WO2020179664A1 - Blood sugar level measurement device, blood sugar level measurement method, and probe - Google Patents

Blood sugar level measurement device, blood sugar level measurement method, and probe Download PDF

Info

Publication number
WO2020179664A1
WO2020179664A1 PCT/JP2020/008305 JP2020008305W WO2020179664A1 WO 2020179664 A1 WO2020179664 A1 WO 2020179664A1 JP 2020008305 W JP2020008305 W JP 2020008305W WO 2020179664 A1 WO2020179664 A1 WO 2020179664A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
signal
probe
waveguide
detection port
Prior art date
Application number
PCT/JP2020/008305
Other languages
French (fr)
Japanese (ja)
Inventor
廣瀬 明
セコウ 長江
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2021504047A priority Critical patent/JPWO2020179664A1/en
Publication of WO2020179664A1 publication Critical patent/WO2020179664A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Definitions

  • the present invention relates to a blood glucose measurement technique.
  • the transmitted wave has ripple due to the influence of resonance, and there are cases where the amplitude and phase change of the transmitted wave are not monotonous with respect to the glucose concentration. Since such data instability affects the estimation accuracy of glucose concentration, it was necessary to design a more appropriate probe.
  • the present invention has been made in such a situation, and one of the exemplary purposes of the embodiment is to provide a technique for improving the measurement accuracy of blood glucose level.
  • One aspect of the present invention is a blood glucose level measuring device that measures a blood glucose level from a measurement signal from a probe including a transmission port, a detection port, and a reference port of a waveguide that transmits electromagnetic waves. This device calculates the difference between the detection port signal input unit that acquires the detection port signal from the probe, the reference port signal input unit that acquires the reference port signal from the probe, and the detection port signal and the reference port signal.
  • a complex neural network in which weights are learned using a correction unit that generates a correction signal and a pair of correction signal and glucose concentration as training data, and the generated correction signal is used as input data to make the weighted sum non-linear in each layer. It includes a complex neural network that estimates the glucose concentration as output data by calculating the output by the activation function.
  • This probe includes a transmission port and a detection port of an electromagnetic wave waveguide, and a portion that sandwiches the human skin in the path from the transmission port of the waveguide to the detection port, and a dielectric material is provided inside the waveguide.
  • the material is filled.
  • the dielectric material may be silicon.
  • the probe may further include a reference port.
  • the accuracy of measuring the blood glucose level can be improved. Can be provided.
  • FIG. 1 (a) is a schematic diagram of how to use the 3-port probe
  • FIG. 1 (b) shows the structure of the probe and the outer ear model
  • 2 (a), 2 (b), and 2 (c) show the amplitude, phase, and unwrapped phase of the detection port signal, respectively.
  • 3 (a), 3 (b), and 3 (c) show the amplitude, phase, and unwrapped phase of the reference port signal, respectively.
  • 4 (a) and 4 (b) show the difference in amplitude between the detection port signal and the reference port signal, and the difference in unwrapped phase, respectively.
  • 1 shows a configuration of a complex neural network used in the embodiment of the present invention.
  • 6 shows a teacher signal given to the complex neural network of FIG.
  • FIG 3 shows a taper structure of silicon filled in a waveguide.
  • 8 (a) and 8 (b) show the moving average and unwrapped phase of the amplitude of the detection port signal measured by the probe not filled with silicon.
  • 9 (a) and 9 (b) show the moving average and unwrapped phase of the amplitude of the detection port signal measured by the probe filled with silicon. It is a block diagram of a blood glucose level measurement system. It is a flowchart which shows the blood glucose level measurement procedure.
  • Proposed method Figure 1(a) shows the conceptual diagram and structure of the probe we propose. This section describes frequency selection, tissue model and probe design.
  • ⁇ r ( ⁇ , ⁇ ) can be expressed as follows by the debai relaxation equation.
  • is the angular frequency
  • is the concentration
  • ⁇ status ( ⁇ ) and ⁇ ⁇ ( ⁇ ) are the permittivity at very low and high frequencies
  • ⁇ ( ⁇ ) is the relaxation time.
  • Dielectric constants of dry and moist skin are different.
  • the dielectric properties of dry skin are used herein.
  • the dielectric properties of fat have also been shown in previous studies [19].
  • the treatment of blood is different from that of skin and fat.
  • the model of blood needs to depend on glucose concentration.
  • Another previous study constructed such a model.
  • the glucose concentration range applicable to this model is 70 to 150 mg/dL.
  • the model can be expressed by the following formula [20].
  • is a glucose concentration (70 to 150 mg/dL).
  • the outer skin of the tissue is the skin, and the fat is underneath. Blood is distributed in both skin and fat.
  • the average thickness of the ear lobe is 5 to 6 mm.
  • the outermost layer is the skin layer.
  • the fat layer was 4 layers and the blood layer was 5 layers.
  • the thickness of one fat layer was 0.75 mm, the thickness of one blood layer was 0.32 mm, and the thickness of the skin layer was 0.2 mm.
  • the total thickness of the model is 5 mm.
  • FIG. 1(a) is a schematic view of a method of using a 3-port probe. Here, the probe is sandwiched between the ear lobes for measurement. The structure of the probe is also shown in FIG. The probe is composed of a transmission port (Port 1), a measurement (detection) port (Port 2), and a reference port (Port 3).
  • the outer ear consists of a skin layer, a blood layer, and a fat layer. All probes are in direct contact with the skin to avoid air reflections. Our proposed probe can improve the data problem and increase the measurement accuracy.
  • FIGS. 2A and 2B and FIGS. 3A and 3B show amplitude and phase data of S 21 and S 31 , respectively.
  • the horizontal axis of the graph is the frequency of millimeter waves (unit: GHz), and the vertical axis is amplitude (unit: dB) or phase (unit: rad).
  • phase data of S 21 and S 31 are unwrapped and a straight line is fitted based on the data. Then, by taking the difference between the unwrapped phase data and the straight line, the phase deviation between S 21 and S 31 can be obtained.
  • 2 (c) and 3 (c) show the phase deviations of S 21 and S 31 .
  • unwrap has a periodicity in which the phase value goes around at 2 ⁇ and returns, so to speak, it is "folded (wrapped)", but this is defined as 0, 2 ⁇ , 4 ⁇ , 6 ⁇ , ... , Is to unfold this fold.
  • the change with glucose concentration is non-monotonic. That is, in both cases of the S 21 characteristic (transmission characteristic to the detection port) and the S 31 characteristic (transmission characteristic to the detection port), the phase deviation monotonically increases in the measured frequency band as the glucose concentration increases. You can see that it is not. This non-monotonic change affects the estimation of glucose concentration and may lead to inaccurate estimation of glucose concentration.
  • the difference (ratio) in amplitude between S 21 and S 31 is also taken. The result is shown in FIG.
  • the differences in amplitude are monotonically arranged. That is, if the difference between S 21 and S 31 is calculated, it is understood that the difference in amplitude and the difference in phase deviation monotonically increase in the measured frequency band as the glucose concentration increases.
  • the processed data i.e. corrected data by subtracting the S 31 signal (see port signal) from S 21 signal (detection port signal)
  • higher accuracy of concentration estimation is obtained.
  • Complex neural networks (Complex-valued neural networks (CVNNs) replace all real numbers in conventional neural networks with complex numbers [21] and have generalization ability in the complex domain.
  • the j-th neuron in the l-th layer receives an input from the i-th neuron in the previous layer or the input terminal.
  • the weight is defined by w lji and has amplitude
  • the weighted sum is calculated by the following equation.
  • the output of the neuron zlj is calculated by the following equation by the non-linear function fap.
  • a complex neural network is advantageous for applications that process electromagnetic fields because it can express amplitude and phase with a single complex number.
  • the complex neural network can reduce noise and improve the robustness of the system.
  • FIG. 5 shows the structure of a complex neural network used in the embodiment of the present invention.
  • a configuration of a complex neural network having an input terminal, one hidden layer, and a single output neuron is used.
  • Single-power neurons are used because they are suitable for expressing continuous concentration changes.
  • the S 21 signal (detection port signal) was given as the input signal of the complex neural network of FIG. 5, but in the embodiment of the present invention, the S 21 signal (detection port signal) is the S 31 signal.
  • the correction signal corrected by (reference port signal) is given as input data.
  • a signal obtained by pre-processing the correction signal of S 21 of the millimeter wave frequencies ⁇ 1 , ⁇ 2 ,..., ⁇ I is applied to the input terminal.
  • the treatment shown in the previous study [17] is used for the pretreatment.
  • FIG. 6 shows a teacher signal given to the complex neural network of the single output neuron of FIG.
  • the teacher signal is a unit vector having an angle in the range of 0 to ⁇ in the complex plane, and the concentration in the range of 0 mg / dL to 300 mg / dL is mapped to the angle from 0 to ⁇ . ..
  • Dielectric Material It is desirable to fill the waveguide with a dielectric material that matches the tissue impedance of the human body to reduce reflections.
  • a dielectric material silicon having a dielectric constant close to that of dry skin is considered as one of the candidates, but any dielectric material having a dielectric constant close to that of dry skin can be used. It can be used.
  • FIG. 7 shows a taper structure of silicon with which the waveguide is filled.
  • FIG. 8(a) and 8(b) show the moving average of the amplitude of the detection port signal (S 21 signal) and the unwrapped phase measured by the probe not filled with silicon.
  • S 21 signal detection port signal
  • FIG. 8 (a) shows the experimental results using a 2-port probe without a reference port.
  • FIG. 8 (b) shows the phases immediately after meal, 30 minutes after meal, and 1 hour after meal. It can be seen that there is almost no difference between the two.
  • FIG. 9(a) and 9(b) show the moving average of the amplitude of the detection port signal (S 21 signal) and the unwrapped phase measured by the probe filled with silicon.
  • the results measured with a 2-port probe without a reference port are shown 30 minutes after meal and 1 hour after meal.
  • FIG. 9 (a) there is a significant difference in amplitude between 30 minutes after meal and 1 hour after meal, and as shown in FIG. 9 (b), the phase is 30 minutes after meal and 1 hour after meal. It can be seen that there is a significant difference.
  • the waveguide filled with silicon it becomes possible to eliminate the influence of reflection and detect the difference in glucose concentration that should be originally detected with higher accuracy.
  • FIG. 10 is a block diagram of the blood sugar level measuring system.
  • the blood glucose level measuring system includes a 3-port probe 10 and a blood glucose level measuring device 100.
  • the 3-port probe 10 includes the transmission port, the detection port, and the reference port as described above.
  • the millimeter wave is input to the transmission port while changing the frequency of the millimeter wave in a predetermined frequency band, and output signals are acquired from the detection port and the reference port.
  • the signal S 21 measured at the detection port is supplied to the detection port signal input unit 20, and the signal S 31 measured at the reference port is supplied to the reference port signal input unit 30.
  • the detection port signal input unit 20 gives the detection port signal of each frequency to the correction unit 40.
  • the reference port signal input unit 30 gives a reference port signal of each frequency to the correction unit 40.
  • the correction unit 40 generates a correction signal by calculating the difference between the amplitude of the detection port signal and the reference port signal, and gives the correction signal to the preprocessing unit 50.
  • the preprocessing unit 50 adjusts the correction signal to the input data format of the complex neural network 60 and gives it to the input terminal of the complex neural network 60.
  • the complex neural network 60 has weights learned in advance by the teacher data stored in the teacher data storage unit 70.
  • the teacher data is a unit vector having an angle in the range of 0 to ⁇ in the complex plane, and the angle from 0 to ⁇ corresponds to the concentration in the range of 0 mg / dL to 300 mg / dL. There is.
  • the complex neural network 60 calculates the output of the hidden layer from the input data using the learned weights, outputs the output data by the weighted sum of the outputs of the hidden layer, and gives it to the glucose concentration output unit 80.
  • the output data is an angle in the range of 0 to ⁇ .
  • the glucose concentration output unit 80 converts the output data into glucose concentration and outputs it.
  • the output data indicating the angle in the range of 0 to ⁇ is mapped to the glucose concentration in the range of 0 mg / dL to 300 mg / dL and output.
  • FIG. 11 is a flowchart showing a blood glucose level measuring procedure.
  • the detection port signal of the 3-port probe is acquired (S10), and at the same time, the reference port signal is acquired (S20).
  • a correction signal is generated by calculating the difference between the detection port signal and the reference port at each frequency (S30).
  • the correction signal at each frequency is preprocessed to generate input data to the complex neural network (S40).
  • the output data of the complex neural network is converted into glucose concentration and output (S60).
  • the detection signal is corrected by the reference signal using the configuration of the 3-port probe provided with the reference port, and the calibration is performed to determine the amplitude and phase of the transmitted wave. It can be arranged monotonically with respect to the glucose concentration. Further, by filling the inside of the waveguide of the probe with a dielectric material such as silicon, it is possible to make a remarkable difference in the amplitude and phase of the transmitted wave with respect to the difference in glucose concentration. In addition, by learning using a complex neural network, the glucose concentration can be adaptively estimated from the amplitude and phase of the transmitted wave. By these means, the estimation accuracy of the glucose concentration using millimeter waves can be further improved.
  • the present invention can be used for blood sugar level measurement.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Provided is a blood sugar level measurement device 100 that measures blood sugar levels from measurement signals from a 3-port probe comprising a transmission port, detection port, and reference port for a waveguide that transmits electromagnetic waves. A detection port signal input unit 20 obtains detection port signals from the probe. A reference port signal input unit 30 obtains reference port signals from the probe. A correction unit 40 generates a corrected signal that has a reference port signal subtracted from a detection port signal. A complex neural network 60: uses a pair comprising a corrected signal and a glucose concentration as teacher data and learns weighting; and estimates glucose concentration as output data, by using the generated corrected signal as input data and calculating an output using a non-linear activation function for a weighted sum, in each layer. Provided is a probe comprising: a transmission port and detection port for a waveguide for electromagnetic waves; and a section that sandwiches the skin of a person, in a path from the transmission port in the waveguide and the detection port. A dielectric material is filled inside the waveguide.

