WO2020181463A1 - 微流控芯片和使用微流控芯片的检测方法 - Google Patents

微流控芯片和使用微流控芯片的检测方法 Download PDF

Info

Publication number
WO2020181463A1
WO2020181463A1 PCT/CN2019/077687 CN2019077687W WO2020181463A1 WO 2020181463 A1 WO2020181463 A1 WO 2020181463A1 CN 2019077687 W CN2019077687 W CN 2019077687W WO 2020181463 A1 WO2020181463 A1 WO 2020181463A1
Authority
WO
WIPO (PCT)
Prior art keywords
microfluidic chip
microchannel
microcavity
microchannel plate
photocathode
Prior art date
Application number
PCT/CN2019/077687
Other languages
English (en)
French (fr)
Inventor
崔皓辰
李建
赵莹莹
姚文亮
蔡佩芝
耿越
古乐
庞凤春
肖月磊
廖辉
赵楠
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN201980000267.1A priority Critical patent/CN110073216A/zh
Priority to US16/644,904 priority patent/US20210229092A1/en
Priority to PCT/CN2019/077687 priority patent/WO2020181463A1/zh
Publication of WO2020181463A1 publication Critical patent/WO2020181463A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/26Image pick-up tubes having an input of visible light and electric output
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50857Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates using arrays or bundles of open capillaries for holding samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/535Production of labelled immunochemicals with enzyme label or co-enzymes, co-factors, enzyme inhibitors or enzyme substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/168Specific optical properties, e.g. reflective coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • G01N21/6454Individual samples arranged in a regular 2D-array, e.g. multiwell plates using an integrated detector array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/581Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with enzyme label (including co-enzymes, co-factors, enzyme inhibitors or substrates)

