WO2020179455A1 - Control system, equipment management system, equipment management method, and program - Google Patents

Control system, equipment management system, equipment management method, and program Download PDF

Info

Publication number
WO2020179455A1
WO2020179455A1 PCT/JP2020/006598 JP2020006598W WO2020179455A1 WO 2020179455 A1 WO2020179455 A1 WO 2020179455A1 JP 2020006598 W JP2020006598 W JP 2020006598W WO 2020179455 A1 WO2020179455 A1 WO 2020179455A1
Authority
WO
WIPO (PCT)
Prior art keywords
control system
information
power
control
communication
Prior art date
Application number
PCT/JP2020/006598
Other languages
French (fr)
Japanese (ja)
Inventor
聡 澤野
健一 浅沼
真 小曽根
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020179455A1 publication Critical patent/WO2020179455A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network

Definitions

  • the present disclosure relates generally to a control system, a facility management system, a facility management method and a program, and more particularly to a control system, a facility management system, a facility management method and a program capable of controlling power-related facilities by communicating with a host system. ..
  • Patent Document 1 describes a control system (electric power equipment control system) that adjusts the demand of electric power-related equipment (electric power equipment) that is not owned by the electric power company in order to adjust the frequency of the entire commercial electric power system. ..
  • This equipment management system is connected to a higher-level system (system operation server) via a communication network, and realizes demand adjustment of power-related equipment while exchanging information with the higher-level system.
  • the upper-level system is in charge of overall grid operation of the commercial power system, and has functions such as creating a generator start/stop plan based on the demand forecast from the previous day, and economical load distribution to the starting generator in the same day operation. There is. Further, the host system also has a function of automatic frequency control for adjusting the frequency of the entire system during the day of operation, and carries out control for eliminating the imbalance between supply and demand that occurs every moment.
  • the present disclosure has been made in view of the above reasons, and an object thereof is to provide a control system, a facility management system, a facility management method, and a program that are less likely to be affected by communication conditions when controlling power-related facilities.
  • the control system is a control system capable of communicating with a higher-level system, and includes a first control unit and a second control unit.
  • the first control unit controls the power-related equipment according to the prediction information acquired by communication from the host system.
  • the second control unit controls the power-related equipment in a state where communication with the host system is cut off.
  • the second control unit controls the power-related equipment based on preliminary information corresponding to the prediction information.
  • a facility management system includes the control system and the host system.
  • a facility management method is a facility management method using a host system and a control system capable of communicating with the host system, and includes a first control process and a second control process.
  • the first control process is a process in which the control system controls power-related equipment according to prediction information acquired from the higher-level system by communication.
  • the second control process is a process of controlling the power-related equipment by the control system in a state where communication between the host system and the control system is cut off. In the second control process, control of the power-related equipment is executed based on preliminary information corresponding to the prediction information.
  • the program according to one aspect of the present disclosure is a program for causing one or more processors to execute the equipment management method.
  • FIG. 1 is a system configuration diagram conceptually showing the overall configuration of the facility management system according to the first embodiment.
  • FIG. 2 is a block diagram showing the configuration of the above-mentioned equipment management system.
  • FIG. 3 is a conceptual diagram conceptually showing the structure of a learning system used in the above facility management system.
  • FIG. 4 is a sequence diagram illustrating an example of the operation of the control system according to the first embodiment and the equipment management system including the control system.
  • FIG. 5 is a flowchart showing an example of the operation of the control system of the above.
  • control system 1 As shown in FIG. 1, the control system 1 according to the present embodiment is a system capable of communicating with the host system 2 and controlling the power-related equipment 3 by communicating with the host system 2.
  • the “electric power-related equipment” in the present disclosure is equipment that performs operations related to electric power, and for example, equipment (system, device) that performs at least one of supply, conversion, generation, storage (storage) and consumption of electric power. And equipment).
  • the "equipment” referred to here may be any of stationary equipment, movable portable equipment, and equipment mounted on a moving body (vehicle, ship, aircraft, etc.).
  • ESS Energy Storage System
  • the power generation equipment includes solar power generation equipment, wind power generation equipment, hydroelectric power generation equipment, thermal power generation equipment, nuclear power generation equipment, geothermal power generation equipment, pumped storage power generation equipment, wave power generation equipment, and the like.
  • This kind of power-related facility 3 is, for example, a non-residential facility such as an office building, an office, a factory, a warehouse, a store (including a complex such as a shopping center), a park, a school, a hospital, a station, an airport or a parking lot. Will be installed in.
  • the power-related facility 3 is also installed in a housing facility such as an apartment house or a detached house.
  • the control system 1 constitutes the equipment management system 10 together with the host system 2.
  • the equipment management system 10 includes a control system 1 and a host system 2.
  • the control system 1 is installed in, for example, a facility in which the electric power-related equipment 3 is installed, and the host system 2 is installed, for example, in a place away from this facility.
  • the host system 2 is operated by an organization (management company or the like) for managing the facility, a power company, a power aggregator, or the like.
  • the control system 1 and the host system 2 are configured to be able to communicate with each other via a network 4 such as the Internet. As a result, in the host system 2, remote control and remote monitoring of the power-related equipment 3 become possible.
  • the control system 1 is a system capable of communicating with the host system 2, and includes a first control unit 11 and a second control unit 12, as shown in FIG.
  • the first control unit 11 controls the power-related equipment 3 according to the prediction information acquired from the host system 2 by communication.
  • the second control unit 12 controls the power-related equipment 3 in a state where communication with the host system 2 is cut off.
  • the second control unit 12 executes the control of the power-related equipment 3 based on the preliminary information corresponding to the prediction information.
  • the control system 1 controls the power related equipment 3 according to the prediction information acquired from the higher level system 2 by communication. ..
  • the control system 1 executes, for example, fine control on the power-related equipment 3 in consideration of not only the power consumption value of the present load but also the power consumption value of the future load. It is possible to efficiently control the power-related equipment 3.
  • the control system 1 controls the power-related equipment 3 based on the preliminary information corresponding to the prediction information. Therefore, even in a situation where the communication between the control system 1 and the host system 2 is cut off, the power-related equipment 3 can be efficiently installed. As a result, it is not easily affected by the communication status when controlling the power-related equipment 3.
  • the power-related equipment 3 to be controlled by the control system 1 is an energy storage system (ESS)
  • ESS energy storage system
  • the electric power-related equipment 3 includes the power storage equipment. It is assumed that the power-related equipment 3 is installed in an office building, for example.
  • the power-related facility 3 includes a storage battery 31, a power conditioner (PCS) 32, an EV (electric vehicle) charger 33, and a meter 34.
  • PCS power conditioner
  • EV electric vehicle
  • the power-related equipment 3 is electrically connected to the power system and the load.
  • the power-related facility 3 charges the storage battery 31 with electric power supplied from the power system, and outputs the electric energy stored in the storage battery 31 to the load or the EV charger 33 via the power conditioner 32.
  • the EV charger 33 supplies electric power to the electric vehicle and charges the storage battery mounted on the electric vehicle.
  • the meter 34 measures the amount of power supplied from the power system to the power-related equipment 3, the amount of power supplied from the power-related equipment 3 to the load (including the electric vehicle), and the like.
  • the power-related equipment 3 functions as an energy storage system, for example, as an emergency power source during a power failure of the power system.
  • the facility management system 10 controls the power-related facility 3 so that, for example, the usage status of the electrical energy in the facility where the power-related facility 3 is introduced and the efficient use of the electrical energy are monitored. Is possible.
  • the facility management system 10 controls the power-related facility 3 to realize functions such as peak shift or peak cut for avoiding concentration of power consumption from the power grid. can do.
  • the power supply is stabilized, the usage status of electric energy is monitored and used efficiently, and the power system is stabilized. Etc. are possible.
  • the facility management system 10 includes at least one control system 1 and at least one host system 2.
  • the upper system 2 constitutes the equipment management system 10 together with the control system 1 which is the lower system.
  • the "upper” of the upper system 2 and the “lower” of the lower system are simply used as labels for distinguishing the two, and do not mean to specify their respective positions and ranks.
  • the control system 1 and the host system 2 are configured to be able to communicate with each other.
  • "communicable” means that information can be exchanged directly or indirectly via a network, a relay, or the like by an appropriate communication method such as wire communication or wireless communication. That is, the control system 1 and the host system 2 can exchange information with each other.
  • the control system 1 and the host system 2 can communicate with each other bidirectionally, and both the transmission of information from the host system 2 to the control system 1 and the transmission of information from the control system 1 to the host system 2 are possible. Is.
  • the control system 1 and the host system 2 are communicable via a public network 4 such as the Internet.
  • the control system 1 is a system that controls the power-related equipment 3 as described above. Therefore, the control system 1 is configured to be able to communicate with not only the host system 2 but also the power-related equipment 3.
  • the control system 1 and the power-related equipment 3 are integrated.
  • the control system 1 is integrated with the electric power-related equipment 3 by being mounted on the electric power-related equipment 3. That is, in one housing of the electric power-related equipment 3, a component for realizing the function as the electric power-related equipment 3 and a component of the control system 1 are housed.
  • control system 1 and the power-related equipment 3 have a one-to-one relationship. That is, one control system 1 is provided for one electric power-related equipment 3, and one electric power-related equipment 3 and one control system 1 are linked to each other.
  • the power-related equipment 3 tied to a certain control system 1 is also referred to as the power-related equipment 3 under the control system 1.
  • the control system 1 can control the subordinate electric power-related equipment 3 by outputting control information to the subordinate electric power-related equipment 3.
  • the host system 2 is configured to be able to communicate with not only the control system 1 but also the learning system 5.
  • the learning system 5 has a function of learning by machine learning.
  • the learning system 5 includes at least a learning device for generating prediction information about the power-related equipment 3.
  • each of the control system 1, the host system 2 and the learning system 5 is mainly composed of a computer system including a memory and a processor. That is, the functions of the control system 1, the host system 2, and the learning system 5 are realized by the processor executing the program recorded in the memory of the computer system.
  • the program may be pre-recorded in a memory, provided through a telecommunication line such as the Internet, or may be recorded and provided on a non-temporary recording medium such as a memory card.
  • the equipment management system 10 actually includes one higher-level system 2 and a plurality of control systems 1. That is, a plurality of control systems 1 can communicate with one host system 2. Each of the plurality of control systems 1 controls the power-related facility 3 as a control target. However, since the plurality of control systems 1 basically have a common configuration, only one control system 1 will be described below.
  • the upper system 2 is also configured to communicate with the information terminal 6 possessed by the operator.
  • the operator is an employee of a management company that manages the power-related equipment 3.
  • the operator monitors the power-related equipment 3 based on the information transmitted from the host system 2 to the information terminal 6.
  • the information terminal 6 is configured to be able to communicate with the information terminal 7 owned by the engineer.
  • the engineer is an employee of a management company that manages the power-related equipment 3.
  • the engineer grasps the status of the electric power-related equipment 3 based on the information transmitted from the information terminal 6 to the information terminal 7, and performs maintenance of the electric power-related equipment 3 and the like.
  • the control system 1 includes a first control unit 11, a second control unit 12, a generation unit 13, a restoration output unit 14, a lower communication unit 15, a storage unit 16, and a lower database 17. There is. Of these, the first control unit 11, the second control unit 12, the generation unit 13, and the recovery output unit 14 are realized as one function of a computer system including a memory and a processor.
  • the first control unit 11 controls the power-related equipment 3 according to the prediction information acquired from the host system 2 by communication. That is, in the state in which communication between the control system 1 and the host system 2 can be established, the first controller 11 controls the power-related equipment 3 according to the prediction information transmitted from the host system 2 to the control system 1. ..
  • the "prediction information" referred to in the present disclosure is information including future predictions related to the operation of the electric power-related equipment 3, and is, for example, a set of predicted values related to the operation of the electric power-related equipment 3.
  • the prediction information includes information in which a set (combination) of these prediction values is listed for each time zone (for example, one hour unit). Furthermore, the prediction information also includes a time zone in which a customer such as an owner of a facility in which the power-related facility 3 is installed, a power company, or a power aggregator issues a request such as peak cut or peak shift.
  • the prediction information includes information about at least one of demand and supply of power in the power-related facility 3. More specifically, the prediction information includes information on both the demand and supply of electric power in the electric power related equipment 3. As an example of information on the demand for electric power in the electric power-related equipment 3, there is information on the power consumption value (or electric energy) in the load (including the EV charger 33). As an example of information on the supply of electric power in the electric power-related equipment 3, there is information on the output electric power value (or electric energy) of the electric power-related equipment 3. That is, in the present embodiment, the prediction information is information necessary for predicting both the output and the input of the power-related equipment 3.
  • These pieces of prediction information are information generated by the higher-level system 2 using the learned classifier in the learning system 5. That is, the control system 1 periodically or irregularly acquires the prediction information generated by the higher-level system 2 via the network 4, and according to the prediction information, the power control related to the subordinate power in the first control unit 11 is performed. Control equipment 3.
  • the control system 1 for example, the power-related equipment 3 is subjected to delicate control that takes into consideration not only the power consumption value of the current load but also the power consumption value of the future load. Is possible.
  • the control system 1 has a predictive control function that controls the power-related equipment 3 based on future predictions.
  • the second control unit 12 controls the power-related equipment 3 in a state where communication with the host system 2 is cut off. That is, in a state where the communication between the control system 1 and the host system 2 is cut off, the prediction information is not transmitted from the host system 2 to the control system 1, so that the second control unit 12 is used instead of the first control unit 11. Controls the power-related equipment 3.
  • the “blocking” of communication in the present disclosure means a state in which normal communication is not established, and for example, a state in which a communication path is physically or logically blocked due to a system failure or the like, a shortage of a communication band, Alternatively, "blocking" also includes a state in which normal communication is not established due to the occurrence of congestion. In particular, when the communication path between the control system 1 and the host system 2 includes the best-effort network 4, communication cutoff may occur suddenly due to insufficient communication band or congestion.
  • the second control unit 12 executes control of the power-related equipment 3 based on the preliminary information corresponding to the prediction information. That is, since the second control unit 12 controls the power-related equipment 3 in a stand-alone manner in a state where the communication between the control system 1 and the host system 2 is cut off, the second control unit 12 corresponds to prediction information, not prediction information. The power-related equipment 3 is controlled based on the preliminary information.
  • the “preliminary information” referred to in the present disclosure only needs to be information corresponding to the prediction information, and may include the same information as the prediction information, or may not include the same information as the prediction information.
  • information obtained by mirroring the prediction information is preliminary information
  • "Mirroring" as used in the present disclosure means that the prediction information is synchronized.
  • the preliminary information obtained by mirroring the prediction information is synchronized with the prediction information. Therefore, the preliminary information mirrored with the prediction information basically includes the same information as the prediction information, and if the prediction information is updated, it will be updated in synchronization with the prediction information. Therefore, the preliminary information mirrored with the forecast information will include the same information as the forecast information as long as the synchronization continues.
  • the preliminary information includes the same information as the prediction information. More specifically, the preliminary information is information that mirrors the prediction information. That is, in the present embodiment, the second control unit 12 uses the information obtained by mirroring the prediction information as the preliminary information, and executes the control of the power-related equipment 3 based on the preliminary information. Therefore, according to the second control unit 12, even when the communication between the control system 1 and the host system 2 is cut off, by using the preliminary information, the first control unit 11 based on the prediction information can be used. It is possible to realize control close to control.
  • the generation unit 13 generates preliminary information based on the information acquired from the host system 2.
  • the preliminary information is information obtained by mirroring the prediction information. Therefore, the generation unit 13 generates the preliminary information by copying the prediction information acquired by the control system 1 from the higher system 2, and updates the preliminary information each time the control system 1 acquires the prediction information from the higher system 2. ..
  • the preliminary information generated by the generation unit 13 is stored in the lower database 17 as needed.
  • the recovery output unit 14 outputs recovery information to the host system 2 when communication with the host system 2 is recovered. That is, in the state where the communication between the control system 1 and the host system 2 is cut off, the second control unit 12 controls the power-related equipment 3 instead of the first control unit 11 as described above. Then, when the state in which the communication is cut off is eliminated, that is, when the communication between the control system 1 and the upper system 2 is restored, the restoration output unit 14 outputs the restoration information to the upper system 2 this time.
  • the “restoration” of communication in the present disclosure means a transition from a state in which communication is cut off to a state in which normal communication is established. For example, an event that causes the communication to be cut off has been resolved. Sometimes communication is "recovered".
  • the “recovery information” referred to in the present disclosure may be information that the recovery output unit 14 outputs to the higher system 2 at least when communication between the control system 1 and the higher system 2 is restored, and the content thereof is Various contents may be included. For example, it may be information that merely indicates that communication has been restored, or information that indicates the time (date and time) when communication has been restored.
  • the recovery information includes the history information obtained by the control system 1 during the interruption period of communication with the host system 2.
  • the cutoff period here is a period from the time when the communication between the control system 1 and the upper system 2 is cut off to the time when the communication between the control system 1 and the upper system 2 is restored. That is, when the communication is restored, the restoration output unit 14 outputs the data obtained while the communication between the control system 1 and the host system 2 is blocked (blocking period) to the host system 2 as history information. ..
  • information that the higher-level system 2 failed to acquire such as the power consumption value (or power amount) in the load and the output power value (or power amount) of the power-related equipment 3 during the cutoff period, is recorded.
  • the host system 2 can be acquired when the communication is restored.
  • the restoration information includes the information for re-learning the classifier that generates the prediction information. That is, as described above, in the present embodiment, the classifier of the learning system 5 generates the prediction information. Therefore, by improving the estimation accuracy of the classifier, it is possible to improve the accuracy of the prediction information generated by the classifier. During the period in which the communication between the control system 1 and the host system 2 is cut off, the host system 2 may not be able to acquire information necessary for learning (re-learning) of such a classifier.
  • the data (information for re-learning) obtained during the interruption of the communication between the control system 1 and the host system 2 (interruption period) by the restoration output unit 14 is
  • the learning system 5 can be relearned by being output to the host system 2. As a result, it is possible to improve the accuracy of the prediction information generated by the classifier.
  • the lower communication unit 15 indirectly communicates with the upper system 2 via the network 4.
  • the lower communication unit 15 can at least receive the prediction information transmitted from the upper system 2.
  • the lower communication unit 15 receives the prediction information from the upper system 2 regularly, irregularly, or as a response to a request from the control system 1. Further, the lower communication unit 15 also has a function of transmitting the recovery information output by the recovery output unit 14 to the higher system 2.
  • the storage unit 16 stores at least the information included in the recovery information. Therefore, in the present embodiment, the storage unit 16 stores at least the history information and the relearning information.
  • the lower database 17 stores the preliminary information generated by the generation unit 13 as described above. That is, each time the generating unit 13 generates (or updates) the preliminary information, the preliminary information in the lower database 17 is updated.
  • the upper system 2 has a prediction unit 21, a higher control unit 22, a higher communication unit 23, and a higher database 24.
  • the prediction unit 21 and the upper control unit 22 are realized as one function of a computer system including a memory and a processor.
  • Prediction unit 21 generates prediction information.
  • the prediction unit 21 uses the classifier of the learning system 5 to generate prediction information. That is, the prediction unit 21 generates prediction information by using artificial intelligence (AI).
  • AI artificial intelligence
  • the prediction information generated by the prediction unit 21 is stored in the upper database 24 as needed.
  • the host controller 22 controls the operation of each part of the host system 2.
  • the upper control unit 22 instructs the prediction unit 21 to generate prediction information, and also controls communication with the control system 1 (lower communication unit 15) by the upper communication unit 23.
  • the upper communication unit 23 indirectly communicates with the control system 1 (lower communication unit 15) via the network 4.
  • the upper communication unit 23 can transmit at least the prediction information to the control system 1.
  • the host communication unit 23 transmits the prediction information to the control system 1 periodically, irregularly, or as a response to a request from the control system 1.
  • the higher-level communication unit 23 also has a function of receiving the recovery information output by the recovery output unit 14 from the control system 1.
  • the upper database 24 stores the prediction information generated by the prediction unit 21 as described above. That is, each time the prediction unit 21 generates (or updates) the prediction information, the prediction information in the upper database 24 is updated.
  • the preliminary information is information obtained by mirroring the prediction information. Therefore, the preliminary information stored in the lower database 17 is synchronized with the prediction information stored in the upper database 24. That is, basically, the preliminary information stored in the lower database 17 includes the same information as the prediction information stored in the upper database 24, and is synchronized with the prediction information if the prediction information is updated. Will be updated.
  • FIG. 3 is a conceptual diagram conceptually showing the configuration of the learning system 5.
  • the learning system 5 has a function of learning by machine learning. Here, it is assumed that the learning system 5 generates a trained classifier by deep learning using the data given from the upper system 2.
  • the upper part conceptually shows the configuration of the learning system 5 related to the learning phase
  • the lower part conceptually shows the configuration of the learning system 5 related to the inference phase.
  • the learning system 5 has a database 51 that stores training data (including information for re-learning).
