WO2020179599A1 - Solar ray information provision system and solar ray information provision program - Google Patents

Solar ray information provision system and solar ray information provision program Download PDF

Info

Publication number
WO2020179599A1
WO2020179599A1 PCT/JP2020/007965 JP2020007965W WO2020179599A1 WO 2020179599 A1 WO2020179599 A1 WO 2020179599A1 JP 2020007965 W JP2020007965 W JP 2020007965W WO 2020179599 A1 WO2020179599 A1 WO 2020179599A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
date
sunlight
time
intensity
Prior art date
Application number
PCT/JP2020/007965
Other languages
French (fr)
Japanese (ja)
Inventor
知之 奥村
Original Assignee
日本ユニシス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ユニシス株式会社 filed Critical 日本ユニシス株式会社
Publication of WO2020179599A1 publication Critical patent/WO2020179599A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/12Sunshine duration recorders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services

Definitions

  • the present invention relates to a solar ray information providing system and a solar ray information providing program.
  • the effects of sunlight for example, ultraviolet rays, visible rays, and infrared rays
  • the amount of sunlight irradiation for example, ultraviolet irradiation amount and solar radiation amount.
  • the positional information indicating the position and the environmental information indicating the amount of the exposure target such as ultraviolet rays existing at the position are stored in the environmental information storage unit in association with each other.
  • the exposure amount is estimated based on the environmental information acquired from the environmental information storage unit and the exposure rate determined according to the behavior of the user, and the numerical value of the estimated exposure amount is provided to the user.
  • the exposure amount is stored using the environmental information (pollen scattering amount, ultraviolet ray amount, aerosol amount) specified by the position information, which is stored in the environmental information storage unit.
  • the environmental information specified by this location information there is a problem that the user who receives the information cannot easily obtain more detailed information.
  • the parts and places where you want to know the energy intensity such as the amount of UV irradiation and the amount of solar radiation are not necessarily the horizontal plane or the plane perpendicular to the sun's rays.
  • it is considered to calculate the energy intensity on the actual irradiation surface by using a trigonometric function etc. from the energy intensity perpendicular to the horizontal plane and the sun rays. Be done.
  • the energy intensity from the actual sky scattered and reflected by the atmospheric component is different for each direction, there is a problem in that sufficient accuracy cannot be obtained by calculation using a trigonometric function or the like.
  • the present invention has been made to solve the above problems, and provides a sunlight ray information providing system and a sunlight ray information providing program that allow a user to easily obtain more detailed sunlight ray information.
  • the purpose The reason.
  • the present invention relates to date and time information that is information related to date and time, place information that is information related to a place, date and time indicated by the date and time information, and solar ray intensity at a place indicated by the place information.
  • the sun ray intensity information that is information, a storage unit that stores the information in association with each other, a communication unit that performs communication, and the sun ray intensity information that is associated with the sun ray inquiry information that is input via the communication unit.
  • the information including the intensity of the sun rays received by the irradiation surface indicated by the direction information, the communication unit, for the source of the sun ray inquiry information, the direction specific sun rays calculated by the second calculator. It is characterized by transmitting intensity information.
  • FIG. 1 It is a block diagram which shows the structure of the sun ray information providing system which concerns on Example 1 of this invention. It is a figure explaining the irradiation direction of the sun ray. It is a figure explaining the sun ray which irradiates the irradiation surface A which is a surface parallel to the ground. It is a figure explaining the sunlight ray irradiated to the irradiation surface B which is a surface which makes an angle of 30 degrees with the ground. It is a figure explaining the sunlight ray irradiated to the irradiation surface C which is a surface which makes an angle of 90 degrees with the ground.
  • FIG. 7 is a diagram showing how reflected light from an irradiation surface E is measured. It is a figure explaining the light which enters the irradiation surface among the light reflected from another irradiation surface. It is a figure which shows an example of the information memorize
  • FIG. 12 is a flowchart showing an operation of the solar ray information providing system 100 shown in FIG. 11. It is a graph which shows the spectral irradiance. It is a figure which shows the trial calculation conditions regarding the temperature rise of the irradiated material. It is a figure which shows the example of trial calculation of the temperature rise after 1 hour according to the material.
  • FIG. 16A is a graph showing an example of the spectral irradiation intensity from each direction on the sidewalk.
  • FIG. 16B is a graph showing an example of the spectral reflectance on the sidewalk.
  • FIG. 17A is a graph showing an example of the spectral irradiation intensity from each direction on the sidewalk.
  • FIG. 17B is a graph showing an example of the spectral reflectance on the sidewalk.
  • FIG. 18A is a graph showing an example of the spectral irradiation intensity from each direction on the sidewalk.
  • FIG. 18B is a graph showing an example of the spectral reflectance on the sidewalk.
  • the present invention is applied to a solar ray information providing system, and a system for providing a user with information on solar rays, for example, the amount of solar radiation is described, but the present invention includes ultraviolet rays.
  • the user may be provided with individual information such as infrared rays, visible rays, or other electromagnetic waves.
  • the intensity of sunlight is also called the intensity of solar radiation.
  • the solar ray information providing system 10 of this embodiment is, for example, a server machine including a computer.
  • the sunbeam information providing system 10 includes a storage unit 13 that stores the sunbeam intensity information 16 described later in detail and various other information, a communication unit 17 that performs communication, and a communication unit 17 via a communication unit 17.
  • the first calculation unit 11 that calculates the sun ray intensity information 16 associated with the received sun ray inquiry information, and the second calculation that calculates the direction-specific sun ray intensity information using the calculation result of the first calculation unit 11.
  • a unit 12 is provided.
  • the communication unit 17 communicates with the outside, for example.
  • the sunlight inquiry information includes date and time information 14, location information 15, and direction information 16a indicating the direction in which the irradiation surface to be irradiated with the sunlight is directed.
  • the direction-specific sun ray intensity information is the intensity of the sun ray received by the irradiation surface indicated by the direction information 16a at the date and time indicated by the date and time information 14 and the place indicated by the place information 15, and the communication unit 17 determines that the sun ray
  • the direction-specific sun ray intensity information indicating the direction-specific sun ray intensity calculated by the second calculator 12 is transmitted to the sender of the inquiry information.
  • Each configuration shown in FIG. 1 may be configured by hardware. Further, each configuration illustrated in FIG. 1 can be realized by the sun ray information providing system 10 executing a program, and the storage unit 13 may store the program executed by the sun ray information providing system 10. ..
  • the storage unit 13 has a volatile storage device or a non-volatile storage device depending on the purpose of the data.
  • the communication unit 17 may be configured to transmit the sunlight ray intensity information calculated by the first calculation unit 11 to the source of the sunlight ray inquiry information.
  • the client machine 2 or 3 may have a configuration corresponding to the function of the second calculation unit 12. That is, the present invention is a sunlight information providing system in which a server machine and a client machine are connected to each other by a network, and the server machine has date and time information 14 which is information regarding date and time and location information 15 which is information regarding place.
  • a storage unit 13 that stores the date and time indicated by the date and time information and the sun ray intensity information 16 that is information regarding the sun ray intensity at the place indicated by the place information in association with each other, and a communication unit that communicates with the client machine.
  • One communication unit and a first calculation unit 11 that calculates the sun ray intensity information 16 associated with the sun ray inquiry information input via the first communication unit, and the first communication unit is a client machine.
  • the client machine transmits the sun ray intensity information 16 calculated by the first calculator 11, and the client machine communicates with the server machine 1 by a second communication unit, and the sun ray intensity input via the second communication unit.
  • a second calculating unit (a configuration corresponding to the function of the second calculating unit 12) that calculates the direction-specific solar ray intensity information using the information 16; and a second communication unit (corresponding to the function of the second calculating unit 12).
  • Configuration transmits the sunbeam inquiry information to the server machine, and the sunbeam inquiry information includes the date and time information 14, the location information, and direction information 16a indicating the direction in which the irradiation surface receiving the irradiation of the solar rays faces.
  • the client machine and the server machine may be in the same terminal device without going through the network. In this case, the client machine and the server machine may be the same device, or the client machine and the server machine may be connected by a bus, for example.
  • connecting the client machine and the server machine means that the program that realizes the function as the client machine and the program that realizes the function as the server machine are data May be referred to as handing over.
  • the storage unit 13 includes date and time information 14 that is information regarding date and time, place information 15 that is information regarding place, date and time indicated by the date and time information 14, and sunlight rays that are information regarding sun ray intensity at the place indicated by the place information 15.
  • the strength information 16 is stored in association with each other.
  • the communication unit 17 of the solar ray information providing system 10 is connected to a network 4 such as the Internet.
  • Client machines 2 and 3 used by the user are connected to the network 4, and the client machines 2 and 3 communicate with the solar ray information providing system 10 via the network 4.
  • the sunbeam inquiry information is transmitted from the client machine 2 or the client machine 3 to the sunbeam information providing system 10 via the network 4.
  • the sunlight inquiry information includes date and time information 14, location information 15, and direction information 16a indicating the direction in which the irradiation surface to be irradiated by the sun rays faces.
  • the direction indicated by the direction information 16a is a direction orthogonal to the surface on which the irradiation surface that receives the irradiation of the sun's rays expands.
  • the direction information 16a will be described later with reference to FIGS.
  • the calculation result by the calculation unit 11 is transmitted from the sunlight ray information providing system 10 to the client machine 2 or the client machine 3 which is the transmission source of the sunlight ray inquiry information via the network 4.
  • the first calculator 11 calculates the sunbeam intensity information 16 described later in detail using the date and time information and the location information included in the sunbeam inquiry information.
  • the second calculator 12 uses the calculation result of the first calculator 11 to calculate direction-specific sun ray intensity information, which is information including the intensity of sun rays received by the irradiation surface indicated by the direction information 16a.
  • the communication unit 17 transmits the direction-specific sun ray intensity information indicating the direction-specific sun ray intensity calculated by the second calculator 12 via the network 4 to the client machine 2 or the client machine 2 that is the source of the sun ray inquiry information. Send to.
  • FIG. 2 is a diagram for explaining the irradiation direction of the sun's rays.
  • FIG. 3 is a diagram for explaining the sun rays radiated to the irradiation surface A, which is a surface parallel to the ground.
  • FIG. 4 is a diagram for explaining the sun rays that are applied to the irradiation surface B that is a surface that makes an angle of 30° with the ground.
  • FIG. 5 is a figure explaining the sunlight ray irradiated to the irradiation surface C which is a surface which makes an angle of 90 degrees with the ground.
  • the direction in which the irradiation surface to be irradiated by the sun's rays faces that is, the direction indicated by the direction information 16a is described as the "direction of the irradiation surface".
  • the sun's rays that irradiate the earth include direct solar radiation emitted from the direction of the sun and scattered solar radiation emitted from directions other than the direction of the sun.
  • the scattered solar radiation is applied to the irradiation surface from the entire sky.
  • the irradiation surface A which is a surface parallel to the ground, is irradiated with scattered solar radiation and direct solar radiation from the entire sky.
  • the irradiation surface B forming an angle of 30° with the ground is irradiated with scattered solar radiation and direct solar irradiation from the direction of the irradiation surface B of the entire sky.
  • the irradiation surface C forming an angle of 90° with the ground is not irradiated with direct solar radiation because the direction of the sun is the back side of the irradiation surface C, and the irradiation surface of the entire sky is irradiated. Scattered solar radiation is emitted from the direction in which C faces.
  • scattered sunlight and direct sunlight that are directly irradiated on the irradiated surface there are also sunlight that is reflected on the ground and irradiated on the irradiated surface.
  • the intensity of the shining sun rays varies greatly depending on the direction of the irradiation surface. Therefore, in this embodiment, different direction-specific sun ray intensity information is calculated for each direction in which the irradiation surface faces, and this is provided to the client machine 2 or the client machine 3 that is the sender of the sun ray inquiry information.
  • FIG. 6 is a diagram for explaining the sun rays reflected by the irradiation surface E and applied to the irradiation surface D.
  • the irradiation amount of the sun rays received on the irradiation surface D is not only the sun rays directly received by the irradiation surface D (direct solar radiation and scattered solar radiation) but also the sun rays (direct solar radiation and scattered solar radiation) on the ground and the wall surface.
  • the sun rays (reflected light) reflected by the irradiation surface (irradiation surface E) are also included.
  • the intensity of the sunlight received by the irradiation surface also includes the intensity of the reflected light reflected by the irradiation surface, so that the accuracy of determining the intensity of the sunlight received by the irradiation surface can be further increased.
  • the reflectance of the other irradiation surface is used to calculate the reflected light from the other irradiation surface.
  • the reflectance of the material surface is generally a reflectance at a typical specific wavelength, but it is desirable to use spectral reflectance in order to calculate the energy intensity with high accuracy.
  • spectral reflectance of the other irradiation surface will be described with reference to FIG. 7.
  • FIG. 7 is a diagram for explaining an example of how to obtain the spectral reflectance of the other irradiation surface
  • FIG. 7A is a diagram showing a state of measuring the sunlight rays directly received by the irradiation surface E
  • FIG. 7B is a diagram showing how reflected light from the irradiation surface E is measured.
  • a measuring device 50 is used here.
  • the measuring device 50 is a measuring device that functions as a spectral illuminometer.
  • the spectral illuminance from above the irradiation surface E (the spectral illuminance of the sun's rays irradiating the irradiation surface E) is measured using the measuring device 50.
  • the spectral illuminance reflected by the irradiation surface E (spectral illuminance of reflected light in which the sun rays are reflected by the irradiation surface E) is measured using the measuring device 50.
  • the spectral reflectance of the irradiation surface E is calculated by the formula 1.
  • FIG. 8 is a diagram for explaining the light that enters the irradiation surface among the reflected light from the other irradiation surface.
  • FIG. 8 shows a case where the irradiation surface G, which is the other irradiation surface, is the ground, and the ratio of the light reflected from the irradiation surface G that enters the irradiation surface F is taken into consideration.
  • the energy of light entering the irradiation surface F from the irradiation surface G (ground) can be calculated by Equation 2.
  • the irradiation energy received by the irradiation surface G in Equation 2 can be obtained, for example, by the method shown in FIG.
  • the reflectance in Equation 2 for example, the spectral reflectance obtained in Equation 1 can be used.
  • the area ratio H in Equation 2 can be obtained as described below with reference to FIG.
  • the viewing angle of the ground (irradiation surface G) on the irradiation surface F is determined by the angle ⁇ according to the direction of the irradiation surface F. If the irradiation surface G is the ideal ground (horizontal), the angle ⁇ that determines the field of view of the irradiation surface G that is the ground is geometrically the angle formed by the irradiation surface F and the horizontal direction.
  • the area ratio H is the ratio of the field of view of the ground on the irradiation surface F to the hemispherical area of the irradiation surface F.
  • the irradiation energy received by the irradiation surface F is calculated, the irradiation energy by the scattered solar radiation and the direct solar radiation directly irradiated on the irradiation surface F is set to the energy incident on the irradiation surface F calculated by the equation 2. By adding it, it can be obtained with higher accuracy.
  • the irradiation surface F can be determined by considering not only the reflected light by the ground but also all other irradiation surfaces on which the reflected light can enter the irradiation surface F.
  • the irradiation energy to be received can be obtained with higher accuracy.
  • FIG. 9 is a diagram showing an example of information stored in the storage unit 13 shown in FIG.
  • the storage unit 13 stores the information shown in FIG. 9, for example, in a database format.
  • the storage unit 13 stores the date and time information 14 as the first primary key.
  • the date and time information 14 may include year, month, day and time.
  • the storage unit 13 stores the location information 15 as the second primary key.
  • the location information 15 is information for identifying a position on the earth by using, for example, east longitude and north latitude.
  • the storage unit 13 stores the sun solid angle of the first primary key and the second primary key as the stored value of the sun ray intensity information 16.
  • the storage unit 13 stores the direct solar radiation intensity of the first primary key and the second primary key as the stored value of the sunlight intensity information 16.
  • the storage unit 13 stores the scattered solar radiation intensity of the first primary key and the second primary key as the stored value of the sunlight intensity information 16.
  • the storage unit 13 stores the albedo values of the first primary key and the second primary key as the stored value of the sunlight intensity information 16.
  • the albedo value is the ratio of the reflected sunlight intensity to the irradiated sunlight intensity.
  • the ground is soil and the albedo value is low, and when the date and time information 14 is winter, the ground is a snow surface. High albedo value.
  • actually measured values are collected and stored in the storage unit 13.
  • the direction information 16a included in the sun ray intensity information 16 is included in the stored value shown in FIG.
  • the information included in the sunlight intensity information 16 includes, for example, a value calculated by solving the radiation transmission equation and a value calculated in the process of solving the radiation transmission equation.
  • FIG. 10 is a flowchart showing the operation of the solar ray information providing system 10 shown in FIG.
  • step S71 it is determined whether or not the sunlight ray inquiry information is received from the client machine 2 or the client machine 3 via the network 4.
  • step S71: Yes the process proceeds to step S72, and when the sunbeam inquiry information is not received (step S71: No), the process returns to step S71.
  • step S72 based on the sunlight ray inquiry information received in step S71, the sun received at the location indicated by the location information 15 included in the sunlight ray inquiry information at the date and time indicated by the date and time information 14 included in the sunlight ray inquiry information.
  • Sunlight intensity information 16 which is information including the intensity of light rays is calculated and stored in the storage unit 13. The sun ray intensity information 16 is calculated using, for example, a radiative transfer equation.
  • step S73 the sunlight ray intensity information 16 calculated in step S72 is subjected to mathematical calculation using the direction information 16 as an input value, so that the place included in the sunlight ray inquiry information at the date and time indicated by the date and time information 14.
  • the direction-specific solar ray intensity information which is the sunlight ray intensity information received by the irradiation surface indicated by the direction information 16a, is calculated.
  • step S74 the direction-specific sun ray intensity information indicating the direction-specific sun ray intensity calculated in step S73 is transmitted to the client machine 2 or the client machine 3 which is the transmission source of the present sun ray inquiry information via the network 4.
  • the client machine 2 or the client machine 3 can obtain the direction-specific sun ray intensity information only by transmitting the sun ray inquiry information including the date/time information 14, the location information 15, and the direction information 16a to the sun ray information providing system 10. , More detailed sunlight information can be easily obtained.
  • the client machine 2 or the client machine 3 can provide various applications to the end user by using the direction-specific sunlight intensity information obtained from the sunlight information providing system 10.
  • FIG. 11 is a block diagram showing the configuration of the solar ray information providing system according to the second embodiment of the present invention.
  • the solar ray information providing system 100 of this embodiment is, for example, a server machine including a computer.
  • the sunlight ray information providing system 100 includes a first calculation unit 110 that calculates in advance sunlight ray intensity information 116, which will be described later in detail, using date and time information and place information, and a first calculation unit 110.
  • the storage unit 113 that stores the calculated sun ray intensity information 116 and other various information, the communication unit 117 that performs communication, and the sun ray intensity information that is associated with the sun ray inquiry information that is input via the communication unit 117.
  • An extraction unit 111 that extracts 116 from the storage unit 113, and a second calculation unit 112 that calculates the direction-specific sun ray intensity information using the sun ray intensity information 116 extracted by the extraction unit 111.
  • the communication unit 117 communicates with the outside, for example.
  • the sun ray inquiry information includes date and time information 114, location information 115, and direction information 116a.
  • the direction-specific sun ray intensity information is information including the intensity of the sun ray received by the irradiation surface indicated by the direction information 116a at the date and time indicated by the date and time information 114 and the location indicated by the place information 115.
  • the communication unit 117 transmits the direction-specific sun ray intensity information calculated by the second calculator 112 to the source of the sun ray inquiry information.
  • Each configuration shown in FIG. 11 may be configured by hardware. Further, each configuration shown in FIG. 11 can be realized by the sun ray information providing system 100 executing a program, and the storage unit 113 may store the program executed by the sun ray information providing system 100. ..
  • the storage unit 113 has a volatile storage device or a non-volatile storage device depending on the purpose of the data.
  • the communication unit 117 may be configured to transmit the sunlight intensity information extracted by the extraction unit 111 to the source of the sunlight inquiry information.
  • the client machine 2 or 3 may have a configuration corresponding to the function of the second calculation unit 112. That is, the present invention is a sunlight information providing system in which a server machine and a client machine are connected by a network, and the server machine is information on a date and time and a place indicated by date and time information 114 which is information on a date and time.
  • the first calculation unit 110 that calculates the sunlight intensity information 116, which is information on the sunlight intensity at the place indicated by the place information 115, the date and time information 114, the location information 115, and the sunlight rays calculated by the first calculation unit 110.
  • the storage unit 113 that stores the intensity information 116 in association with each other, the first communication unit that communicates with the client machine, and the sunlight intensity associated with the sunlight inquiry information input via the first communication unit.
  • An extraction unit 111 that extracts the information 116 from the storage unit 113, and the first communication unit transmits the sunbeam intensity information 116 extracted by the extraction unit 111 to the client machine, and the client machine is the server machine.
  • the second calculation unit (corresponding to the function of the second calculation unit 112) that calculates the direction-specific sunlight intensity information using the second communication unit that performs communication and the sunlight intensity information 116 input via the second communication unit.
  • the second communication unit transmits the sunlight ray inquiry information to the server machine, and the sunlight ray inquiry information is the date/time information 114, the location information 115, and the irradiation surface that receives the irradiation of the sunlight rays. It may be configured to include the direction information 116a indicating the facing direction.
  • the storage unit 113 stores date and time information 114 that is information regarding date and time, place information 115 that is information regarding place, date and time indicated by the date and time information 114, and sunbeams that are information regarding sunbeam intensity at the place indicated by the place information 115.
  • the intensity information 116 (sunlight intensity information 116 calculated by the first calculation unit 110) is stored in association with each other.
  • the communication unit 117 of the solar ray information providing system 100 is connected to a network 4 such as the Internet.
  • Client machines 2 and 3 used by the user are connected to the network 4, and the client machines 2 and 3 communicate with the solar ray information providing system 100 via the network 4.
  • the sunbeam inquiry information is transmitted from the client machine 2 or the client machine 3 to the sunbeam information providing system 100 via the network 4.
  • the sunlight ray inquiry information includes date and time information 114, place information 115, and direction information 116a. From the sunbeam information providing system 100 to the client machine 2 or the client machine 3 that is the sender of the sunbeam inquiry information, the direction-specific sunbeam intensity information that is the extraction result of the extraction unit 112 is transmitted via the network 4. To.
  • an example of the information stored in the storage unit 113 is the information shown in FIG.
  • FIG. 12 is a flowchart showing the operation of the solar ray information providing system 100 shown in FIG.
  • the date and time information and the place information are used to calculate the information included in the sunlight ray intensity information 116 at all the places at all the dates and times.
  • a radiation transfer equation is used to calculate the information included in the sunlight intensity information 116. That is, the information included in the sunlight intensity information 116 includes, for example, a value calculated by solving the radiation transmission equation and a value calculated in the process of solving the radiation transmission equation.
  • the storage unit 113 stores the information included in the sunlight ray intensity information 116 calculated in step S91.
  • step S93: Yes when the sunlight ray inquiry information is received from the client machine 2 or the client machine 3 via the network 4 (step S93: Yes), the process proceeds to step S94, and when the sunlight ray inquiry information is not received. (Step S93: No), the process returns to step S90.
  • the calculation of the information included in the sunbeam intensity information 116 and the storage of the calculated information in the storage unit 13 are all completed before the process of receiving the sunbeam inquiry information from the client machine 2 or 3. It may be stored in advance, or may be updated each time, for example, when data of a region that has been unavailable until now is newly obtained.
  • step S94 the sunlight intensity information 116 is extracted from the storage unit 113 based on the sunlight inquiry information included in the received data from the client machine 2 or the client machine 3. That is, the sunbeam intensity information 116 corresponding to the date/time information 114 and the location information 115 included in the sunbeam inquiry information is extracted from the storage unit 113.
  • the extracted value of the sunbeam intensity information 116 is further mathematically calculated using the direction information 116a as an input value, so that the location included in the sunbeam inquiry information at the date and time indicated by the date and time information 14.
  • the direction-specific solar ray intensity information which is the information including the intensity of the sunlight ray received by the irradiation surface indicated by the direction information 116a is calculated.
  • step S95 the direction-specific sun ray intensity information calculated in step S94 is transmitted via the network 4 to the client machine 2 or the client machine 3 that is the sender of this sun ray inquiry information.
  • the client machine 2 or the client machine 3 can obtain the direction-specific sun ray intensity information only by transmitting the sun ray inquiry information including the date/time information 114, the location information 115, and the direction information 116a to the sun ray information providing system 100. , More detailed sunlight information can be easily obtained.
  • the client machine 2 or the client machine 3 can provide various applications to the end user by using the direction-specific sunlight intensity information obtained from the sunlight information providing system 100.
  • the sun ray intensity information 116 is calculated in advance, the response is quicker and higher than the case where the sun ray inquiry information is calculated after being received from the client machine 2 or the client machine 3. It is possible to provide direction-specific sunlight intensity information with immediacy.
  • FIG. 13 is a graph showing the spectral irradiance.
  • the horizontal axis represents the wavelength of light and the vertical axis represents the spectral irradiance.
  • FIG. 13 shows the result of calculating the amount of heat applied to the irradiation surface after calculating the energy intensity of the sky with respect to the irradiation surface by simulation based on the above-described first embodiment.
  • FIG. 13 is an example of calculation of the amount of heat received by the irradiation surface arranged on Miyakojima from 12:00 to 1300 on June 20, 2016.
  • the integrated value of the energy applied to the irradiation surface is found to be 1,029.8 [W/m 2 ], and the amount of heat received by the irradiation surface is 3,707,358 [J/m]. 2 ] is required.
  • the solar radiation information providing system 10 uses the amount of heat received by the irradiation surface, which is the result obtained in Embodiment 3, to irradiate the material (material of the irradiation material having the irradiation surface). ) Can be predicted.
  • the temperature rise prediction of the irradiation surface will be described.
  • FIG. 14 is a diagram showing trial calculation conditions regarding the temperature rise of the irradiated material. As shown in FIG.
  • the irradiation surface J2 of the irradiation material J1 is exposed to the sunlight and the reflectance of the irradiation surface J2 is 30%. Further, it is assumed that the heat radiation from the irradiation material J1 is zero. Further, it is assumed that heat transfer and heat transfer from the irradiation material J1 are zero.
  • FIG. 15 is a figure which shows the example of trial calculation of the temperature rise after 1 hour according to the material.
  • a sun ray having a calorific value of 3,707,358 [J / m 2 ] is incident on the irradiation material J1 having a reflectance of the irradiation surface J2 of 30%, the amount of heat reflected on the irradiation surface J2 is 1,112,207. [J/m 2 ], and the absorbed heat amount of the irradiation material J1 is 2,595,151 [J/m 2 ].
  • the heat capacity is 18864 [J/K]
  • the shape of the material model of the irradiation material J1 is 1 mx 1 mx thickness 5 mm. Further, this trial calculation is a trial calculation on the assumption that there is no heat radiation (heat radiation, heat conduction, heat transfer, etc.) from the irradiation material J1. In reality, heat is radiated from the irradiation material J1, so the temperature does not rise so much. In the trial calculation, heat dissipation may be taken into consideration as necessary. This trial calculation makes it possible to predict the temperature rise in structures that were difficult to measure due to high places and people not approaching, and on the irradiated surface such as land.According to this embodiment, it is possible to predict the deterioration of structures and , It can be used for forest planting plans.
  • the solar ray information providing system 10 can calculate the reflected energy based on the reflectance of the sidewalk and the irradiation amount applied to the irradiation surface.
  • the reflectance of the sidewalk can be determined, for example, by the method described with reference to FIGS. 7 (a) and 7 (b).
  • FIG. 16A is a graph showing an example of the spectral irradiation intensity from each direction on the sidewalk.
  • the horizontal axis is the wavelength of light and the vertical axis is the irradiation intensity.
  • FIG. 16B is a graph showing an example of spectral reflectance on the sidewalk.
  • the horizontal axis is the wavelength of light and the vertical axis is the spectral reflectance. Referring to FIG. 16(b), it can be seen that the sidewalk has a spectral reflectance of 10 to 20%.
  • the solar ray information providing system 10 can calculate the reflected energy based on the reflectance of the grassland and the irradiation amount applied to the irradiation surface.
  • the reflectance of the grassland can be determined, for example, by the method described with reference to FIGS. 7 (a) and 7 (b).
  • FIG. 17A is a graph showing an example of the spectral irradiation intensity from each direction on the grassland. In FIG. 17A, the horizontal axis is the wavelength of light and the vertical axis is the irradiation intensity.
  • FIG.17(b) is a graph which shows the example of the spectral reflectance in a grassland.
  • the horizontal axis is the wavelength of light and the vertical axis is the spectral reflectance.
  • the spectral reflectance of the grassland is 5 to 10%.
  • the reflectance rapidly increases in the near infrared in the grassland.
  • the solar ray information providing system 10 can calculate the reflected energy based on the reflectance of asphalt and the irradiation amount applied to the irradiation surface.
  • the reflectance of asphalt can be obtained, for example, by the method described with reference to FIGS. 7A and 7B.
  • FIG. 18A is a graph showing an example of the spectral irradiation intensity from each direction on asphalt.
  • the horizontal axis represents the wavelength of light and the vertical axis represents the irradiation intensity.
  • FIG. 18B is a graph showing an example of the spectral reflectance of asphalt.
  • the horizontal axis is the wavelength of light and the vertical axis is the spectral reflectance. Referring to FIG. 18B, it can be seen that the asphalt has a spectral reflectance of 5%.
  • An object of the present invention is to supply a storage medium storing a program code (computer program) for realizing the functions of the above-described embodiments to a system or apparatus, and a computer of the supplied system or apparatus is stored in the storage medium. It is also achieved by reading and executing the code.
  • the program code itself read from the storage medium realizes the function of the above-described embodiment, and the storage medium storing the program code constitutes the present invention.
  • the computer executes the program to function as each processing unit, but a part or all of the processing may be configured by a dedicated electronic circuit (hardware). I do not care.
  • the present invention is not limited to the specific embodiments described above, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims.

Landscapes

  • Business, Economics & Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Atmospheric Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Ecology (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

The present invention addresses the problem of providing a solar ray information provision system and a solar ray information provision program with which a user can easily obtain more detailed solar ray information. In order to solve the aforementioned problem, the present invention is provided with: a storage unit which associates and stores date and time information, location information, and solar ray intensity information; a communications unit which executes communications; a first calculation unit which calculates the solar ray intensity information associated with solar ray inquiry information inputted via the communications unit; and, a second calculation unit which uses the calculation result from the first calculation unit to calculate direction-specific solar ray intensity information, wherein the communications unit transmits the direction-specific solar ray intensity information calculated by the second calculation unit to the transmission source of the solar ray inquiry information.

Description

太陽光線情報提供システム及び太陽光線情報提供プログラムSunlight information provision system and solar ray information provision program
 本発明は、太陽光線情報提供システム及び太陽光線情報提供プログラムに関する。 The present invention relates to a solar ray information providing system and a solar ray information providing program.
 最近では、人体や生活環境に対する太陽光線(例えば紫外線、可視光線及び赤外線)の影響が知られ、太陽光線照射量(例えば紫外線照射量や日射量)について注目され始めている。例えば、特許第5524741号公報に記載の曝露量推定システムでは、位置を示す位置情報と当該位置に存在する紫外線のような曝露対象の量を示す環境情報とを対応付けて環境情報格納部に格納しておき、環境情報格納部から取得した環境情報とユーザの行動などに応じて定めた曝露率とに基づいて、曝露量の推定を行い、推定した曝露量の数値をユーザに提供する。 Recently, the effects of sunlight (for example, ultraviolet rays, visible rays, and infrared rays) on the human body and living environment have been known, and attention has been paid to the amount of sunlight irradiation (for example, ultraviolet irradiation amount and solar radiation amount). For example, in the exposure amount estimation system described in Japanese Patent No. 55244741, the positional information indicating the position and the environmental information indicating the amount of the exposure target such as ultraviolet rays existing at the position are stored in the environmental information storage unit in association with each other. The exposure amount is estimated based on the environmental information acquired from the environmental information storage unit and the exposure rate determined according to the behavior of the user, and the numerical value of the estimated exposure amount is provided to the user.
特許第5524741号公報Japanese Patent No. 5524741
 ところで、特許第5524741号公報に記載の曝露量推定システムでは、環境情報格納部に格納してある、位置情報で特定される環境情報(花粉飛散量、紫外線量、エアロゾル量)を用いて曝露量の推定を行うが、この位置情報で特定される環境情報では、情報提供を受けるユーザは、より詳細な情報を容易に得ることができないという問題があった。 By the way, in the exposure amount estimation system described in Japanese Patent No. 55244741, the exposure amount is stored using the environmental information (pollen scattering amount, ultraviolet ray amount, aerosol amount) specified by the position information, which is stored in the environmental information storage unit. However, with the environmental information specified by this location information, there is a problem that the user who receives the information cannot easily obtain more detailed information.
 例えば、現実世界において、紫外線照射量や日射量等のエネルギー強度を知りたい部位や場所は、必ずしも水平面や太陽光線に対して垂直な面とは限らず様々である。このような様々な部位や場所のエネルギー強度を知るためには、水平面や太陽光線に垂直なエネルギー強度から、三角関数等を利用して、実際の照射面上のエネルギー強度を算出することが考えられる。ところが、大気成分により散乱・反射した現実の天空からのエネルギー強度は、方向毎に違うので、三角関数等を利用した算出では、十分な精度が得られないという問題があった。 For example, in the real world, the parts and places where you want to know the energy intensity such as the amount of UV irradiation and the amount of solar radiation are not necessarily the horizontal plane or the plane perpendicular to the sun's rays. In order to know the energy intensity of such various parts and places, it is considered to calculate the energy intensity on the actual irradiation surface by using a trigonometric function etc. from the energy intensity perpendicular to the horizontal plane and the sun rays. Be done. However, since the energy intensity from the actual sky scattered and reflected by the atmospheric component is different for each direction, there is a problem in that sufficient accuracy cannot be obtained by calculation using a trigonometric function or the like.
 本発明は以上のような課題を解決するためになされたものであり、より詳細な太陽光線情報をユーザが容易に得ることができる太陽光線情報提供システム及び太陽光線情報提供プログラムを提供することを目的とする。 The present invention has been made to solve the above problems, and provides a sunlight ray information providing system and a sunlight ray information providing program that allow a user to easily obtain more detailed sunlight ray information. The purpose.
 上記課題を解決するために、本発明は、日時に関する情報である日時情報と、場所に関する情報である場所情報と、前記日時情報で示される日時及び前記場所情報で示される場所における太陽光線強度に関する情報である太陽光線強度情報と、を対応付けて記憶する記憶部と、通信を行う通信部と、前記通信部を介して入力された太陽光線問合せ情報に対応付けられた前記太陽光線強度情報を算出する第一算出部と、前記第一算出部の算出結果を用いて方向特定太陽光線強度情報を算出する第二算出部と、を備え、前記太陽光線問合せ情報は、前記日時情報と、前記場所情報と、太陽光線の照射を受ける照射面が向く方向を示す方向情報と、を含み、前記方向特定太陽光線強度情報は、前記日時情報で示される日時及び前記場所情報で示される場所における、前記方向情報で示される照射面が受ける太陽光線の強度を含む情報であって、前記通信部は、前記太陽光線問合せ情報の送信元に対し、前記第二算出部が算出した前記方向特定太陽光線強度情報を送信する、ことを特徴とする。 In order to solve the above problems, the present invention relates to date and time information that is information related to date and time, place information that is information related to a place, date and time indicated by the date and time information, and solar ray intensity at a place indicated by the place information. The sun ray intensity information that is information, a storage unit that stores the information in association with each other, a communication unit that performs communication, and the sun ray intensity information that is associated with the sun ray inquiry information that is input via the communication unit. A first calculating unit for calculating, and a second calculating unit for calculating the direction specific sunlight ray intensity information using the calculation result of the first calculating unit, the sunlight ray inquiry information, the date and time information, the Includes location information and direction information indicating the direction in which the irradiation surface receiving sunlight is directed, wherein the direction-specific sunlight intensity information is at the date and time indicated by the date and time information and the location indicated by the place information, The information including the intensity of the sun rays received by the irradiation surface indicated by the direction information, the communication unit, for the source of the sun ray inquiry information, the direction specific sun rays calculated by the second calculator. It is characterized by transmitting intensity information.
 本発明によれば、より詳細な太陽光線情報をユーザが容易に得ることができる太陽光線情報提供システム及び太陽光線情報提供プログラムを提供することができる。 According to the present invention, it is possible to provide a sunshine information providing system and a sunshine information providing program that allow a user to easily obtain more detailed sunshine information.
本発明の実施例1に係る太陽光線情報提供システムの構成を示すブロック図である。It is a block diagram which shows the structure of the sun ray information providing system which concerns on Example 1 of this invention. 太陽光線の照射方向について説明する図である。It is a figure explaining the irradiation direction of the sun ray. 地面と平行な面である照射面Aに照射される太陽光線について説明する図である。It is a figure explaining the sun ray which irradiates the irradiation surface A which is a surface parallel to the ground. 地面と30°の角度を成す面である照射面Bに照射される太陽光線について説明する図である。It is a figure explaining the sunlight ray irradiated to the irradiation surface B which is a surface which makes an angle of 30 degrees with the ground. 地面と90°の角度を成す面である照射面Cに照射される太陽光線について説明する図である。It is a figure explaining the sunlight ray irradiated to the irradiation surface C which is a surface which makes an angle of 90 degrees with the ground. 照射面Eで反射されて照射面Dに照射される太陽光線について説明する図である。It is a figure explaining the sun ray which is reflected by the irradiation surface E and is irradiated to the irradiation surface D. 他照射面の分光反射率の求め方の一例について説明する図であって、図7(a)は照射面Eが直接受ける太陽光線を測定する様子を示す図であり、図7(b)は照射面Eによる反射光を測定する様子を示す図である。It is a figure explaining an example of how to obtain the spectral reflectance of another irradiation surface, and Drawing 7 (a) is a figure showing signs that the direct sunlight which irradiation surface E receives is measured, and Drawing 7 (b) is a figure. FIG. 7 is a diagram showing how reflected light from an irradiation surface E is measured. 他照射面からの反射光のうち照射面に入光する光について説明する図である。It is a figure explaining the light which enters the irradiation surface among the light reflected from another irradiation surface. 図1に示した記憶部13に記憶する情報の一例を示す図である。It is a figure which shows an example of the information memorize|stored in the memory|storage part 13 shown in FIG. 図1に示した太陽光線情報提供システム10の動作を示すフローチャートである。It is a flowchart which shows operation|movement of the solar ray information provision system 10 shown in FIG. 本発明の実施例2に係る太陽光線情報提供システムの構成を示すブロック図である。It is a block diagram which shows the structure of the sun ray information providing system which concerns on Example 2 of this invention. 図11に示した太陽光線情報提供システム100の動作を示すフローチャートである。12 is a flowchart showing an operation of the solar ray information providing system 100 shown in FIG. 11. 分光放射照度を示すグラフである。It is a graph which shows the spectral irradiance. 照射される材質の温度上昇に関する試算条件を示す図である。It is a figure which shows the trial calculation conditions regarding the temperature rise of the irradiated material. 材質に応じた1時間後の温度上昇の試算例を示す図である。It is a figure which shows the example of trial calculation of the temperature rise after 1 hour according to the material. 図16(a)は歩道での各方向からの分光照射強度の例を示すグラフである。図16(b)は歩道での分光反射率の例を示すグラフである。FIG. 16A is a graph showing an example of the spectral irradiation intensity from each direction on the sidewalk. FIG. 16B is a graph showing an example of the spectral reflectance on the sidewalk. 図17(a)は歩道での各方向からの分光照射強度の例を示すグラフである。図17(b)は歩道での分光反射率の例を示すグラフである。FIG. 17A is a graph showing an example of the spectral irradiation intensity from each direction on the sidewalk. FIG. 17B is a graph showing an example of the spectral reflectance on the sidewalk. 図18(a)は歩道での各方向からの分光照射強度の例を示すグラフである。図18(b)は歩道での分光反射率の例を示すグラフである。FIG. 18A is a graph showing an example of the spectral irradiation intensity from each direction on the sidewalk. FIG. 18B is a graph showing an example of the spectral reflectance on the sidewalk.
 以下、本発明に係る太陽光線情報提供システムについて、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は本発明に係るシステムの好適な具体例であり、一般的なハードウェア、ソフトウェア構成に即した種々の限定を付している場合もあるが、本発明の技術範囲は、特に本発明を限定する記載がない限り、これらの態様に限定されるものではない。また、以下に示す実施形態における構成要素は、適宜、既存の構成要素等との置き換えが可能であり、かつ、他の既存の構成要素との組み合わせを含む様々なバリエーションが可能である。したがって、以下に示す実施形態の記載をもって、特許請求の範囲に記載された発明の内容を限定するものではない。 Hereinafter, the solar ray information providing system according to the present invention will be described in detail with reference to the drawings. The following embodiments are preferred specific examples of the system according to the present invention, and may have various limitations according to general hardware and software configurations, but the technical scope of the present invention Is not limited to these aspects unless otherwise specified to limit the present invention. Further, the constituent elements in the embodiments described below can be appropriately replaced with existing constituent elements, and various variations including combinations with other existing constituent elements are possible. Therefore, the description of the embodiments below does not limit the contents of the invention described in the claims.
 なお、以下の実施例では、本発明を太陽光線情報提供システムに適用し、太陽光線に関する情報、例えば日射量をユーザに提供するシステムについて説明するが、本発明は、太陽光線に含まれる、紫外線、赤外線、可視光線、又は、その他の電磁波等の個別の情報を、ユーザに提供するものであってもよい。また、以下の実施例では、太陽光線強度を日射強度ともいう。 In the following examples, the present invention is applied to a solar ray information providing system, and a system for providing a user with information on solar rays, for example, the amount of solar radiation is described, but the present invention includes ultraviolet rays. The user may be provided with individual information such as infrared rays, visible rays, or other electromagnetic waves. In the following examples, the intensity of sunlight is also called the intensity of solar radiation.
 図1は、本発明の実施例1に係る太陽光線情報提供システムの構成を示すブロック図である。本実施例の太陽光線情報提供システム10は、例えば、コンピュータから成るサーバーマシンである。 1 is a block diagram showing a configuration of a solar ray information providing system according to a first embodiment of the present invention. The solar ray information providing system 10 of this embodiment is, for example, a server machine including a computer.
 太陽光線情報提供システム10は、図1に示すように、詳しくは後述する太陽光線強度情報16やそのほかの各種情報を記憶する記憶部13と、通信を行う通信部17と、通信部17を介して受信した太陽光線問合せ情報に対応付けられた太陽光線強度情報16を算出する第一算出部11と、第一算出部11の算出結果を用いて方向特定太陽光線強度情報を算出する第二算出部12と、を備える。通信部17は、例えば外部と通信を行う。太陽光線問合せ情報は、日時情報14と、場所情報15と、太陽光線の照射すなわち日射を受ける照射面が向く方向を示す方向情報16aと、を含む。方向特定太陽光線強度情報は、日時情報14で示される日時及び場所情報15で示される場所における、方向情報16aで示される照射面が受ける太陽光線の強度であって、通信部17は、太陽光線問合せ情報の送信元に対し、第二算出部12が算出した方向特定太陽光線強度を示す方向特定太陽光線強度情報を送信する。図1に示す各構成は、ハードウェアで構成してもよい。また、図1に示す各構成は、太陽光線情報提供システム10がプログラムを実行することで実現することもでき、記憶部13は、太陽光線情報提供システム10で実行するプログラムを記憶してもよい。記憶部13は、データの用途に応じて、揮発性の記憶装置や不揮発性の記憶装置を有する。 As shown in FIG. 1, the sunbeam information providing system 10 includes a storage unit 13 that stores the sunbeam intensity information 16 described later in detail and various other information, a communication unit 17 that performs communication, and a communication unit 17 via a communication unit 17. The first calculation unit 11 that calculates the sun ray intensity information 16 associated with the received sun ray inquiry information, and the second calculation that calculates the direction-specific sun ray intensity information using the calculation result of the first calculation unit 11. A unit 12 is provided. The communication unit 17 communicates with the outside, for example. The sunlight inquiry information includes date and time information 14, location information 15, and direction information 16a indicating the direction in which the irradiation surface to be irradiated with the sunlight is directed. The direction-specific sun ray intensity information is the intensity of the sun ray received by the irradiation surface indicated by the direction information 16a at the date and time indicated by the date and time information 14 and the place indicated by the place information 15, and the communication unit 17 determines that the sun ray The direction-specific sun ray intensity information indicating the direction-specific sun ray intensity calculated by the second calculator 12 is transmitted to the sender of the inquiry information. Each configuration shown in FIG. 1 may be configured by hardware. Further, each configuration illustrated in FIG. 1 can be realized by the sun ray information providing system 10 executing a program, and the storage unit 13 may store the program executed by the sun ray information providing system 10. .. The storage unit 13 has a volatile storage device or a non-volatile storage device depending on the purpose of the data.
 なお、太陽光線情報提供システム10において、通信部17は、太陽光線問合せ情報の送信元に対し、第一算出部11が算出した太陽光線強度情報を送信する構成としてもよい。この場合、第二算出部12の機能に相当する構成を、クライアントマシン2又は3が有することとしてもよい。すなわち、本発明は、サーバーマシンとクライアントマシンとをネットワークで接続してなる太陽光線情報提供システムであって、サーバーマシンは、日時に関する情報である日時情報14と、場所に関する情報である場所情報15と、前記日時情報で示される日時及び前記場所情報で示される場所における太陽光線強度に関する情報である太陽光線強度情報16と、を対応付けて記憶する記憶部13と、クライアントマシンと通信を行う第一通信部と、第一通信部を介して入力された太陽光線問合せ情報に対応付けられた太陽光線強度情報16を算出する第一算出部11と、を備え、第一通信部は、クライアントマシンに対し、第一算出部11が算出した太陽光線強度情報16を送信し、クライアントマシンは、サーバーマシン1と通信を行う第二通信部と、第二通信部を介して入力された太陽光線強度情報16を用いて方向特定太陽光線強度情報を算出する第二算出部(第二算出部12の機能に相当する構成)と、を備え、第二通信部(第二算出部12の機能に相当する構成)は、太陽光線問合せ情報をサーバーマシンに送信し、太陽光線問合せ情報は、日時情報14と、前記場所情報と、太陽光線の照射を受ける照射面が向く方向を示す方向情報16aと、を含む、構成としてもよい。なお、クライアントマシンとサーバーマシンとは、ネットワークを介さず、同一端末装置内にあってもよい。この場合、クライアントマシンとサーバーマシンとが同一装置であってもよいし、クライアントマシンとサーバーマシンとが例えばバス接続される構成であってもよい。クライアントマシンとサーバーマシンとが同一装置の場合、クライアントマシンとサーバーマシンとを接続するとは、クライアントマシンとしての機能を実現するプログラムとサーバーマシンとしての機能を実現するプログラムとがメモリ等を介してデータの受け渡しを行うことを指してもよい。 Note that, in the sunlight ray information providing system 10, the communication unit 17 may be configured to transmit the sunlight ray intensity information calculated by the first calculation unit 11 to the source of the sunlight ray inquiry information. In this case, the client machine 2 or 3 may have a configuration corresponding to the function of the second calculation unit 12. That is, the present invention is a sunlight information providing system in which a server machine and a client machine are connected to each other by a network, and the server machine has date and time information 14 which is information regarding date and time and location information 15 which is information regarding place. And a storage unit 13 that stores the date and time indicated by the date and time information and the sun ray intensity information 16 that is information regarding the sun ray intensity at the place indicated by the place information in association with each other, and a communication unit that communicates with the client machine. One communication unit and a first calculation unit 11 that calculates the sun ray intensity information 16 associated with the sun ray inquiry information input via the first communication unit, and the first communication unit is a client machine. In response, the client machine transmits the sun ray intensity information 16 calculated by the first calculator 11, and the client machine communicates with the server machine 1 by a second communication unit, and the sun ray intensity input via the second communication unit. A second calculating unit (a configuration corresponding to the function of the second calculating unit 12) that calculates the direction-specific solar ray intensity information using the information 16; and a second communication unit (corresponding to the function of the second calculating unit 12). Configuration) transmits the sunbeam inquiry information to the server machine, and the sunbeam inquiry information includes the date and time information 14, the location information, and direction information 16a indicating the direction in which the irradiation surface receiving the irradiation of the solar rays faces. It may be configured to include. The client machine and the server machine may be in the same terminal device without going through the network. In this case, the client machine and the server machine may be the same device, or the client machine and the server machine may be connected by a bus, for example. When the client machine and the server machine are the same device, connecting the client machine and the server machine means that the program that realizes the function as the client machine and the program that realizes the function as the server machine are data May be referred to as handing over.
 記憶部13は、日時に関する情報である日時情報14と、場所に関する情報である場所情報15と、日時情報14で示される日時及び場所情報15で示される場所における太陽光線強度に関する情報である太陽光線強度情報16と、を対応付けて記憶する。 The storage unit 13 includes date and time information 14 that is information regarding date and time, place information 15 that is information regarding place, date and time indicated by the date and time information 14, and sunlight rays that are information regarding sun ray intensity at the place indicated by the place information 15. The strength information 16 is stored in association with each other.
 太陽光線情報提供システム10の通信部17は、インターネットなどのネットワーク4に接続されている。ネットワーク4には、ユーザが用いるクライアントマシン2、3が接続されており、クライアントマシン2、3は、ネットワーク4を介して、太陽光線情報提供システム10と通信を行う。 The communication unit 17 of the solar ray information providing system 10 is connected to a network 4 such as the Internet. Client machines 2 and 3 used by the user are connected to the network 4, and the client machines 2 and 3 communicate with the solar ray information providing system 10 via the network 4.
 クライアントマシン2又はクライアントマシン3から、太陽光線情報提供システム10へは、ネットワーク4を介して、太陽光線問合せ情報が送信される。太陽光線問合せ情報は、日時情報14と、場所情報15と、太陽光線の照射を受ける照射面が向く方向を示す方向情報16aと、を含む。方向情報16aが示す方向は、太陽光線の照射を受ける照射面が拡がる面と直交する方向である。方向情報16aについては、図2から図5を参照して後述する。太陽光線情報提供システム10から、太陽光線問合せ情報の送信元であるクライアントマシン2又はクライアントマシン3へは、ネットワーク4を介して、算出部11による算出結果が送信される。 The sunbeam inquiry information is transmitted from the client machine 2 or the client machine 3 to the sunbeam information providing system 10 via the network 4. The sunlight inquiry information includes date and time information 14, location information 15, and direction information 16a indicating the direction in which the irradiation surface to be irradiated by the sun rays faces. The direction indicated by the direction information 16a is a direction orthogonal to the surface on which the irradiation surface that receives the irradiation of the sun's rays expands. The direction information 16a will be described later with reference to FIGS. The calculation result by the calculation unit 11 is transmitted from the sunlight ray information providing system 10 to the client machine 2 or the client machine 3 which is the transmission source of the sunlight ray inquiry information via the network 4.
 第一算出部11は、太陽光線問合せ情報に含まれる日時情報と場所情報とを用いて詳しくは後述する太陽光線強度情報16を算出する。第二算出部12は、第一算出部11による算出結果を用いて、方向情報16aで示される照射面が受ける太陽光線の強度を含む情報である方向特定太陽光線強度情報を算出する。通信部17は、第二算出部12が算出した方向特定太陽光線強度を示す方向特定太陽光線強度情報を、ネットワーク4を介して、太陽光線問合せ情報の送信元であるクライアントマシン2又はクライアントマシン3に送信する。 The first calculator 11 calculates the sunbeam intensity information 16 described later in detail using the date and time information and the location information included in the sunbeam inquiry information. The second calculator 12 uses the calculation result of the first calculator 11 to calculate direction-specific sun ray intensity information, which is information including the intensity of sun rays received by the irradiation surface indicated by the direction information 16a. The communication unit 17 transmits the direction-specific sun ray intensity information indicating the direction-specific sun ray intensity calculated by the second calculator 12 via the network 4 to the client machine 2 or the client machine 2 that is the source of the sun ray inquiry information. Send to.
 以下、方向情報16aについて説明する。図2は、太陽光線の照射方向について説明する図である。図3は、地面と平行な面である照射面Aに照射される太陽光線について説明する図である。図4は、地面と30°の角度を成す面である照射面Bに照射される太陽光線について説明する図である。図5は、地面と90°の角度を成す面である照射面Cに照射される太陽光線について説明する図である。図3、図4及び図5では、太陽光線の照射を受ける照射面が向く方向、すなわち方向情報16aで示される方向を「照射面の方向」と記載している。 The direction information 16a will be described below. FIG. 2 is a diagram for explaining the irradiation direction of the sun's rays. FIG. 3 is a diagram for explaining the sun rays radiated to the irradiation surface A, which is a surface parallel to the ground. FIG. 4 is a diagram for explaining the sun rays that are applied to the irradiation surface B that is a surface that makes an angle of 30° with the ground. FIG. 5: is a figure explaining the sunlight ray irradiated to the irradiation surface C which is a surface which makes an angle of 90 degrees with the ground. In FIGS. 3, 4 and 5, the direction in which the irradiation surface to be irradiated by the sun's rays faces, that is, the direction indicated by the direction information 16a is described as the "direction of the irradiation surface".
 図2に示すように、地球上に照射される太陽光線は、太陽の向きから照射される直達日射のほか、太陽の向き以外の向きから照射される散乱日射が存在する。散乱日射は、天空全体から照射面に対して照射される。地面と平行な面である照射面Aに対しては、図3に示すように、天空全体から散乱日射及び直達日射が照射される。 As shown in Fig. 2, the sun's rays that irradiate the earth include direct solar radiation emitted from the direction of the sun and scattered solar radiation emitted from directions other than the direction of the sun. The scattered solar radiation is applied to the irradiation surface from the entire sky. As shown in FIG. 3, the irradiation surface A, which is a surface parallel to the ground, is irradiated with scattered solar radiation and direct solar radiation from the entire sky.
 また、地面と30°の角度を成す照射面Bに対しては、図4に示すように、天空全体のうち照射面Bが向く方向から散乱日射及び直達日射が照射される。また、地面と90°の角度を成す照射面Cに対しては、図5に示すように、太陽の向きが照射面Cの裏側であるため直達日射は照射されず、天空全体のうち照射面Cが向く方向から散乱日射が照射される。また、照射面に照射される太陽光線は、照射面に直接照射される散乱日射及び直達日射のほか、地面などで反射されて照射面に照射される太陽光線も存在する。 Further, as shown in FIG. 4, the irradiation surface B forming an angle of 30° with the ground is irradiated with scattered solar radiation and direct solar irradiation from the direction of the irradiation surface B of the entire sky. Further, as shown in FIG. 5, the irradiation surface C forming an angle of 90° with the ground is not irradiated with direct solar radiation because the direction of the sun is the back side of the irradiation surface C, and the irradiation surface of the entire sky is irradiated. Scattered solar radiation is emitted from the direction in which C faces. In addition to scattered sunlight and direct sunlight that are directly irradiated on the irradiated surface, there are also sunlight that is reflected on the ground and irradiated on the irradiated surface.
 図3、図4及び図5を参照してわかるように、照射面が向く方向によって、照射される太陽光線の強度が大きく異なる。そこで、本実施例では、照射面が向く方向ごとに異なる方向特定太陽光線強度情報を算出し、これを、太陽光線問合せ情報の送信元であるクライアントマシン2又はクライアントマシン3に提供する。 As can be seen by referring to FIGS. 3, 4 and 5, the intensity of the shining sun rays varies greatly depending on the direction of the irradiation surface. Therefore, in this embodiment, different direction-specific sun ray intensity information is calculated for each direction in which the irradiation surface faces, and this is provided to the client machine 2 or the client machine 3 that is the sender of the sun ray inquiry information.
 なお、本実施例では、散乱日射及び直達日射のほか、地面や壁面などの他照射面で反射されて照射面に照射される太陽光線も考慮することができる。この点について図6を参照して説明する。図6は、照射面Eで反射されて照射面Dに照射される太陽光線について説明する図である。 In this embodiment, in addition to scattered solar radiation and direct solar radiation, it is also possible to consider sunlight rays that are reflected by other irradiation surfaces such as the ground and wall surfaces and irradiate the irradiation surface. This point will be described with reference to FIG. FIG. 6 is a diagram for explaining the sun rays reflected by the irradiation surface E and applied to the irradiation surface D.
 実際の環境においては、照射面Dで受ける太陽光線の照射量は、照射面Dが直接受ける太陽光線(直達日射及び散乱日射)だけではなく、太陽光線(直達日射及び散乱日射)が地面や壁面などの他照射面(照射面E)で反射した太陽光線(反射光)も含まれている。本実施例では、照射面が受ける太陽光線の強度に、この他照射面で反射された反射光の強度も含めることにより、照射面が受ける太陽光線の強度を求める精度をさらに高めることができる。 In an actual environment, the irradiation amount of the sun rays received on the irradiation surface D is not only the sun rays directly received by the irradiation surface D (direct solar radiation and scattered solar radiation) but also the sun rays (direct solar radiation and scattered solar radiation) on the ground and the wall surface. In addition, the sun rays (reflected light) reflected by the irradiation surface (irradiation surface E) are also included. In the present embodiment, the intensity of the sunlight received by the irradiation surface also includes the intensity of the reflected light reflected by the irradiation surface, so that the accuracy of determining the intensity of the sunlight received by the irradiation surface can be further increased.
 通常、他照射面による反射光の計算には、他照射面の反射率を用いる。物質表面の反射率は、代表的な特定波長による反射率を用いるのが一般的であるが、エネルギー強度を精度よく計算するためには、分光反射率を用いて計算するのが望ましい。ここで、他照射面の分光反射率の求め方について、図7を参照して説明する。 Normally, the reflectance of the other irradiation surface is used to calculate the reflected light from the other irradiation surface. The reflectance of the material surface is generally a reflectance at a typical specific wavelength, but it is desirable to use spectral reflectance in order to calculate the energy intensity with high accuracy. Here, how to obtain the spectral reflectance of the other irradiation surface will be described with reference to FIG. 7.
 図7は、他照射面の分光反射率の求め方の一例について説明する図であって、図7(a)は照射面Eが直接受ける太陽光線を測定する様子を示す図であり、図7(b)は照射面Eによる反射光を測定する様子を示す図である。図7(a)及び図7(b)に示すように、ここでは測定器50を用いる。測定器50は、分光照度計として機能する測定器である。まず、図7(a)に示すように、測定器50を用いて他照射面である照射面Eの上方からの分光照度(照射面Eに照射する太陽光線の分光照度)を測定する。また、測定器50を用いて照射面Eで反射した分光照度(太陽光線が照射面Eで反射した反射光の分光照度)を測定する。求めた照射面Eの上方からの分光照度及び照射面Eで反射した分光照度を用いて、数1により、照射面Eの分光反射率を求める。
Figure JPOXMLDOC01-appb-M000001
 