Description

血糖値測定装置、血糖値測定方法、およびプローブBlood glucose measuring device, blood glucose measuring method, and probe
 本発明は、血糖値測定技術に関する。 The present invention relates to a blood glucose measurement technique.
 従来の侵襲型の血糖値測定方法では血液を人体から採取する必要があり、患者の負担が大きく、また感染リスクも高い。そのため、非侵襲の血糖値測定方法が望ましい。 In the conventional invasive blood glucose measurement method, it is necessary to collect blood from the human body, which places a heavy burden on the patient and has a high risk of infection. Therefore, a non-invasive blood glucose measuring method is desirable.
 非侵襲の血糖値測定方法として、電磁波は人体の組織を透過できることから、グルコース濃度と誘電率の関係性に基づいて血糖値を測る手法がある。 As a non-invasive method for measuring blood glucose level, there is a method for measuring blood glucose level based on the relationship between glucose concentration and permittivity because electromagnetic waves can penetrate human tissues.
 人間の血糖値は非常に低いため、非侵襲型測定方法には非常に高い感度が要求される。 Since human blood glucose levels are very low, very high sensitivity is required for non-invasive measurement methods.
 人体の組織を透過する透過波を利用して血糖値を測るために、導波管をサンプルの両サイドに置き、電波の振幅と位相をデータとして取得する。我々の先行研究ではミリ波プローブを使い、複素ニューラルネットワークによって透過波の振幅と位相データを学習することによって実際的な血糖値範囲での測定精度を高めることができることを証明した[16],[17]。 In order to measure the blood glucose level using the transmitted wave transmitted through the tissues of the human body, waveguides are placed on both sides of the sample, and the amplitude and phase of the radio waves are acquired as data. In our previous research, we demonstrated that the measurement accuracy in the practical blood glucose range can be improved by learning the amplitude and phase data of the transmitted wave by using a millimeter-wave probe and using a complex neural network [16], [ 17].
 しかし、透過波には共振の影響でリップルがあり、また、グルコース濃度に対して透過波の振幅と位相の変化が単調ではない場合もあった。このようなデータの不安定性がグルコース濃度の推定精度の影響を与えるため、より適切なプローブを設計することが必要であった。 However, the transmitted wave has ripple due to the influence of resonance, and there are cases where the amplitude and phase change of the transmitted wave are not monotonous with respect to the glucose concentration. Since such data instability affects the estimation accuracy of glucose concentration, it was necessary to design a more appropriate probe.
 本発明は係る状況においてなされたものであり、そのある態様の例示的な目的のひとつは、血糖値の測定精度を向上させる技術の提供にある。 The present invention has been made in such a situation, and one of the exemplary purposes of the embodiment is to provide a technique for improving the measurement accuracy of blood glucose level.
 本発明のある態様は、電磁波を伝送する導波管の送信ポート、検出ポートおよび参照ポートを備えるプローブからの測定信号から血糖値を測定する血糖値測定装置である。この装置は、前記プローブから検出ポート信号を取得する検出ポート信号入力部と、前記プローブから参照ポート信号を取得する参照ポート信号入力部と、検出ポート信号と参照ポート信号の差分を計算することにより補正信号を生成する補正部と、補正信号とグルコース濃度の対を教師データとして用いて重みが学習された複素ニューラルネットワークであって、生成された補正信号を入力データとして各層で重み付き和の非線形活性化関数による出力を計算することにより、グルコース濃度を出力データとして推定する複素ニューラルネットワークとを備える。 One aspect of the present invention is a blood glucose level measuring device that measures a blood glucose level from a measurement signal from a probe including a transmission port, a detection port, and a reference port of a waveguide that transmits electromagnetic waves. This device calculates the difference between the detection port signal input unit that acquires the detection port signal from the probe, the reference port signal input unit that acquires the reference port signal from the probe, and the detection port signal and the reference port signal. A complex neural network in which weights are learned using a correction unit that generates a correction signal and a pair of correction signal and glucose concentration as training data, and the generated correction signal is used as input data to make the weighted sum non-linear in each layer. It includes a complex neural network that estimates the glucose concentration as output data by calculating the output by the activation function.
 本発明の別の態様は、プローブである。このプローブは、電磁波の導波管の送信ポートおよび検出ポートと、前記導波管の送信ポートから検出ポートまでの経路に人体の皮膚をはさむ部分とを備え、前記導波管の内部に誘電体材料が充填される。前記誘電体材料はシリコンであってもよい。このプローブは、参照ポートをさらに備えてもよい。 Another aspect of the present invention is a probe. This probe includes a transmission port and a detection port of an electromagnetic wave waveguide, and a portion that sandwiches the human skin in the path from the transmission port of the waveguide to the detection port, and a dielectric material is provided inside the waveguide. The material is filled. The dielectric material may be silicon. The probe may further include a reference port.
 なお、以上の構成要素の任意の組合せ、本発明の表現を装置、方法、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above components and the conversion of the expression of the present invention between devices, methods, systems, recording media, computer programs, etc. are also effective as aspects of the present invention.
 本発明によれば、血糖値の測定精度を向上させることができる。
を提供できる。
According to the present invention, the accuracy of measuring the blood glucose level can be improved.
Can be provided.
図1(a)は3ポートプローブの使用方法の概略図であり、図1(b)はプローブの構造と外耳モデルを示す。FIG. 1 (a) is a schematic diagram of how to use the 3-port probe, and FIG. 1 (b) shows the structure of the probe and the outer ear model. 図2(a)、図2(b)、図2(c)は、それぞれ検出ポート信号の振幅、位相、アンラップされた位相を示す。2 (a), 2 (b), and 2 (c) show the amplitude, phase, and unwrapped phase of the detection port signal, respectively. 図3(a)、図3(b)、図3(c)は、それぞれ参照ポート信号の振幅、位相、アンラップされた位相を示す。3 (a), 3 (b), and 3 (c) show the amplitude, phase, and unwrapped phase of the reference port signal, respectively. 図4(a)、図4(b)は、それぞれ検出ポート信号と参照ポート信号の振幅の差、アンラップされた位相の差を示す。4 (a) and 4 (b) show the difference in amplitude between the detection port signal and the reference port signal, and the difference in unwrapped phase, respectively. 本発明の実施の形態で使用する複素ニューラルネットワークの構成を示す。1 shows a configuration of a complex neural network used in the embodiment of the present invention. 図5の複素ニューラルネットワークに与える教師信号を示す。6 shows a teacher signal given to the complex neural network of FIG. 導波管に充填されるシリコンのテーパ構造を示す。3 shows a taper structure of silicon filled in a waveguide. 図8(a)、図8(b)は、シリコンを充填していないプローブで測定された検出ポート信号の振幅の移動平均、アンラップされた位相を示す。8 (a) and 8 (b) show the moving average and unwrapped phase of the amplitude of the detection port signal measured by the probe not filled with silicon. 図9(a)、図9(b)は、シリコンを充填したプローブで測定された検出ポート信号の振幅の移動平均、アンラップされた位相を示す。9 (a) and 9 (b) show the moving average and unwrapped phase of the amplitude of the detection port signal measured by the probe filled with silicon. 血糖値測定システムの構成図である。It is a block diagram of a blood glucose level measurement system. 血糖値測定手順を示すフローチャートである。It is a flowchart which shows the blood glucose level measurement procedure.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and redundant description will be omitted as appropriate. Further, the embodiment is not limited to the invention but is an example, and all the features and combinations thereof described in the embodiment are not necessarily essential to the invention.
1. はじめに
 糖尿病は人々の命を脅かす世界的な病気である。糖尿病患者にとって日々血糖値のコントロールが必要である。従来の測定方法では血液を採取する必要があり、患者に多大な負担をかけている。そのため、非侵襲の測定方法が望ましい。しかし、人間の血糖値は非常に低いため、非侵襲型測定方法は非常に高い感度が必要である。
1. Introduction Diabetes is a global, life-threatening disease. Daily blood glucose control is necessary for diabetics. In the conventional measurement method, it is necessary to collect blood, which imposes a great burden on the patient. Therefore, a non-invasive measurement method is desirable. However, since the blood glucose level in humans is very low, the non-invasive measurement method requires very high sensitivity.
 電磁波は人間の組織を透過できることから、さまざまな手法が提案されている[1]。それらの手法はいずれもグルコース濃度と誘電率との関係性に基づいている[2]-[4]。これまでに、グルコースの水溶液を使ったいくつかの実験が報告されている[5]-[7]。最近の研究ではパッチアンテナを使って血糖値を測る手法を提案したグループがある[8],[9]。それらの結果は電磁波を使い血糖値を測る可能性を示した。 Since electromagnetic waves can penetrate human tissues, various methods have been proposed [1]. All of these methods are based on the relationship between glucose concentration and permittivity [2]-[4]. So far, several experiments using aqueous glucose solutions have been reported [5]-[7]. In recent studies, some groups have proposed methods for measuring blood glucose levels using patch antennas [8], [9]. The results showed the possibility of measuring blood glucose levels using electromagnetic waves.
