WO2020181432A1 - 一种锂电池智能快速充电电路、系统以及方法 - Google Patents

一种锂电池智能快速充电电路、系统以及方法 Download PDF

Info

Publication number
WO2020181432A1
WO2020181432A1 PCT/CN2019/077544 CN2019077544W WO2020181432A1 WO 2020181432 A1 WO2020181432 A1 WO 2020181432A1 CN 2019077544 W CN2019077544 W CN 2019077544W WO 2020181432 A1 WO2020181432 A1 WO 2020181432A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
voltage
circuit
battery
current
Prior art date
Application number
PCT/CN2019/077544
Other languages
English (en)
French (fr)
Inventor
朱智鹏
段磊
周军
薛团委
胡鹏
李涛
Original Assignee
深圳市丽福科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市丽福科技有限责任公司 filed Critical 深圳市丽福科技有限责任公司
Priority to PCT/CN2019/077544 priority Critical patent/WO2020181432A1/zh
Publication of WO2020181432A1 publication Critical patent/WO2020181432A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the technical field of lithium battery charging, in particular to a lithium battery intelligent fast charging circuit, a lithium battery charging system, and a lithium battery intelligent fast charging method.
  • Lithium-ion batteries have the advantages of small size, light weight, high energy density, many cycles of charging, wide operating temperature range, low self-discharge rate, and no memory effect. But lithium batteries have higher requirements for chargers.
  • Existing charging methods include constant current and constant voltage methods. For batteries with too low voltage, trickle charging is required first.
  • the entire battery charging process usually includes trickle charge (TC), constant current charge (Constent Circuit, CC), constant voltage charge (Constent Voltage, CV).
  • TC trickle charge
  • CC Constent Circuit
  • CV constant voltage charge
  • the charging current of trickle charging and constant charging is small, and the charging current of constant current charging is constant and large.
  • the charging speed of the constant current rechargeable battery is the fastest, but after entering the constant voltage charging, the charging current gradually decreases, the charging speed slows down, and it takes a long time. This is the reason why the rechargeable battery consumes a long time between 80% or 90% of the power to fully charged, and the battery is charged slowly.
  • Figure 1 is a charging curve of a conventional lithium battery. From the figure, we can see that after the constant current charging is completed, it enters the constant voltage charging, the charging voltage does not increase, and the charging current decreases rapidly. It can be seen from Figure 1 that the constant voltage charging section takes a long time.
  • trickle charging is used to slowly charge the battery with a small current, and the battery voltage rises slowly.
  • this application provides a lithium battery intelligent fast charging circuit and a lithium battery charging system that increase the internal resistance compensation voltage and increase the maximum voltage value of safe charging to extend the time of constant current charging to shorten the entire charging time. And the intelligent fast charging method of lithium battery.
  • the controller controls the power supply circuit to store energy for the energy storage circuit and obtains the required charging current/voltage to complete the trickle charge, constant current charge, and constant voltage charge of the rechargeable battery; during constant current charge, the controller By controlling the power supply circuit and the energy storage circuit to store energy and obtain a second charging current, the rechargeable battery is charged with constant current with the second charging current until the charging voltage detection value of the first charging voltage detection unit reaches the highest safe charging Voltage value, and the battery voltage value of the second charging voltage detection unit is maintained within a safe voltage range.
  • the controller stores energy for the energy storage circuit by controlling the conduction of the power supply circuit and obtains the first charging current, and trickle charges the rechargeable battery with the first charging current until The detection value of the first charging voltage detection unit meets the first threshold.
  • the energy storage circuit includes an energy storage inductor and an energy storage capacitor, the energy storage inductor is connected to the connection end of the source of the first MOS switch and the drain of the second MOS switch, and one end of the energy storage capacitor is connected The output of the energy storage inductor is grounded at the other end.
  • the power supply circuit is a linear power supply circuit.
  • the highest voltage value for safe charging safe voltage+internal resistance compensation voltage
  • the internal resistance compensation voltage battery internal resistance*second charging current
  • the second charging current is greater than the first charging current
  • the technical solution provided by the embodiments of the present application is to provide a lithium battery charging system using the aforementioned lithium battery intelligent fast charging circuit.
  • the technical solution provided by the embodiments of this application is to provide a method for intelligent fast charging of lithium batteries, which includes the following steps:
  • the rechargeable battery is charged at a constant voltage with the safe voltage until the battery voltage of the rechargeable battery reaches the second threshold and the charging ends.
  • the parameter relationship involved in the intelligent fast charging method of the lithium battery is:
  • the highest voltage value of the safe charging safe voltage + internal resistance compensation voltage
  • the internal resistance compensation voltage battery internal resistance * second charging current
  • the second charging current is greater than the first charging current.
