和黑色。而在透射中的三原色RGB和印刷中的CMY基色恰好可以相互等比例调和转换。由此提供了可靠的、可以区分的色彩信息。
一种矩阵式二维码,所述矩阵式二维码的图像由若干色块以矩形阵列方式排列构成,所述色块的颜色包括RGB三种标准色、CMYK四种标准色和白色共八种颜色中的至少三种颜色,所述图像的边缘一圈色块构成定位区,其内部色块构成编码区。
所述定位区包括“L”型边和与所述“L”型边相对的定位边,所述定位边由通过RGB中任一颜色通道过滤后为黑色和白色的两种颜色的色块交替排列而成。
由此形成的二维码图像在经过RGB中的三个颜色通道过滤后,分别得到三个对应的灰度图像,其中存在至少一个图像的“L”型边与背景色的灰度值相差较为明显,存在至少一个图像的定位边为黑白交替,如此实现定位区的识别。
如图1所示,当背景色为白色,“L”型边的色块设置为蓝色时,定位边的色块可设置为绿色和红色,并且两种颜色的色块交替排列。经过RGB过滤后,可以分别得到如图3、图4和图5中所示的图像,图3和图4中,“L”型边为黑色,定位边为黑白交替,图5中,“L”型边为白色,定位边为黑色,因此通过图3和图4即可识别并定位图像的定位区。
编码区的色块颜色则根据实际编码的情况被设置为相应的颜色,并且按照datamatrixECC200方式排列,即编码为偶数行和偶数列。编码区的编码单元与Datamatrix的8位色块相同,即3*3的正方形矩阵缺右上角。由此可见,二维码图像中的色块由标准Datamatrix的黑白二色增加为8色,每种色块分别代表三位不同的二进制编码而非传统的单一二进制数字。
基于上述矩阵式二维码,本发明还提供了一种生成方法,包括如下过程:
步骤一、读取源数据信息。
步骤二、根据Datamatrix编码规则里的相应规则将源数据信息转换为二进制的数据码流,该过程可采用现有技术中的方法完成。概括地:将源数据信息根据计算机编码规则编码。
在编码的前面加入数据前缀解释,用以说明数据长度及编码方式,然后基于Reed-Solomon纠错算法生成纠错码字,将生成的纠错码字添加到编码之后。根据Datamatrix编码规则中的相应规则加入头部数据标识和尾部数据标识形成总的数据码字,然后将数据码字转换为二进制的数据码流。
步骤三、将所述二进制的数据码流按三个值为一组依次进行分组得到若干数据段。
步骤四、按照编码映射规则将每个数据段转换为相应的颜色。本发明中,印刷体系使用CMYK色系,这四种颜色为印刷用标准色,而彩色图像获取使用RGB色系。在CMYK色系中,天青色和品红色一次混合可得红色;品红色和黄色一次等量混合后得到绿色;黄色和天青色一次等量混合得到蓝色。由此两种色系间的色彩构成了一种确定的转换关系,保证彩色条码印刷色彩和识别色彩之间信息转换的可靠性。在使用RGB通道过滤色彩的彩色传感器中,因色彩是通过三种颜色滤镜的光电二极管通过感光实现,因此每个颜色滤镜下的光电二极管都会产生相应的电信号。RGB色彩体系包含了色彩的亮度从0-255,所选的8种颜色在RGB的任何一种单色通道下可存在0或255这两种信号,对应可作为1或0这极大的简化了色彩信道对于污染杂波干扰的处理。
因此,所述编码映射规则为:将每个数据段中的1等同于255,将0等同于0;按照特定的上色顺序依次将数据段中的0和255对应到RGB每个颜色通道中从而生成为特定的颜色。
上述8种颜色可以准确对应不同的三位二进制代码。该过程中,特定的上色顺序依次为红、绿、蓝时,数据段与每种颜色的对应关系为下表所示:
颜色 RGB色值 CIE-Lab色值 CMYK色值 二进制
黑色 (0,0,0) 100,0.005,-0.01 0,0,0,0 000
蓝色 (0,0,255) 97.6,-15.8,93.4 0,0,100,0 001
绿色 (0,255,0) 60.32,98.254,-60.843 0,100,0,0 010
天青色 (0,255,255) 53.233,80.109,67.22 0,100,100,0 011
红色 (255,0,0) 91.117,-48.08,-14.138 100,0,0,0 100
品红色 (255,0,255) 87.737,-86.185,83.181 100,0,100,0 101
黄色 (255,255,0) 32.303,79.197,-107.864 100,100,0,0 110
白色 (255,255,255) 0,0,0 0,0,0,100 111
步骤五、按照步骤四里转换的颜色和Datamtrix编码规则里的填充规则填充色块生成二维码图像。
如图2至5所示,基于上述矩阵式二维码,本发明还提供了一种解码方法,包括如下过程:
步骤一、读取二维码图像。
