WO2020179141A1 - Gas engine with turbocharger, and combustion method for same - Google Patents

Gas engine with turbocharger, and combustion method for same Download PDF

Info

Publication number
WO2020179141A1
WO2020179141A1 PCT/JP2019/045230 JP2019045230W WO2020179141A1 WO 2020179141 A1 WO2020179141 A1 WO 2020179141A1 JP 2019045230 W JP2019045230 W JP 2019045230W WO 2020179141 A1 WO2020179141 A1 WO 2020179141A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
air
engine
gas
injection
Prior art date
Application number
PCT/JP2019/045230
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 仲井
洋輔 野中
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201980093489.2A priority Critical patent/CN113544374B/en
Publication of WO2020179141A1 publication Critical patent/WO2020179141A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a gas engine with a turbocharger and a combustion method thereof.
  • a gas engine with a turbocharger utilizes the flow of exhaust gas from a gas engine to drive a compressor and increase the density of air drawn by the gas engine.
  • a gas engine with a turbocharger of this type is disclosed in Patent Document 1, for example.
  • the gas engine with a turbocharger disclosed in Patent Document 1 includes a cylinder in which a piston is inserted and a pilot fuel injection valve that injects pilot fuel into the cylinder.
  • the intake port of the cylinder is connected to the compressor of the supercharger via an intake pipe
  • the exhaust port of the cylinder is connected to the exhaust turbine of the supercharger via an exhaust pipe.
  • Gas fuel is supplied to the intake pipe, and a mixture of gas fuel and air is formed in the intake pipe.
  • the pilot fuel injection valve is connected to a high pressure fuel pipe that stores pilot fuel whose pressure has been increased. In this gas engine, an air-fuel mixture is introduced into the cylinder when the piston descends, and the piston rises with the intake port and the exhaust port closed, and the air-fuel mixture is compressed.
  • pilot fuel is injected from the pilot fuel injection valve, the air-fuel mixture ignites and combustion occurs, the piston descends as the cylinder internal pressure rises, and the combustion gas is released from the cylinder due to the rise of the piston due to inertia. It is exhausted.
  • the gas engine of Patent Document 1 employs a direct injection micropilot ignition system in which a small amount of pilot fuel (for example, light oil) is directly injected into the cylinder. Then, in order to appropriately control the ignition timing of the air-fuel mixture and avoid abnormal combustion, the pilot fuel injection can control the pre-injection that assists the flame propagation combustion of the air-fuel mixture and the ignition timing of the air-fuel mixture. It is divided into injection and.
  • pilot fuel for example, light oil
  • the amount of fuel supplied to the main engine is controlled so that the speed of the propulsion shaft connected to the propeller for propelling or the engine directly connected to the propeller is at a given target speed.
  • FIG. 7 is a graph showing the combustion characteristics of a general gas engine, where the horizontal axis shows the air-fuel ratio (excess air ratio) and the vertical axis shows the net mean effective pressure (BMEP).
  • the net mean effective pressure can be an indicator of the engine output of a gas engine.
  • a knocking region exists in a region where the air-fuel ratio of the lean air-fuel mixture in the combustion chamber of the cylinder is low and the engine output is high
  • a misfire region exists in a region where the air-fuel ratio is high and the engine output is high.
  • the air-fuel ratio of the lean mixture in the combustion chamber is optimal within the range X (operating window) between the knocking region and the misfire region, that is, the thermal efficiency is high and NOx is emitted.
  • the amount is controlled to be the minimum.
  • the supply pressure is controlled for the gas fuel supply amount adjusted to maintain the target rotation speed so that the air-fuel ratio of the lean mixture falls between the knocking region and the misfire region. Will be done.
  • the speed of the propeller for propelling a ship tends to change in a short period of time depending on the tidal current, waves, and the steering angle of the ship.
  • the fuel supply device for the propulsion internal combustion engine (gas engine) of Patent Document 2 obtains the predicted fuel supply amount based on the predicted torque calculated based on the future predicted ship speed of the ship, and obtains the predicted fuel supply amount to obtain the predicted fuel supply amount. Based on this, the pressure of the air-fuel mixture supplied to the engine is controlled.
  • Patent Document 2 predicts a sudden increase in the load of the gas engine and raises the supply pressure in advance in preparation for it, and is not a technique that increases the supply pressure quickly. Further, it is known that the supercharger is jet-assisted in order to rapidly increase the air supply pressure. In this case, the supercharger needs to be equipped with a jet assist device.
  • the present invention provides a technique for rapidly increasing the supply air pressure in a gas engine with a turbocharger so that the gas fuel supply amount can be rapidly increased in response to a sudden increase in engine load.
  • the purpose is to rapidly increase the supply air pressure in a gas engine with a turbocharger so that the gas fuel supply amount can be rapidly increased in response to a sudden increase in engine load.
  • a combustion method for a gas engine is generated by an intake stroke for sucking a lean air-fuel mixture including gas fuel and air into a combustion chamber, a compression stroke for compressing the lean air-fuel mixture, and a combustion of the lean air-fuel mixture.
  • a combustion method of a gas engine with a turbocharger of a pilot ignition system, wherein an expansion stroke in which combustion gas expands, and a combustion cycle consisting of an exhaust stroke in which the combustion gas is exhausted from the combustion chamber is repeated.
  • a first injection for injecting liquid fuel into the combustion chamber is performed,
  • the liquid fuel is injected into the combustion chamber at the second timing in the expansion stroke, which is the latter half of the combustion period in which the lean air-fuel mixture in the combustion chamber is burning due to the propagation of the flame generated by the first injection.
  • the second injection is started.
  • the gas engine with a turbocharger includes a cylinder and a piston that form a combustion chamber, and an injector that injects liquid fuel into the combustion chamber, and the piston reciprocates in the cylinder to generate a lean mixture of air and gas fuel.
  • a combustion cycle including an intake stroke for sucking in the air, a compression stroke for compressing the lean air-fuel mixture, an expansion stroke for expanding combustion gas generated by combustion of the lean air-fuel mixture, and an exhaust stroke for exhausting the combustion gas from the combustion chamber.
  • Is a pilot ignition type gas engine with turbocharger The injector performs the first injection at the first timing in the compression stroke, and is in the latter half of the combustion period in which the lean air-fuel mixture in the combustion chamber is burned by the propagation of the flame generated by the first injection.
  • the second injection is started at the second timing in the expansion stroke.
  • the liquid fuel injected in the second injection is not substantially used for the work of pushing down the piston, but raises the exhaust temperature by combustion.
  • the temperature of the combustion gas sent to the turbine of the turbocharger becomes higher than that in the case where the second injection is not performed, and more energy can be given to the turbine.
  • the supply pressure can be rapidly increased, and the supply amount of the gas fuel can be rapidly increased.
  • Such a combustion method is suitable as a combustion method when the load of a gas engine with a turbocharger suddenly rises, and can improve the load response of the gas engine (that is, the followability of the actual output with respect to the required output). ..
  • the gas engine may be a four-stroke engine, and the second timing may be in the range of 60° to 180° ATDC.
  • the temperature of the combustion gas discharged from the combustion chamber can be raised by the additional pilot fuel from the second injection without hindering the normal combustion of the lean air-fuel mixture in the combustion chamber.
  • the injection amount of the liquid fuel in the first injection may be changed so that the output increase rate is higher than the output increase rate from the second output value to the third output value.
  • the present invention in a gas engine with a turbocharger, it is possible to provide a technique for rapidly increasing the supply air pressure so that the gas fuel supply amount can be rapidly increased in response to a sudden increase in engine load.
  • FIG. 1 is a schematic configuration diagram of a gas engine with a turbocharger according to an embodiment of the present invention.
  • FIG. 2 is a sectional view showing a structure of one of a plurality of cylinders included in the engine.
  • FIG. 3 is a schematic configuration diagram of the air cooler.
  • FIG. 4 is a diagram showing a configuration of a control system of a gas engine with a turbocharger.
  • FIG. 5 is a timing chart of pilot fuel injection in a sudden load increase operation.
  • FIG. 6 is a chart showing time-series changes in the target engine output and the pilot fuel injection amount when the engine output is increased in response to a sudden increase in engine load.
  • FIG. 7 is a graph showing the combustion characteristics of a general gas engine.
  • the gas engine 1 with a turbocharger according to the present embodiment is mounted on a ship as a main engine.
  • the gas engine 1 with a turbocharger according to the present invention is not limited to the one mounted on a ship.
  • FIG. 1 is a schematic configuration diagram of a gas engine 1 with a turbocharger according to an embodiment of the present invention.
  • the gas engine 1 with a turbocharger shown in FIG. 1 includes an engine (engine body) 2, a supercharger 3, an air cooler 43, and a control device 7 (see FIG. 2).
  • the gas engine 1 with a turbocharger drives the propulsion shaft 93 to which the propulsion blades 83 are attached.
  • the engine 2 is a 4-stroke multi-cylinder gas combustion engine.
  • the engine 2 is not limited to the gas-only combustion engine, and may be a dual fuel engine that burns one or both of the gas fuel and the liquid fuel depending on the situation.
  • FIG. 2 is a cross-sectional view showing the structure of one of the plurality of cylinders 21 included in the engine 2.
  • a piston 22 is reciprocally arranged in the cylinder 21, and a combustion chamber 20 is formed by the cylinder 21 and the piston 22.
  • the intake port of the cylinder 21 is connected to the air supply pipe 41.
  • An intake valve 23 that opens and closes the intake port is provided in the intake port.
  • the exhaust port of the cylinder 21 is connected to the exhaust pipe 42.
  • the exhaust port is provided with an exhaust valve 24 that opens and closes the exhaust port.
  • the combustion chamber 20 is provided with an in-cylinder pressure sensor 62 that detects the in-cylinder pressure, which is the pressure inside the combustion chamber 20.
  • the piston 22 is connected to a crankshaft (not shown) by a connecting rod (not shown).
  • the piston 22 reciprocates twice in the cylinder 21 to perform one combustion cycle consisting of intake, compression, expansion, and exhaust.
  • the phase angle of the engine 2 during one combustion cycle in each cylinder 21 is detected by the phase angle detector 63.
  • the phase angle detector 63 may be, for example, an electromagnetic pickup, a proximity switch, or a rotary encoder.
  • the phase angle detector 63 also functions as an actual rotation speed detector that detects the actual rotation speed of the engine 2.
  • the supercharger 3 includes a compressor 31 and a turbine 32, which are connected by a shaft.
  • the combustion chamber 20 in the cylinder 21 is connected to the compressor 31 via the air supply pipe 41 and is connected to the turbine 32 via the exhaust pipe 42.
  • the air supply pipe 41 guides the air compressed by the compressor 31 to the combustion chamber 20 of each cylinder 21.
  • the air supply pipe 41 is provided with an air supply blow-off valve 48 that releases gas from the air supply pipe 41 to release the pressure of the air supply pipe 41.
  • the exhaust pipe 42 guides exhaust gas (combustion gas) from the combustion chamber 20 of each cylinder 21 to the turbine 32.
  • the exhaust pipe 42 is provided with an exhaust wastegate valve 49 that regulates the amount of gas flowing into the turbine 32 by dividing a part of the gas from the exhaust pipe 42.
  • the downstream portion of the air supply pipe 41 and the upstream portion of the exhaust pipe 42 are branched from the manifold into the same number of branch paths as the cylinder 21, but in FIG. 1, the air supply pipe 41 and the exhaust pipe are branched to simplify the drawing. 42 is drawn with one flow path.
  • the air supply pipe 41 is provided with an air cooler 43 for cooling the air compressed by the compressor 31 and having a high temperature (air supply).
  • the air cooler 43 is a heat exchanger that exchanges heat between a refrigerant such as water flowing through the refrigerant flow path 44 and the air flowing through the air supply pipe 41.
  • a bypass passage 46 is connected to the refrigerant passage 44 so as to flow the refrigerant to the downstream side of the air cooler 43 without passing through the air cooler 43 (that is, not used for heat exchange in the air cooler 43).
  • the refrigerant flow path 44 is provided with a flow rate adjusting device 45 that adjusts the flow rate of the refrigerant flowing through the bypass path 46, in other words, the flow rate of the refrigerant used for heat exchange in the air cooler 43.
  • the flow rate adjusting device 45 adjusts the flow rate of the refrigerant used for heat exchange in the air cooler 43 so that the cooled air discharged from the air cooler 43 reaches a predetermined temperature.
  • a supply air pressure sensor 61 and a supply air temperature sensor 65 are provided downstream of the air cooler 43 of the supply air pipe 41.
  • the air supply pressure sensor 61 detects the air supply pressure, which is the discharge pressure of the compressor 31.
  • the air supply pressure sensor 61 may be provided in each of the above-mentioned branch paths on the downstream side of the air supply pipe 41, or may be provided in only one in the above-mentioned manifold.
  • the supply air temperature sensor 65 detects the supply air temperature which is the temperature of the air introduced into the combustion chamber 20 through the supply air pipe 41.
  • the supply air temperature sensor 65 may be provided in each of the above-mentioned branch paths on the downstream side of the supply pipe 41, or may be provided in only one in the above-mentioned manifold.
  • the air supply pipe 41 is provided with a gas fuel supply valve 51 for each cylinder 21.
  • the gas fuel supply valve 51 supplies gas fuel into the air discharged from the compressor 31.
  • the opening degree (or opening time) of the gas fuel supply valve 51 is operated by the gas fuel supply valve driver 50.
  • the supply amount of the gas fuel supplied from the gas fuel chamber (not shown) to the air supply pipe 41 through the gas fuel supply valve 51 changes depending on the opening degree (or opening time) of the gas fuel supply valve 51.
  • the gas fuel supply valve driver 50 and the gas fuel supply valve 51 constitute a gas fuel supply amount adjusting device.
  • the engine 2 employs a direct injection pilot fuel ignition method and includes a pilot fuel injector 52 that ejects pilot fuel into the combustion chamber 20.
  • the pilot fuel is, for example, a liquid fuel such as light oil.
  • the pilot fuel injector 52 is connected to the common rail 53 via a fuel pipe.
  • a high-pressure pilot fuel is stored in the common rail 53, and the pilot fuel injector 52 of each cylinder 21 can inject this pilot fuel at an arbitrary timing and an arbitrary injection pressure.
  • the injection from the pilot fuel injector 52 is operated by the injector driver 54.
  • the injector driver 54 and the pilot fuel injector 52 constitute a pilot fuel injection amount adjusting device.
  • FIG. 4 is a diagram showing a configuration of a control system of the gas engine 1 with the turbocharger.
  • the control device 7 is a so-called computer, and has an arithmetic processing unit 7a such as a CPU and a storage unit 7b such as a ROM and RAM.
  • the storage unit 7b stores programs executed by the arithmetic processing unit 7a, various fixed data, and the like.
  • the arithmetic processing unit 7a transmits / receives data to / from an external device.
  • the arithmetic processing unit 7a inputs detection signals from various sensors and outputs control signals to each control target.
  • the control device 7 performs processing as each functional unit by the arithmetic processing unit 7a reading and executing software such as a program stored in the storage unit 7b.
  • the control device 7 may execute each process by centralized control by a single computer, or may execute each process by distributed control by cooperation of a plurality of computers. Further, the control device 7 may be composed of a microcontroller, a programmable logic controller (PLC), or the like.
  • PLC programmable logic controller
  • the control device 7 is electrically connected to the rudder angle operation tool 73, the marine vessel manipulating operation tool 74, the turning angle sensor 66, and the speedometer 67.
  • a cockpit (not shown) provided on the hull is provided with a steering angle operating tool 73 for operating and inputting a steering angle, and a ship maneuvering operating tool 74 for operating and inputting the rotation speed of the engine 2 and forward / backward movement. ..
  • the steering angle operation information input by the operator is input to the control device 7 via the steering angle operating tool 73.
  • the ship maneuvering operation information input by the operator is input to the control device 7 via the ship maneuvering operation tool 74.
  • These operation tools 73 and 74 may be handles or levers, for example.
  • the hull is provided with a turning angle sensor 66 for detecting the turning angle of the hull and a speedometer 67 for detecting the ship speed.
  • the control device 7 determines a sudden rise in engine load or predicts a sudden rise in engine load.
  • a sudden increase in engine load means an increase in load such that turbo lag occurs (that is, the supercharger 3 does not supercharge sufficiently and a delay time occurs before reaching the required supercharging pressure).