  • the beneficial effects of the implementation of the present application are: the lithium battery intelligent fast charging circuit, the lithium battery charging system, and the lithium battery intelligent fast charging method of this embodiment increase the internal resistance compensation voltage and increase the maximum voltage value of safe charging to extend the constant current charging The time thus shortens the entire charging time, so that the time of the constant voltage charging section can be reduced by more than 30%, and the effect is significant.
  • the energy storage circuit provided adopts DC-DC conversion charging, so that the temperature of the charging device is low, and the energy storage inductance is combined with a set number of capacitors to provide charging voltage for the rechargeable battery.
  • the energy efficiency is high and the charging voltage is stable; at the same time, the set power supply circuit is a switching circuit, which can provide a large charging current for the energy storage circuit, such as 2 amperes or 3 amperes or 5 amperes.
  • Figure 1 is a graph of the voltage and current charging curves of an existing lithium battery charging system
  • FIG. 2 is a circuit diagram of a lithium battery intelligent fast charging circuit according to an embodiment of the present application.
  • FIG. 3 is a battery equivalent circuit diagram of a lithium battery charging system according to an embodiment of the present application.
  • FIG. 4 is an equivalent circuit diagram for charging the battery of the lithium battery charging system of the embodiment of the present application.
  • FIG. 5 is a flowchart of a method for intelligent fast charging of a lithium battery according to an embodiment of the present application.
  • Fig. 6 is a voltage and current charging curve diagram of a lithium battery charging system according to an embodiment of the present application.
  • this application relates to a lithium battery intelligent fast charging circuit, system and method.
  • the lithium battery intelligent fast charging circuit includes a power supply circuit 30, a controller 20 and an energy storage circuit 40.
  • a charging current detection unit 58 and a first charging voltage detection unit 54 are provided between the output of the tank circuit 40 and the controller 20.
  • a second charging voltage detection unit 60 is provided between the rechargeable battery 10 and the controller 20.
  • the controller 20 controls the power circuit 30 to store energy for the energy storage circuit 40 and obtain the required charging current/voltage to complete the trickle charge, constant current charge, and constant voltage charge of the rechargeable battery 10.
  • the embodiments of the present application increase the internal resistance compensation voltage on the basis of the maximum voltage value of safe charging, and increase the maximum voltage value of safe charging to extend the time of constant current charging, thereby shortening the charging time as a whole.
  • the charging current that the rechargeable battery can withstand has a maximum value, and the conventional battery is 1C.
  • the intelligent fast charging circuit of this embodiment is also suitable for high-rate charging lithium batteries, such as 3C-charged lithium batteries, which is equivalent to directly increasing the charging current by 3 times.
  • the lithium battery using a high-rate charging current can also greatly shorten the charging time by adopting the intelligent fast charging method of this embodiment.
  • the lithium battery intelligent fast charging circuit used in the system includes a power supply circuit 30, a controller 20, and an energy storage circuit 40.
  • the power circuit 30 is connected to the controller 20 and the power input, the output of the power circuit 30 is connected to the tank circuit 40, the output of the tank circuit 40 is connected to the rechargeable battery 10, the output of the tank circuit 40 and the control
  • a charging current detection unit 58 and a first charging voltage detection unit 54 are arranged between the charger 20, and a second charging voltage detection unit 60 is arranged between the rechargeable battery 10 and the controller 20.
  • the controller 20 stores energy for the energy storage circuit 40 by controlling the conduction of the power circuit 30 and obtains a first charging current, and trickle charges the rechargeable battery 10 with the first charging current, Until the detection value of the first charging voltage detection unit 54 meets the first threshold.
  • the controller 20 stores energy for the energy storage circuit 40 by controlling the conduction of the power supply circuit 30 and obtains a safe voltage, and performs constant voltage charging on the rechargeable battery 10 with the safe voltage until the second charging
  • the battery voltage detection value of the voltage detection unit 60 reaches the second threshold and charging ends.
  • the highest voltage value for safe charging safe voltage+internal resistance compensation voltage
  • the internal resistance compensation voltage battery internal resistance R*second charging current
  • the second charging current is greater than the first charging current
  • the compensation of the charging voltage is calculated based on the internal resistance R of the battery.
  • the rechargeable battery 10 includes an internal resistance R, marked as 14 and an equivalent power source 12.
  • contact trickle charging enters constant current charging (CC).
  • CC constant current charging
  • the constant current charging stage maintains the preset maximum charging current for charging, and the battery voltage rises rapidly.
  • a safe voltage such as 4.2 volts
  • the charging voltage does not increase after reaching 4.2 volts to prevent overcharging.
  • the The constant current charging continues to extend the ⁇ t time so that the charging voltage of the rechargeable battery 10 reaches the highest voltage value for safe charging.