FIG. 7 is a diagram for explaining an example of how to obtain the spectral reflectance of the other irradiation surface, and FIG. 7A is a diagram showing a state of measuring the sunlight rays directly received by the irradiation surface E, and FIG. FIG. 7B is a diagram showing how reflected light from the irradiation surface E is measured. As shown in FIGS. 7A and 7B, a measuring device 50 is used here. The measuring device 50 is a measuring device that functions as a spectral illuminometer. First, as shown in FIG. 7A, the spectral illuminance from above the irradiation surface E, which is another irradiation surface, (the spectral illuminance of the sun's rays irradiating the irradiation surface E) is measured using the measuring device 50. In addition, the spectral illuminance reflected by the irradiation surface E (spectral illuminance of reflected light in which the sun rays are reflected by the irradiation surface E) is measured using the measuring device 50. Using the obtained spectral illuminance from above the irradiation surface E and the spectral illuminance reflected by the irradiation surface E, the spectral reflectance of the irradiation surface E is calculated by the formula 1.
Figure JPOXMLDOC01-appb-M000001
 次に、数1で求めた分光反射率を用いた、照射面が受ける照射エネルギーの算出について説明する。図8は、他照射面からの反射光のうち照射面に入光する光について説明する図である。図8では、他照射面である照射面Gが地面である場合を示しており、照射面Gからの反射光のうち照射面Fに入光する割合を勘案している。照射面G(地面)から照射面Fに入光するエネルギーは、数2で算出することができる。
Figure JPOXMLDOC01-appb-M000002
 