  • the learning system 5 generates the learning data set 52 by preprocessing the training data in the database 51.
  • the learning system 5 inputs the learning data set 52 to the learning device 53.
  • the learning device 53 is a learning device for generating at least prediction information regarding the power-related equipment 3, and its actual state is, for example, a learning model including a network model of a neural network and hyperparameters. By repeating the process of inputting the learning data set 52 to the learning device 53, the learning device 53 generates the trained model 54.
  • the trained model 54 generated by the learner 53 in the learning phase is mounted on the learner to generate the trained classifier 55. Then, the learning system 5 outputs the output data from the classifier 55 when the input data is input to the learned classifier 55.
  • the classifier 55 outputs the prediction information related to the power-related equipment 3 to the higher-level system 2. ..
  • the performance information referred to here is, for example, the power consumption value (or power amount) in the load, the output power value (or power amount) of the power-related equipment 3, the threshold value used for controlling the power-related equipment 3, and the remaining capacity of the storage battery 31. Including actual values such as capacity.
  • the actual information may include the actual value of the input and / or output power value (or electric energy) of the power conditioner 32 in the power-related equipment 3, time information, and the like.
  • the record information includes, as an example, information related to the state or operation of each part (the storage battery 31, the power conditioner 32, the EV charger 33, or the like) of the power-related equipment 3 such as temperature information, status information, and error information. It may be included.
  • FIG. 4 is a sequence diagram showing an example of the operation of the control system 1 according to the present embodiment and the equipment management system 10 including the control system 1.
  • the communication between the control system 1 and the host system 2 is normally established, the communication is temporarily interrupted, and then the communication is restored. Further, it is assumed that the control system 1 regularly or irregularly generates the preliminary information by mirroring the prediction information in a state where the communication between the control system 1 and the host system 2 is normally established. ..
  • the monitoring information referred to here is information about the power-related equipment 3 under the control system 1 that is the transmission source of the monitoring information, and includes the above-mentioned actual information and the like. That is, the monitoring information is, for example, the power consumption value (or power amount) in the load, the output power value (or power amount) of the power-related equipment 3, the threshold value used for controlling the power-related equipment 3, and the remaining capacity of the storage battery 31. Including actual values such as.
  • the monitoring information may include information regarding an abnormality (error) and a failure of the power-related equipment 3. Further, the monitoring information may include information related to the preliminary information generated by the generation unit 13 or preliminary information. By including the preliminary information (or information related to the preliminary information) in the monitoring information, for example, in the host system 2 that receives the monitoring information, it is possible to confirm that the control system 1 has generated the preliminary information. ..
  • the host system 2 periodically, irregularly, or responds to a request from the control system 1 as a control system.
  • the prediction information is transmitted to 1 (S2).
  • the control system 1 that has received the prediction information generates preliminary information in the generation unit 13 by mirroring the prediction information (S3). That is, the control system 1 generates preliminary information including the same information as the prediction information received from the host system 2.
  • control system 1 controls the power-related equipment 3 by the first control unit 11 according to the prediction information received from the host system 2 (S4). That is, the first control unit 11 executes the first control process of controlling the power-related equipment 3 according to the prediction information acquired from the host system 2 by communication. At this time, the control system 1 controls the power-related equipment 3 by transmitting control information to the power-related equipment 3 (S5).
  • the control information includes, for example, information for controlling charging/discharging the storage battery 31, adjusting the output of the power conditioner 32, adjusting the output of the EV charger 33, and the like.
  • the control system 1 executes, for example, fine control on the power-related equipment 3 in consideration of not only the power consumption value of the present load but also the power consumption value of the future load. Is possible. In other words, the control system 1 controls the power-related equipment 3 based on the future prediction by the predictive control function.
  • the control system 1 controls the power-related equipment 3 by the second control unit 12 according to the preliminary information (S7). That is, the second control unit 12 executes the second control process that executes the control of the power-related equipment 3 based on the preliminary information corresponding to the prediction information. At this time, the control system 1 controls the electric power-related equipment 3 by transmitting control information to the electric power-related equipment 3 (S8).
  • control system 1 may not only consume the power consumption value at the current load but also the power consumption at the future load, for example. Fine control that takes into account the power value and the like can be executed for the power-related equipment 3.
  • control system 1 can predict the future by the predictive control function not only when the communication with the host system 2 is normally established but also when the communication with the host system 2 is cut off. It is possible to control the power-related equipment 3 based on this.
  • the control system 1 causes the restoration output unit 14 to transmit the restoration information to the host system 2 (S10).
  • the restoration information transmitted at this time includes the history information obtained by the control system 1 during the period in which the communication with the host system 2 is cut off, and the re-learning information of the classifier that generates the prediction information. Therefore, the higher-level system 2 that has received the restoration information can re-learn the classifier of the learning system 5 by inputting the restoration information to the learning system 5 and update it to a more appropriate classifier.
  • the classifier updated in this way improves the estimation accuracy of prediction information as compared with the case where relearning is not performed.
  • control system 1 transmits the monitoring information to the upper system 2 (S11), and the upper system 2 transmits the prediction information to the control system 1 (S12). Then, the processing from S3 onward is repeatedly performed.
  • the control system 1 can continue the control of the power-related equipment 3 based on the preliminary information even if the communication with the host system 2 is cut off, as described above. Therefore, there is a possibility that the timing at which the user (including the operator and the engineer) notices that the communication between the control system 1 and the host system 2 is cut off may be delayed. Therefore, it is preferable that the control system 1 or the host system 2 has a notifying unit that notifies that the control system 1 is executing the second control process.
  • the notification means may be provided in the control system 1 and / or the higher-level system 2, or may be provided in the power-related equipment 3. Alternatively, the information terminal 6 possessed by the operator or the information terminal 7 possessed by the engineer may be provided with the notification means.
  • FIG. 5 is a flowchart showing an example of the operation of the control system 1 according to the present embodiment.
  • the control system 1 determines whether or not the communication between the control system 1 and the host system 2 is interrupted (S21).
  • the control system 1 executes the first control process. (S22).
  • the control system 1 controls the power-related equipment 3 in accordance with the prediction information received from the host system 2 by the first control unit 11 according to the prediction information received from the host system 2. After that, the control system 1 shifts to the process S21.
  • the control system 1 executes the second control process (S23).
  • the control system 1 controls the power-related equipment 3 by the second control unit 12 based on the preliminary information corresponding to the prediction information.
  • the control system 1 determines whether the communication is restored (S24).
  • the control system 1 causes the restoration output unit 14 to restore the restoration information. Is output (S25).
  • the control system 1 transmits the recovery information to the host system 2 at the recovery output unit 14. Then, the control system 1 moves to process S21.
  • control system 1 executes the second control process S23. Execute repeatedly.
  • FIG. 5 schematically shows an example of the operation of the control system 1, and the processes may be added, changed or omitted as appropriate, and the order of the processes may be changed as appropriate.
  • the first embodiment is only one of the various embodiments of the present disclosure.
  • the first embodiment can be changed in various ways depending on the design and the like as long as the object of the present disclosure can be achieved.
  • the same function as the facility management system 10 according to the first embodiment may be embodied by a facility management method, a program, a non-transitory recording medium recording the program, or the like.
  • the equipment management method according to one aspect is an equipment management method using the host system 2 and the control system 1 capable of communicating with the host system 2.
  • This equipment management method has a first control process (corresponding to “S22” in FIG. 5) and a second control process (corresponding to “S23” in FIG. 5).
  • the first control process is a process in which the control system 1 controls the power-related equipment 3 according to the prediction information acquired from the host system 2 by communication.
  • the second control process is a process for controlling the power-related equipment 3 in the control system 1 in a state where the communication between the host system 2 and the control system 1 is cut off. In the second control process, the control of the power-related equipment 3 is executed based on the preliminary information corresponding to the prediction information.
  • the program according to one aspect is a program for causing one or more processors to execute the above-mentioned equipment management method.
  • the facility management system 10 includes, for example, a computer system in the control system 1, the host system 2, the learning system 5, and the like.
  • the computer system mainly comprises a processor as a hardware and a memory.
  • the processor executes the program recorded in the memory of the computer system, the function as the facility management system 10 according to the present disclosure is realized.
  • the program may be pre-recorded in the memory of the computer system, may be provided through a telecommunications line, and may be recorded on a non-temporary recording medium such as a memory card, optical disk, hard disk drive, etc. readable by the computer system. May be provided.
  • a processor in a computer system is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI).
  • the integrated circuit such as an IC or an LSI referred to here has a different name depending on the degree of integration, and includes an integrated circuit called a system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration).
  • FPGAs Field-Programmable Gate Arrays
  • logic devices that can be reconfigured for junction relationships within LSIs or for circuit sections within LSIs should also be adopted as processors.
  • the plurality of electronic circuits may be integrated in one chip, or may be distributed and provided in the plurality of chips.
  • the plurality of chips may be integrated in one device, or may be distributed and provided in the plurality of devices.
  • the computer system referred to here includes a microcontroller having one or more processors and one or more memories. Therefore, the microcontroller is also composed of one or a plurality of electronic circuits including a semiconductor integrated circuit or a large scale integrated circuit.
  • the equipment management system 10 it is not an essential configuration of the equipment management system 10 that at least a part of the functions of the equipment management system 10 are integrated in one housing, and the components of the equipment management system 10 are provided in a plurality of housings. It may be provided in a dispersed manner.
  • a part of the functions provided in the control system 1 of the equipment management system 10 may be provided in a housing different from the control system 1.
  • at least a part of the functions of the equipment management system 10 for example, the functions of the host system 2 may be realized by a cloud (cloud computing) or the like.
  • the function of the learning system 5 may be realized by a cloud (cloud computing) or the like.
  • At least a part of the functions of the equipment management system 10 distributed in a plurality of devices may be integrated in one housing.
  • the functions distributed to the control system 1 and the host system 2 may be integrated in one housing.
  • control system 1 and the host system 2 is not limited to the method described in the first embodiment, and an appropriate communication method of wired communication or wireless communication can be adopted.
  • control system 1 and the power-related equipment 3 do not have to be integrated, and the control system 1 may be separate from the power-related equipment 3.
  • the power-related equipment 3 to be controlled by the control system 1 is an energy storage system (ESS). That is, the electric power-related equipment 3 does not have to include the power storage equipment, and may be, for example, a power generation equipment or the like.
  • ESS energy storage system
  • the recovery output unit 14 is not an essential component of the control system 1 and may be omitted as appropriate. That is, the control system 1 does not have to output the recovery information to the host system 2 when the communication with the host system 2 is restored.
  • the generation unit 13 may generate the preliminary information based on the information acquired from the control system 1 other than the higher-level system 2, for example, the information terminal 6 owned by the operator or the information terminal 7 owned by the engineer. Good.
  • the control system 1 according to the present embodiment is different from the control system 1 according to the first embodiment in that the preliminary information includes the same trained model as the trained model 54 (see FIG. 3) for generating the prediction information. Be different.
  • the same components as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be appropriately omitted.
  • the preliminary information includes the same information as the prediction information, but in the present embodiment, the preliminary information includes the same learned model as the learned model 54 for generating the prediction information. That is, since the prediction information is generated by the learning device in which the learned model 54 is implemented, that is, the learned classifier 55 (see FIG. 3), by using the same learned model as this, the control system Also in 1, it is possible to generate preliminary information corresponding to the prediction information.
  • the preliminary information is information obtained by mirroring the learned model 54. That is, in the present embodiment, the second control unit 12 uses the information obtained by mirroring the learned model 54 as the preliminary information, and executes the control of the power related equipment 3 based on the preliminary information.
  • the generation unit 13 generates preliminary information by copying the learned model 54 acquired by the control system 1 from the higher system 2, and the control system 1 acquires the learned model 54 from the higher system 2. Update preliminary information every time.
  • the preliminary information generated by the generation unit 13 is stored in the lower database 17 as needed.
  • the control system 1 independently generates information equivalent to the prediction information by transfer learning using the preliminary information stored in the lower database 17, that is, the trained model.
  • the second control unit 12 allows the first control based on the prediction information even when the communication between the control system 1 and the host system 2 is cut off. It is possible to realize control close to the control of the control unit 11.
  • the preliminary information includes the same learned model as the learned model 54 for generating the prediction information.
  • a learning device that implements the preliminary information (learned model). That is, the trained classifier may be included in the control system 1.
  • the control system 1 according to the present embodiment differs from the control system 1 according to the first embodiment in that the preliminary information includes the same learning device as the learning device 53 (see FIG. 3) for generating the prediction information. ..
  • the same components as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be appropriately omitted.
  • the preliminary information includes the same information as the prediction information
  • the preliminary information includes the same learning device as the learning device 53 for generating the prediction information. That is, since the prediction information is generated by the classifier 55 (see FIG. 3) in which the learned model 54 (see FIG. 3) generated by the learner 53 is mounted, use the same learning device as this. Then, also in the control system 1, it becomes possible to generate the preliminary information corresponding to the prediction information.
  • the preliminary information is information obtained by mirroring the learning device 53.
  • the mirroring of the learning device 53 here is, for example, mirroring of learning software including a network model of a neural network and hyperparameters. That is, in the present embodiment, the second control unit 12 uses the information obtained by mirroring the learning device 53 as the preliminary information, and executes the control of the power-related equipment 3 based on the preliminary information.
  • the generation unit 13 generates preliminary information by duplicating the learning device 53 acquired by the control system 1 from the host system 2, and each time the control system 1 acquires the learning device 53 from the host system 2. Update preliminary information.
  • the preliminary information generated by the generation unit 13 is stored in the lower database 17 as needed.
  • the control system 1 independently generates information equivalent to the prediction information by using the preliminary information stored in the lower database 17, that is, the learner.
  • the second control unit 12 allows the first control based on the prediction information even when the communication between the control system 1 and the host system 2 is cut off. It is possible to realize control close to the control of the control unit 11.
  • the control system (1) is the control system (1) capable of communicating with the host system (2), and includes the first control unit (11) and the second control unit. (12) and are provided.
  • the first control unit (11) controls the power-related equipment (3) according to the prediction information acquired from the host system (2) by communication.
  • the second control unit (12) controls the power-related equipment (3) in a state where communication with the host system (2) is cut off.
  • the second control unit (12) executes the control of the power-related equipment (3) based on the preliminary information corresponding to the prediction information.
  • the control system (1) in a situation where communication between the control system (1) and the higher system (2) is established, the control system (1) is powered according to the predicted information acquired by the communication from the upper system (2). Control related equipment (3).
  • the control system (1) for example, fine-tuned control that takes into account not only the power consumption value under the current load but also the power consumption value under the future load is applied to the power-related equipment (3). It is possible to efficiently set up the electric power related equipment (3).
  • the control system (1) uses the power-related equipment (3) based on the preliminary information corresponding to the prediction information. Control. Therefore, even in the situation where the communication between the control system (1) and the host system (2) is cut off, it is possible to efficiently control the power-related equipment (3). As a result, it is not easily affected by the communication status when controlling the power-related equipment (3).
  • the control system (1) according to the second aspect further includes a generation unit (13) that generates the preliminary information based on the information acquired from the host system (2) in the first aspect.
  • the control system (1) in the situation where the communication between the control system (1) and the host system (2) is established, the control system (1) generates the preliminary information based on the information acquired from the host system (2). can do.
  • the preliminary information includes the same information as the prediction information.
  • the second control unit (12) controls the power-related equipment (3) based on the same information as the prediction information included in the preliminary information. Therefore, according to the second control unit (12), even if the communication between the control system (1) and the host system (2) is interrupted, the first control unit (11) according to the prediction information. It is possible to realize a control close to the control of.
  • the preliminary information includes the same learned model (54) as the learned model (54) for generating the prediction information.
  • the second control unit (12) controls the power-related equipment (3) based on the same learned model as the learned model (54) for generating the prediction information. Therefore, according to the second control unit (12), even if the communication between the control system (1) and the host system (2) is interrupted, the first control unit (11) according to the prediction information. It is possible to realize a control close to the control of.
  • the preliminary information includes the same learning device as the learning device (53) for generating the prediction information.
  • the second control unit (12) controls the power-related equipment (3) based on the same learning device as the learning device (53) for generating the prediction information. Therefore, according to the second control unit (12), even if the communication between the control system (1) and the host system (2) is interrupted, the first control unit (11) according to the prediction information. It is possible to realize a control close to the control of.
  • the power-related equipment (3) includes a power storage equipment.
  • control system (1) fine control of the power-related equipment (3) including charging / discharging of the power storage equipment can be realized.
  • the control system (1) according to the seventh aspect is the restoration output according to any one of the first to sixth aspects, which outputs restoration information to the higher system (2) when communication with the higher system (2) is restored. It further comprises a section (14).
  • the restoration information includes history information obtained by the control system (1) during the period of interruption of communication with the higher level system (2).
  • the history information obtained by the control system (1) during the cutoff period can be output to the host system (2).
  • the restoration information includes information for re-learning of the classifier (55) that generates prediction information.
  • the information for re-learning of the classifier (55) can be output to the host system (2).
  • the prediction information includes information about at least one of supply and demand of power in the power-related facility (3).
  • control system (1) can realize fine control of the power-related equipment (3) based on the prediction information about at least one of the demand and supply of power in the power-related equipment (3). ..
  • the equipment management system (10) according to the eleventh aspect includes a control system (1) according to any one of the first to ten aspects and a higher-level system (2).
  • the control system (1) in a situation where communication between the control system (1) and the higher system (2) is established, the control system (1) is powered according to the predicted information acquired by the communication from the upper system (2). Control related equipment (3). Therefore, in the equipment management system (10), for example, the power-related equipment (3) can be finely controlled in consideration of not only the power consumption value of the present load but also the power consumption value of the future load. It is possible to efficiently set up the electric power related equipment (3).
  • the control system (1) determines the power-related equipment (3) based on the preliminary information corresponding to the prediction information. Control. Therefore, even in the situation where the communication between the control system (1) and the host system (2) is cut off, it is possible to efficiently control the power-related equipment (3). As a result, it is not easily affected by the communication status when controlling the power-related equipment (3).
  • a facility management method is a facility management method using a host system (2) and a control system (1) capable of communicating with the host system (2). It has a control process.
  • the first control process is a process in which the control system (1) controls the power-related equipment (3) according to the prediction information acquired from the host system (2) by communication.
  • the second control process is a process of controlling the power-related equipment (3) in the control system (1) in a state where the communication between the host system (2) and the control system (1) is cut off. In the second control process, control of the power-related equipment (3) is executed based on the preliminary information corresponding to the prediction information.
  • the power control is performed according to the prediction information acquired from the host system (2) by communication in the first control process.
  • Control related equipment (3) As a result, in the equipment management method, for example, detailed control is performed on the power-related equipment (3) in consideration of not only the power consumption value of the current load but also the power consumption value of the future load. It is possible to efficiently install the electric power related equipment (3).
  • the power-related equipment (3) is set based on the preliminary information corresponding to the prediction information. Control. Therefore, even in a situation where communication between the control system (1) and the host system (2) is cut off, the power-related equipment (3) can be efficiently installed. As a result, it is not easily affected by the communication status when controlling the power-related equipment (3).
  • the program according to the thirteenth aspect is a program for causing one or more processors to execute the facility management method according to the twelfth aspect.
  • the power control is performed according to the prediction information acquired from the host system (2) by communication in the first control process.
  • Control related equipment (3) As a result, in the equipment management method, for example, fine control that takes into account not only the power consumption value under the current load but also the power consumption value under the future load is executed for the power-related equipment (3). It is possible to efficiently install the electric power related equipment (3).
  • the power-related equipment (3) is set in the second control process based on the preliminary information corresponding to the prediction information. Control. Therefore, even in the situation where the communication between the control system (1) and the host system (2) is cut off, it is possible to efficiently control the power-related equipment (3). As a result, it is not easily affected by the communication status when controlling the power-related equipment (3).
  • various configurations (including modified examples) of the control system (1) according to the first embodiment, the second embodiment, and the third embodiment, and the equipment management system (10) including the same are the equipment management methods.
  • it can be realized by a program.
  • the configurations according to the second to tenth aspects are not essential for the control system (1) and can be omitted as appropriate.