  • the charging voltage U1 applied to the two ends of the rechargeable battery 10 is higher than the battery's safety voltage by the internal resistance compensation voltage ⁇ U.
  • the internal resistance compensation voltage ⁇ U battery internal resistance R*second charging current.
  • the intelligent fast charging technology of this embodiment adopts the battery internal resistance compensation technology, and calculates the highest voltage value for safe charging according to the size of the battery internal resistance R and the constant current charging current, so as to extend the time of constant current charging and reduce the time of constant voltage charging Thereby reducing the overall charging time.
  • the highest voltage for constant current charging is no longer a safe voltage but the highest voltage for safe charging.
  • the charging voltage does not increase so the charging current (Icharge) starts to decrease.
  • the safe voltage is a safe voltage. Since the batteries have internal resistance, the actual battery voltage does not exceed the safe voltage, so there is no overcharging, and charging is safe.
  • the power supply circuit 30 is a step-down switching circuit.
  • the switch circuit includes a first MOS switch G1 and a second MOS switch G2. The connection end of the source of the first MOS switch G1 and the drain of the second MOS switch G2 is connected to the tank circuit 40 as the output of the switch circuit.
  • the energy storage circuit 40 includes an energy storage inductor L4 and an energy storage capacitor C4.
  • the energy storage inductor L4 is connected to the connection end of the source of the first MOS switch G1 and the drain of the second MOS switch G2.
  • One end of the energy storage capacitor C4 is connected to the output of the energy storage inductor L4, and the other end is grounded.
  • the controller 20 controls the first MOS switch G1 and the second MOS switch G2 to turn on in turn, and utilizes the energy storage function of the energy storage inductor L4 and the energy storage capacitor C4, as well as the charging voltage and the current and voltage feedback information of the charging circuit. , Real-time adjustment of the conduction time of the first MOS switch G1 and the second MOS switch G2 to obtain the voltage value or current value of the target voltage.
  • the safety voltage is 4.20 volts.
  • the power circuit 30 is a linear power circuit.
  • this embodiment relates to a method for intelligent fast charging of a lithium battery, which generally describes the trickle charge of a lithium battery (Trickle Charging).