  • causes of a sudden increase in load include, for example, an increase in ship speed, a change in rudder angle, a strong wind wave received by the hull, a change in propeller pitch, and a change in turning angle when the ship is equipped with an azimuth thruster.
  • the control device 7 can determine that the load on the engine 2 has rapidly increased by the following method. For example, the rate of increase in gas fuel supply is calculated, and if the rate of increase in gas fuel supply exceeds the threshold, it is determined that the load has increased sharply, and if the rate of increase in gas fuel supply is below the threshold, the load is rapid. It is determined that it has not risen. For example, the deviation between the actual rotation speed and the target rotation speed is calculated, and if the deviation between the actual rotation speed and the target rotation speed exceeds the threshold value, it is determined that the load has increased sharply, and the actual rotation speed and the target rotation speed are If the deviation is below the threshold, it is determined that the load has not risen sharply.
  • the output torque of the engine 2 is detected by a torque meter (not shown), the rising speed of the output torque is calculated, and if the rising speed of the output torque exceeds the threshold value, it is determined that the load has risen sharply, and the output torque is determined. If the speed of increase is below the threshold value, it is determined that the load has not increased rapidly.
  • control device 7 is based on the rudder angle operation information, the ship maneuvering operation information, the hull turning angle, the rotation speed of the gas engine 1, the ship speed, and the hull performance model stored in advance in the storage unit 7b.
  • a sudden increase in engine load can be predicted in advance. For example, when the rudder angle of the hull is manipulated by the rudder angle control tool 73, a sharp increase in engine load is expected in the near future. For example, when the ship maneuvering tool 74 is switched from forward to reverse, a sharp increase in engine load is expected in the near future.
  • the control device 7 includes a gas fuel supply valve driver 50, an injector driver 54, an air supply pressure sensor 61, an in-cylinder pressure sensor 62, a phase angle detector 63, an air supply temperature sensor 65, an air supply blow-off valve 48, and an exhaust waist. It is electrically connected to the gate valve 49.
  • the control device 7 operates the gas fuel supply valve driver 50 and the injector driver 54 for each cylinder 21 based on the phase angle detected by the phase angle detector 63 so that the actual rotation speed becomes the target rotation speed. , Control the supply amount and supply timing of gas fuel and pilot fuel.
  • control device 7 operates the air supply blow-off valve 48 and the exhaust waistgate valve 49 based on the air pressure detected by the air supply pressure sensor 61, and operates the gas fuel supply amount in the combustion chamber 20.
  • the combustion pressure is optimized, that is, the thermal efficiency is high and the NOx emission amount is controlled to be minimum.
  • the control device 7 performs steady operation while the engine load hardly changes, and shifts to load rapid increase operation when a sudden increase in engine load is predicted or a sudden increase in engine load is detected during steady operation.
  • the combustion method of the gas engine 1 during the sudden load increase operation will be described.
  • the piston 22 In the intake stroke of the combustion cycle, the piston 22 is lowered with the exhaust valve 24 closed and the intake valve 23 open, and the gas fuel injected from the gas fuel supply valve 51 and the air supplied from the supercharger 3 are diluted. The air-fuel mixture is sucked into the combustion chamber 20 through the intake port. In the compression stroke, the piston 22 rises to the top dead center with the intake valve 23 and the exhaust valve 24 closed, and the lean air-fuel mixture in the combustion chamber 20 is compressed. At the timing before the piston 22 reaches top dead center, the pilot fuel is directly injected into the compressed dilute mixture of the combustion chamber 20, and the pilot fuel self-ignites. This flame propagates to the lean air-fuel mixture in the combustion chamber 20, and the air-fuel mixture burns.
  • combustion stroke In the expansion stroke (combustion stroke), the ignited lean air-fuel mixture burns, the combustion gas expands, and the piston 22 is pushed down to the bottom dead center.
  • exhaust stroke the piston 22 rises due to inertia while the intake valve 23 is closed and the exhaust valve 24 is opened, and combustion gas is pushed out to the exhaust pipe 42 through the exhaust port.
  • the combustion gas is introduced into the turbine 32 through the exhaust pipe 42 and used as power to drive the compressor 31.
  • the control device 7 When the load sudden rise operation is started, the control device 7 operates the flow rate adjusting device 45 so that all the refrigerant flowing in the refrigerant flow path 44 passes through the air cooler 43, referring to FIG. That is, the flow rate adjusting device 45 blocks the flow of the refrigerant in the bypass passage 46. As a result, the supply air temperature can be rapidly lowered by the total cooling capacity of the air cooler 43.
  • FIG. 5 is a timing chart of pilot fuel injection in a sudden load increase operation.
  • the vertical axis represents the pilot fuel injection amount and the in-cylinder pressure
  • the horizontal axis represents the phase angle [ATDC: After Top Dead Center] of the piston 22.
  • the pilot fuel injector 52 controlled by the control device 7 has at least one first injection (main injection) and at least one second injection (post injection) in one combustion cycle. ) And.
  • the control device 7 measures the injection timing based on the phase angle detected by the phase angle detector 63.
  • the first injection is performed at a predetermined first timing Ta before the top dead center (TDC) in the compression stroke. More specifically, the pilot fuel injector 52 is opened by the injector driver 54 at the first timing Ta, and a small amount of pilot fuel (around 1% of the total heat input at the rated load) is contained in the lean air-fuel mixture in the combustion chamber 20. Squirt into.
  • the first timing Ta may be in the range of ⁇ 30° to 0° ATDC.
  • the high-pressure pilot fuel injected into the combustion chamber 20 in the first injection ignites the lean air-fuel mixture in the combustion chamber 20. That is, the first injection determines the start timing of the combustion period.
  • the combustion pressure of the lean air-fuel mixture in the combustion chamber 20 provides the output of the engine 2.
  • the compression stroke shifts to the expansion stroke.
  • the second injection is performed at a predetermined second timing Tb in the latter half of the combustion period in the expansion stroke. More specifically, the pilot fuel injector 52 is opened by the injector driver 54 at the second timing Tb, and the pilot fuel is ejected into the combustion chamber 20.
  • the latter half of the combustion period means that the lean air-fuel mixture in the combustion chamber 20 is burning and after the time Tc at which the in-cylinder pressure reaches the maximum in-cylinder pressure.
  • the temperature of the combustion gas in the cylinder rises due to the combustion of the pilot fuel injected in the second injection. Further, the pilot fuel injected in the second injection burns the unburned gas fuel in the combustion gas in the combustion chamber 20 and the exhaust pipe 42 in the expansion stroke and the subsequent exhaust stroke. As a result, the temperature of the combustion gas sent to the turbine 32 of the supercharger 3 becomes higher than that in the case where the second injection is not performed, and more energy can be given to the turbine 32. Therefore, the rotation speed of the turbine 32 can be increased as compared with the case where the second injection is not performed, and the supercharging pressure by the supercharger 3 can be rapidly increased. As a result, it is possible to eliminate or shorten the turbo lag when the engine load rapidly increases.
  • the second injection is started before the time point Tc when the in-cylinder pressure reaches the maximum in-cylinder pressure. Then, the maximum in-cylinder pressure may increase and abnormal combustion may occur.
  • the second timing Tb that is, the start timing of the second injection may be in the range of 60 ° to 180 ° ATDC.
  • the end timing of the second injection may be determined by the injection capacity of the pilot fuel injector 52.
  • the injection amount of the second injection is larger than the injection amount of the first injection.
  • the ratio of the injection amount of the second injection to the injection amount of the first injection is larger than 1 and 15 or less, preferably 8 or more and 12 or less. If the ratio is 1 or less, the increase in the exhaust temperature becomes insufficient, and the effect of rapidly increasing the rotation speed of the turbine 32 cannot be obtained. On the other hand, when the ratio is 15 or more, the exhaust temperature rises excessively, and the exhaust temperature may exceed the allowable temperature of the member.
  • FIG. 6 shows when the engine output is increased from the relatively low output first output value Da to the relatively high output third output value Dc via the second output value Db in response to the sudden increase in engine load.
  • 4 is a chart showing a time series change of a target engine output and a pilot fuel injection amount.
  • the second output value Db is an engine output value corresponding to a boundary value between a relatively low load range in which abnormal combustion is unlikely to occur and a relatively high load in which abnormal combustion is likely to occur.
  • a change in engine output when the engine output is increased at a constant rate of change in response to an increase in engine load is shown by a fixed rate of change output line L0.
  • the output change rate of the fixed change rate output line L0 is the maximum output change rate at which knocking does not occur even under high load.
  • the output change rate when the engine output is increased from the first output value Da to the second output value Db is larger than the output change rate of the fixed change rate output line L0 (that is, the tangent line). Has a large inclination).
  • the output change rate when the engine output is increased from the second output value Db to the third output value Dc is smaller than the output change rate of the fixed change rate output line L0 (that is, the tangent line). The inclination is small) or the same.
  • the output can be quickly increased to the third output value Dc as compared with the fixed change rate output line L0.
  • the target output line L is stored in the control device 7 in advance.
  • the control device 7 supplies the gas fuel supplied from the gas fuel supply valve 51 along the target output line L and the pilot.
  • the amount of pilot fuel injected from the fuel injector 52 in the first injection is changed.
  • the control device 7 increases the supply amount of gas fuel so as to increase the engine output along the target output line L.
  • the pilot fuel injection amount is gradually increased from the injection amount Fa to the injection amount Fb.
  • the injection amount Fa and the injection amount Fb are set according to the gas engine 1 and are stored in advance in the control device 7.
  • the control device 7 When increasing the engine output from the second output value Db to the third output value Dc, the control device 7 increases the supply amount of gas fuel so as to increase the engine output along the target output line L. , Maintain the injection amount of pilot fuel at the injection amount Fb. That is, the injection amount of pilot fuel is maintained in an increased state. When the engine output reaches the third output value Dc, the control device 7 gradually reduces the injection amount of the pilot fuel from the injection amount Fb to the injection amount Fa.
  • the combustion chamber 20 responds to a change in engine output by increasing the injection amount of pilot fuel in the first injection along the target output line L.
  • the air-fuel ratio inside changes on the curve Y in FIG. 7. Specifically, in the range where the engine output is low (that is, the range where the engine load is small), the air-fuel ratio is reduced to a range where knocking does not occur, and the fuel is rich. In the range where the engine output is high (that is, the range where the engine load is large), the air-fuel ratio increases to the range where misfire does not occur.
  • the gas engine 1 with a turbo supercharger of the present embodiment is a gas engine with a turbo supercharger of a pilot ignition type, and the cylinder 21 and the piston 22 forming the combustion chamber 20 and combustion.
  • An intake stroke in which an injector 52 for injecting liquid fuel (pilot fuel) is provided in the chamber 20 and a lean air-fuel mixture composed of air and gas fuel is sucked into the combustion chamber 20 by reciprocating the piston 22 in the cylinder 21.
  • a combustion cycle consisting of a compression stroke for compressing the lean air-fuel mixture, an expansion stroke for expanding the combustion gas generated by combustion of the lean air-fuel mixture, and an exhaust stroke for exhausting the combustion gas from the combustion chamber is repeated.
  • the injector 52 performs the first injection at the first timing Ta in the compression stroke, and the second half of the combustion period in which the lean air-fuel mixture in the combustion chamber 20 is burned by the propagation of the flame generated by the first injection. It is characterized in that the second injection is started at the second timing Tb in the expansion stroke.
  • the first injection of liquid fuel into the combustion chamber 20 is performed at the first timing Ta in the compression stroke, and the first injection is performed.
  • the second injection for injecting the liquid fuel into the combustion chamber 20 is started. It is characterized by doing.
  • the pilot fuel (liquid fuel) injected in the second injection is not substantially used for the work of pushing down the piston 22, but is exhausted by combustion. Raise the temperature.
  • the temperature of the combustion gas sent to the turbine 32 of the supercharger 3 becomes higher than that in the case where the second injection is not performed, and more energy can be given to the turbine 32.
  • the supply air pressure sensor 61 can be quickly increased, and the supply amount of the gas fuel can be rapidly increased. it can.
  • Such a combustion method is suitable as a combustion method when the load of the gas engine 1 with a turbocharger suddenly rises, and improves the load responsiveness of the gas engine 1 (that is, the followability of the actual output with respect to the required output). Can be done.
  • the gas engine 1 is a 4-stroke engine, and the second timing Tb is in the range of 60 ° to 180 ° ATDC.
  • the temperature of the combustion gas discharged from the combustion chamber 20 by the additional pilot fuel by the second injection can be raised without interfering with the normal combustion of the lean air-fuel mixture in the combustion chamber 20.
  • the injection amount of the second injection is larger than the injection amount of the first injection.
  • the temperature of the combustion gas discharged from the combustion chamber 20 by the additional pilot fuel by the second injection can be raised without interfering with the normal combustion of the lean air-fuel mixture in the combustion chamber 20.
  • the gas engine 1 with a turbocharger and the combustion method thereof when the engine output is increased from the first output value Da to the third output value Dc via the second output value Db, the first Injection of liquid fuel in the first injection so that the output increase rate from the first output value Da to the second output value Db is larger than the output increase rate from the second output value Db to the third output value Dc. Change the amount.
  • the pilot ignition type gas engine 1 with a turbocharger includes a cylinder 21 and a piston 22 forming a combustion chamber 20, and an injector 52 for injecting pilot fuel (liquid fuel) into the combustion chamber 20.
  • an injector 52 for injecting pilot fuel (liquid fuel) into the combustion chamber 20.
  • 52 performs main injection in a compression stroke for compressing the lean air-fuel mixture sucked into the combustion chamber 20.
  • the injection of pilot fuel in the main injection is performed so that the output increase rate from the first output value Da to the second output value Db is greater than the output increase rate from the second output value Db to the third output value Dc. Change the amount.
  • the gas engine 1 with a turbocharger further includes an air cooler 43 that cools the air sucked into the combustion chamber 20.
  • the air cooler 43 connects the refrigerant flow path 44 through which the refrigerant flows, the bypass passage 46 which is connected to the refrigerant flow path 44 and allows the refrigerant to flow to the downstream side of the refrigerant flow path 44 without heat exchange with air, and the refrigerant flow path 44.
  • It has a flow rate adjusting device 45 that adjusts the flow rate of the refrigerant flowing into the bypass path 46 among the flowing refrigerants, and the flow rate adjusting device 45 blocks the flow of the refrigerant from the refrigerant flow path 44 to the bypass path when the engine load rises.
  • the gas engine 1 with a turbocharger has an engine 2 that obtains power by burning a dilute mixture of gas fuel and air, a compressor 31 that is connected to the engine 2 by an air supply pipe 41, and an exhaust pipe.
  • a supercharger 3 having a turbocharger 32 connected to an engine 2 by 42, a gas fuel supply device (gas fuel supply valve 51 and a gas fuel supply valve driver 50) for supplying gas fuel to an air supply pipe 41, and an air supply pipe 41.
  • an air cooler 43 that cools the air passing therethrough.
  • the air cooler 43 is connected to the refrigerant flow path 44 through which the refrigerant flows, the refrigerant flow path 44, and has a bypass path 46 that allows the refrigerant to flow to the downstream side of the refrigerant flow path 44 without heat exchange with air, and a refrigerant flow path 44.
  • the flow rate adjusting device 45 has a flow rate adjusting device 45 that adjusts the flow rate of the refrigerant flowing into the bypass passage 46 among the flowing refrigerant. To do.
  • the engine 2 of the gas engine with a turbocharger is a 4-stroke engine, but it may be a 2-stroke engine.
  • exhaust, intake, and compression are performed in the upward stroke of the piston 22, and combustion and exhaust are performed in the downward stroke of the piston 22.