Abstract

Provided are: a control system that is not easily impacted by a communication state when controlling power-related equipment; an equipment management system; an equipment management method; and a program. A control system (1) that can communicate with a host system (2) comprises a first control unit (11) and a second control unit (12). The first control unit (11) controls power-related equipment (3) in accordance with prediction information acquired through communication from the host system (2). The second control unit (12) controls the power-related equipment (3) when communication with the host system (2) has been interrupted. The second control unit (12) executes control of the power-related equipment (3) on the basis of backup information corresponding to the prediction information.

Description

制御システム、設備管理システム、設備管理方法及びプログラムControl system, equipment management system, equipment management method and program
 本開示は、一般に制御システム、設備管理システム、設備管理方法及びプログラムに関し、より詳細には、上位システムとの通信により電力関連設備を制御可能な制御システム、設備管理システム、設備管理方法及びプログラムに関する。 The present disclosure relates generally to a control system, a facility management system, a facility management method and a program, and more particularly to a control system, a facility management system, a facility management method and a program capable of controlling power-related facilities by communicating with a host system. ..
 特許文献1には、商用電力系統全体の周波数調整のために、電力事業者の保有設備ではない電力関連設備(電力設備)の需要調整を行う制御システム(電力設備制御システム)が記載されている。この設備管理システムは、通信網を介して上位システム(系統運用サーバ)に接続されており、上位システムと情報をやりとりしながら、電力関連設備の需要調整を実現している。 Patent Document 1 describes a control system (electric power equipment control system) that adjusts the demand of electric power-related equipment (electric power equipment) that is not owned by the electric power company in order to adjust the frequency of the entire commercial electric power system. .. This equipment management system is connected to a higher-level system (system operation server) via a communication network, and realizes demand adjustment of power-related equipment while exchanging information with the higher-level system.
 上位システムは、商用電力系統全体の系統運用を統括しており、前日段階での需要予測から発電機起動停止計画の作成、当日運用における起動発電機に対する経済的負荷配分等の機能を有している。また、上位システムは、当日運用における系統全体の周波数調整のための自動周波数制御の機能も保持しており、時々刻々発生する需給不平衡を解消する制御を実施している。 The upper-level system is in charge of overall grid operation of the commercial power system, and has functions such as creating a generator start/stop plan based on the demand forecast from the previous day, and economical load distribution to the starting generator in the same day operation. There is. Further, the host system also has a function of automatic frequency control for adjusting the frequency of the entire system during the day of operation, and carries out control for eliminating the imbalance between supply and demand that occurs every moment.
 上述したような上位システムとの通信により電力関連設備の制御を行う制御システムにおいては、上位システムとの間の通信が遮断されると、電力関連設備を制御できないか、又は電力関連設備の制御に関して本来のパフォーマンスを発揮することができない。その結果、電力関連設備の運用において機会損失につながる可能性がある。 In the control system that controls the power-related equipment by communicating with the host system as described above, if the communication with the host system is interrupted, the power-related equipment cannot be controlled or the power-related equipment is controlled. It is not possible to show the original performance. As a result, there is a possibility of loss of opportunity in the operation of electric power related equipment.
特開2013-5574号公報JP, 2013-5574, A
 本開示は上記事由に鑑みてなされており、電力関連設備の制御に際して通信状況の影響を受けにくい制御システム、設備管理システム、設備管理方法及びプログラムを提供することを目的とする。 The present disclosure has been made in view of the above reasons, and an object thereof is to provide a control system, a facility management system, a facility management method, and a program that are less likely to be affected by communication conditions when controlling power-related facilities.
 本開示の一態様に係る制御システムは、上位システムと通信可能な制御システムであって、第1制御部と、第2制御部と、を備える。前記第1制御部は、前記上位システムから通信により取得する予測情報に従って電力関連設備を制御する。前記第2制御部は、前記上位システムとの間の通信が遮断された状態で前記電力関連設備を制御する。前記第2制御部は、前記予測情報に相当する予備情報に基づいて前記電力関連設備の制御を実行する。 The control system according to one aspect of the present disclosure is a control system capable of communicating with a higher-level system, and includes a first control unit and a second control unit. The first control unit controls the power-related equipment according to the prediction information acquired by communication from the host system. The second control unit controls the power-related equipment in a state where communication with the host system is cut off. The second control unit controls the power-related equipment based on preliminary information corresponding to the prediction information.
 本開示の一態様に係る設備管理システムは、前記制御システムと、前記上位システムと、を備える。 A facility management system according to an aspect of the present disclosure includes the control system and the host system.
 本開示の一態様に係る設備管理方法は、上位システム、及び前記上位システムと通信可能な制御システムを用いた設備管理方法であって、第1制御処理と、第2制御処理と、を有する。前記第1制御処理は、前記制御システムが前記上位システムから通信により取得する予測情報に従って前記制御システムにて電力関連設備を制御する処理である。前記第2制御処理は、前記上位システムと前記制御システムとの間の通信が遮断された状態で前記制御システムにて前記電力関連設備を制御する処理である。前記第2制御処理では、前記予測情報に相当する予備情報に基づいて前記電力関連設備の制御を実行する。 A facility management method according to an aspect of the present disclosure is a facility management method using a host system and a control system capable of communicating with the host system, and includes a first control process and a second control process. The first control process is a process in which the control system controls power-related equipment according to prediction information acquired from the higher-level system by communication. The second control process is a process of controlling the power-related equipment by the control system in a state where communication between the host system and the control system is cut off. In the second control process, control of the power-related equipment is executed based on preliminary information corresponding to the prediction information.
 本開示の一態様に係るプログラムは、前記設備管理方法を1以上のプロセッサに実行させるためのプログラムである。 The program according to one aspect of the present disclosure is a program for causing one or more processors to execute the equipment management method.
図1は、実施形態1に係る設備管理システムの全体構成を概念的に示すシステム構成図である。FIG. 1 is a system configuration diagram conceptually showing the overall configuration of the facility management system according to the first embodiment. 図2は、同上の設備管理システムの構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the above-mentioned equipment management system. 図3は、同上の設備管理システムに用いられる学習システムの構成を概念的に示す概念図である。FIG. 3 is a conceptual diagram conceptually showing the structure of a learning system used in the above facility management system. 図4は、実施形態1に係る制御システム、及びそれを備える設備管理システムの動作の一例を示すシーケンス図である。FIG. 4 is a sequence diagram illustrating an example of the operation of the control system according to the first embodiment and the equipment management system including the control system. 図5は、同上の制御システムの動作の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of the operation of the control system of the above.
 (実施形態1)
 (1)概要
 本実施形態に係る制御システム1は、図1に示すように、上位システム2と通信可能であって、上位システム2との通信により電力関連設備3を制御可能なシステムである。
(Embodiment 1)
(1) Outline As shown in FIG. 1, the control system 1 according to the present embodiment is a system capable of communicating with the host system 2 and controlling the power-related equipment 3 by communicating with the host system 2.
 本開示でいう「電力関連設備」は、電力に関連した動作を行う設備であって、例えば、電力の供給、変換、生成、蓄積(蓄電)及び消費の少なくとも1つを行う設備(システム、装置及び機器を含む)である。ここでいう「設備」は、定置型の設備、移動可能な可搬型の設備、及び移動体(車両、船舶及び航空機等)に搭載された設備のいずれであってもよい。電力関連設備3の一例として、エネルギー貯蔵システム(ESS:Energy Storage System)、電気自動車用の充電設備、発電設備、及びこれらを組み合わせた設備等がある。発電設備には、太陽光発電設備、風力発電設備、水力発電設備、火力発電設備、原子力発電設備、地熱発電設備、揚水発電設備及び波力発電設備等がある。 The “electric power-related equipment” in the present disclosure is equipment that performs operations related to electric power, and for example, equipment (system, device) that performs at least one of supply, conversion, generation, storage (storage) and consumption of electric power. And equipment). The "equipment" referred to here may be any of stationary equipment, movable portable equipment, and equipment mounted on a moving body (vehicle, ship, aircraft, etc.). As an example of the electric power related equipment 3, there are an energy storage system (ESS: Energy Storage System), a charging equipment for an electric vehicle, a power generation equipment, and equipment combining these. The power generation equipment includes solar power generation equipment, wind power generation equipment, hydroelectric power generation equipment, thermal power generation equipment, nuclear power generation equipment, geothermal power generation equipment, pumped storage power generation equipment, wave power generation equipment, and the like.
 この種の電力関連設備3は、例えば、オフィスビル、事務所、工場、倉庫、店舗(ショッピングセンタ等の複合施設を含む)、公園、学校、病院、駅、空港又は駐車場等の非住宅施設に設置される。また、集合住宅又は戸建住宅等の住宅施設にも、電力関連設備3は設置される。 This kind of power-related facility 3 is, for example, a non-residential facility such as an office building, an office, a factory, a warehouse, a store (including a complex such as a shopping center), a park, a school, a hospital, a station, an airport or a parking lot. Will be installed in. The power-related facility 3 is also installed in a housing facility such as an apartment house or a detached house.
 本実施形態に係る制御システム1は、上位システム2と共に設備管理システム10を構成する。言い換えれば、本実施形態に係る設備管理システム10は、制御システム1と、上位システム2と、を備えている。制御システム1は、例えば、電力関連設備3が導入されている施設に設置され、上位システム2は、例えば、この施設から離れた場所に設置されている。上位システム2は、施設を管理するための組織(管理会社等)、電力会社又は電力アグリゲータ等によって運用される。制御システム1と上位システム2とは、インターネット等のネットワーク4を介して通信可能に構成されている。これにより、上位システム2においては、電力関連設備3の遠隔制御及び遠隔監視が可能となる。 The control system 1 according to the present embodiment constitutes the equipment management system 10 together with the host system 2. In other words, the equipment management system 10 according to the present embodiment includes a control system 1 and a host system 2. The control system 1 is installed in, for example, a facility in which the electric power-related equipment 3 is installed, and the host system 2 is installed, for example, in a place away from this facility. The host system 2 is operated by an organization (management company or the like) for managing the facility, a power company, a power aggregator, or the like. The control system 1 and the host system 2 are configured to be able to communicate with each other via a network 4 such as the Internet. As a result, in the host system 2, remote control and remote monitoring of the power-related equipment 3 become possible.
 本実施形態に係る制御システム1は、上位システム2と通信可能なシステムであって、図2に示すように、第1制御部11と、第2制御部12と、を備えている。第1制御部11は、上位システム2から通信により取得する予測情報に従って電力関連設備3を制御する。第2制御部12は、上位システム2との間の通信が遮断された状態で電力関連設備3を制御する。ここで、第2制御部12は、予測情報に相当する予備情報に基づいて電力関連設備3の制御を実行する。 The control system 1 according to the present embodiment is a system capable of communicating with the host system 2, and includes a first control unit 11 and a second control unit 12, as shown in FIG. The first control unit 11 controls the power-related equipment 3 according to the prediction information acquired from the host system 2 by communication. The second control unit 12 controls the power-related equipment 3 in a state where communication with the host system 2 is cut off. Here, the second control unit 12 executes the control of the power-related equipment 3 based on the preliminary information corresponding to the prediction information.
 上記制御システム1によれば、制御システム1と上位システム2との間の通信が成立する状況においては、制御システム1は、上位システム2から通信により取得する予測情報に従って電力関連設備3を制御する。これにより、制御システム1では、例えば、現在の負荷での消費電力値だけでなく、将来の負荷での消費電力値等を加味したきめ細やかな制御を、電力関連設備3に対して実行することができ、電力関連設備3を効率的に設御することが可能である。一方、制御システム1と上位システム2との間の通信が遮断された状況においては、制御システム1は、予測情報に相当する予備情報に基づいて電力関連設備3を制御する。したがって、制御システム1と上位システム2との間の通信が遮断された状況であっても、電力関連設備3を効率的に設御することが可能である。結果的に、電力関連設備3の制御に際して通信状況の影響を受けにくい。 According to the control system 1, in a situation where communication between the control system 1 and the higher level system 2 is established, the control system 1 controls the power related equipment 3 according to the prediction information acquired from the higher level system 2 by communication. .. As a result, the control system 1 executes, for example, fine control on the power-related equipment 3 in consideration of not only the power consumption value of the present load but also the power consumption value of the future load. It is possible to efficiently control the power-related equipment 3. On the other hand, in a situation where the communication between the control system 1 and the host system 2 is cut off, the control system 1 controls the power-related equipment 3 based on the preliminary information corresponding to the prediction information. Therefore, even in a situation where the communication between the control system 1 and the host system 2 is cut off, the power-related equipment 3 can be efficiently installed. As a result, it is not easily affected by the communication status when controlling the power-related equipment 3.
 (2)構成
 以下、本実施形態に係る制御システム1、及びそれを備える設備管理システム10の構成について、図1~図3を参照して詳細に説明する。
(2) Configuration The configuration of the control system 1 according to the present embodiment and the equipment management system 10 including the control system 1 will be described in detail below with reference to FIGS. 1 to 3.
 以下では、制御システム1の制御対象となる電力関連設備3が、エネルギー貯蔵システム(ESS)である場合を例として説明する。つまり、電力関連設備3は、蓄電設備を含んでいる。電力関連設備3は、一例として、オフィスビルに設置されていると仮定する。この電力関連設備3は、図1に示すように、蓄電池31、パワーコンディショナ(PCS:Power Conditioning System)32、EV(Electric Vehicle)充電器33及びメータ34を含んでいる。 In the following, a case where the power-related equipment 3 to be controlled by the control system 1 is an energy storage system (ESS) will be described as an example. That is, the electric power-related equipment 3 includes the power storage equipment. It is assumed that the power-related equipment 3 is installed in an office building, for example. As shown in FIG. 1, the power-related facility 3 includes a storage battery 31, a power conditioner (PCS) 32, an EV (electric vehicle) charger 33, and a meter 34.
 電力関連設備3は、電力系統及び負荷に電気的に接続されている。電力関連設備3は、電力系統から供給される電力で蓄電池31を充電し、かつ蓄電池31に貯めた電気エネルギーを、パワーコンディショナ32を介して負荷又はEV充電器33に出力する。EV充電器33は、電気自動車に電力を供給し、電気自動車に搭載されている蓄電池の充電を行う。メータ34は、電力系統から電力関連設備3に供給される電力量、及び電力関連設備3から負荷(電気自動車を含む)に供給される電力量等の計測を行う。 The power-related equipment 3 is electrically connected to the power system and the load. The power-related facility 3 charges the storage battery 31 with electric power supplied from the power system, and outputs the electric energy stored in the storage battery 31 to the load or the EV charger 33 via the power conditioner 32. The EV charger 33 supplies electric power to the electric vehicle and charges the storage battery mounted on the electric vehicle. The meter 34 measures the amount of power supplied from the power system to the power-related equipment 3, the amount of power supplied from the power-related equipment 3 to the load (including the electric vehicle), and the like.
 この電力関連設備3は、エネルギー貯蔵システムとして、例えば、電力系統の停電時における非常用電源として機能する。また、設備管理システム10(制御システム1)が電力関連設備3を制御することにより、例えば、電力関連設備3が導入されている施設における電気エネルギーの使用状況の監視及び電気エネルギーの効率的な使用が可能となる。さらに、設備管理システム10(制御システム1)が電力関連設備3を制御することにより、電力系統から供給される電力の消費が集中することを回避するためのピークシフト又はピークカット等の機能を実現することができる。結果的に、電力関連設備3及び設備管理システム10(制御システム1)を導入することで、電力の供給の安定化、電気エネルギーの使用状況の監視及び効率的な使用、並びに電力系統の安定化等を図ることが可能である。 -The power-related equipment 3 functions as an energy storage system, for example, as an emergency power source during a power failure of the power system. In addition, the facility management system 10 (control system 1) controls the power-related facility 3 so that, for example, the usage status of the electrical energy in the facility where the power-related facility 3 is introduced and the efficient use of the electrical energy are monitored. Is possible. Furthermore, the facility management system 10 (control system 1) controls the power-related facility 3 to realize functions such as peak shift or peak cut for avoiding concentration of power consumption from the power grid. can do. As a result, by introducing the power-related facility 3 and the facility management system 10 (control system 1), the power supply is stabilized, the usage status of electric energy is monitored and used efficiently, and the power system is stabilized. Etc. are possible.
 (2.1)全体構成
 本実施形態に係る設備管理システム10は、図1に示すように、少なくとも1つの制御システム1と、少なくとも1つの上位システム2と、を備えている。要するに、上位システム2は、下位システムとなる制御システム1と共に、設備管理システム10を構成する。ここで、上位システム2の「上位」、及び下位システムの「下位」は、単に、両者を区別するためのラベルとして用いているのであって、各々の地位及び順位等を特定する意味ではない。
(2.1) Overall Configuration As shown in FIG. 1, the facility management system 10 according to the present embodiment includes at least one control system 1 and at least one host system 2. In short, the upper system 2 constitutes the equipment management system 10 together with the control system 1 which is the lower system. Here, the "upper" of the upper system 2 and the "lower" of the lower system are simply used as labels for distinguishing the two, and do not mean to specify their respective positions and ranks.
 制御システム1と上位システム2とは、互いに通信可能に構成されている。本開示において「通信可能」とは、有線通信又は無線通信の適宜の通信方式により、直接的、又はネットワーク若しくは中継器等を介して間接的に、情報を授受できることを意味する。すなわち、制御システム1と上位システム2とは、互いに情報を授受することができる。 The control system 1 and the host system 2 are configured to be able to communicate with each other. In the present disclosure, "communicable" means that information can be exchanged directly or indirectly via a network, a relay, or the like by an appropriate communication method such as wire communication or wireless communication. That is, the control system 1 and the host system 2 can exchange information with each other.
 制御システム1と上位システム2とは、互いに双方向に通信可能であって、上位システム2から制御システム1への情報の送信、及び制御システム1から上位システム2への情報の送信の両方が可能である。本実施形態では、制御システム1と上位システム2とは、インターネットのような公衆のネットワーク4を介して、通信可能に構成されている。 The control system 1 and the host system 2 can communicate with each other bidirectionally, and both the transmission of information from the host system 2 to the control system 1 and the transmission of information from the control system 1 to the host system 2 are possible. Is. In this embodiment, the control system 1 and the host system 2 are communicable via a public network 4 such as the Internet.
 制御システム1は、上述したように電力関連設備3を制御するシステムである。そのため、制御システム1は、上位システム2だけでなく、電力関連設備3とも通信可能に構成されている。本実施形態では一例として、制御システム1と電力関連設備3とは一体化されている。ここでは、制御システム1は電力関連設備3に搭載されることで、電力関連設備3と一体化されている。つまり、電力関連設備3の1つの筐体には、電力関連設備3としての機能を実現するための構成要素と、制御システム1の構成要素と、が収容されている。 The control system 1 is a system that controls the power-related equipment 3 as described above. Therefore, the control system 1 is configured to be able to communicate with not only the host system 2 but also the power-related equipment 3. In this embodiment, as an example, the control system 1 and the power-related equipment 3 are integrated. Here, the control system 1 is integrated with the electric power-related equipment 3 by being mounted on the electric power-related equipment 3. That is, in one housing of the electric power-related equipment 3, a component for realizing the function as the electric power-related equipment 3 and a component of the control system 1 are housed.
 本実施形態では一例として、制御システム1と電力関連設備3とは一対一の関係にある。つまり、1台の電力関連設備3に対して1つの制御システム1が設けられ、1台の電力関連設備3と1つの制御システム1とが紐付けられている。以下では、ある制御システム1に紐付けられた電力関連設備3を、この制御システム1の配下の電力関連設備3ともいう。制御システム1は、配下の電力関連設備3に対して制御情報を出力することによって、配下の電力関連設備3を制御することができる。 In the present embodiment, as an example, the control system 1 and the power-related equipment 3 have a one-to-one relationship. That is, one control system 1 is provided for one electric power-related equipment 3, and one electric power-related equipment 3 and one control system 1 are linked to each other. Below, the power-related equipment 3 tied to a certain control system 1 is also referred to as the power-related equipment 3 under the control system 1. The control system 1 can control the subordinate electric power-related equipment 3 by outputting control information to the subordinate electric power-related equipment 3.
 上位システム2は、制御システム1だけでなく、学習システム5とも通信可能に構成されている。学習システム5は、機械学習により学習する機能を有している。学習システム5は、少なくとも電力関連設備3に関する予測情報を生成するための学習器を含んでいる。 ∙ The host system 2 is configured to be able to communicate with not only the control system 1 but also the learning system 5. The learning system 5 has a function of learning by machine learning. The learning system 5 includes at least a learning device for generating prediction information about the power-related equipment 3.
 本実施形態では、制御システム1、上位システム2及び学習システム5の各々は、メモリ及びプロセッサを含むコンピュータシステムを主構成とする。すなわち、コンピュータシステムのメモリに記録されたプログラムを、プロセッサが実行することにより、制御システム1、上位システム2及び学習システム5の各々の機能が実現される。プログラムはメモリに予め記録されていてもよいし、インターネット等の電気通信回線を通して提供されてもよく、メモリカード等の非一時的記録媒体に記録されて提供されてもよい。 In the present embodiment, each of the control system 1, the host system 2 and the learning system 5 is mainly composed of a computer system including a memory and a processor. That is, the functions of the control system 1, the host system 2, and the learning system 5 are realized by the processor executing the program recorded in the memory of the computer system. The program may be pre-recorded in a memory, provided through a telecommunication line such as the Internet, or may be recorded and provided on a non-temporary recording medium such as a memory card.
 制御システム1、上位システム2及び学習システム5の各々の構成について詳しくは、「(2.2)各部の構成」の欄で説明する。 The configuration of each of the control system 1, the host system 2, and the learning system 5 will be described in detail in the column of "(2.2) Configuration of each part".
 本実施形態に係る設備管理システム10は、実際には、1つの上位システム2と、複数の制御システム1と、を備えている。すなわち、1つの上位システム2に対して、複数の制御システム1が通信可能に構成されている。これら複数の制御システム1の各々は、電力関連設備3を制御対象としている。ただし、複数の制御システム1は、基本的に共通の構成を有しているため、以下では、1つの制御システム1についてのみ説明する。 The equipment management system 10 according to the present embodiment actually includes one higher-level system 2 and a plurality of control systems 1. That is, a plurality of control systems 1 can communicate with one host system 2. Each of the plurality of control systems 1 controls the power-related facility 3 as a control target. However, since the plurality of control systems 1 basically have a common configuration, only one control system 1 will be described below.
 また、上位システム2は、オペレータが所持する情報端末6とも通信可能に構成されている。オペレータは、電力関連設備3を管理する管理会社の従業者等である。オペレータは、上位システム2から情報端末6に送信される情報に基づいて、電力関連設備3の監視を行う。さらに、情報端末6は、エンジニアが所持する情報端末7とも通信可能に構成されている。エンジニアは、電力関連設備3を管理する管理会社の従業者等である。エンジニアは、情報端末6から情報端末7に送信される情報に基づいて、電力関連設備3の状況を把握し、電力関連設備3のメンテナンス等を行う。 The upper system 2 is also configured to communicate with the information terminal 6 possessed by the operator. The operator is an employee of a management company that manages the power-related equipment 3. The operator monitors the power-related equipment 3 based on the information transmitted from the host system 2 to the information terminal 6. Further, the information terminal 6 is configured to be able to communicate with the information terminal 7 owned by the engineer. The engineer is an employee of a management company that manages the power-related equipment 3. The engineer grasps the status of the electric power-related equipment 3 based on the information transmitted from the information terminal 6 to the information terminal 7, and performs maintenance of the electric power-related equipment 3 and the like.
 (2.2)各部の構成
 次に、本実施形態に係る制御システム1、上位システム2及び学習システム5の各々の構成について、図2及び図3を参照してより詳細に説明する。