  • Charge, TC constant current charging
  • Constent Circuit, CC constant voltage charging
  • Constent Voltage, CV constant voltage charging
  • Step 101 Trickle charge the rechargeable battery 10 with the first charging current until the first threshold is met;
  • Step 102 Perform constant current charging on the rechargeable battery 10 with the second charging current until the charging voltage reaches the highest voltage value for safe charging, and control the detected battery voltage to be within the safe voltage range;
  • Step 103 Perform constant voltage charging on the rechargeable battery 10 with the safe voltage until the battery voltage of the rechargeable battery 10 reaches the second threshold and the charging ends.
  • the second charging current is greater than the first charging current.
  • the lithium battery intelligent fast charging circuit, the lithium battery charging system, and the lithium battery intelligent fast charging method of this embodiment increase the internal resistance compensation voltage and increase the maximum voltage value of safe charging to extend the time of constant current charging so as to shorten the entire charging time, so that The time of constant voltage charging can be reduced by more than 30%, and the effect is remarkable.
  • the energy storage circuit 40 is provided by DC-DC conversion charging, so that the temperature of the charging device is low, and the energy storage inductance combined with a set number of capacitors provides the charging voltage for the rechargeable battery 10 , The energy storage efficiency is high and the charging voltage is stable; at the same time, the power supply circuit 30 is provided as a switching circuit, which can provide a large charging current for the energy storage circuit 40, such as 2 amperes or 3 amperes or 5 amperes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种锂电池智能快速充电电路,包括电源电路、控制器以及储能电路,该电源电路连接该控制器与电源输入,该电源电路的输出连接至该储能电路,该储能电路的输出连接至充电电池,该储能电路的输出和该控制器之间设置充电电流检测单元以及第一充电电压检测单元,该充电电池和该控制器之间设置第二充电电压检测单元,该控制器通过控制该电源电路为该储能电路储能并获得所需充电电流/电压以完成该充电电池的涓流充电、恒流充电以及恒压充电;在恒流充电时,该控制器通过控制该电源电路该储能电路储能并获得第二充电电流,以该第二充电电流对该充电电池进行恒流充电,直至该第一充电电压检测单元的充电电压检测值达到安全充电最高电压值,并且该第二充电电压检测单元的电池电压值保持在安全电压范围内,以缩短整个电池充满的充电时间。

Description

一种锂电池智能快速充电电路、系统以及方法 技术领域
本申请涉及锂电池充电技术领域,特别是涉及一种锂电池智能快速充电电路、锂电池充电系统以及锂电池智能快速充电方法。
背景技术
锂离子电池具有体积小、重量轻、能量密度高、循环充电次数多、工作温度范围宽、自放电率低、无记忆效应等优点。但锂电池对充电器的要求较高。现有的充电方式包括恒流和恒压方式,对于电压过低的电池需要先进行涓流充电。
技术问题
现有的电池充电中,整个电池的充电过程通常包括涓流充电(Trickle Charge,TC)、恒流充电(Constent Circuit,CC)、恒压充电(Constent Voltage,CV)。其中涓流充电和恒充电的充电电流较小,恒流充电的充电电流恒定且较大。在恒流充电电池充电速度最快,但是进入恒压充电后,充电电流逐渐减小,充电速度减慢,耗费的时间较长。这就是充电电池在电量由百分之八九十到完全充满之间消耗时间较长,感觉电池充电很慢的原因。