Abstract

This pilot ignition type gas engine with a turbocharger repeats a combustion cycle comprising an intake stroke for sucking a lean air-fuel mixture including gaseous fuel and air into a combustion chamber, a compression stroke for compressing the lean air-fuel mixture, an expansion stroke in which combustion gas generated through combustion of the lean air-fuel mixture expands, and an exhaust stroke for exhausting the combustion gas from the combustion chamber, wherein first injection for injecting liquid fuel into the combustion chamber is performed at a first timing in the compression stroke, and second injection for injecting liquid fuel into the combustion chamber begins at a second timing in the expansion stroke, in the second half of a combustion period in which the lean air-fuel mixture in the combustion chamber burns by propagation of a flame generated by the first injection.

Description

ターボ過給機付きガスエンジン及びその燃焼方法Gas engine with turbocharger and combustion method thereof
 本発明は、ターボ過給機付きガスエンジン及びその燃焼方法に関する。 The present invention relates to a gas engine with a turbocharger and a combustion method thereof.
 従来、ターボ過給機付きガスエンジンが知られている。ターボ過給機は、ガスエンジンからの排気の流れを利用して圧縮機を駆動し、ガスエンジンが吸入する空気の密度を高める。この種のターボ過給機付きガスエンジンが、例えば、特許文献1に開示されている。 Conventionally, a gas engine with a turbocharger is known. A turbocharger utilizes the flow of exhaust gas from a gas engine to drive a compressor and increase the density of air drawn by the gas engine. A gas engine with a turbocharger of this type is disclosed in Patent Document 1, for example.
 特許文献1に開示されたターボ過給機付きガスエンジンは、ピストンを内挿したシリンダと、シリンダ内にパイロット燃料を噴射するパイロット燃料噴射弁とを備える。シリンダの吸気口は、吸気管を介して過給機の圧縮機と接続されており、シリンダの排気口は、排気管を介して過給機の排気タービンと接続されている。吸気管には、ガス燃料が供給され、吸気管内でガス燃料と空気の混合気が形成される。パイロット燃料噴射弁は、高圧化されたパイロット燃料を蓄えた高圧燃料管と接続されている。このガスエンジンでは、ピストンの降下の際にシリンダ内に混合気が導入され、吸気口及び排気口が閉止された状態でピストンが上昇して混合気が圧縮される。混合気の圧縮時にパイロット燃料噴射弁からパイロット燃料が噴射され、混合気が着火して燃焼が生じ、シリンダ内圧の上昇に伴ってピストンが降下し、慣性によるピストンの上昇によりシリンダ内から燃焼ガスが排気される。 The gas engine with a turbocharger disclosed in Patent Document 1 includes a cylinder in which a piston is inserted and a pilot fuel injection valve that injects pilot fuel into the cylinder. The intake port of the cylinder is connected to the compressor of the supercharger via an intake pipe, and the exhaust port of the cylinder is connected to the exhaust turbine of the supercharger via an exhaust pipe. Gas fuel is supplied to the intake pipe, and a mixture of gas fuel and air is formed in the intake pipe. The pilot fuel injection valve is connected to a high pressure fuel pipe that stores pilot fuel whose pressure has been increased. In this gas engine, an air-fuel mixture is introduced into the cylinder when the piston descends, and the piston rises with the intake port and the exhaust port closed, and the air-fuel mixture is compressed. When the air-fuel mixture is compressed, pilot fuel is injected from the pilot fuel injection valve, the air-fuel mixture ignites and combustion occurs, the piston descends as the cylinder internal pressure rises, and the combustion gas is released from the cylinder due to the rise of the piston due to inertia. It is exhausted.
 特許文献1のガスエンジンでは、シリンダ内に微量のパイロット燃料(例えば軽油)を直接噴射する直噴マイクロパイロット着火方式が採用されている。そして、混合気の着火タイミングを適切に制御して異常燃焼を回避するために、パイロット燃料の噴射が、混合気の火炎伝播燃焼をアシストするプレ噴射と、混合気の着火タイミングを制御し得るメイン噴射とに分けられている。 The gas engine of Patent Document 1 employs a direct injection micropilot ignition system in which a small amount of pilot fuel (for example, light oil) is directly injected into the cylinder. Then, in order to appropriately control the ignition timing of the air-fuel mixture and avoid abnormal combustion, the pilot fuel injection can control the pre-injection that assists the flame propagation combustion of the air-fuel mixture and the ignition timing of the air-fuel mixture. It is divided into injection and.
 海洋や河川を航行する船舶において、主機関として上記のようなターボ過給機付きガスエンジンが用いられたものがある。船舶の主機関では、推進用プロペラと連結された推進軸又はそれと直結されたエンジンの回転数が与えられた目標回転数となるように、主機関への燃料供給量が制御される。  In ships that navigate the oceans and rivers, there are some ships that use the above-mentioned turbocharged gas engine as the main engine. In the main engine of a ship, the amount of fuel supplied to the main engine is controlled so that the speed of the propulsion shaft connected to the propeller for propelling or the engine directly connected to the propeller is at a given target speed.
 図7は、一般的なガスエンジンの燃焼特性を示すグラフで、横軸が空燃比(空気過剰率)、縦軸が正味平均有効圧(BMEP)を示す。正味平均有効圧は、ガスエンジンのエンジン出力の指標となり得る。一般的なガスエンジンの燃焼特性では、シリンダの燃焼室内の希薄混合気の空燃比が低く且つエンジン出力の高い領域にノッキング領域が存在し、空燃比の高く且つエンジン出力の高い領域には失火領域が存在する。リーンバーンにおいて高出力を得るには、燃焼室内の希薄混合気の空燃比がノッキング領域と失火領域との間の範囲X(operating window)内で燃焼特性が最適、即ち、熱効率が高く、NOx排出量が最小となるように制御される。つまり、定常運転時のガスエンジンでは、希薄混合気の空燃比がノッキング領域と失火領域の間に収まるように、目標回転数を維持するために調整されたガス燃料供給量に対し給気圧が制御される。 FIG. 7 is a graph showing the combustion characteristics of a general gas engine, where the horizontal axis shows the air-fuel ratio (excess air ratio) and the vertical axis shows the net mean effective pressure (BMEP). The net mean effective pressure can be an indicator of the engine output of a gas engine. In the combustion characteristics of a general gas engine, a knocking region exists in a region where the air-fuel ratio of the lean air-fuel mixture in the combustion chamber of the cylinder is low and the engine output is high, and a misfire region exists in a region where the air-fuel ratio is high and the engine output is high. Exists. In order to obtain high output in lean burn, the air-fuel ratio of the lean mixture in the combustion chamber is optimal within the range X (operating window) between the knocking region and the misfire region, that is, the thermal efficiency is high and NOx is emitted. The amount is controlled to be the minimum. In other words, in a gas engine during steady operation, the supply pressure is controlled for the gas fuel supply amount adjusted to maintain the target rotation speed so that the air-fuel ratio of the lean mixture falls between the knocking region and the misfire region. Will be done.
 船舶の推進用プロペラの回転数は、潮流、波、及び、船舶の舵角などによって短期に変化しやすい。このような急激な負荷の変化に対して、ターボ過給機付きガスエンジンでは、ガス燃料供給量を増やしてもターボラグのために給気圧は直ぐには増加しないので、ガス燃料供給量を迅速に増やすことができない。そこで、特許文献2の推進用内燃機関(ガスエンジン)の燃料供給装置は、船舶の将来の予測船速に基づいて算出された予測トルクに基づいて予測燃料供給量を求め、予測燃料供給量に基づいてエンジンへ供給される混合気の圧力を制御する。 -The speed of the propeller for propelling a ship tends to change in a short period of time depending on the tidal current, waves, and the steering angle of the ship. In such a rapid load change, in a gas engine with a turbocharger, even if the gas fuel supply amount is increased, the supply pressure does not immediately increase due to the turbo lag, so the gas fuel supply amount is rapidly increased. Can't. Therefore, the fuel supply device for the propulsion internal combustion engine (gas engine) of Patent Document 2 obtains the predicted fuel supply amount based on the predicted torque calculated based on the future predicted ship speed of the ship, and obtains the predicted fuel supply amount to obtain the predicted fuel supply amount. Based on this, the pressure of the air-fuel mixture supplied to the engine is controlled.
特許5922830号公報Japanese Patent No. 5922830 特開2016-205270号公報JP, 2016-205270, A
 特許文献2の技術は、ガスエンジンの負荷の急上昇を予測して、それに備えて給気圧を予め上昇させておくものであり、給気圧を迅速に上昇させる技術ではない。また、給気圧を迅速に高めるために、過給機をジェットアシストすることが知られているが、この場合、過給機はジェットアシスト装置を備える必要がある。 The technique of Patent Document 2 predicts a sudden increase in the load of the gas engine and raises the supply pressure in advance in preparation for it, and is not a technique that increases the supply pressure quickly. Further, it is known that the supercharger is jet-assisted in order to rapidly increase the air supply pressure. In this case, the supercharger needs to be equipped with a jet assist device.
 以上に鑑み、本発明は、ターボ過給機付きガスエンジンにおいて、エンジン負荷の急上昇に対応してガス燃料供給量を迅速に増加できるように、給気圧を迅速に上昇させる技術を提供することを目的とする。 In view of the above, the present invention provides a technique for rapidly increasing the supply air pressure in a gas engine with a turbocharger so that the gas fuel supply amount can be rapidly increased in response to a sudden increase in engine load. The purpose.
 本発明の一態様に係るガスエンジンの燃焼方法は、ガス燃料及び空気からなる希薄混合気を燃焼室へ吸い込む吸気行程、前記希薄混合気を圧縮する圧縮行程、前記希薄混合気の燃焼により生じた燃焼ガスが膨張する膨張行程、及び、前記燃焼ガスを前記燃焼室から排気する排気行程からなる燃焼サイクルを繰り返す、パイロット着火方式のターボ過給機付きガスエンジンの燃焼方法であって、
前記圧縮行程における第1タイミングで、液体燃料を前記燃焼室内へ噴射する第1噴射を行い、
前記第1噴射によって生じた火炎の伝播により前記燃焼室内の前記希薄混合気が燃焼している燃焼期間の後半であって前記膨張行程における第2タイミングで、前記液体燃料を前記燃焼室内へ噴射する第2噴射を開始するものである。
A combustion method for a gas engine according to one aspect of the present invention is generated by an intake stroke for sucking a lean air-fuel mixture including gas fuel and air into a combustion chamber, a compression stroke for compressing the lean air-fuel mixture, and a combustion of the lean air-fuel mixture. A combustion method of a gas engine with a turbocharger of a pilot ignition system, wherein an expansion stroke in which combustion gas expands, and a combustion cycle consisting of an exhaust stroke in which the combustion gas is exhausted from the combustion chamber is repeated.
At a first timing in the compression stroke, a first injection for injecting liquid fuel into the combustion chamber is performed,
The liquid fuel is injected into the combustion chamber at the second timing in the expansion stroke, which is the latter half of the combustion period in which the lean air-fuel mixture in the combustion chamber is burning due to the propagation of the flame generated by the first injection. The second injection is started.
 また、本発明の一態様に係るターボ過給機付きガスエンジンは、
燃焼室を形成するシリンダ及びピストンと、前記燃焼室内に液体燃料を噴射するインジェクタとを備え、前記シリンダ内で前記ピストンが往復動することにより、空気及びガス燃料からなる希薄混合気を前記燃焼室へ吸い込む吸気行程、前記希薄混合気を圧縮する圧縮行程、前記希薄混合気の燃焼により生じた燃焼ガスが膨張する膨張行程、及び、前記燃焼ガスを前記燃焼室から排気する排気行程からなる燃焼サイクルが繰り返される、パイロット着火方式のターボ過給機付きガスエンジンであって、
前記インジェクタは、前記圧縮行程における第1タイミングで第1噴射を行い、前記第1噴射によって生じた火炎の伝播により前記燃焼室内の前記希薄混合気が燃焼している燃焼期間の後半であって前記膨張行程における第2タイミングで第2噴射を開始するものである。
Further, the gas engine with a turbocharger according to one aspect of the present invention is
The combustion chamber includes a cylinder and a piston that form a combustion chamber, and an injector that injects liquid fuel into the combustion chamber, and the piston reciprocates in the cylinder to generate a lean mixture of air and gas fuel. A combustion cycle including an intake stroke for sucking in the air, a compression stroke for compressing the lean air-fuel mixture, an expansion stroke for expanding combustion gas generated by combustion of the lean air-fuel mixture, and an exhaust stroke for exhausting the combustion gas from the combustion chamber. Is a pilot ignition type gas engine with turbocharger,
The injector performs the first injection at the first timing in the compression stroke, and is in the latter half of the combustion period in which the lean air-fuel mixture in the combustion chamber is burned by the propagation of the flame generated by the first injection. The second injection is started at the second timing in the expansion stroke.
 上記ターボ過給機付きガスエンジン及びその燃焼方法によれば、第2噴射で噴射された液体燃料は、ピストンを押し下げる仕事には実質的に利用されずに、燃焼によって排気温度を上昇させる。これにより、過給機のタービンへ送られる燃焼ガスの温度が、第2噴射が行われない場合と比較して高くなり、タービンに対してより大きなエネルギーを与えることができる。その結果、第2噴射が行われない運転から第2噴射が行われる運転に切り替えたときに、給気圧を迅速に高めることができ、ガス燃料の供給量を迅速に増加させることが可能となる。このような燃焼方法は、ターボ過給機付きガスエンジンの負荷急上昇時の燃焼方法として好適であり、ガスエンジンの負荷応答性(即ち、要求出力に対する実出力の追従性)を向上させることができる。 According to the above turbocharged gas engine and its combustion method, the liquid fuel injected in the second injection is not substantially used for the work of pushing down the piston, but raises the exhaust temperature by combustion. As a result, the temperature of the combustion gas sent to the turbine of the turbocharger becomes higher than that in the case where the second injection is not performed, and more energy can be given to the turbine. As a result, when the operation in which the second injection is not performed is switched to the operation in which the second injection is performed, the supply pressure can be rapidly increased, and the supply amount of the gas fuel can be rapidly increased. .. Such a combustion method is suitable as a combustion method when the load of a gas engine with a turbocharger suddenly rises, and can improve the load response of the gas engine (that is, the followability of the actual output with respect to the required output). ..
 上記ターボ過給機付きガスエンジン及びその燃焼方法において、前記ガスエンジンは4ストロークエンジンであり、前記第2タイミングが60°~180°ATDCの範囲内にあってよい。 In the above turbocharged gas engine and its combustion method, the gas engine may be a four-stroke engine, and the second timing may be in the range of 60° to 180° ATDC.
 これにより、燃焼室内の希薄混合気の正常な燃焼を阻害することなく、第2噴射による追加のパイロット燃料によって燃焼室から排出される燃焼ガスの温度を高めることができる。 With this, the temperature of the combustion gas discharged from the combustion chamber can be raised by the additional pilot fuel from the second injection without hindering the normal combustion of the lean air-fuel mixture in the combustion chamber.
 上記ターボ過給機付きガスエンジン及びその燃焼方法において、エンジン出力を第1出力値から第2出力値を経て第3出力値まで上昇させる際に、前記第1出力値から前記第2出力値までの出力増加率が、前記第2出力値から前記第3出力値までの出力増加率と比較して大きくなるように、前記第1噴射における前記液体燃料の噴射量を変化させてよい。 In the above turbocharged gas engine and its combustion method, when increasing the engine output from a first output value to a second output value to a third output value, from the first output value to the second output value The injection amount of the liquid fuel in the first injection may be changed so that the output increase rate is higher than the output increase rate from the second output value to the third output value.
 このように、比較的低負荷において空燃比を低下させて燃料リッチとすることで、異常燃焼を回避しつつ、速やかに回転数を増加させることができる。そして、この回転数増加の勢いを保持したまま、比較的高負荷において希薄混合気の空燃比を低下させることによって、異常燃焼を回避しつつ、速やかにエンジン出力を高めることができる。よって、ターボ過給機付きガスエンジンの負荷応答性を向上させることができる。 In this way, by lowering the air-fuel ratio at a relatively low load to make the fuel rich, it is possible to quickly increase the number of revolutions while avoiding abnormal combustion. By reducing the air-fuel ratio of the lean air-fuel mixture at a relatively high load while maintaining the momentum of the rotation speed increase, it is possible to quickly increase the engine output while avoiding abnormal combustion. Therefore, the load response of the gas engine with a turbocharger can be improved.
 本発明によれば、ターボ過給機付きガスエンジンにおいて、エンジン負荷の急上昇に対応してガス燃料供給量を迅速に増加できるように、給気圧を迅速に上昇させる技術を提供することができる。 According to the present invention, in a gas engine with a turbocharger, it is possible to provide a technique for rapidly increasing the supply air pressure so that the gas fuel supply amount can be rapidly increased in response to a sudden increase in engine load.
図1は、本発明の一実施形態に係るターボ過給機付きガスエンジンの概略構成図である。FIG. 1 is a schematic configuration diagram of a gas engine with a turbocharger according to an embodiment of the present invention. 図2は、エンジンが備える複数のシリンダのうちの1つの構造を示す断面図である。FIG. 2 is a sectional view showing a structure of one of a plurality of cylinders included in the engine. 図3は、エアクーラの概略構成図である。FIG. 3 is a schematic configuration diagram of the air cooler. 図4は、ターボ過給機付きガスエンジンの制御系統の構成を示す図である。FIG. 4 is a diagram showing a configuration of a control system of a gas engine with a turbocharger. 図5は、負荷急上昇運転におけるパイロット燃料噴射のタイミングチャートである。FIG. 5 is a timing chart of pilot fuel injection in a sudden load increase operation. 図6は、エンジン負荷の急上昇に応答してエンジン出力を上昇させる際の、目標エンジン出力とパイロット燃料噴射量の時系列変化を表す図表である。FIG. 6 is a chart showing time-series changes in the target engine output and the pilot fuel injection amount when the engine output is increased in response to a sudden increase in engine load. 図7は、一般的なガスエンジンの燃焼特性を示すグラフである。FIG. 7 is a graph showing the combustion characteristics of a general gas engine.