(2.2) Configuration of Each Unit Next, each configuration of the control system 1, the host system 2, and the learning system 5 according to the present embodiment will be described in more detail with reference to FIGS. 2 and 3.
 制御システム1は、第1制御部11と、第2制御部12と、生成部13と、復旧出力部14と、下位通信部15と、記憶部16と、下位データベース17と、を有している。このうち、第1制御部11、第2制御部12、生成部13及び復旧出力部14は、メモリ及びプロセッサを含むコンピュータシステムの一機能として実現される。 The control system 1 includes a first control unit 11, a second control unit 12, a generation unit 13, a restoration output unit 14, a lower communication unit 15, a storage unit 16, and a lower database 17. There is. Of these, the first control unit 11, the second control unit 12, the generation unit 13, and the recovery output unit 14 are realized as one function of a computer system including a memory and a processor.
 第1制御部11は、上位システム2から通信により取得する予測情報に従って電力関連設備3を制御する。つまり、制御システム1と上位システム2との間の通信が成立し得る状態においては、上位システム2から制御システム1に送信される予測情報に従って、第1制御部11が電力関連設備3を制御する。本開示でいう「予測情報」は、電力関連設備3の動作に関連する将来の予測を含む情報であって、例えば、電力関連設備3の動作に関する予測値の集合である。予測値の一例として、負荷での消費電力値(又は電力量)、電力関連設備3の出力電力値(又は電力量)、電力関連設備3の制御に用いる閾値、及び蓄電池31の残容量等がある。また、予測情報は、これらの予測値の集合(組み合わせ)を、時間帯(例えば、1時間単位)ごとにリスト化した情報を含んでいる。さらに、予測情報は、電力関連設備3が導入されている施設の所有者等の需要家、電力会社又は電力アグリゲータが、ピークカット又はピークシフト等の要求を発する時間帯等も含んでいる。 The first control unit 11 controls the power-related equipment 3 according to the prediction information acquired from the host system 2 by communication. That is, in the state in which communication between the control system 1 and the host system 2 can be established, the first controller 11 controls the power-related equipment 3 according to the prediction information transmitted from the host system 2 to the control system 1. .. The "prediction information" referred to in the present disclosure is information including future predictions related to the operation of the electric power-related equipment 3, and is, for example, a set of predicted values related to the operation of the electric power-related equipment 3. As an example of the predicted value, the power consumption value (or the power amount) in the load, the output power value (or the power amount) of the power-related facility 3, the threshold value used for the control of the power-related facility 3, the remaining capacity of the storage battery 31, and the like are given. is there. Further, the prediction information includes information in which a set (combination) of these prediction values is listed for each time zone (for example, one hour unit). Furthermore, the prediction information also includes a time zone in which a customer such as an owner of a facility in which the power-related facility 3 is installed, a power company, or a power aggregator issues a request such as peak cut or peak shift.
 本実施形態では一例として、予測情報は、電力関連設備3における電力の需要と供給との少なくとも一方に関する情報を含んでいる。より詳細には、予測情報は、電力関連設備3における電力の需要と供給との両方に関する情報を含んでいる。電力関連設備3における電力の需要に関する情報の一例として、負荷(EV充電器33を含む)での消費電力値(又は電力量)に係る情報がある。電力関連設備3における電力の供給に関する情報の一例として、電力関連設備3の出力電力値(又は電力量)に係る情報がある。つまり、本実施形態では、予測情報は、電力関連設備3の出力と入力との両方を予測するのに必要な情報である。 In the present embodiment, as an example, the prediction information includes information about at least one of demand and supply of power in the power-related facility 3. More specifically, the prediction information includes information on both the demand and supply of electric power in the electric power related equipment 3. As an example of information on the demand for electric power in the electric power-related equipment 3, there is information on the power consumption value (or electric energy) in the load (including the EV charger 33). As an example of information on the supply of electric power in the electric power-related equipment 3, there is information on the output electric power value (or electric energy) of the electric power-related equipment 3. That is, in the present embodiment, the prediction information is information necessary for predicting both the output and the input of the power-related equipment 3.
 これらの予測情報は、学習システム5における学習済みの分類器を用いて、上位システム2で生成される情報である。つまり、制御システム1は、上位システム2で生成された予測情報を、ネットワーク4を介して定期的又は不定期に取得しており、この予測情報に従って、第1制御部11にて配下の電力関連設備3を制御する。その結果、制御システム1では、例えば、現在の負荷での消費電力値だけでなく、将来の負荷での消費電力値等を加味したきめ細やかな制御を、電力関連設備3に対して実行することが可能である。言い換えれば、制御システム1は、将来の予測に基づいて電力関連設備3を制御する予測制御機能を有している。 These pieces of prediction information are information generated by the higher-level system 2 using the learned classifier in the learning system 5. That is, the control system 1 periodically or irregularly acquires the prediction information generated by the higher-level system 2 via the network 4, and according to the prediction information, the power control related to the subordinate power in the first control unit 11 is performed. Control equipment 3. As a result, in the control system 1, for example, the power-related equipment 3 is subjected to delicate control that takes into consideration not only the power consumption value of the current load but also the power consumption value of the future load. Is possible. In other words, the control system 1 has a predictive control function that controls the power-related equipment 3 based on future predictions.
 第2制御部12は、上位システム2との間の通信が遮断された状態で電力関連設備3を制御する。つまり、制御システム1と上位システム2との間の通信が遮断された状態においては、上位システム2から制御システム1に予測情報が送信されないため、第1制御部11に代えて第2制御部12が電力関連設備3を制御する。本開示でいう通信の「遮断」とは、正常な通信が成立しない状態を意味し、例えば、システム障害等により通信路が物理的又は論理的に遮断された状態の他、通信帯域の不足、又は輻輳の発生により正常な通信が成立しない状態等も、「遮断」に含む。特に、制御システム1と上位システム2との間の通信路が、ベストエフォート型のネットワーク4を含む場合には、通信帯域の不足又は輻輳の発生による、通信の遮断が突発的に生じ得る。 The second control unit 12 controls the power-related equipment 3 in a state where communication with the host system 2 is cut off. That is, in a state where the communication between the control system 1 and the host system 2 is cut off, the prediction information is not transmitted from the host system 2 to the control system 1, so that the second control unit 12 is used instead of the first control unit 11. Controls the power-related equipment 3. The “blocking” of communication in the present disclosure means a state in which normal communication is not established, and for example, a state in which a communication path is physically or logically blocked due to a system failure or the like, a shortage of a communication band, Alternatively, "blocking" also includes a state in which normal communication is not established due to the occurrence of congestion. In particular, when the communication path between the control system 1 and the host system 2 includes the best-effort network 4, communication cutoff may occur suddenly due to insufficient communication band or congestion.
 ここにおいて、第2制御部12は、予測情報に相当する予備情報に基づいて電力関連設備3の制御を実行する。つまり、第2制御部12は、制御システム1と上位システム2との間の通信が遮断された状態で、スタンドアローンで電力関連設備3を制御するため、予測情報ではなく、予測情報に相当する予備情報に基づいて電力関連設備3を制御する。 Here, the second control unit 12 executes control of the power-related equipment 3 based on the preliminary information corresponding to the prediction information. That is, since the second control unit 12 controls the power-related equipment 3 in a stand-alone manner in a state where the communication between the control system 1 and the host system 2 is cut off, the second control unit 12 corresponds to prediction information, not prediction information. The power-related equipment 3 is controlled based on the preliminary information.
 本開示でいう「予備情報」は、予測情報に相当する情報であればよく、予測情報と同一の情報を含んでいてもよいし、予測情報と同一の情報を含んでいなくてもよい。前者の例として、予測情報をミラーリングした情報が予備情報、後者の例としては、予測情報を生成するための学習器と同一の構成を持つ学習器にて生成された情報等がある。本開示でいう「ミラーリング」は、同期していることを意味し、例えば、予測情報をミラーリングした予備情報は、予測情報と同期している。そのため、予測情報をミラーリングした予備情報は、基本的に、予測情報と同一の情報を含んでおり、かつ予測情報が更新されれば予測情報に同期して更新されることになる。したがって、予測情報をミラーリングした予備情報は、同期が継続している限り、予測情報と同一の情報を含むことになる。 The “preliminary information” referred to in the present disclosure only needs to be information corresponding to the prediction information, and may include the same information as the prediction information, or may not include the same information as the prediction information. As an example of the former, information obtained by mirroring the prediction information is preliminary information, and as an example of the latter, there is information generated by a learning device having the same configuration as the learning device for generating the prediction information. "Mirroring" as used in the present disclosure means that the prediction information is synchronized. For example, the preliminary information obtained by mirroring the prediction information is synchronized with the prediction information. Therefore, the preliminary information mirrored with the prediction information basically includes the same information as the prediction information, and if the prediction information is updated, it will be updated in synchronization with the prediction information. Therefore, the preliminary information mirrored with the forecast information will include the same information as the forecast information as long as the synchronization continues.
 本実施形態では一例として、予備情報は、予測情報と同一の情報を含んでいる。より詳細には、予備情報は、予測情報をミラーリングした情報である。つまり、本実施形態では、第2制御部12は、予測情報をミラーリングした情報を、予備情報として用いて、この予備情報に基づいて電力関連設備3の制御を実行する。そのため、第2制御部12によれば、制御システム1と上位システム2との間の通信が遮断された状態であっても、予備情報を用いることで、予測情報に基づく第1制御部11の制御に近い制御を実現することができる。 In the present embodiment, as an example, the preliminary information includes the same information as the prediction information. More specifically, the preliminary information is information that mirrors the prediction information. That is, in the present embodiment, the second control unit 12 uses the information obtained by mirroring the prediction information as the preliminary information, and executes the control of the power-related equipment 3 based on the preliminary information. Therefore, according to the second control unit 12, even when the communication between the control system 1 and the host system 2 is cut off, by using the preliminary information, the first control unit 11 based on the prediction information can be used. It is possible to realize control close to control.
 生成部13は、上位システム2から取得した情報に基づいて予備情報を生成する。本実施形態では、上述したように予備情報は予測情報をミラーリングした情報である。そのため、生成部13は、制御システム1が上位システム2から取得した予測情報を複製することで予備情報を生成し、制御システム1が上位システム2から予測情報を取得する度に予備情報を更新する。生成部13で生成された予備情報は、下位データベース17に随時格納される。 The generation unit 13 generates preliminary information based on the information acquired from the host system 2. In the present embodiment, as described above, the preliminary information is information obtained by mirroring the prediction information. Therefore, the generation unit 13 generates the preliminary information by copying the prediction information acquired by the control system 1 from the higher system 2, and updates the preliminary information each time the control system 1 acquires the prediction information from the higher system 2. .. The preliminary information generated by the generation unit 13 is stored in the lower database 17 as needed.
 復旧出力部14は、上位システム2との通信が復旧したときに上位システム2に復旧情報を出力する。つまり、制御システム1と上位システム2との間の通信が遮断された状態においては、上述したように、第1制御部11に代えて第2制御部12が電力関連設備3を制御する。そして、通信が遮断された状態が解消され、つまり制御システム1と上位システム2との間の通信が復旧すると、今度は、復旧出力部14が上位システム2に復旧情報を出力する。本開示でいう通信の「復旧」とは、通信が遮断された状態から、正常な通信が成立する状態に移行することを意味し、例えば、通信が遮断されていた要因となる事象が解消したときに、通信が「復旧」する。 The recovery output unit 14 outputs recovery information to the host system 2 when communication with the host system 2 is recovered. That is, in the state where the communication between the control system 1 and the host system 2 is cut off, the second control unit 12 controls the power-related equipment 3 instead of the first control unit 11 as described above. Then, when the state in which the communication is cut off is eliminated, that is, when the communication between the control system 1 and the upper system 2 is restored, the restoration output unit 14 outputs the restoration information to the upper system 2 this time. The “restoration” of communication in the present disclosure means a transition from a state in which communication is cut off to a state in which normal communication is established. For example, an event that causes the communication to be cut off has been resolved. Sometimes communication is "recovered".
 また、本開示でいう「復旧情報」は、少なくとも制御システム1と上位システム2との通信が復旧したときに、復旧出力部14が上位システム2に出力する情報であればよく、その内容としては種々の内容が含まれ得る。例えば、単に通信が復旧したことを示すだけの情報であってもよいし、通信が復旧した時刻(日時)を示す情報であってもよい。 Further, the “recovery information” referred to in the present disclosure may be information that the recovery output unit 14 outputs to the higher system 2 at least when communication between the control system 1 and the higher system 2 is restored, and the content thereof is Various contents may be included. For example, it may be information that merely indicates that communication has been restored, or information that indicates the time (date and time) when communication has been restored.
 本実施形態では一例として、復旧情報は、上位システム2との通信の遮断期間に制御システム1で得られた履歴情報を含んでいる。ここでいう遮断期間は、制御システム1と上位システム2との通信が遮断された時点から、制御システム1と上位システム2との通信が復旧した時点までの期間である。つまり、通信の復旧時には、復旧出力部14により、制御システム1と上位システム2との通信が遮断されていた間(遮断期間)に得られたデータが、履歴情報として上位システム2に出力される。これにより、例えば、遮断期間における、負荷での消費電力値(又は電力量)、及び電力関連設備3の出力電力値(又は電力量)等の、上位システム2が取得し損なった情報を、履歴情報として、通信の復旧時に上位システム2が取得可能となる。 In this embodiment, as an example, the recovery information includes the history information obtained by the control system 1 during the interruption period of communication with the host system 2. The cutoff period here is a period from the time when the communication between the control system 1 and the upper system 2 is cut off to the time when the communication between the control system 1 and the upper system 2 is restored. That is, when the communication is restored, the restoration output unit 14 outputs the data obtained while the communication between the control system 1 and the host system 2 is blocked (blocking period) to the host system 2 as history information. .. Thus, for example, information that the higher-level system 2 failed to acquire, such as the power consumption value (or power amount) in the load and the output power value (or power amount) of the power-related equipment 3 during the cutoff period, is recorded. As information, the host system 2 can be acquired when the communication is restored.
 また、本実施形態では、復旧情報は、予測情報を生成する分類器の再学習用の情報を含んでいる。つまり、上述したように、本実施形態では、学習システム5の分類器にて予測情報が生成されている。そのため、分類器の推定精度が向上することにより、分類器にて生成される予測情報の精度の向上を図ることが可能である。制御システム1と上位システム2との間の通信が遮断された期間においては、このような分類器の学習(再学習)に必要な情報についても、上位システム2にて取得できない可能性がある。本実施形態では、通信の復旧時には、復旧出力部14により、制御システム1と上位システム2との通信が遮断されていた間(遮断期間)に得られたデータ(再学習用の情報)が、上位システム2に出力されることにより、学習システム5の再学習が可能となる。その結果、分類器にて生成される予測情報の精度の向上を図ることが可能である。 Further, in the present embodiment, the restoration information includes the information for re-learning the classifier that generates the prediction information. That is, as described above, in the present embodiment, the classifier of the learning system 5 generates the prediction information. Therefore, by improving the estimation accuracy of the classifier, it is possible to improve the accuracy of the prediction information generated by the classifier. During the period in which the communication between the control system 1 and the host system 2 is cut off, the host system 2 may not be able to acquire information necessary for learning (re-learning) of such a classifier. In the present embodiment, at the time of restoration of communication, the data (information for re-learning) obtained during the interruption of the communication between the control system 1 and the host system 2 (interruption period) by the restoration output unit 14 is The learning system 5 can be relearned by being output to the host system 2. As a result, it is possible to improve the accuracy of the prediction information generated by the classifier.
 下位通信部15は、ネットワーク4を介して間接的に、上位システム2と通信する。ここで、下位通信部15は、上位システム2から送信される予測情報を少なくとも受信可能である。下位通信部15は、予測情報を定期的、不定期、又は制御システム1からの要求への応答として、上位システム2から受信する。また、下位通信部15は、復旧出力部14が出力する復旧情報を上位システム2に送信する機能も有している。 The lower communication unit 15 indirectly communicates with the upper system 2 via the network 4. Here, the lower communication unit 15 can at least receive the prediction information transmitted from the upper system 2. The lower communication unit 15 receives the prediction information from the upper system 2 regularly, irregularly, or as a response to a request from the control system 1. Further, the lower communication unit 15 also has a function of transmitting the recovery information output by the recovery output unit 14 to the higher system 2.
 記憶部16は、少なくとも復旧情報に含まれる情報を記憶する。そのため、本実施形態では、記憶部16は、履歴情報、及び再学習用の情報を、少なくとも記憶する。 The storage unit 16 stores at least the information included in the recovery information. Therefore, in the present embodiment, the storage unit 16 stores at least the history information and the relearning information.
 下位データベース17は、上述したように、生成部13で生成された予備情報を格納する。つまり、生成部13が予備情報を生成(又は更新)する度に、下位データベース17内の予備情報が更新されることになる。 The lower database 17 stores the preliminary information generated by the generation unit 13 as described above. That is, each time the generating unit 13 generates (or updates) the preliminary information, the preliminary information in the lower database 17 is updated.
 上位システム2は、予測部21と、上位制御部22と、上位通信部23と、上位データベース24と、を有している。このうち、予測部21及び上位制御部22は、メモリ及びプロセッサを含むコンピュータシステムの一機能として実現される。 The upper system 2 has a prediction unit 21, a higher control unit 22, a higher communication unit 23, and a higher database 24. Of these, the prediction unit 21 and the upper control unit 22 are realized as one function of a computer system including a memory and a processor.
 予測部21は、予測情報を生成する。ここでは、予測部21は、学習システム5の分類器を利用して、予測情報の生成を実行する。つまり、予測部21は、人工知能(AI:Artificial Intelligence)を用いて、予測情報を生成する。予測部21で生成された予測情報は、上位データベース24に随時格納される。 Prediction unit 21 generates prediction information. Here, the prediction unit 21 uses the classifier of the learning system 5 to generate prediction information. That is, the prediction unit 21 generates prediction information by using artificial intelligence (AI). The prediction information generated by the prediction unit 21 is stored in the upper database 24 as needed.
 上位制御部22は、上位システム2の各部の動作を制御する。例えば、上位制御部22は、予測部21での予測情報の生成を指示し、また上位通信部23による制御システム1(下位通信部15)との通信を制御する。 The host controller 22 controls the operation of each part of the host system 2. For example, the upper control unit 22 instructs the prediction unit 21 to generate prediction information, and also controls communication with the control system 1 (lower communication unit 15) by the upper communication unit 23.
 上位通信部23は、ネットワーク4を介して間接的に、制御システム1(下位通信部15)と通信する。ここで、上位通信部23は、制御システム1に少なくとも予測情報を送信可能である。上位通信部23は、予測情報を定期的、不定期、又は制御システム1からの要求への応答として、制御システム1に送信する。また、上位通信部23は、復旧出力部14が出力する復旧情報を制御システム1から受信する機能も有している。 The upper communication unit 23 indirectly communicates with the control system 1 (lower communication unit 15) via the network 4. Here, the upper communication unit 23 can transmit at least the prediction information to the control system 1. The host communication unit 23 transmits the prediction information to the control system 1 periodically, irregularly, or as a response to a request from the control system 1. The higher-level communication unit 23 also has a function of receiving the recovery information output by the recovery output unit 14 from the control system 1.
 上位データベース24は、上述したように、予測部21で生成された予測情報を格納する。つまり、予測部21が予測情報を生成(又は更新)する度に、上位データベース24内の予測情報が更新されることになる。 The upper database 24 stores the prediction information generated by the prediction unit 21 as described above. That is, each time the prediction unit 21 generates (or updates) the prediction information, the prediction information in the upper database 24 is updated.
 ここで、本実施形態では、上述したように予備情報は予測情報をミラーリングした情報である。そのため、下位データベース17に格納されている予備情報は、上位データベース24に格納されている予測情報に同期する。つまり、基本的には、下位データベース17に格納されている予備情報は、上位データベース24に格納されている予測情報と同一の情報を含んでおり、かつ予測情報が更新されれば予測情報に同期して更新されることになる。 Here, in this embodiment, as described above, the preliminary information is information obtained by mirroring the prediction information. Therefore, the preliminary information stored in the lower database 17 is synchronized with the prediction information stored in the upper database 24. That is, basically, the preliminary information stored in the lower database 17 includes the same information as the prediction information stored in the upper database 24, and is synchronized with the prediction information if the prediction information is updated. Will be updated.
 図3は、学習システム5の構成を概念的に示す概念図である。学習システム5は、機械学習により学習する機能を有している。ここでは、学習システム5は、上位システム2から与えられるデータを用いた深層学習(Deep Learning)により、学習済みの分類器を生成することと仮定する。図3では、上段が学習フェーズに係る学習システム5の構成を概念的に示し、下段が推論フェーズに係る学習システム5の構成を概念的に示す。 FIG. 3 is a conceptual diagram conceptually showing the configuration of the learning system 5. The learning system 5 has a function of learning by machine learning. Here, it is assumed that the learning system 5 generates a trained classifier by deep learning using the data given from the upper system 2. In FIG. 3, the upper part conceptually shows the configuration of the learning system 5 related to the learning phase, and the lower part conceptually shows the configuration of the learning system 5 related to the inference phase.
 学習システム5は、訓練データ(再学習用の情報を含む)を格納したデータベース51を有している。学習システム5は、データベース51内の訓練データに対して前処理を施すことにより、学習用データセット52を生成する。学習システム5は、学習用データセット52を学習器53に入力する。学習器53は、少なくとも電力関連設備3に関する予測情報を生成するための学習器であって、その実態は、例えば、ニューラルネットワークのネットワークモデル、及びハイパーパラメータ等を含む学習用のソフトウェアである。このような学習器53に学習用データセット52が入力される処理を繰り返すことで、学習器53は、学習済モデル54を生成する。 The learning system 5 has a database 51 that stores training data (including information for re-learning). The learning system 5 generates the learning data set 52 by preprocessing the training data in the database 51. The learning system 5 inputs the learning data set 52 to the learning device 53. The learning device 53 is a learning device for generating at least prediction information regarding the power-related equipment 3, and its actual state is, for example, a learning model including a network model of a neural network and hyperparameters. By repeating the process of inputting the learning data set 52 to the learning device 53, the learning device 53 generates the trained model 54.
 学習フェーズにおいて学習器53が生成した学習済モデル54が、学習器に実装されることにより、学習済みの分類器55が生成される。そして、学習システム5は、学習済みの分類器55に入力データが入力されることにより、分類器55より出力データを出力する。ここで、分類器55に、上位システム2から、例えば、電力関連設備3に関する実績情報が入力されることで、分類器55は、この電力関連設備3に係る予測情報を上位システム2に出力する。ここでいう実績情報は、例えば、負荷での消費電力値(又は電力量)、電力関連設備3の出力電力値(又は電力量)、電力関連設備3の制御に用いる閾値、及び蓄電池31の残容量等の実績値を含む。実績情報は、電力関連設備3におけるパワーコンディショナ32の入力及び/又は出力電力値(又は電力量)の実績値、及び時刻情報等を含んでもよい。さらに、実績情報は、一例として、温度情報、ステータス情報及びエラー情報等の、電力関連設備3の各部(蓄電池31、パワーコンディショナ32又はEV充電器33等)の状態又は動作に関連する情報を含んでもよい。 The trained model 54 generated by the learner 53 in the learning phase is mounted on the learner to generate the trained classifier 55. Then, the learning system 5 outputs the output data from the classifier 55 when the input data is input to the learned classifier 55. Here, for example, when the actual information about the power-related equipment 3 is input from the higher-level system 2 to the classifier 55, the classifier 55 outputs the prediction information related to the power-related equipment 3 to the higher-level system 2. .. The performance information referred to here is, for example, the power consumption value (or power amount) in the load, the output power value (or power amount) of the power-related equipment 3, the threshold value used for controlling the power-related equipment 3, and the remaining capacity of the storage battery 31. Including actual values such as capacity. The actual information may include the actual value of the input and / or output power value (or electric energy) of the power conditioner 32 in the power-related equipment 3, time information, and the like. Furthermore, the record information includes, as an example, information related to the state or operation of each part (the storage battery 31, the power conditioner 32, the EV charger 33, or the like) of the power-related equipment 3 such as temperature information, status information, and error information. It may be included.