 透過波を利用して血糖値を測るために、導波管はサンプルの両サイドに置き、電波の振幅と位相をデータとして取得する。先行研究は、電波の振幅と位相データにグルコース濃度の情報が含まれていることを証明した[10]-[14]。ミリ波を使って動物実験を行った研究グループもある[9],[15]。最新の研究では複素ニューラルネットワークを使い振幅と位相データを学習することによって実際的な血糖値範囲での測定精度を高めることができることを証明した[16],[17]。しかし、問題点は未だ全部解決しておらず、データの不安定を解消できる方法が必要である。本明細書で、我々はこの問題を解決すべく、新たなプローブ設計を提案する。 In order to measure the blood glucose level using transmitted waves, waveguides are placed on both sides of the sample, and the amplitude and phase of the radio waves are acquired as data. Previous studies have proved that the amplitude and phase data of radio waves include information on glucose concentration [10]-[14]. Some research groups have conducted animal experiments using millimeter waves [9], [15]. The latest research has demonstrated that learning amplitude and phase data using complex neural networks can improve measurement accuracy in the practical blood glucose range [16], [17]. However, all the problems have not been solved yet, and there is a need for a method that can eliminate data instability. In this specification, we propose a new probe design to solve this problem.
2. 提案手法
 我々が提案するプローブの概念図と構造を図1(a)に示す。本節では、周波数の選択、組織モデルとプローブ設計を説明する。
2. Proposed method Figure 1(a) shows the conceptual diagram and structure of the probe we propose. This section describes frequency selection, tissue model and probe design.
2. 1 周波数の選択
 高い周波数であるミリ波はグルコース濃度の変化に敏感であることは先行研究で示されている[18]。複素誘電率ε(ω,χ)はデバイ緩和式によって次のように表せる。
Figure JPOXMLDOC01-appb-M000001
ここでωは角周波数、χは濃度、εstat(χ)とε(χ)は非常に低い周波数と高い周波数のときの誘電率、τ(χ)は緩和時間である。
2. 1 Frequency selection Previous studies have shown that high frequency millimeter waves are sensitive to changes in glucose concentration [18]. The complex permittivity ε r (ω, χ) can be expressed as follows by the debai relaxation equation.
Figure JPOXMLDOC01-appb-M000001
Here, ω is the angular frequency, χ is the concentration, ε status (χ) and ε (χ) are the permittivity at very low and high frequencies, and τ (χ) is the relaxation time.
 周波数範囲は60GHzから80GHzが適切であると先行研究で示されている[17]。本論文で使う周波数範囲は55GHzから85GHzとする。 Previous studies have shown that a frequency range of 60 GHz to 80 GHz is appropriate [17]. The frequency range used in this paper is 55 GHz to 85 GHz.
2.2 組織モデル 2.2 Organizational model
 我々は数値解析するために外耳や指間みずかきの組織モデルを構築した。図1(b)にそのモデルを示す。ミリ波が人体を透過できる深さは数ミリぐらいであるため、耳たぶのような薄い組織しか透過しない。モデル化するために、薄い人体組織は皮膚、脂肪と血液だけで構成されていると仮定する。人体組織の誘電特性は非常に複雑であるため、完全に再現することは不可能である。先行研究では人体組織の誘電特性のモデルを構築した[19]。その特性は以下の数式で表せる[19]。
Figure JPOXMLDOC01-appb-M000002
ここでΔεはΔε=(εstat-ε)n、αは分布パラメータ、σはイオン導電率、εは自由空間の誘電率である。
We constructed a histological model of the outer ear and finger gaps for numerical analysis. The model is shown in FIG. 1 (b). Since the depth of millimeter waves that can penetrate the human body is about a few millimeters, only thin tissues such as ear lobes can penetrate. For modeling, it is assumed that thin human tissue consists only of skin, fat and blood. The dielectric properties of human tissue are so complex that it cannot be completely reproduced. In a previous study, we constructed a model of the dielectric properties of human tissue [19]. Its characteristics can be expressed by the following formula [19].
Figure JPOXMLDOC01-appb-M000002
Here, Δε n is Δε n = (ε status −ε ) n, α n is a distribution parameter, σ i is an ionic conductivity, and ε 0 is a permittivity in free space.
 乾燥した皮膚と湿ってる皮膚の誘電率は異なる。本明細書では、乾燥皮膚の誘電特性を使う。脂肪の誘電特性も先行研究で示されている[19]。血液の扱いは皮膚、脂肪とは異なる。血液のモデルはグルコース濃度に依存する必要がある。別の先行研究はこのようなモデルを構築した[20]。このモデルが適用可能なグルコース濃度範囲は70から150mg/dLである。モデルは以下の数式で表せる[20]。
Figure JPOXMLDOC01-appb-M000003
ここでχはグルコース濃度(70~150mg/dL)である。
Dielectric constants of dry and moist skin are different. The dielectric properties of dry skin are used herein. The dielectric properties of fat have also been shown in previous studies [19]. The treatment of blood is different from that of skin and fat. The model of blood needs to depend on glucose concentration. Another previous study constructed such a model. [20] The glucose concentration range applicable to this model is 70 to 150 mg/dL. The model can be expressed by the following formula [20].
Figure JPOXMLDOC01-appb-M000003
Here, χ is a glucose concentration (70 to 150 mg/dL).
 一般的に、組織の外郭は皮膚、そしてその下に脂肪がある。血液は皮膚と脂肪両方に分布する。耳たぶの平均厚さは5mmから6mmであること。最も外側は皮膚層である。脂肪層は4層、血液層は5層とした。一つの脂肪層の厚さは0.75mm、一つの血液層の厚さは0.32mm、皮膚層の厚さは0.2mmとした。モデルの総厚さは5mmである。 Generally, the outer skin of the tissue is the skin, and the fat is underneath. Blood is distributed in both skin and fat. The average thickness of the ear lobe is 5 to 6 mm. The outermost layer is the skin layer. The fat layer was 4 layers and the blood layer was 5 layers. The thickness of one fat layer was 0.75 mm, the thickness of one blood layer was 0.32 mm, and the thickness of the skin layer was 0.2 mm. The total thickness of the model is 5 mm.
2.3 プローブ設計
 我々の先行研究ではグルコース-水溶液をシャーレの中に入れて実験した[17]。その実験データにはリップルが存在した。その原因は容器による電磁波の共振である。その問題を解決するためには適切なプローブが必要である。我々は導波管の中に誘電体を入れたプローブを提案する。
2.3 Probe design In our previous study, we experimented with a glucose-aqueous solution in a petri dish [17]. Ripple was present in the experimental data. The cause is resonance of electromagnetic waves by the container. Appropriate probes are needed to solve the problem. We propose a probe with a dielectric in the waveguide.
2.3.1 誘電体材料
 人間の皮膚はミリ波を反射する水を含む。反射を軽減するために組織インピーダンスとマッチングする適切な材料が必要である。本明細書では、我々はシリコンを選ぶ。シリコンの比誘電率は11.9で、乾燥皮膚とよくマッチングする。そのため、シリコンは適切な誘電体である。
2.3.1 Dielectric Material Human skin contains water that reflects millimeter waves. A suitable material is needed that matches the tissue impedance to reduce reflections. Here we choose silicon. Silicon has a relative permittivity of 11.9, which matches well with dry skin. Therefore, silicon is a suitable dielectric.
2.3.2 3ポートプローブ
 先行研究[8],[17]では透過係数しか使用していない。しかし、問題点は、この透過係数の不安定性にある。不安定なデータは濃度の測定結果に大きな影響がある。本明細書では、この問題を解決すべく、3ポートプローブを提案する。使う周波数範囲は60GHzから80GHzであるため、導波管のサイズは4mm×2mmとする。図1(a)は3ポートプローブの使用方法の概略図である。ここでは耳たぶにプローブをはさんで計測する。図1(b)にプローブの構造も示す。プローブは送信ポート(Port1)、計測(検出)ポート(Port2)と参照ポート(Port3)によって構成されている。外耳は皮膚層、血液層、脂肪層からなる。すべてのプローブは空気による反射を避けるため、直接皮膚に接触させる。我々の提案するプローブはデータの問題を改善し、測定精度を上げることができる。
2.3.2 3-port probe Previous studies [8] and [17] used only the transmission coefficient. However, the problem is the instability of this transmission coefficient. Unstable data has a great effect on the concentration measurement results. In this specification, a 3-port probe is proposed to solve this problem. Since the frequency range used is 60 GHz to 80 GHz, the size of the waveguide is 4 mm×2 mm. FIG. 1(a) is a schematic view of a method of using a 3-port probe. Here, the probe is sandwiched between the ear lobes for measurement. The structure of the probe is also shown in FIG. The probe is composed of a transmission port (Port 1), a measurement (detection) port (Port 2), and a reference port (Port 3). The outer ear consists of a skin layer, a blood layer, and a fat layer. All probes are in direct contact with the skin to avoid air reflections. Our proposed probe can improve the data problem and increase the measurement accuracy.
2.4 数値解析の結果
 数値解析にはHFSS(Ansys Co.)を使った。数値解析の結果は送信ポートから検出ポートへの透過係数(透過データ)S21と送信ポートから参照ポートへの透過係数(参照データ)S31を含む。図2と図3にその結果を示す。図2(a)、(b)と図3(a)、(b)がそれぞれS21、S31の振幅と位相のデータを示す。グラフの横軸はミリ波の周波数(単位はGHz)であり、縦軸は振幅(単位はdB)または位相(単位はrad)である。位相の差を見るために、S21とS31の位相データをアンラップし、そのデータをもとに直線をフィットする。そしてアンラップした位相データと直線の差を取ることにより、S21とS31の位相の偏差を得ることができる。図2(c)と図3(c)にS21とS31の位相の偏差を示す。ここでアンラップ(unwrap)とは、位相の値は2πで一周して戻る周期性をもっており、いわば「折りたたまれて(wrapされて)」いるが、これを0、2π、4π、6π、…として、この折りたたみを展開することである。
2.4 Results of numerical analysis HFSS (Ansys Co.) was used for the numerical analysis. The result of the numerical analysis includes a transmission coefficient (transmission data) S 21 from the transmission port to the detection port and a transmission coefficient (reference data) S 31 from the transmission port to the reference port. The results are shown in FIGS. 2 and 3. FIGS. 2A and 2B and FIGS. 3A and 3B show amplitude and phase data of S 21 and S 31 , respectively. The horizontal axis of the graph is the frequency of millimeter waves (unit: GHz), and the vertical axis is amplitude (unit: dB) or phase (unit: rad). In order to see the phase difference, the phase data of S 21 and S 31 are unwrapped and a straight line is fitted based on the data. Then, by taking the difference between the unwrapped phase data and the straight line, the phase deviation between S 21 and S 31 can be obtained. 2 (c) and 3 (c) show the phase deviations of S 21 and S 31 . Here, unwrap has a periodicity in which the phase value goes around at 2π and returns, so to speak, it is "folded (wrapped)", but this is defined as 0, 2π, 4π, 6π, ... , Is to unfold this fold.