 次に、図面を参照して本発明の実施の形態を説明する。本実施形態に係るターボ過給機付きガスエンジン1は、船舶に主機関として搭載されたものである。但し、本発明に係るターボ過給機付きガスエンジン1は、船舶に搭載されるものに限定されない。 Next, an embodiment of the present invention will be described with reference to the drawings. The gas engine 1 with a turbocharger according to the present embodiment is mounted on a ship as a main engine. However, the gas engine 1 with a turbocharger according to the present invention is not limited to the one mounted on a ship.
〔ターボ過給機付きガスエンジン1の構成〕
 図1は、本発明の一実施形態に係るターボ過給機付きガスエンジン1の概略構成図である。図1に示すターボ過給機付きガスエンジン1は、エンジン(エンジン本体)2、過給機3、エアクーラ43、及び、制御装置7(図2参照)を備える。本実施形態では、ターボ過給機付きガスエンジン1によって、推進翼83が取り付けられた推進軸93が駆動される。
[Configuration of gas engine 1 with turbocharger]
FIG. 1 is a schematic configuration diagram of a gas engine 1 with a turbocharger according to an embodiment of the present invention. The gas engine 1 with a turbocharger shown in FIG. 1 includes an engine (engine body) 2, a supercharger 3, an air cooler 43, and a control device 7 (see FIG. 2). In the present embodiment, the gas engine 1 with a turbocharger drives the propulsion shaft 93 to which the propulsion blades 83 are attached.
 本実施形態に係るエンジン2は、4ストロークの多気筒ガス専焼エンジンである。但し、エンジン2は、ガス専焼エンジンに限られず、状況に応じてガス燃料と液体燃料の一方又は双方を燃焼させる二元燃料エンジンであってもよい。 The engine 2 according to this embodiment is a 4-stroke multi-cylinder gas combustion engine. However, the engine 2 is not limited to the gas-only combustion engine, and may be a dual fuel engine that burns one or both of the gas fuel and the liquid fuel depending on the situation.
 図2は、エンジン2が備える複数のシリンダ21のうちの1つの構造を示す断面図である。シリンダ21内にはピストン22が往復動自在に配設されており、シリンダ21及びピストン22によって燃焼室20が形成されている。 FIG. 2 is a cross-sectional view showing the structure of one of the plurality of cylinders 21 included in the engine 2. A piston 22 is reciprocally arranged in the cylinder 21, and a combustion chamber 20 is formed by the cylinder 21 and the piston 22.
 シリンダ21の吸気ポートは、給気管41と接続されている。吸気ポートには、吸気ポートを開閉する吸気弁23が設けられている。シリンダ21の排気ポートは、排気管42と接続されている。排気ポートには、当該排気ポートを開閉する排気弁24が設けられている。燃焼室20には、当該燃焼室20内の圧力である筒内圧を検出する筒内圧力センサ62が設けられている。 The intake port of the cylinder 21 is connected to the air supply pipe 41. An intake valve 23 that opens and closes the intake port is provided in the intake port. The exhaust port of the cylinder 21 is connected to the exhaust pipe 42. The exhaust port is provided with an exhaust valve 24 that opens and closes the exhaust port. The combustion chamber 20 is provided with an in-cylinder pressure sensor 62 that detects the in-cylinder pressure, which is the pressure inside the combustion chamber 20.
 ピストン22は、図略の連接棒により図略のクランク軸と連結されている。シリンダ21内でピストン22が2往復することにより、吸気、圧縮、膨張、及び、排気からなる1燃焼サイクルが行われる。各シリンダ21における1燃焼サイクルの間のエンジン2の位相角は、位相角検出器63により検出される。位相角としては、クランク軸の回転角(クランク角)やピストン22の位置などが用いられてよく、位相角検出器63は、例えば、電磁ピックアップ、近接スイッチ、又はロータリーエンコーダであってよい。また、位相角検出器63では、エンジン2の実回転数を検出する実回転数検出器としても機能する。 The piston 22 is connected to a crankshaft (not shown) by a connecting rod (not shown). The piston 22 reciprocates twice in the cylinder 21 to perform one combustion cycle consisting of intake, compression, expansion, and exhaust. The phase angle of the engine 2 during one combustion cycle in each cylinder 21 is detected by the phase angle detector 63. As the phase angle, the rotation angle (crank angle) of the crankshaft, the position of the piston 22, and the like may be used, and the phase angle detector 63 may be, for example, an electromagnetic pickup, a proximity switch, or a rotary encoder. The phase angle detector 63 also functions as an actual rotation speed detector that detects the actual rotation speed of the engine 2.
 図1に戻って、過給機3は、圧縮機31とタービン32とを含み、これらが軸で接続されてなる。シリンダ21内の燃焼室20は、給気管41を介して圧縮機31と接続されているとともに、排気管42を介してタービン32と接続されている。給気管41は、圧縮機31で圧縮された空気を各シリンダ21の燃焼室20へ導く。給気管41には、給気管41から気体を逃がして給気管41の圧力を開放する給気ブローオフ弁48が設けられている。排気管42は、各シリンダ21の燃焼室20からの排気(燃焼ガス)をタービン32に導く。排気管42には、排気管42から気体の一部を分流させることによりタービン32への流入量を調節する排気ウエストゲート弁49が設けられている。なお、給気管41の下流側部分及び排気管42の上流側部分はシリンダ21と同数の分岐路にマニホールドから分岐しているが、図1では図面の簡略化のために給気管41及び排気管42が1本の流路で描かれている。 Returning to FIG. 1, the supercharger 3 includes a compressor 31 and a turbine 32, which are connected by a shaft. The combustion chamber 20 in the cylinder 21 is connected to the compressor 31 via the air supply pipe 41 and is connected to the turbine 32 via the exhaust pipe 42. The air supply pipe 41 guides the air compressed by the compressor 31 to the combustion chamber 20 of each cylinder 21. The air supply pipe 41 is provided with an air supply blow-off valve 48 that releases gas from the air supply pipe 41 to release the pressure of the air supply pipe 41. The exhaust pipe 42 guides exhaust gas (combustion gas) from the combustion chamber 20 of each cylinder 21 to the turbine 32. The exhaust pipe 42 is provided with an exhaust wastegate valve 49 that regulates the amount of gas flowing into the turbine 32 by dividing a part of the gas from the exhaust pipe 42. The downstream portion of the air supply pipe 41 and the upstream portion of the exhaust pipe 42 are branched from the manifold into the same number of branch paths as the cylinder 21, but in FIG. 1, the air supply pipe 41 and the exhaust pipe are branched to simplify the drawing. 42 is drawn with one flow path.
 給気管41には、圧縮機31で圧縮されて高温となった空気(給気)を冷却するためのエアクーラ43が設けられている。図3に示すように、エアクーラ43は、冷媒流路44を流れる水などの冷媒と給気管41を流れる空気とを熱交換させる熱交換器である。冷媒流路44には、エアクーラ43を通らずに(即ち、エアクーラ43で熱交換に利用されずに)冷媒をエアクーラ43より下流側へ流す、バイパス路46が接続されている。また、冷媒流路44には、バイパス路46を流れる冷媒の流量、換言すれば、エアクーラ43での熱交換に使われる冷媒の流量を調整する流量調整装置45が設けられている。流量調整装置45は、エアクーラ43から出る冷却された空気が所定温度となるように、エアクーラ43で熱交換に利用される冷媒の流量を調整する。 The air supply pipe 41 is provided with an air cooler 43 for cooling the air compressed by the compressor 31 and having a high temperature (air supply). As shown in FIG. 3, the air cooler 43 is a heat exchanger that exchanges heat between a refrigerant such as water flowing through the refrigerant flow path 44 and the air flowing through the air supply pipe 41. A bypass passage 46 is connected to the refrigerant passage 44 so as to flow the refrigerant to the downstream side of the air cooler 43 without passing through the air cooler 43 (that is, not used for heat exchange in the air cooler 43). Further, the refrigerant flow path 44 is provided with a flow rate adjusting device 45 that adjusts the flow rate of the refrigerant flowing through the bypass path 46, in other words, the flow rate of the refrigerant used for heat exchange in the air cooler 43. The flow rate adjusting device 45 adjusts the flow rate of the refrigerant used for heat exchange in the air cooler 43 so that the cooled air discharged from the air cooler 43 reaches a predetermined temperature.
 給気管41のエアクーラ43より下流側には、給気圧力センサ61及び給気温度センサ65が設けられている。給気圧力センサ61は、圧縮機31の吐出圧である給気圧を検出する。給気圧力センサ61は、給気管41の下流側の上述した各分岐路に設けられていてもよいし、上述したマニホールドに1つだけ設けられていてもよい。給気温度センサ65は、給気管41を通じて燃焼室20に導入される空気の温度である給気温度を検出する。同様に、給気温度センサ65は、給気管41の下流側の上述した各分岐路に設けられていてもよいし、上述したマニホールドに1つだけ設けられていてもよい。 A supply air pressure sensor 61 and a supply air temperature sensor 65 are provided downstream of the air cooler 43 of the supply air pipe 41. The air supply pressure sensor 61 detects the air supply pressure, which is the discharge pressure of the compressor 31. The air supply pressure sensor 61 may be provided in each of the above-mentioned branch paths on the downstream side of the air supply pipe 41, or may be provided in only one in the above-mentioned manifold. The supply air temperature sensor 65 detects the supply air temperature which is the temperature of the air introduced into the combustion chamber 20 through the supply air pipe 41. Similarly, the supply air temperature sensor 65 may be provided in each of the above-mentioned branch paths on the downstream side of the supply pipe 41, or may be provided in only one in the above-mentioned manifold.
 更に、給気管41には、シリンダ21ごとのガス燃料供給弁51が設けられている。ガス燃料供給弁51は、圧縮機31から吐出される空気中にガス燃料を供給する。ガス燃料供給弁51の開度(又は、開放時間)は、ガス燃料供給弁ドライバ50によって操作される。ガス燃料供給弁51の開度(又は、開放時間)により、図示されないガス燃料室からガス燃料供給弁51を通じて給気管41へ供給されるガス燃料の供給量が変化する。ガス燃料供給弁ドライバ50及びガス燃料供給弁51により、ガス燃料供給量調整装置が構成される。 Further, the air supply pipe 41 is provided with a gas fuel supply valve 51 for each cylinder 21. The gas fuel supply valve 51 supplies gas fuel into the air discharged from the compressor 31. The opening degree (or opening time) of the gas fuel supply valve 51 is operated by the gas fuel supply valve driver 50. The supply amount of the gas fuel supplied from the gas fuel chamber (not shown) to the air supply pipe 41 through the gas fuel supply valve 51 changes depending on the opening degree (or opening time) of the gas fuel supply valve 51. The gas fuel supply valve driver 50 and the gas fuel supply valve 51 constitute a gas fuel supply amount adjusting device.
 本実施形態に係るエンジン2は、直噴パイロット燃料着火方式を採用し、燃焼室20へパイロット燃料を噴出するパイロット燃料インジェクタ52を備える。パイロット燃料は、例えば、軽油などの液体燃料である。パイロット燃料インジェクタ52は、燃料管を介してコモンレール53に接続されている。コモンレール53には高圧のパイロット燃料が溜められており、各シリンダ21のパイロット燃料インジェクタ52からはこのパイロット燃料を任意のタイミング且つ任意の噴射圧力で噴射することができる。パイロット燃料インジェクタ52からの噴射は、インジェクタドライバ54によって操作される。インジェクタドライバ54及びパイロット燃料インジェクタ52により、パイロット燃料噴射量調整装置が構成される。 The engine 2 according to the present embodiment employs a direct injection pilot fuel ignition method and includes a pilot fuel injector 52 that ejects pilot fuel into the combustion chamber 20. The pilot fuel is, for example, a liquid fuel such as light oil. The pilot fuel injector 52 is connected to the common rail 53 via a fuel pipe. A high-pressure pilot fuel is stored in the common rail 53, and the pilot fuel injector 52 of each cylinder 21 can inject this pilot fuel at an arbitrary timing and an arbitrary injection pressure. The injection from the pilot fuel injector 52 is operated by the injector driver 54. The injector driver 54 and the pilot fuel injector 52 constitute a pilot fuel injection amount adjusting device.
〔ターボ過給機付きガスエンジン1の制御系統の構成〕
 以下、ターボ過給機付きガスエンジン1の制御系統の構成について説明する。図4は、ターボ過給機付きガスエンジン1の制御系統の構成を示す図である。制御装置7は、いわゆるコンピュータであって、CPU等の演算処理部7a、ROM、RAM等の記憶部7bを有する。記憶部7bには、演算処理部7aが実行するプログラム、各種固定データ等が記憶されている。演算処理部7aは、外部装置とのデータ送受信を行う。また、演算処理部7aは、各種センサからの検出信号の入力や各制御対象への制御信号の出力を行う。制御装置7は、記憶部7bに記憶されたプログラム等のソフトウェアを演算処理部7aが読み出して実行することにより、各機能部としての処理を行う。なお、制御装置7は単一のコンピュータによる集中制御により各処理を実行してもよいし、複数のコンピュータの協働による分散制御により各処理を実行してもよい。また、制御装置7は、マイクロコントローラ、プログラマブルロジックコントローラ(PLC)等から構成されていてもよい。
[Structure of control system of gas engine 1 with turbocharger]
Hereinafter, the configuration of the control system of the gas engine 1 with a turbocharger will be described. FIG. 4 is a diagram showing a configuration of a control system of the gas engine 1 with the turbocharger. The control device 7 is a so-called computer, and has an arithmetic processing unit 7a such as a CPU and a storage unit 7b such as a ROM and RAM. The storage unit 7b stores programs executed by the arithmetic processing unit 7a, various fixed data, and the like. The arithmetic processing unit 7a transmits / receives data to / from an external device. In addition, the arithmetic processing unit 7a inputs detection signals from various sensors and outputs control signals to each control target. The control device 7 performs processing as each functional unit by the arithmetic processing unit 7a reading and executing software such as a program stored in the storage unit 7b. The control device 7 may execute each process by centralized control by a single computer, or may execute each process by distributed control by cooperation of a plurality of computers. Further, the control device 7 may be composed of a microcontroller, a programmable logic controller (PLC), or the like.
 制御装置7は、舵角操作具73、操船操作具74、旋回角センサ66、及び、船速計67と電気的に接続されている。 The control device 7 is electrically connected to the rudder angle operation tool 73, the marine vessel manipulating operation tool 74, the turning angle sensor 66, and the speedometer 67.
 船体に設けられた図示しない操縦室には、舵角を操作入力するための舵角操作具73と、エンジン2の回転数や前進/後進を操作入力する操船操作具74とが設けられている。舵角操作具73を介して、操縦者が入力した舵角操作情報が制御装置7へ入力される。操船操作具74を介して、操縦者が入力した操船操作情報が制御装置7へ入力される。これらの操作具73,74は、例えば、ハンドルやレバーであってよい。また、船体には、船体の旋回角を検出する旋回角センサ66、及び、船速を検出する船速計67が設けられている。 A cockpit (not shown) provided on the hull is provided with a steering angle operating tool 73 for operating and inputting a steering angle, and a ship maneuvering operating tool 74 for operating and inputting the rotation speed of the engine 2 and forward / backward movement. .. The steering angle operation information input by the operator is input to the control device 7 via the steering angle operating tool 73. The ship maneuvering operation information input by the operator is input to the control device 7 via the ship maneuvering operation tool 74. These operation tools 73 and 74 may be handles or levers, for example. Further, the hull is provided with a turning angle sensor 66 for detecting the turning angle of the hull and a speedometer 67 for detecting the ship speed.
 制御装置7は、エンジン負荷の急上昇の判定、又は、エンジン負荷の急上昇の予測をする。エンジン負荷の急上昇とは、ターボラグが生じるような(即ち、過給機3で十分な過給が行われず、要求される過給圧に到達するまでに遅延時間が生じるような)、負荷の上昇をいう。負荷急上昇の原因は、例えば、船速アップ、舵角の変更、船体が受ける強い風波、プロペラピッチの変更、船舶がアジマススラスタを搭載している場合には旋回角変更などがある。 The control device 7 determines a sudden rise in engine load or predicts a sudden rise in engine load. A sudden increase in engine load means an increase in load such that turbo lag occurs (that is, the supercharger 3 does not supercharge sufficiently and a delay time occurs before reaching the required supercharging pressure). To say. Causes of a sudden increase in load include, for example, an increase in ship speed, a change in rudder angle, a strong wind wave received by the hull, a change in propeller pitch, and a change in turning angle when the ship is equipped with an azimuth thruster.
 制御装置7は、以下の方法によりエンジン2の負荷が急激に上昇したと判定することができる。例えば、ガス燃料供給量の上昇速度を算出し、ガス燃料供給量の上昇速度が閾値を上回れば負荷が急激に上昇したと判定し、ガス燃料供給量の上昇速度が閾値を下回れば負荷が急激に上昇していないと判定する。例えば、実回転数と目標回転数との偏差を算出し、実回転数と目標回転数との偏差が閾値を上回れば負荷が急激に上昇したと判定し、実回転数と目標回転数との偏差が閾値を下回れば負荷が急激に上昇していないと判定する。また、例えば、エンジン2の出力トルクを図示されないトルク計で検出するとともに出力トルクの上昇速度を算出し、出力トルクの上昇速度が閾値を上回れば負荷が急激に上昇したと判定し、出力トルクの上昇速度が閾値を下回れば負荷が急激に上昇していないと判定する。 The control device 7 can determine that the load on the engine 2 has rapidly increased by the following method. For example, the rate of increase in gas fuel supply is calculated, and if the rate of increase in gas fuel supply exceeds the threshold, it is determined that the load has increased sharply, and if the rate of increase in gas fuel supply is below the threshold, the load is rapid. It is determined that it has not risen. For example, the deviation between the actual rotation speed and the target rotation speed is calculated, and if the deviation between the actual rotation speed and the target rotation speed exceeds the threshold value, it is determined that the load has increased sharply, and the actual rotation speed and the target rotation speed are If the deviation is below the threshold, it is determined that the load has not risen sharply. Further, for example, the output torque of the engine 2 is detected by a torque meter (not shown), the rising speed of the output torque is calculated, and if the rising speed of the output torque exceeds the threshold value, it is determined that the load has risen sharply, and the output torque is determined. If the speed of increase is below the threshold value, it is determined that the load has not increased rapidly.