 (3)動作
 次に、本実施形態に係る制御システム1、及びそれを備える設備管理システム10の動作について、図4及び図5を参照して詳細に説明する。
(3) Operation Next, the operation of the control system 1 according to the present embodiment and the equipment management system 10 including the same will be described in detail with reference to FIGS. 4 and 5.
 (3.1)基本動作
 図4は、本実施形態に係る制御システム1、及びそれを備える設備管理システム10の動作の一例を示すシーケンス図である。図4では、制御システム1と上位システム2との間の通信が正常に成立する状態から、一時的に通信が遮断され、その後に通信が復旧する場合を想定する。さらに、制御システム1と上位システム2との間の通信が正常に成立する状態において、制御システム1は、定期的又は不定期に、予測情報のミラーリングにより予備情報を生成していることと仮定する。
(3.1) Basic Operation FIG. 4 is a sequence diagram showing an example of the operation of the control system 1 according to the present embodiment and the equipment management system 10 including the control system 1. In FIG. 4, it is assumed that the communication between the control system 1 and the host system 2 is normally established, the communication is temporarily interrupted, and then the communication is restored. Further, it is assumed that the control system 1 regularly or irregularly generates the preliminary information by mirroring the prediction information in a state where the communication between the control system 1 and the host system 2 is normally established. ..
 まず、制御システム1と上位システム2との間の通信が正常に成立する状態にあっては、制御システム1は、定期的、不定期、又は上位システム2からの要求への応答として、上位システム2に監視情報を送信する(S1)。ここでいう監視情報は、監視情報の送信元である制御システム1の配下の電力関連設備3に関する情報であって、上述した実績情報等を含む。つまり、監視情報は、例えば、負荷での消費電力値(又は電力量)、電力関連設備3の出力電力値(又は電力量)、電力関連設備3の制御に用いる閾値、及び蓄電池31の残容量等の実績値を含む。さらに、監視情報は、電力関連設備3の異常(エラー)及び故障等に関する情報を含んでいてもよい。また、監視情報は、生成部13で生成された予備情報に関連する情報、又は予備情報を含んでもよい。監視情報が予備情報(又は予備情報に関連する情報)を含むことで、例えば、監視情報を受信した上位システム2では、制御システム1で予備情報が生成されたことを確認することが可能となる。 First, when the communication between the control system 1 and the host system 2 is normally established, the control system 1 periodically, irregularly, or responds to a request from the host system 2 by the host system 2. The monitoring information is transmitted to 2 (S1). The monitoring information referred to here is information about the power-related equipment 3 under the control system 1 that is the transmission source of the monitoring information, and includes the above-mentioned actual information and the like. That is, the monitoring information is, for example, the power consumption value (or power amount) in the load, the output power value (or power amount) of the power-related equipment 3, the threshold value used for controlling the power-related equipment 3, and the remaining capacity of the storage battery 31. Including actual values such as. Furthermore, the monitoring information may include information regarding an abnormality (error) and a failure of the power-related equipment 3. Further, the monitoring information may include information related to the preliminary information generated by the generation unit 13 or preliminary information. By including the preliminary information (or information related to the preliminary information) in the monitoring information, for example, in the host system 2 that receives the monitoring information, it is possible to confirm that the control system 1 has generated the preliminary information. ..
 また、制御システム1と上位システム2との間の通信が正常に成立する状態にあっては、上位システム2は、定期的、不定期、又は制御システム1からの要求への応答として、制御システム1に予測情報を送信する(S2)。予測情報を受信した制御システム1は、予測情報のミラーリングにより、生成部13にて予備情報を生成する(S3)。つまり、制御システム1は、上位システム2から受信した予測情報と同一の情報を含む予備情報を生成する。 Further, in a state where the communication between the control system 1 and the host system 2 is normally established, the host system 2 periodically, irregularly, or responds to a request from the control system 1 as a control system. The prediction information is transmitted to 1 (S2). The control system 1 that has received the prediction information generates preliminary information in the generation unit 13 by mirroring the prediction information (S3). That is, the control system 1 generates preliminary information including the same information as the prediction information received from the host system 2.
 そして、制御システム1は、上位システム2から受信した予測情報に従って、第1制御部11にて、電力関連設備3を制御する(S4)。つまり、第1制御部11が、上位システム2から通信により取得する予測情報に従って電力関連設備3を制御する、第1制御処理を実行する。このとき、制御システム1は、電力関連設備3に対して制御情報を送信することで、電力関連設備3を制御する(S5)。制御情報は、例えば、蓄電池31の充電/放電の指示、パワーコンディショナ32の出力の調整、及びEV充電器33の出力の調整等の制御のための情報を含んでいる。これにより、制御システム1では、例えば、現在の負荷での消費電力値だけでなく、将来の負荷での消費電力値等を加味したきめ細やかな制御を、電力関連設備3に対して実行することが可能である。言い換えれば、制御システム1は、予測制御機能により、将来の予測に基づいて電力関連設備3を制御する。 Then, the control system 1 controls the power-related equipment 3 by the first control unit 11 according to the prediction information received from the host system 2 (S4). That is, the first control unit 11 executes the first control process of controlling the power-related equipment 3 according to the prediction information acquired from the host system 2 by communication. At this time, the control system 1 controls the power-related equipment 3 by transmitting control information to the power-related equipment 3 (S5). The control information includes, for example, information for controlling charging/discharging the storage battery 31, adjusting the output of the power conditioner 32, adjusting the output of the EV charger 33, and the like. As a result, the control system 1 executes, for example, fine control on the power-related equipment 3 in consideration of not only the power consumption value of the present load but also the power consumption value of the future load. Is possible. In other words, the control system 1 controls the power-related equipment 3 based on the future prediction by the predictive control function.
 一方、制御システム1と上位システム2との間の通信が遮断されると(S6)、制御システム1は、上位システム2から予測情報を受信できなくなる。そこで、この状態においては、制御システム1は、予備情報に従って、第2制御部12にて、電力関連設備3を制御する(S7)。つまり、第2制御部12が、予測情報に相当する予備情報に基づいて電力関連設備3の制御を実行する、第2制御処理を実行する。このとき、制御システム1は、電力関連設備3に対して制御情報を送信することで、電力関連設備3を制御する(S8)。その結果、制御システム1と上位システム2との間の通信が遮断された状態であっても、制御システム1は、例えば、現在の負荷での消費電力値だけでなく、将来の負荷での消費電力値等を加味したきめ細やかな制御を、電力関連設備3に対して実行できる。 On the other hand, when the communication between the control system 1 and the host system 2 is cut off (S6), the control system 1 cannot receive the prediction information from the host system 2. Therefore, in this state, the control system 1 controls the power-related equipment 3 by the second control unit 12 according to the preliminary information (S7). That is, the second control unit 12 executes the second control process that executes the control of the power-related equipment 3 based on the preliminary information corresponding to the prediction information. At this time, the control system 1 controls the electric power-related equipment 3 by transmitting control information to the electric power-related equipment 3 (S8). As a result, even if the communication between the control system 1 and the host system 2 is cut off, the control system 1 may not only consume the power consumption value at the current load but also the power consumption at the future load, for example. Fine control that takes into account the power value and the like can be executed for the power-related equipment 3.
 したがって、制御システム1は、上位システム2との通信が正常に成立する状態にあっては勿論のこと、上位システム2との通信が遮断された状態においても、予測制御機能により、将来の予測に基づいて電力関連設備3を制御することが可能である。 Therefore, the control system 1 can predict the future by the predictive control function not only when the communication with the host system 2 is normally established but also when the communication with the host system 2 is cut off. It is possible to control the power-related equipment 3 based on this.
 また、制御システム1と上位システム2との間の通信が復旧すると(S9)、制御システム1は、復旧出力部14にて、上位システム2に復旧情報を送信する(S10)。このとき送信される復旧情報は、上位システム2との通信の遮断期間に制御システム1で得られた履歴情報、及び予測情報を生成する分類器の再学習用の情報を含んでいる。そのため、復旧情報を受けた上位システム2は、復旧情報を学習システム5に入力することにより、学習システム5の分類器の再学習を行い、より適切な分類器に更新することが可能である。このようにして更新された分類器は、再学習が行われない場合に比べて、予測情報の推定精度が向上する。 Further, when the communication between the control system 1 and the host system 2 is restored (S9), the control system 1 causes the restoration output unit 14 to transmit the restoration information to the host system 2 (S10). The restoration information transmitted at this time includes the history information obtained by the control system 1 during the period in which the communication with the host system 2 is cut off, and the re-learning information of the classifier that generates the prediction information. Therefore, the higher-level system 2 that has received the restoration information can re-learn the classifier of the learning system 5 by inputting the restoration information to the learning system 5 and update it to a more appropriate classifier. The classifier updated in this way improves the estimation accuracy of prediction information as compared with the case where relearning is not performed.
 その後は、上記S1及びS2と同様に、制御システム1は、上位システム2に監視情報を送信し(S11)、上位システム2は、制御システム1に予測情報を送信する(S12)。そして、上記S3以降の処理が、繰り返し行われる。 After that, similarly to S1 and S2 described above, the control system 1 transmits the monitoring information to the upper system 2 (S11), and the upper system 2 transmits the prediction information to the control system 1 (S12). Then, the processing from S3 onward is repeatedly performed.
 ところで、本実施形態に係る制御システム1は、上述したように、上位システム2との通信が遮断されたとしても、予備情報に基づいて電力関連設備3の制御を継続できる。そのため、制御システム1と上位システム2との間の通信が遮断されたことに、ユーザ(オペレータ及びエンジニアを含む)が気付くタイミングが遅れる可能性がある。そこで、制御システム1又は上位システム2は、制御システム1が第2制御処理を実行していることを報知する報知手段を有することが好ましい。報知手段は、制御システム1及び/又は上位システム2に設けられていてもよいし、電力関連設備3に設けられていてもよい。あるいは、オペレータが所持する情報端末6、又はエンジニアが所持する情報端末7に、報知手段が設けられてもよい。 By the way, the control system 1 according to the present embodiment can continue the control of the power-related equipment 3 based on the preliminary information even if the communication with the host system 2 is cut off, as described above. Therefore, there is a possibility that the timing at which the user (including the operator and the engineer) notices that the communication between the control system 1 and the host system 2 is cut off may be delayed. Therefore, it is preferable that the control system 1 or the host system 2 has a notifying unit that notifies that the control system 1 is executing the second control process. The notification means may be provided in the control system 1 and / or the higher-level system 2, or may be provided in the power-related equipment 3. Alternatively, the information terminal 6 possessed by the operator or the information terminal 7 possessed by the engineer may be provided with the notification means.
 このように、制御システム1が第2制御処理を実行していることを報知することで、制御システム1と上位システム2との間の通信が遮断されたことをユーザに知らせることができる。結果的に、制御システム1と上位システム2との間の通信の早期の復旧を促すことにもつながる。 In this way, by notifying that the control system 1 is executing the second control process, it is possible to notify the user that the communication between the control system 1 and the host system 2 has been cut off. As a result, it also promotes early restoration of communication between the control system 1 and the host system 2.
 (3.2)フローチャート
 図5は、本実施形態に係る制御システム1の動作の一例を示すフローチャートである。
(3.2) Flowchart FIG. 5 is a flowchart showing an example of the operation of the control system 1 according to the present embodiment.
 制御システム1は、図5に示すように、制御システム1と上位システム2との間の通信の遮断が発生したか否かを判断する(S21)。ここで、制御システム1と上位システム2との間の通信が遮断されていなければ、つまり通信が正常に成立する状態にあれば(S21:No)、制御システム1は、第1制御処理を実行する(S22)。第1制御処理では、制御システム1は、上位システム2から受信した予測情報に従って、第1制御部11にて、上位システム2から通信により取得する予測情報に従って電力関連設備3を制御する。その後、制御システム1は、処理S21に移行する。 As shown in FIG. 5, the control system 1 determines whether or not the communication between the control system 1 and the host system 2 is interrupted (S21). Here, if the communication between the control system 1 and the host system 2 is not interrupted, that is, if the communication is normally established (S21: No), the control system 1 executes the first control process. (S22). In the first control process, the control system 1 controls the power-related equipment 3 in accordance with the prediction information received from the host system 2 by the first control unit 11 according to the prediction information received from the host system 2. After that, the control system 1 shifts to the process S21.
 一方、制御システム1と上位システム2との間の通信が遮断されると(S21:Yes)、制御システム1は、第2制御処理を実行する(S23)。第2制御処理では、制御システム1は、第2制御部12にて、予測情報に相当する予備情報に基づいて電力関連設備3を制御する。その後、制御システム1は、通信が復旧したか否かを判断する(S24)。ここで、制御システム1と上位システム2との間の通信が復旧すれば、つまり通信が正常に成立する状態になれば(S24:Yes)、制御システム1は、復旧出力部14にて復旧情報を出力する(S25)。このとき、制御システム1は、復旧出力部14にて、上位システム2に復旧情報を送信する。その後、制御システム1は、処理S21に移行する。 On the other hand, when the communication between the control system 1 and the host system 2 is cut off (S21: Yes), the control system 1 executes the second control process (S23). In the second control process, the control system 1 controls the power-related equipment 3 by the second control unit 12 based on the preliminary information corresponding to the prediction information. After that, the control system 1 determines whether the communication is restored (S24). Here, if the communication between the control system 1 and the host system 2 is restored, that is, if the communication is normally established (S24: Yes), the control system 1 causes the restoration output unit 14 to restore the restoration information. Is output (S25). At this time, the control system 1 transmits the recovery information to the host system 2 at the recovery output unit 14. Then, the control system 1 moves to process S21.
 一方、制御システム1と上位システム2との間の通信が復旧しなければ、つまり通信が遮断された状態が継続していれば(S24:No)、制御システム1は、第2制御処理S23を繰り返し実行する。 On the other hand, if the communication between the control system 1 and the host system 2 is not restored, that is, if the state in which the communication is interrupted continues (S24: No), the control system 1 executes the second control process S23. Execute repeatedly.
 ただし、図5は、制御システム1の動作の一例を概略的に示しており、処理が適宜追加、変更又は省略されてもよいし、処理の順番が適宜変更されてもよい。 However, FIG. 5 schematically shows an example of the operation of the control system 1, and the processes may be added, changed or omitted as appropriate, and the order of the processes may be changed as appropriate.
 (4)変形例
 実施形態1は、本開示の様々な実施形態の一つに過ぎない。実施形態1は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、実施形態1に係る設備管理システム10と同様の機能は、設備管理方法、プログラム、又はプログラムを記録した非一時的記録媒体等で具現化されてもよい。一態様に係る設備管理方法は、上位システム2、及び上位システム2と通信可能な制御システム1を用いた設備管理方法である。この設備管理方法は、第1制御処理(図5の「S22」に相当)と、第2制御処理(図5の「S23」に相当)と、を有する。第1制御処理は、制御システム1が上位システム2から通信により取得する予測情報に従って制御システム1にて電力関連設備3を制御する処理である。第2制御処理は、上位システム2と制御システム1との間の通信が遮断された状態で制御システム1にて電力関連設備3を制御する処理である。第2制御処理では、予測情報に相当する予備情報に基づいて電力関連設備3の制御を実行する。一態様に係るプログラムは、上記の設備管理方法を、1以上のプロセッサに実行させるためのプログラムである。
(4) Modified Example The first embodiment is only one of the various embodiments of the present disclosure. The first embodiment can be changed in various ways depending on the design and the like as long as the object of the present disclosure can be achieved. Further, the same function as the facility management system 10 according to the first embodiment may be embodied by a facility management method, a program, a non-transitory recording medium recording the program, or the like. The equipment management method according to one aspect is an equipment management method using the host system 2 and the control system 1 capable of communicating with the host system 2. This equipment management method has a first control process (corresponding to “S22” in FIG. 5) and a second control process (corresponding to “S23” in FIG. 5). The first control process is a process in which the control system 1 controls the power-related equipment 3 according to the prediction information acquired from the host system 2 by communication. The second control process is a process for controlling the power-related equipment 3 in the control system 1 in a state where the communication between the host system 2 and the control system 1 is cut off. In the second control process, the control of the power-related equipment 3 is executed based on the preliminary information corresponding to the prediction information. The program according to one aspect is a program for causing one or more processors to execute the above-mentioned equipment management method.
 以下、実施形態1の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。 The following is a list of modifications of the first embodiment. The modifications described below can be applied in appropriate combination.
 本開示における設備管理システム10は、例えば、制御システム1、上位システム2及び学習システム5等に、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、本開示における設備管理システム10としての機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されてもよく、電気通信回線を通じて提供されてもよく、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1ないし複数の電子回路で構成される。ここでいうIC又はLSI等の集積回路は、集積の度合いによって呼び方が異なっており、システムLSI、VLSI(Very Large Scale Integration)、又はULSI(Ultra Large Scale Integration)と呼ばれる集積回路を含む。さらに、LSIの製造後にプログラムされる、FPGA(Field-Programmable Gate Array)、又はLSI内部の接合関係の再構成若しくはLSI内部の回路区画の再構成が可能な論理デバイスについても、プロセッサとして採用することができる。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。ここでいうコンピュータシステムは、1以上のプロセッサ及び1以上のメモリを有するマイクロコントローラを含む。したがって、マイクロコントローラについても、半導体集積回路又は大規模集積回路を含む1ないし複数の電子回路で構成される。 The facility management system 10 according to the present disclosure includes, for example, a computer system in the control system 1, the host system 2, the learning system 5, and the like. The computer system mainly comprises a processor as a hardware and a memory. When the processor executes the program recorded in the memory of the computer system, the function as the facility management system 10 according to the present disclosure is realized. The program may be pre-recorded in the memory of the computer system, may be provided through a telecommunications line, and may be recorded on a non-temporary recording medium such as a memory card, optical disk, hard disk drive, etc. readable by the computer system. May be provided. A processor in a computer system is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI). The integrated circuit such as an IC or an LSI referred to here has a different name depending on the degree of integration, and includes an integrated circuit called a system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration). Furthermore, FPGAs (Field-Programmable Gate Arrays) that are programmed after the manufacture of LSIs, or logic devices that can be reconfigured for junction relationships within LSIs or for circuit sections within LSIs should also be adopted as processors. You can The plurality of electronic circuits may be integrated in one chip, or may be distributed and provided in the plurality of chips. The plurality of chips may be integrated in one device, or may be distributed and provided in the plurality of devices. The computer system referred to here includes a microcontroller having one or more processors and one or more memories. Therefore, the microcontroller is also composed of one or a plurality of electronic circuits including a semiconductor integrated circuit or a large scale integrated circuit.
 また、設備管理システム10の少なくとも一部の機能が、1つの筐体内に集約されていることは設備管理システム10に必須の構成ではなく、設備管理システム10の構成要素は、複数の筐体に分散して設けられていてもよい。例えば、設備管理システム10のうちの制御システム1に設けられている機能の一部が、制御システム1とは別の筐体に設けられていてもよい。さらに、設備管理システム10の少なくとも一部の機能、例えば、上位システム2の機能がクラウド(クラウドコンピューティング)等によって実現されてもよい。同様に、学習システム5の機能がクラウド(クラウドコンピューティング)等によって実現されてもよい。 Further, it is not an essential configuration of the equipment management system 10 that at least a part of the functions of the equipment management system 10 are integrated in one housing, and the components of the equipment management system 10 are provided in a plurality of housings. It may be provided in a dispersed manner. For example, a part of the functions provided in the control system 1 of the equipment management system 10 may be provided in a housing different from the control system 1. Further, at least a part of the functions of the equipment management system 10, for example, the functions of the host system 2 may be realized by a cloud (cloud computing) or the like. Similarly, the function of the learning system 5 may be realized by a cloud (cloud computing) or the like.
 反対に、実施形態1において、複数の装置に分散されている設備管理システム10の少なくとも一部の機能が、1つの筐体内に集約されていてもよい。例えば、制御システム1と上位システム2とに分散されている機能が、1つの筐体内に集約されていてもよい。 On the contrary, in the first embodiment, at least a part of the functions of the equipment management system 10 distributed in a plurality of devices may be integrated in one housing. For example, the functions distributed to the control system 1 and the host system 2 may be integrated in one housing.
 また、制御システム1と上位システム2との通信方式は、実施形態1で説明した方式に限らず、有線通信又は無線通信の適宜の通信方式を採用可能である。 Further, the communication method between the control system 1 and the host system 2 is not limited to the method described in the first embodiment, and an appropriate communication method of wired communication or wireless communication can be adopted.
 また、制御システム1と電力関連設備3とは一体でなくてもよく、制御システム1は、電力関連設備3と別体であってもよい。 Further, the control system 1 and the power-related equipment 3 do not have to be integrated, and the control system 1 may be separate from the power-related equipment 3.
 また、制御システム1の制御対象となる電力関連設備3が、エネルギー貯蔵システム(ESS)であることは必須の構成ではない。つまり、電力関連設備3は、蓄電設備を含んでいなくてもよく、例えば、発電設備等であってもよい。 Also, it is not essential that the power-related equipment 3 to be controlled by the control system 1 is an energy storage system (ESS). That is, the electric power-related equipment 3 does not have to include the power storage equipment, and may be, for example, a power generation equipment or the like.
 また、復旧出力部14は、制御システム1に必須の構成ではなく、適宜省略されてもよい。すなわち、制御システム1は、上位システム2との通信が復旧したときに上位システム2に復旧情報を出力しなくてもよい。 The recovery output unit 14 is not an essential component of the control system 1 and may be omitted as appropriate. That is, the control system 1 does not have to output the recovery information to the host system 2 when the communication with the host system 2 is restored.
 また、生成部13が、上位システム2から取得した情報に基づいて予備情報を生成することは、制御システム1に必須の構成ではない。つまり、生成部13は、制御システム1が、上位システム2以外、例えば、オペレータが所持する情報端末6、又はエンジニアが所持する情報端末7から取得した情報に基づいて、予備情報を生成してもよい。 Further, it is not an essential configuration for the control system 1 that the generation unit 13 generates preliminary information based on the information acquired from the host system 2. That is, the generation unit 13 may generate the preliminary information based on the information acquired from the control system 1 other than the higher-level system 2, for example, the information terminal 6 owned by the operator or the information terminal 7 owned by the engineer. Good.
 (実施形態2)
 本実施形態に係る制御システム1は、予備情報が、予測情報を生成するための学習済モデル54(図3参照)と同一の学習済モデルを含む点で、実施形態1に係る制御システム1と相違する。以下、実施形態1と同様の構成については、共通の符号を付して適宜説明を省略する。
(Embodiment 2)
The control system 1 according to the present embodiment is different from the control system 1 according to the first embodiment in that the preliminary information includes the same trained model as the trained model 54 (see FIG. 3) for generating the prediction information. Be different. Hereinafter, the same components as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be appropriately omitted.