 位相の偏差を見ると、グルコース濃度による変化は非単調であることがわかる。すなわち、S21特性(検出ポートへの透過特性)、S31特性(検出ポートへの透過特性)のいずれの場合も、グルコース濃度を上がるにつれて、測定した周波数帯において位相の偏差は単調には増加していないことがわかる。この非単調的な変化はグルコース濃度の推定に影響があり、不正確なグルコース濃度を推定する恐れがある。しかし、S21とS31の位相偏差の差を取ることにより、グルコース濃度の差による変化は単調な変化にすることができる。その結果を図4(b)に示す。位相と同じように、S21とS31の振幅の差(比)も取る。その結果を図4(a)に示す。振幅の差も単調に並ぶことがわかる。すなわち、S21とS31の差分を取れば、グルコース濃度を上がるにつれて、測定した周波数帯において振幅の差も、位相の偏差の差も単調に増加することがわかる。この処理されたデータ(すなわちS21信号(検出ポート信号)からS31信号(参照ポート信号)を差し引くことで補正されたデータ)を使うことによって、より高い精度の濃度推定が得られる。これらの結果は参照ポートはミリ波血糖値測定に有効であることが示された。 Looking at the phase deviation, it can be seen that the change with glucose concentration is non-monotonic. That is, in both cases of the S 21 characteristic (transmission characteristic to the detection port) and the S 31 characteristic (transmission characteristic to the detection port), the phase deviation monotonically increases in the measured frequency band as the glucose concentration increases. You can see that it is not. This non-monotonic change affects the estimation of glucose concentration and may lead to inaccurate estimation of glucose concentration. However, by taking the difference in the phase deviation between S 21 and S 31, the change due to the difference in glucose concentration can be made monotonous. The result is shown in FIG. As with the phase, the difference (ratio) in amplitude between S 21 and S 31 is also taken. The result is shown in FIG. It can be seen that the differences in amplitude are monotonically arranged. That is, if the difference between S 21 and S 31 is calculated, it is understood that the difference in amplitude and the difference in phase deviation monotonically increase in the measured frequency band as the glucose concentration increases. By using the processed data (i.e. corrected data by subtracting the S 31 signal (see port signal) from S 21 signal (detection port signal)), higher accuracy of concentration estimation is obtained. These results showed that the reference port was effective for millimeter wave blood glucose measurement.
2.5 結論
 本明細書で、我々はミリ波血糖値測定システムのための3ポートプローブを提案した。数値解析の結果は参照ポートを使う有効性を示した。データ処理の結果、参照ポートを使うことによって、グルコース濃度の差による位相及び振幅の変化を単調に並べることに成功した。このプローブは、さまざまな計測に適応できる。第3ポートを参照ポートとして処理したデータは、グルコース濃度の推定に有効に用いられる。
2.5 Conclusion In the present specification, we have proposed a 3-port probe for a millimeter-wave blood glucose measurement system. The results of the numerical analysis showed the effectiveness of using the reference port. As a result of the data processing, by using the reference port, the changes in phase and amplitude due to the difference in glucose concentration were successfully arranged monotonically. This probe is adaptable to various measurements. The data processed using the third port as a reference port is effectively used for estimating the glucose concentration.
3.複素ニューラルネットワークの構成
 参照ポートをもつ3ポートプローブを用いて参照ポート信号で補正された検出ポート信号を入力データとし、教師データとしてグルコース濃度を与えて複素ニューラルネットワークを学習することにより、より高い精度のグルコース濃度推定を行うことができる。
3. Configuration of complex neural network Higher accuracy by learning a complex neural network by using a detection port signal corrected by a reference port signal as input data using a 3-port probe with a reference port and giving glucose concentration as training data. Glucose concentration can be estimated.
 複素ニューラルネットワーク(Complex-valued neural networks(CVNNs))は、従来のニューラルネットワークのすべての実数を複素数に置き換えたものであり[21]、複素領域で汎化能力を有する。l番目の層のj番目のニューロンは一つ前の層または入力端子のi番目のニューロンから入力を受け取る。重みはwljiで定義され、振幅|wlji|と位相θljiを有する。重み付け和は次式で計算される。
Figure JPOXMLDOC01-appb-M000004
ここでニューロンzljの出力は非線形関数fapにより、次式で計算される。
Figure JPOXMLDOC01-appb-M000005
Complex neural networks (Complex-valued neural networks (CVNNs)) replace all real numbers in conventional neural networks with complex numbers [21] and have generalization ability in the complex domain. The j-th neuron in the l-th layer receives an input from the i-th neuron in the previous layer or the input terminal. The weight is defined by w lji and has amplitude |w lji | and phase θ lji . The weighted sum is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000004
Here, the output of the neuron zlj is calculated by the following equation by the non-linear function fap.
Figure JPOXMLDOC01-appb-M000005
 複素ニューラルネットワークは、振幅と位相を一つの複素数で表現することができるため、電磁場を処理するアプリケーションに有利である。最適な複素ニューラルネットワークを設計することにより、複素ニューラルネットワークがノイズを減少させ、システムのロバスト性を向上させることができる。 A complex neural network is advantageous for applications that process electromagnetic fields because it can express amplitude and phase with a single complex number. By designing an optimal complex neural network, the complex neural network can reduce noise and improve the robustness of the system.
 図5は、本発明の実施の形態で使用する複素ニューラルネットワークの構成を示す。本実施の形態では、図5に示すように、入力端子、一つの隠れ層、単一出力ニューロンの複素ニューラルネットワークの構成を用いる。単一出力ニューロンを用いるのは、連続する濃度変化を表現するのに適しているからである。先行研究[17]では、図5の複素ニューラルネットワークの入力信号としてS21信号(検出ポート信号)を与えたが、本発明の実施の形態では、S21信号(検出ポート信号)をS31信号(参照ポート信号)で補正した補正信号を入力データとして与えることに留意する。入力端子には、ミリ波の周波数ω、ω、…、ωのS21の補正信号を前処理した信号を与える。前処理については先行研究[17]に示された処理を用いる。 FIG. 5 shows the structure of a complex neural network used in the embodiment of the present invention. In this embodiment, as shown in FIG. 5, a configuration of a complex neural network having an input terminal, one hidden layer, and a single output neuron is used. Single-power neurons are used because they are suitable for expressing continuous concentration changes. In the previous study [17], the S 21 signal (detection port signal) was given as the input signal of the complex neural network of FIG. 5, but in the embodiment of the present invention, the S 21 signal (detection port signal) is the S 31 signal. Note that the correction signal corrected by (reference port signal) is given as input data. A signal obtained by pre-processing the correction signal of S 21 of the millimeter wave frequencies ω 1 , ω 2 ,..., ω I is applied to the input terminal. For the pretreatment, the treatment shown in the previous study [17] is used.
 図6は、図5の単一出力ニューロンの複素ニューラルネットワークに与える教師信号を示す。図6に示すように、教師信号は複素平面で0~πの範囲の角度を有する単位ベクトルであり、0mg/dL~300mg/dLの範囲の濃度が0~πまでの角度にマップされている。 FIG. 6 shows a teacher signal given to the complex neural network of the single output neuron of FIG. As shown in FIG. 6, the teacher signal is a unit vector having an angle in the range of 0 to π in the complex plane, and the concentration in the range of 0 mg / dL to 300 mg / dL is mapped to the angle from 0 to π. ..
 上述のように我々の先行研究[17]では参照ポートがない2ポートプローブを前提として複素ニューラルネットワークの入力にS21を与えたが、本発明の実施の形態では3ポートプローブを使用して複素ニューラルネットワークの入力にS21とS31の差分を与える点が異なるが、複素ニューラルネットワークの学習方法は先行研究[17]と同じであるから、学習方法および学習結果については文献[17]を参照することとし、ここでは説明を省略する。本発明の実施の形態では、S21とS31の差分を入力信号とすることで、入力信号から反射の影響を除去することができ、反射による悪影響を減らして、濃度測定の精度を向上させることができる。これは、S21信号とS31信号の間で反射による影響は同じであるため、S21とS31の差分を取ることで反射成分が除去される一方、人体の血液中のグルコース濃度に関する成分は残るからである。 As described above, in our previous study [17], S 21 was given to the input of the complex neural network on the premise of a 2-port probe without a reference port, but in the embodiment of the present invention, a 3-port probe is used to make a complex. The difference is that the difference between S 21 and S 31 is given to the input of the neural network, but since the learning method of the complex neural network is the same as that of the previous study [17], refer to Reference [17] for the learning method and the learning result. The description is omitted here. In the embodiment of the present invention, by using the difference between S 21 and S 31 as the input signal, the influence of reflection can be removed from the input signal, the adverse effect of reflection is reduced, and the accuracy of concentration measurement is improved. be able to. This is because the effect of reflection is the same between the S 21 signal and the S 31 signal, so the reflection component is removed by taking the difference between S 21 and S 31 , while the component related to the glucose concentration in the blood of the human body. Is left.
4.誘電体材料の構成
 反射を軽減するために人体の組織インピーダンスとマッチングする誘電体材料を導波管に充填することが望ましい。適切な誘電体材料として、乾燥皮膚に近い比誘電率をもつシリコンが候補の一つとして考えられるが、これ以外にも乾燥皮膚に近い比誘電率をもつものであれば任意の誘電体材料を利用することができる。
4. Composition of Dielectric Material It is desirable to fill the waveguide with a dielectric material that matches the tissue impedance of the human body to reduce reflections. As a suitable dielectric material, silicon having a dielectric constant close to that of dry skin is considered as one of the candidates, but any dielectric material having a dielectric constant close to that of dry skin can be used. It can be used.
 図7は、導波管に充填されるシリコンのテーパ構造を示す。発信器を用いて導波管にミリ波を入力する際、シリコンと空気の境界でも反射が起きるため、この反射を軽減するために、図7に示すように、シリコンにテーパ構造をもたせ、徐々に空気からシリコンへ誘電率が変わるようにする。これにより、シリコンと空気の境界での反射を軽減することができる。 FIG. 7 shows a taper structure of silicon with which the waveguide is filled. When a millimeter wave is input to the waveguide using a transmitter, reflection also occurs at the boundary between silicon and air. To reduce this reflection, silicon is gradually tapered as shown in FIG. The permittivity changes from air to silicon. Thereby, the reflection at the boundary between silicon and air can be reduced.