步骤二、确定二维码图像的定位区和编码区。该过程具体为:依次使用RGB三个颜色通道对二维码图像进行过滤得到三个对应每个颜色通道的灰度图像,然后对每个图像进行Sobel 算子卷积计算和hough变换确定二维码图像的定位区,定位区内部为二维码图像的编码区。
步骤三、将所述编码区恢复为二进制的数据码流。该过程具体为:根据解码映射规则将每个色块的颜色转化为一个包含三个二进制值的数据段;根据数据段的排列顺序,将所有数据段依次取消分组形成完整的二进制的数据码流。所述解码映射规则为:将灰度值接近0的等同于0,灰度值接近255的等同于1;按照特定的过滤顺序得到的灰度值依次对应为由0和1构成的特定的数据段。该过程中,过滤顺序与编码过程中的上色顺序相一致,以下通过一个具体实施例进行阐述:
如图1、3、4、5所示,二维码图像的编码区左上角的色块的颜色为绿色,按照红、绿、蓝的过滤顺序依次对该图像进行过滤,分别得到三张对应的灰度图像,该绿色色块在每个灰度图像里的灰度值分别为0、255、0,其等同于0、1、0,因此该色块对应形成的数据段为010。按照该方式可以将所有色块依次转换成由1和0构成的数据段。同样地,在编码时,该数据段010等同于02550,然后按照红、绿、蓝的上色顺序进行上色,即红色通道的值为0,绿色通道的值为255,蓝色通道的值为0,此时该数据段对应的颜色为绿色,按照该方式可以将所有数据段依次转换成对应颜色的色块。
值得注意的是,当上色顺序改变为红、蓝、绿时,即红色通道的值为0,蓝色通道的值为255,绿色通道的值为0,故数据段010对应形成的颜色为蓝色。同样地,该蓝色色块按照红、蓝、绿的顺序进行过滤时,分别得到的灰度值为0、255、0,故蓝色色块对应形成的数据段为010。其它顺序的实施例不再赘述。
步骤四、根据Datamtrix解码规则中的相应规则将二进制的数据码流转换为源数据信息。
进一步地,按照上述生成方法可能会生成仅包括黑或/和白的二维码图像,因此还包括如下过程:
对获得的二维码图像进行颜色判别,若二维码图像黑白二维码,则根据现有的Datamatrix解码规则直接对二维码图像进行解码,得到源数据信息;若二维码图像为彩色二维码,则按照步骤三里的相关步骤进行解码。进一步地,所述对获得的二维码图像进行颜色判别的过程为:若三个灰度图像中所有灰度值不为0的色块的灰度值均相等,则判别二维码图像为黑白二维码,否则为彩色二维码。
进一步地,所述根据获得的灰度图像确定二维码图像的定位区和编码区的过程为:分别对每个灰度图像进行Sobel算子卷积计算和hough变换确定二维码图像的定位区,定位区以内为二维码图像的编码区。
本发明还提供了一种矩阵式二维码的生成设备,包括源数据信息读取模块、编码模块、 分组模块、转换模块和生成模块。
所述源数据信息读取模块用于读取源数据信息;所述编码模块用于根据Datamtrix编码规则中的相应规则将源数据信息转换为二进制的数据码流;所述分组模块用于将所述二进制的数据码流按三个值为一组依次进行分组得到若干数据段;所述转换模块用于按照编码映射规则将每个数据段转换为相应的颜色,所述编码映射规则为:将每个数据段中的1等同于255,将0等同于0;按照特定的上色顺序依次将数据段中的0和255对应到RGB每个颜色通道中从而生成为特定的颜色;所述生成模块用于按照转换的颜色和Datamtrix编码规则里的填充规则填充色块生成二维码图像。
本发明还提供了一种矩阵式二维码的解码设备,包括二维码读取模块、过滤模块、定位模块、叠加模块、排序模块和解码模块。
所述二维码读取模块用于读取二维码图像;所述过滤模块用于通过RGB三个颜色通道依次过滤得到三个分别对应每个颜色通道的编码灰度图像;所述定位模块用于根据获得的灰度图像确定二维码图像的定位区和编码区;所述叠加模块用于根据解码映射规则将每个色块的颜色转化为一个包含三个二进制值的数据段,所述解码映射规则为:将灰度值接近0的等同于0,灰度值接近255的等同于1,按照特定的过滤顺序将色块的灰度值对应为由0和1构成的特定的数据段;所述排序模块用于根据数据段的排列顺序,将所有数据段依次取消分组形成完整的二进制的数据码流;所述解码模块用于根据Datamtrix解码规则中的相应规则将二进制的数据码流转换为源数据信息。
进一步地,还包括判断模块,用于对获得的二维码图像进行颜色判别,若二维码图像黑白二维码,则根据Datamatrix解码规则对二维码图像进行解码,得到源数据信息;若二维码图像为彩色二维码,则转向按照映射规则对二维码图像依次过滤获得对应每个颜色通道的二进制图像的步骤。
本发明中,Datamatrix编码规则和Datamatrix解码规则均为现有规则,故相应规则即为其中对应相应步骤的规则,其具体过程不再具体赘述。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (11)