 すなわち、実施形態1では、予備情報は、予測情報と同一の情報を含むのに対し、本実施形態では、予測情報を生成するための学習済モデル54と同一の学習済モデルを含んでいる。つまり、予測情報は、学習済モデル54が実装された学習器、つまり学習済みの分類器55(図3参照)にて生成されるので、これと同一の学習済モデルを用いることで、制御システム1においても、予測情報に相当する予備情報を生成可能となる。 That is, in the first embodiment, the preliminary information includes the same information as the prediction information, but in the present embodiment, the preliminary information includes the same learned model as the learned model 54 for generating the prediction information. That is, since the prediction information is generated by the learning device in which the learned model 54 is implemented, that is, the learned classifier 55 (see FIG. 3), by using the same learned model as this, the control system Also in 1, it is possible to generate preliminary information corresponding to the prediction information.
 要するに、本実施形態において、予備情報は、学習済モデル54をミラーリングした情報である。つまり、本実施形態では、第2制御部12は、学習済モデル54をミラーリングした情報を、予備情報として用いて、この予備情報に基づいて電力関連設備3の制御を実行する。 In short, in this embodiment, the preliminary information is information obtained by mirroring the learned model 54. That is, in the present embodiment, the second control unit 12 uses the information obtained by mirroring the learned model 54 as the preliminary information, and executes the control of the power related equipment 3 based on the preliminary information.
 より詳細には、生成部13は、制御システム1が上位システム2から取得した学習済モデル54を複製することで予備情報を生成し、制御システム1が上位システム2から学習済モデル54を取得する度に予備情報を更新する。生成部13で生成された予備情報は、下位データベース17に随時格納される。そして、制御システム1は、下位データベース17に格納された予備情報、つまり学習済モデルを用いて、転移学習により、予測情報と同等の情報を独自に生成する。このようにして生成された情報を用いることで、第2制御部12によれば、制御システム1と上位システム2との間の通信が遮断された状態であっても、予測情報に基づく第1制御部11の制御に近い制御を実現することができる。 More specifically, the generation unit 13 generates preliminary information by copying the learned model 54 acquired by the control system 1 from the higher system 2, and the control system 1 acquires the learned model 54 from the higher system 2. Update preliminary information every time. The preliminary information generated by the generation unit 13 is stored in the lower database 17 as needed. Then, the control system 1 independently generates information equivalent to the prediction information by transfer learning using the preliminary information stored in the lower database 17, that is, the trained model. By using the information generated in this way, the second control unit 12 allows the first control based on the prediction information even when the communication between the control system 1 and the host system 2 is cut off. It is possible to realize control close to the control of the control unit 11.
 実施形態2の変形例として、予備情報が、予測情報を生成するための学習済モデル54と同一の学習済モデルを含んでいればよく、例えば、予備情報(学習済モデル)を実装した学習器、つまり学習済みの分類器が制御システム1に含まれていてもよい。 As a modified example of the second embodiment, it is sufficient that the preliminary information includes the same learned model as the learned model 54 for generating the prediction information. For example, a learning device that implements the preliminary information (learned model). That is, the trained classifier may be included in the control system 1.
 実施形態2で説明した種々の構成(変形例を含む)は、実施形態1で説明した種々の構成(変形例を含む)と適宜組み合わせて採用可能である。 The various configurations (including modified examples) described in the second embodiment can be appropriately combined with the various configurations (including modified examples) described in the first embodiment.
 (実施形態3)
 本実施形態に係る制御システム1は、予備情報が、予測情報を生成するための学習器53(図3参照)と同一の学習器を含む点で、実施形態1に係る制御システム1と相違する。以下、実施形態1と同様の構成については、共通の符号を付して適宜説明を省略する。
(Embodiment 3)
The control system 1 according to the present embodiment differs from the control system 1 according to the first embodiment in that the preliminary information includes the same learning device as the learning device 53 (see FIG. 3) for generating the prediction information. .. Hereinafter, the same components as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be appropriately omitted.
 すなわち、実施形態1では、予備情報は、予測情報と同一の情報を含むのに対し、本実施形態では、予測情報を生成するための学習器53と同一の学習器を含んでいる。つまり、予測情報は、学習器53で生成された学習済モデル54(図3参照)が実装された分類器55(図3参照)にて生成されるので、これと同一の学習器を用いることで、制御システム1においても、予測情報に相当する予備情報を生成可能となる。 That is, in the first embodiment, the preliminary information includes the same information as the prediction information, whereas in the present embodiment, the preliminary information includes the same learning device as the learning device 53 for generating the prediction information. That is, since the prediction information is generated by the classifier 55 (see FIG. 3) in which the learned model 54 (see FIG. 3) generated by the learner 53 is mounted, use the same learning device as this. Then, also in the control system 1, it becomes possible to generate the preliminary information corresponding to the prediction information.
 要するに、本実施形態において、予備情報は、学習器53をミラーリングした情報である。ここでいう学習器53のミラーリングは、例えば、ニューラルネットワークのネットワークモデル、及びハイパーパラメータ等を含む学習用のソフトウェアのミラーリングである。つまり、本実施形態では、第2制御部12は、学習器53をミラーリングした情報を、予備情報として用いて、この予備情報に基づいて電力関連設備3の制御を実行する。 In short, in this embodiment, the preliminary information is information obtained by mirroring the learning device 53. The mirroring of the learning device 53 here is, for example, mirroring of learning software including a network model of a neural network and hyperparameters. That is, in the present embodiment, the second control unit 12 uses the information obtained by mirroring the learning device 53 as the preliminary information, and executes the control of the power-related equipment 3 based on the preliminary information.
 より詳細には、生成部13は、制御システム1が上位システム2から取得した学習器53を複製することで予備情報を生成し、制御システム1が上位システム2から学習器53を取得する度に予備情報を更新する。生成部13で生成された予備情報は、下位データベース17に随時格納される。そして、制御システム1は、下位データベース17に格納された予備情報、つまり学習器を用いて、予測情報と同等の情報を独自に生成する。このようにして生成された情報を用いることで、第2制御部12によれば、制御システム1と上位システム2との間の通信が遮断された状態であっても、予測情報に基づく第1制御部11の制御に近い制御を実現することができる。 More specifically, the generation unit 13 generates preliminary information by duplicating the learning device 53 acquired by the control system 1 from the host system 2, and each time the control system 1 acquires the learning device 53 from the host system 2. Update preliminary information. The preliminary information generated by the generation unit 13 is stored in the lower database 17 as needed. Then, the control system 1 independently generates information equivalent to the prediction information by using the preliminary information stored in the lower database 17, that is, the learner. By using the information generated in this way, the second control unit 12 allows the first control based on the prediction information even when the communication between the control system 1 and the host system 2 is cut off. It is possible to realize control close to the control of the control unit 11.
 実施形態3で説明した種々の構成は、実施形態1で説明した種々の構成(変形例を含む)と適宜組み合わせて採用可能である。 The various configurations described in the third embodiment can be appropriately combined with the various configurations (including modifications) described in the first embodiment.
 (まとめ)
 以上説明したように、第1の態様に係る制御システム(1)は、上位システム(2)と通信可能な制御システム(1)であって、第1制御部(11)と、第2制御部(12)と、を備える。第1制御部(11)は、上位システム(2)から通信により取得する予測情報に従って電力関連設備(3)を制御する。第2制御部(12)は、上位システム(2)との間の通信が遮断された状態で電力関連設備(3)を制御する。第2制御部(12)は、予測情報に相当する予備情報に基づいて電力関連設備(3)の制御を実行する。
(Summary)
As described above, the control system (1) according to the first aspect is the control system (1) capable of communicating with the host system (2), and includes the first control unit (11) and the second control unit. (12) and are provided. The first control unit (11) controls the power-related equipment (3) according to the prediction information acquired from the host system (2) by communication. The second control unit (12) controls the power-related equipment (3) in a state where communication with the host system (2) is cut off. The second control unit (12) executes the control of the power-related equipment (3) based on the preliminary information corresponding to the prediction information.
 この態様によれば、制御システム(1)と上位システム(2)との間の通信が成立する状況においては、制御システム(1)は、上位システム(2)から通信により取得する予測情報に従って電力関連設備(3)を制御する。これにより、制御システム(1)では、例えば、現在の負荷での消費電力値だけでなく、将来の負荷での消費電力値等を加味したきめ細やかな制御を、電力関連設備(3)に対して実行することができ、電力関連設備(3)を効率的に設御することが可能である。一方、制御システム(1)と上位システム(2)との間の通信が遮断された状況においては、制御システム(1)は、予測情報に相当する予備情報に基づいて電力関連設備(3)を制御する。したがって、制御システム(1)と上位システム(2)との間の通信が遮断された状況であっても、電力関連設備(3)を効率的に設御することが可能である。結果的に、電力関連設備(3)の制御に際して通信状況の影響を受けにくい。 According to this aspect, in a situation where communication between the control system (1) and the higher system (2) is established, the control system (1) is powered according to the predicted information acquired by the communication from the upper system (2). Control related equipment (3). As a result, in the control system (1), for example, fine-tuned control that takes into account not only the power consumption value under the current load but also the power consumption value under the future load is applied to the power-related equipment (3). It is possible to efficiently set up the electric power related equipment (3). On the other hand, in a situation where the communication between the control system (1) and the host system (2) is cut off, the control system (1) uses the power-related equipment (3) based on the preliminary information corresponding to the prediction information. Control. Therefore, even in the situation where the communication between the control system (1) and the host system (2) is cut off, it is possible to efficiently control the power-related equipment (3). As a result, it is not easily affected by the communication status when controlling the power-related equipment (3).
 第2の態様に係る制御システム(1)は、第1の態様において、上位システム(2)から取得した情報に基づいて予備情報を生成する生成部(13)を更に備える。 The control system (1) according to the second aspect further includes a generation unit (13) that generates the preliminary information based on the information acquired from the host system (2) in the first aspect.
 この態様によれば、制御システム(1)と上位システム(2)との間の通信が成立する状況において、制御システム(1)が上位システム(2)から取得した情報に基づいて予備情報を生成することができる。 According to this aspect, in the situation where the communication between the control system (1) and the host system (2) is established, the control system (1) generates the preliminary information based on the information acquired from the host system (2). can do.
 第3の態様に係る制御システム(1)では、第1又は2の態様において、予備情報は、予測情報と同一の情報を含む。 In the control system (1) according to the third aspect, in the first or second aspect, the preliminary information includes the same information as the prediction information.
 この態様によれば、第2制御部(12)は、予備情報に含まれる予測情報と同一の情報に基づいて電力関連設備(3)を制御する。したがって、第2制御部(12)によれば、制御システム(1)と上位システム(2)との間の通信が遮断された状態であっても、予測情報に従った第1制御部(11)の制御に近い制御を実現することができる。 According to this aspect, the second control unit (12) controls the power-related equipment (3) based on the same information as the prediction information included in the preliminary information. Therefore, according to the second control unit (12), even if the communication between the control system (1) and the host system (2) is interrupted, the first control unit (11) according to the prediction information. It is possible to realize a control close to the control of.
 第4の態様に係る制御システム(1)では、第1又は2の態様において、予備情報は、予測情報を生成するための学習済モデル(54)と同一の学習済モデルを含む。 In the control system (1) according to the fourth aspect, in the first or second aspect, the preliminary information includes the same learned model (54) as the learned model (54) for generating the prediction information.
 この態様によれば、第2制御部(12)は、予測情報を生成するための学習済モデル(54)と同一の学習済モデルに基づいて電力関連設備(3)を制御する。したがって、第2制御部(12)によれば、制御システム(1)と上位システム(2)との間の通信が遮断された状態であっても、予測情報に従った第1制御部(11)の制御に近い制御を実現することができる。 According to this aspect, the second control unit (12) controls the power-related equipment (3) based on the same learned model as the learned model (54) for generating the prediction information. Therefore, according to the second control unit (12), even if the communication between the control system (1) and the host system (2) is interrupted, the first control unit (11) according to the prediction information. It is possible to realize a control close to the control of.
 第5の態様に係る制御システム(1)では、第1又は2の態様において、予備情報は、予測情報を生成するための学習器(53)と同一の学習器を含む。 In the control system (1) according to the fifth aspect, in the first or second aspect, the preliminary information includes the same learning device as the learning device (53) for generating the prediction information.
 この態様によれば、第2制御部(12)は、予測情報を生成するための学習器(53)と同一の学習器に基づいて電力関連設備(3)を制御する。したがって、第2制御部(12)によれば、制御システム(1)と上位システム(2)との間の通信が遮断された状態であっても、予測情報に従った第1制御部(11)の制御に近い制御を実現することができる。 According to this aspect, the second control unit (12) controls the power-related equipment (3) based on the same learning device as the learning device (53) for generating the prediction information. Therefore, according to the second control unit (12), even if the communication between the control system (1) and the host system (2) is interrupted, the first control unit (11) according to the prediction information. It is possible to realize a control close to the control of.
 第6の態様に係る制御システム(1)では、第1~5のいずれかの態様において、電力関連設備(3)は、蓄電設備を含む。 In the control system (1) according to the sixth aspect, in any one of the first to fifth aspects, the power-related equipment (3) includes a power storage equipment.
 この態様によれば、制御システム(1)では、蓄電設備の充放電を含めた電力関連設備(3)のきめ細やかな制御を実現できる。 According to this aspect, in the control system (1), fine control of the power-related equipment (3) including charging / discharging of the power storage equipment can be realized.
 第7の態様に係る制御システム(1)は、第1~6のいずれかの態様において、上位システム(2)との通信が復旧したときに上位システム(2)に復旧情報を出力する復旧出力部(14)を更に備える。 The control system (1) according to the seventh aspect is the restoration output according to any one of the first to sixth aspects, which outputs restoration information to the higher system (2) when communication with the higher system (2) is restored. It further comprises a section (14).
 この態様によれば、制御システム(1)と上位システム(2)との通信が復旧したことを上位システム(2)で把握可能となる。 According to this aspect, it becomes possible for the host system (2) to know that the communication between the control system (1) and the host system (2) has been restored.
 第8の態様に係る制御システム(1)では、第7の態様において、復旧情報は、上位システム(2)との通信の遮断期間に制御システム(1)で得られた履歴情報を含む。 In the control system (1) according to the eighth aspect, in the seventh aspect, the restoration information includes history information obtained by the control system (1) during the period of interruption of communication with the higher level system (2).
 この態様によれば、制御システム(1)と上位システム(2)との通信が復旧したときに、遮断期間に制御システム(1)で得られた履歴情報を上位システム(2)に出力できる。 According to this aspect, when the communication between the control system (1) and the host system (2) is restored, the history information obtained by the control system (1) during the cutoff period can be output to the host system (2).
 第9の態様に係る制御システム(1)では、第7又は8の態様において、復旧情報は、予測情報を生成する分類器(55)の再学習用の情報を含む。 In the control system (1) according to the ninth aspect, in the seventh or eighth aspect, the restoration information includes information for re-learning of the classifier (55) that generates prediction information.
 この態様によれば、制御システム(1)と上位システム(2)との通信が復旧したときに、分類器(55)の再学習用の情報を上位システム(2)に出力できる。 According to this aspect, when the communication between the control system (1) and the host system (2) is restored, the information for re-learning of the classifier (55) can be output to the host system (2).
 第10の態様に係る制御システム(1)では、第1~9のいずれかの態様において、予測情報は、電力関連設備(3)における電力の需要と供給との少なくとも一方に関する情報を含む。 In the control system (1) according to the tenth aspect, in any one of the first to ninth aspects, the prediction information includes information about at least one of supply and demand of power in the power-related facility (3).
 この態様によれば、制御システム(1)は、電力関連設備(3)における電力の需要と供給との少なくとも一方に関する予測情報に基づいて、電力関連設備(3)のきめ細やかな制御を実現できる。 According to this aspect, the control system (1) can realize fine control of the power-related equipment (3) based on the prediction information about at least one of the demand and supply of power in the power-related equipment (3). ..
 第11の態様に係る設備管理システム(10)は、第1~10のいずれかの態様に係る制御システム(1)と、上位システム(2)と、を備える。 The equipment management system (10) according to the eleventh aspect includes a control system (1) according to any one of the first to ten aspects and a higher-level system (2).
 この態様によれば、制御システム(1)と上位システム(2)との間の通信が成立する状況においては、制御システム(1)は、上位システム(2)から通信により取得する予測情報に従って電力関連設備(3)を制御する。よって、設備管理システム(10)では、例えば、現在の負荷での消費電力値だけでなく、将来の負荷での消費電力値等を加味したきめ細やかな制御を、電力関連設備(3)に対して実行することができ、電力関連設備(3)を効率的に設御することが可能である。一方、制御システム(1)と上位システム(2)との間の通信が遮断された状況においては、制御システム(1)は、予測情報に相当する予備情報に基づいて電力関連設備(3)を制御する。したがって、制御システム(1)と上位システム(2)との間の通信が遮断された状況であっても、電力関連設備(3)を効率的に設御することが可能である。結果的に、電力関連設備(3)の制御に際して通信状況の影響を受けにくい。 According to this aspect, in a situation where communication between the control system (1) and the higher system (2) is established, the control system (1) is powered according to the predicted information acquired by the communication from the upper system (2). Control related equipment (3). Therefore, in the equipment management system (10), for example, the power-related equipment (3) can be finely controlled in consideration of not only the power consumption value of the present load but also the power consumption value of the future load. It is possible to efficiently set up the electric power related equipment (3). On the other hand, in the situation where the communication between the control system (1) and the host system (2) is cut off, the control system (1) determines the power-related equipment (3) based on the preliminary information corresponding to the prediction information. Control. Therefore, even in the situation where the communication between the control system (1) and the host system (2) is cut off, it is possible to efficiently control the power-related equipment (3). As a result, it is not easily affected by the communication status when controlling the power-related equipment (3).
 第12の態様に係る設備管理方法は、上位システム(2)、及び上位システム(2)と通信可能な制御システム(1)を用いた設備管理方法であって、第1制御処理と、第2制御処理と、を有する。第1制御処理は、制御システム(1)が上位システム(2)から通信により取得する予測情報に従って制御システム(1)にて電力関連設備(3)を制御する処理である。第2制御処理は、上位システム(2)と制御システム(1)との間の通信が遮断された状態で制御システム(1)にて電力関連設備(3)を制御する処理である。第2制御処理では、予測情報に相当する予備情報に基づいて電力関連設備(3)の制御を実行する。 A facility management method according to a twelfth aspect is a facility management method using a host system (2) and a control system (1) capable of communicating with the host system (2). It has a control process. The first control process is a process in which the control system (1) controls the power-related equipment (3) according to the prediction information acquired from the host system (2) by communication. The second control process is a process of controlling the power-related equipment (3) in the control system (1) in a state where the communication between the host system (2) and the control system (1) is cut off. In the second control process, control of the power-related equipment (3) is executed based on the preliminary information corresponding to the prediction information.
 この態様によれば、制御システム(1)と上位システム(2)との間の通信が成立する状況においては、第1制御処理にて、上位システム(2)から通信により取得する予測情報に従って電力関連設備(3)を制御する。これにより、設備管理方法では、例えば、現在の負荷での消費電力値だけでなく、将来の負荷での消費電力値等を加味したきめ細やかな制御を、電力関連設備(3)に対して実行することができ、電力関連設備(3)を効率的に設御することが可能である。一方、制御システム(1)と上位システム(2)との間の通信が遮断された状況においては、第2制御処理にて、予測情報に相当する予備情報に基づいて電力関連設備(3)を制御する。したがって、制御システム(1)と上位システム(2)との間の通信が遮断された状況であっても、電力関連設備(3)を効率的に設御することが可能である。結果的に、電力関連設備(3)の制御に際して通信状況の影響を受けにくい。 According to this aspect, in the situation in which the communication between the control system (1) and the host system (2) is established, the power control is performed according to the prediction information acquired from the host system (2) by communication in the first control process. Control related equipment (3). As a result, in the equipment management method, for example, detailed control is performed on the power-related equipment (3) in consideration of not only the power consumption value of the current load but also the power consumption value of the future load. It is possible to efficiently install the electric power related equipment (3). On the other hand, in the situation where the communication between the control system (1) and the host system (2) is cut off, in the second control process, the power-related equipment (3) is set based on the preliminary information corresponding to the prediction information. Control. Therefore, even in a situation where communication between the control system (1) and the host system (2) is cut off, the power-related equipment (3) can be efficiently installed. As a result, it is not easily affected by the communication status when controlling the power-related equipment (3).
 第13の態様に係るプログラムは、第12の態様に係る設備管理方法を1以上のプロセッサに実行させるためのプログラムである。 The program according to the thirteenth aspect is a program for causing one or more processors to execute the facility management method according to the twelfth aspect.
 この態様によれば、制御システム(1)と上位システム(2)との間の通信が成立する状況においては、第1制御処理にて、上位システム(2)から通信により取得する予測情報に従って電力関連設備(3)を制御する。これにより、設備管理方法では、例えば、現在の負荷での消費電力値だけでなく、将来の負荷での消費電力値等を加味したきめ細やかな制御を、電力関連設備(3)に対して実行することができ、電力関連設備(3)を効率的に設御することが可能である。一方、制御システム(1)と上位システム(2)との間の通信が遮断された状況においては、第2制御処理にて、予測情報に相当する予備情報に基づいて電力関連設備(3)を制御する。したがって、制御システム(1)と上位システム(2)との間の通信が遮断された状況であっても、電力関連設備(3)を効率的に設御することが可能である。結果的に、電力関連設備(3)の制御に際して通信状況の影響を受けにくい。 According to this aspect, in the situation in which the communication between the control system (1) and the host system (2) is established, the power control is performed according to the prediction information acquired from the host system (2) by communication in the first control process. Control related equipment (3). As a result, in the equipment management method, for example, fine control that takes into account not only the power consumption value under the current load but also the power consumption value under the future load is executed for the power-related equipment (3). It is possible to efficiently install the electric power related equipment (3). On the other hand, in the situation where the communication between the control system (1) and the host system (2) is cut off, the power-related equipment (3) is set in the second control process based on the preliminary information corresponding to the prediction information. Control. Therefore, even in the situation where the communication between the control system (1) and the host system (2) is cut off, it is possible to efficiently control the power-related equipment (3). As a result, it is not easily affected by the communication status when controlling the power-related equipment (3).
 上記態様に限らず、実施形態1、実施形態2及び実施形態3に係る制御システム(1)、及びそれを備える設備管理システム(10)の種々の構成(変形例を含む)は、設備管理方法又はプログラムにて具現化可能である。 Not limited to the above aspect, various configurations (including modified examples) of the control system (1) according to the first embodiment, the second embodiment, and the third embodiment, and the equipment management system (10) including the same are the equipment management methods. Alternatively, it can be realized by a program.
 第2~10の態様に係る構成については、制御システム(1)に必須の構成ではなく、適宜省略可能である。 The configurations according to the second to tenth aspects are not essential for the control system (1) and can be omitted as appropriate.
 1 制御システム
 2 上位システム
 3 電力関連設備
 10 設備管理システム
 11 第1制御部
 12 第2制御部
 13 生成部
 14 復旧出力部
 53 学習器
 54 学習済モデル
 55 分類器
DESCRIPTION OF SYMBOLS 1 Control system 2 Higher-order system 3 Electric power related equipment 10 Equipment management system 11 1st control part 12 2nd control part 13 Generation part 14 Recovery output part 53 Learner 54 Learned model 55 Classifier