 図8(a)、図8(b)は、シリコンを充填していないプローブで測定された検出ポート信号(S21信号)の振幅の移動平均、アンラップされた位相を示す。ここでは参照ポートがない2ポートプローブを用いた実験結果を示している。食事直後、食後30分後、食後1時間後に測定された結果を示す。図8(a)に示されるように振幅は食後30分後と食後1時間後でほとんど差がなく、図8(b)に示されるように位相は食事直後、食後30分後、食後1時間後の間でほとんど差がないことがわかる。 8(a) and 8(b) show the moving average of the amplitude of the detection port signal (S 21 signal) and the unwrapped phase measured by the probe not filled with silicon. Here, the experimental results using a 2-port probe without a reference port are shown. The results measured immediately after meal, 30 minutes after meal, and 1 hour after meal are shown. As shown in FIG. 8 (a), there is almost no difference in amplitude between 30 minutes after meal and 1 hour after meal, and as shown in FIG. 8 (b), the phases are immediately after meal, 30 minutes after meal, and 1 hour after meal. It can be seen that there is almost no difference between the two.
 図9(a)、図9(b)は、シリコンを充填したプローブで測定された検出ポート信号(S21信号)の振幅の移動平均、アンラップされた位相を示す。参照ポートがない2ポートプローブを用いて、食後30分後、食後1時間後に測定された結果を示す。図9(a)に示されるように振幅は食後30分後と食後1時間後で有意の差があり、図9(b)に示されるように位相は食後30分後、食後1時間後で有意の差があることがわかる。このようにシリコンを充填した導波管を用いることにより、反射の影響を排除して、本来検出されるべきグルコース濃度の違いをより高い精度で検出することができるようになる。 9(a) and 9(b) show the moving average of the amplitude of the detection port signal (S 21 signal) and the unwrapped phase measured by the probe filled with silicon. The results measured with a 2-port probe without a reference port are shown 30 minutes after meal and 1 hour after meal. As shown in FIG. 9 (a), there is a significant difference in amplitude between 30 minutes after meal and 1 hour after meal, and as shown in FIG. 9 (b), the phase is 30 minutes after meal and 1 hour after meal. It can be seen that there is a significant difference. By using the waveguide filled with silicon in this way, it becomes possible to eliminate the influence of reflection and detect the difference in glucose concentration that should be originally detected with higher accuracy.
 図10は、血糖値測定システムの構成図である。血糖値測定システムは、3ポートプローブ10と血糖値測定装置100を備える。 FIG. 10 is a block diagram of the blood sugar level measuring system. The blood glucose level measuring system includes a 3-port probe 10 and a blood glucose level measuring device 100.
 3ポートプローブ10は、上述のように送信ポート、検出ポート、参照ポートを備える。ミリ波の周波数を所定の周波数帯域で変化させながらミリ波を送信ポートに入力し、検出ポートと参照ポートから出力信号を取得する。検出ポートで測定された信号S21は検出ポート信号入力部20に供給され、参照ポートで測定された信号S31は参照ポート信号入力部30に供給される。 The 3-port probe 10 includes the transmission port, the detection port, and the reference port as described above. The millimeter wave is input to the transmission port while changing the frequency of the millimeter wave in a predetermined frequency band, and output signals are acquired from the detection port and the reference port. The signal S 21 measured at the detection port is supplied to the detection port signal input unit 20, and the signal S 31 measured at the reference port is supplied to the reference port signal input unit 30.
 検出ポート信号入力部20は、各周波数の検出ポート信号を補正部40に与える。 The detection port signal input unit 20 gives the detection port signal of each frequency to the correction unit 40.
 参照ポート信号入力部30は、各周波数の参照ポート信号を補正部40に与える。 The reference port signal input unit 30 gives a reference port signal of each frequency to the correction unit 40.
 補正部40は、検出ポート信号の振幅と参照ポート信号の差分を計算することにより補正信号を生成し、前処理部50に与える。 The correction unit 40 generates a correction signal by calculating the difference between the amplitude of the detection port signal and the reference port signal, and gives the correction signal to the preprocessing unit 50.
 前処理部50は、補正信号を複素ニューラルネットワーク60の入力データの形式に調整して、複素ニューラルネットワーク60の入力端子に与える。 The preprocessing unit 50 adjusts the correction signal to the input data format of the complex neural network 60 and gives it to the input terminal of the complex neural network 60.
 複素ニューラルネットワーク60は、あらかじめ教師データ記憶部70に格納された教師データによって学習された重みを有する。教師データは図6で説明したように、複素平面の0~πの範囲の角度を有する単位ベクトルであり、0~πまでの角度が0mg/dL~300mg/dLの範囲の濃度に対応している。 The complex neural network 60 has weights learned in advance by the teacher data stored in the teacher data storage unit 70. As described in FIG. 6, the teacher data is a unit vector having an angle in the range of 0 to π in the complex plane, and the angle from 0 to π corresponds to the concentration in the range of 0 mg / dL to 300 mg / dL. There is.
 複素ニューラルネットワーク60は、学習済みの重みを用いて入力データから隠れ層の出力を計算し、隠れ層の出力の重み付け和によって出力データを出力し、グルコース濃度出力部80に与える。出力データは0~πの範囲の角度である。 The complex neural network 60 calculates the output of the hidden layer from the input data using the learned weights, outputs the output data by the weighted sum of the outputs of the hidden layer, and gives it to the glucose concentration output unit 80. The output data is an angle in the range of 0 to π.
 グルコース濃度出力部80は、出力データをグルコース濃度に変換して出力する。0~πの範囲の角度を示す出力データは、0mg/dL~300mg/dLの範囲のグルコース濃度にマッピングされて出力される。 The glucose concentration output unit 80 converts the output data into glucose concentration and outputs it. The output data indicating the angle in the range of 0 to π is mapped to the glucose concentration in the range of 0 mg / dL to 300 mg / dL and output.
 図11は、血糖値測定手順を示すフローチャートである。 FIG. 11 is a flowchart showing a blood glucose level measuring procedure.
 ミリ波の周波数を替えながら3ポートプローブの検出ポート信号を取得する(S10)と同時に、参照ポート信号を取得する(S20)。 While changing the millimeter wave frequency, the detection port signal of the 3-port probe is acquired (S10), and at the same time, the reference port signal is acquired (S20).
 各周波数における検出ポート信号と参照ポートの差分を計算することにより補正信号を生成する(S30)。 A correction signal is generated by calculating the difference between the detection port signal and the reference port at each frequency (S30).
 各周波数における補正信号を前処理して複素ニューラルネットワークへの入力データを生成する(S40)。 The correction signal at each frequency is preprocessed to generate input data to the complex neural network (S40).
 学習済みの重みをもつ複素ニューラルネットワークにより入力データを出力データに変換する(S50)。 Convert input data to output data by a complex neural network with learned weights (S50).
 複素ニューラルネットワークの出力データをグルコース濃度に変換して出力する(S60)。 The output data of the complex neural network is converted into glucose concentration and output (S60).
 本発明の実施の形態に係る血糖値測定システムでは、参照ポートを設けた3ポートプローブの構成を用いて検出信号を参照信号で補正することにより、キャリブレーションを行って透過波の振幅と位相をグルコース濃度に対して単調に並べることができる。また、プローブの導波管内部にシリコンなどの誘電体材料を充填することにより、グルコース濃度の違いに対して透過波の振幅と位相が顕著に差が出るようにすることができる。また、複素ニューラルネットワークを用いて学習することにより、透過波の振幅と位相からグルコース濃度を適応的に推定することができる。これらの手段により、ミリ波を用いたグルコース濃度の推定精度を一層高めることができる。 In the blood glucose level measuring system according to the embodiment of the present invention, the detection signal is corrected by the reference signal using the configuration of the 3-port probe provided with the reference port, and the calibration is performed to determine the amplitude and phase of the transmitted wave. It can be arranged monotonically with respect to the glucose concentration. Further, by filling the inside of the waveguide of the probe with a dielectric material such as silicon, it is possible to make a remarkable difference in the amplitude and phase of the transmitted wave with respect to the difference in glucose concentration. In addition, by learning using a complex neural network, the glucose concentration can be adaptively estimated from the amplitude and phase of the transmitted wave. By these means, the estimation accuracy of the glucose concentration using millimeter waves can be further improved.
 以上述べたように、反射の影響を排除する方法として、参照ポートを設けた3ポートプローブを用いることと、導波管の内部をシリコンなどの誘電体材料を充填することの二つの手段が有効である。プローブを装着する人体の箇所によっては、参照ポートを設けて3ポートにすることができないこともある。その場合は、シリコンなどの誘電体材料を導波管内部に充填する手段を用いることができる。また、参照ポートを設けて3ポートプローブの構成にすることと、導波管内部に誘電体材料を充填することの両方の手段を実装することにより、両者の効果を合わせて測定精度をさらに向上させることができる。 As described above, two effective methods for eliminating the influence of reflection are to use a 3-port probe provided with a reference port and to fill the inside of the waveguide with a dielectric material such as silicon. Is. Depending on the part of the human body to which the probe is attached, it may not be possible to provide three reference ports by providing a reference port. In that case, means for filling the inside of the waveguide with a dielectric material such as silicon can be used. In addition, by implementing both means of providing a reference port to form a 3-port probe and filling the inside of the waveguide with a dielectric material, the effects of both are combined to further improve the measurement accuracy. Can be made to.