Next, the calculation of the irradiation energy received by the irradiation surface using the spectral reflectance obtained in Equation 1 will be described. FIG. 8 is a diagram for explaining the light that enters the irradiation surface among the reflected light from the other irradiation surface. FIG. 8 shows a case where the irradiation surface G, which is the other irradiation surface, is the ground, and the ratio of the light reflected from the irradiation surface G that enters the irradiation surface F is taken into consideration. The energy of light entering the irradiation surface F from the irradiation surface G (ground) can be calculated by Equation 2.
Figure JPOXMLDOC01-appb-M000002
 数2における照射面Gが受ける照射エネルギーは、例えば、図7(a)に示した方法で得ることができる。数2における反射率としては、例えば数1で求めた分光反射率を用いることができる。数2における面積比率Hは、以下に図8を参照して説明するようにして求めることができる。図8において照射面Fの向きに応じた角度θにより、照射面Fにおける地面(照射面G)の視野面積が定まる。地面である照射面Gの視野面積を定める角度θは、照射面Gが理想地面(水平)であれば、幾何的に、照射面Fと水平方向とが成す角度である。しかし実際には、地形変化を考慮したり、照射面Gのうち照射面Fから遠い位置であるほど照射面Fに入射する反射光が少なくなり寄与度が減衰することを考慮したりするのがよく、必要な精度に応じて角度θを定めるのがよい。 The irradiation energy received by the irradiation surface G in Equation 2 can be obtained, for example, by the method shown in FIG. As the reflectance in Equation 2, for example, the spectral reflectance obtained in Equation 1 can be used. The area ratio H in Equation 2 can be obtained as described below with reference to FIG. In FIG. 8, the viewing angle of the ground (irradiation surface G) on the irradiation surface F is determined by the angle θ according to the direction of the irradiation surface F. If the irradiation surface G is the ideal ground (horizontal), the angle θ that determines the field of view of the irradiation surface G that is the ground is geometrically the angle formed by the irradiation surface F and the horizontal direction. However, in actuality, it is necessary to consider the change in topography and to consider that the farther the irradiation surface G is from the irradiation surface F, the less the reflected light is incident on the irradiation surface F and the contribution is attenuated. It is good to determine the angle θ according to the required accuracy.
 照射面Fの半球面積に対する、照射面Fにおける地面の視野面積の比率が面積比率Hである。本実施例では、照射面Fが受ける照射エネルギーを求める際には、照射面Fに直接照射される散乱日射及び直達日射による照射エネルギーに、数2で求めた照射面Fに入光するエネルギーを加えることで、より高精度に求めることができる。また、数2では他照射面として地面を考慮しているが、地面による反射光のみならず、照射面Fに反射光が入射し得るすべての他照射面について考慮することで、照射面Fが受ける照射エネルギーをより高精度に求めることができる。 The area ratio H is the ratio of the field of view of the ground on the irradiation surface F to the hemispherical area of the irradiation surface F. In this embodiment, when the irradiation energy received by the irradiation surface F is calculated, the irradiation energy by the scattered solar radiation and the direct solar radiation directly irradiated on the irradiation surface F is set to the energy incident on the irradiation surface F calculated by the equation 2. By adding it, it can be obtained with higher accuracy. In addition, although the ground is considered as the other irradiation surface in the equation 2, the irradiation surface F can be determined by considering not only the reflected light by the ground but also all other irradiation surfaces on which the reflected light can enter the irradiation surface F. The irradiation energy to be received can be obtained with higher accuracy.
 図9は、図1に示した記憶部13に記憶する情報の一例を示す図である。記憶部13は、例えばデータベース形式で、図9に示す情報を記憶する。記憶部13は、第1の主キーとして、日時情報14を記憶する。日時情報14は、年、月、日及び時を含んでもよい。記憶部13は、第2の主キーとして、場所情報15を記憶する。場所情報15は、例えば東経及び北緯を用いて、地球上の位置を特定する情報である。 FIG. 9 is a diagram showing an example of information stored in the storage unit 13 shown in FIG. The storage unit 13 stores the information shown in FIG. 9, for example, in a database format. The storage unit 13 stores the date and time information 14 as the first primary key. The date and time information 14 may include year, month, day and time. The storage unit 13 stores the location information 15 as the second primary key. The location information 15 is information for identifying a position on the earth by using, for example, east longitude and north latitude.
 記憶部13は、格納値である太陽光線強度情報16として、第1の主キー及び第2の主キーでの太陽立体角を記憶する。記憶部13は、格納値である太陽光線強度情報16として、第1の主キー及び第2の主キーでの直達日射強度を記憶する。記憶部13は、格納値である太陽光線強度情報16として、第1の主キー及び第2の主キーでの散乱日射強度を記憶する。記憶部13は、格納値である太陽光線強度情報16として、第1の主キー及び第2の主キーでのアルベド値を記憶する。なお、アルベド値は、照射された太陽光線強度に対する、反射した太陽光線強度の比である。例えば、場所情報15が或る地域においては、日時情報14が夏である日時には、地面は土であってアルベド値が低く、日時情報14が冬である日時には、地面は雪面であってアルベド値が高い。図9に示した各値は、例えば実測値を収集して、記憶部13に記憶する。太陽光線強度情報16に含まれる方向情報16aは、図9に示した格納値に含まれる。太陽光線強度情報16に含まれる情報は、例えば放射伝達方程式を解いて算出する値や、放射伝達方程式を解く過程で算出する値を含む。 The storage unit 13 stores the sun solid angle of the first primary key and the second primary key as the stored value of the sun ray intensity information 16. The storage unit 13 stores the direct solar radiation intensity of the first primary key and the second primary key as the stored value of the sunlight intensity information 16. The storage unit 13 stores the scattered solar radiation intensity of the first primary key and the second primary key as the stored value of the sunlight intensity information 16. The storage unit 13 stores the albedo values of the first primary key and the second primary key as the stored value of the sunlight intensity information 16. The albedo value is the ratio of the reflected sunlight intensity to the irradiated sunlight intensity. For example, in a region where the location information 15 is, when the date and time information 14 is summer, the ground is soil and the albedo value is low, and when the date and time information 14 is winter, the ground is a snow surface. High albedo value. For each value shown in FIG. 9, for example, actually measured values are collected and stored in the storage unit 13. The direction information 16a included in the sun ray intensity information 16 is included in the stored value shown in FIG. The information included in the sunlight intensity information 16 includes, for example, a value calculated by solving the radiation transmission equation and a value calculated in the process of solving the radiation transmission equation.
 図10は、図1に示した太陽光線情報提供システム10の動作を示すフローチャートである。ステップS71では、ネットワーク4を介して、クライアントマシン2又はクライアントマシン3からの太陽光線問合せ情報を受信したか否かを判断する。太陽光線問合せ情報を受信した場合には(ステップS71:Yes)、ステップS72に進み、太陽光線問合せ情報を受信しない場合には(ステップS71:No)、ステップS71に戻る。 FIG. 10 is a flowchart showing the operation of the solar ray information providing system 10 shown in FIG. In step S71, it is determined whether or not the sunlight ray inquiry information is received from the client machine 2 or the client machine 3 via the network 4. When the sunbeam inquiry information is received (step S71: Yes), the process proceeds to step S72, and when the sunbeam inquiry information is not received (step S71: No), the process returns to step S71.
 ステップS72では、ステップS71で受信した太陽光線問合せ情報に基づいて、太陽光線問合せ情報に含まれる日時情報14で示される日時に、太陽光線問合せ情報に含まれる場所情報15で示される場所で受ける太陽光線の強度を含む情報である太陽光線強度情報16を算出し、記憶部13に記憶する。太陽光線強度情報16は、例えば、放射伝達方程式を用いて算出する。 In step S72, based on the sunlight ray inquiry information received in step S71, the sun received at the location indicated by the location information 15 included in the sunlight ray inquiry information at the date and time indicated by the date and time information 14 included in the sunlight ray inquiry information. Sunlight intensity information 16 which is information including the intensity of light rays is calculated and stored in the storage unit 13. The sun ray intensity information 16 is calculated using, for example, a radiative transfer equation.
 ステップS73では、ステップS72で算出した太陽光線強度情報16に対し、方向情報16を入力値とした数学的計算を行うことで、日時情報14で示される日時に、太陽光線問合せ情報に含まれる場所情報15で示される場所で、方向情報16aで示される照射面が受ける太陽光線強度情報である、方向特定太陽光線強度情報を算出する。 In step S73, the sunlight ray intensity information 16 calculated in step S72 is subjected to mathematical calculation using the direction information 16 as an input value, so that the place included in the sunlight ray inquiry information at the date and time indicated by the date and time information 14. At the place indicated by the information 15, the direction-specific solar ray intensity information, which is the sunlight ray intensity information received by the irradiation surface indicated by the direction information 16a, is calculated.
 ステップS74では、ステップS73で算出した方向特定太陽光線強度を示す方向特定太陽光線強度情報を、今回の太陽光線問合せ情報の送信元であるクライアントマシン2又はクライアントマシン3に、ネットワーク4を介して送信する。クライアントマシン2又はクライアントマシン3は、日時情報14、場所情報15及び方向情報16aを含む太陽光線問合せ情報を太陽光線情報提供システム10に送信するだけで、方向特定太陽光線強度情報を得ることができ、より詳細な太陽光線情報を容易に得ることができる。クライアントマシン2又はクライアントマシン3は、太陽光線情報提供システム10から得た方向特定太陽光線強度情報を用いて、エンドユーザに対して様々なアプリケーションを提供することができる。 In step S74, the direction-specific sun ray intensity information indicating the direction-specific sun ray intensity calculated in step S73 is transmitted to the client machine 2 or the client machine 3 which is the transmission source of the present sun ray inquiry information via the network 4. To do. The client machine 2 or the client machine 3 can obtain the direction-specific sun ray intensity information only by transmitting the sun ray inquiry information including the date/time information 14, the location information 15, and the direction information 16a to the sun ray information providing system 10. , More detailed sunlight information can be easily obtained. The client machine 2 or the client machine 3 can provide various applications to the end user by using the direction-specific sunlight intensity information obtained from the sunlight information providing system 10.
 図11は、本発明の実施例2に係る太陽光線情報提供システムの構成を示すブロック図である。本実施例の太陽光線情報提供システム100は、例えば、コンピュータから成るサーバーマシンである。 FIG. 11 is a block diagram showing the configuration of the solar ray information providing system according to the second embodiment of the present invention. The solar ray information providing system 100 of this embodiment is, for example, a server machine including a computer.
 太陽光線情報提供システム100は、図11に示すように、日時情報と場所情報とを用いて詳しくは後述する太陽光線強度情報116を予め算出する第一算出部110と、第一算出部110が算出した太陽光線強度情報116やそのほかの各種情報を記憶する記憶部113と、通信を行う通信部117と、通信部117を介して入力された太陽光線問合せ情報に対応付けられた太陽光線強度情報116を記憶部113から抽出する抽出部111と、抽出部111が抽出した太陽光線強度情報116を用いて方向特定太陽光線強度情報を算出する第二算出部112と、を備える。通信部117は、例えば外部と通信を行う。太陽光線問合せ情報は、日時情報114と、場所情報115と、方向情報116aと、を含む。方向特定太陽光線強度情報は、日時情報114で示される日時及び場所情報115で示される場所における、方向情報116aで示される照射面が受ける太陽光線の強度を含む情報である。通信部117は、太陽光線問合せ情報の送信元に対し、第二算出部112が算出した方向特定太陽光線強度情報を送信する。図11に示す各構成は、ハードウェアで構成してもよい。また、図11に示す各構成は、太陽光線情報提供システム100がプログラムを実行することで実現することもでき、記憶部113は、太陽光線情報提供システム100で実行するプログラムを記憶してもよい。記憶部113は、データの用途に応じて、揮発性の記憶装置や不揮発性の記憶装置を有する。 As shown in FIG. 11, the sunlight ray information providing system 100 includes a first calculation unit 110 that calculates in advance sunlight ray intensity information 116, which will be described later in detail, using date and time information and place information, and a first calculation unit 110. The storage unit 113 that stores the calculated sun ray intensity information 116 and other various information, the communication unit 117 that performs communication, and the sun ray intensity information that is associated with the sun ray inquiry information that is input via the communication unit 117. An extraction unit 111 that extracts 116 from the storage unit 113, and a second calculation unit 112 that calculates the direction-specific sun ray intensity information using the sun ray intensity information 116 extracted by the extraction unit 111. The communication unit 117 communicates with the outside, for example. The sun ray inquiry information includes date and time information 114, location information 115, and direction information 116a. The direction-specific sun ray intensity information is information including the intensity of the sun ray received by the irradiation surface indicated by the direction information 116a at the date and time indicated by the date and time information 114 and the location indicated by the place information 115. The communication unit 117 transmits the direction-specific sun ray intensity information calculated by the second calculator 112 to the source of the sun ray inquiry information. Each configuration shown in FIG. 11 may be configured by hardware. Further, each configuration shown in FIG. 11 can be realized by the sun ray information providing system 100 executing a program, and the storage unit 113 may store the program executed by the sun ray information providing system 100. .. The storage unit 113 has a volatile storage device or a non-volatile storage device depending on the purpose of the data.
 なお、太陽光線情報提供システム100において、通信部117は、太陽光線問合せ情報の送信元に対し、抽出部111が抽出した太陽光線強度情報を送信する構成としてもよい。この場合、第二算出部112の機能に相当する構成を、クライアントマシン2又は3が有することとしてもよい。すなわち、本発明は、サーバーマシンとクライアントマシンとをネットワークで接続してなる太陽光線情報提供システムであって、サーバーマシンは、日時に関する情報である日時情報114で示される日時及び場所に関する情報である場所情報115で示される場所における太陽光線強度に関する情報である太陽光線強度情報116を算出する第一算出部110と、日時情報114と、場所情報115と、第一算出部110が算出した太陽光線強度情報116と、を対応付けて記憶する記憶部113と、クライアントマシンと通信を行う第一通信部と、第一通信部を介して入力された太陽光線問合せ情報に対応付けられた太陽光線強度情報116を記憶部113から抽出する抽出部111と、を備え、第一通信部は、クライアントマシンに対し、抽出部111が抽出した太陽光線強度情報116を送信し、クライアントマシンは、サーバーマシンと通信を行う第二通信部と、第二通信部を介して入力された太陽光線強度情報116を用いて方向特定太陽光線強度情報を算出する第二算出部(第二算出部112の機能に相当する構成)と、を備え、第二通信部は、太陽光線問合せ情報をサーバーマシンに送信し、太陽光線問合せ情報は、日時情報114と、場所情報115と、太陽光線の照射を受ける照射面が向く方向を示す方向情報116aと、を含む、構成としてもよい。 In the sunlight information providing system 100, the communication unit 117 may be configured to transmit the sunlight intensity information extracted by the extraction unit 111 to the source of the sunlight inquiry information. In this case, the client machine 2 or 3 may have a configuration corresponding to the function of the second calculation unit 112. That is, the present invention is a sunlight information providing system in which a server machine and a client machine are connected by a network, and the server machine is information on a date and time and a place indicated by date and time information 114 which is information on a date and time. The first calculation unit 110 that calculates the sunlight intensity information 116, which is information on the sunlight intensity at the place indicated by the place information 115, the date and time information 114, the location information 115, and the sunlight rays calculated by the first calculation unit 110. The storage unit 113 that stores the intensity information 116 in association with each other, the first communication unit that communicates with the client machine, and the sunlight intensity associated with the sunlight inquiry information input via the first communication unit. An extraction unit 111 that extracts the information 116 from the storage unit 113, and the first communication unit transmits the sunbeam intensity information 116 extracted by the extraction unit 111 to the client machine, and the client machine is the server machine. The second calculation unit (corresponding to the function of the second calculation unit 112) that calculates the direction-specific sunlight intensity information using the second communication unit that performs communication and the sunlight intensity information 116 input via the second communication unit. The second communication unit transmits the sunlight ray inquiry information to the server machine, and the sunlight ray inquiry information is the date/time information 114, the location information 115, and the irradiation surface that receives the irradiation of the sunlight rays. It may be configured to include the direction information 116a indicating the facing direction.
 記憶部113は、日時に関する情報である日時情報114と、場所に関する情報である場所情報115と、日時情報114で示される日時及び場所情報115で示される場所における太陽光線強度に関する情報である太陽光線強度情報116(第一算出部110が算出した太陽光線強度情報116)と、を対応付けて記憶する。 The storage unit 113 stores date and time information 114 that is information regarding date and time, place information 115 that is information regarding place, date and time indicated by the date and time information 114, and sunbeams that are information regarding sunbeam intensity at the place indicated by the place information 115. The intensity information 116 (sunlight intensity information 116 calculated by the first calculation unit 110) is stored in association with each other.
 太陽光線情報提供システム100の通信部117は、インターネットなどのネットワーク4に接続されている。ネットワーク4には、ユーザが用いるクライアントマシン2、3が接続されており、クライアントマシン2、3は、ネットワーク4を介して、太陽光線情報提供システム100と通信を行う。 The communication unit 117 of the solar ray information providing system 100 is connected to a network 4 such as the Internet. Client machines 2 and 3 used by the user are connected to the network 4, and the client machines 2 and 3 communicate with the solar ray information providing system 100 via the network 4.
 クライアントマシン2又はクライアントマシン3から、太陽光線情報提供システム100へは、ネットワーク4を介して、太陽光線問合せ情報が送信される。太陽光線問合せ情報は、日時情報114と、場所情報115と、方向情報116aと、を含む。太陽光線情報提供システム100から、太陽光線問合せ情報の送信元であるクライアントマシン2又はクライアントマシン3へは、ネットワーク4を介して、抽出部112による抽出結果である方向特定太陽光線強度情報が送信される。 The sunbeam inquiry information is transmitted from the client machine 2 or the client machine 3 to the sunbeam information providing system 100 via the network 4. The sunlight ray inquiry information includes date and time information 114, place information 115, and direction information 116a. From the sunbeam information providing system 100 to the client machine 2 or the client machine 3 that is the sender of the sunbeam inquiry information, the direction-specific sunbeam intensity information that is the extraction result of the extraction unit 112 is transmitted via the network 4. To.
 なお、本実施例において、記憶部113に記憶する情報の一例は、図9に示した情報である。 In this embodiment, an example of the information stored in the storage unit 113 is the information shown in FIG.
 図12は、図11に示した太陽光線情報提供システム100の動作を示すフローチャートである。ステップS91では、日時情報と場所情報を用いて、すべての日時におけるすべての場所の太陽光線強度情報116が含む情報を算出する。この太陽光線強度情報116が含む情報の算出には、例えば、放射伝達方程式を用いる。すなわち、太陽光線強度情報116が含む情報は、例えば放射伝達方程式を解いて算出する値や、放射伝達方程式を解く過程で算出する値を含む。ステップS92では、ステップS91で算出した太陽光線強度情報116が含む情報を記憶部113に記憶する。 FIG. 12 is a flowchart showing the operation of the solar ray information providing system 100 shown in FIG. In step S91, the date and time information and the place information are used to calculate the information included in the sunlight ray intensity information 116 at all the places at all the dates and times. For example, a radiation transfer equation is used to calculate the information included in the sunlight intensity information 116. That is, the information included in the sunlight intensity information 116 includes, for example, a value calculated by solving the radiation transmission equation and a value calculated in the process of solving the radiation transmission equation. In step S92, the storage unit 113 stores the information included in the sunlight ray intensity information 116 calculated in step S91.
 続いて、ネットワーク4を介して、クライアントマシン2又はクライアントマシン3からの太陽光線問合せ情報を受信した場合には(ステップS93:Yes)、ステップS94に進み、太陽光線問合せ情報を受信しない場合には(ステップS93:No)、ステップS90に戻る。なお、太陽光線強度情報116が含む情報の算出、算出した情報の記憶部13への記憶は、クライアントマシン2又は3からの太陽光線問合せ情報を受信する処理を実施する前に、すべて済ませてしまっておいてもよいし、例えば今まで入手不可能だった地域のデータが新たに入手できた場合などにはその都度更新してもよい。 Subsequently, when the sunlight ray inquiry information is received from the client machine 2 or the client machine 3 via the network 4 (step S93: Yes), the process proceeds to step S94, and when the sunlight ray inquiry information is not received. (Step S93: No), the process returns to step S90. It should be noted that the calculation of the information included in the sunbeam intensity information 116 and the storage of the calculated information in the storage unit 13 are all completed before the process of receiving the sunbeam inquiry information from the client machine 2 or 3. It may be stored in advance, or may be updated each time, for example, when data of a region that has been unavailable until now is newly obtained.
 ステップS94では、クライアントマシン2又はクライアントマシン3からの受信データに含まれる太陽光線問合せ情報に基づき、記憶部113から太陽光線強度情報116の抽出を行う。すなわち、太陽光線問合せ情報に含まれる日時情報114、場所情報115に該当する太陽光線強度情報116を、記憶部113から抽出する。ステップS94ではさらに、抽出した太陽光線強度情報116の値に対し、方向情報116aを入力値とした数学的計算を行うことで、日時情報14で示される日時に、太陽光線問合せ情報に含まれる場所情報15で示される場所で、方向情報116aで示される照射面が受ける太陽光線の強度を含む情報である方向特定太陽光線強度情報を算出する。 In step S94, the sunlight intensity information 116 is extracted from the storage unit 113 based on the sunlight inquiry information included in the received data from the client machine 2 or the client machine 3. That is, the sunbeam intensity information 116 corresponding to the date/time information 114 and the location information 115 included in the sunbeam inquiry information is extracted from the storage unit 113. In step S94, the extracted value of the sunbeam intensity information 116 is further mathematically calculated using the direction information 116a as an input value, so that the location included in the sunbeam inquiry information at the date and time indicated by the date and time information 14. At the place indicated by the information 15, the direction-specific solar ray intensity information which is the information including the intensity of the sunlight ray received by the irradiation surface indicated by the direction information 116a is calculated.
 ステップS95では、ステップS94で算出した方向特定太陽光線強度情報を、今回の太陽光線問合せ情報の送信元であるクライアントマシン2又はクライアントマシン3に、ネットワーク4を介して送信する。クライアントマシン2又はクライアントマシン3は、日時情報114、場所情報115及び方向情報116aを含む太陽光線問合せ情報を太陽光線情報提供システム100に送信するだけで、方向特定太陽光線強度情報を得ることができ、より詳細な太陽光線情報を容易に得ることができる。クライアントマシン2又はクライアントマシン3は、太陽光線情報提供システム100から得た方向特定太陽光線強度情報を用いて、エンドユーザに対して様々なアプリケーションを提供することができる。 In step S95, the direction-specific sun ray intensity information calculated in step S94 is transmitted via the network 4 to the client machine 2 or the client machine 3 that is the sender of this sun ray inquiry information. The client machine 2 or the client machine 3 can obtain the direction-specific sun ray intensity information only by transmitting the sun ray inquiry information including the date/time information 114, the location information 115, and the direction information 116a to the sun ray information providing system 100. , More detailed sunlight information can be easily obtained. The client machine 2 or the client machine 3 can provide various applications to the end user by using the direction-specific sunlight intensity information obtained from the sunlight information providing system 100.
 また、本実施例では、太陽光線強度情報116を予め算出しておくので、クライアントマシン2又はクライアントマシン3から太陽光線問合せ情報を受信してから算出する場合と比べて、応答が早く、より高い即時性をもって方向特定太陽光線強度情報を提供することができる。 Further, in the present embodiment, since the sun ray intensity information 116 is calculated in advance, the response is quicker and higher than the case where the sun ray inquiry information is calculated after being received from the client machine 2 or the client machine 3. It is possible to provide direction-specific sunlight intensity information with immediacy.
 <照射熱量の算定>
 本実施例では、図1に示した構成において、太陽光線情報提供システム10は、照射熱量を算出することができる。図13は、分光放射照度を示すグラフである。図13において、横軸は光の波長であり、縦軸は分光放射照度である。図13では、上述の実施例1に基づき、照射面に対する天空のエネルギー強度をシミュレーションで算出した後、照射面に照射される熱量を算出した結果を示す。また、図13は、2016年6月20日の12:00~1300に宮古島に配置した照射面が受ける熱量の算出例である。本実施例によれば、照射面に照射されるエネルギーの積算値は1,029.8[W/m]であることが求まり、照射面が受ける熱量は3,707,358[J/m]であることが求まる。
 本実施例により、計測の困難であった高層構造物などや、森林が受ける照射熱量の予測が可能となり、構造物の防御設計や、森林植林計画に活用することが可能である。
<Calculation of irradiation heat quantity>
In this embodiment, in the configuration shown in FIG. 1, the solar ray information providing system 10 can calculate the irradiation heat amount. FIG. 13 is a graph showing the spectral irradiance. In FIG. 13, the horizontal axis represents the wavelength of light and the vertical axis represents the spectral irradiance. FIG. 13 shows the result of calculating the amount of heat applied to the irradiation surface after calculating the energy intensity of the sky with respect to the irradiation surface by simulation based on the above-described first embodiment. Further, FIG. 13 is an example of calculation of the amount of heat received by the irradiation surface arranged on Miyakojima from 12:00 to 1300 on June 20, 2016. According to this embodiment, the integrated value of the energy applied to the irradiation surface is found to be 1,029.8 [W/m 2 ], and the amount of heat received by the irradiation surface is 3,707,358 [J/m]. 2 ] is required.
According to the present embodiment, it is possible to predict the irradiation heat amount of a high-rise structure, which has been difficult to measure, and a forest, and it is possible to utilize the structure for defense design and a forest planting plan.
 <構造物に照射される照射量の算定>
 本実施例では、図1に示した構成において、太陽光線情報提供システム10は、実施例3で求めた結果である照射面が受ける熱量から、照射される材質(照射面を有する照射材の材質)に応じた温度上昇を予測することができる。本実施例では、この照射面の温度上昇予測について説明する。図14は、照射される材質の温度上昇に関する試算条件を示す図である。図14に示すように、本実施例では、照射材J1の照射面J2の太陽光線が入射した場合であって、照射面J2の反射率は30%であるとする。また、照射材J1からの熱放射はゼロであるとする。また、照射材J1からの熱伝達、熱伝導はゼロであるとする。
<Calculation of irradiation dose to the structure>
In the present embodiment, in the configuration shown in FIG. 1, the solar radiation information providing system 10 uses the amount of heat received by the irradiation surface, which is the result obtained in Embodiment 3, to irradiate the material (material of the irradiation material having the irradiation surface). ) Can be predicted. In this embodiment, the temperature rise prediction of the irradiation surface will be described. FIG. 14 is a diagram showing trial calculation conditions regarding the temperature rise of the irradiated material. As shown in FIG. 14, in the present embodiment, it is assumed that the irradiation surface J2 of the irradiation material J1 is exposed to the sunlight and the reflectance of the irradiation surface J2 is 30%. Further, it is assumed that the heat radiation from the irradiation material J1 is zero. Further, it is assumed that heat transfer and heat transfer from the irradiation material J1 are zero.
 図15は、材質に応じた1時間後の温度上昇の試算例を示す図である。照射面J2の反射率が30%である照射材J1に3,707,358[J/m]の熱量の太陽光線が入射されると、照射面J2での反射熱量は1,112,207[J/m]であり、照射材J1の吸収熱量は2,595,151[J/m]である。図15に示す材質ごとの熱特性を考慮すると、図15に示すように、材質ごとの1時間後の温度上昇を試算することができる。例えば、照射材J1の材質が鋼材の場合は、熱容量が18864[J/K]であることから、1時間に受ける熱量は、2595.151[J/m2]×1[m]/18864[J/K]=137.6[K]となる。したがって、当初20[℃]の鋼材の温度は、1時間後に20[℃]+137.6[K]=157.6[℃]に上昇する。同様に、当初20[℃]のガラスウール保温板の温度は、20[℃]+25745.5[K]=25765.5[℃]に上昇する。なお、ここで、照射材J1の材質モデルの形状は1mx1mx厚さ5mmであるとする。また、この試算は、照射材J1からの放熱(熱放射、熱伝導、熱伝達など)がないと仮定した場合の試算である。現実には、照射材J1からの放熱があるので、これほど温度上昇することはない。試算においては必要に応じて放熱を考慮すればよい。この試算により、高所や人が近づけずに計測が困難であった構造物や、土地などの照射面における、温度上昇の予測が可能となり、本実施例によれば、構造物の劣化予測や、森林植林計画に活用することが可能である。 FIG. 15: is a figure which shows the example of trial calculation of the temperature rise after 1 hour according to the material. When a sun ray having a calorific value of 3,707,358 [J / m 2 ] is incident on the irradiation material J1 having a reflectance of the irradiation surface J2 of 30%, the amount of heat reflected on the irradiation surface J2 is 1,112,207. [J/m 2 ], and the absorbed heat amount of the irradiation material J1 is 2,595,151 [J/m 2 ]. Considering the thermal characteristics for each material shown in FIG. 15, it is possible to make a trial calculation of the temperature rise after one hour for each material, as shown in FIG. For example, when the material of the irradiation material J1 is steel, the heat capacity is 18864 [J/K], and therefore the amount of heat received in one hour is 2595.151 [J/m2]×1 [m 2 ]/18864[ J/K]=137.6[K]. Therefore, the temperature of the steel material initially at 20[° C.] rises to 20[° C.]+137.6[K]=157.6[° C.] after 1 hour. Similarly, the temperature of the glass wool heat insulating plate which is initially 20[° C.] rises to 20[° C.]+25745.5[K]=25765.5[° C.]. The shape of the material model of the irradiation material J1 is 1 mx 1 mx thickness 5 mm. Further, this trial calculation is a trial calculation on the assumption that there is no heat radiation (heat radiation, heat conduction, heat transfer, etc.) from the irradiation material J1. In reality, heat is radiated from the irradiation material J1, so the temperature does not rise so much. In the trial calculation, heat dissipation may be taken into consideration as necessary. This trial calculation makes it possible to predict the temperature rise in structures that were difficult to measure due to high places and people not approaching, and on the irradiated surface such as land.According to this embodiment, it is possible to predict the deterioration of structures and , It can be used for forest planting plans.
 <他照射面での反射の参入(歩道の例)>
 本実施例では、図1に示した構成において、太陽光線情報提供システム10は、歩道の反射率に基づき反射エネルギーを算出し、照射面に照射される照射量を算出することができる。歩道の反射率は、例えば、図7(a)及び図7(b)を参照して説明した方法で求めることができる。図16(a)は歩道での各方向からの分光照射強度の例を示すグラフである。図16(a)において、横軸は光の波長であり、縦軸は照射強度である。図16(b)は歩道での分光反射率の例を示すグラフである。図16(b)において、横軸は光の波長であり、縦軸は分光反射率である。図16(b)を参照すると、歩道の分光反射率が10~20%であることがわかる。
<Entering reflection on other irradiation surfaces (example of sidewalk)>
In the present embodiment, in the configuration shown in FIG. 1, the solar ray information providing system 10 can calculate the reflected energy based on the reflectance of the sidewalk and the irradiation amount applied to the irradiation surface. The reflectance of the sidewalk can be determined, for example, by the method described with reference to FIGS. 7 (a) and 7 (b). FIG. 16A is a graph showing an example of the spectral irradiation intensity from each direction on the sidewalk. In FIG. 16A, the horizontal axis is the wavelength of light and the vertical axis is the irradiation intensity. FIG. 16B is a graph showing an example of spectral reflectance on the sidewalk. In FIG. 16B, the horizontal axis is the wavelength of light and the vertical axis is the spectral reflectance. Referring to FIG. 16(b), it can be seen that the sidewalk has a spectral reflectance of 10 to 20%.
 <他照射面での反射の参入(草地、例えば芝生の例)>
 本実施例では、図1に示した構成において、太陽光線情報提供システム10は、草地の反射率に基づき反射エネルギーを算出し、照射面に照射される照射量を算出することができる。草地の反射率は、例えば、図7(a)及び図7(b)を参照して説明した方法で求めることができる。図17(a)は草地での各方向からの分光照射強度の例を示すグラフである。図17(a)において、横軸は光の波長であり、縦軸は照射強度である。図17(b)は草地での分光反射率の例を示すグラフである。図17(b)において、横軸は光の波長であり、縦軸は分光反射率である。図17(b)を参照すると、草地の分光反射率が5~10%であることがわかる。また、図17(b)を参照すると、草地では近赤外で反射率が急増していることがわかる。
<Entry of reflection on other illuminated surface (example of grassland, eg lawn)>
In the present embodiment, in the configuration shown in FIG. 1, the solar ray information providing system 10 can calculate the reflected energy based on the reflectance of the grassland and the irradiation amount applied to the irradiation surface. The reflectance of the grassland can be determined, for example, by the method described with reference to FIGS. 7 (a) and 7 (b). FIG. 17A is a graph showing an example of the spectral irradiation intensity from each direction on the grassland. In FIG. 17A, the horizontal axis is the wavelength of light and the vertical axis is the irradiation intensity. FIG.17(b) is a graph which shows the example of the spectral reflectance in a grassland. In FIG. 17B, the horizontal axis is the wavelength of light and the vertical axis is the spectral reflectance. With reference to FIG. 17B, it can be seen that the spectral reflectance of the grassland is 5 to 10%. Further, referring to FIG. 17 (b), it can be seen that the reflectance rapidly increases in the near infrared in the grassland.
 <他照射面での反射の参入(アスファルトの例)>
 本実施例では、図1に示した構成において、太陽光線情報提供システム10は、アスファルトの反射率に基づき反射エネルギーを算出し、照射面に照射される照射量を算出することができる。アスファルトの反射率は、例えば、図7(a)及び図7(b)を参照して説明した方法で求めることができる。図18(a)はアスファルトでの各方向からの分光照射強度の例を示すグラフである。図18(a)において、横軸は光の波長であり、縦軸は照射強度である。図18(b)はアスファルトでの分光反射率の例を示すグラフである。図18(b)において、横軸は光の波長であり、縦軸は分光反射率である。図18(b)を参照すると、アスファルトの分光反射率が5%であることがわかる。
<Entering reflection on other irradiation surfaces (example of asphalt)>
In the present embodiment, in the configuration shown in FIG. 1, the solar ray information providing system 10 can calculate the reflected energy based on the reflectance of asphalt and the irradiation amount applied to the irradiation surface. The reflectance of asphalt can be obtained, for example, by the method described with reference to FIGS. 7A and 7B. FIG. 18A is a graph showing an example of the spectral irradiation intensity from each direction on asphalt. In FIG. 18A, the horizontal axis represents the wavelength of light and the vertical axis represents the irradiation intensity. FIG. 18B is a graph showing an example of the spectral reflectance of asphalt. In FIG. 18B, the horizontal axis is the wavelength of light and the vertical axis is the spectral reflectance. Referring to FIG. 18B, it can be seen that the asphalt has a spectral reflectance of 5%.
 以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されるものではない。本発明の目的は、上述の実施例の機能を実現するプログラムコード(コンピュータプログラム)を格納した記憶媒体をシステムあるいは装置に供給し、供給されたシステムあるいは装置のコンピュータが記憶媒体に格納されたプログラムコードを読み出し実行することによっても達成される。この場合、記憶媒体から読み出されたプログラムコード自体が上述した実施例の機能を実現することになり、そのプログラムコードを記憶した記憶媒体は本発明を構成することになる。また、上述した実施形態では、コンピュータがプログラムを実行することにより、各処理部として機能するものとしたが、処理の一部または全部を専用の電子回路(ハードウェア)で構成するようにしても構わない。本発明は、説明された特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の趣旨の範囲内において、種々の変形・変更が可能である。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments. An object of the present invention is to supply a storage medium storing a program code (computer program) for realizing the functions of the above-described embodiments to a system or apparatus, and a computer of the supplied system or apparatus is stored in the storage medium. It is also achieved by reading and executing the code. In this case, the program code itself read from the storage medium realizes the function of the above-described embodiment, and the storage medium storing the program code constitutes the present invention. Further, in the above-described embodiment, the computer executes the program to function as each processing unit, but a part or all of the processing may be configured by a dedicated electronic circuit (hardware). I do not care. The present invention is not limited to the specific embodiments described above, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims.
 本出願は、2019年3月7日に出願された日本特許出願である特願2019-041337号に基づく優先権を主張し、当該日本特許出願に記載されたすべての記載内容を援用する。 This application claims priority based on Japanese Patent Application No. 2019-041337, which is a Japanese patent application filed on March 7, 2019, and incorporates all the contents described in the Japanese patent application.
2、3 クライアントマシン
4 ネットワーク
10 太陽光線情報提供システム
11 第一算出部
12 第二算出部
13 記憶部
17 通信部
2, 3 Client machine 4 Network 10 Sunlight information provision system 11 1st calculation unit 12 2nd calculation unit 13 Storage unit 17 Communication unit

Claims (12)

  1.  日時に関する情報である日時情報と、場所に関する情報である場所情報と、前記日時情報で示される日時及び前記場所情報で示される場所における太陽光線強度に関する情報である太陽光線強度情報と、を対応付けて記憶する記憶部と、
     通信を行う通信部と、
     前記通信部を介して入力された太陽光線問合せ情報に対応付けられた前記太陽光線強度情報を算出する第一算出部と、
     前記第一算出部の算出結果を用いて方向特定太陽光線強度情報を算出する第二算出部と、
    を備え、
     前記太陽光線問合せ情報は、前記日時情報と、前記場所情報と、太陽光線の照射を受ける照射面が向く方向を示す方向情報と、を含み、
     前記方向特定太陽光線強度情報は、前記日時情報で示される日時及び前記場所情報で示される場所における、前記方向情報で示される照射面が受ける太陽光線の強度を含む情報であって、
     前記通信部は、前記太陽光線問合せ情報の送信元に対し、前記第二算出部が算出した前記方向特定太陽光線強度情報を送信する、
    ことを特徴とする太陽光線情報提供システム。
    Date and time information that is information regarding date and time, place information that is information regarding place, and date and time indicated by the date and time information and sunlight intensity information that is information regarding sunlight intensity at the place indicated by the place information are associated with each other. A storage unit that stores
    A communication unit that performs communication,
    The first calculation unit that calculates the sunlight intensity information associated with the sunlight inquiry information input via the communication unit, and the first calculation unit.
    A second calculation unit for calculating the direction specific sun ray intensity information using the calculation result of the first calculation unit,
    Equipped with
    The sunbeam inquiry information includes the date and time information, the location information, and direction information indicating a direction in which an irradiation surface receiving the irradiation of the sun rays is directed,
    The direction-specific sunlight intensity information is information including the intensity of sunlight received by the irradiation surface indicated by the direction information, in the place indicated by the date and time and the place information indicated by the date and time information,
    The communication unit transmits the direction-specific sun ray intensity information calculated by the second calculation unit to the source of the sun ray inquiry information.
    A solar ray information providing system characterized by this.
  2.  日時に関する情報である日時情報で示される日時及び場所に関する情報である場所情報で示される場所における太陽光線強度に関する情報である太陽光線強度情報を算出する第一算出部と、
     前記日時情報と、前記場所情報と、前記第一算出部が算出した前記太陽光線強度情報と、を対応付けて記憶する記憶部と、
     通信を行う通信部と、
     前記通信部を介して入力された太陽光線問合せ情報に対応付けられた前記太陽光線強度情報を前記記憶部から抽出する抽出部と、
     前記抽出部が抽出した前記太陽光線強度情報を用いて方向特定太陽光線強度情報を算出する第二算出部と、
    を備え、
     前記太陽光線問合せ情報は、前記日時情報と、前記場所情報と、太陽光線の照射を受ける照射面が向く方向を示す方向情報と、を含み、
     前記方向特定太陽光線強度情報は、前記日時情報で示される日時及び前記場所情報で示される場所における、前記方向情報で示される照射面が受ける太陽光線の強度を含む情報であって、
     前記通信部は、前記太陽光線問合せ情報の送信元に対し、前記第二算出部が算出した前記方向特定太陽光線強度情報を送信する、
    ことを特徴とする太陽光線情報提供システム。
    A first calculation unit that calculates the sunlight intensity information that is the information about the sunlight intensity at the location that is indicated by the place information that is information about the date and time and the place that is indicated by the date and time information that is information about the date and time
    A storage unit that stores the date and time information, the location information, and the sun ray intensity information calculated by the first calculation unit in association with each other.
    A communication unit that performs communication,
    An extraction unit that extracts the sunlight intensity information associated with the sunlight inquiry information input via the communication unit from the storage unit, and an extraction unit.
    A second calculation unit that calculates direction-specific sun ray intensity information using the sun ray intensity information extracted by the extraction unit, and
    Equipped with
    The sunbeam inquiry information includes the date and time information, the location information, and direction information indicating a direction in which an irradiation surface receiving the irradiation of the sun rays is directed,
    The direction-specific sunlight intensity information is information including the intensity of sunlight received by the irradiation surface indicated by the direction information, in the place indicated by the date and time and the place information indicated by the date and time information,
    The communication unit transmits the direction-specific sun ray intensity information calculated by the second calculation unit to the source of the sun ray inquiry information.
    A solar ray information providing system characterized by this.
  3.  日時に関する情報である日時情報と、場所に関する情報である場所情報と、前記日時情報で示される日時及び前記場所情報で示される場所における太陽光線強度に関する情報である太陽光線強度情報と、を対応付けて記憶する記憶部と、
     通信を行う通信部と、
     前記通信部を介して入力された太陽光線問合せ情報に対応付けられた前記太陽光線強度情報を算出する第一算出部と、
    を備え、
     前記太陽光線問合せ情報は、前記日時情報と、前記場所情報と、太陽光線の照射を受ける照射面が向く方向を示す方向情報と、を含み、
     前記通信部は、前記太陽光線問合せ情報の送信元に対し、前記第一算出部が算出した前記太陽光線強度情報を送信する、
    ことを特徴とする太陽光線情報提供システム。
    Date and time information that is information regarding date and time, place information that is information regarding place, and date and time indicated by the date and time information and sunlight intensity information that is information regarding sunlight intensity at the place indicated by the place information are associated with each other. A storage unit that stores
    A communication unit that performs communication,
    The first calculation unit that calculates the sunlight intensity information associated with the sunlight inquiry information input via the communication unit, and the first calculation unit.
    Equipped with
    The sunbeam inquiry information includes the date and time information, the location information, and direction information indicating a direction in which an irradiation surface receiving the irradiation of the sun rays is directed,
    The communication unit transmits the sun ray intensity information calculated by the first calculation unit to the source of the sun ray inquiry information.
    A solar ray information providing system characterized by this.
  4.  日時に関する情報である日時情報で示される日時及び場所に関する情報である場所情報で示される場所における太陽光線強度に関する情報である太陽光線強度情報を算出する第一算出部と、
     前記日時情報と、前記場所情報と、前記第一算出部が算出した前記太陽光線強度情報と、を対応付けて記憶する記憶部と、
     通信を行う通信部と、
     前記通信部を介して入力された太陽光線問合せ情報に対応付けられた前記太陽光線強度情報を前記記憶部から抽出する抽出部と、
    を備え、
     前記太陽光線問合せ情報は、前記日時情報と、前記場所情報と、太陽光線の照射を受ける照射面が向く方向を示す方向情報と、を含み、
     前記通信部は、前記太陽光線問合せ情報の送信元に対し、前記抽出部が抽出した前記太陽光線強度情報を送信する、
    ことを特徴とする太陽光線情報提供システム。
    A first calculation unit that calculates the sunlight intensity information that is the information about the sunlight intensity at the location that is indicated by the place information that is information about the date and time and the place that is indicated by the date and time information that is information about the date and time
    A storage unit that stores the date and time information, the location information, and the sun ray intensity information calculated by the first calculation unit in association with each other.
    A communication unit that performs communication,
    An extraction unit that extracts the sunlight intensity information associated with the sunlight inquiry information input via the communication unit from the storage unit, and an extraction unit.
    Equipped with
    The sunbeam inquiry information includes the date and time information, the location information, and direction information indicating a direction in which an irradiation surface receiving the irradiation of the sun rays is directed,
    The communication unit transmits the sunlight intensity information extracted by the extraction unit to the transmission source of the sunlight inquiry information.
    A solar ray information providing system characterized by this.
  5.  サーバーマシンとクライアントマシンとを接続してなる太陽光線情報提供システムであって、
     前記サーバーマシンは、
      日時に関する情報である日時情報と、場所に関する情報である場所情報と、前記日時情報で示される日時及び前記場所情報で示される場所における太陽光線強度に関する情報である太陽光線強度情報と、を対応付けて記憶する記憶部と、
      前記クライアントマシンと通信を行う第一通信部と、
      前記第一通信部を介して入力された太陽光線問合せ情報に対応付けられた前記太陽光線強度情報を算出する第一算出部と、
    を備え、
     前記第一通信部は、前記クライアントマシンに対し、前記第一算出部が算出した前記太陽光線強度情報を送信し、
     前記クライアントマシンは、
      前記サーバーマシンと通信を行う第二通信部と、
      前記第二通信部を介して入力された前記太陽光線強度情報を用いて方向特定太陽光線強度情報を算出する第二算出部と、
    を備え、
     前記第二通信部は、前記太陽光線問合せ情報を前記サーバーマシンに送信し、
     前記太陽光線問合せ情報は、前記日時情報と、前記場所情報と、太陽光線の照射を受ける照射面が向く方向を示す方向情報と、を含む、
    ことを特徴とする太陽光線情報提供システム。
    A solar ray information providing system that connects a server machine and a client machine,
    The server machine is
    The date and time information, which is information about the date and time, the place information, which is information about the place, and the sun ray intensity information, which is the information about the sun ray intensity at the place indicated by the date and time information and the place information, are associated with each other. A storage unit that stores
    A first communication unit that communicates with the client machine,
    A first calculation unit that calculates the sunlight intensity information associated with the sunlight inquiry information input via the first communication unit,
    Equipped with
    The first communication unit, to the client machine, transmits the sunlight intensity information calculated by the first calculation unit,
    The client machine is
    A second communication unit that communicates with the server machine,
    A second calculation unit for calculating direction specific sun ray intensity information using the sun ray intensity information input via the second communication unit,
    Equipped with
    The second communication unit transmits the sunbeam inquiry information to the server machine,
    The sunbeam inquiry information includes the date and time information, the location information, and direction information indicating a direction in which an irradiation surface receiving the irradiation of the sun rays is directed.
    A solar ray information providing system characterized in that
  6.  サーバーマシンとクライアントマシンとを接続してなる太陽光線情報提供システムであって、
     前記サーバーマシンは、
      日時に関する情報である日時情報で示される日時及び場所に関する情報である場所情報で示される場所における太陽光線強度に関する情報である太陽光線強度情報を算出する第一算出部と、
      前記日時情報と、前記場所情報と、前記第一算出部が算出した前記太陽光線強度情報と、を対応付けて記憶する記憶部と、
      前記クライアントマシンと通信を行う第一通信部と、
      前記第一通信部を介して入力された太陽光線問合せ情報に対応付けられた前記太陽光線強度情報を前記記憶部から抽出する抽出部と、
    を備え、
     前記第一通信部は、前記クライアントマシンに対し、前記抽出部が抽出した前記太陽光線強度情報を送信し、
     前記クライアントマシンは、
      前記サーバーマシンと通信を行う第二通信部と、
      前記第二通信部を介して入力された前記太陽光線強度情報を用いて方向特定太陽光線強度情報を算出する第二算出部と、
    を備え、
     前記第二通信部は、前記太陽光線問合せ情報を前記サーバーマシンに送信し、
     前記太陽光線問合せ情報は、前記日時情報と、前記場所情報と、太陽光線の照射を受ける照射面が向く方向を示す方向情報と、を含む、
    ことを特徴とする太陽光線情報提供システム。
    A solar ray information providing system that connects a server machine and a client machine,
    The server machine is
    A first calculation unit that calculates the sunlight intensity information that is the information about the sunlight intensity at the location that is indicated by the place information that is information about the date and time and the place that is indicated by the date and time information that is information about the date and time
    A storage unit that stores the date and time information, the location information, and the solar ray intensity information calculated by the first calculation unit in association with each other,
    A first communication unit that communicates with the client machine,
    An extraction unit that extracts the sunlight intensity information associated with the sunlight inquiry information input via the first communication unit from the storage unit,
    Equipped with
    The first communication unit, to the client machine, transmits the sunlight intensity information extracted by the extraction unit,
    The client machine is
    A second communication unit that communicates with the server machine,
    A second calculation unit for calculating direction specific sun ray intensity information using the sun ray intensity information input via the second communication unit,
    Equipped with
    The second communication unit transmits the sunbeam inquiry information to the server machine,
    The sunbeam inquiry information includes the date and time information, the location information, and direction information indicating a direction in which an irradiation surface receiving the irradiation of the sun rays is directed.
    A solar ray information providing system characterized in that
  7.  請求項1から6のいずれか一項に記載の太陽光線情報提供システムであって、
     前記方向情報が示す方向は、太陽光線の照射を受ける照射面が拡がる面と直交する方向である
    ことを特徴とする太陽光線情報提供システム。
    The solar ray information providing system according to any one of claims 1 to 6,
    The solar ray information providing system is characterized in that the direction indicated by the direction information is a direction orthogonal to a surface on which an irradiation surface that receives the irradiation of the solar rays expands.
  8.  請求項1から7のいずれか一項に記載の太陽光線情報提供システムであって、
     前記太陽光線強度情報は、前記方向情報によって示される方向を向く照射面以外の面で反射された太陽光線の強度を含む、
    ことを特徴とする太陽光線情報提供システム。
    The solar ray information providing system according to any one of claims 1 to 7,
    The sun ray intensity information includes the intensity of the sun ray reflected on a surface other than the irradiation surface facing the direction indicated by the direction information.
    A solar ray information providing system characterized by this.
  9.  コンピュータを
     日時に関する情報である日時情報と、場所に関する情報である場所情報と、前記日時情報で示される日時及び前記場所情報で示される場所における太陽光線強度に関する情報である太陽光線強度情報と、を対応付けて記憶する記憶部と、
     通信を行う通信部と、
     前記通信部を介して入力された太陽光線問合せ情報に対応付けられた前記太陽光線強度情報を算出する第一算出部と、
     前記第一算出部の算出結果を用いて方向特定太陽光線強度情報を算出する第二算出部と、
    として機能させ、
     前記太陽光線問合せ情報は、前記日時情報と、前記場所情報と、太陽光線の照射を受ける照射面が向く方向を示す方向情報と、を含み、
     前記方向特定太陽光線強度情報は、前記日時情報で示される日時及び前記場所情報で示される場所における、前記方向情報で示される照射面が受ける太陽光線の強度を含む情報であって、
     前記通信部は、前記太陽光線問合せ情報の送信元に対し、前記第二算出部が算出した前記方向特定太陽光線強度情報を送信する、
    ことを特徴とする太陽光線情報提供プログラム。
    The computer is provided with date and time information which is information relating to date and time, place information which is information relating to place, and date and time which is indicated by the date and time information and sun ray intensity information which is information regarding sun ray intensity at the place indicated by the place information. A storage unit that stores the data in association with each other;
    A communication unit that performs communication,
    The first calculation unit that calculates the sunlight intensity information associated with the sunlight inquiry information input via the communication unit, and the first calculation unit.
    A second calculation unit for calculating the direction specific sun ray intensity information using the calculation result of the first calculation unit,
    Function as
    The sunbeam inquiry information includes the date and time information, the location information, and direction information indicating a direction in which an irradiation surface receiving the irradiation of the sun rays is directed,
    The direction-specific sunlight intensity information is information including the intensity of sunlight received by the irradiation surface indicated by the direction information, in the place indicated by the date and time and the place information indicated by the date and time information,
    The communication unit transmits the direction-specific sun ray intensity information calculated by the second calculation unit to the source of the sun ray inquiry information.
    A solar ray information provision program characterized by this.
  10.  コンピュータを
     日時に関する情報である日時情報で示される日時及び場所に関する情報である場所情報で示される場所における太陽光線強度に関する情報である太陽光線強度情報を算出する第一算出部と、
     前記日時情報と、前記場所情報と、前記第一算出部が算出した前記太陽光線強度情報と、を対応付けて記憶する記憶部と、
     通信を行う通信部と、
     前記通信部を介して入力された太陽光線問合せ情報に対応付けられた前記太陽光線強度情報を前記記憶部から抽出する抽出部と、
     前記抽出部が抽出した前記太陽光線強度情報を用いて方向特定太陽光線強度情報を算出する第二算出部と、
    として機能させ、
     前記太陽光線問合せ情報は、前記日時情報と、前記場所情報と、太陽光線の照射を受ける照射面が向く方向を示す方向情報と、を含み、
     前記方向特定太陽光線強度情報は、前記日時情報で示される日時及び前記場所情報で示される場所における、前記方向情報で示される照射面が受ける太陽光線の強度を含む情報であって、
     前記通信部は、前記太陽光線問合せ情報の送信元に対し、前記第二算出部が算出した前記方向特定太陽光線強度情報を送信する、
    ことを特徴とする太陽光線情報提供プログラム。
    A first calculation unit for calculating the sunlight intensity information, which is information relating to the intensity of sunlight at a place indicated by the place information, which is information about the date and time, and information about the place, which indicates the date and time, which is information regarding the date and time,
    A storage unit that stores the date and time information, the location information, and the sun ray intensity information calculated by the first calculation unit in association with each other.
    A communication unit that performs communication,
    An extraction unit that extracts the sunlight intensity information associated with the sunlight inquiry information input via the communication unit from the storage unit, and an extraction unit.
    A second calculation unit that calculates direction-specific sun ray intensity information using the sun ray intensity information extracted by the extraction unit, and
    Function as
    The sunbeam inquiry information includes the date and time information, the location information, and direction information indicating a direction in which an irradiation surface receiving the irradiation of the sun rays is directed,
    The direction-specific sunlight intensity information is information including the intensity of sunlight received by the irradiation surface indicated by the direction information, in the place indicated by the date and time and the place information indicated by the date and time information,
    The communication unit transmits the direction-specific sun ray intensity information calculated by the second calculation unit to the source of the sun ray inquiry information.
    A solar ray information provision program characterized by this.
  11.  コンピュータを
     日時に関する情報である日時情報と、場所に関する情報である場所情報と、前記日時情報で示される日時及び前記場所情報で示される場所における太陽光線強度に関する情報である太陽光線強度情報と、を対応付けて記憶する記憶部と、
     通信を行う通信部と、
     前記通信部を介して入力された太陽光線問合せ情報に対応付けられた前記太陽光線強度情報を算出する第一算出部と、
    として機能させ、
     前記太陽光線問合せ情報は、前記日時情報と、前記場所情報と、太陽光線の照射を受ける照射面が向く方向を示す方向情報と、を含み、
     前記通信部は、前記太陽光線問合せ情報の送信元に対し、前記第一算出部が算出した前記太陽光線強度情報を送信する、
    ことを特徴とする太陽光線情報提供プログラム。
    The computer is provided with date and time information which is information relating to date and time, place information which is information relating to place, and date and time which is indicated by the date and time information and sun ray intensity information which is information regarding sun ray intensity at the place indicated by the place information. A storage unit that stores the data in association with each other;
    A communication unit that performs communication,
    The first calculation unit that calculates the sunlight intensity information associated with the sunlight inquiry information input via the communication unit, and the first calculation unit.
    Function as
    The sunbeam inquiry information includes the date and time information, the location information, and direction information indicating a direction in which an irradiation surface receiving the irradiation of the sun rays is directed,
    The communication unit transmits the sun ray intensity information calculated by the first calculation unit to the source of the sun ray inquiry information.
    A solar ray information provision program characterized by this.
  12.  コンピュータを
     日時に関する情報である日時情報で示される日時及び場所に関する情報である場所情報で示される場所における太陽光線強度に関する情報である太陽光線強度情報を算出する第一算出部と、
     前記日時情報と、前記場所情報と、前記第一算出部が算出した前記太陽光線強度情報と、を対応付けて記憶する記憶部と、
     通信を行う通信部と、
     前記通信部を介して入力された太陽光線問合せ情報に対応付けられた前記太陽光線強度情報を前記記憶部から抽出する抽出部と、
    として機能させ、
     前記太陽光線問合せ情報は、前記日時情報と、前記場所情報と、太陽光線の照射を受ける照射面が向く方向を示す方向情報と、を含み、
     前記通信部は、前記太陽光線問合せ情報の送信元に対し、前記抽出部が抽出した前記太陽光線強度情報を送信する、
    ことを特徴とする太陽光線情報提供プログラム。
    A first calculation unit for calculating the sunlight intensity information, which is information relating to the intensity of sunlight at a place indicated by the place information, which is information about the date and time, and information about the place, which indicates the date and time, which is information regarding the date and time,
    A storage unit that stores the date and time information, the location information, and the sun ray intensity information calculated by the first calculation unit in association with each other.
    A communication unit that performs communication,
    An extraction unit that extracts the sunlight intensity information associated with the sunlight inquiry information input via the communication unit from the storage unit, and an extraction unit.
    Function as
    The sunbeam inquiry information includes the date and time information, the location information, and direction information indicating a direction in which an irradiation surface receiving the irradiation of the sun rays is directed,
    The communication unit transmits the sunlight intensity information extracted by the extraction unit to the transmission source of the sunlight inquiry information.
    A solar ray information provision program characterized by this.
PCT/JP2020/007965 2019-03-07 2020-02-27 Solar ray information provision system and solar ray information provision program WO2020179599A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019041337A JP7366556B2 (en) 2019-03-07 2019-03-07 Solar ray information provision system and solar ray information provision program
JP2019-041337 2019-03-07