 また、制御装置7は、舵角操作情報、操船操作情報、船体の旋回角、ガスエンジン1の回転数、及び船速と、記憶部7bに予め記憶された船体性能モデルなどとに基づいて、エンジン負荷の急上昇を事前に予測することができる。例えば、舵角操作具73によって船体の舵角が操作されたときには、近い将来にエンジン負荷の急上昇が見込まれる。例えば、操船操作具74が前進から後進に切り替えられたときには、近い将来にエンジン負荷の急上昇が見込まれる。 Further, the control device 7 is based on the rudder angle operation information, the ship maneuvering operation information, the hull turning angle, the rotation speed of the gas engine 1, the ship speed, and the hull performance model stored in advance in the storage unit 7b. A sudden increase in engine load can be predicted in advance. For example, when the rudder angle of the hull is manipulated by the rudder angle control tool 73, a sharp increase in engine load is expected in the near future. For example, when the ship maneuvering tool 74 is switched from forward to reverse, a sharp increase in engine load is expected in the near future.
 制御装置7は、ガス燃料供給弁ドライバ50、インジェクタドライバ54、給気圧力センサ61、筒内圧力センサ62、位相角検出器63、給気温度センサ65、給気ブローオフ弁48、及び、排気ウエストゲート弁49と電気的に接続されている。制御装置7は、位相角検出器63で検出される位相角に基づいて、各シリンダ21についてガス燃料供給弁ドライバ50及びインジェクタドライバ54を動作させて、実回転数が目標回転数となるように、ガス燃料及びパイロット燃料の供給量及び供給タイミングを制御する。また、制御装置7は、給気圧力センサ61で検出される給気圧に基づいて、給気ブローオフ弁48及び排気ウエストゲート弁49を動作させて、ガス燃料の供給量に対して燃焼室20内の希薄混合気の空燃比が図7に示す範囲X内において燃焼特性が最適、即ち、熱効率が高く、NOx排出量が最小となるように給気圧を制御する。 The control device 7 includes a gas fuel supply valve driver 50, an injector driver 54, an air supply pressure sensor 61, an in-cylinder pressure sensor 62, a phase angle detector 63, an air supply temperature sensor 65, an air supply blow-off valve 48, and an exhaust waist. It is electrically connected to the gate valve 49. The control device 7 operates the gas fuel supply valve driver 50 and the injector driver 54 for each cylinder 21 based on the phase angle detected by the phase angle detector 63 so that the actual rotation speed becomes the target rotation speed. , Control the supply amount and supply timing of gas fuel and pilot fuel. Further, the control device 7 operates the air supply blow-off valve 48 and the exhaust waistgate valve 49 based on the air pressure detected by the air supply pressure sensor 61, and operates the gas fuel supply amount in the combustion chamber 20. In the range X where the air-fuel ratio of the lean mixture is in the range X shown in FIG. 7, the combustion pressure is optimized, that is, the thermal efficiency is high and the NOx emission amount is controlled to be minimum.
 制御装置7は、エンジン負荷が殆ど変化しない間は定常運転を行い、定常運転中にエンジン負荷の急上昇が予測される又はエンジン負荷の急上昇が検出されると、負荷急上昇運転に移行する。以下、負荷急上昇運転時のガスエンジン1の燃焼方法を説明する。 The control device 7 performs steady operation while the engine load hardly changes, and shifts to load rapid increase operation when a sudden increase in engine load is predicted or a sudden increase in engine load is detected during steady operation. Hereinafter, the combustion method of the gas engine 1 during the sudden load increase operation will be described.
 燃焼サイクルの吸気行程では、排気弁24が閉止され吸気弁23が開放された状態でピストン22が下がり、ガス燃料供給弁51から噴射したガス燃料と過給機3からの給気とを含む希薄混合気が、吸気ポートを通じて燃焼室20に吸い込まれる。圧縮行程では、吸気弁23及び排気弁24が閉止された状態でピストン22が上死点まで上がり、燃焼室20内の希薄混合気が圧縮される。ピストン22が上死点に到る前のタイミングで、燃焼室20の圧縮された希薄混合気にパイロット燃料が直接に噴射され、パイロット燃料が自己発火する。この火炎は燃焼室20内の希薄混合気に伝播し、混合気が燃焼する。膨張行程(燃焼行程)では、着火した希薄混合気が燃焼し、燃焼ガスが膨張してピストン22が下死点まで押し下げられる。排気行程では、吸気弁23が閉止され排気弁24が開放された状態で慣性によりピストン22が上がり、燃焼ガスが排気ポートを通じて排気管42へ押し出される。燃焼ガスは、排気管42を通じてタービン32に導入されて、圧縮機31を駆動する動力として使用される。 In the intake stroke of the combustion cycle, the piston 22 is lowered with the exhaust valve 24 closed and the intake valve 23 open, and the gas fuel injected from the gas fuel supply valve 51 and the air supplied from the supercharger 3 are diluted. The air-fuel mixture is sucked into the combustion chamber 20 through the intake port. In the compression stroke, the piston 22 rises to the top dead center with the intake valve 23 and the exhaust valve 24 closed, and the lean air-fuel mixture in the combustion chamber 20 is compressed. At the timing before the piston 22 reaches top dead center, the pilot fuel is directly injected into the compressed dilute mixture of the combustion chamber 20, and the pilot fuel self-ignites. This flame propagates to the lean air-fuel mixture in the combustion chamber 20, and the air-fuel mixture burns. In the expansion stroke (combustion stroke), the ignited lean air-fuel mixture burns, the combustion gas expands, and the piston 22 is pushed down to the bottom dead center. In the exhaust stroke, the piston 22 rises due to inertia while the intake valve 23 is closed and the exhaust valve 24 is opened, and combustion gas is pushed out to the exhaust pipe 42 through the exhaust port. The combustion gas is introduced into the turbine 32 through the exhaust pipe 42 and used as power to drive the compressor 31.
 制御装置7は、負荷急上昇運転を開始すると、図3を参照して、冷媒流路44を流れる冷媒の全てがエアクーラ43を通過するように、流量調整装置45を動作させる。つまり、流量調整装置45は、バイパス路46の冷媒の流れを遮断する。これにより、エアクーラ43の全冷却能力で給気温度を急速に下げることができる。 When the load sudden rise operation is started, the control device 7 operates the flow rate adjusting device 45 so that all the refrigerant flowing in the refrigerant flow path 44 passes through the air cooler 43, referring to FIG. That is, the flow rate adjusting device 45 blocks the flow of the refrigerant in the bypass passage 46. As a result, the supply air temperature can be rapidly lowered by the total cooling capacity of the air cooler 43.
 予混合燃焼方式のエンジン2の正常な燃焼では、着火した火炎が順次未燃混合気中を伝播して燃焼を完了する。しかし、負荷上昇などで燃焼室20内の熱負荷と燃焼圧力が上昇すると未燃部分の混合気が火炎伝播を待たずに自己着火を起こす。この自己着火が連鎖的に発生すると、強烈な圧力上昇や温度上昇が発生する。これが「ノッキング」現象である。上記のように、給気温度を下げることにより、燃焼室20内の熱負荷が抑えられ、ノッキング(異常燃焼)の発生を抑制することができる。 In normal combustion of the engine 2 of the premixed combustion method, the ignited flame propagates in the unburned air-fuel mixture in sequence to complete the combustion. However, when the heat load and the combustion pressure in the combustion chamber 20 increase due to an increase in load or the like, the air-fuel mixture in the unburned portion causes self-ignition without waiting for flame propagation. If this self-ignition occurs in a chain, a strong pressure rise and temperature rise will occur. This is the "knocking" phenomenon. As described above, by lowering the supply air temperature, the heat load in the combustion chamber 20 can be suppressed, and the occurrence of knocking (abnormal combustion) can be suppressed.
 図5は、負荷急上昇運転におけるパイロット燃料噴射のタイミングチャートである。このタイミングチャートにおいて、縦軸はパイロット燃料噴射量と筒内圧力とを表し、横軸はピストン22の位相角[ATDC:After Top Dead Center]を表す。このタイミングチャートに示されるように、制御装置7に制御されたパイロット燃料インジェクタ52は、1燃焼サイクルにおいて、少なくとも1回の第1噴射(メイン噴射)と、少なくとも1回の第2噴射(ポスト噴射)とを行う。制御装置7は、位相角検出器63で検出された位相角に基づいて噴射のタイミングを計る。 FIG. 5 is a timing chart of pilot fuel injection in a sudden load increase operation. In this timing chart, the vertical axis represents the pilot fuel injection amount and the in-cylinder pressure, and the horizontal axis represents the phase angle [ATDC: After Top Dead Center] of the piston 22. As shown in this timing chart, the pilot fuel injector 52 controlled by the control device 7 has at least one first injection (main injection) and at least one second injection (post injection) in one combustion cycle. ) And. The control device 7 measures the injection timing based on the phase angle detected by the phase angle detector 63.
 第1噴射は、圧縮行程における上死点(TDC)前の所定の第1タイミングTaで行われる。より詳細には、第1タイミングTaにインジェクタドライバ54によってパイロット燃料インジェクタ52が開かれて、微量(定格負荷時の投入総熱量の1%前後)のパイロット燃料が燃焼室20内の希薄混合気中に噴出する。第1タイミングTaは、-30°~0°ATDCの範囲内にあってよい。 The first injection is performed at a predetermined first timing Ta before the top dead center (TDC) in the compression stroke. More specifically, the pilot fuel injector 52 is opened by the injector driver 54 at the first timing Ta, and a small amount of pilot fuel (around 1% of the total heat input at the rated load) is contained in the lean air-fuel mixture in the combustion chamber 20. Squirt into. The first timing Ta may be in the range of −30° to 0° ATDC.
 第1噴射で燃焼室20内に噴出した高圧のパイロット燃料により、燃焼室20内の希薄混合気が着火する。つまり、第1噴射は、燃焼期間の開始タイミングを決定する。燃焼室20における希薄混合気の燃焼圧力により、エンジン2の出力が得られる。 The high-pressure pilot fuel injected into the combustion chamber 20 in the first injection ignites the lean air-fuel mixture in the combustion chamber 20. That is, the first injection determines the start timing of the combustion period. The combustion pressure of the lean air-fuel mixture in the combustion chamber 20 provides the output of the engine 2.
 ピストン22が上死点(TDC)を超えると、圧縮行程から膨張行程に移行する。第2噴射は、膨張行程における燃焼期間の後半の所定の第2タイミングTbで行われる。より詳細には、第2タイミングTbにインジェクタドライバ54によってパイロット燃料インジェクタ52が開かれて、パイロット燃料が燃焼室20内に噴出する。なお、燃焼期間の後半とは、燃焼室20内の希薄混合気が燃焼している間であって、筒内圧力が最大筒内圧力に到達する時点Tcよりも後を意味する。 When the piston 22 exceeds top dead center (TDC), the compression stroke shifts to the expansion stroke. The second injection is performed at a predetermined second timing Tb in the latter half of the combustion period in the expansion stroke. More specifically, the pilot fuel injector 52 is opened by the injector driver 54 at the second timing Tb, and the pilot fuel is ejected into the combustion chamber 20. The latter half of the combustion period means that the lean air-fuel mixture in the combustion chamber 20 is burning and after the time Tc at which the in-cylinder pressure reaches the maximum in-cylinder pressure.
 第2噴射で噴射されたパイロット燃料の燃焼によって、筒内の燃焼ガスの温度が上昇する。また、第2噴射で噴射されたパイロット燃料によって、膨張行程及びそれに続く排気行程において、燃焼室20内や排気管42内の燃焼ガス中の燃え残りのガス燃料が燃焼する。これにより、過給機3のタービン32へ送られる燃焼ガスの温度が、第2噴射が行われない場合と比較して高くなり、タービン32に対してより大きなエネルギーを与えることができる。よって、タービン32の回転数を、第2噴射が行われない場合と比較して増加させることができ、過給機3による過給圧を迅速に上昇させることができる。その結果、エンジン負荷の急上昇時のターボラグを解消又は短縮することができる。 The temperature of the combustion gas in the cylinder rises due to the combustion of the pilot fuel injected in the second injection. Further, the pilot fuel injected in the second injection burns the unburned gas fuel in the combustion gas in the combustion chamber 20 and the exhaust pipe 42 in the expansion stroke and the subsequent exhaust stroke. As a result, the temperature of the combustion gas sent to the turbine 32 of the supercharger 3 becomes higher than that in the case where the second injection is not performed, and more energy can be given to the turbine 32. Therefore, the rotation speed of the turbine 32 can be increased as compared with the case where the second injection is not performed, and the supercharging pressure by the supercharger 3 can be rapidly increased. As a result, it is possible to eliminate or shorten the turbo lag when the engine load rapidly increases.
 第1タイミングTa、即ち、燃焼期間の開始タイミングが、-30°~0°ATDCの範囲内であるとき、筒内圧力が最大筒内圧力に到達する時点Tcよりも前に第2噴射を開始すると、最大筒内圧力が上昇して異常燃焼が生じるおそれがある。一方で、180°ATDCよりも後に第2噴射を開始すると、第2噴射で供給された燃料が燃焼できないおそれがある。このような観点から、第2タイミングTb、即ち、第2噴射の開始タイミングは、60°~180°ATDCの範囲内であってよい。第2噴射の終了タイミングは、パイロット燃料インジェクタ52の噴射能力により定められてよい。 When the first timing Ta, that is, the start timing of the combustion period is in the range of -30 ° to 0 ° ATDC, the second injection is started before the time point Tc when the in-cylinder pressure reaches the maximum in-cylinder pressure. Then, the maximum in-cylinder pressure may increase and abnormal combustion may occur. On the other hand, if the second injection is started after 180 ° ATDC, the fuel supplied by the second injection may not be combusted. From this point of view, the second timing Tb, that is, the start timing of the second injection may be in the range of 60 ° to 180 ° ATDC. The end timing of the second injection may be determined by the injection capacity of the pilot fuel injector 52.
 また、第2噴射の噴射量は、第1噴射の噴射量よりも多い。第1噴射の噴射量に対する第2噴射の噴射量の比は、1より大きく15以下、望ましくは、8以上12以下である。比が1以下では、排気温度の上昇が不十分となり、タービン32の回転数を迅速に高めるという効果が得られない。一方、比が15以上では、排気温度の上昇が過剰となり、排気温度が部材の許容温度を超えるおそれがある。 Also, the injection amount of the second injection is larger than the injection amount of the first injection. The ratio of the injection amount of the second injection to the injection amount of the first injection is larger than 1 and 15 or less, preferably 8 or more and 12 or less. If the ratio is 1 or less, the increase in the exhaust temperature becomes insufficient, and the effect of rapidly increasing the rotation speed of the turbine 32 cannot be obtained. On the other hand, when the ratio is 15 or more, the exhaust temperature rises excessively, and the exhaust temperature may exceed the allowable temperature of the member.
 エンジン負荷が比較的低負荷の範囲ではノッキングなどの異常燃焼が生じにくく、エンジン負荷が比較的高負荷の範囲で異常燃焼が生じやすいことが分かっている。そこで、エンジン負荷を比較的低負荷から急上昇させる際には、エンジン出力の変化率を二段階とすることが望ましい。 It is known that abnormal combustion such as knocking is unlikely to occur in the range of relatively low engine load, and abnormal combustion is likely to occur in the range of relatively high engine load. Therefore, when the engine load is rapidly increased from a relatively low load, it is desirable to set the rate of change of the engine output in two stages.
 図6は、エンジン負荷の急上昇に応答して、エンジン出力を比較的低出力の第1出力値Daから、第2出力値Dbを経て、比較的高出力の第3出力値Dcまで上昇させる際の、目標エンジン出力とパイロット燃料噴射量の時系列変化を表す図表である。第2出力値Dbは、異常燃焼が生じにくい比較的低負荷の範囲と、異常燃焼が生じやすい比較的高負荷との境界値に対応するエンジン出力値である。同図において、エンジン負荷の上昇に対応してエンジン出力を一定の変化率で上昇させる場合の、エンジン出力の変化を固定変化率出力ラインL0で示す。ここで、固定変化率出力ラインL0の出力変化率は、高負荷においてもノッキングが発生しない最大の出力変化率とする。 FIG. 6 shows when the engine output is increased from the relatively low output first output value Da to the relatively high output third output value Dc via the second output value Db in response to the sudden increase in engine load. 4 is a chart showing a time series change of a target engine output and a pilot fuel injection amount. The second output value Db is an engine output value corresponding to a boundary value between a relatively low load range in which abnormal combustion is unlikely to occur and a relatively high load in which abnormal combustion is likely to occur. In the figure, a change in engine output when the engine output is increased at a constant rate of change in response to an increase in engine load is shown by a fixed rate of change output line L0. Here, the output change rate of the fixed change rate output line L0 is the maximum output change rate at which knocking does not occur even under high load.
 本願発明の目標出力ラインLでは、エンジン出力を第1出力値Daから第2出力値Dbまで増加させる際の出力変化率は、固定変化率出力ラインL0の出力変化率よりも大きい(即ち、接線の傾きが大きい)。また、目標出力ラインLでは、エンジン出力を第2出力値Dbから第3出力値Dcまで増加させる際の出力変化率は、固定変化率出力ラインL0の出力変化率よりも小さい(即ち、接線の傾きが小さい)、又は、同じである。その結果、目標出力ラインLでは、固定変化率出力ラインL0と比較して、出力を第3出力値Dcまで早く上昇させることができる。 In the target output line L of the present invention, the output change rate when the engine output is increased from the first output value Da to the second output value Db is larger than the output change rate of the fixed change rate output line L0 (that is, the tangent line). Has a large inclination). Further, in the target output line L, the output change rate when the engine output is increased from the second output value Db to the third output value Dc is smaller than the output change rate of the fixed change rate output line L0 (that is, the tangent line). The inclination is small) or the same. As a result, in the target output line L, the output can be quickly increased to the third output value Dc as compared with the fixed change rate output line L0.