Claims (13)

  1.  上位システムと通信可能な制御システムであって、
     前記上位システムから通信により取得する予測情報に従って電力関連設備を制御する第1制御部と、
     前記上位システムとの間の通信が遮断された状態で前記電力関連設備を制御する第2制御部と、を備え、
     前記第2制御部は、前記予測情報に相当する予備情報に基づいて前記電力関連設備の制御を実行する、
     制御システム。
    A control system capable of communicating with a host system,
    A first control unit for controlling power-related equipment according to prediction information acquired by communication from the host system;
    It is provided with a second control unit that controls the power-related equipment in a state where communication with the host system is cut off.
    The second control unit executes control of the power-related equipment based on preliminary information corresponding to the prediction information.
    Control system.
  2.  前記上位システムから取得した情報に基づいて前記予備情報を生成する生成部を更に備える、
     請求項1に記載の制御システム。
    Further comprising a generation unit that generates the preliminary information based on information acquired from the host system,
    The control system according to claim 1.
  3.  前記予備情報は、前記予測情報と同一の情報を含む、
     請求項1又は2に記載の制御システム。
    The preliminary information includes the same information as the prediction information,
    The control system according to claim 1 or 2.
  4.  前記予備情報は、前記予測情報を生成するための学習済モデルと同一の学習済モデルを含む、
     請求項1又は2に記載の制御システム。
    The preliminary information includes a trained model that is the same as a trained model for generating the prediction information.
    The control system according to claim 1 or 2.
  5.  前記予備情報は、前記予測情報を生成するための学習器と同一の学習器を含む、
     請求項1又は2に記載の制御システム。
    The preliminary information includes the same learning device as the learning device for generating the prediction information,
    The control system according to claim 1 or 2.
  6.  前記電力関連設備は、蓄電設備を含む、
     請求項1~5のいずれか1項に記載の制御システム。
    The power-related equipment includes power storage equipment,
    The control system according to any one of claims 1 to 5.
  7.  前記上位システムとの通信が復旧したときに前記上位システムに復旧情報を出力する復旧出力部を更に備える、
     請求項1~6のいずれか1項に記載の制御システム。
    A recovery output unit that outputs recovery information to the higher system when communication with the higher system is restored is further provided.
    The control system according to any one of claims 1 to 6.
  8.  前記復旧情報は、前記上位システムとの通信の遮断期間に前記制御システムで得られた履歴情報を含む、
     請求項7に記載の制御システム。
    The recovery information includes historical information obtained by the control system during the interruption period of communication with the host system.
    The control system according to claim 7.
  9.  前記復旧情報は、前記予測情報を生成する分類器の再学習用の情報を含む、
     請求項7又は8に記載の制御システム。
    The restoration information includes information for relearning a classifier that generates the prediction information,
    The control system according to claim 7.
  10.  前記予測情報は、前記電力関連設備における電力の需要と供給との少なくとも一方に関する情報を含む、
     請求項1~9のいずれか1項に記載の制御システム。
    The prediction information includes information about at least one of supply and demand of electric power in the electric power-related equipment,
    The control system according to any one of claims 1 to 9.
  11.  請求項1~10のいずれか1項に記載の制御システムと、
     前記上位システムと、を備える、
     設備管理システム。
    A control system according to any one of claims 1 to 10,
    And a host system,
    Equipment management system.
  12.  上位システム、及び前記上位システムと通信可能な制御システムを用いた設備管理方法であって、
     前記制御システムが前記上位システムから通信により取得する予測情報に従って前記制御システムにて電力関連設備を制御する第1制御処理と、
     前記上位システムと前記制御システムとの間の通信が遮断された状態で前記制御システムにて前記電力関連設備を制御する第2制御処理と、を有し、
     前記第2制御処理では、前記予測情報に相当する予備情報に基づいて前記電力関連設備の制御を実行する、
     設備管理方法。
    A facility management method using a host system and a control system capable of communicating with the host system,
    The first control process in which the control system controls the power-related equipment according to the prediction information acquired by the control system from the higher-level system by communication, and
    It has a second control process for controlling the power-related equipment by the control system in a state where communication between the host system and the control system is cut off.
    In the second control process, control of the power-related equipment is executed based on preliminary information corresponding to the prediction information.
    Equipment management method.
  13.  請求項12に記載の設備管理方法を1以上のプロセッサに実行させるためのプログラム。 A program for causing one or more processors to execute the facility management method according to claim 12.
PCT/JP2020/006598 2019-03-04 2020-02-19 Control system, equipment management system, equipment management method, and program WO2020179455A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-039013 2019-03-04
JP2019039013 2019-03-04