Publications (1)

Publication Number Publication Date
WO2020179599A1 true WO2020179599A1 (en) 2020-09-10

Family

ID=72337743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007965 WO2020179599A1 (en) 2019-03-07 2020-02-27 Solar ray information provision system and solar ray information provision program

Country Status (2)

Country Link
JP (1) JP7366556B2 (en)
WO (1) WO2020179599A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022137721A1 (en) * 2020-12-21 2022-06-30 日本ユニシス株式会社 Prediction information provision system and prediction information provision program
WO2022196357A1 (en) * 2021-03-15 2022-09-22 日本ユニシス株式会社 Soil condition predicting system, and soil condition predicting program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023099939A (en) * 2022-01-04 2023-07-14 Biprogy株式会社 Photon Flux Density Prediction System and Photon Flux Density Prediction Program
JP2023131357A (en) * 2022-03-09 2023-09-22 Biprogy株式会社 Solar-radiation prediction system and solar-radiation prediction program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010217107A (en) * 2009-03-18 2010-09-30 Pasuko:Kk Method and device for evaluating of solar radiation intensity
JP2012173057A (en) * 2011-02-18 2012-09-10 Jx Nippon Oil & Energy Corp Solar irradiance evaluating apparatus, solar irradiance evaluating method and solar irradiance evaluating program
JP2013152156A (en) * 2012-01-25 2013-08-08 Fuji Electric Co Ltd Device for calculating amount of solar radiation, and control method and program of device for calculating amount of solar radiation
CN103294865A (en) * 2013-05-30 2013-09-11 珠海兴业绿色建筑科技有限公司 Design method and system for solar power system
JP2017223594A (en) * 2016-06-17 2017-12-21 株式会社インテグラル Solar radiation amount calculation system, solar radiation amount calculation method, program, and solar radiation amount integrated data

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014939A (en) 2006-06-07 2008-01-24 Eko Instruments Trading Co Ltd Solar radiation measurement system, and program for measuring solar radiation
JP2011159199A (en) 2010-02-03 2011-08-18 Gifu Univ System and method for predicting generation amount of electricity of photovoltaic power generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010217107A (en) * 2009-03-18 2010-09-30 Pasuko:Kk Method and device for evaluating of solar radiation intensity
JP2012173057A (en) * 2011-02-18 2012-09-10 Jx Nippon Oil & Energy Corp Solar irradiance evaluating apparatus, solar irradiance evaluating method and solar irradiance evaluating program
JP2013152156A (en) * 2012-01-25 2013-08-08 Fuji Electric Co Ltd Device for calculating amount of solar radiation, and control method and program of device for calculating amount of solar radiation
CN103294865A (en) * 2013-05-30 2013-09-11 珠海兴业绿色建筑科技有限公司 Design method and system for solar power system
JP2017223594A (en) * 2016-06-17 2017-12-21 株式会社インテグラル Solar radiation amount calculation system, solar radiation amount calculation method, program, and solar radiation amount integrated data

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022137721A1 (en) * 2020-12-21 2022-06-30 日本ユニシス株式会社 Prediction information provision system and prediction information provision program
WO2022196357A1 (en) * 2021-03-15 2022-09-22 日本ユニシス株式会社 Soil condition predicting system, and soil condition predicting program

Also Published As

Publication number Publication date
JP7366556B2 (en) 2023-10-23
JP2020144024A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
WO2020179599A1 (en) Solar ray information provision system and solar ray information provision program
WO2021059732A1 (en) Sunlight information provision system, information processing device, and sunlight information provision program
Carrasco-Hernandez et al. Using urban canyon geometries obtained from Google Street View for atmospheric studies: Potential applications in the calculation of street level total shortwave irradiances
Allen et al. Analytical integrated functions for daily solar radiation on slopes
Resler et al. PALM-USM v1. 0: A new urban surface model integrated into the PALM large-eddy simulation model
Erdélyi et al. Three-dimensional SOlar RAdiation Model (SORAM) and its application to 3-D urban planning
Bae et al. Coupling WRF double‐moment 6‐class microphysics schemes to RRTMG radiation scheme in weather research forecasting model
Tapakis et al. Computations of diffuse fraction of global irradiance: Part 1–Analytical modelling
Kocifaj Angular distribution of scattered radiation under broken cloud arrays: an approximation of successive orders of scattering
Back et al. A rapid fine-scale approach to modelling urban bioclimatic conditions
Lefèvre et al. The HelioClim-1 database of daily solar radiation at Earth surface: an example of the benefits of GEOSS Data-CORE
Katsoulas et al. Microclimatic effects of planted hydroponic structures in urban environment: measurements and simulations
Araya-Muñoz et al. Assessing the solar potential of roofs in Valparaíso (Chile)
Fortuniak Numerical estimation of the effective albedo of an urban canyon
Gros et al. Modelling the radiative exchanges in urban areas: A review
WO2023171089A1 (en) Sunlight prediction system and sunlight prediction program
WO2022137721A1 (en) Prediction information provision system and prediction information provision program
Buo et al. High-resolution thermal exposure and shade maps for cool corridor planning
Baran et al. Retrieval of tropical cirrus thermal optical depth, crystal size, and shape using a dual-view instrument at 3.7 and 10.8 μm
Wallenberg et al. An anisotropic parameterization scheme for longwave irradiance and its impact on radiant load in urban outdoor settings
Caliot et al. Model of spectral and directional radiative transfer in complex urban canopies with participating atmospheres
WO2022249895A1 (en) Heat index predicting system and heat index predicting program
WO2023132110A1 (en) Photon flux density prediction system and photon flux density prediction program
WO2022196357A1 (en) Soil condition predicting system, and soil condition predicting program
JP7153473B2 (en) Ultraviolet Information Providing System and Ultraviolet Information Providing Program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20765717

Country of ref document: EP

Kind code of ref document: A1