参照文献
[1] C.-F. So, et al., "Recent advances in noninvasive glucose monitoring," Medical Devices, vol.5, pp.45.52, 2012.
[2] T. Karacolak, et al., "Cole.cole model for glucose-dependent dielectric properties of blood plasma for continuous glucose monitoring," Microwave and Optical Technology Letters, vol.55, no.5, pp.1160.1164, 2013.
[3] V. Meriakri, et al., "Dielectric properties of glucose solutions in the millimeter-wave range and a problem of glucose content in blood control," Microwave & Telecommunication Technology, 2005 15th International Crimean Conference, vol.2IEEE, pp.853.854 2005.
[4] V. Meriakri, et al., "Dielectric properties of water solutions with small content of glucose in the millimeter-wave band and the determination of glucose in blood," Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW) and Workshop on Terahertz Technologies, vol.2IEEE, pp.873.875 2007.
[5] D.V. Blackham and R.D. Pollard, "An improved technique for permittivity measurements using a coaxial probe," IEEE Transactions on Instrumentation and Measurement, vol.46, no.5, pp.1093.1099, 1997.
[6] M. Hofmann, et al., "A microwave sensing system for aqueous concentratrion measurements based on a microwave reflectometer," IEEE MTT-S, pp.1.3, 2012.
[7] Y. Nikawa and D. Someya, "Application of millimeter waves to measure blood sugar level," Asia-Pacific Microwave Conference, vol.3IEEE, pp.1303.1306 2001.
[8] S. Saha, et al., "A glucose sensing system based on transmission measurements at millimetre waves using micro strip patch antennas," Scientific Reports, vol.7, no.1, p.6855, 2017.
[9] H. Cano-Garcia, et al., "Reflection and transmission measurements using 60 GHz patch antennas in the presence of animal tissue for non-invasive glucose sensing," European Conference on Antennas and Propagation (EuCAP)IEEE, pp.1.3 2016.
[10] H. Cano-Garcia, et al., "Detection of glucose variability in saline solutions from transmission and reflection measurements using V-band waveguides," Measurement Science and Technology, vol.26, no.12, p.125701, 2015.
[11] Y. Nikawa and T. Michiyama, "Blood-sugar monitoring by reflection of millimeter wave," Asia-Pacific Microwave Conference (APMC)IEEE, pp.1.4 2007.
[12] Y. Nikawa and S. Nakamura, "Microwave application in medical sensing," International Symposium onMedical Information and Communication Technology (ISMICT)IEEE, pp.131.133 2015.
[13] T. Kurabayashi, et al., "Reflection spectroscopy on solutions of biological materials in millimeter wave frequency," International Conference on Infrared, Millimeter, and Terahertzwaves (IRMMW-THz), 2015IEEE, pp.1.2 2015.
[14] P.H. Siegel, et al., "Compact non-invasive millimeter-wave glucose sensor," Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2015 40th International Conference onIEEE, pp.1.3 2015.
[15] P.H. Siegel, et al., "Millimeter-wave non-invasive monitoring of glucose in anesthetized rats," International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz)IEEE, pp.1.2 2014.
[16] S. Hu and A. Hirose, "Proposal of millimeter-wave adaptive glucose-concentration estimation system using complex-valued neural networks,"IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, pp.4074.4077, 07 2018.
[17] S. Hu, S. Nagae, and A. Hirose, "Millimeter-wave adaptive glucose concentration estimation with complex-valued neural networks," IEEE Transactions on Biomedical Engineering, vol. 66, no. 7, pp 2065-2071, July 2019.
[18] M. Hofmann, et al., "Non-invasive glucose monitoring using open electromagnetic waveguides," European Microwave Conference (EuMC)IEEE, pp.546.549 2012.
[19] S. Gabriel, R.W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, vol.41, pp.2271.2293, Nov. 1996.
[20] B. Freer, "Feasibility of a non-invasive wireless blood glucose monitor," Master’s thesis, Rochester Institute of Technology, 2011. https://scholarworks.rit.edu/theses/7149
[21] A. Hirose, Complex-valued neural networks. Springer Science & Business Media, 2006.
References
[1] C.-F. So, et al., "Recent advances in noninvasive glucose monitoring," Medical Devices, vol.5, pp.45.52, 2012.
[2] T. Karacolak, et al., "Cole.cole model for glucose-dependent dielectric properties of blood plasma for continuous glucose monitoring," Microwave and Optical Technology Letters, vol.55, no.5, pp.1160.1164, 2013 ..
[3] V. Meriakri, et al., "Dielectric properties of glucose solutions in the millimeter-wave range and a problem of glucose content in blood control," Microwave & Telecommunication Technology, 2005 15th International Crimean Conference, vol.2IEEE, pp .853.854 2005.
[4] V. Meriakri, et al., "Dielectric properties of water solutions with small content of glucose in the millimeter-wave band and the determination of glucose in blood," Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW) and Workshop on Terahertz Technologies, vol.2IEEE, pp.873.875 2007.
[5] DV Blackham and RD Pollard, "An improved technique for permittivity measurements using a coaxial probe," IEEE Transactions on Instrumentation and Measurement, vol.46, no.5, pp.1093.1099, 1997.
[6] M. Hofmann, et al., "A microwave sensing system for aqueous concentratrion measurements based on a microwave reflectometer," IEEE MTT-S, pp.1.3, 2012.
[7] Y. Nikawa and D. Someya, "Application of millimeter waves to measure blood sugar level," Asia-Pacific Microwave Conference, vol.3IEEE, pp.1303.1306 2001.
[8] S. Saha, et al., "A glucose sensing system based on transmission measurements at millimetre waves using micro strip patch antennas," Scientific Reports, vol.7, no.1, p.6855, 2017.
[9] H. Cano-Garcia, et al., "Reflection and transmission measurements using 60 GHz patch antennas in the presence of animal tissue for non-invasive glucose sensing," European Conference on Antennas and Propagation (EuCAP)IEEE, pp. 1.3 2016.
[10] H. Cano-Garcia, et al., "Detection of glucose variability in saline solutions from transmission and reflection measurements using V-band waveguides," Measurement Science and Technology, vol.26, no.12, p.125701, 2015.
[11] Y. Nikawa and T. Michiyama, "Blood-sugar monitoring by reflection of millimeter wave," Asia-Pacific Microwave Conference (APMC)IEEE, pp.1.4 2007.
[12] Y. Nikawa and S. Nakamura, "Microwave application in medical sensing," International Symposium on Medical Information and Communication Technology (ISMICT)IEEE, pp.131.133 2015.
[13] T. Kurabayashi, et al., "Reflection spectroscopy on solutions of biological materials in millimeter wave frequency," International Conference on Infrared, Millimeter, and Terahertzwaves (IRMMW-THz), 2015IEEE, pp.1.2 2015.
[14] PH Siegel, et al., "Compact non-invasive millimeter-wave glucose sensor," Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2015 40th International Conference on IEEE, pp.1.3 2015.
[15] PH Siegel, et al., "Millimeter-wave non-invasive monitoring of glucose in anesthetized rats," International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) IEEE, pp.1.2 2014.
[16] S. Hu and A. Hirose, "Proposal of millimeter-wave adaptive glucose-concentration estimation system using complex-valued neural networks," IGARSS 2018 --2018 IEEE International Geoscience and Remote Sensing Symposium, pp.4074.4077, 07 2018.
[17] S. Hu, S. Nagae, and A. Hirose, "Millimeter-wave adaptive glucose concentration estimation with complex-valued neural networks," IEEE Transactions on Biomedical Engineering, vol. 66, no. 7, pp 2065-2071 , July 2019.
[18] M. Hofmann, et al., "Non-invasive glucose monitoring using open electromagnetic waveguides," European Microwave Conference (EuMC)IEEE, pp.546.549 2012.
[19] S. Gabriel, RW Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectra of tissues," Physics in Medicine and Biology, vol.41, pp.2271.2293, Nov . 1996.
[20] B. Freer, "Feasibility of a non-invasive wireless blood glucose monitor,"Master's thesis, Rochester Institute of Technology, 2011. https://scholarworks.rit.edu/theses/7149
[21] A. Hirose, Complex-valued neural networks. Springer Science & Business Media, 2006.
 本発明は、血糖値測定に利用できる。 The present invention can be used for blood sugar level measurement.
 10 3ポートプローブ、 20 検出ポート信号入力部、 30 参照ポート信号入力部、 40 補正部、 50 前処理部、 60 複素ニューラルネットワーク、 70 教師データ記憶部、 80 グルコース濃度出力部、 100 血糖値測定装置。 10 3-port probe, 20 detection port signal input unit, 30 reference port signal input unit, 40 correction unit, 50 preprocessing unit, 60 complex neural network, 70 teacher data storage unit, 80 glucose concentration output unit, 100 blood sugar level measuring device ..