  1. 矩阵式二维码,所述矩阵式二维码的图像由若干色块以矩形阵列方式排列构成,所述图像的边缘一圈色块构成定位区,其内部色块构成编码区;所述定位区包括“L”型边和与所述“L”型边相对的定位边,其特征在于:
    所述色块的颜色包括RGB三种标准色、CMYK四种标准色和白色共八种颜色中的至少三种颜色,
    所述定位边由通过RGB中任一颜色通道过滤后为黑色和通过同一颜色通道过滤后为白色的两种颜色的色块交替排列而成。
  2. 一种用于权利要求1所述的矩阵式二维码的生成方法,包括如下过程:
    读取源数据信息;
    根据Datamtrix编码规则中的相应规则将源数据信息转换为二进制的数据码流;
    其特征在于:
    还包括如下过程:
    将所述二进制的数据码流按三个值为一组依次进行分组得到若干数据段;
    按照编码映射规则将每个数据段转换为相应的颜色,所述编码映射规则为:将每个数据段中的1等同于255,将0等同于0;按照特定的上色顺序依次将数据段中的0和255对应到RGB每个颜色通道中从而生成为特定的颜色;
    按照转换的颜色和Datamtrix编码规则里的填充规则填充色块生成二维码图像。
  3. 根据权利要求2所述的生成方法,其特征在于:
    所述编码映射规则中,所述特定的上色顺序依次为红、绿、蓝时,数据段与每种颜色的对应关系为:
    000对应黑色,001对应蓝色,010对应绿色,011对应天青色,100对应红色,101对应品红色,110对应黄色,111对应白色。
  4. 一种用于权利要求1所述的矩阵式二维码的解码方法,包括如下过程:
    读取二维码图像;
    确定二维码图像的定位区和编码区;
    将所述编码区恢复为二进制的数据码流;
    根据Datamtrix解码规则中的相应规则将二进制的数据码流转换为源数据信息;
    其特征在于:
    所述确定二维码图像的定位区和编码区的过程为:
    通过RGB三个颜色通道依次过滤得到三个分别对应每个颜色通道的编码灰度图像,
    根据获得的灰度图像确定二维码图像的定位区和编码区;
    所述将所述编码区恢复为二进制的数据码流的过程为:
    根据解码映射规则将每个色块的颜色转化为一个包含三个二进制值的数据段,所述解码映射规则为:将灰度值接近0的等同于0,灰度值接近255的等同于1,按照特定的过滤顺序将色块的灰度值对应为由0和1构成的特定的数据段;
    根据数据段的排列顺序,将所有数据段依次取消分组形成完整的二进制的数据码流。
  5. 根据权利要求4所述的解码方法,其特征在于:
    所述解码映射规则中,所述特定的过滤顺序依次为红、绿、蓝时,每种颜色与数据段的对应关系为:
    黑色对应000,蓝色对应001,绿色对应010,天青色对应011,红色对应100,品红色对应101,黄色对应110,白色对应111。
  6. 根据权利要求4所述的解码方法,其特征在于:
    还包括如下过程:
    对获得的二维码图像进行颜色判别,若二维码图像黑白二维码,则根据Datamatrix解码规则对二维码图像进行解码,得到源数据信息;若二维码图像为彩色二维码,则转向根据映射规则将每个色块的颜色转化为一个包含三个二进制值的数据段的步骤。
  7. 根据权利要求6所述的解码方法,其特征在于:
    所述对获得的二维码图像进行颜色判别的过程为:
    若三个灰度图像中所有灰度值不为0的色块的灰度值均相等,则判别二维码图像为黑白二维码,否则为彩色二维码。
  8. 根据权利要求4至7任一所述的解码方法,其特征在于:
    所述根据获得的灰度图像确定二维码图像的定位区和编码区的过程为:
    分别对每个灰度图像进行Sobel算子卷积计算和hough变换确定二维码图像的定位区,定位区以内为二维码图像的编码区。
  9. 一种用于权利要求1所述的矩阵式二维码的生成设备,其特征在于,
    包括源数据信息读取模块、编码模块、分组模块、转换模块和生成模块;
    所述源数据信息读取模块用于读取源数据信息;
    所述编码模块用于根据Datamtrix编码规则中的相应规则将源数据信息转换为二进制的数据码流;
    所述分组模块用于将所述二进制的数据码流按三个值为一组依次进行分组得到若干数据 段,
    所述转换模块用于按照编码映射规则将每个数据段转换为相应的颜色,所述编码映射规则为:将每个数据段中的1等同于255,将0等同于0;按照特定的上色顺序依次将数据段中的0和255对应到RGB每个颜色通道中从而生成为特定的颜色;
    所述生成模块用于按照转换的颜色和Datamtrix编码规则里的填充规则填充色块生成二维码图像。
  10. 一种用于权利要求1所述的矩阵式二维码的解码设备,其特征在于:
    包括二维码读取模块、过滤模块、定位模块、叠加模块、排序模块和解码模块;
    所述二维码读取模块用于读取二维码图像;
    所述过滤模块用于通过RGB三个颜色通道依次过滤得到三个分别对应每个颜色通道的编码灰度图像;
    所述定位模块用于根据获得的灰度图像确定二维码图像的定位区和编码区;
    所述叠加模块用于根据解码映射规则将每个色块的颜色转化为一个包含三个二进制值的数据段,所述解码映射规则为:将灰度值接近0的等同于0,灰度值接近255的等同于1,按照特定的过滤顺序将色块的灰度值对应为由0和1构成的特定的数据段;
    所述排序模块用于根据数据段的排列顺序,将所有数据段依次取消分组形成完整的二进制的数据码流;
    所述解码模块用于根据Datamtrix解码规则中的相应规则将二进制的数据码流转换为源数据信息。
  11. 根据权利要求10所述的解码设备,其特征在于:
    还包括判断模块,用于对获得的二维码图像进行颜色判别,若二维码图像黑白二维码,则根据Datamatrix解码规则对二维码图像进行解码,得到源数据信息;若二维码图像为彩色二维码,则转向根据映射规则将每个色块的颜色转化为一个包含三个二进制值的数据段的步骤。
PCT/CN2019/080729 2019-03-13 2019-04-01 矩阵式二维码、其生成、解码方法及其设备 WO2020181592A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/634,696 US20220327302A1 (en) 2019-03-13 2019-04-01 Data matrix code, generating method and device thereof, and decoding method and device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910189002.2 2019-03-13
CN201910189002.2A CN109978111A (zh) 2019-03-13 2019-03-13 矩阵式二维码、其生成、解码方法及其设备

Publications (1)

Publication Number Publication Date
WO2020181592A1 true WO2020181592A1 (zh) 2020-09-17

Family

ID=67078757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080729 WO2020181592A1 (zh) 2019-03-13 2019-04-01 矩阵式二维码、其生成、解码方法及其设备

Country Status (3)

Country Link
US (1) US20220327302A1 (zh)
CN (1) CN109978111A (zh)
WO (1) WO2020181592A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110795956A (zh) * 2019-11-05 2020-02-14 北京意锐新创科技有限公司 适应于安卓系统的彩色二维码检测方法和装置
CN111147854A (zh) * 2019-12-25 2020-05-12 江苏提米智能科技有限公司 一种基于颜色的大容量数据图像编码及解码方法
CN112580763A (zh) * 2020-12-23 2021-03-30 慧鼎宏成(海南)科技有限公司 一种新式二维码系统
CN113239712A (zh) * 2021-04-27 2021-08-10 上海深豹智能科技有限公司 一种二维码高速解码方法及系统
CN113673268B (zh) * 2021-08-11 2023-11-14 广州爱格尔智能科技有限公司 一种用于不同亮度下的识别方法、系统及设备
CN113807479A (zh) * 2021-08-11 2021-12-17 深圳市升达康科技有限公司 Pcb板的追溯方法、追溯识别方法及pcb板
CN113691528B (zh) * 2021-08-23 2023-06-27 维沃移动通信有限公司 二维码处理方法、装置及电子设备
CN113988246B (zh) * 2021-11-08 2024-04-19 北京中馨智信科技有限公司 曲面二维码、曲面二维码生成方法以及曲面容器
CN114254719B (zh) * 2021-12-17 2022-11-22 广州市宝绅科技应用有限公司 一种防伪二维码的生成方法及装置
CN114399010A (zh) * 2021-12-29 2022-04-26 中国电信股份有限公司 一种二维码编码、解码方法、装置、设备及介质
CN114998454B (zh) * 2022-05-09 2023-05-16 西南交通大学 一种动态多色码的生成、解析方法
CN115083057A (zh) * 2022-07-19 2022-09-20 奇痕网络科技(上海)有限公司 一种注册核酸码照片登记信息快速处理的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070046961A1 (en) * 2005-08-23 2007-03-01 Canon Kabushiki Kaisha Image processing apparatus and method therefor
CN102194091A (zh) * 2010-03-09 2011-09-21 刘建生 隐形二维码的编码方法、印刷品、及识读方法
CN102968654A (zh) * 2012-10-26 2013-03-13 吴东杰 在二维码所占平面内实现肉眼可识别信息的制作方法、系统及二维码
CN105426945A (zh) * 2015-11-20 2016-03-23 区华威 智能图形识别二维码的编码系统及方法、解码系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8186572B2 (en) * 2009-07-02 2012-05-29 Barcode Graphics Inc. Systems and methods for animating barcodes
CN104715222A (zh) * 2015-04-02 2015-06-17 矽照光电(厦门)有限公司 一种灰色二维码的识别方法与识别装置
CN104778440B (zh) * 2015-05-06 2017-11-10 矽照光电(厦门)有限公司 彩色二维码的识别方法与识别装置
CN106022431B (zh) * 2016-05-18 2022-05-03 北京鼎九信息工程研究院有限公司 颜色标识型彩色二维图码的生成、识读方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070046961A1 (en) * 2005-08-23 2007-03-01 Canon Kabushiki Kaisha Image processing apparatus and method therefor
CN102194091A (zh) * 2010-03-09 2011-09-21 刘建生 隐形二维码的编码方法、印刷品、及识读方法
CN102968654A (zh) * 2012-10-26 2013-03-13 吴东杰 在二维码所占平面内实现肉眼可识别信息的制作方法、系统及二维码
CN105426945A (zh) * 2015-11-20 2016-03-23 区华威 智能图形识别二维码的编码系统及方法、解码系统及方法

Also Published As

Publication number Publication date
CN109978111A (zh) 2019-07-05
US20220327302A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
WO2020181592A1 (zh) 矩阵式二维码、其生成、解码方法及其设备
CN103177279B (zh) 用于高容量数据编解码的四维彩色条形码
CN104657698B (zh) 一种可承载多幅黑白二维码的彩色二维码编解码方法
CN105426945B (zh) 智能图形识别二维码的编码系统及方法、解码系统及方法
EP2122534B1 (en) Multiple resolution readable color array
CN105574572A (zh) 一种彩色二维码及其生成方法
JP2008027029A (ja) 光学式シンボル及びそれが付された物品並びに光学式シンボルを物品に付す方法及び光学式シンボルのデコード方法。
CN106022431A (zh) 颜色标识型彩色二维图码的生成、识读方法及装置
EP2544128A1 (en) Method for creating and method for decoding two-dimensional colour code
CN104794518A (zh) 彩色二维码的生成方法与生成装置
CN106022430A (zh) 合成型彩色二维图码的生成、识读方法及装置
CN111046996A (zh) 一种彩色qr码生成和识别方法
CN110276428A (zh) 一种四维码编码及解码方法
CN1770177A (zh) 编码高密度几何符号集的系统和方法
CN104778440A (zh) 彩色二维码的识别方法与识别装置
CN102741864A (zh) 多层快速响应码图像编码、解码方法和编码、解码装置
CN111147854A (zh) 一种基于颜色的大容量数据图像编码及解码方法
CN105160378B (zh) 一种彩色隐形图像码生成方法
CN104933386B (zh) 多灰阶隐形二维码的识别方法
CN109214486B (zh) 三维码、三维码的生成方法和装置、识别方法和装置
CN104608469A (zh) 胶印版及其制作方法、以及应用一维条形码的方法
CN103700120A (zh) 一种基于rgb彩色编码的数据存储方法
CN104850817B (zh) 彩色高阶隐形图像码的识别装置
US9836634B2 (en) Ultraviolet fluorescent barcode reading method and device
CN113935448A (zh) 一种双通道彩色qr码编/解码方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918851

Country of ref document: EP

Kind code of ref document: A1