 目標出力ラインLは、予め制御装置7に記憶されている。制御装置7は、エンジン出力を第1出力値Daから第3出力値Dcまで急上昇させる際に、目標出力ラインLに沿って、ガス燃料供給弁51から供給されるガス燃料の供給量と、パイロット燃料インジェクタ52から第1噴射において噴出するパイロット燃料の噴射量とを変化させる。 The target output line L is stored in the control device 7 in advance. When the engine output is rapidly increased from the first output value Da to the third output value Dc, the control device 7 supplies the gas fuel supplied from the gas fuel supply valve 51 along the target output line L and the pilot. The amount of pilot fuel injected from the fuel injector 52 in the first injection is changed.
 制御装置7は、エンジン出力を第1出力値Daから第2出力値Dbまで増加させる際には、目標出力ラインLに沿ってエンジン出力を増加させるように、ガス燃料の供給量を増加させるとともに、パイロット燃料の噴射量を噴射量Faから噴射量Fbまで漸次増加させる。なお、従来の燃焼方法でエンジン出力を上昇させる際は、ガス燃料の供給量を増加させるがパイロット燃料の噴射量は噴射量Faで一定である。噴射量Faと噴射量Fbはガスエンジン1に応じて設定され、予め制御装置7に記憶されている。 When the engine output is increased from the first output value Da to the second output value Db, the control device 7 increases the supply amount of gas fuel so as to increase the engine output along the target output line L. , The pilot fuel injection amount is gradually increased from the injection amount Fa to the injection amount Fb. When the engine output is increased by the conventional combustion method, the supply amount of gas fuel is increased, but the injection amount of the pilot fuel is constant at the injection amount Fa. The injection amount Fa and the injection amount Fb are set according to the gas engine 1 and are stored in advance in the control device 7.
 制御装置7は、エンジン出力を第2出力値Dbから第3出力値Dcまで増加させる際には、目標出力ラインLに沿ってエンジン出力を増加させるように、ガス燃料の供給量を増加させるとともに、パイロット燃料の噴射量を噴射量Fbに維持する。つまり、パイロット燃料の噴射量は、増加した状態で維持される。制御装置7は、エンジン出力が第3出力値Dcに到達すると、パイロット燃料の噴射量を噴射量Fbから噴射量Faまで徐々に減少させる。 When increasing the engine output from the second output value Db to the third output value Dc, the control device 7 increases the supply amount of gas fuel so as to increase the engine output along the target output line L. , Maintain the injection amount of pilot fuel at the injection amount Fb. That is, the injection amount of pilot fuel is maintained in an increased state. When the engine output reaches the third output value Dc, the control device 7 gradually reduces the injection amount of the pilot fuel from the injection amount Fb to the injection amount Fa.
 上記の様にエンジン負荷を比較的低負荷から急上昇する際に、目標出力ラインLに沿って第1噴射におけるパイロット燃料の噴射量を増加させることによって、エンジン出力の変化に対して、燃焼室20内の空燃比は図7中の曲線Y上を変化する。具体的には、エンジン出力が低い範囲(即ち、エンジン負荷が小さい範囲)ではノッキングが生じない範囲まで空燃比が低減し、燃料リッチな状態となる。エンジン出力が高い範囲(即ち、エンジン負荷が大きい範囲)では失火しない範囲まで空燃比が増加する。 When the engine load suddenly rises from a relatively low load as described above, the combustion chamber 20 responds to a change in engine output by increasing the injection amount of pilot fuel in the first injection along the target output line L. The air-fuel ratio inside changes on the curve Y in FIG. 7. Specifically, in the range where the engine output is low (that is, the range where the engine load is small), the air-fuel ratio is reduced to a range where knocking does not occur, and the fuel is rich. In the range where the engine output is high (that is, the range where the engine load is large), the air-fuel ratio increases to the range where misfire does not occur.
 以上に説明したように、本実施形態のターボ過給機付きガスエンジン1は、パイロット着火方式のターボ過給機付きガスエンジンであって、燃焼室20を形成するシリンダ21及びピストン22と、燃焼室20内に液体燃料(パイロット燃料)を噴射するインジェクタ52とを備え、シリンダ21内でピストン22が往復動することにより、空気及びガス燃料からなる希薄混合気を燃焼室20へ吸い込む吸気行程、希薄混合気を圧縮する圧縮行程、希薄混合気の燃焼により生じた燃焼ガスが膨張する膨張行程、及び、燃焼ガスを燃焼室から排気する排気行程からなる燃焼サイクルが繰り返される。そして、インジェクタ52が、圧縮行程における第1タイミングTaで第1噴射を行い、第1噴射によって生じた火炎の伝播により燃焼室20内の希薄混合気が燃焼している燃焼期間の後半であって膨張行程における第2タイミングTbで第2噴射を開始することを特徴としている。 As described above, the gas engine 1 with a turbo supercharger of the present embodiment is a gas engine with a turbo supercharger of a pilot ignition type, and the cylinder 21 and the piston 22 forming the combustion chamber 20 and combustion. An intake stroke in which an injector 52 for injecting liquid fuel (pilot fuel) is provided in the chamber 20 and a lean air-fuel mixture composed of air and gas fuel is sucked into the combustion chamber 20 by reciprocating the piston 22 in the cylinder 21. A combustion cycle consisting of a compression stroke for compressing the lean air-fuel mixture, an expansion stroke for expanding the combustion gas generated by combustion of the lean air-fuel mixture, and an exhaust stroke for exhausting the combustion gas from the combustion chamber is repeated. Then, the injector 52 performs the first injection at the first timing Ta in the compression stroke, and the second half of the combustion period in which the lean air-fuel mixture in the combustion chamber 20 is burned by the propagation of the flame generated by the first injection. It is characterized in that the second injection is started at the second timing Tb in the expansion stroke.
 同様に、本実施形態に係るターボ過給機付きガスエンジン1の燃焼方法は、圧縮行程における第1タイミングTaで、液体燃料を燃焼室20内へ噴射する第1噴射を行い、第1噴射によって生じた火炎の伝播により燃焼室20内の希薄混合気が燃焼している燃焼期間の後半であって膨張行程における第2タイミングTbで、液体燃料を燃焼室20内へ噴射する第2噴射を開始することを特徴としている。 Similarly, in the combustion method of the gas engine 1 with a turbocharger according to the present embodiment, the first injection of liquid fuel into the combustion chamber 20 is performed at the first timing Ta in the compression stroke, and the first injection is performed. In the latter half of the combustion period in which the lean air-fuel mixture in the combustion chamber 20 is burning due to the propagation of the generated flame, at the second timing Tb in the expansion stroke, the second injection for injecting the liquid fuel into the combustion chamber 20 is started. It is characterized by doing.
 上記ターボ過給機付きガスエンジン1及びその燃焼方法によれば、第2噴射で噴射されたパイロット燃料(液体燃料)は、ピストン22を押し下げる仕事には実質的に利用されずに、燃焼によって排気温度を上昇させる。これにより、過給機3のタービン32へ送られる燃焼ガスの温度が、第2噴射が行われない場合と比較して高くなり、タービン32に対してより大きなエネルギーを与えることができる。その結果、第2噴射が行われない運転から第2噴射が行われる運転に切り替えたときに、給気圧力センサ61を迅速に高めることができ、ガス燃料の供給量を迅速に増加させることができる。このような燃焼方法は、ターボ過給機付きガスエンジン1の負荷急上昇時の燃焼方法として好適であり、ガスエンジン1の負荷応答性(即ち、要求出力に対する実出力の追従性)を向上させることができる。 According to the gas engine 1 with a turbocharger and its combustion method, the pilot fuel (liquid fuel) injected in the second injection is not substantially used for the work of pushing down the piston 22, but is exhausted by combustion. Raise the temperature. As a result, the temperature of the combustion gas sent to the turbine 32 of the supercharger 3 becomes higher than that in the case where the second injection is not performed, and more energy can be given to the turbine 32. As a result, when the operation in which the second injection is not performed is switched to the operation in which the second injection is performed, the supply air pressure sensor 61 can be quickly increased, and the supply amount of the gas fuel can be rapidly increased. it can. Such a combustion method is suitable as a combustion method when the load of the gas engine 1 with a turbocharger suddenly rises, and improves the load responsiveness of the gas engine 1 (that is, the followability of the actual output with respect to the required output). Can be done.
 また、本実施形態に係るターボ過給機付きガスエンジン1及びその燃焼方法において、ガスエンジン1は4ストロークエンジンであり、第2タイミングTbが60°~180°ATDCの範囲内にある。 Further, in the gas engine 1 with a turbocharger and the combustion method thereof according to the present embodiment, the gas engine 1 is a 4-stroke engine, and the second timing Tb is in the range of 60 ° to 180 ° ATDC.
 これにより、燃焼室20内の希薄混合気の正常な燃焼を阻害することなく、第2噴射による追加のパイロット燃料によって燃焼室20から排出される燃焼ガスの温度を高めることができる。 Thereby, the temperature of the combustion gas discharged from the combustion chamber 20 by the additional pilot fuel by the second injection can be raised without interfering with the normal combustion of the lean air-fuel mixture in the combustion chamber 20.
 また、本実施形態に係るターボ過給機付きガスエンジン1及びその燃焼方法において、第1噴射の噴射量に対し第2噴射の噴射量が多い。 Further, in the gas engine 1 with a turbocharger and its combustion method according to the present embodiment, the injection amount of the second injection is larger than the injection amount of the first injection.
 これにより、燃焼室20内の希薄混合気の正常な燃焼を阻害することなく、第2噴射による追加のパイロット燃料によって燃焼室20から排出される燃焼ガスの温度を高めることができる。 Thereby, the temperature of the combustion gas discharged from the combustion chamber 20 by the additional pilot fuel by the second injection can be raised without interfering with the normal combustion of the lean air-fuel mixture in the combustion chamber 20.
 また、本実施形態に係るターボ過給機付きガスエンジン1及びその燃焼方法においては、エンジン出力を第1出力値Daから第2出力値Dbを経て第3出力値Dcまで上昇させる際に、第1出力値Daから第2出力値Dbまでの出力増加率が、第2出力値Dbから第3出力値Dcまでの出力増加率と比較して大きくなるように、第1噴射における液体燃料の噴射量を変化させる。 Further, in the gas engine 1 with a turbocharger and the combustion method thereof according to the present embodiment, when the engine output is increased from the first output value Da to the third output value Dc via the second output value Db, the first Injection of liquid fuel in the first injection so that the output increase rate from the first output value Da to the second output value Db is larger than the output increase rate from the second output value Db to the third output value Dc. Change the amount.
 即ち、パイロット着火方式のターボ過給機付きガスエンジン1は、燃焼室20を形成するシリンダ21及びピストン22と、燃焼室20内にパイロット燃料(液体燃料)を噴射するインジェクタ52とを備え、インジェクタ52は、エンジン出力を第1出力値Daから第2出力値Dbを経て第3出力値Dcまで上昇させる際に、燃焼室20へ吸い込んだ希薄混合気を圧縮する圧縮行程においてメイン噴射を行い、第1出力値Daから第2出力値Dbまでの出力増加率が、第2出力値Dbから第3出力値Dcまでの出力増加率と比較して大きくなるように、メイン噴射におけるパイロット燃料の噴射量を変化させる。 That is, the pilot ignition type gas engine 1 with a turbocharger includes a cylinder 21 and a piston 22 forming a combustion chamber 20, and an injector 52 for injecting pilot fuel (liquid fuel) into the combustion chamber 20. When the engine output is raised from the first output value Da to the third output value Dc via the second output value Db, 52 performs main injection in a compression stroke for compressing the lean air-fuel mixture sucked into the combustion chamber 20. The injection of pilot fuel in the main injection is performed so that the output increase rate from the first output value Da to the second output value Db is greater than the output increase rate from the second output value Db to the third output value Dc. Change the amount.
 このように、比較的低負荷において空燃比を低下させて燃料リッチとすることで、異常燃焼を回避しつつ、速やかに回転数を増加させることができる。そして、この回転数増加の勢いを保持したまま、比較的高負荷において希薄混合気の空燃比を低下させることによって、異常燃焼を回避しつつ、速やかにエンジン出力を高めることができる。よって、ターボ過給機付きガスエンジン1の負荷応答性を向上させることができる。 In this way, by lowering the air-fuel ratio at a relatively low load to make the fuel rich, it is possible to quickly increase the number of revolutions while avoiding abnormal combustion. Then, while maintaining the momentum of this increase in the number of revolutions, by lowering the air-fuel ratio of the lean air-fuel mixture at a relatively high load, it is possible to quickly increase the engine output while avoiding abnormal combustion. Therefore, the load response of the gas engine 1 with a turbocharger can be improved.
 また、本実施形態に係るターボ過給機付きガスエンジン1は、燃焼室20へ吸い込まれる空気を冷却するエアクーラ43を更に備える。エアクーラ43は、冷媒が流れる冷媒流路44と、冷媒流路44と接続され、冷媒を空気と熱交換させることなく当該冷媒流路44の下流側へ流すバイパス路46と、冷媒流路44を流れる冷媒のうちバイパス路46へ流入する冷媒の流量を調整する流量調整装置45とを有し、流量調整装置45は、エンジン負荷の上昇時に冷媒流路44からバイパス路への冷媒の流れを遮断する。 The gas engine 1 with a turbocharger according to this embodiment further includes an air cooler 43 that cools the air sucked into the combustion chamber 20. The air cooler 43 connects the refrigerant flow path 44 through which the refrigerant flows, the bypass passage 46 which is connected to the refrigerant flow path 44 and allows the refrigerant to flow to the downstream side of the refrigerant flow path 44 without heat exchange with air, and the refrigerant flow path 44. It has a flow rate adjusting device 45 that adjusts the flow rate of the refrigerant flowing into the bypass path 46 among the flowing refrigerants, and the flow rate adjusting device 45 blocks the flow of the refrigerant from the refrigerant flow path 44 to the bypass path when the engine load rises. To do.
 即ち、ターボ過給機付きガスエンジン1は、ガス燃料及び空気からなる希薄混合気を燃焼させて動力を得るエンジン2と、給気管41によりエンジン2と接続された圧縮機31、及び、排気管42によりエンジン2と接続されたタービン32を有する過給機3と、ガス燃料を給気管41へ供給するガス燃料供給装置(ガス燃料供給弁51及びガス燃料供給弁ドライバ50)と、給気管41を通る空気を冷却するエアクーラ43と、を備える。エアクーラ43は、冷媒が流れる冷媒流路44、冷媒流路44と接続され、冷媒を空気と熱交換させることなく当該冷媒流路44の下流側へ流すバイパス路46、及び、冷媒流路44を流れる冷媒のうちバイパス路46へ流入する冷媒の流量を調整する流量調整装置45を有し、流量調整装置45は、エンジン負荷の上昇時に冷媒流路44からバイパス路46への冷媒の流れを遮断する。 That is, the gas engine 1 with a turbocharger has an engine 2 that obtains power by burning a dilute mixture of gas fuel and air, a compressor 31 that is connected to the engine 2 by an air supply pipe 41, and an exhaust pipe. A supercharger 3 having a turbocharger 32 connected to an engine 2 by 42, a gas fuel supply device (gas fuel supply valve 51 and a gas fuel supply valve driver 50) for supplying gas fuel to an air supply pipe 41, and an air supply pipe 41. And an air cooler 43 that cools the air passing therethrough. The air cooler 43 is connected to the refrigerant flow path 44 through which the refrigerant flows, the refrigerant flow path 44, and has a bypass path 46 that allows the refrigerant to flow to the downstream side of the refrigerant flow path 44 without heat exchange with air, and a refrigerant flow path 44. The flow rate adjusting device 45 has a flow rate adjusting device 45 that adjusts the flow rate of the refrigerant flowing into the bypass passage 46 among the flowing refrigerant. To do.
 このように、エンジン負荷の上昇時に、エアクーラ43の全冷却能力でエンジン2への給気を冷却することにより、燃焼室20内の熱負荷が抑えられ、ノッキング(異常燃焼)の発生を抑制することができる。 In this way, when the engine load rises, the heat load in the combustion chamber 20 is suppressed by cooling the supply air to the engine 2 with the full cooling capacity of the air cooler 43, and the occurrence of knocking (abnormal combustion) is suppressed. be able to.
 以上に本発明の好適な実施の形態を説明したが、本発明の思想を逸脱しない範囲で、上記実施形態の具体的な構造及び/又は機能の詳細を変更したものも本発明に含まれ得る。 Although the preferred embodiment of the present invention has been described above, the present invention may include modified details of the specific structure and / or function of the above embodiment without departing from the idea of the present invention. ..
 例えば、上記実施形態に係るターボ過給機付きガスエンジンのエンジン2は、4ストロークエンジンであるが、2ストロークエンジンであってもよい。2ストロークエンジンでは、ピストン22の上昇行程で排気、吸気、及び圧縮が行われ、ピストン22の降下行程で燃焼及び排気が行われる。 For example, the engine 2 of the gas engine with a turbocharger according to the above embodiment is a 4-stroke engine, but it may be a 2-stroke engine. In the two-stroke engine, exhaust, intake, and compression are performed in the upward stroke of the piston 22, and combustion and exhaust are performed in the downward stroke of the piston 22.
1  :ターボ過給機付きガスエンジン
2  :エンジン(エンジン本体)
3  :過給機
7  :制御装置
7a :演算処理部
7b :記憶部
20 :燃焼室
21 :シリンダ
22 :ピストン
23 :吸気弁
24 :排気弁
31 :圧縮機
32 :タービン
41 :給気管
42 :排気管
43 :エアクーラ
44 :冷媒流路
45 :流量調整装置
46 :バイパス路
48 :給気ブローオフ弁
49 :排気ウエストゲート弁
50 :ガス燃料供給弁ドライバ
51 :ガス燃料供給弁
52 :パイロット燃料インジェクタ
53 :コモンレール
54 :インジェクタドライバ
61 :給気圧力センサ
62 :筒内圧力センサ
63 :位相角検出器
65 :給気温度センサ
66 :旋回角センサ
67 :船速計
73 :舵角操作具
74 :操船操作具
83 :推進翼
93 :推進軸
1: Gas engine with turbocharger 2: Engine (engine body)
3: supercharger 7: control device 7a: arithmetic processing unit 7b: storage unit 20: combustion chamber 21: cylinder 22: piston 23: intake valve 24: exhaust valve 31: compressor 32: turbine 41: air supply pipe 42: exhaust gas Pipe 43: Air cooler 44: Refrigerant flow passage 45: Flow rate adjusting device 46: Bypass passage 48: Air supply blow-off valve 49: Exhaust waste gate valve 50: Gas fuel supply valve driver 51: Gas fuel supply valve 52: Pilot fuel injector 53: Common rail 54: Injector driver 61: Air supply pressure sensor 62: In-cylinder pressure sensor 63: Phase angle detector 65: Air supply temperature sensor 66: Turning angle sensor 67: Vessel speed gauge 73: Rudder angle operation tool 74: Ship operation tool 83: Propulsion wing 93: Propulsion shaft

Claims (11)

  1.  ガス燃料及び空気からなる希薄混合気を燃焼室へ吸い込む吸気行程、前記希薄混合気を圧縮する圧縮行程、前記希薄混合気の燃焼により生じた燃焼ガスが膨張する膨張行程、及び、前記燃焼ガスを前記燃焼室から排気する排気行程からなる燃焼サイクルを繰り返す、パイロット着火方式のターボ過給機付きガスエンジンの燃焼方法であって、
     前記圧縮行程における第1タイミングで、液体燃料を前記燃焼室内へ噴射する第1噴射を行い、
     前記第1噴射によって生じた火炎の伝播により前記燃焼室内の前記希薄混合気が燃焼している燃焼期間の後半であって前記膨張行程における第2タイミングで、前記液体燃料を前記燃焼室内へ噴射する第2噴射を開始する、
    ガスエンジンの燃焼方法。
    An intake stroke for sucking a lean air-fuel mixture containing gas fuel and air into a combustion chamber, a compression stroke for compressing the lean air-fuel mixture, an expansion stroke for expanding the combustion gas generated by the combustion of the lean air-fuel mixture, and the combustion gas. It is a combustion method of a gas engine with a turbo supercharger of a pilot ignition system, which repeats a combustion cycle consisting of an exhaust stroke from the combustion chamber.
    At a first timing in the compression stroke, a first injection for injecting liquid fuel into the combustion chamber is performed,
    The liquid fuel is injected into the combustion chamber at the second timing in the expansion stroke, which is the latter half of the combustion period in which the lean air-fuel mixture in the combustion chamber is burning due to the propagation of the flame generated by the first injection. Start the second injection,
    Gas engine combustion method.
  2.  前記ガスエンジンは4ストロークエンジンであり、前記第2タイミングが60°~180°ATDCの範囲内にある、
    請求項1に記載のガスエンジンの燃焼方法。
    The gas engine is a 4-stroke engine, and the second timing is in the range of 60 ° to 180 ° ATDC.
    The combustion method for a gas engine according to claim 1.
  3.  前記第1噴射の噴射量に対し前記第2噴射の噴射量が多い、
    請求項1又は2に記載のガスエンジンの燃焼方法。
    The injection amount of the second injection is larger than the injection amount of the first injection.
    The combustion method for a gas engine according to claim 1.
  4.  エンジン出力を第1出力値から第2出力値を経て第3出力値まで上昇させる際に、前記第1出力値から前記第2出力値までの出力増加率が、前記第2出力値から前記第3出力値までの出力増加率と比較して大きくなるように、前記第1噴射における前記液体燃料の噴射量を変化させる、
    請求項1~3のいずれか一項に記載のガスエンジンの燃焼方法。
    When increasing the engine output from the first output value to the third output value via the second output value, the output increase rate from the first output value to the second output value is from the second output value to the second output value. 3 The injection amount of the liquid fuel in the first injection is changed so as to be larger than the output increase rate up to the output value.
    The method for burning a gas engine according to any one of claims 1 to 3.
  5.  燃焼室を形成するシリンダ及びピストンと、前記燃焼室内に液体燃料を噴射するインジェクタとを備え、前記シリンダ内で前記ピストンが往復動することにより、空気及びガス燃料からなる希薄混合気を前記燃焼室へ吸い込む吸気行程、前記希薄混合気を圧縮する圧縮行程、前記希薄混合気の燃焼により生じた燃焼ガスが膨張する膨張行程、及び、前記燃焼ガスを前記燃焼室から排気する排気行程からなる燃焼サイクルが繰り返される、パイロット着火方式のターボ過給機付きガスエンジンであって、
     前記インジェクタは、前記圧縮行程における第1タイミングで第1噴射を行い、前記第1噴射によって生じた火炎の伝播により前記燃焼室内の前記希薄混合気が燃焼している燃焼期間の後半であって前記膨張行程における第2タイミングで第2噴射を開始する、
    ターボ過給機付きガスエンジン。
    The combustion chamber includes a cylinder and a piston that form a combustion chamber, and an injector that injects liquid fuel into the combustion chamber, and the piston reciprocates in the cylinder to generate a lean mixture of air and gas fuel. A combustion cycle including an intake stroke for sucking in the air, a compression stroke for compressing the lean air-fuel mixture, an expansion stroke for expanding combustion gas generated by combustion of the lean air-fuel mixture, and an exhaust stroke for exhausting the combustion gas from the combustion chamber. Is a gas engine with a pilot ignition type turbo supercharger that repeats
    The injector performs the first injection at the first timing in the compression stroke, and is in the latter half of the combustion period in which the lean air-fuel mixture in the combustion chamber is burned by the propagation of the flame generated by the first injection. The second injection is started at the second timing in the expansion stroke.
    Gas engine with turbocharger.
  6.  4ストロークエンジンであり、前記第2タイミングが60°~180°ATDCの範囲内にある、
    請求項5に記載のターボ過給機付きガスエンジン。
    A four-stroke engine, wherein the second timing is within the range of 60° to 180° ATDC,
    The gas engine with a turbocharger according to claim 5.
  7.  前記第1噴射の噴射量に対し前記第2噴射の噴射量が多い、
    請求項5又は6に記載のターボ過給機付きガスエンジン。
    The injection amount of the second injection is larger than the injection amount of the first injection.
    The gas engine with a turbocharger according to claim 5 or 6.
  8.  前記インジェクタは、エンジン出力を第1出力値から第2出力値を経て第3出力値まで上昇させる際に、前記第1出力値から前記第2出力値までの出力増加率が、前記第2出力値から前記第3出力値までの出力増加率と比較して大きくなるように、前記第1噴射における前記液体燃料の噴射量を変化させる、
    請求項5~7のいずれか一項に記載のターボ過給機付きガスエンジン。
    When increasing the engine output from the first output value to the third output value via the second output value, the injector has an output increase rate from the first output value to the second output value, The injection amount of the liquid fuel in the first injection is changed so as to be larger than the output increase rate from the value to the third output value.
    A gas engine with a turbocharger according to any one of claims 5 to 7.
  9.  前記燃焼室へ吸い込まれる前記空気を冷却するエアクーラを更に備え、
     前記エアクーラは、冷媒が流れる冷媒流路と、前記冷媒流路と接続され、前記冷媒を前記空気と熱交換させることなく当該冷媒流路の下流側へ流すバイパス路と、前記冷媒流路を流れる前記冷媒のうち前記バイパス路へ流入する前記冷媒の流量を調整する流量調整装置とを有し、
     前記流量調整装置は、エンジン負荷の上昇時に前記冷媒流路から前記バイパス路への前記冷媒の流れを遮断する、
    請求項5~8のいずれか一項に記載のターボ過給機付きガスエンジン。
    Further provided with an air cooler for cooling the air sucked into the combustion chamber,
    The air cooler is connected to the refrigerant flow path through which the refrigerant flows, and a bypass path that flows the refrigerant to the downstream side of the refrigerant flow path without heat exchange with the air, and flows through the refrigerant flow path. A flow rate adjusting device for adjusting the flow rate of the refrigerant flowing into the bypass passage among the refrigerant,
    The flow rate adjusting device blocks the flow of the refrigerant from the refrigerant flow path to the bypass path when the engine load increases.
    A gas engine with a turbocharger according to any one of claims 5 to 8.
  10.  燃焼室を形成するシリンダ及びピストンと、前記燃焼室内に液体燃料を噴射するインジェクタとを備え、前記シリンダ内で前記ピストンが往復動することにより、空気及びガス燃料からなる希薄混合気を前記燃焼室へ吸い込む吸気行程、前記希薄混合気を圧縮する圧縮行程、前記希薄混合気の燃焼により生じた燃焼ガスが膨張する膨張行程、及び、前記燃焼ガスを前記燃焼室から排気する排気行程からなる燃焼サイクルが繰り返される、パイロット着火方式のターボ過給機付きガスエンジンであって、
     前記インジェクタは、エンジン出力を第1出力値から第2出力値を経て第3出力値まで上昇させる際に、前記圧縮行程においてメイン噴射を行い、前記第1出力値から前記第2出力値までの出力増加率が、前記第2出力値から前記第3出力値までの出力増加率と比較して大きくなるように、前記メイン噴射における前記液体燃料の噴射量を変化させる、
    ターボ過給機付きガスエンジン。
    The combustion chamber includes a cylinder and a piston that form a combustion chamber, and an injector that injects liquid fuel into the combustion chamber, and the piston reciprocates in the cylinder to generate a lean mixture of air and gas fuel. A combustion cycle consisting of an intake stroke for sucking in, a compression stroke for compressing the lean air-fuel mixture, an expansion stroke for expanding the combustion gas generated by the combustion of the lean air-fuel mixture, and an exhaust stroke for exhausting the combustion gas from the combustion chamber. Is a pilot ignition type gas engine with turbocharger,
    When increasing the engine output from the first output value to the third output value via the second output value, the injector performs main injection in the compression stroke, and the injector outputs the first output value to the second output value. The injection amount of the liquid fuel in the main injection is changed so that the output increase rate becomes larger than the output increase rate from the second output value to the third output value.
    Gas engine with turbocharger.
  11.  ガス燃料及び空気からなる希薄混合気を燃焼させて動力を得るエンジンと、
     給気管により前記エンジンと接続された圧縮機、及び、排気管により前記エンジンと接続されたタービンを有する過給機と、
     前記ガス燃料を前記給気管へ供給するガス燃料供給装置と、
     前記給気管を通る前記空気を冷却するエアクーラと、を備え、
     前記エアクーラは、冷媒が流れる冷媒流路、前記冷媒流路と接続され、前記冷媒を前記空気と熱交換させることなく当該冷媒流路の下流側へ流すバイパス路、及び、前記冷媒流路を流れる前記冷媒のうち前記バイパス路へ流入する前記冷媒の流量を調整する流量調整装置を有し、前記流量調整装置は、エンジン負荷の上昇時に前記冷媒流路から前記バイパス路への前記冷媒の流れを遮断する、
    ターボ過給機付きガスエンジン。
    An engine that obtains power by burning a lean mixture of gas fuel and air;
    A compressor having a compressor connected to the engine by an air supply pipe, and a turbocharger having a turbine connected to the engine by an exhaust pipe.
    A gas fuel supply device that supplies the gas fuel to the air supply pipe,
    An air cooler for cooling the air passing through the air supply pipe is provided.
    The air cooler is a refrigerant passage through which a refrigerant flows, a bypass passage that is connected to the refrigerant passage and flows the refrigerant to the downstream side of the refrigerant passage without heat exchange with the air, and the refrigerant passage. Of the refrigerant, it has a flow rate adjusting device for adjusting the flow rate of the refrigerant flowing into the bypass passage, the flow rate adjusting device, when the engine load rises, the flow of the refrigerant from the refrigerant passage to the bypass passage. Cut off,
    Gas engine with turbocharger.
PCT/JP2019/045230 2019-03-04 2019-11-19 Gas engine with turbocharger, and combustion method for same WO2020179141A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980093489.2A CN113544374B (en) 2019-03-04 2019-11-19 Gas engine with turbocharger and combustion method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-038163 2019-03-04
JP2019038163A JP7376995B2 (en) 2019-03-04 2019-03-04 Gas engine with turbocharger and its combustion method