请参考图1,图1为常规的锂电池充电的充电曲线。从图中我们可以看出,恒流充电结束后进入恒压充电,充电电压不增加,充电电流急速减小,从图1可以看出恒压充电段耗时很长。
常规锂电池的最大充电电流都是与电池容量相同的电流,也就是说,比如1.2Ah(安培小时)的电池,最大充电电流就是1.2安培。通常过放电会使电池内压升高,正负极活性物质可逆性受到破坏,即使再充电也只能充部分,容量会有明显衰减。所以涓流充电在电池电压过低的时候使用,比如电压阈值设定在2.9伏特。在电池电压处于阈值以下,如果直接进入相对涓流充电的充电电流大很多的恒流充电,充电电流过大,电池正负极活性物质发生剧烈化学变化容易造成活性物质可逆性被破坏。因此采用涓流充电,以很小的电流缓慢的对电池进行充电,电池电压缓慢上升。
可以看出,现有充电电池在快要充满到完全充满之间,由于充电电流减小而造成整体的充电时间过长。
因此,现有的锂电池充电技术还有待于改进和发展。
技术解决方案
本申请针对以上存在的技术问题,提供一种通过增加内阻补偿电压,提高安全充电最高电压值以延长恒流充电的时间从而达到缩短整个充电时间的锂电池智能快速充电电路、锂电池充电系统以及锂电池智能快速充电方法。
第一方面,本申请实施方式提供的技术方案是:提供一种锂电池智能快速充电电路,包括电源电路、控制器以及储能电路,该电源电路连接该控制器与电源输入,该电源电路的输出连接至该储能电路,该储能电路的输出连接至充电电池,该储能电路的输出和该控制器之间设置充电电流检测单元以及第一充电电压检测单元,该充电电池和该控制器之间设置第二充电电压检测单元,
该控制器通过控制该电源电路为该储能电路储能并获得所需充电电流/电压以完成该充电电池的涓流充电、恒流充电以及恒压充电;在恒流充电时,该控制器通过控制该电源电路该储能电路储能并获得第二充电电流,以该第二充电电流对该充电电池进行恒流充电,直至该第一充电电压检测单元的充电电压检测值达到安全充电最高电压值,并且该第二充电电压检测单元的电池电压值保持在安全电压范围内。
进一步地,在涓流充电时,该控制器通过控制该电源电路的导通为该储能电路储能并获得第一充电电流,以该第一充电电流对该充电电池进行涓流充电,直至该第一充电电压检测单元的检测值满足第一阈值。
进一步地,在恒压充电时,该控制器通过控制该电源电路的导通为该储能电路储能并获得安全电压,以该安全电压对该充电电池进行恒压充电直至该第二充电电压检测单元的电池电压检测值达到第二阈值并结束充电。
具体实施时,该电源电路为开关电路,该开关电路包括第一MOS管开关以及第二MOS管开关,该第一MOS管开关的源极与该第二MOS管开关的漏极的连接端作为开关电路的输出连接至该储能电路。
其中,该储能电路包括储能电感与储能电容,该储能电感连接该第一MOS管开关的源极与该第二MOS管开关的漏极的连接端,该储能电容的一端连接该储能电感的输出,另一端接地。
在另一实施例中,该电源电路为线性电源电路。
其中,该安全充电最高电压值=安全电压+内阻补偿电压;该内阻补偿电压=电池内阻*第二充电电流,该第二充电电流大于该第一充电电流。
第二方面,本申请实施方式提供的技术方案是:提供一种锂电池充电系统,采用前述的锂电池智能快速充电电路。
第三方面,本申请实施方式提供的技术方案是:提供一种锂电池智能快速充电方法,包括以下步骤:
以第一充电电流对充电电池进行涓流充电,直至满足第一阈值;
以第二充电电流对该充电电池进行恒流充电,直至充电电压达到安全充电最高电压值,并控制检测的电池电压在安全电压范围内;
以该安全电压对该充电电池进行恒压充电直至该充电电池的电池电压达到第二阈值并结束充电。
其中,该锂电池智能快速充电方法涉及的参数关系为:
该安全充电最高电压值=安全电压+内阻补偿电压;
该内阻补偿电压=电池内阻*第二充电电流;
该第二充电电流大于该第一充电电流。
有益效果
本申请实施方式的有益效果是:本实施例的锂电池智能快速充电电路、锂电池充电系统以及锂电池智能快速充电方法通过增加内阻补偿电压,提高安全充电最高电压值以延长恒流充电的时间从而达到缩短整个充电时间,使得恒压充电段的时间可缩小30%以上,效果显著。
本实施例的锂电池智能快速充电电路、系统以及方法,设置的储能电路采用DC-DC转换充电,使得充电器件温度低,储能电感结合设定数量的电容为充电电池提供充电电压,储能效率高并且充电电压稳定;同时,设置的电源电路为开关电路,可以为储能电路提供大的充电电流,比如2安培或者3安培或者5安培等等。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是现有的锂电池充电系统的电压、电流充电曲线图;
图2是本申请实施例的锂电池智能快速充电电路的电路图;
图3是本申请实施例的锂电池充电系统的电池等效电路图;
图4是本申请实施例的锂电池充电系统的对电池充电的等效电路图;
图5是本申请实施例的锂电池智能快速充电方法的流程图;以及
图6本申请实施例的锂电池充电系统的电压、电流充电曲线图。
本发明的实施方式
为使本申请实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本申请实施例作进一步详细说明。在此,本申请的示意性实施例及其说明用于解释本申请,但并不作为对本申请的限定。
如图2所示,本申请涉及锂电池智能快速充电电路、系统以及方法。
该锂电池智能快速充电电路包括电源电路30、控制器20以及储能电路40。
该电源电路30连接该控制器20与电源输入,该电源电路30的输出连接至该储能电路40。该储能电路40的输出连接至充电电池10。
该储能电路40的输出和该控制器20之间设置充电电流检测单元58以及第一充电电压检测单元54。该充电电池10和该控制器20之间设置第二充电电压检测单元60。该控制器20通过控制该电源电路30为该储能电路40储能并获得所需充电电流/电压以完成该充电电池10的涓流充电、恒流充电以及恒压充电。
在恒流充电时,该控制器20通过控制该电源电路30该储能电路40储能并获得第二充电电流,以该第二充电电流对该充电电池10进行恒流充电,直至该第一充电电压检测单元54的充电电压检测值达到安全充电最高电压值,并且该第二充电电压检测单元60的电池电压值保持在安全电压范围内。
本申请的实施例在安全充电最高电压值的基础上增加内阻补偿电压,提高安全充电最高电压值以延长恒流充电的时间从而在整体上缩短充电时间。
本申请的实施例设置储能电路40,该储能电路40采用DC-DC转换充电,使得充电器件温度低,储能电感结合设定数量的电容为充电电池提供充电电压,储能效率高并且充电电压稳定;同时,设置的电源电路30为开关电路,可以为储能电路40提供大的充电电流,比如2安培或者3安培或者5安培等等。
充电电池能承受的充电电流有最大值,常规电池为1C。本实施例的智能快速充电电路也适用于高倍率充电的锂电池,比如3C充电的锂电池,相当于充电电流直接变大3倍。使用高倍率充电电流的锂电池采用本实施例的智能快速充电方法也能大幅度缩短充电时间。
实施例1
本实施例的锂电池充电系统,采用该锂电池智能快速充电电路。该锂电池充电系统还可以包括其它功能性模块,比如提示模块等。
请再次参考图2,该系统所使用的锂电池智能快速充电电路,包括电源电路30、控制器20以及储能电路40。
该电源电路30连接该控制器20与电源输入,该电源电路30的输出连接至该储能电路40,该储能电路40的输出连接至充电电池10,该储能电路40的输出和该控制器20之间设置充电电流检测单元58以及第一充电电压检测单元54,该充电电池10和该控制器20之间设置第二充电电压检测单元60。
该充电电流检测单元58采用常规的电流检测比较器结合电流检测运算放大器,比如INA285芯片。该第一充电电压检测单元54与第二充电电压检测单元60也采用常规电压检测器件,比如比较器电路,比如AN051A芯片。
该控制器20通过控制该电源电路30为该储能电路40储能并获得所需充电电流/电压以完成该充电电池10的涓流充电、恒流充电以及恒压充电。
在涓流充电时,该控制器20通过控制该电源电路30的导通为该储能电路40储能并获得第一充电电流,以该第一充电电流对该充电电池10进行涓流充电,直至该第一充电电压检测单元54的检测值满足第一阈值。
在恒流充电时,该控制器20通过控制该电源电路30该储能电路40储能并获得第二充电电流,以该第二充电电流对该充电电池10进行恒流充电,直至该第一充电电压检测单元54的充电电压检测值达到安全充电最高电压值,并且该第二充电电压检测单元60的电池电压值保持在安全电压范围内。升高该最高电压值后,延长了大电流的第二充电电流的充电时间,缩短了整个电池充满的充电时间。
在恒压充电时,该控制器20通过控制该电源电路30的导通为该储能电路40储能并获得安全电压,以该安全电压对该充电电池10进行恒压充电直至该第二充电电压检测单元60的电池电压检测值达到第二阈值并结束充电。
其中,该安全充电最高电压值=安全电压+内阻补偿电压;该内阻补偿电压=电池内阻R*第二充电电流,该第二充电电流大于该第一充电电流。
充电电压的补偿是根据电池内阻R计算出来的。
请参考图3以及图4,所示为充电电池10的等效电路图以及充电电池10在充电时的等效电路图。
由于电池都存在内阻,我们可以用理想电源加内部阻抗来做该充电电池10的等效电路,以下以单节锂电为例来阐述,但也同样适用于两节及两节以上锂电池串联的电池组,相应的电池电压会有不同。该充电电池10包括内阻R,标号为14,还包括等效电源12。
理论上,电池容量为C安时(Ah),如果充电电流为1CA,那么充电时间T=C(电池容量)/充电电流=CAh/1CA=1小时。如果充电电流为2CA,那么充电时间T=CAh/2CA=0.5小时。
当充电电池10加载的电压超过第一阈值后,接触涓流充电进入恒流充电(CC)。该恒流充电阶段维持预设的最大充电电流进行充电,电池电压迅速上升。当充电电压达到安全电压,比如4.2伏特时,传统处理方式上,为了防止过充对电池带来损害,到达4.2伏特后充电电压不再升高以防止过充,但是在本实施例中,该恒流充电继续进行,延长△t时间,使充电电池10的充电电压到达安全充电最高电压值。
考虑内阻R在恒流充电阶段对充电电池10进行充电时,加在充电电池10两端的充电电压U1要比电池的安全电压高出内阻补偿电压△U。该内阻补偿电压△U =电池内阻R*第二充电电流。
本实施例的智能快速充电技术采用电池内阻补偿技术,根据电池内阻R的大小及恒流充电电流计算出安全充电的最高电压值,以延长恒流充电的时间,减少恒压充电的时间从而减少整体的充电时间。
请一并参考图6,以单节锂电为例,假设电池内阻R=40毫欧(mΩ),作为第二充电电流为2安培。单节电芯的安全电压=4.20伏特,根据图4的充电等效电路,内阻补偿电压△U= 第二充电电流*电池内阻R=2*0.04=0.08伏特。
该安全充电最高电压值=安全电压+△U=4.20伏特+0.08伏特=4.28伏特。
所以恒流充电的最高电压不再是安全电压而是安全充电最高电压值。
当恒流充电充到安全电压时,继续提高电压,保持第二充电电流不减小,直到充电电压达到安全充电最高电压值。
充电电压到达安全充电最高电压值后不在增加,进入恒压充电。
充电电压不增加所以充电电流(Icharge)开始变小。根据公式△U= Icharge*R, 充电电流变小则△U变小,充电电压从安全充电最高电压值开始逐渐减小,直到充电完成充电电压回到安全电压.从整个充电过程来开,即使充电电压大于电芯的安全电压为安全电压,由于电芯都有内阻,实际电池的电压没有超过安全电压,所以没有出现过充,充电是安全的。
从图6可以看出,在恒流充电阶段,由于本实施例的充电电压超过了安全电压,恒流充电时间延长了△t,充电电池10得在大电流下充更长的时间,从而缩短了整个充电时间。
具体实施时,该电源电路30为降压型开关电路。该开关电路包括第一MOS管开关G1以及第二MOS管开关G2。该第一MOS管开关G1的源极与该第二MOS管开关G2的漏极的连接端作为开关电路的输出连接至该储能电路40。
其中,该储能电路40包括储能电感L4与储能电容C4,该储能电感L4连接该第一MOS管开关G1的源极与该第二MOS管开关G2的漏极的连接端,该储能电容C4的一端连接该储能电感L4的输出,另一端接地。
控制器20通过控制该第一MOS管开关G1和第二MOS管开关G2轮流导通,利用储能电感L4和储能电容C4的储能功能,以及充电电压和充电电路的电流和电压反馈信息,实时调整第一MOS管开关G1和第二MOS管开关G2的导通时间,以获得目标电压的电压值或者电流值。
对于单节锂离子聚合物电池,安全电压为4.20伏特。假设电池内阻为40毫欧,充电电流预设为2.5安培,内阻补偿电压△U=0.10伏特,则安全充电最高电压值Vmax=4.20+0.10=4.30伏特。
我们通过控制器20,提高充电电压以保持第二充电电流为2.5安培,直到充电电压达到4.30伏特。当达到4.30伏特后保持电压不变,转入恒压充电。
这时电池的第三充电电流开始减小,实时侦测第三充电电流,最终充到实际第三充电电流为预设充电电流的10%即可认为充满,关闭该第一MOS管开关G1和第二MOS管开关G2停止充电。实际应用中,为了安全起见,△U的取值会比计算出来的理论值偏小。
在另一实施例中,该电源电路30为线性电源电路。
实施例2
请参考图5,本实施例涉及锂电池智能快速充电方法,从总体上表述锂电池的涓流充电(Trickle Charge,TC)、恒流充电(Constent Circuit,CC)、恒压充电(Constent Voltage,CV)三个阶段。具体包括以下步骤:
步骤101:以第一充电电流对充电电池10进行涓流充电,直至满足第一阈值;
步骤102:以第二充电电流对该充电电池10进行恒流充电,直至充电电压达到安全充电最高电压值,并控制检测的电池电压在安全电压范围内;
步骤103:以该安全电压对该充电电池10进行恒压充电直至该充电电池10的电池电压达到第二阈值并结束充电。
其中,该锂电池智能快速充电方法涉及的参数关系为:该安全充电最高电压值=安全电压+内阻补偿电压;该内阻补偿电压=电池内阻*第二充电电流;
该第二充电电流大于该第一充电电流。
本实施例的锂电池智能快速充电电路、锂电池充电系统以及锂电池智能快速充电方法通过增加内阻补偿电压,提高安全充电最高电压值以延长恒流充电的时间从而达到缩短整个充电时间,使得恒压充电段的时间可缩小30%以上,效果显著。
本实施例的锂电池智能快速充电电路、系统以及方法,设置的储能电路40采用DC-DC转换充电,使得充电器件温度低,储能电感结合设定数量的电容为充电电池10提供充电电压,储能效率高并且充电电压稳定;同时,设置的电源电路30为开关电路,可以为储能电路40提供大的充电电流,比如2安培或者3安培或者5安培等等。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种锂电池智能快速充电电路,其特征在于,包括电源电路、控制器以及储能电路,所述电源电路连接所述控制器与电源输入,所述电源电路的输出连接至所述储能电路,所述储能电路的输出连接至充电电池,所述储能电路的输出和所述控制器之间设置充电电流检测单元以及第一充电电压检测单元,所述充电电池和所述控制器之间设置第二充电电压检测单元,
    所述控制器通过控制所述电源电路为所述储能电路储能并获得所需充电电流/电压以完成所述充电电池的涓流充电、恒流充电以及恒压充电;在恒流充电时,所述控制器通过控制所述电源电路所述储能电路储能并获得第二充电电流,以所述第二充电电流对所述充电电池进行恒流充电,直至所述第一充电电压检测单元的充电电压检测值达到安全充电最高电压值,并且所述第二充电电压检测单元的电池电压值保持在安全电压范围内。
  2. 根据权利要求1所述的锂电池智能快速充电电路,其特征在于,
    在涓流充电时,所述控制器通过控制所述电源电路的导通为所述储能电路储能并获得第一充电电流,以所述第一充电电流对所述充电电池进行涓流充电,直至所述第一充电电压检测单元的检测值满足第一阈值。
  3. 根据权利要求1所述的锂电池智能快速充电电路,其特征在于,
    在恒压充电时,所述控制器通过控制所述电源电路的导通为所述储能电路储能并获得安全电压,以所述安全电压对所述充电电池进行恒压充电直至所述第二充电电压检测单元的电池电压检测值达到第二阈值并结束充电。
  4. 根据权利要求1所述的锂电池智能快速充电电路,其特征在于,
    所述电源电路为开关电路,所述开关电路包括第一MOS管开关以及第二MOS管开关,所述第一MOS管开关的源极与所述第二MOS管开关的漏极的连接端作为开关电路的输出连接至所述储能电路。
  5. 根据权利要求4所述的锂电池智能快速充电电路,其特征在于,所述储能电路包括储能电感与储能电容,所述储能电感连接所述第一MOS管开关的源极与所述第二MOS管开关的漏极的连接端,所述储能电容的一端连接所述储能电感的输出,另一端接地。
  6. 根据权利要求1所述的锂电池智能快速充电电路,其特征在于,所述电源电路为线性电源电路。
  7. 根据权利要求1-6任意一项所述的锂电池智能快速充电电路,其特征在于,所述安全充电最高电压值=安全电压+内阻补偿电压;所述内阻补偿电压=电池内阻*第二充电电流,所述第二充电电流大于所述第一充电电流。
  8. 一种锂电池充电系统,其特征在于,采用如权利要求1-6任意一项所述的锂电池智能快速充电电路。
  9. 一种锂电池智能快速充电方法,其特征在于,包括以下步骤:
    以第一充电电流对充电电池进行涓流充电,直至满足第一阈值;
    以第二充电电流对所述充电电池进行恒流充电,直至充电电压达到安全充电最高电压值,并控制检测的电池电压在安全电压范围内;
    以所述安全电压对所述充电电池进行恒压充电直至所述充电电池的电池电压达到第二阈值并结束充电。
  10. 根据权利要求9所述的锂电池智能快速充电方法,其特征在于,
    所述安全充电最高电压值=安全电压+内阻补偿电压;
    所述内阻补偿电压=电池内阻*第二充电电流;
    所述第二充电电流大于所述第一充电电流。
PCT/CN2019/077544 2019-03-08 2019-03-08 一种锂电池智能快速充电电路、系统以及方法 WO2020181432A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/077544 WO2020181432A1 (zh) 2019-03-08 2019-03-08 一种锂电池智能快速充电电路、系统以及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/077544 WO2020181432A1 (zh) 2019-03-08 2019-03-08 一种锂电池智能快速充电电路、系统以及方法

Publications (1)

Publication Number Publication Date
WO2020181432A1 true WO2020181432A1 (zh) 2020-09-17

Family

ID=72427172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077544 WO2020181432A1 (zh) 2019-03-08 2019-03-08 一种锂电池智能快速充电电路、系统以及方法

Country Status (1)

Country Link
WO (1) WO2020181432A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112339611A (zh) * 2020-11-02 2021-02-09 潍柴动力股份有限公司 电池充电满充校准方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110521A (zh) * 2007-08-20 2008-01-23 中兴通讯股份有限公司 一种镍氢电池的充电装置及方法
CN101364743A (zh) * 2008-06-23 2009-02-11 深圳华为通信技术有限公司 一种移动设备及其充电方法
CN106887884A (zh) * 2016-12-28 2017-06-23 深圳天珑无线科技有限公司 电池的充电方法以及电池充电设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110521A (zh) * 2007-08-20 2008-01-23 中兴通讯股份有限公司 一种镍氢电池的充电装置及方法
CN101364743A (zh) * 2008-06-23 2009-02-11 深圳华为通信技术有限公司 一种移动设备及其充电方法
CN106887884A (zh) * 2016-12-28 2017-06-23 深圳天珑无线科技有限公司 电池的充电方法以及电池充电设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112339611A (zh) * 2020-11-02 2021-02-09 潍柴动力股份有限公司 电池充电满充校准方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
KR102392376B1 (ko) 배터리 시스템
KR101838540B1 (ko) 리튬이온 전지로 구성된 유니버셜 충전지 및 그 제어 방법
US20120025752A1 (en) Battery charger
WO2015039583A1 (zh) 采用锂离子电池构成的通用型充电电池及控制方法
JP2014511095A (ja) 充電式バッテリシステム及びその作動方法
JP2014504140A (ja) 充電式バッテリシステム及びその作動方法
CN103493329A (zh) 具有内部蓄电池的低成本快速充电器以及方法
JP2014507924A (ja) 充電式バッテリシステム及びその作動方法
JP2019106869A (ja) 高電圧電池管理及び平衡化回路並びにその応用
TW201330453A (zh) 超級電容與儲能單元之充放電控管電路及其方法
CN111030081B (zh) 太阳能收集复合微能源系统及实现超级电容充电控制方法
JP5861063B2 (ja) 蓄電装置及び電力供給システム
WO2020181432A1 (zh) 一种锂电池智能快速充电电路、系统以及方法
JPH11341694A (ja) 二次電池の充電方法
CN104051811A (zh) 一种电池的浮充方法和系统
JPH09149556A (ja) 二次電池の充電方法
Guo et al. A current-mode control li-ion battery charger with trickle-current mode and built-in aging detection
TW201438369A (zh) 電池的充電系統及方法
TWI635691B (zh) Battery pack active balancing system
Nawaz et al. Cell balancing techniques for Li-ion batteries in healthcare devices
TW201445851A (zh) 雙向電流調節裝置及其調節方法
TWI667863B (zh) High voltage battery dynamic balance method
Vignan et al. Implementation of Variable Duty Ratio Reflex Charging of Li-ion Batteries
CN114530637B (zh) 一种串联锂电池包电压平衡装置及控制方法
CN111697667B (zh) 基于升降压电路的锂电池均衡装置及其均衡方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919481

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19919481

Country of ref document: EP

Kind code of ref document: A1