Claims (8)

  1.  電磁波を伝送する導波管の送信ポート、検出ポートおよび参照ポートを備えるプローブからの測定信号から血糖値を測定する血糖値測定装置であって、
     前記プローブから検出ポート信号を取得する検出ポート信号入力部と、
     前記プローブから参照ポート信号を取得する参照ポート信号入力部と、
     検出ポート信号と参照ポート信号の差分を計算することにより補正信号を生成する補正部と、
     補正信号とグルコース濃度の対を教師データとして用いて重みが学習された複素ニューラルネットワークであって、生成された補正信号を入力データとして各層で重み付き和の非線形活性化関数による出力を計算することにより、グルコース濃度を出力データとして推定する複素ニューラルネットワークとを備えることを特徴とする血糖値測定装置。
    A blood glucose level measuring device for measuring a blood glucose level from a measurement signal from a probe having a waveguide transmission port for transmitting electromagnetic waves, a detection port and a reference port,
    A detection port signal input section for obtaining a detection port signal from the probe,
    A reference port signal input unit that acquires a reference port signal from the probe,
    A correction unit that generates a correction signal by calculating the difference between the detection port signal and the reference port signal,
    A complex neural network in which weights are learned using a pair of correction signal and glucose concentration as training data, and the output by the non-linear activation function of the weighted sum is calculated in each layer using the generated correction signal as input data. A blood glucose level measuring device including a complex neural network that estimates a glucose concentration as output data.
  2.  前記プローブの導波管の内部に誘電体材料が充填されていることを特徴とする請求項1に記載の血糖値測定装置。 The blood glucose level measuring device according to claim 1, wherein a dielectric material is filled inside the waveguide of the probe.
  3.  前記プローブの導波管の内部に充填された誘電体材料はテーパ構造を有することを特徴とする請求項2に記載の血糖値測定装置。 The blood glucose level measuring device according to claim 2, wherein the dielectric material filled in the waveguide of the probe has a tapered structure.
  4.  電磁波の導波管の送信ポートおよび検出ポートと、
     前記導波管の送信ポートから検出ポートまでの経路に人体の皮膚をはさむ部分とを備え、
     前記導波管の内部に誘電体材料が充填されたことを特徴とするプローブ。
    Electromagnetic wave waveguide transmission port and detection port,
    The path from the transmission port to the detection port of the waveguide is provided with a portion that sandwiches the skin of the human body.
    A probe in which a dielectric material is filled inside the waveguide.
  5.  前記誘電体材料はシリコンであることを特徴とする請求項4に記載のプローブ。 The probe according to claim 4, wherein the dielectric material is silicon.
  6.  参照ポートをさらに備えることを特徴とする請求項4または5に記載のプローブ。 The probe according to claim 4 or 5, further comprising a reference port.
  7.  電磁波を伝送する導波管の送信ポート、検出ポートおよび参照ポートを備えるプローブからの測定信号から血糖値を測定する血糖値測定方法であって、
     前記プローブから検出ポート信号を取得するステップと、
     前記プローブから参照ポート信号を取得するステップと、
     検出ポート信号と参照ポート信号の差分を計算することにより補正信号を生成するステップと、
     補正信号とグルコース濃度の対を教師データとして用いて重みが学習された複素ニューラルネットワークを用いて、生成された補正信号を入力データとして各層で重み付き和の非線形活性化関数による出力を計算することにより、グルコース濃度を出力データとして推定するステップとを備えることを特徴とする血糖値測定方法。
    A blood glucose level measuring method for measuring a blood glucose level from a measurement signal from a probe having a waveguide transmission port for transmitting electromagnetic waves, a detection port and a reference port,
    The step of acquiring the detection port signal from the probe and
    Obtaining a reference port signal from the probe,
    Generating a correction signal by calculating the difference between the detection port signal and the reference port signal,
    Using a complex neural network whose weights have been learned using the pair of correction signal and glucose concentration as training data, the output by the non-linear activation function of the weighted sum is calculated for each layer using the generated correction signal as input data. A method for measuring a blood glucose level, which comprises a step of estimating a glucose concentration as output data.
  8.  電磁波を伝送する導波管の送信ポート、検出ポートおよび参照ポートを備えるプローブからの測定信号から血糖値を測定するプログラムであって、
     前記プローブから検出ポート信号を取得するステップと、
     前記プローブから参照ポート信号を取得するステップと、
     検出ポート信号と参照ポート信号の差分を計算することにより補正信号を生成するステップと、
     補正信号とグルコース濃度の対を教師データとして用いて重みが学習された複素ニューラルネットワークを用いて、生成された補正信号を入力データとして各層で重み付き和の非線形活性化関数による出力を計算することにより、グルコース濃度を出力データとして推定するステップとをコンピュータに実行させることを特徴とするプログラム。
    A program for measuring a blood glucose level from a measurement signal from a probe having a transmission port of a waveguide for transmitting electromagnetic waves, a detection port and a reference port,
    Obtaining a detection port signal from the probe,
    Obtaining a reference port signal from the probe,
    Generating a correction signal by calculating the difference between the detection port signal and the reference port signal,
    Using a complex neural network whose weights have been learned using the pair of correction signal and glucose concentration as training data, the output by the non-linear activation function of the weighted sum is calculated for each layer using the generated correction signal as input data. A program characterized by having a computer perform a step of estimating a glucose concentration as output data.
PCT/JP2020/008305 2019-03-01 2020-02-28 Blood sugar level measurement device, blood sugar level measurement method, and probe WO2020179664A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021504047A JPWO2020179664A1 (en) 2019-03-01 2020-02-28 Glucose meter, blood glucose metering method, and probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962812327P 2019-03-01 2019-03-01
US62/812,327 2019-03-01

Publications (1)

Publication Number Publication Date
WO2020179664A1 true WO2020179664A1 (en) 2020-09-10

Family

ID=72337059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008305 WO2020179664A1 (en) 2019-03-01 2020-02-28 Blood sugar level measurement device, blood sugar level measurement method, and probe

Country Status (2)

Country Link
JP (1) JPWO2020179664A1 (en)
WO (1) WO2020179664A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115211849A (en) * 2021-04-16 2022-10-21 天津大学 Microwave S21 unwrapping phase nondestructive testing method for blood glucose concentration of wrist

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HU , SHIZHEN ET AL.: "PROPOSAL OF MILLIMETER-WAVE ADAPTIVE GLUCOSE-CONCENTRATION ESTIMATION SYSTEM USING COMPLEX-VALUED NEURAL NETWORKS", IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 22 July 2018 (2018-07-22), pages 4074 - 4077, XP033438628, DOI: 10.1109/IGARSS.2018.8519476 *
NAGAE, SEKO ET AL.: "Proposal of three-port probe for non-invasive millimeter-wave blood glucose monitoring systems", IEICE TECHNICAL REPORT MBE2018-113, vol. 118, no. 469, 25 February 2019 (2019-02-25), pages 137 - 140 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115211849A (en) * 2021-04-16 2022-10-21 天津大学 Microwave S21 unwrapping phase nondestructive testing method for blood glucose concentration of wrist

Also Published As

Publication number Publication date
JPWO2020179664A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
Yilmaz et al. Radio-frequency and microwave techniques for non-invasive measurement of blood glucose levels
Turgul et al. Permittivity extraction of glucose solutions through artificial neural networks and non-invasive microwave glucose sensing
US20220386889A1 (en) Non-intrusive oxygen sensing device
Xiao et al. A noninvasive measurement of blood glucose concentration by UWB microwave spectrum
Murphy et al. Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor
Hu et al. Millimeter-wave adaptive glucose concentration estimation with complex-valued neural networks
CN111432724A (en) Novel non-invasive biological, chemical marker and tracer monitoring device for monitoring blood containing glucose using adaptive radio frequency circuit and antenna design
Vrba et al. A Microwave Metamaterial Inspired Sensor for Non-Invasive Blood Glucose Monitoring.
Xiao et al. Precise noninvasive estimation of glucose using UWB microwave with improved neural networks and hybrid optimization
Deshmukh et al. Non-invasive determination of blood glucose level using narrowband microwave sensor
JP2021502880A (en) Devices and methods for non-invasive monitoring of blood glucose
US20230158822A1 (en) Method of fabricating metasurface on skin for blood glucose detection
Wang et al. Combined approach to estimate blood glucose level in noninvasive monitoring: Ultra-wide band microwave and cascaded general regression neural network
Juan et al. Feasibility study of portable microwave microstrip open-loop resonator for non-invasive blood glucose level sensing: Proof of concept
Costanzo et al. Complex permittivity effect on the performances of non-invasive microwave blood glucose sensing: enhanced model and preliminary results
WO2020179664A1 (en) Blood sugar level measurement device, blood sugar level measurement method, and probe
Deshmukh et al. Measurement of dielectric properties of aqueous glucose using planar ring resonator
Kaurav et al. Non-invasive glucose measurement using sub-terahertz sensor, time domain processing, and neural network
Gouzouasis et al. Detection of varying glucose concentrations in water solutions using a prototype biomedical device for millimeter-wave non-invasive glucose sensing
Buonanno et al. Response sharpening of resonant sensors for potential applications in blood glucose monitoring
Singh et al. A planar microwave sensor for noninvasive detection of glucose concentration using regression analysis
Abdesselam et al. A non-invasive honey-cell CSRR glucose sensor: Design considerations and modelling
JP6807300B2 (en) Component concentration measuring method and component concentration measuring device
KR101132634B1 (en) Interstitial blood glucose sensor and apparatus for measuring blood glucose in real time using thereof
Mhatre et al. Human body model with blood flow properties for non-invasive blood glucose measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504047

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766090

Country of ref document: EP

Kind code of ref document: A1