Publications (1)

Publication Number Publication Date
WO2020179141A1 true WO2020179141A1 (en) 2020-09-10

Family

ID=72337801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045230 WO2020179141A1 (en) 2019-03-04 2019-11-19 Gas engine with turbocharger, and combustion method for same

Country Status (3)

Country Link
JP (1) JP7376995B2 (en)
CN (1) CN113544374B (en)
WO (1) WO2020179141A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7213929B1 (en) 2021-09-21 2023-01-27 ヤンマーホールディングス株式会社 Engine system and gaseous fuel combustion method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922830B2 (en) * 1975-11-25 1984-05-29 カミア−・アクチボラグ Method and apparatus for selective impregnation of foreign fiber materials
JP2001207894A (en) * 2000-01-26 2001-08-03 Nippon Soken Inc Direct injection engine control device
JP2002106376A (en) * 2000-09-29 2002-04-10 Mazda Motor Corp Spark ignition type direct injection engine equipped with turbo supercharger
JP2003148153A (en) * 2001-11-08 2003-05-21 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Engine supercharge control device of construction machine
JP2009530544A (en) * 2006-03-22 2009-08-27 ボーグワーナー・インコーポレーテッド Integrated air supply and EGR valve

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4882307U (en) * 1972-01-13 1973-10-06
JPS5117628U (en) * 1974-07-25 1976-02-09
JP2000161110A (en) 1998-11-30 2000-06-13 Mazda Motor Corp Control device for diesel engine with turbo-supercharger
JP3900819B2 (en) 1999-12-14 2007-04-04 マツダ株式会社 Control device for turbocharged engine
JP3984463B2 (en) 2001-11-28 2007-10-03 富士重工業株式会社 In-cylinder injection engine control device with turbocharger
JP2006104989A (en) 2004-10-04 2006-04-20 Hino Motors Ltd Exhaust emission control device
JP5512811B2 (en) 2009-07-03 2014-06-04 ボルボ テクノロジー コーポレイション Method of operating diesel type dual fuel internal combustion engine and diesel type dual fuel internal combustion engine operable according to the method
DE112011105070B4 (en) * 2011-03-23 2018-05-30 Toyota Jidosha Kabushiki Kaisha Fuel injection control device for an internal combustion engine
CN102322332B (en) * 2011-06-20 2013-03-27 奇瑞汽车股份有限公司 Combustion chamber structure of CNG (Compressed Natural Gas) engine and fuel injection method thereof
JP2013256936A (en) * 2012-05-16 2013-12-26 Denso Corp Exhaust recirculating device
JP2014098339A (en) 2012-11-14 2014-05-29 Mitsubishi Heavy Ind Ltd Control device for diesel engine, diesel engine, and method for controlling diesel engine
JP5922830B1 (en) * 2015-06-18 2016-05-24 三井造船株式会社 Gas engine
US10105650B2 (en) 2015-10-29 2018-10-23 Cummins Inc. Multi-pulse injection events for a dual-fuel engine
US10202888B2 (en) * 2015-12-08 2019-02-12 Ford Global Technologies, Llc Engine air path cooling system
JP6795933B2 (en) 2016-09-12 2020-12-02 三菱重工業株式会社 Turbo speed control device and turbo speed control method
JP2018105209A (en) 2016-12-26 2018-07-05 ダイハツ工業株式会社 Fuel injection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922830B2 (en) * 1975-11-25 1984-05-29 カミア−・アクチボラグ Method and apparatus for selective impregnation of foreign fiber materials
JP2001207894A (en) * 2000-01-26 2001-08-03 Nippon Soken Inc Direct injection engine control device
JP2002106376A (en) * 2000-09-29 2002-04-10 Mazda Motor Corp Spark ignition type direct injection engine equipped with turbo supercharger
JP2003148153A (en) * 2001-11-08 2003-05-21 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Engine supercharge control device of construction machine
JP2009530544A (en) * 2006-03-22 2009-08-27 ボーグワーナー・インコーポレーテッド Integrated air supply and EGR valve

Also Published As

Publication number Publication date
JP2020143577A (en) 2020-09-10
JP7376995B2 (en) 2023-11-09
CN113544374B (en) 2023-09-12
CN113544374A (en) 2021-10-22

Similar Documents

Publication Publication Date Title
US7918090B2 (en) Method and apparatus for controlling an internal combustion engine
JP4253339B2 (en) Control device for internal combustion engine
JP6049921B1 (en) Gas engine control method and gas engine drive system
KR102242378B1 (en) Large two-stroke uniflow scavenged gaseous fueled engine and method for controlling conditions in combustion chamber
JP2021102962A (en) Low-load operation method for operating reciprocating piston internal combustion engine, computer program product, and reciprocating piston internal combustion engine
WO2008013157A1 (en) Exhaust gas recirculation system for internal combustion engine
WO2020179141A1 (en) Gas engine with turbocharger, and combustion method for same
JP6412243B2 (en) Control device for internal combustion engine, ship equipped with the same, and method for operating internal combustion engine
JP6128091B2 (en) Diesel engine and manufacturing method thereof
JP6002339B1 (en) Gas engine drive system and gas engine control method
US11136925B2 (en) Device and method for controlling engine
JP2018096311A (en) Control device of internal combustion engine
CN111527294A (en) Control method of gas engine and gas engine system
CN111094726B (en) Engine operating method and engine system
DK181193B1 (en) A large two-stroke uniflow scavenged engine and method for operating cylinders selectively according to the pre-mix process or the compression-ignition process
DK202170521A1 (en) A large two-stroke uniflow scavenged gaseous fueled engine and method for controlling supply of liquid fuel
DK202170392A1 (en) A large two-stroke uniflow scavenged gaseous fueled engine and method for optimizing conditions in combustion chambers
JP2005282466A (en) Control device for premixed compression self ignition internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918086

Country of ref document: EP

Kind code of ref document: A1