Definitions

  • the embodiment of the present disclosure relates to a microfluidic chip and a detection method using the microfluidic chip.
  • a microfluidic chip is a device that can manipulate or detect fluids at the micrometer scale.
  • the microfluidic chip has the ability to shrink the basic functions of biology, chemistry and other laboratories onto a chip of a few square centimeters, so it is also called a laboratory on a chip.
  • the microfluidic chip includes microchannels, and the microchannels can form a network, so that the fluid can be controlled to flow in the network formed by the microchannels to realize various functions of conventional chemical or biological laboratories. Therefore, the microfluidic chip has the advantages of small size, portability, flexible combination of functions, and high integration.
  • Biochemiluminescence (BCL) detection technology is a commonly used technique in biological and chemical detection.
  • the biochemiluminescence detection technology is based on the principle that the concentration of the analyte in the chemical detection system and the chemiluminescence intensity of the system are linear and quantitative under certain conditions.
  • the chemiluminescence intensity of the system can be detected to determine the content of the analyte A quantitative analysis method.
  • the embodiments of the present disclosure provide a microfluidic chip and a detection method using the microfluidic chip.
  • the microfluidic chip includes: at least one microcavity; a photocathode, on one side of the at least one microcavity and configured to receive photons emitted in the microcavity and generate electrons; a microchannel plate, in the light A cathode away from the side of the microcavity and configured to multiply the electrons generated by the photocathode; and a first electrode located on the side of the microchannel plate away from the photocathode, the microchannel plate including approximately A plurality of microchannels extending along the thickness direction of the microchannel plate, the inner wall of each microchannel is provided with a secondary electron emission layer, and the first electrode is configured to detect electrons multiplied by the microchannel plate.
  • the microfluidic chip can convert the photons generated in the microcavity into electrons through the photocathode, and then multiply the electrons through the microchannel plate, thereby amplifying the optical signal generated by the biochemiluminescence reaction in the microcavity , So as to achieve qualitative or quantitative detection.
  • the microchannel plate can be manufactured using the manufacturing equipment and process of the liquid crystal display panel, the cost is low, so that the cost of the microfluidic chip can be reduced.
  • At least one embodiment of the present disclosure provides a microfluidic chip, which includes: at least one microcavity; a photocathode, on one side of the at least one microcavity and configured to receive photons emitted in the microcavity and generate Electrons; a microchannel plate on the side of the photocathode away from the microcavity and configured to multiply the electrons generated by the photocathode; and a first electrode located on the microchannel plate away from the photocathode
  • the microchannel plate includes a plurality of microchannels extending substantially along the thickness direction of the microchannel plate, the inner wall of each microchannel is provided with a secondary electron emission layer, and the first electrode is configured to detect The microchannel plate multiplies electrons.
  • the cross-sectional size of each microchannel is in the range of 20-40 microns, and the length of each microchannel is in the range of 0.6-2.4 mm.
  • the ratio of the length of each microchannel to the cross-sectional dimension of each microchannel is in the range of 30-60.
  • the at least one microcavity includes a plurality of the microcavities
  • the first electrode includes a plurality of sub-first electrodes
  • the plurality of microcavities and the The first sub-electrodes are arranged in one-to-one correspondence.
  • the ratio of the total volume of the plurality of microchannels to the volume of the microchannel substrate ranges from 60% to 80%.
  • a plurality of the microchannels are evenly distributed.
  • the cross-sectional shape of each microchannel includes at least one of a circle, a regular hexagon and a regular octagon.
  • the microfluidic chip provided by an embodiment of the present disclosure further includes: a second electrode located on the side of the microchannel plate close to the photocathode, and the second electrode is configured to be loaded with a negative voltage.
  • the material of the photocathode includes at least one of gallium nitride, gallium arsenide, and gallium indium phosphide.
  • the material of the secondary electron emission layer includes alumina.
  • the material of the microchannel plate includes glass.
  • At least one embodiment of the present disclosure also provides a detection method using the above-mentioned microfluidic chip, which includes: placing a detection reagent in the microcavity; using a luminescent agent to modify the substance to be detected; The substance to be detected is introduced into the microcavity to react with the detection reagent; a luminescent substrate is introduced into the microcavity so that the luminescent agent emits light; and the first electrode detects the electrons multiplied by the microchannel plate.
  • the detection reagent includes a capture antibody in an immune response
  • the substance to be detected includes an antigen or antibody corresponding to the capture antibody in a blood or urine sample.
  • the luminescent agent includes luminol.
  • the luminescent substrate includes horseradish peroxidase.
  • Fig. 1 is a schematic structural diagram of a microfluidic chip according to an embodiment of the present disclosure
  • FIG. 2A is a schematic structural diagram of another microfluidic chip provided according to an embodiment of the present disclosure.
  • FIG. 2B is a schematic structural diagram of another microfluidic chip provided according to an embodiment of the present disclosure.
  • Fig. 3A is a three-dimensional schematic diagram of a microchannel plate provided according to an embodiment of the present disclosure
  • FIG. 3B is a schematic plan view of a microchannel plate according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic structural diagram of another microfluidic chip according to an embodiment of the present disclosure.
  • Fig. 5 is a flowchart of a detection method using a microfluidic chip according to an embodiment of the present disclosure.
  • Chemiluminescence immunoassay technology uses chemiluminescent agents to directly label antigens or antibodies; because after the immune reaction occurs, the chemiluminescent substance is catalyzed by a catalyst and oxidized by an oxidant to form an excited intermediate. When the intermediate of this excited state When the body returns to a stable ground state, it emits photons at the same time. Chemiluminescence immunoassay technology can realize quantitative analysis of immune response by detecting the amount of luminescence.
  • the embodiments of the present disclosure provide a microfluidic chip and a detection method using the microfluidic chip.
  • the microfluidic chip includes: at least one microcavity; a photocathode, on one side of the at least one microcavity and configured to receive photons emitted in the microcavity and generate electrons; a microchannel plate, in the light A cathode away from the side of the microcavity and configured to multiply the electrons generated by the photocathode; and a first electrode located on the side of the microchannel plate away from the photocathode, the microchannel plate including approximately A plurality of microchannels extending along the thickness direction of the microchannel plate, the inner wall of each microchannel is provided with a secondary electron emission layer, and the first electrode is configured to detect electrons multiplied by the microchannel plate.
  • the microfluidic chip can convert the photons generated in the microcavity into electrons through the photocathode, and then multiply the electrons through the microchannel plate, thereby amplifying the optical signal generated by the biochemiluminescence reaction in the microcavity , So as to achieve qualitative or quantitative detection.
  • the microchannel plate can be manufactured using the manufacturing equipment and process of the liquid crystal display panel, the cost is low, so that the cost of the microfluidic chip can be reduced.
  • FIG. 1 is a schematic structural diagram of a microfluidic chip provided according to an embodiment of the present disclosure.
  • the microfluidic chip includes at least one microcavity 110, a photocathode 120, a microchannel plate 130 and a first electrode 140.
  • the microcavity 110 can be used to perform a chemiluminescence reaction on an object to be detected.
  • the photocathode 120 is arranged on one side of the at least one microcavity 110 and is configured to receive photons emitted from the microcavity 110 and generate electrons; the microchannel plate 130 is arranged on the side of the photocathode 120 away from the microcavity 110 and is configured to The electrons generated by the photocathode 110 are multiplied; the first electrode 140 is located on the side of the microchannel plate 130 away from the photocathode 130.
  • the microchannel plate 130 includes a plurality of microchannels 132 extending substantially along the thickness direction of the microchannel plate 130.
  • the inner wall of the channel 132 is provided with a secondary electron emission layer 134, and the first electrode 140 is configured to detect electrons multiplied by the microchannel plate 130.
  • FIG. 1 is a schematic cross-sectional view taken along the extension direction of the microcavity. Therefore, FIG. 1 only shows one microcavity 110.
  • the embodiments of the present disclosure include but are not limited to this.
  • the microfluidic chip may Includes multiple microcavities.
  • an object to be detected and a detection reagent can be placed, and a luminescent agent can be added; when the object to be detected reacts with the detection reagent, it undergoes catalysis. Or the oxidized luminescent agent will emit photons; at this time, the photocathode can receive the photons emitted in the microcavity and generate electrons (photoelectrons); because the microchannel plate includes a plurality of microchannels extending roughly along the thickness direction of the microchannel plate, and The inner wall of each microchannel is provided with a secondary electron emission layer, which has a secondary emission coefficient greater than 1.
  • each microchannel After the electrons generated by the photocathode collide with the inner wall of the microchannel, the number of secondary electrons emitted by the inner wall of the microchannel is increased; after many collisions, a microchannel plate may be produced photocathode electron multiplication, for example, the multiplier 105 times; and then the first electrode may be easily detected by microchannel plate electron multiplier. Therefore, each microchannel can be regarded as an independent electron multiplier.
  • the microfluidic chip can convert the photons generated in the microcavity into electrons through the photocathode, and then multiply the electrons through the microchannel plate, thereby The weak light signal generated by the biochemiluminescence reaction in the microcavity is amplified, thereby realizing the qualitative or quantitative detection of the object to be detected.
  • the microfluidic chip integrates the microchannel plate for optical signal amplification and the microcavity, thereby improving the integration of the microfluidic chip and increasing portability, thereby increasing the application scenarios of the microfluidic chip.
  • the microchannel plate can form a plurality of microchannels through an etching process on a substrate (such as a glass substrate), and form a secondary electron emission layer on the inner wall of the microchannel through an atomic deposition process.
  • a substrate such as a glass substrate
  • the above-mentioned etching process and The cost of the atomic deposition process is relatively low, so the manufacturing cost of the microchannel plate is low.
  • the microchannel plate can also be manufactured by using the manufacturing equipment and technology of the liquid crystal display panel, so that the cost of the microfluidic chip can be further reduced.
  • this embodiment describes an exemplary process of reaction and photon generation in the microcavity; however, the embodiments of the present disclosure include but are not limited to this, The process of generating photons in the microcavity can also be of other types.
  • the microfluidic chip further includes an upper cover plate 181 on the side of the microcavity 110 away from the photocathode 120 and a lower cover plate 182 on the side of the first electrode 140 away from the microchannel plate 130. , So as to protect the microfluidic chip.
  • Fig. 2A is a schematic structural diagram of another microfluidic chip provided according to an embodiment of the present disclosure
  • Fig. 2B is a schematic structural diagram of another microfluidic chip provided according to an embodiment of the present disclosure.
  • the microfluidic chip further includes a second electrode 150, which is located on the side of the microchannel plate 130 close to the photocathode 120, and is configured to apply a negative voltage.
  • the second electrode 150 can form a negative electric field, that is, the direction of the electric field is from the microchannel plate 130 to the microcavity 110, so that electrons generated by the photocathode 120 can enter the microchannel 132 of the microchannel plate 130 at a certain angle and at a higher speed.
  • the second electrode 150 may be a continuous electrode.
  • the second electrode 150 may also be an electrode including a plurality of via holes 152, and the plurality of via holes 152 are arranged in one-to-one correspondence with the plurality of microchannels 132 in the microchannel plate 130, that is, a plurality of via
  • the orthographic projection of 152 on the microchannel plate 130 overlaps with the plurality of microchannels 132, thereby reducing the obstruction to electrons under the premise of generating an electric field.
  • the material of the second electrode may be indium tin oxide (ITO).
  • ITO indium tin oxide
  • the embodiments of the present disclosure include but are not limited to this.
  • the material of the photocathode includes gallium nitride, gallium arsenide, or gallium indium phosphide.
  • the embodiments of the present disclosure include but are not limited to this.
  • the material of the secondary electron emission layer includes aluminum oxide.
  • the embodiments of the present disclosure include but are not limited to this.
  • the material of the microchannel plate includes glass, so that the cost of the microchannel plate can be reduced.
  • the embodiments of the present disclosure include but are not limited thereto, and the material of the microchannel plate may also be alumina ceramic.
  • the microchannel plate, the number of microchannels range of 10 5 to 106, e.g., 106.
  • the ratio of the length of each microchannel to the cross-sectional dimension of each microchannel is in the range of 30-60. Since the length of the microchannel is much larger than the cross-sectional size of the microchannel, the electrons generated by the photocathode will collide back and forth between the inner walls of the microchannel, thereby being multiplied many times, thus ensuring that the microchannel plate can remove the electrons generated by the photocathode Doubled by 10 4 -10 6 times. It should be noted that the cross-sectional size of the microchannel mentioned above refers to the maximum size of the cross-section of the microchannel.
  • the cross-sectional size of the microchannel is the diameter of the circle;
  • the size of the cross section of the microchannel is the diameter of the circumscribed circle of the regular polygon.
  • the scope of cross-sectional dimension of each microchannel 20 to 40 microns, length of each microchannel is from 0.6 to 2.4 mm, thereby ensuring the microchannel plate electron photocathode can be generated by multiplying 104 -10 6 times.
  • the cross-sectional size of the aforementioned microcavity is compatible with the manufacturing equipment and process of the liquid crystal display panel, which facilitates the reduction of the manufacturing cost.
  • the ratio of the sum of the volume of the multiple microchannels to the volume of the microchannel substrate ranges from 60% to 80%, that is, on the surface of the microchannel plate, the The ratio of the sum of the area of the microchannel plate to the surface area of the microchannel plate ranges from 60% to 80%.
  • it can ensure that the microchannel plate has a certain strength, and on the other hand, it can make the microchannel plate have a higher multiplication effect on electrons.
  • FIG. 3A is a three-dimensional schematic diagram of a micro-channel plate provided according to an embodiment of the present disclosure
  • FIG. 3B is a schematic plan view of a micro-channel plate provided according to an embodiment of the present disclosure.
  • a plurality of microchannels 132 are evenly distributed, so as to ensure the uniformity of the electron multiplication effect of the entire microchannel plate 130.
  • the microchannel plate has the same multiplication effect on the optical signals generated in different microcavities.
  • the cross-sectional shape of each microchannel includes a circle, a regular hexagon, and a regular octagon. As shown in FIG. 3B, when the cross-sectional shape of each microchannel is a regular hexagon, the arrangement of multiple microchannels can be made closer, and the ratio of the sum of the volume of the multiple microchannels to the volume of the microchannel substrate is higher.
  • the angle between the extension direction of the microchannel and the normal of the microchannel plate is less than 8 degrees.
  • Fig. 4 is a schematic plan view of a microfluidic chip according to an embodiment of the present disclosure.
  • the microfluidic chip includes a plurality of microcavities 110, that is, the aforementioned at least one microcavity 110 includes a plurality of microcavities 110.
  • FIG. 4 shows four microcavities 110, but the number of microcavities in the embodiment of the present disclosure includes but is not limited to four.
  • the first electrode 140 includes a plurality of sub-first electrodes 142, and the plurality of microcavities 110 and the plurality of sub-first electrodes 142 are arranged in one-to-one correspondence.
  • the microfluidic chip can realize multiple detection functions at the same time.
  • FIG. 5 is a flowchart of a detection method using a microfluidic chip according to an embodiment of the present disclosure. As shown in Fig. 5, the detection method includes the following steps S501-S505.
  • Step S501 placing a detection reagent in the microcavity
  • Step S502 Use a luminescent agent to modify the substance to be detected
  • Step S503 Pass the substance to be detected modified with the luminescent agent into the microcavity to react with the detection reagent;
  • Step S504 Pass a luminescent substrate into the microcavity to make the luminescent agent emit light
  • Step S505 The first electrode detects the electrons multiplied by the microchannel plate.
  • the substance to be detected modified with the luminescent agent reacts with the detection reagent, and the luminescent substrate makes the luminescent agent emit light (for example, the luminescent agent is made to emit light through catalysis and oxidation.
  • the photocathode can receive the photons emitted in the microcavity and generate electrons; because the microchannel plate includes a plurality of microchannels extending substantially along the thickness direction of the microchannel plate, and the inner wall of each microchannel is provided with a secondary
  • the electron emission layer has a secondary emission coefficient greater than 1.
  • the detection method can use the microfluidic chip to amplify the weak light signal generated by the biochemiluminescence reaction in the microcavity, so as to realize the qualitative or quantitative detection of the object to be detected.
  • the aforementioned detection reagent includes a capture antibody in an immune response
  • the substance to be detected includes an antigen or antibody corresponding to the capture antibody in a blood or urine sample.
  • the aforementioned detection reagent includes bovine globulin G
  • the substance to be detected includes goat anti-bovine immunoglobulin G.
  • the embodiments of the present disclosure include but are not limited to this.
  • the luminescent agent includes luminol.
  • the luminescent substrate includes horseradish peroxidase.
  • An embodiment of the present disclosure also provides a manufacturing method of the microfluidic chip.
  • the manufacturing method includes: forming at least one microcavity; forming a photocathode on one side of the at least one microcavity, the photocathode being configured to receive photons emitted in the microcavity and generating electrons; and on the side of the photocathode away from the microcavity
  • a microchannel plate is formed, the microchannel plate is configured to multiply electrons generated by the photocathode; and a first electrode is formed on the side of the microchannel plate away from the photocathode, and the microchannel plate includes a plurality of channels extending substantially along the thickness direction of the microchannel plate. Two microchannels, the inner wall of each microchannel is provided with a secondary electron emission layer, and the first electrode is configured to detect electrons multiplied by the microchannel plate.
  • the manufacturing method further includes: forming a microchannel plate on the side of the photocathode away from the microcavity, including: preparing the microchannel plate; and forming the microchannel plate on the side of the photocathode away from the microcavity.
  • preparing the microchannel plate includes: providing a glass substrate; forming a plurality of microchannels on the glass substrate using an etching process; and forming a secondary electron emission layer on the inner wall of the microchannel using an atomic deposition process. Therefore, the microchannel plate can form a plurality of microchannels by using a substrate (for example, a glass substrate) through an etching process, and form a secondary electron emission layer on the inner wall of the microchannel through an atomic deposition process.
  • the cost of the deposition process is relatively low, therefore, the manufacturing cost of the microchannel plate is relatively low.
  • the microchannel plate can also be manufactured by using the manufacturing equipment and process of the liquid crystal display panel, so that the cost of the microfluidic chip can be further reduced.
  • using an etching process to form multiple microchannels on a glass substrate includes: coating a photoresist on the glass substrate; using an exposure machine to expose the photoresist pattern to form a A photoresist pattern; etching the glass substrate with the photoresist pattern as a mask to form a plurality of microchannels; and removing the photoresist pattern.

Abstract

一种微流控芯片和使用微流控芯片的检测方法。该微流控芯片包括:至少一个微腔;光阴极,在至少一个微腔的一侧并被配置为接收微腔中发出的光子并产生电子;微通道板,在光阴极远离微腔的一侧并被配置为将光阴极产生的电子倍增;以及第一电极,位于微通道板远离光阴极的一侧,微通道板包括大致沿微通道板的厚度方向延伸的多个微通道,各微通道内壁设置有二次电子发射层,第一电极被配置为检测被微通道板倍增的电子。由此,该微流控芯片可对微腔中的生物化学发光反应所产生的光信号进行放大,从而实现定性或定量检测。并且,该微流控芯片的成本较低。

Description

微流控芯片和使用微流控芯片的检测方法 技术领域
本公开的实施例涉及一种微流控芯片和使用微流控芯片的检测方法。
背景技术
微流控芯片是一种可在微米尺度对流体进行操控或检测的装置。微流控芯片具有将生物、化学等实验室的基本功能微缩到一个几平方厘米的芯片上的能力,因此又被称芯片实验室。通常,微流控芯片包括微通道,并可使微通道构成一个网络,从而可通过控制流体在微通道构成的网络中流动,以实现常规化学或生物等实验室的各种功能。因此,微流控芯片具有尺寸小、便携、功能可灵活组合、和集成度高等优势。
生物化学发光(Biochemiluminescence,BCL)检测技术是一种在生物、化学检测中常用的技术手段。生物化学发光检测技术基于化学检测体系中待测物浓度与该体系的化学发光强度在一定条件下呈线性定量关系的原理,可通过对该体系的化学发光强度进行检测来确定待测物含量的一种定量分析方法。
发明内容
本公开实施例提供一种微流控芯片和使用微流控芯片的检测方法。该微流控芯片包括:至少一个微腔;光阴极,在所述至少一个微腔的一侧并被配置为接收所述微腔中发出的光子并产生电子;微通道板,在所述光阴极远离所述微腔的一侧并被配置为将所述光阴极产生的电子倍增;以及第一电极,位于所述微通道板远离所述光阴极的一侧,所述微通道板包括大致沿所述微通道板的厚度方向延伸的多个微通道,各所述微通道内壁设置有二次电子发射层,所述第一电极被配置为检测被所述微通道板倍增的电子。由此,该微流控芯片可通过光阴极将微腔中产生的光子转化为电子,然后通过微通道板将电子倍增,从而可对微腔中的生物化学发光反应所产生的光信号进行放大,从而实现定性或定量检测。并且,由于微通道板可采用液晶显示面板的制作设备和工艺进行制作,成本较低,从而可降低该微流控芯片的成本。
本公开至少一个实施例提供一种微流控芯片,其包括:至少一个微腔;光 阴极,在所述至少一个微腔的一侧并被配置为接收所述微腔中发出的光子并产生电子;微通道板,在所述光阴极远离所述微腔的一侧并被配置为将所述光阴极产生的电子倍增;以及第一电极,位于所述微通道板远离所述光阴极的一侧,所述微通道板包括大致沿所述微通道板的厚度方向延伸的多个微通道,各所述微通道内壁设置有二次电子发射层,所述第一电极被配置为检测被所述微通道板倍增的电子。
例如,在本公开一实施例提供的微流控芯片中,各所述微通道的横截面尺寸的范围为20-40微米,各所述微通道的长度范围为0.6-2.4毫米。
例如,在本公开一实施例提供的微流控芯片中,各所述微通道的长度与各所述微通道的横截面尺寸的比值范围为30-60。
例如,在本公开一实施例提供的微流控芯片中,所述至少一个微腔包括多个所述微腔,所述第一电极包括多个子第一电极,多个所述微腔与多个所述子第一电极一一对应设置。
例如,在本公开一实施例提供的微流控芯片中,多个所述微通道的体积之和与所述微通道基板的体积之比的范围为60%-80%。
例如,在本公开一实施例提供的微流控芯片中,多个所述微通道均匀分布。
例如,在本公开一实施例提供的微流控芯片中,各所述微通道的横截面形状包括圆形、正六边形和正八边形中的至少之一。
例如,本公开一实施例提供的微流控芯片还包括:第二电极,位于所述微通道板靠近所述光阴极的一侧,所述第二电极被配置为加载负电压。
例如,在本公开一实施例提供的微流控芯片中,所述光阴极的材料包括氮化镓、砷化镓、和磷化镓铟中的至少之一。
例如,在本公开一实施例提供的微流控芯片中,所述二次电子发射层的材料包括氧化铝。
例如,在本公开一实施例提供的微流控芯片中,所述微通道板的材料包括玻璃。
本公开至少一个实施例还提供一种使用上述微流控芯片的检测方法,其包括:在所述微腔中放置检测试剂;采用发光剂对待检测物质进行修饰;将修饰有所述发光剂的待检测物质通入所述微腔与所述检测试剂反应;在所述微腔通入发光底物,以使所述发光剂发光;以及所述第一电极检测被微通道板倍增的电子。
例如,在本公开一实施例提供的检测方法中,所述检测试剂包括免疫反应中的捕获抗体,所述待检测物质包括血液或尿液样本中与所述捕获抗体对应的抗原或抗体。
例如,在本公开一实施例提供的检测方法中,所述发光剂包括鲁米诺。
例如,在本公开一实施例提供的检测方法中,所述发光底物包括辣根过氧化酶。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为根据本公开一实施例提供的一种微流控芯片的结构示意图;
图2A为根据本公开一实施例提供的另一种微流控芯片的结构示意图;
图2B为根据本公开一实施例提供的另一种微流控芯片的结构示意图;
图3A为根据本公开一实施例提供的一种微通道板的立体示意图;
图3B为根据本公开一实施例提供的一种微通道板的平面示意图;
图4为根据本公开一实施例提供的另一种微流控芯片的结构示意图;以及
图5为根据本公开一实施例提供的一种使用微流控芯片的检测方法的流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或 者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
在生物化学发光检测领域中,应用最广泛的是化学发光免疫分析技术(CLIA)。化学发光免疫分析技术是使用化学发光剂直接标记抗原或抗体;由于当免疫反应发生后,化学发光物质经催化剂的催化和氧化剂的氧化,形成一个激发态的中间体,当这种激发态的中间体回到稳定的基态时,会同时发射出光子。化学发光免疫分析技术可通过检测发光量来实现对免疫反应定量分析。然而,在很多应用场景中,由于化学发光免疫反应的光信号很弱,发光量较小,因此需要使用昂贵的光电倍增管来对光信号进行放大,从而导致使用化学发光免疫分析技术的整个系统成本高昂,不利于推广和使用。
对此,本公开实施例提供一种微流控芯片和使用微流控芯片的检测方法。该微流控芯片包括:至少一个微腔;光阴极,在所述至少一个微腔的一侧并被配置为接收所述微腔中发出的光子并产生电子;微通道板,在所述光阴极远离所述微腔的一侧并被配置为将所述光阴极产生的电子倍增;以及第一电极,位于所述微通道板远离所述光阴极的一侧,所述微通道板包括大致沿所述微通道板的厚度方向延伸的多个微通道,各所述微通道内壁设置有二次电子发射层,所述第一电极被配置为检测被所述微通道板倍增的电子。由此,该微流控芯片可通过光阴极将微腔中产生的光子转化为电子,然后通过微通道板将电子倍增,从而可对微腔中的生物化学发光反应所产生的光信号进行放大,从而实现定性或定量检测。并且,由于微通道板可采用液晶显示面板的制作设备和工艺进行制作,成本较低,从而可降低该微流控芯片的成本。
下面,结合附图对本公开实施例提供的微流控芯片和使用微流控芯片的检测方法进行详细的说明。
本公开一实施例提供一种微流控芯片。图1为根据本公开一实施例提供的一种微流控芯片的结构示意图。如图1所示,该微流控芯片包括至少一个微腔110、光阴极120、微通道板130以及第一电极140。微腔110可用于对待检测物进行化学发光反应。光阴极120设置在至少一个微腔110的一侧,并被配置为接收微腔110中发出的光子并产生电子;微通道板130设置在光阴极120远离微腔110的一侧并被配置为将光阴极110产生的电子倍增;第一电极140位于微通道板130远离光阴极130的一侧,微通道板130包括大致沿微通道板130的厚度方向延伸的多个微通道132,各微通道132内壁设置有二次电子发射层 134,第一电极140被配置为检测被微通道板130倍增的电子。需要说明的是,图1为沿微腔的延伸方向所截得的剖面示意图,因此图1仅示出了一个微腔110,但本公开实施例包括但不限于此,该微流控芯片可包括多个微腔。
在本公开实施例提供的微流控芯片中,在上述的至少一个微腔中,可放入待检测物和检测试剂,并加入发光剂;当待检测物与检测试剂发生反应时,经过催化或者氧化的发光剂会发出光子;此时,光阴极可接收微腔中发出的光子并产生电子(光电子);由于微通道板包括大致沿微通道板的厚度方向延伸的多个微通道,并且各微通道内壁设置有二次电子发射层,其具有大于1的二次发射系数,光阴极产生的电子在碰撞微通道的内壁之后,微通道内壁发射出的二次电子数量上得到增加;经过多次碰撞之后,微通道板可将光阴极产生的电子倍增,例如,倍增10 5倍;然后第一电极可容易检测到被微通道板倍增的电子。由此,每个微通道都可以视为一个独立的电子倍增器,该微流控芯片可通过光阴极将微腔中产生的光子转化为电子,然后通过微通道板将电子倍增,从而可对微腔中的生物化学发光反应所产生的微弱的光信号进行放大,从而实现对待检测物的定性或定量检测。另外,该微流控芯片将实现光信号放大的微通道板与微腔集成为一体,从而可提高微流控芯片的集成度,增加便携性,从而增加的该微流控芯片的应用场景。另一方面,微通道板可通过将一块基板(例如玻璃基板)通过刻蚀工艺形成多个微通道,并通过原子沉积工艺在微通道的内壁形成二次电子发射层,上述的刻蚀工艺和原子沉积工艺的成本相对较低,因此,该微通道板的制作成本较低。并且,该微通道板还可采用液晶显示面板的制作设备和工艺进行制作,从而可进一步降低该微流控芯片的成本。需要说明的是,为了更好地说明本实施例提供的微流控芯片,本实施例描述了微腔中发生反应并产生光子的示例性过程;然而,本公开实施例包括但不限于此,微腔中产生光子的过程也可为其他类型。
例如,如图1所示,该微流控芯片还包括位于微腔110远离光阴极120的一侧的上盖板181以及位于第一电极140远离微通道板130的一侧的下盖板182,从而对该微流控芯片进行保护。
图2A为根据本公开一实施例提供的另一种微流控芯片的结构示意图;图2B为根据本公开一实施例提供的另一种微流控芯片的结构示意图。如图2A和2B所示,该微流控芯片还包括第二电极150,位于微通道板130靠近光阴极120的一侧,并被配置为加载负电压。第二电极150可形成负电场,即电场的 方向是从微通道板130到微腔110,使得光阴极120产生电子可以一定的角度并具有较高的速度入射进入微通道板130的微通道132中,并撞击微通道132的内壁的二次电子发射层134,从而确保微通道板可将光阴极产生的电子倍增。
例如,如图2A所示,第二电极150可为连续的电极。如图2B所示,第二电极150也可为包括多个过孔152的电极,多个过孔152与微通道板130中的多个微通道132一一对应设置,即,多个过孔152在微通道板130上的正投影与多个微通道132重叠,从而在产生电场的前提下,减小对电子的阻碍。
例如,第二电极的材料可为氧化铟锡(ITO)。当然,本公开实施例包括但不限于此。
例如,在一些示例中,光阴极的材料包括氮化镓、砷化镓、或磷化镓铟。当然,本公开实施例包括但不限于此。
例如,在一些示例中,二次电子发射层的材料包括氧化铝。当然,本公开实施例包括但不限于此。
例如,在一些示例中,微通道板的材料包括玻璃,从而可降低微通道板的成本。当然,本公开实施例包括但不限于此,微通道板的材料也可为氧化铝陶瓷。
例如,在一些示例中,在微通道板中,微通道的数量范围为10 5-10 6个,例如,10 6个。
例如,在本公开一实施例提供的微流控芯片中,各微通道的长度与各微通道的横截面尺寸的比值范围为30-60。由于微通道的长度远远大于微通道的横截面尺寸,光阴极产生的电子会在微通道的内壁之间来回碰撞,从而得到多次倍增,从而可确保微通道板可将光阴极产生的电子倍增10 4-10 6倍。需要说明的是,上述的微通道的横截面尺寸是指微通道的横截面的最大尺寸,例如,当微通道的横截面为圆形时,微通道的横截面尺寸为该圆形的直径;当微通道的横截面为正多边形时,微通道的横截面尺寸为该正多边形的外接圆的直径。
例如,在一些示例中,各微通道的横截面尺寸的范围为20-40微米,各微通道的长度范围为0.6-2.4毫米,从而可确保微通道板可将光阴极产生的电子倍增10 4-10 6倍。并且,上述的微腔的横截面尺寸与液晶显示面板的制作设备和工艺兼容,便于降低其制作成本。
例如,在一些示例中,多个微通道的体积之和与微通道基板的体积之比的范围为60%-80%,也就是说,在该微通道板的表面,多个微通道所占据的面 积之和与该微通道板的表面的面积的比例范围为60%-80%。一方面,可保证该微通道板具有一定的强度,另一方面可使得该微通道板对电子具有较高的倍增效果。
图3A为根据本公开一实施例提供的一种微通道板的立体示意图;图3B为根据本公开一实施例提供的一种微通道板的平面示意图。如图3A和3B所示,多个微通道132均匀分布,从而可保证整个微通道板130对电子的倍增效果的一致性。当该微流控芯片具有多个微腔时,微通道板对于不同微腔中产生的光信号的倍增效果相同。
例如,在一些示例中,各微通道的横截面形状包括圆形、正六边形、正八边形。如图3B所示,当各微通道的横截面形状为正六边形时,可使得多个微通道的排列更紧密,多个微通道的体积之和与微通道基板的体积之比更高。
例如,在一些示例中,在微通道板中,微通道的延伸方向与微通道板的法线的夹角小于8度。
图4为根据本公开一实施例提供的一种微流控芯片的平面示意图。如图4所示,该微流控芯片包括多个微腔110,即上述的至少一个微腔110包括多个微腔110。图4示出了4个微腔110,但本公开实施例中的微腔数量包括但不限于4个。第一电极140包括多个子第一电极142,多个微腔110与多个子第一电极142一一对应设置。多个微腔110在下盖板182上的正投影分别落入多个子第一电极142在下盖板182上的正投影。从而多个子第一电极142可分别对多个微腔110产生的光信号进行检测。由此,该微流控芯片可实现同时进行多种检测功能。
本公开一实施例还提供一种使用上述微流控芯片的检测方法。图5为根据本公开一实施例提供的一种使用微流控芯片的检测方法的流程图。如图5所示,该检测方法包括以下步骤S501-S505。
步骤S501:在微腔中放置检测试剂;
步骤S502:采用发光剂对待检测物质进行修饰;
步骤S503:将修饰有发光剂的待检测物质通入微腔与检测试剂反应;
步骤S504:在微腔通入发光底物,以使发光剂发光;以及
步骤S505:第一电极检测被微通道板倍增的电子。
在本公开实施例提供的使用微流控芯片的检测方法中,在微腔中,修饰有发光剂的待检测物质与检测试剂反应,发光底物使发光剂发光(例如通过催化 和氧化使得发光剂发光);此时,光阴极可接收微腔中发出的光子并产生电子;由于微通道板包括大致沿微通道板的厚度方向延伸的多个微通道,并且各微通道内壁设置有二次电子发射层,其具有大于1的二次发射系数,光阴极产生的电子在碰撞微通道的内壁之后,微通道内壁发射出的二次电子数量上得到增加;经过多次碰撞之后,微通道板可将光阴极产生的电子倍增,例如,10 5倍;然后第一电极可容易检测到被微通道板倍增的电子。由此,该检测方法可利用该微流控芯片对微腔中的生物化学发光反应所产生的微弱的光信号进行放大,从而实现对待检测物的定性或定量检测。
例如,在一些示例中,上述的检测试剂包括免疫反应中的捕获抗体,待检测物质包括血液或尿液样本中与捕获抗体对应的抗原或抗体。例如,上述的检测试剂包括牛球蛋白G,待检测物质包括羊抗牛免疫球蛋白G。当然,本公开实施例包括但不限于此。
例如,在一些示例中,发光剂包括鲁米诺。
例如,在一些示例中,发光底物包括辣根过氧化酶。
本公开一实施例还提供一种微流控芯片的制作方法。该制作方法包括:形成至少一个微腔;在至少一个微腔的一侧形成光阴极,所述光阴极被配置为接收微腔中发出的光子并产生电子;在光阴极远离微腔的一侧形成微通道板,微通道板被配置为将光阴极产生的电子倍增;以及在微通道板远离光阴极的一侧形成第一电极,微通道板包括大致沿微通道板的厚度方向延伸的多个微通道,各微通道内壁设置有二次电子发射层,第一电极被配置为检测被微通道板倍增的电子。
例如,在一些示例中,所述制作方法还包括:在光阴极远离微腔的一侧形成微通道板包括:制备微通道板;以及在光阴极远离微腔的一侧形成微通道板。
例如,在一些示例中,制备微通道板包括:提供玻璃基板;利用刻蚀工艺在玻璃基板上形成多个微通道;以及利用原子沉积工艺在微通道内壁上形成二次电子发射层。由此,微通道板可通过将一块基板(例如玻璃基板)通过刻蚀工艺形成多个微通道,并通过原子沉积工艺在微通道的内壁形成二次电子发射层,上述的刻蚀工艺和原子沉积工艺的成本相对较低,因此,该微通道板的制作成本较低。并且,该微通道板还可采用液晶显示面板的制作设备和工艺进行制作,从而可进一步降低该微流控芯片的成本。
例如,在一些示例中,利用刻蚀工艺在玻璃基板上形成多个微通道包括: 在玻璃基板上涂覆光刻胶;采用曝光机对光刻胶图案进行曝光以形成包括多个过孔的光刻胶图案;以该光刻胶图案作为掩膜对玻璃基板进行刻蚀以形成多个微通道;以及去除光刻胶图案。
有以下几点需要说明:
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开同一实施例及不同实施例中的特征可以相互组合。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种微流控芯片,包括:
    至少一个微腔;
    光阴极,在所述至少一个微腔的一侧并被配置为接收所述微腔中发出的光子并产生电子;
    微通道板,在所述光阴极远离所述微腔的一侧并被配置为将所述光阴极产生的电子倍增;以及
    第一电极,位于所述微通道板远离所述光阴极的一侧,
    其中,所述微通道板包括大致沿所述微通道板的厚度方向延伸的多个微通道,各所述微通道内壁设置有二次电子发射层,所述第一电极被配置为检测被所述微通道板倍增的电子。
  2. 根据权利要求1所述的微流控芯片,其中,各所述微通道的横截面尺寸的范围为20-40微米,各所述微通道的长度范围为0.6-2.4毫米。
  3. 根据权利要求1所述的微流控芯片,其中,各所述微通道的长度与各所述微通道的横截面尺寸的比值范围为30-60。
  4. 根据权利要求1-3中任一项所述的微流控芯片,其中,所述至少一个微腔包括多个所述微腔,所述第一电极包括多个子第一电极,多个所述微腔与多个所述子第一电极一一对应设置。
  5. 根据权利要求1-4中任一项所述的微流控芯片,其中,多个所述微通道的体积之和与所述微通道基板的体积之比的范围为60%-80%。
  6. 根据权利要求1-5中任一项所述微流控芯片,其中,多个所述微通道均匀分布。
  7. 根据权利要求1-6中任一项所述的微流控芯片,其中,各所述微通道的横截面形状包括圆形、正六边形和正八边形中的至少之一。
  8. 根据权利要求1-7中任一项所述的微流控芯片,还包括:
    第二电极,位于所述微通道板靠近所述光阴极的一侧,
    其中,所述第二电极被配置为加载负电压。
  9. 根据权利要求1-8中任一项所述的微流控芯片,其中,所述光阴极的材料包括氮化镓、砷化镓和磷化镓铟中的至少之一。
  10. 根据权利要求1-9中任一项所述的微流控芯片,其中,所述二次电子 发射层的材料包括氧化铝。
  11. 根据权利要求1-10中任一项所述的微流控芯片,其中,所述微通道板的材料包括玻璃。
  12. 一种使用根据权利要求1-11中任一项所述微流控芯片的检测方法,包括:
    在所述微腔中放置检测试剂;
    采用发光剂对待检测物质进行修饰;
    将修饰有所述发光剂的待检测物质通入所述微腔与所述检测试剂反应;
    在所述微腔通入发光底物,以使所述发光剂发光;以及
    所述第一电极检测被微通道板倍增的电子。
  13. 根据权利要求12所述的检测方法,其中,所述检测试剂包括免疫反应中的捕获抗体,所述待检测物质包括血液或尿液样本中与所述捕获抗体对应的抗原或抗体。
  14. 根据权利要求12和13所述的检测方法,其中,所述发光剂包括鲁米诺。
  15. 根据权利要求12和13所述的检测方法,其中,所述发光底物包括辣根过氧化酶。
PCT/CN2019/077687 2019-03-11 2019-03-11 微流控芯片和使用微流控芯片的检测方法 WO2020181463A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980000267.1A CN110073216A (zh) 2019-03-11 2019-03-11 微流控芯片和使用微流控芯片的检测方法
US16/644,904 US20210229092A1 (en) 2019-03-11 2019-03-11 Microfluidic chip and detection method using microfluidic chip
PCT/CN2019/077687 WO2020181463A1 (zh) 2019-03-11 2019-03-11 微流控芯片和使用微流控芯片的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/077687 WO2020181463A1 (zh) 2019-03-11 2019-03-11 微流控芯片和使用微流控芯片的检测方法

Publications (1)

Publication Number Publication Date
WO2020181463A1 true WO2020181463A1 (zh) 2020-09-17

Family

ID=67372760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077687 WO2020181463A1 (zh) 2019-03-11 2019-03-11 微流控芯片和使用微流控芯片的检测方法

Country Status (3)

Country Link
US (1) US20210229092A1 (zh)
CN (1) CN110073216A (zh)
WO (1) WO2020181463A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111632631B (zh) * 2019-09-26 2022-10-04 北京京东方健康科技有限公司 微流控基板、微流控装置及流体驱动方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130193831A1 (en) * 2008-06-20 2013-08-01 Arrradiance, Inc. Microchannel Plate Devices With Tunable Conductive Films
CN106198499A (zh) * 2016-07-03 2016-12-07 厦门大学 一种用于化学发光检测的微流控芯片及其检测方法
US20180151338A1 (en) * 2016-11-28 2018-05-31 The United States Of America As Represented By The Secretary Of The Navy Metamaterial photocathode for detection and imaging of infrared radiation
CN109154671A (zh) * 2016-03-11 2019-01-04 赫尔大学 放射性检测

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096807A (en) * 1985-03-06 1992-03-17 Murex Corporation Imaging immunoassay detection system with background compensation and its use
US7075104B2 (en) * 2001-09-12 2006-07-11 Reveo, Inc. Microchannel plates and biochip arrays, and methods of making same
US20110081677A1 (en) * 2009-09-30 2011-04-07 University Of Maryland, College Park Active Microfluidic Membranes
US10197501B2 (en) * 2011-12-12 2019-02-05 Kla-Tencor Corporation Electron-bombarded charge-coupled device and inspection systems using EBCCD detectors
CN105609511B (zh) * 2014-11-21 2019-01-15 中国科学院微电子研究所 一种单光子成像探测器及其制造方法
CN105116038B (zh) * 2015-07-20 2018-06-29 深圳大学 一种基于有机半导体的免疫检测集成芯片及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130193831A1 (en) * 2008-06-20 2013-08-01 Arrradiance, Inc. Microchannel Plate Devices With Tunable Conductive Films
CN109154671A (zh) * 2016-03-11 2019-01-04 赫尔大学 放射性检测
CN106198499A (zh) * 2016-07-03 2016-12-07 厦门大学 一种用于化学发光检测的微流控芯片及其检测方法
US20180151338A1 (en) * 2016-11-28 2018-05-31 The United States Of America As Represented By The Secretary Of The Navy Metamaterial photocathode for detection and imaging of infrared radiation

Also Published As

Publication number Publication date
CN110073216A (zh) 2019-07-30
US20210229092A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
US9147559B2 (en) Photomultiplier and its manufacturing method
US9658158B2 (en) Diagnostic device with integrated photodetector, and diagnostic system including the same
US7919921B2 (en) Photomultiplier
US7880385B2 (en) Photomultiplier including an electronic-multiplier section in a housing
RU2568979C2 (ru) Интегрированные углеродные электродные чипы для электрического возбуждения хелатов лантанидов и способы анализа с их использованием
JP2006179467A (ja) 光電素子、これを用いたランプ及びディスプレイパネル
Kim et al. Rapid chemiluminescent sandwich enzyme immunoassay capable of consecutively quantifying multiple tumor markers in a sample
EP3650122A1 (en) Micro-fluidic chip, device and method for chemiluminescent immunoassay
WO2020181463A1 (zh) 微流控芯片和使用微流控芯片的检测方法
CN109580938A (zh) 上样底板及含有该上样底板的免疫层析检测装置
US7928657B2 (en) Photomultiplier
JP2009301904A (ja) 検出器及びその製造方法
Pham et al. A bead-based immunogold-silver staining assay on capillary-driven microfluidics
JPH10332593A (ja) 電気化学発光検出セル
KR101949537B1 (ko) 음극 및 양극 펄스로 하여 통합 전극칩에서 발광을 생성하기 위한 방법 및 장치
Sandeau et al. Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing
US20220236261A1 (en) Semiconductor Device Providing a Biosensor to Test for Pathogen
US20220236214A1 (en) Semiconductor Device Providing a Biosensor to Test for Pathogen
JP2009206057A (ja) ガス電子増幅器及びこれを使用した放射線検出器
TWI418777B (zh) 生化檢測單元及其生化儀器
KR20130128529A (ko) 바이오센서 및 그 제조 방법
US8765056B2 (en) Method for detecting optical signals, microfluidic mixing chip having light emitting compound and system thereof
JP2024506285A (ja) 高感度化学ルミネセンス検出システムおよび方法
CN113607717A (zh) 化学发光的检测方法、装置与系统
Costantini et al. Portable optoelectronic system for monitoring enzymatic chemiluminescent reaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918948

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 11/05/2022)