Publications (1)

Publication Number Publication Date
WO2020179455A1 true WO2020179455A1 (en) 2020-09-10

Family

ID=72337897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006598 WO2020179455A1 (en) 2019-03-04 2020-02-19 Control system, equipment management system, equipment management method, and program

Country Status (1)

Country Link
WO (1) WO2020179455A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038470A (en) * 2011-08-03 2013-02-21 Daikin Ind Ltd Control device and control system of electrical apparatus
JP2015056976A (en) * 2013-09-12 2015-03-23 パナソニック株式会社 Smoothing and adjustment system and information communication system
WO2017199604A1 (en) * 2016-05-16 2017-11-23 ソニー株式会社 Control device, control method, and power storage control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038470A (en) * 2011-08-03 2013-02-21 Daikin Ind Ltd Control device and control system of electrical apparatus
JP2015056976A (en) * 2013-09-12 2015-03-23 パナソニック株式会社 Smoothing and adjustment system and information communication system
WO2017199604A1 (en) * 2016-05-16 2017-11-23 ソニー株式会社 Control device, control method, and power storage control device

Similar Documents

Publication Publication Date Title
US20210135489A1 (en) Apparatuses, methods and systems for intelligent and flexible transfer switches
US8862279B2 (en) Systems and methods for optimizing microgrid power generation and management with predictive modeling
CN100482000C (en) Adaptive power supply management for a node of a mobile telecommunications network
US9020800B2 (en) Method and apparatus for controlling energy services based on market data
US9112381B2 (en) Method and apparatus for managing the distribution of electrical energy in a power distribution grid
JP6604327B2 (en) Distributed power supply system, station control device, control method, and storage medium storing program
US20130076140A1 (en) Systems and methods for microgrid power generation and management
TW201716786A (en) Distributed energy system edge unit
US10432019B2 (en) Power connection control system and method
US20220231538A1 (en) Power distribution systems and methods
Islam et al. A decentralized multiagent-based voltage control for catastrophic disturbances in a power system
Cohen GridAgents™: Intelligent agent applications for integration of distributed energy resources within distribution systems
JP2000032658A (en) Power system equipped with load controller fitted to states of power facilities
JP2024518404A (en) Systems and methods for electric vehicle charging power distribution
Alobaidi et al. Distribution service restoration with renewable energy sources: a review
JP2016025799A (en) System supervisory control device
WO2020179455A1 (en) Control system, equipment management system, equipment management method, and program
JP6753593B2 (en) Energy management system, guide server and energy management method
Krishnamurthy et al. Modeling of distributed generators resilience considering lifeline dependencies during extreme events
US20230347778A1 (en) Delivery of stored electrical energy from generation sources to nano-grid systems
JP2014050256A (en) Factory energy management system, power management device, and factory energy management method
JP7341009B2 (en) Power management system and power management method
WO2023157234A1 (en) Power supply-demand management device and power supply-demand management method
US20230170697A1 (en) Techniques for predictive control of energy use in a structure
PL239260B1 (en) System for supprting control of the distribution of electricity, in particular its generation, consumption and potentially, its storage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20765970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP