WO2020178921A1 - Mirror display - Google Patents

Mirror display Download PDF

Info

Publication number
WO2020178921A1
WO2020178921A1 PCT/JP2019/008206 JP2019008206W WO2020178921A1 WO 2020178921 A1 WO2020178921 A1 WO 2020178921A1 JP 2019008206 W JP2019008206 W JP 2019008206W WO 2020178921 A1 WO2020178921 A1 WO 2020178921A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion
adhesive layer
film
adhesive
refractive index
Prior art date
Application number
PCT/JP2019/008206
Other languages
French (fr)
Japanese (ja)
Inventor
将臣 桑原
隆行 夏目
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2019/008206 priority Critical patent/WO2020178921A1/en
Publication of WO2020178921A1 publication Critical patent/WO2020178921A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a mirror display.
  • Patent Document 1 discloses a mirror display (display device having a mirror surface function) using an organic EL as a light emitting element.
  • the conventional mirror display has a problem that the change in color of oblique visual recognition (for example, bluish or reddish of white light) is large with respect to frontal visual recognition.
  • a mirror display includes a display panel, a diffusion adhesive layer, a first film, an air layer, and a half mirror in order from the lower layer, and the diffusion adhesive layer includes spherical diffusion particles and an adhesive.
  • the refractive index of the diffused particles is 1.42 to 1.70
  • the refractive index of the pressure-sensitive adhesive is 1.45 to 1.55
  • the difference in refractive index between the diffused particles and the pressure-sensitive adhesive is 0. It is from 07 to 0.25
  • the haze of the diffusion adhesive layer is from 40 to 99%.
  • a mirror display in a mirror display, it is possible to suppress a change in color tint between oblique viewing and front viewing.
  • FIG. 1A is a schematic plan view showing the configuration of the mirror display of the first embodiment
  • FIG. 1B is a cross-sectional view showing the configuration of the mirror display of the first embodiment
  • 2C to 2E are side views of the mirror display.
  • 3 is a cross-sectional view showing the configuration of the mirror display of Example 1 (characteristics of the diffusion adhesive layer and visual recognition characteristics are additionally shown).
  • FIG. 6 is a cross-sectional view showing a configuration of a mirror display of Example 2.
  • FIG. 7 is a cross-sectional view showing the configuration of a mirror display of Example 3.
  • FIG. 9 is a cross-sectional view showing the structure of a mirror display of Example 4.
  • FIG. 9 is a cross-sectional view showing the configuration of the mirror display of Example 5; 16 is a cross-sectional view showing the configuration of a mirror display of Example 6.
  • FIG. It is sectional drawing which shows the structure of the mirror display of Example 7. It is sectional drawing which shows the structure of the mirror display of Example 8.
  • 16 is a cross-sectional view showing the configuration of the mirror display of Example 9.
  • FIG. 7 is a cross-sectional view showing a configuration of a mirror display of Comparative Example 1.
  • FIG. 7 is a cross-sectional view showing the configuration of a mirror display of Comparative Example 2.
  • FIG. 11 is a cross-sectional view showing a configuration of a mirror display of Comparative Example 3.
  • FIG. It is sectional drawing which shows the structural example of a mirror display.
  • FIG. 1 (a) is a schematic plan view showing the configuration of the mirror display of the present embodiment
  • FIG. 1 (b) is a cross-sectional view showing the configuration of the mirror display
  • 2 (a) and 2 (b) are plan views (top views) of the mirror display
  • FIGS. 2 (c) to 2 (e) are side views of the mirror display.
  • a display panel 30 for example, a panel in which a self-luminous element is used for subpixels
  • a functional layer 40 for example, a panel in which a self-luminous element is used for subpixels
  • an air layer 50 for example, a half mirror 60
  • a protective cover 70 is arranged in order from the lower layer.
  • the half mirror 60 has a semi-transmissive property, reflects a part of the light from the outside and allows a part of the light from the inside (light from the display panel 30) to pass through. Therefore, the mirror display 2 has a mirror surface function. Also has a display function. The display panel 30 may function as a mirror surface when it is OFF (non-display), or may function as a mirror surface when the display panel 30 is ON (display state).
  • the half mirror 60 includes, for example, a translucent substrate and a semi-transmissive metal layer formed on the translucent substrate.
  • the functional layer 40 and the half mirror 60 are arranged at intervals. For example, an air layer 50 having a thickness of 10 mm is provided between the functional layer 40 and the half mirror 60.
  • one rectangular display panel 30 is included in the edge of the half mirror 60 in a plan view, but the invention is not limited to this.
  • the edge of the half mirror 60 may include a plurality of rectangular display panels 30.
  • the edge of the half mirror 60 may have an irregular shape (non-rectangular shape).
  • the configuration may include a plurality of display panels 30).
  • both the half mirror 60 and the display panel 30 may be flat as shown in FIG. 2C, or a curved display may be displayed on the flat half mirror 60 as shown in FIG. 2D.
  • the panel 30a and the flat display panel 30b may be combined, or as shown in FIG. 2E, the curved half mirror 60 may be combined with the curved display panel 30a and the flat display panel 30b. May be.
  • a base material 12 As shown in FIG. 1, in the display panel 30, a base material 12, a barrier layer 3, a TFT layer 4, a top emission type light emitting element layer 5, and a sealing layer 6 are arranged in order from the lower layer, and a display area DA is provided. A plurality of sub-pixels SP each including the self-luminous element X are formed.
  • the base material 12 may be a glass substrate or a flexible substrate including a resin film such as polyimide.
  • a flexible substrate can also be constituted by two layers of resin films and an inorganic insulating film sandwiched between them.
  • the barrier layer 3 is a layer that prevents foreign matters such as water and oxygen from entering the TFT layer 4 and the light emitting element layer 5, and is formed by, for example, a CVD method, which is a silicon oxide film, a silicon nitride film, or an oxynitride film. It can be composed of a silicon film or a laminated film thereof.
  • the TFT (thin film transistor) layer 4 includes, for example, a semiconductor layer (including the semiconductor film 15) above the barrier layer 3 and an inorganic insulating film 16 (gate including a semiconductor film 15 above the semiconductor layer).
  • a semiconductor layer including the semiconductor film 15
  • an inorganic insulating film 16 gate including a semiconductor film 15 above the semiconductor layer.
  • a metal layer including the capacitive electrode CE
  • an inorganic insulating film 20 above the second metal layer a third metal layer (including the data signal line DL) above the inorganic insulating film 20, and a third metal
  • the flattening film 21 above the layer is included.
  • the semiconductor layer is composed of, for example, amorphous silicon, LTPS (low temperature polysilicon), or an oxide semiconductor, and the thin film transistor TR is composed so as to include the gate electrode GE and the semiconductor film 15.
  • a light emitting element X and a pixel circuit thereof are provided for each sub-pixel SP in the display area DA, and the pixel circuit and wiring connected to the pixel circuit are formed in the TFT layer 4.
  • the wirings connected to the pixel circuit for example, the scanning signal line GL and the emission control line EM formed in the first metal layer, the initialization power supply line IL formed in the second metal layer, and the third metal layer are formed.
  • the pixel circuit includes a drive transistor that controls the current of the light emitting element, a write transistor that is electrically connected to the scanning signal line, a light emission control transistor that is electrically connected to the light emission control line, and the like.
  • the first metal layer, the second metal layer, and the third metal layer are composed of, for example, a single-layer film or a multi-layer film of a metal containing at least one of aluminum, tungsten, molybdenum, tantalum, chromium, titanium, and copper. To be done.
  • the inorganic insulating films 16, 18, and 20 can be formed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a laminated film thereof formed by a CVD method.
  • the flattening film 21 can be made of a coatable organic material such as polyimide or acrylic resin.
  • the light emitting element layer 5 includes a first electrode (lower electrode) 22 above the planarization film 21, an insulating edge cover film 23 that covers an edge of the first electrode 22, and an EL above the edge cover film 23. It includes an (electroluminescence) layer 24 and a second electrode (upper electrode) 25 that is an upper layer than the EL layer 24.
  • the edge cover film 23 is formed, for example, by applying an organic material such as polyimide or acrylic resin and then patterning it by photolithography.
  • a light emitting element Xr red
  • a light emitting element Xg green
  • a light emitting element Xb blue
  • each light emitting element has an island-shaped first electrode 22 and an EL layer 24 ( The light emitting layer EK is included), and the second electrode 25 is included.
  • the second electrode 25 is a solid common electrode common to a plurality of light emitting elements.
  • the light emitting elements Xr, Xg, and Xb may be, for example, OLEDs (organic light emitting diodes) that include organic layers as light emitting layers, or QLEDs (quantum dot light emitting diodes) that include quantum dot layers as light emitting layers. Good.
  • OLEDs organic light emitting diodes
  • QLEDs quantum dot light emitting diodes
  • the EL layer 24 is composed of, for example, laminating a hole injection layer, a hole transport layer, a light emitting layer EK, an electron transport layer, and an electron injection layer in this order from the lower layer side.
  • the light emitting layer is formed in an island shape in the opening (for each sub pixel) of the edge cover film 23 by a vapor deposition method, an inkjet method, or a photolithography method.
  • the other layers are formed in an island shape or a solid shape (common layer). It is also possible to adopt a configuration in which one or more layers out of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer are not formed.
  • the first electrode 22 is made of, for example, a stack of ITO (Indium Tin Oxide) and Ag (silver) or an alloy containing Ag, and has light reflectivity.
  • the second electrode 25 is made of, for example, a metal thin film of magnesium-silver alloy or the like, and has optical transparency.
  • the driving current between the first electrode 22 and the second electrode 25 causes holes and electrons to recombine in the light emitting layer EK, and the excitons generated thereby become the ground state.
  • Light is emitted in the transition process.
  • the light emitting elements Xr, Xg, and Xb are QLEDs, holes and electrons are recombined in the light emitting layer EK by the driving current between the first electrode 22 and the second electrode 25, and the resulting exciton is a quantum dot.
  • Light (fluorescence) is emitted in the process of transition from the conduction band level to the valence band level.
  • the sealing layer 6 that covers the light emitting element layer 5 is a layer that prevents foreign substances such as water and oxygen from penetrating into the light emitting element layer 5.
  • FIG. 3 is a cross-sectional view showing the structure of the mirror display of Example 1 (characteristics of the diffusion adhesive layer and visual recognition characteristics are added).
  • the functional layer 40 of Example 1 is, in order from the lower layer side, an acrylic transparent adhesive layer CA1, a 1/4 ⁇ plate 43, an acrylic transparent adhesive layer CA2, an absorption polarizing plate 46, a diffusion adhesive containing an adhesive and spherical diffusion particles.
  • a transparent film 47 (first film FF) in which a hard coat layer made of an acrylic UV curable resin is provided on a layer KL and a TAC (triacetyl cellulose) film is provided.
  • Acrylic adhesive with excellent heat resistance and transparency is used as the adhesive, but rubber adhesive, acrylic adhesive, urethane adhesive, silicone adhesive, epoxy adhesive, cellulose adhesive An adhesive or the like may be used.
  • Acrylic-styrene copolymer resin (refractive index can be adjusted between 1.49 and 1.60 by adjusting the copolymerization ratio of acrylic and styrene) is used as the diffusion particles, but silicon resin (refractive index) is used. Rate 1.42), inorganic silica (refractive index 1.43), polymethylmethacrylate resin (refractive index 1.49), acrylic-styrene copolymer resin (refractive index 1.55), melamine resin (refractive index 1.57) ), Polycarbonate resin (refractive index 1.57), styrene resin (refractive index 1.60), benzoguanamine-melamine formaldehyde resin (refractive index 1.68) and the like may be used.
  • the 1 / 4 ⁇ plate 43 is a film in which rod-shaped or disk-shaped liquid crystal molecules, inverse wavelength-dispersible polycarbonate, or the like are uniaxially oriented by an alignment film or stretching (for example, an in-plane retardation Re at a wavelength of 550 nm is approximately 137 nm. ) Is performed, and linearly polarized light is converted to circularly polarized light or circularly polarized light is converted to linearly polarized light.
  • an alignment film or stretching for example, an in-plane retardation Re at a wavelength of 550 nm is approximately 137 nm.
  • the absorption polarizing plate 46 is, for example, a uniaxially stretched iodine dyeing type absorption polarizing plate, and transmits only specific linearly polarized light.
  • the angle formed by the slow axis of the 1/4 ⁇ plate 43 and the transmission axis or the absorption axis of the absorption polarizing plate 46 is 45°.
  • the front white light (extreme angle 0 °) from the diffusion adhesive layer KL of Example 1 includes white light WWs derived from front white emission light WW (small tint) from the panel and oblique white emission light WB from the panel.
  • White light WBs derived from (large tint) is included, and oblique white light (for example, a polar angle of 60°) from the diffusion adhesive layer KL is white derived from front white emitted light WW (small tint).
  • the light WWn and the white light WBn derived from the oblique white emitted light WB (large color tone) from the panel are included.
  • Comparative Example 1 of FIG. 12 in which the diffusion adhesive layer KL is replaced with the adhesive layer NL (front white light is composed of front white emission light WW from the panel, and oblique white light is oblique white emission light WB from the panel It is possible to suppress the tint change (for example, the bluish becomes stronger) when viewed obliquely.
  • the oblique white emitted light WB has a larger (stronger) tint (bluer or reddish) than the front white emitted light WW is because of the microcavity of each color light emitting element (a microresonator for improving color purity and luminous efficiency). This is because the structure is designed based on the front direction (panel normal direction). Depending on the waveform profile of each color, the oblique white emission light WB becomes bluish and the bluish change due to the polar angle becomes large. In the configuration of FIG.
  • the film thickness 30 ⁇ m
  • the refractive index of the adhesive 1.47
  • the refractive index of the diffusing particles 1.595
  • the refractive index difference between the adhesive and the diffusing particles 0.125.
  • the particle size (average particle size) of the diffusing particles 1.3 ⁇ m
  • the haze (according to JIS K-7136) 92.6%
  • the oblique white light with respect to the front white light (polar angle 0°) of the mirror display 2 The change in tint at a polar angle of 60 °) is evaluated.
  • the mirror display 2 is displayed in white, the hue in the polar angle 0° direction (panel normal direction) and the hue in the polar angle 60° direction are obtained using a goniometer, and the difference between these hues is calculated.
  • the absolute value ⁇ b is measured. The closer ⁇ b is to zero, the closer the hues in the front direction and the oblique direction are, and the case of 0 ⁇ ⁇ b ⁇ 10 is “particularly excellent”, the case of 10 ⁇ b ⁇ 20 is “excellent”, and 20 ⁇ b.
  • the case of ⁇ 30 is judged to be “good”, and the case of ⁇ b>30 is judged to be “poor” (the improvement effect is not recognized).
  • the 1/4 ⁇ plate 43 and the absorption polarization plate 46 function as a circular polarization plate. Therefore, most of the external light WF reflected by the first electrode (reflection electrode) or the wiring or the second electrode 25 of the display panel 30 is absorbed by the absorption polarizing plate 46, and the panel is transparent (when the display panel 30 is in the OFF state. Sometimes, the phenomenon that the display panel 30 can be seen through the half mirror 60) is eliminated. Similarly, with respect to the light emitted from the display panel 30 and reflected by the display panel 30 after being reflected by the half mirror 60, most of the light is absorbed by the absorption polarizing plate 46, so that double reflection of an image is eliminated.
  • FIG. 4 is a sectional view showing the structure of the mirror display of the second embodiment.
  • the functional layer 40 of Example 2 is, in order from the lower layer side, a transparent adhesive layer CA, a 1/4 ⁇ plate 43, a diffusion adhesive layer KL containing an adhesive and spherical diffusion particles, and an absorption polarizing plate 46 (first film FF). Equipped with.
  • the front white light (extreme angle 0 °) from the diffusion adhesive layer KL of Example 2 includes white light WWs derived from front white emission light WW (small tint) from the panel and oblique white emission light WB from the panel.
  • White light WBs derived from (large tint) is included, and oblique white light (for example, a polar angle of 60°) from the diffusion adhesive layer KL is white derived from front white emitted light WW (small tint). Since the light WWn and the white light WBn derived from the oblique white emitted light WB (large tint) from the panel are included, it is possible to suppress the tint change in oblique visual recognition.
  • the film thickness 50 ⁇ m
  • the refractive index of the adhesive 1.47
  • the refractive index of the diffusing particles 1.565
  • the refractive index difference between the adhesive and the diffusing particles 0.095
  • the 1/4 ⁇ plate 43 and the absorption polarization plate 46 function as a circular polarization plate. Therefore, the panel see-through and the double reflection of the image due to the external light WF are eliminated.
  • FIG. 5 is a sectional view showing the structure of the mirror display of the third embodiment.
  • the functional layer 40 of Example 3 includes, in order from the lower layer side, a diffusion adhesive layer KL containing an adhesive and spherical diffusion particles, a 1/4 ⁇ plate 43 (first film FF), a transparent adhesive layer CA, and an absorption polarizing plate 46. Equipped with.
  • the front white light (polar angle 0°) from the diffusion adhesive layer KL of Example 3 includes the white light WWs derived from the front white emission light WW (small tint) and the oblique white emission light WB from the panel.
  • White light WBs derived from (large tint) is included, and oblique white light (for example, a polar angle of 60°) from the diffusion adhesive layer KL is white derived from front white emitted light WW (small tint). Since the light WWn and the white light WBn derived from the oblique white emission light WB (large color tint) from the panel are included, it is possible to suppress the tint change due to oblique visual recognition.
  • the 1/4 ⁇ plate 43 and the absorption polarization plate 46 function as a circular polarization plate. Therefore, the panel see-through and the double reflection of the image due to the external light WF are eliminated.
  • the film thickness 50 ⁇ m
  • the refractive index of the adhesive 1.47
  • the refractive index of the diffusing particles 1.420
  • the refractive index difference between the adhesive and the diffusing particles. 0.050
  • the particle size of the diffusing particles 4.5 ⁇ m
  • FIG. 6 is a sectional view showing the structure of the mirror display of the fourth embodiment.
  • the functional layer 40 of Example 4 is, in order from the lower layer side, a transparent adhesive layer CA, a 1/4 ⁇ plate 43, an absorption polarizing plate 46, a diffusion adhesive layer KL containing an adhesive and spherical diffusion particles, and a transparent film 47 (first). 1 film FF).
  • the front white light (extreme angle 0 °) from the diffusion adhesive layer KL of Example 4 includes white light WWs derived from front white emission light WW (small tint) from the panel and oblique white emission light WB from the panel.
  • White light WBs derived from (large tint) is included, and oblique white light (for example, a polar angle of 60°) from the diffusion adhesive layer KL is white derived from front white emitted light WW (small tint). Since the light WWn and the white light WBn derived from the oblique white emitted light WB (large tint) from the panel are included, it is possible to suppress the tint change in oblique visual recognition.
  • the film thickness 15 ⁇ m
  • the refractive index of the adhesive 1.47
  • the refractive index of the diffusing particles 1.595
  • the refractive index difference between the adhesive and the diffusing particles 0.125
  • the 1/4 ⁇ plate 43 and the absorption polarization plate 46 function as a circular polarization plate. Therefore, the panel see-through and the double reflection of the image due to the external light WF are eliminated.
  • FIG. 7 is a sectional view showing the structure of the mirror display of the fifth embodiment.
  • the functional layer 40 of Example 5 includes a diffusion adhesive layer KL containing an adhesive and spherical diffusion particles, a 1 ⁇ 4 ⁇ plate 43 (first film FF), and an absorption polarizing plate 46 in order from the lower layer side.
  • the front white light (extreme angle 0 °) from the diffusion adhesive layer KL of Example 5 includes white light WWs derived from front white emission light WW (small tint) from the panel and oblique white emission light WB from the panel.
  • White light WBs derived from (large tint) is included, and oblique white light (for example, a polar angle of 60°) from the diffusion adhesive layer KL is white derived from front white emitted light WW (small tint). Since the light WWn and the white light WBn derived from the oblique white emission light WB (large color tint) from the panel are included, it is possible to suppress the tint change due to oblique visual recognition.
  • the film thickness 100 ⁇ m
  • the refractive index of the adhesive 1.47
  • the refractive index of the diffusing particles 1.595
  • the refractive index difference between the adhesive and the diffusing particles 0.125
  • the diffusion When the particle diameter of the particles is 5.0 ⁇ m and the haze is 94.7%, ⁇ b is 7.4, and it can be seen that the tint change with the polar angle is extremely small (the viewing angle characteristics are particularly excellent).
  • Example 7 the 1/4 ⁇ plate 43 and the absorption polarization plate 46 function as a circular polarization plate. Therefore, the panel see-through and the double reflection of the image due to the external light WF are eliminated.
  • FIG. 8 is a sectional view showing the structure of the mirror display of the sixth embodiment.
  • the functional layer 40 of Example 6 includes, in order from the lower layer side, a transparent adhesive layer CA, a 1/4 ⁇ plate 43, a first diffusion adhesive containing an adhesive (first adhesive) and spherical diffusion particles (first diffusion particles).
  • SF transparent film 47
  • the front white light (polar angle 0°) from the second diffusion adhesive layer KL2 of Example 6 includes white light WWs derived from the front white emission light WW (small tint) and oblique white light from the panel.
  • White light WBs derived from radiated light WB (large tint) are included, and the oblique white light (for example, polar angle 60 °) from the second diffusion adhesive layer KL2 includes front white emitted light WW (small tint) from the panel.
  • the white light WBn derived from the oblique white emitted light WB (large tint) from the panel are included, it is possible to suppress the tint change due to oblique visual recognition.
  • Example 6 the 1/4 ⁇ plate 43 and the absorption polarization plate 46 function as a circular polarization plate. Therefore, the panel see-through and the double reflection of the image due to the external light WF are eliminated.
  • FIG. 9 is a cross-sectional view showing the configuration of the mirror display of Example 7.
  • the functional layer 40 of Example 7 includes, in order from the lower layer side, a first diffusion adhesive layer KL1 including an adhesive (first adhesive) and spherical diffusion particles (first diffusion particles), a 1 ⁇ 4 ⁇ plate 43 (first A film FF), a second diffusion adhesive layer KL2 containing an adhesive (second adhesive) and spherical diffusion particles (second diffusion particles), and an absorption polarizing plate 46 (second film SF).
  • the front white light (polar angle 0°) from the second diffusion adhesive layer KL2 of Example 7 includes the white light WWs derived from the front white emission light WW (small tint) and the oblique white light from the panel.
  • White light WBs derived from radiated light WB (large tint) are included, and the oblique white light (for example, polar angle 60 °) from the second diffusion adhesive layer KL2 includes front white emitted light WW (small tint) from the panel.
  • the white light WBn derived from the oblique white emitted light WB (large tint) from the panel are included, it is possible to suppress the tint change due to oblique visual recognition.
  • the film thickness 10 ⁇ m
  • the refractive index of the adhesive 1.47
  • the refractive index of the diffuse particles 1.595
  • particle size of diffuse particles 5.0 ⁇ m
  • haze 52.3% (thickness 20 ⁇ m and haze 76.2% when the first and second diffusion adhesive layers KL1 and KL2 are bonded together)
  • ⁇ b 14.5
  • Example 7 the 1/4 ⁇ plate 43 and the absorption polarization plate 46 function as a circular polarization plate. Therefore, the panel see-through and the double reflection of the image due to the external light WF are eliminated.
  • FIG. 10 is a sectional view showing the structure of the mirror display of the eighth embodiment.
  • the functional layer 40 of Example 8 includes a first diffusion adhesive layer KL1 including a pressure-sensitive adhesive (first pressure-sensitive adhesive) and spherical diffusion particles (first diffusion particles) and a 1/4 ⁇ plate 43 (first Film FF), a second diffusion adhesive layer KL2 containing an adhesive (second adhesive) and spherical diffusion particles (second diffusion particles), an absorption polarizing plate 46 (second film SF), an adhesive (third adhesive) ) And spherical diffusion particles (third diffusion particles), and a third diffusion adhesive layer KL3, and a transparent film 47 (third film TF).
  • first diffusion adhesive layer KL1 including a pressure-sensitive adhesive (first pressure-sensitive adhesive) and spherical diffusion particles (first diffusion particles) and a 1/4 ⁇ plate 43 (first Film FF
  • second diffusion adhesive layer KL2 containing an adhesive (second adhesive) and spherical diffusion particles (second diffusion particles), an absorption polarizing plate 46 (
  • the front white light (extreme angle 0 °) from the third diffusion adhesive layer KL3 of Example 8 includes white light WWs derived from the front white emission light WW (small tint) from the panel and oblique white output from the panel.
  • White light WBs derived from radiated light WB (large color) are included, and the oblique white light (for example, polar angle 60 °) from the third diffusion adhesive layer KL3 includes the front white emitted light WW (small color) from the panel.
  • the white light WBn derived from the oblique white emitted light WB (large tint) from the panel are included, it is possible to suppress the tint change due to oblique visual recognition.
  • the film thickness 50 ⁇ m
  • the refractive index of the adhesive 1.47
  • the refractive index of the diffusing particles 1.565
  • particle size of diffusing particles 5.0 ⁇ m
  • haze 87.9% (film thickness of 150 ⁇ m and haze when the first to third diffusion adhesive layers KL1, KL2, and KL3 are bonded together)
  • ⁇ b 3.1
  • Example 8 the 1/4 ⁇ plate 43 and the absorption polarization plate 46 function as a circular polarization plate. Therefore, the panel see-through and the double reflection of the image due to the external light WF are eliminated.
  • FIG. 11 is a sectional view showing the structure of the mirror display of the ninth embodiment.
  • the functional layer 40 of Example 9 includes a diffusion adhesive layer KL containing an adhesive and spherical diffusion particles, and a transparent film 47 (first film FF) in this order from the lower layer side.
  • the front white light (extreme angle 0 °) from the diffused adhesive layer KL of Example 9 includes white light WWs derived from front white emission light WW (small tint) from the panel and oblique white emission light WB from the panel.
  • White light WBs derived from (large tint) is included, and oblique white light (for example, a polar angle of 60°) from the diffusion adhesive layer KL is white derived from front white emitted light WW (small tint). Since the light WWn and the white light WBn derived from the oblique white emitted light WB (large tint) from the panel are included, it is possible to suppress the tint change in oblique visual recognition.
  • the film thickness 30 ⁇ m
  • the refractive index of the adhesive 1.47
  • the refractive index of the diffusing particles 1.595
  • the refractive index difference between the adhesive and the diffusing particles 0.125
  • the diffusion When the particle diameter of the particles is 1.3 ⁇ m and the haze is 92.6%, ⁇ b is 8.6, and it can be seen that the tint change with the polar angle is extremely small (the viewing angle characteristics are particularly excellent).
  • FIG. 15 is a cross-sectional view showing a configuration example of a mirror display.
  • the display panel 30 may be a flexible display panel, and the display panel 30 may have a curved surface shape that is convex toward the half mirror 60 side.
  • the half mirror 60 is not limited to a curved surface shape, but may be a planar shape.
  • the change in tint is particularly large, and the configuration of each embodiment suppresses the change in tint.
  • the display panel is an EL display QLED such as an organic EL display, an organic EL (Electro Luminescence) display including an OLED (Organic Light Emitting Diode), or an inorganic EL display including an inorganic light emitting diode.
  • QLED Display with (Quantum dot Light Emitting Diode) The embodiments described above are for purposes of illustration and description, and not for limitation. Based on these examples and explanations, it will be apparent to those skilled in the art that many variants are possible.
  • a display panel, a diffusion adhesive layer, an air layer, and a half mirror are provided in order from the lower layer,
  • the diffusion adhesive layer contains spherical diffusion particles and an adhesive.
  • the refractive index of the diffused particles is 1.42 to 1.70.
  • the refractive index of the pressure-sensitive adhesive is 1.45 to 1.55.
  • the refractive index difference between the diffusion particles and the adhesive is 0.07 to 0.25,
  • a mirror display in which the haze of the diffusion adhesive layer is 40 to 99%.
  • the first film is a transparent film
  • the mirror display according to aspect 2 for example, wherein a ⁇ /4 plate and an absorption polarizing plate are provided between the display panel and the diffusion adhesive layer.
  • each diffusing adhesive layer contains spherical diffusing particles and an adhesive.
  • the refractive index of the diffusion particles is 1.42 to 1.70
  • the refractive index of the adhesive is 1.45 to 1.55
  • the difference in refractive index between the diffusion particles and the adhesive is 0.07 to 0.25
  • the haze when the plurality of diffusion adhesive layers are bonded together is 40 to 99%, for example, the mirror display according to the first aspect.
  • the plurality of diffusion adhesive layers are a first diffusion adhesive layer and a second diffusion adhesive layer, From the bottom layer, the display panel, the first diffusion adhesive layer, the first film, the second diffusion adhesive layer, the second film, the air layer, and the half mirror are provided.
  • the first diffusion adhesive layer includes spherical first diffusion particles and a first adhesive
  • the second diffusion adhesive layer includes spherical second diffusion particles and a second adhesive
  • the refractive index of the first diffusing particles is 1.42 to 1.70
  • the refractive index of the first pressure-sensitive adhesive is 1.45 to 1.55.
  • the difference in refractive index between the first diffusing particles and the first pressure-sensitive adhesive is 0.07 to 0.25.
  • the refractive index of the second diffusing particles is 1.42 to 1.70
  • the refractive index of the second pressure-sensitive adhesive is 1.45 to 1.55.
  • the difference in refractive index between the second diffusing particles and the second pressure-sensitive adhesive is 0.07 to 0.25.
  • the mirror display according to aspect 9, for example, wherein the haze when the first diffusion adhesive layer and the second diffusion adhesive layer are bonded together is 40 to 99%.
  • the first film is an absorption polarizing plate
  • the second film is a transparent film
  • the mirror display according to aspect 10 for example, wherein a ⁇ /4 plate is provided between the display panel and the first diffusion adhesive layer.
  • the plurality of diffusion adhesive layers are a first diffusion adhesive layer, a second diffusion adhesive layer and a third diffusion adhesive layer,
  • the display panel the first diffusion adhesive layer, the first film, the second diffusion adhesive layer, the second film, the third diffusion adhesive layer, the third film, the air layer, and the half mirror in order from the lower layer.
  • the first diffusion adhesive layer includes spherical first diffusion particles and a first adhesive
  • the second diffusion adhesive layer includes spherical second diffusion particles and a second adhesive
  • the third diffusion adhesive layer includes spherical third diffusion particles and a third adhesive
  • the refractive index of the first diffusing particles is 1.42 to 1.70
  • the refractive index of the first pressure-sensitive adhesive is 1.45 to 1.55.
  • the refractive index difference between the first diffusion particles and the first adhesive is 0.07 to 0.25
  • the refractive index of the second diffusing particles is 1.42 to 1.70
  • the second adhesive has a refractive index of 1.45 to 1.55,
  • the refractive index difference between the second diffusing particles and the second adhesive is 0.07 to 0.25
  • the refractive index of the third diffusing particles is 1.42 to 1.70
  • the third adhesive has a refractive index of 1.45 to 1.55,
  • the refractive index difference between the third diffusion particles and the third pressure-sensitive adhesive is 0.07 to 0.25
  • the haze when the first diffusion adhesive layer, the second diffusion adhesive layer, and the third diffusion adhesive layer are bonded together is 40 to 99%, for example, the mirror display according to the ninth aspect.
  • the display panel is a flexible display panel and has a curved surface shape in which the display panel is convex toward the half mirror side.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention comprises, from a bottom layer in the given order, a display panel (30), a diffusive pressure-sensitive adhesive layer (KL), a first film (FF), an air layer (50), and a half-silvered mirror (60). The diffusive pressure-sensitive adhesive layer includes spherical diffusive particles and a pressure-sensitive adhesive. The refractive index of the diffusive particles is 1.42-1.70. The refractive index of the pressure-sensitive adhesive is 1.45-1.55. The refractive index difference between the diffusive particles and the pressure-sensitive adhesive is 0.07-0.25. The haze value of the diffusive pressure-sensitive adhesive layer is 40-99%.

Description

ミラーディスプレイMirror display
 本発明は、ミラーディスプレイに関する。 The present invention relates to a mirror display.
 特許文献1には、発光素子として有機ELを用いたミラーディスプレイ(鏡面機能を有する表示装置)が開示されている。 Patent Document 1 discloses a mirror display (display device having a mirror surface function) using an organic EL as a light emitting element.
日本国公開特許公報「特開2005-332616」Japanese Patent Laid-Open Publication "JP 2005-332616"
 従来のミラーディスプレイには、正面視認に対する斜め視認の色味の変化(例えば、白色光の青みがかり、あるいは赤みがかり)が大きいという問題がある。 The conventional mirror display has a problem that the change in color of oblique visual recognition (for example, bluish or reddish of white light) is large with respect to frontal visual recognition.
 本発明の一実施形態にかかるミラーディスプレイは、下層から順に、表示パネル、拡散粘着層、第1フィルム、空気層、およびハーフミラーを備え、前記拡散粘着層は、球状の拡散粒子および粘着剤を含み、前記拡散粒子の屈折率は1.42~1.70であり、前記粘着剤の屈折率は1.45~1.55であり、前記拡散粒子と前記粘着剤の屈折率差が0.07~0.25であり、前記拡散粘着層のヘイズが40~99%である。 A mirror display according to an embodiment of the present invention includes a display panel, a diffusion adhesive layer, a first film, an air layer, and a half mirror in order from the lower layer, and the diffusion adhesive layer includes spherical diffusion particles and an adhesive. Including, the refractive index of the diffused particles is 1.42 to 1.70, the refractive index of the pressure-sensitive adhesive is 1.45 to 1.55, and the difference in refractive index between the diffused particles and the pressure-sensitive adhesive is 0. It is from 07 to 0.25, and the haze of the diffusion adhesive layer is from 40 to 99%.
 本発明の一態様によれば、ミラーディスプレイにおいて、正面視認に対する斜め視認の色味の変化を抑制することができる。 According to an aspect of the present invention, in a mirror display, it is possible to suppress a change in color tint between oblique viewing and front viewing.
図1(a)は、実施形態1のミラーディスプレイの構成を示す模式的平面図であり、図1(b)は、実施形態1のミラーディスプレイの構成を示す断面図である。FIG. 1A is a schematic plan view showing the configuration of the mirror display of the first embodiment, and FIG. 1B is a cross-sectional view showing the configuration of the mirror display of the first embodiment. 図2(c)~(e)は、ミラーディスプレイの側面図である。2C to 2E are side views of the mirror display. 実施例1のミラーディスプレイの構成を示す断面図(拡散粘着層の特性と視認特性を付記)である。3 is a cross-sectional view showing the configuration of the mirror display of Example 1 (characteristics of the diffusion adhesive layer and visual recognition characteristics are additionally shown). FIG. 実施例2のミラーディスプレイの構成を示す断面図である。6 is a cross-sectional view showing a configuration of a mirror display of Example 2. FIG. 実施例3のミラーディスプレイの構成を示す断面図である。7 is a cross-sectional view showing the configuration of a mirror display of Example 3. FIG. 実施例4のミラーディスプレイの構成を示す断面図である。9 is a cross-sectional view showing the structure of a mirror display of Example 4. FIG. 実施例5のミラーディスプレイの構成を示す断面図である。FIG. 9 is a cross-sectional view showing the configuration of the mirror display of Example 5; 実施例6のミラーディスプレイの構成を示す断面図である。16 is a cross-sectional view showing the configuration of a mirror display of Example 6. FIG. 実施例7のミラーディスプレイの構成を示す断面図である。It is sectional drawing which shows the structure of the mirror display of Example 7. 実施例8のミラーディスプレイの構成を示す断面図である。It is sectional drawing which shows the structure of the mirror display of Example 8. 実施例9のミラーディスプレイの構成を示す断面図である。16 is a cross-sectional view showing the configuration of the mirror display of Example 9. FIG. 比較例1のミラーディスプレイの構成を示す断面図である。7 is a cross-sectional view showing a configuration of a mirror display of Comparative Example 1. FIG. 比較例2のミラーディスプレイの構成を示す断面図である。7 is a cross-sectional view showing the configuration of a mirror display of Comparative Example 2. FIG. 比較例3のミラーディスプレイの構成を示す断面図である。11 is a cross-sectional view showing a configuration of a mirror display of Comparative Example 3. FIG. ミラーディスプレイの構成例を示す断面図である。It is sectional drawing which shows the structural example of a mirror display.
 図1(a)は、本実施形態のミラーディスプレイの構成を示す模式的平面図であり、図1(b)は、ミラーディスプレイの構成を示す断面図である。図2(a)(b)は、ミラーディスプレイの平面図(上面図)であり、図2(c)~(e)は、ミラーディスプレイの側面図である。 FIG. 1 (a) is a schematic plan view showing the configuration of the mirror display of the present embodiment, and FIG. 1 (b) is a cross-sectional view showing the configuration of the mirror display. 2 (a) and 2 (b) are plan views (top views) of the mirror display, and FIGS. 2 (c) to 2 (e) are side views of the mirror display.
 ミラーディスプレイ2では、下層から順に、表示パネル30(例えば、サブ画素に自発光素子が用いられるパネル)、機能層40、空気層50、ハーフミラー60、および保護カバー70が配されている。 In the mirror display 2, a display panel 30 (for example, a panel in which a self-luminous element is used for subpixels), a functional layer 40, an air layer 50, a half mirror 60, and a protective cover 70 are arranged in order from the lower layer.
 ハーフミラー60は、半透過特性を有し、外側からの光の一部を反射し、内側からの光(表示パネル30からの光)の一部を透過させるため、ミラーディスプレイ2は、鏡面機能と表示機能を併せ持つ。なお、表示パネル30がOFF(非表示)のときに鏡面として機能してもよいし、表示パネル30がON(表示状態)のときに鏡面として機能してもよい。ハーフミラー60は、例えば、透光性基板と、透光性基板上に形成された半透過性のメタル層とを含んで構成される。機能層40とハーフミラー60とは間隔を空けて配置されており、例えば、厚さ10mmの空気層50が、機能層40とハーフミラー60との間に設けられている。 The half mirror 60 has a semi-transmissive property, reflects a part of the light from the outside and allows a part of the light from the inside (light from the display panel 30) to pass through. Therefore, the mirror display 2 has a mirror surface function. Also has a display function. The display panel 30 may function as a mirror surface when it is OFF (non-display), or may function as a mirror surface when the display panel 30 is ON (display state). The half mirror 60 includes, for example, a translucent substrate and a semi-transmissive metal layer formed on the translucent substrate. The functional layer 40 and the half mirror 60 are arranged at intervals. For example, an air layer 50 having a thickness of 10 mm is provided between the functional layer 40 and the half mirror 60.
 図1(a)では、平面視においてハーフミラー60のエッジ内に矩形の表示パネル30が1つ含まれるが、これに限定されない。図2(a)のように、ハーフミラー60のエッジ内に矩形の表示パネル30が複数含まれる構成でもよいし、図2(b)のように、ハーフミラー60のエッジ内に異形(非矩形)の表示パネル30が複数含まれる構成でもよい。また、図2(c)のように、ハーフミラー60および表示パネル30がともに平面状であってもよいし、図2(d)のように、平面状のハーフミラー60に、曲面状の表示パネル30aと平面状の表示パネル30bとを組み合わせてもよいし、図2(e)のように、曲面状のハーフミラー60に、曲面状の表示パネル30aと平面状の表示パネル30bとを組み合わせてもよい。 1A, one rectangular display panel 30 is included in the edge of the half mirror 60 in a plan view, but the invention is not limited to this. As shown in FIG. 2A, the edge of the half mirror 60 may include a plurality of rectangular display panels 30. Alternatively, as shown in FIG. 2B, the edge of the half mirror 60 may have an irregular shape (non-rectangular shape). The configuration may include a plurality of display panels 30). Further, both the half mirror 60 and the display panel 30 may be flat as shown in FIG. 2C, or a curved display may be displayed on the flat half mirror 60 as shown in FIG. 2D. The panel 30a and the flat display panel 30b may be combined, or as shown in FIG. 2E, the curved half mirror 60 may be combined with the curved display panel 30a and the flat display panel 30b. May be.
 図1のように、表示パネル30では、下層から順に、基材12、バリア層3、TFT層4、トップエミッション型の発光素子層5、および封止層6が配され、表示領域DAに、それぞれが自発光素子Xを含む複数のサブ画素SPが形成される。 As shown in FIG. 1, in the display panel 30, a base material 12, a barrier layer 3, a TFT layer 4, a top emission type light emitting element layer 5, and a sealing layer 6 are arranged in order from the lower layer, and a display area DA is provided. A plurality of sub-pixels SP each including the self-luminous element X are formed.
 基材12は、ガラス基板でもよいし、ポリイミド等の樹脂膜を含む可撓性基板でもよい。2層の樹脂膜およびこれらに挟まれた無機絶縁膜によって可撓性基板を構成することもできる。 The base material 12 may be a glass substrate or a flexible substrate including a resin film such as polyimide. A flexible substrate can also be constituted by two layers of resin films and an inorganic insulating film sandwiched between them.
 バリア層3は、水、酸素等の異物がTFT層4および発光素子層5に侵入することを防ぐ層であり、例えば、CVD法により形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。 The barrier layer 3 is a layer that prevents foreign matters such as water and oxygen from entering the TFT layer 4 and the light emitting element layer 5, and is formed by, for example, a CVD method, which is a silicon oxide film, a silicon nitride film, or an oxynitride film. It can be composed of a silicon film or a laminated film thereof.
 図1(b)に示すように、TFT(薄膜トランジスタ)層4は、例えば、バリア層3よりも上層の半導体層(半導体膜15を含む)と、半導体層よりも上層の無機絶縁膜16(ゲート絶縁膜)と、無機絶縁膜16よりも上層の第1金属層(ゲート電極GEを含む)と、第1金属層よりも上層の無機絶縁膜18と、無機絶縁膜18よりも上層の第2金属層(容量電極CEを含む)と、第2金属層よりも上層の無機絶縁膜20と、無機絶縁膜20よりも上層の第3金属層(データ信号線DLを含む)と、第3金属層よりも上層の平坦化膜21とを含む。 As shown in FIG. 1B, the TFT (thin film transistor) layer 4 includes, for example, a semiconductor layer (including the semiconductor film 15) above the barrier layer 3 and an inorganic insulating film 16 (gate including a semiconductor film 15 above the semiconductor layer). (Insulating film), a first metal layer (including the gate electrode GE) above the inorganic insulating film 16, an inorganic insulating film 18 above the first metal layer, and a second metal layer above the inorganic insulating film 18. A metal layer (including the capacitive electrode CE), an inorganic insulating film 20 above the second metal layer, a third metal layer (including the data signal line DL) above the inorganic insulating film 20, and a third metal The flattening film 21 above the layer is included.
 半導体層は、例えば、アモルファスシリコン、LTPS(低温ポリシリコン)、または酸化物半導体で構成され、ゲート電極GEおよび半導体膜15を含むように、薄膜トランジスタTRが構成される。 The semiconductor layer is composed of, for example, amorphous silicon, LTPS (low temperature polysilicon), or an oxide semiconductor, and the thin film transistor TR is composed so as to include the gate electrode GE and the semiconductor film 15.
 表示領域DAには、サブ画素SPごとに発光素子Xおよびその画素回路が設けられ、TFT層4には、この画素回路およびこれに接続する配線が形成される。画素回路に接続する配線としては、例えば、第1金属層に形成される、走査信号線GLおよび発光制御線EM、第2金属層に形成される初期化電源線IL、第3金属層に形成される、データ信号線DLおよび高電圧側電源線PL等が挙げられる。画素回路には、発光素子の電流を制御する駆動トランジスタ、走査信号線と電気的に接続する書き込みトランジスタ、および発光制御線に電気的に接続する発光制御トランジスタ等が含まれる。 A light emitting element X and a pixel circuit thereof are provided for each sub-pixel SP in the display area DA, and the pixel circuit and wiring connected to the pixel circuit are formed in the TFT layer 4. As the wirings connected to the pixel circuit, for example, the scanning signal line GL and the emission control line EM formed in the first metal layer, the initialization power supply line IL formed in the second metal layer, and the third metal layer are formed. The data signal line DL, the high voltage side power supply line PL, and the like. The pixel circuit includes a drive transistor that controls the current of the light emitting element, a write transistor that is electrically connected to the scanning signal line, a light emission control transistor that is electrically connected to the light emission control line, and the like.
 第1金属層、第2金属層、および第3金属層は、例えば、アルミニウム、タングステン、モリブデン、タンタル、クロム、チタン、および銅の少なくとも1つを含む金属の単層膜あるいは複層膜によって構成される。 The first metal layer, the second metal layer, and the third metal layer are composed of, for example, a single-layer film or a multi-layer film of a metal containing at least one of aluminum, tungsten, molybdenum, tantalum, chromium, titanium, and copper. To be done.
 無機絶縁膜16・18・20は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜あるいは窒化シリコン(SiNx)膜またはこれらの積層膜によって構成することができる。平坦化膜21は、例えば、ポリイミド、アクリル樹脂等の塗布可能な有機材料によって構成することができる。 The inorganic insulating films 16, 18, and 20 can be formed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a laminated film thereof formed by a CVD method. The flattening film 21 can be made of a coatable organic material such as polyimide or acrylic resin.
 発光素子層5は、平坦化膜21よりも上層の第1電極(下部電極)22と、第1電極22のエッジを覆う絶縁性のエッジカバー膜23と、エッジカバー膜23よりも上層のEL(エレクトロルミネッセンス)層24と、EL層24よりも上層の第2電極(上部電極)25とを含む。エッジカバー膜23は、例えば、ポリイミド、アクリル樹脂等の有機材料を塗布した後にフォトリソグラフィよってパターニングすることで形成される。 The light emitting element layer 5 includes a first electrode (lower electrode) 22 above the planarization film 21, an insulating edge cover film 23 that covers an edge of the first electrode 22, and an EL above the edge cover film 23. It includes an (electroluminescence) layer 24 and a second electrode (upper electrode) 25 that is an upper layer than the EL layer 24. The edge cover film 23 is formed, for example, by applying an organic material such as polyimide or acrylic resin and then patterning it by photolithography.
 発光素子層5には、例えば、発光素子Xr(赤色)、発光素子Xg(緑色)および発光素子Xb(青色)が形成され、各発光素子が、島状の第1電極22、EL層24(発光層EKを含む)、および第2電極25を含む。第2電極25は、複数の発光素子で共通する、ベタ状の共通電極である。 On the light emitting element layer 5, for example, a light emitting element Xr (red), a light emitting element Xg (green) and a light emitting element Xb (blue) are formed, and each light emitting element has an island-shaped first electrode 22 and an EL layer 24 ( The light emitting layer EK is included), and the second electrode 25 is included. The second electrode 25 is a solid common electrode common to a plurality of light emitting elements.
 発光素子Xr・Xg・Xbは、例えば、発光層として有機層を含むOLED(有機発光ダイオード)であってもよいし、発光層として量子ドット層を含むQLED(量子ドット発光ダイオード)であってもよい。 The light emitting elements Xr, Xg, and Xb may be, for example, OLEDs (organic light emitting diodes) that include organic layers as light emitting layers, or QLEDs (quantum dot light emitting diodes) that include quantum dot layers as light emitting layers. Good.
 EL層24は、例えば、下層側から順に、正孔注入層、正孔輸送層、発光層EK、電子輸送層、電子注入層を積層することで構成される。発光層は、蒸着法あるいはインクジェット法、フォトリソグラフィ法によって、エッジカバー膜23の開口(サブ画素ごと)に、島状に形成される。他の層は、島状あるいはベタ状(共通層)に形成する。また、正孔注入層、正孔輸送層、電子輸送層、電子注入層のうち1以上の層を形成しない構成とすることもできる。 The EL layer 24 is composed of, for example, laminating a hole injection layer, a hole transport layer, a light emitting layer EK, an electron transport layer, and an electron injection layer in this order from the lower layer side. The light emitting layer is formed in an island shape in the opening (for each sub pixel) of the edge cover film 23 by a vapor deposition method, an inkjet method, or a photolithography method. The other layers are formed in an island shape or a solid shape (common layer). It is also possible to adopt a configuration in which one or more layers out of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer are not formed.
 第1電極22(陽極)は、例えばITO(Indium Tin Oxide)とAg(銀)あるいはAgを含む合金との積層によって構成され、光反射性を有する。第2電極25(陰極)は、例えばマグネシウム銀合金等の金属薄膜で構成され、光透過性を有する。 The first electrode 22 (anode) is made of, for example, a stack of ITO (Indium Tin Oxide) and Ag (silver) or an alloy containing Ag, and has light reflectivity. The second electrode 25 (cathode) is made of, for example, a metal thin film of magnesium-silver alloy or the like, and has optical transparency.
 発光素子Xr・Xg・XbがOLEDである場合、第1電極22および第2電極25間の駆動電流によって正孔と電子が発光層EK内で再結合し、これによって生じたエキシトンが基底状態に遷移する過程で光が放出される。発光素子Xr・Xg・XbがQLEDである場合、第1電極22および第2電極25間の駆動電流によって正孔と電子が発光層EK内で再結合し、これによって生じたエキシトンが、量子ドットの伝導帯準位(conduction band)から価電子帯準位(valence band)に遷移する過程で光(蛍光)が放出される。 When the light emitting elements Xr, Xg, and Xb are OLEDs, the driving current between the first electrode 22 and the second electrode 25 causes holes and electrons to recombine in the light emitting layer EK, and the excitons generated thereby become the ground state. Light is emitted in the transition process. When the light emitting elements Xr, Xg, and Xb are QLEDs, holes and electrons are recombined in the light emitting layer EK by the driving current between the first electrode 22 and the second electrode 25, and the resulting exciton is a quantum dot. Light (fluorescence) is emitted in the process of transition from the conduction band level to the valence band level.
 発光素子層5を覆う封止層6は、水、酸素等の異物の発光素子層5への浸透を防ぐ層であり、例えば、2層の無機封止膜とこれら間に形成される有機膜とで構成することができる。 The sealing layer 6 that covers the light emitting element layer 5 is a layer that prevents foreign substances such as water and oxygen from penetrating into the light emitting element layer 5. For example, a two-layer inorganic sealing film and an organic film formed between them. It can be composed of and.
 〔実施例1〕
 図3は、実施例1のミラーディスプレイの構成を示す断面図(拡散粘着層の特性と視認特性を付記)である。実施例1の機能層40は、下層側から順に、アクリル系透明粘着層CA1、1/4λ板43、アクリル系透明粘着層CA2、吸収偏光板46、粘着剤と球形の拡散粒子を含む拡散粘着層KL、およびTAC(トリアセチルセルロース)フィルム上にアクリル系UV硬化型樹脂からなるハードコート層が設けられた透明フィルム47(第1フィルムFF)を備える。
[Example 1]
FIG. 3 is a cross-sectional view showing the structure of the mirror display of Example 1 (characteristics of the diffusion adhesive layer and visual recognition characteristics are added). The functional layer 40 of Example 1 is, in order from the lower layer side, an acrylic transparent adhesive layer CA1, a 1/4λ plate 43, an acrylic transparent adhesive layer CA2, an absorption polarizing plate 46, a diffusion adhesive containing an adhesive and spherical diffusion particles. A transparent film 47 (first film FF) in which a hard coat layer made of an acrylic UV curable resin is provided on a layer KL and a TAC (triacetyl cellulose) film is provided.
 粘着剤には、耐熱性および透明性に優れたアクリル系粘着剤を用いているが、ゴム系粘着剤、アクリル系粘着剤、ウレタン系粘着剤、シリコン系粘着剤、エポキシ系粘着剤、セルロース系粘着剤等を用いてもよい。 Acrylic adhesive with excellent heat resistance and transparency is used as the adhesive, but rubber adhesive, acrylic adhesive, urethane adhesive, silicone adhesive, epoxy adhesive, cellulose adhesive An adhesive or the like may be used.
 拡散粒子としては、アクリル-スチレン共重合樹脂(アクリルとスチレンの共重合比を調整することで屈折率を1.49~1.60の間で調整可能)を用いているが、シリコン樹脂(屈折率1.42)、無機シリカ(屈折率1.43)、ポリメチルメタクリレート樹脂(屈折率1.49)、アクリル-スチレン共重合樹脂(屈折率1.55)、メラミン樹脂(屈折率1.57)、ポリカーボネート樹脂(屈折率1.57)、スチレン樹脂(屈折率1.60)、ベンゾグアナミン-メラミンホルムアルデヒド樹脂(屈折率1.68)等を用いてもよい。 Acrylic-styrene copolymer resin (refractive index can be adjusted between 1.49 and 1.60 by adjusting the copolymerization ratio of acrylic and styrene) is used as the diffusion particles, but silicon resin (refractive index) is used. Rate 1.42), inorganic silica (refractive index 1.43), polymethylmethacrylate resin (refractive index 1.49), acrylic-styrene copolymer resin (refractive index 1.55), melamine resin (refractive index 1.57) ), Polycarbonate resin (refractive index 1.57), styrene resin (refractive index 1.60), benzoguanamine-melamine formaldehyde resin (refractive index 1.68) and the like may be used.
 1/4λ板43は、例えば、棒状ならびに円盤状の液晶分子や逆波長分散性ポリカーボネートなどを配向膜や延伸等によって一軸配向させたフィルム(例えば、波長550nmにおける面内の位相差Reがおよそ137nm)であり、直線偏光から円偏光への変換あるいは円偏光から直線偏光への変換を行う。 The 1 / 4λ plate 43 is a film in which rod-shaped or disk-shaped liquid crystal molecules, inverse wavelength-dispersible polycarbonate, or the like are uniaxially oriented by an alignment film or stretching (for example, an in-plane retardation Re at a wavelength of 550 nm is approximately 137 nm. ) Is performed, and linearly polarized light is converted to circularly polarized light or circularly polarized light is converted to linearly polarized light.
 吸収偏光板46は、例えば、一軸延伸ヨウ素染色タイプの吸収偏光板であり、特定の直線偏光だけを透過させる。1/4λ板43の遅相軸と吸収偏光板46の透過軸あるいは吸収軸とのなす角度は45°である。 The absorption polarizing plate 46 is, for example, a uniaxially stretched iodine dyeing type absorption polarizing plate, and transmits only specific linearly polarized light. The angle formed by the slow axis of the 1/4 λ plate 43 and the transmission axis or the absorption axis of the absorption polarizing plate 46 is 45°.
 実施例1の拡散粘着層KLからの正面白色光(極角0°)には、パネルからの正面白色出射光WW(色味小)由来の白色光WWsと、パネルからの斜め白色出射光WB(色味大)由来の白色光WBsとが含まれ、拡散粘着層KLからの斜め白色光(例えば極角60°)には、パネルからの正面白色出射光WW(色味小)由来のホワイト光WWnと、パネルからの斜め白色出射光WB(色味大)由来のホワイト光WBnとが含まれる。 The front white light (extreme angle 0 °) from the diffusion adhesive layer KL of Example 1 includes white light WWs derived from front white emission light WW (small tint) from the panel and oblique white emission light WB from the panel. White light WBs derived from (large tint) is included, and oblique white light (for example, a polar angle of 60°) from the diffusion adhesive layer KL is white derived from front white emitted light WW (small tint). The light WWn and the white light WBn derived from the oblique white emitted light WB (large color tone) from the panel are included.
 したがって、拡散粘着層KLを粘着層NLに置き換えた図12の比較例1(正面白色光が、パネルからの正面白色出射光WWで構成され、斜め白色光が、パネルからの斜め白色出射光WBで構成される)よりも、斜め視認での色味変化(例えば、青みが強くなる)を抑えることができる。 Therefore, Comparative Example 1 of FIG. 12 in which the diffusion adhesive layer KL is replaced with the adhesive layer NL (front white light is composed of front white emission light WW from the panel, and oblique white light is oblique white emission light WB from the panel It is possible to suppress the tint change (for example, the bluish becomes stronger) when viewed obliquely.
 なお、斜め白色出射光WBが正面白色出射光WWよりも色味(青みあるいは赤み)が大きい(強い)のは、各色発光素子のマイクロキャビティ(色純度や発光効率を向上させるための微小共振器)構造が正面方向(パネル法線方向)を基準として設計されているからである。各色の波形プロファイルによっては、斜め白色出射光WBが青みがかり、極角に伴う青み変化が大きくなる。
 図3の構成では、拡散粘着層KLについて、膜厚=30μm、粘着剤の屈折率=1.47、拡散粒子の屈折率=1.595、粘着剤と拡散粒子の屈折率差=0.125、拡散粒子の粒子径(平均粒子径)=1.3μm、ヘイズ(JIS K-7136に準拠)=92.6%とし、ミラーディスプレイ2の正面白色光(極角0°)に対する斜め白色光(極角60°)の色味変化を評価している。
The oblique white emitted light WB has a larger (stronger) tint (bluer or reddish) than the front white emitted light WW is because of the microcavity of each color light emitting element (a microresonator for improving color purity and luminous efficiency). This is because the structure is designed based on the front direction (panel normal direction). Depending on the waveform profile of each color, the oblique white emission light WB becomes bluish and the bluish change due to the polar angle becomes large.
In the configuration of FIG. 3, for the diffusion adhesive layer KL, the film thickness=30 μm, the refractive index of the adhesive=1.47, the refractive index of the diffusing particles=1.595, the refractive index difference between the adhesive and the diffusing particles=0.125. , The particle size (average particle size) of the diffusing particles = 1.3 μm, the haze (according to JIS K-7136) = 92.6%, and the oblique white light with respect to the front white light (polar angle 0°) of the mirror display 2 ( The change in tint at a polar angle of 60 °) is evaluated.
 評価方法としては、ミラーディスプレイ2を白色表示させ、ゴニオメーターを用いて極角0°の方向(パネル法線方向)の色相と、極角60°方向の色相とを求め、これら色相の差の絶対値であるΔbを測定する。Δbがゼロに近いほど、正面方向と斜め方向の色相が近いことを示しており、0≦Δb≦10の場合を「特に優れる」、10<Δb≦20の場合を「優れる」、20<Δb≦30の場合を「良好」、Δb>30の場合を「不良(改善効果認められず)」と判断する。 As an evaluation method, the mirror display 2 is displayed in white, the hue in the polar angle 0° direction (panel normal direction) and the hue in the polar angle 60° direction are obtained using a goniometer, and the difference between these hues is calculated. The absolute value Δb is measured. The closer Δb is to zero, the closer the hues in the front direction and the oblique direction are, and the case of 0 ≦ Δb ≦ 10 is “particularly excellent”, the case of 10 <Δb ≦ 20 is “excellent”, and 20 <Δb. The case of ≦30 is judged to be “good”, and the case of Δb>30 is judged to be “poor” (the improvement effect is not recognized).
 図3の構成では、Δb=8.6であり、図12の比較例1(Δb=45.6)と比較して、極角に伴う色味変化を極めて小さくできる(視野角特性が特に優れる)ことがわかる。 In the configuration of FIG. 3, Δb=8.6, which makes it possible to extremely reduce the tint change associated with the polar angle as compared with Comparative Example 1 (Δb=45.6) of FIG. 12 (especially excellent viewing angle characteristics). ) Understand.
 実施例1では、1/4λ板43および吸収偏光板46が円偏光板として機能する。したがって、表示パネル30の第1電極(反射電極)あるいは配線や第2電極25で反射した外光WFについては、そのほとんどが吸収偏光板46で吸収され、パネル透け(表示パネル30がOFF状態の時に、ハーフミラー60越しに表示パネル30が透けて見える現象)が解消される。同様に、表示パネル30から出射し、ハーフミラー60での反射後に表示パネル30で反射する光についても、そのほとんどが吸収偏光板46で吸収されるため、画像の二重映りが解消される。 In the first embodiment, the 1/4 λ plate 43 and the absorption polarization plate 46 function as a circular polarization plate. Therefore, most of the external light WF reflected by the first electrode (reflection electrode) or the wiring or the second electrode 25 of the display panel 30 is absorbed by the absorption polarizing plate 46, and the panel is transparent (when the display panel 30 is in the OFF state. Sometimes, the phenomenon that the display panel 30 can be seen through the half mirror 60) is eliminated. Similarly, with respect to the light emitted from the display panel 30 and reflected by the display panel 30 after being reflected by the half mirror 60, most of the light is absorbed by the absorption polarizing plate 46, so that double reflection of an image is eliminated.
 〔実施例2〕
 図4は、実施例2のミラーディスプレイの構成を示す断面図である。実施例2の機能層40は、下層側から順に、透明粘着層CA、1/4λ板43、粘着剤と球形の拡散粒子を含む拡散粘着層KL、および吸収偏光板46(第1フィルムFF)を備える。
[Example 2]
FIG. 4 is a sectional view showing the structure of the mirror display of the second embodiment. The functional layer 40 of Example 2 is, in order from the lower layer side, a transparent adhesive layer CA, a 1/4 λ plate 43, a diffusion adhesive layer KL containing an adhesive and spherical diffusion particles, and an absorption polarizing plate 46 (first film FF). Equipped with.
 実施例2の拡散粘着層KLからの正面白色光(極角0°)には、パネルからの正面白色出射光WW(色味小)由来の白色光WWsと、パネルからの斜め白色出射光WB(色味大)由来の白色光WBsとが含まれ、拡散粘着層KLからの斜め白色光(例えば極角60°)には、パネルからの正面白色出射光WW(色味小)由来のホワイト光WWnと、パネルからの斜め白色出射光WB(色味大)由来のホワイト光WBnとが含まれるため、斜め視認での色味変化を抑えることができる。 The front white light (extreme angle 0 °) from the diffusion adhesive layer KL of Example 2 includes white light WWs derived from front white emission light WW (small tint) from the panel and oblique white emission light WB from the panel. White light WBs derived from (large tint) is included, and oblique white light (for example, a polar angle of 60°) from the diffusion adhesive layer KL is white derived from front white emitted light WW (small tint). Since the light WWn and the white light WBn derived from the oblique white emitted light WB (large tint) from the panel are included, it is possible to suppress the tint change in oblique visual recognition.
 図4から、拡散粘着層KLについて、膜厚=50μm、粘着剤の屈折率=1.47、拡散粒子の屈折率=1.565、粘着剤と拡散粒子の屈折率差=0.095、拡散粒子の粒子径=5.0μm、ヘイズ=87.9%とした場合に、Δb=20.6となり、極角に伴う色味変化が小さい(視野角特性が良好である)ことがわかる。 From FIG. 4, for the diffusion adhesive layer KL, the film thickness=50 μm, the refractive index of the adhesive=1.47, the refractive index of the diffusing particles=1.565, the refractive index difference between the adhesive and the diffusing particles=0.095, the diffusion When the particle size of the particles is 5.0 μm and the haze is 87.9%, Δb=20.6, which shows that the tint change with the polar angle is small (the viewing angle characteristics are good).
 実施例2では、1/4λ板43および吸収偏光板46が円偏光板として機能する。したがって、外光WFに起因するパネル透けおよび画像の二重映りが解消される。 In the second embodiment, the 1/4λ plate 43 and the absorption polarization plate 46 function as a circular polarization plate. Therefore, the panel see-through and the double reflection of the image due to the external light WF are eliminated.
 〔実施例3〕
 図5は、実施例3のミラーディスプレイの構成を示す断面図である。実施例3の機能層40は、下層側から順に、粘着剤と球形の拡散粒子を含む拡散粘着層KL、1/4λ板43(第1フィルムFF)、透明粘着層CA、および吸収偏光板46を備える。
[Example 3]
FIG. 5 is a sectional view showing the structure of the mirror display of the third embodiment. The functional layer 40 of Example 3 includes, in order from the lower layer side, a diffusion adhesive layer KL containing an adhesive and spherical diffusion particles, a 1/4λ plate 43 (first film FF), a transparent adhesive layer CA, and an absorption polarizing plate 46. Equipped with.
 実施例3の拡散粘着層KLからの正面白色光(極角0°)には、パネルからの正面白色出射光WW(色味小)由来の白色光WWsと、パネルからの斜め白色出射光WB(色味大)由来の白色光WBsとが含まれ、拡散粘着層KLからの斜め白色光(例えば極角60°)には、パネルからの正面白色出射光WW(色味小)由来のホワイト光WWnと、パネルからの斜め白色出射光WB(色味大)由来のホワイト光WBnとが含まれるため、斜め視認での色味変化を抑えることができる。 The front white light (polar angle 0°) from the diffusion adhesive layer KL of Example 3 includes the white light WWs derived from the front white emission light WW (small tint) and the oblique white emission light WB from the panel. White light WBs derived from (large tint) is included, and oblique white light (for example, a polar angle of 60°) from the diffusion adhesive layer KL is white derived from front white emitted light WW (small tint). Since the light WWn and the white light WBn derived from the oblique white emission light WB (large color tint) from the panel are included, it is possible to suppress the tint change due to oblique visual recognition.
 図5から、拡散粘着層KLについて、膜厚=10μm、粘着剤の屈折率=1.47、拡散粒子の屈折率=1.595、粘着剤と拡散粒子の屈折率差=0.125、拡散粒子の粒子径=5.0μm、ヘイズ=52.3%とした場合に、Δb=24.3となり、極角に伴う色味変化が小さい(視野角特性が良好である)ことがわかる。 From FIG. 5, regarding the diffusion adhesive layer KL, the film thickness=10 μm, the refractive index of the adhesive=1.47, the refractive index of the diffusing particles=1.595, the refractive index difference between the adhesive and the diffusing particles=0.125, the diffusion When the particle size of the particles is 5.0 μm and the haze is 52.3%, Δb=24.3, which shows that the tint change with the polar angle is small (the viewing angle characteristics are good).
 実施例3では、1/4λ板43および吸収偏光板46が円偏光板として機能する。したがって、外光WFに起因するパネル透けおよび画像の二重映りが解消される。 In the third embodiment, the 1/4λ plate 43 and the absorption polarization plate 46 function as a circular polarization plate. Therefore, the panel see-through and the double reflection of the image due to the external light WF are eliminated.
 なお、図13の比較例2から、拡散粘着層KLについて、膜厚=7μm、粘着剤の屈折率=1.47、拡散粒子の屈折率=1.595、粘着剤と拡散粒子の屈折率差=0.125、拡散粒子の粒子径=5.0μm、ヘイズ=38.8%とした場合は、Δb=30.5となり、視野角特性の改善があまり認められないことがわかる。 From Comparative Example 2 in FIG. 13, for the diffusion adhesive layer KL, the film thickness=7 μm, the refractive index of the adhesive=1.47, the refractive index of the diffusing particles=1.595, the difference in the refractive index between the adhesive and the diffusing particles. When = 0.125, the particle size of the diffused particles = 5.0 μm, and the haze = 38.8%, Δb = 30.5, and it can be seen that the improvement in viewing angle characteristics is not so much observed.
 また、図14の比較例3から、拡散粘着層KLについて、膜厚=50μm、粘着剤の屈折率=1.47、拡散粒子の屈折率=1.420、粘着剤と拡散粒子の屈折率差=0.050、拡散粒子の粒子径=4.5μm、ヘイズ=74.0%とした場合も、Δb=33.6となり、視野角特性の改善があまり認められないことがわかる。 Further, from Comparative Example 3 in FIG. 14, for the diffusion adhesive layer KL, the film thickness=50 μm, the refractive index of the adhesive=1.47, the refractive index of the diffusing particles=1.420, the refractive index difference between the adhesive and the diffusing particles. =0.050, the particle size of the diffusing particles=4.5 μm, and the haze=74.0%, Δb=33.6, indicating that the viewing angle characteristics are not so improved.
 〔実施例4〕
 図6は、実施例4のミラーディスプレイの構成を示す断面図である。実施例4の機能層40は、下層側から順に、透明粘着層CA、1/4λ板43、吸収偏光板46、粘着剤と球形の拡散粒子を含む拡散粘着層KL、および透明フィルム47(第1フィルムFF)を備える。
[Example 4]
FIG. 6 is a sectional view showing the structure of the mirror display of the fourth embodiment. The functional layer 40 of Example 4 is, in order from the lower layer side, a transparent adhesive layer CA, a 1/4 λ plate 43, an absorption polarizing plate 46, a diffusion adhesive layer KL containing an adhesive and spherical diffusion particles, and a transparent film 47 (first). 1 film FF).
 実施例4の拡散粘着層KLからの正面白色光(極角0°)には、パネルからの正面白色出射光WW(色味小)由来の白色光WWsと、パネルからの斜め白色出射光WB(色味大)由来の白色光WBsとが含まれ、拡散粘着層KLからの斜め白色光(例えば極角60°)には、パネルからの正面白色出射光WW(色味小)由来のホワイト光WWnと、パネルからの斜め白色出射光WB(色味大)由来のホワイト光WBnとが含まれるため、斜め視認での色味変化を抑えることができる。 The front white light (extreme angle 0 °) from the diffusion adhesive layer KL of Example 4 includes white light WWs derived from front white emission light WW (small tint) from the panel and oblique white emission light WB from the panel. White light WBs derived from (large tint) is included, and oblique white light (for example, a polar angle of 60°) from the diffusion adhesive layer KL is white derived from front white emitted light WW (small tint). Since the light WWn and the white light WBn derived from the oblique white emitted light WB (large tint) from the panel are included, it is possible to suppress the tint change in oblique visual recognition.
 図6から、拡散粘着層KLについて、膜厚=15μm、粘着剤の屈折率=1.47、拡散粒子の屈折率=1.595、粘着剤と拡散粒子の屈折率差=0.125、拡散粒子の粒子径=5.0μm、ヘイズ=62.4%とした場合に、Δb=22.0となり、極角に伴う色味変化が小さい(視野角特性が良好である)ことがわかる。 From FIG. 6, for the diffusion adhesive layer KL, the film thickness=15 μm, the refractive index of the adhesive=1.47, the refractive index of the diffusing particles=1.595, the refractive index difference between the adhesive and the diffusing particles=0.125, the diffusion When the particle size of the particles is 5.0 μm and the haze is 62.4%, Δb=22.0, which shows that the tint change with the polar angle is small (the viewing angle characteristics are good).
 実施例4では、1/4λ板43および吸収偏光板46が円偏光板として機能する。したがって、外光WFに起因するパネル透けおよび画像の二重映りが解消される。 In the fourth embodiment, the 1/4 λ plate 43 and the absorption polarization plate 46 function as a circular polarization plate. Therefore, the panel see-through and the double reflection of the image due to the external light WF are eliminated.
 〔実施例5〕
 図7は、実施例5のミラーディスプレイの構成を示す断面図である。実施例5の機能層40は、下層側から順に、粘着剤と球形の拡散粒子を含む拡散粘着層KL、1/4λ板43(第1フィルムFF)、および吸収偏光板46を備える。
[Example 5]
FIG. 7 is a sectional view showing the structure of the mirror display of the fifth embodiment. The functional layer 40 of Example 5 includes a diffusion adhesive layer KL containing an adhesive and spherical diffusion particles, a ¼λ plate 43 (first film FF), and an absorption polarizing plate 46 in order from the lower layer side.
 実施例5の拡散粘着層KLからの正面白色光(極角0°)には、パネルからの正面白色出射光WW(色味小)由来の白色光WWsと、パネルからの斜め白色出射光WB(色味大)由来の白色光WBsとが含まれ、拡散粘着層KLからの斜め白色光(例えば極角60°)には、パネルからの正面白色出射光WW(色味小)由来のホワイト光WWnと、パネルからの斜め白色出射光WB(色味大)由来のホワイト光WBnとが含まれるため、斜め視認での色味変化を抑えることができる。 The front white light (extreme angle 0 °) from the diffusion adhesive layer KL of Example 5 includes white light WWs derived from front white emission light WW (small tint) from the panel and oblique white emission light WB from the panel. White light WBs derived from (large tint) is included, and oblique white light (for example, a polar angle of 60°) from the diffusion adhesive layer KL is white derived from front white emitted light WW (small tint). Since the light WWn and the white light WBn derived from the oblique white emission light WB (large color tint) from the panel are included, it is possible to suppress the tint change due to oblique visual recognition.
 図7から、拡散粘着層KLについて、膜厚=100μm、粘着剤の屈折率=1.47、拡散粒子の屈折率=1.595、粘着剤と拡散粒子の屈折率差=0.125、拡散粒子の粒子径=5.0μm、ヘイズ=94.7%とした場合に、Δb=7.4となり、極角に伴う色味変化が極めて小さい(視野角特性が特に優れる)ことがわかる。 From FIG. 7, for the diffusion adhesive layer KL, the film thickness=100 μm, the refractive index of the adhesive=1.47, the refractive index of the diffusing particles=1.595, the refractive index difference between the adhesive and the diffusing particles=0.125, the diffusion When the particle diameter of the particles is 5.0 μm and the haze is 94.7%, Δb is 7.4, and it can be seen that the tint change with the polar angle is extremely small (the viewing angle characteristics are particularly excellent).
 実施例7では、1/4λ板43および吸収偏光板46が円偏光板として機能する。したがって、外光WFに起因するパネル透けおよび画像の二重映りが解消される。 In Example 7, the 1/4 λ plate 43 and the absorption polarization plate 46 function as a circular polarization plate. Therefore, the panel see-through and the double reflection of the image due to the external light WF are eliminated.
 〔実施例6〕
 図8は、実施例6のミラーディスプレイの構成を示す断面図である。実施例6の機能層40は、下層側から順に、透明粘着層CA、1/4λ板43、粘着剤(第1粘着剤)と球形の拡散粒子(第1拡散粒子)を含む第1拡散粘着層KL1、吸収偏光板46(第1フィルムFF)、粘着剤(第2粘着剤)と球形の拡散粒子(第2拡散粒子)を含む第2拡散粘着層KL2、および透明フィルム47(第2フィルムSF)を備える。
[Example 6]
FIG. 8 is a sectional view showing the structure of the mirror display of the sixth embodiment. The functional layer 40 of Example 6 includes, in order from the lower layer side, a transparent adhesive layer CA, a 1/4 λ plate 43, a first diffusion adhesive containing an adhesive (first adhesive) and spherical diffusion particles (first diffusion particles). Layer KL1, absorption polarizing plate 46 (first film FF), second diffusion adhesive layer KL2 containing adhesive (second adhesive) and spherical diffusion particles (second diffusion particles), and transparent film 47 (second film). SF).
 実施例6の第2拡散粘着層KL2からの正面白色光(極角0°)には、パネルからの正面白色出射光WW(色味小)由来の白色光WWsと、パネルからの斜め白色出射光WB(色味大)由来の白色光WBsとが含まれ、第2拡散粘着層KL2からの斜め白色光(例えば極角60°)には、パネルからの正面白色出射光WW(色味小)由来のホワイト光WWnと、パネルからの斜め白色出射光WB(色味大)由来のホワイト光WBnとが含まれるため、斜め視認での色味変化を抑えることができる。 The front white light (polar angle 0°) from the second diffusion adhesive layer KL2 of Example 6 includes white light WWs derived from the front white emission light WW (small tint) and oblique white light from the panel. White light WBs derived from radiated light WB (large tint) are included, and the oblique white light (for example, polar angle 60 °) from the second diffusion adhesive layer KL2 includes front white emitted light WW (small tint) from the panel. ) And the white light WBn derived from the oblique white emitted light WB (large tint) from the panel are included, it is possible to suppress the tint change due to oblique visual recognition.
 図8から、第1および第2拡散粘着層KL1・KL2それぞれについて、膜厚=7μm、粘着剤の屈折率=1.47、拡散粒子の屈折率=1.595、粘着剤と拡散粒子の屈折率差=0.125、拡散粒子の粒子径=5.0μm、ヘイズ=38.8%(第1および第2拡散粘着層KL1・KL2を貼り合わせた場合の膜厚14μmかつヘイズ63.6%)とした場合に、Δb=20.1となり、極角に伴う色味変化が小さい(視野角特性が良好である)ことがわかる。 From FIG. 8, for each of the first and second diffusion adhesive layers KL1 and KL2, the film thickness=7 μm, the refractive index of the adhesive=1.47, the refractive index of the diffusing particles=1.595, the refraction of the adhesive and the diffusing particles. Rate difference = 0.125, particle size of diffuse particles = 5.0 μm, haze = 38.8% (thickness 14 μm and haze 63.6% when the first and second diffusion adhesive layers KL1 and KL2 are bonded together) ), Δb=20.1, and it can be seen that the change in tint with the polar angle is small (the viewing angle characteristic is good).
 実施例6では、1/4λ板43および吸収偏光板46が円偏光板として機能する。したがって、外光WFに起因するパネル透けおよび画像の二重映りが解消される。 In Example 6, the 1/4 λ plate 43 and the absorption polarization plate 46 function as a circular polarization plate. Therefore, the panel see-through and the double reflection of the image due to the external light WF are eliminated.
 〔実施例7〕
 図9は、実施例7のミラーディスプレイの構成を示す断面図である。実施例7の機能層40は、下層側から順に、粘着剤(第1粘着剤)と球形の拡散粒子(第1拡散粒子)を含む第1拡散粘着層KL1、1/4λ板43(第1フィルムFF)、粘着剤(第2粘着剤)と球形の拡散粒子(第2拡散粒子)を含む第2拡散粘着層KL2、および吸収偏光板46(第2フィルムSF)を備える。
[Example 7]
FIG. 9 is a cross-sectional view showing the configuration of the mirror display of Example 7. The functional layer 40 of Example 7 includes, in order from the lower layer side, a first diffusion adhesive layer KL1 including an adhesive (first adhesive) and spherical diffusion particles (first diffusion particles), a ¼λ plate 43 (first A film FF), a second diffusion adhesive layer KL2 containing an adhesive (second adhesive) and spherical diffusion particles (second diffusion particles), and an absorption polarizing plate 46 (second film SF).
 実施例7の第2拡散粘着層KL2からの正面白色光(極角0°)には、パネルからの正面白色出射光WW(色味小)由来の白色光WWsと、パネルからの斜め白色出射光WB(色味大)由来の白色光WBsとが含まれ、第2拡散粘着層KL2からの斜め白色光(例えば極角60°)には、パネルからの正面白色出射光WW(色味小)由来のホワイト光WWnと、パネルからの斜め白色出射光WB(色味大)由来のホワイト光WBnとが含まれるため、斜め視認での色味変化を抑えることができる。 The front white light (polar angle 0°) from the second diffusion adhesive layer KL2 of Example 7 includes the white light WWs derived from the front white emission light WW (small tint) and the oblique white light from the panel. White light WBs derived from radiated light WB (large tint) are included, and the oblique white light (for example, polar angle 60 °) from the second diffusion adhesive layer KL2 includes front white emitted light WW (small tint) from the panel. ) And the white light WBn derived from the oblique white emitted light WB (large tint) from the panel are included, it is possible to suppress the tint change due to oblique visual recognition.
 図9から、第1および第2拡散粘着層KL1・KL2それぞれについて、膜厚=10μm、粘着剤の屈折率=1.47、拡散粒子の屈折率=1.595、粘着剤と拡散粒子の屈折率差=0.125、拡散粒子の粒子径=5.0μm、ヘイズ=52.3%(第1および第2拡散粘着層KL1・KL2を貼り合わせた場合の膜厚20μmかつヘイズ76.2%)とした場合に、Δb=14.5となり、極角に伴う色味変化が非常に小さい(視野角特性が優れる)ことがわかる。 From FIG. 9, for each of the first and second diffusion adhesive layers KL1 and KL2, the film thickness = 10 μm, the refractive index of the adhesive = 1.47, the refractive index of the diffuse particles = 1.595, and the refractive index of the adhesive and the diffuse particles. Rate difference = 0.125, particle size of diffuse particles = 5.0 μm, haze = 52.3% (thickness 20 μm and haze 76.2% when the first and second diffusion adhesive layers KL1 and KL2 are bonded together) ), Δb=14.5, and it can be seen that the change in tint with the polar angle is very small (the viewing angle characteristic is excellent).
 実施例7では、1/4λ板43および吸収偏光板46が円偏光板として機能する。したがって、外光WFに起因するパネル透けおよび画像の二重映りが解消される。 In Example 7, the 1/4 λ plate 43 and the absorption polarization plate 46 function as a circular polarization plate. Therefore, the panel see-through and the double reflection of the image due to the external light WF are eliminated.
 〔実施例8〕
 図10は、実施例8のミラーディスプレイの構成を示す断面図である。実施例8の機能層40は、下層側から順に、粘着剤(第1粘着剤)と球形の拡散粒子(第1拡散粒子)を含む第1拡散粘着層KL1、1/4λ板43(第1フィルムFF)、粘着剤(第2粘着剤)と球形の拡散粒子(第2拡散粒子)を含む第2拡散粘着層KL2、吸収偏光板46(第2フィルムSF)、粘着剤(第3粘着剤)と球形の拡散粒子(第3拡散粒子)を含む第3拡散粘着層KL3、および透明フィルム47(第3フィルムTF)を備える。
[Example 8]
FIG. 10 is a sectional view showing the structure of the mirror display of the eighth embodiment. The functional layer 40 of Example 8 includes a first diffusion adhesive layer KL1 including a pressure-sensitive adhesive (first pressure-sensitive adhesive) and spherical diffusion particles (first diffusion particles) and a 1/4λ plate 43 (first Film FF), a second diffusion adhesive layer KL2 containing an adhesive (second adhesive) and spherical diffusion particles (second diffusion particles), an absorption polarizing plate 46 (second film SF), an adhesive (third adhesive) ) And spherical diffusion particles (third diffusion particles), and a third diffusion adhesive layer KL3, and a transparent film 47 (third film TF).
 実施例8の第3拡散粘着層KL3からの正面白色光(極角0°)には、パネルからの正面白色出射光WW(色味小)由来の白色光WWsと、パネルからの斜め白色出射光WB(色味大)由来の白色光WBsとが含まれ、第3拡散粘着層KL3からの斜め白色光(例えば極角60°)には、パネルからの正面白色出射光WW(色味小)由来のホワイト光WWnと、パネルからの斜め白色出射光WB(色味大)由来のホワイト光WBnとが含まれるため、斜め視認での色味変化を抑えることができる。 The front white light (extreme angle 0 °) from the third diffusion adhesive layer KL3 of Example 8 includes white light WWs derived from the front white emission light WW (small tint) from the panel and oblique white output from the panel. White light WBs derived from radiated light WB (large color) are included, and the oblique white light (for example, polar angle 60 °) from the third diffusion adhesive layer KL3 includes the front white emitted light WW (small color) from the panel. ) And the white light WBn derived from the oblique white emitted light WB (large tint) from the panel are included, it is possible to suppress the tint change due to oblique visual recognition.
 図10から、第1~第3拡散粘着層KL1・KL2・KL3それぞれについて、膜厚=50μm、粘着剤の屈折率=1.47、拡散粒子の屈折率=1.565、粘着剤と拡散粒子の屈折率差=0.095、拡散粒子の粒子径=5.0μm、ヘイズ=87.9%(第1~第3拡散粘着層KL1・KL2・KL3を貼り合わせた場合の膜厚150μmかつヘイズ97%)とした場合に、Δb=3.1となり、極角に伴う色味変化が極めて小さい(視野角特性が特に優れる)ことがわかる。 From FIG. 10, for each of the first to third diffusion adhesive layers KL1, KL2, and KL3, the film thickness=50 μm, the refractive index of the adhesive=1.47, the refractive index of the diffusing particles=1.565, the adhesive and the diffusing particles. Difference in refractive index=0.095, particle size of diffusing particles=5.0 μm, haze=87.9% (film thickness of 150 μm and haze when the first to third diffusion adhesive layers KL1, KL2, and KL3 are bonded together) When it is set to 97%), Δb = 3.1, and it can be seen that the change in tint with the polar angle is extremely small (the viewing angle characteristic is particularly excellent).
 実施例8では、1/4λ板43および吸収偏光板46が円偏光板として機能する。したがって、外光WFに起因するパネル透けおよび画像の二重映りが解消される。 In Example 8, the 1/4 λ plate 43 and the absorption polarization plate 46 function as a circular polarization plate. Therefore, the panel see-through and the double reflection of the image due to the external light WF are eliminated.
 〔実施例9〕
 図11は、実施例9のミラーディスプレイの構成を示す断面図である。実施例9の機能層40は、下層側から順に、粘着剤と球形の拡散粒子を含む拡散粘着層KL、および透明フィルム47(第1フィルムFF)を備える。
[Example 9]
FIG. 11 is a sectional view showing the structure of the mirror display of the ninth embodiment. The functional layer 40 of Example 9 includes a diffusion adhesive layer KL containing an adhesive and spherical diffusion particles, and a transparent film 47 (first film FF) in this order from the lower layer side.
 実施例9の拡散粘着層KLからの正面白色光(極角0°)には、パネルからの正面白色出射光WW(色味小)由来の白色光WWsと、パネルからの斜め白色出射光WB(色味大)由来の白色光WBsとが含まれ、拡散粘着層KLからの斜め白色光(例えば極角60°)には、パネルからの正面白色出射光WW(色味小)由来のホワイト光WWnと、パネルからの斜め白色出射光WB(色味大)由来のホワイト光WBnとが含まれるため、斜め視認での色味変化を抑えることができる。 The front white light (extreme angle 0 °) from the diffused adhesive layer KL of Example 9 includes white light WWs derived from front white emission light WW (small tint) from the panel and oblique white emission light WB from the panel. White light WBs derived from (large tint) is included, and oblique white light (for example, a polar angle of 60°) from the diffusion adhesive layer KL is white derived from front white emitted light WW (small tint). Since the light WWn and the white light WBn derived from the oblique white emitted light WB (large tint) from the panel are included, it is possible to suppress the tint change in oblique visual recognition.
 図11から、拡散粘着層KLについて、膜厚=30μm、粘着剤の屈折率=1.47、拡散粒子の屈折率=1.595、粘着剤と拡散粒子の屈折率差=0.125、拡散粒子の粒子径=1.3μm、ヘイズ=92.6%とした場合に、Δb=8.6となり、極角に伴う色味変化が極めて小さい(視野角特性が特に優れる)ことがわかる。 From FIG. 11, for the diffusion adhesive layer KL, the film thickness=30 μm, the refractive index of the adhesive=1.47, the refractive index of the diffusing particles=1.595, the refractive index difference between the adhesive and the diffusing particles=0.125, the diffusion When the particle diameter of the particles is 1.3 μm and the haze is 92.6%, Δb is 8.6, and it can be seen that the tint change with the polar angle is extremely small (the viewing angle characteristics are particularly excellent).
 〔各実施例について〕
 図15は、ミラーディスプレイの構成例を示す断面図である。図15のように、表示パネル30がフレキシブル表示パネルであって、表示パネル30がハーフミラー60側に凸となる曲面形状でもよい。ハーフミラー60は曲面形状に限られず、平面形状でもよい。表示パネル30が曲面状の場合は特に色味の変化が大きく、各実施例の構成によって、その色味の変化が抑えられる。
[Each Example]
FIG. 15 is a cross-sectional view showing a configuration example of a mirror display. As shown in FIG. 15, the display panel 30 may be a flexible display panel, and the display panel 30 may have a curved surface shape that is convex toward the half mirror 60 side. The half mirror 60 is not limited to a curved surface shape, but may be a planar shape. When the display panel 30 has a curved shape, the change in tint is particularly large, and the configuration of each embodiment suppresses the change in tint.
 以下に、上述の実施例および比較例の結果をまとめる。 The following is a summary of the results of the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
 なお、表示パネルは、有機ELディスプレイ、OLED(Organic Light Emitting Diode:有機発光ダイオード)を備えた有機EL(Electro Luminescence:エレクトロルミネッセンス)ディスプレイ、又は無機発光ダイオードを備えた無機ELディスプレイ等のELディスプレイQLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)を備えたQLEDディスプレイである
 上述の各実施形態は、例示および説明を目的とするものであり、限定を目的とするものではない。これら例示および説明に基づけば、多くの変形形態が可能になることが、当業者には明らかである。
Figure JPOXMLDOC01-appb-T000001
The display panel is an EL display QLED such as an organic EL display, an organic EL (Electro Luminescence) display including an OLED (Organic Light Emitting Diode), or an inorganic EL display including an inorganic light emitting diode. QLED Display with (Quantum dot Light Emitting Diode) The embodiments described above are for purposes of illustration and description, and not for limitation. Based on these examples and explanations, it will be apparent to those skilled in the art that many variants are possible.
 〔まとめ〕
 〔態様1〕
 下層から順に、表示パネル、拡散粘着層、空気層、およびハーフミラーを備え、
 前記拡散粘着層は、球状の拡散粒子および粘着剤を含み、
 前記拡散粒子の屈折率は、1.42~1.70であり、
 前記粘着剤の屈折率は、1.45~1.55であり、
 前記拡散粒子と前記粘着剤との屈折率差は、0.07~0.25であり、
 前記拡散粘着層のヘイズは、40~99%であるミラーディスプレイ。
[Summary]
[Aspect 1]
A display panel, a diffusion adhesive layer, an air layer, and a half mirror are provided in order from the lower layer,
The diffusion adhesive layer contains spherical diffusion particles and an adhesive.
The refractive index of the diffused particles is 1.42 to 1.70.
The refractive index of the pressure-sensitive adhesive is 1.45 to 1.55.
The refractive index difference between the diffusion particles and the adhesive is 0.07 to 0.25,
A mirror display in which the haze of the diffusion adhesive layer is 40 to 99%.
 〔態様2〕
 前記拡散粘着層と前記空気層との間に第1フィルムが設けられる、例えば態様1に記載のミラーディスプレイ。
[Aspect 2]
The mirror display according to, for example, the first aspect, wherein the first film is provided between the diffusion adhesive layer and the air layer.
 〔態様3〕
 前記第1フィルムは透明フィルムであって、
 前記表示パネルと前記拡散粘着層との間に、λ/4板および吸収偏光板が設けられる、例えば態様2に記載のミラーディスプレイ。
[Aspect 3]
The first film is a transparent film,
The mirror display according to aspect 2, for example, wherein a λ/4 plate and an absorption polarizing plate are provided between the display panel and the diffusion adhesive layer.
 〔態様4〕
 前記表示パネルと前記λ/4板との間に透明粘着層が設けられる、例えば態様3に記載のミラーディスプレイ。
[Mode 4]
The mirror display according to aspect 3, for example, wherein a transparent adhesive layer is provided between the display panel and the λ/4 plate.
 〔態様5〕
 前記λ/4板と前記吸収偏光板との間に別の透明粘着層が設けられる、例えば態様3に記載のミラーディスプレイ。
[Aspect 5]
The mirror display according to aspect 3, for example, in which another transparent adhesive layer is provided between the λ/4 plate and the absorption polarizing plate.
 〔態様6〕
 前記第1フィルムは吸収偏光板であって、表示パネルと拡散粘着層との間に、λ/4板が設けられる、例えば態様2に記載のミラーディスプレイ。
[Aspect 6]
The mirror display according to aspect 2, for example, wherein the first film is an absorption polarizing plate and a λ/4 plate is provided between the display panel and the diffusion adhesive layer.
 〔態様7〕
 前記第1フィルムはλ/4板であって、前記第1フィルムの前記表示パネルとは反対側に吸収偏光板が設けられる、例えば態様2に記載のミラーディスプレイ。
[Aspect 7]
The mirror display according to, for example, the second aspect, wherein the first film is a λ / 4 plate, and an absorption polarizing plate is provided on the side of the first film opposite to the display panel.
 〔態様8〕
 前記λ/4板と前記吸収偏光板との間に透明粘着層が設けられる、例えば態様7に記載のミラーディスプレイ。
[Aspect 8]
The mirror display according to, for example, aspect 7, wherein a transparent adhesive layer is provided between the λ / 4 plate and the absorption polarizing plate.
 〔態様9〕
 前記表示パネルおよび前記空気層の間に、前記拡散粘着層を含む複数の拡散粘着層と、前記複数の拡散粘着層の間に設けられた第1フィルムとを含み、
 各拡散粘着層は、球状の拡散粒子および粘着剤を含み、
 各拡散粘着層において、前記拡散粒子の屈折率は、1.42~1.70であり、
 各拡散粘着層において、前記粘着剤の屈折率は、1.45~1.55であり、
 各拡散粘着層において、前記拡散粒子と前記粘着剤との屈折率差は、0.07~0.25であり、
 前記複数の拡散粘着層を貼り合わせた場合のヘイズは、40~99%である、例えば態様1に記載のミラーディスプレイ。
[Aspect 9]
Between the display panel and the air layer, a plurality of diffusion adhesive layers including the diffusion adhesive layer and a first film provided between the plurality of diffusion adhesive layers are included.
Each diffusing adhesive layer contains spherical diffusing particles and an adhesive.
In each of the diffusion adhesive layers, the refractive index of the diffusion particles is 1.42 to 1.70,
In each diffusion adhesive layer, the refractive index of the adhesive is 1.45 to 1.55,
In each diffusion adhesive layer, the difference in refractive index between the diffusion particles and the adhesive is 0.07 to 0.25,
The haze when the plurality of diffusion adhesive layers are bonded together is 40 to 99%, for example, the mirror display according to the first aspect.
 〔態様10〕
 前記複数の拡散粘着層は、第1拡散粘着層および第2拡散粘着層であり、
 下層から順に、前記表示パネル、前記第1拡散粘着層、前記第1フィルム、前記第2拡散粘着層、第2フィルム、前記空気層、および前記ハーフミラーが設けられ、
 前記第1拡散粘着層は、球状の第1拡散粒子および第1粘着剤を含み、
 前記第2拡散粘着層は、球状の第2拡散粒子および第2粘着剤を含み、
 前記第1拡散粒子の屈折率は、1.42~1.70であり、
 前記第1粘着剤の屈折率は、1.45~1.55であり、
 前記第1拡散粒子と前記第1粘着剤の屈折率差は、0.07~0.25であり、
 前記第2拡散粒子の屈折率は、1.42~1.70であり、
 前記第2粘着剤の屈折率は、1.45~1.55であり、
 前記第2拡散粒子および第2粘着剤の屈折率差は、0.07~0.25であり、
 前記第1拡散粘着層、および前記第2拡散粘着層を貼り合わせた場合のヘイズは、40~99%である、例えば態様9に記載のミラーディスプレイ。
[Aspect 10]
The plurality of diffusion adhesive layers are a first diffusion adhesive layer and a second diffusion adhesive layer,
From the bottom layer, the display panel, the first diffusion adhesive layer, the first film, the second diffusion adhesive layer, the second film, the air layer, and the half mirror are provided.
The first diffusion adhesive layer includes spherical first diffusion particles and a first adhesive,
The second diffusion adhesive layer includes spherical second diffusion particles and a second adhesive,
The refractive index of the first diffusing particles is 1.42 to 1.70,
The refractive index of the first pressure-sensitive adhesive is 1.45 to 1.55.
The difference in refractive index between the first diffusing particles and the first pressure-sensitive adhesive is 0.07 to 0.25.
The refractive index of the second diffusing particles is 1.42 to 1.70,
The refractive index of the second pressure-sensitive adhesive is 1.45 to 1.55.
The difference in refractive index between the second diffusing particles and the second pressure-sensitive adhesive is 0.07 to 0.25.
The mirror display according to aspect 9, for example, wherein the haze when the first diffusion adhesive layer and the second diffusion adhesive layer are bonded together is 40 to 99%.
 〔態様11〕
 前記第1フィルムは吸収偏光板であり、前記第2フィルムは透明フィルムであり、
 前記表示パネルと前記第1拡散粘着層との間にλ/4板が設けられる、例えば態様10に記載のミラーディスプレイ。
[Aspect 11]
The first film is an absorption polarizing plate, the second film is a transparent film,
The mirror display according to aspect 10, for example, wherein a λ/4 plate is provided between the display panel and the first diffusion adhesive layer.
 〔態様12〕
 前記第1フィルムはλ/4板であり、前記第2フィルムは吸収偏光板である、例えば態様11に記載のミラーディスプレイ。
[Aspect 12]
The mirror display according to aspect 11, for example, wherein the first film is a λ/4 plate and the second film is an absorption polarizing plate.
 〔態様13〕
 前記複数の拡散粘着層は、第1拡散粘着層、第2拡散粘着層および第3拡散粘着層であり、
 下層から順に、前記表示パネル、前記第1拡散粘着層、前記第1フィルム、前記第2拡散粘着層、第2フィルム、前記第3拡散粘着層、第3フィルム、前記空気層、および前記ハーフミラーが設けられ、
 前記第1拡散粘着層は、球状の第1拡散粒子および第1粘着剤を含み、
 前記第2拡散粘着層は、球状の第2拡散粒子および第2粘着剤を含み、
 前記第3拡散粘着層は、球状の第3拡散粒子および第3粘着剤を含み、
 前記第1拡散粒子の屈折率は、1.42~1.70であり、
 前記第1粘着剤の屈折率は、1.45~1.55であり、
 前記第1拡散粒子と前記第1粘着剤の屈折率差は、0.07~0.25であり、
 前記第2拡散粒子の屈折率は、1.42~1.70であり、
 前記第2粘着剤の屈折率は、1.45~1.55であり、
 前記第2拡散粒子および第2粘着剤の屈折率差は、0.07~0.25であり、
 前記第3拡散粒子の屈折率は、1.42~1.70であり、
 前記第3粘着剤の屈折率は、1.45~1.55であり、
 前記第3拡散粒子および第3粘着剤の屈折率差は、0.07~0.25であり、
 前記第1拡散粘着層、前記第2拡散粘着層、および前記第3拡散粘着層を貼り合わせた場合のヘイズは、40~99%である、例えば態様9に記載のミラーディスプレイ。
[Aspect 13]
The plurality of diffusion adhesive layers are a first diffusion adhesive layer, a second diffusion adhesive layer and a third diffusion adhesive layer,
The display panel, the first diffusion adhesive layer, the first film, the second diffusion adhesive layer, the second film, the third diffusion adhesive layer, the third film, the air layer, and the half mirror in order from the lower layer. Is provided,
The first diffusion adhesive layer includes spherical first diffusion particles and a first adhesive,
The second diffusion adhesive layer includes spherical second diffusion particles and a second adhesive,
The third diffusion adhesive layer includes spherical third diffusion particles and a third adhesive,
The refractive index of the first diffusing particles is 1.42 to 1.70,
The refractive index of the first pressure-sensitive adhesive is 1.45 to 1.55.
The refractive index difference between the first diffusion particles and the first adhesive is 0.07 to 0.25,
The refractive index of the second diffusing particles is 1.42 to 1.70,
The second adhesive has a refractive index of 1.45 to 1.55,
The refractive index difference between the second diffusing particles and the second adhesive is 0.07 to 0.25,
The refractive index of the third diffusing particles is 1.42 to 1.70,
The third adhesive has a refractive index of 1.45 to 1.55,
The refractive index difference between the third diffusion particles and the third pressure-sensitive adhesive is 0.07 to 0.25,
The haze when the first diffusion adhesive layer, the second diffusion adhesive layer, and the third diffusion adhesive layer are bonded together is 40 to 99%, for example, the mirror display according to the ninth aspect.
 〔態様14〕
 前記第1フィルムはλ/4板であり、前記第2フィルムは吸収偏光板であり、前記第3フィルムは透明フィルムである、例えば態様13に記載のミラーディスプレイ。
[Aspect 14]
The mirror display according to, for example, aspect 13, wherein the first film is a λ / 4 plate, the second film is an absorption polarizing plate, and the third film is a transparent film.
 〔態様15〕
 前記表示パネルはフレキシブル表示パネルであって、前記表示パネルが前記ハーフミラー側に凸となる曲面形状である、例えば態様1~14のいずれか1つに記載のミラーディスプレイ。
[Aspect 15]
The mirror display according to any one of aspects 1 to 14, for example, the display panel is a flexible display panel and has a curved surface shape in which the display panel is convex toward the half mirror side.
 2 ミラーディスプレイ
 4 TFT層
 5 発光素子層
 21 平坦化膜
 22 第1電極
 23 エッジカバー膜
 24 EL層
 25 第2電極
 30 表示パネル
 43 1/4λ板
 46 吸収偏光板
 47 透明フィルム
 50 空気層
 60 ハーフミラー
 70 保護カバー
 KL 拡散粘着層
 FF 第1フィルム
 SF 第2フィルム
 TF 第3フィルム
2 Mirror Display 4 TFT Layer 5 Light Emitting Element Layer 21 Flattening Film 22 First Electrode 23 Edge Cover Film 24 EL Layer 25 Second Electrode 30 Display Panel 43 1/4 λ Plate 46 Absorption Polarizing Plate 47 Transparent Film 50 Air Layer 60 Half Mirror 70 Protective Cover KL Diffusion Adhesive Layer FF 1st Film SF 2nd Film TF 3rd Film

Claims (15)

  1.  下層から順に、表示パネル、拡散粘着層、空気層、およびハーフミラーを備え、
     前記拡散粘着層は、球状の拡散粒子および粘着剤を含み、
     前記拡散粒子の屈折率は、1.42~1.70であり、
     前記粘着剤の屈折率は、1.45~1.55であり、
     前記拡散粒子と前記粘着剤との屈折率差は、0.07~0.25であり、
     前記拡散粘着層のヘイズは、40~99%であるミラーディスプレイ。
    A display panel, a diffusion adhesive layer, an air layer, and a half mirror are provided in order from the lower layer,
    The diffusion adhesive layer contains spherical diffusion particles and an adhesive.
    The refractive index of the diffused particles is 1.42 to 1.70.
    The refractive index of the pressure-sensitive adhesive is 1.45 to 1.55.
    The refractive index difference between the diffusion particles and the adhesive is 0.07 to 0.25,
    A mirror display in which the haze of the diffusion adhesive layer is 40 to 99%.
  2.  前記拡散粘着層と前記空気層との間に第1フィルムが設けられる請求項1に記載のミラーディスプレイ。 The mirror display according to claim 1, wherein a first film is provided between the diffusion adhesive layer and the air layer.
  3.  前記第1フィルムは透明フィルムであって、
     前記表示パネルと前記拡散粘着層との間に、λ/4板および吸収偏光板が設けられる請求項2に記載のミラーディスプレイ。
    The first film is a transparent film,
    The mirror display according to claim 2, wherein a λ/4 plate and an absorption polarizing plate are provided between the display panel and the diffusion adhesive layer.
  4.  前記表示パネルと前記λ/4板との間に透明粘着層が設けられる請求項3に記載のミラーディスプレイ。 The mirror display according to claim 3, wherein a transparent adhesive layer is provided between the display panel and the λ/4 plate.
  5.  前記λ/4板と前記吸収偏光板との間に別の透明粘着層が設けられる請求項3に記載のミラーディスプレイ。 The mirror display according to claim 3, wherein another transparent adhesive layer is provided between the λ/4 plate and the absorption polarizing plate.
  6.  前記第1フィルムは吸収偏光板であって、表示パネルと拡散粘着層との間に、λ/4板が設けられる請求項2に記載のミラーディスプレイ。 The mirror display according to claim 2, wherein the first film is an absorption polarizing plate, and a λ / 4 plate is provided between the display panel and the diffusion adhesive layer.
  7.  前記第1フィルムはλ/4板であって、前記第1フィルムの前記表示パネルとは反対側に吸収偏光板が設けられる請求項2に記載のミラーディスプレイ。 The mirror display according to claim 2, wherein the first film is a λ / 4 plate, and an absorption polarizing plate is provided on the side opposite to the display panel of the first film.
  8.  前記λ/4板と前記吸収偏光板との間に透明粘着層が設けられる請求項7に記載のミラーディスプレイ。 The mirror display according to claim 7, wherein a transparent adhesive layer is provided between the λ/4 plate and the absorption polarizing plate.
  9.  前記表示パネルおよび前記空気層の間に、前記拡散粘着層を含む複数の拡散粘着層と、前記複数の拡散粘着層の間に設けられた第1フィルムとを含み、
     各拡散粘着層は、球状の拡散粒子および粘着剤を含み、
     各拡散粘着層において、前記拡散粒子の屈折率は、1.42~1.70であり、
     各拡散粘着層において、前記粘着剤の屈折率は、1.45~1.55であり、
     各拡散粘着層において、前記拡散粒子と前記粘着剤との屈折率差は、0.07~0.25であり、
     前記複数の拡散粘着層を貼り合わせた場合のヘイズは、40~99%である請求項1に記載のミラーディスプレイ。
    Between the display panel and the air layer, a plurality of diffusion adhesive layers including the diffusion adhesive layer and a first film provided between the plurality of diffusion adhesive layers are included.
    Each diffusing adhesive layer contains spherical diffusing particles and an adhesive.
    In each of the diffusion adhesive layers, the refractive index of the diffusion particles is 1.42 to 1.70,
    In each diffusion adhesive layer, the refractive index of the adhesive is 1.45 to 1.55,
    In each diffusion adhesive layer, the difference in refractive index between the diffusion particles and the adhesive is 0.07 to 0.25,
    The mirror display according to claim 1, wherein the haze when the plurality of diffusion adhesive layers are bonded together is 40 to 99%.
  10.  前記複数の拡散粘着層は、第1拡散粘着層および第2拡散粘着層であり、
     下層から順に、前記表示パネル、前記第1拡散粘着層、前記第1フィルム、前記第2拡散粘着層、第2フィルム、前記空気層、および前記ハーフミラーが設けられ、
     前記第1拡散粘着層は、球状の第1拡散粒子および第1粘着剤を含み、
     前記第2拡散粘着層は、球状の第2拡散粒子および第2粘着剤を含み、
     前記第1拡散粒子の屈折率は、1.42~1.70であり、
     前記第1粘着剤の屈折率は、1.45~1.55であり、
     前記第1拡散粒子と前記第1粘着剤の屈折率差は、0.07~0.25であり、
     前記第2拡散粒子の屈折率は、1.42~1.70であり、
     前記第2粘着剤の屈折率は、1.45~1.55であり、
     前記第2拡散粒子および第2粘着剤の屈折率差は、0.07~0.25であり、
     前記第1拡散粘着層、および前記第2拡散粘着層を貼り合わせた場合のヘイズは、40~99%である請求項9に記載のミラーディスプレイ。
    The plurality of diffusion adhesive layers are a first diffusion adhesive layer and a second diffusion adhesive layer,
    From the bottom layer, the display panel, the first diffusion adhesive layer, the first film, the second diffusion adhesive layer, the second film, the air layer, and the half mirror are provided.
    The first diffusion adhesive layer includes spherical first diffusion particles and a first adhesive,
    The second diffusion adhesive layer includes spherical second diffusion particles and a second adhesive,
    The refractive index of the first diffusing particles is 1.42 to 1.70,
    The first adhesive has a refractive index of 1.45 to 1.55,
    The difference in refractive index between the first diffusing particles and the first pressure-sensitive adhesive is 0.07 to 0.25.
    The refractive index of the second diffusing particles is 1.42 to 1.70,
    The second adhesive has a refractive index of 1.45 to 1.55,
    The difference in refractive index between the second diffusing particles and the second pressure-sensitive adhesive is 0.07 to 0.25.
    10. The mirror display according to claim 9, wherein haze when the first diffusion adhesive layer and the second diffusion adhesive layer are bonded together is 40 to 99%.
  11.  前記第1フィルムは吸収偏光板であり、前記第2フィルムは透明フィルムであり、
     前記表示パネルと前記第1拡散粘着層との間にλ/4板が設けられる請求項10に記載のミラーディスプレイ。
    The first film is an absorption polarizing plate, the second film is a transparent film,
    The mirror display according to claim 10, wherein a λ/4 plate is provided between the display panel and the first diffusion adhesive layer.
  12.  前記第1フィルムはλ/4板であり、前記第2フィルムは吸収偏光板である請求項11に記載のミラーディスプレイ。 The mirror display according to claim 11, wherein the first film is a λ/4 plate and the second film is an absorption polarizing plate.
  13.  前記複数の拡散粘着層は、第1拡散粘着層、第2拡散粘着層および第3拡散粘着層であり、
     下層から順に、前記表示パネル、前記第1拡散粘着層、前記第1フィルム、前記第2拡散粘着層、第2フィルム、前記第3拡散粘着層、第3フィルム、前記空気層、および前記ハーフミラーが設けられ、
     前記第1拡散粘着層は、球状の第1拡散粒子および第1粘着剤を含み、
     前記第2拡散粘着層は、球状の第2拡散粒子および第2粘着剤を含み、
     前記第3拡散粘着層は、球状の第3拡散粒子および第3粘着剤を含み、
     前記第1拡散粒子の屈折率は、1.42~1.70であり、
     前記第1粘着剤の屈折率は、1.45~1.55であり、
     前記第1拡散粒子と前記第1粘着剤の屈折率差は、0.07~0.25であり、
     前記第2拡散粒子の屈折率は、1.42~1.70であり、
     前記第2粘着剤の屈折率は、1.45~1.55であり、
     前記第2拡散粒子および第2粘着剤の屈折率差は、0.07~0.25であり、
     前記第3拡散粒子の屈折率は、1.42~1.70であり、
     前記第3粘着剤の屈折率は、1.45~1.55であり、
     前記第3拡散粒子および第3粘着剤の屈折率差は、0.07~0.25であり、
     前記第1拡散粘着層、前記第2拡散粘着層、および前記第3拡散粘着層を貼り合わせた場合のヘイズは、40~99%である請求項9に記載のミラーディスプレイ。
    The plurality of diffusion adhesive layers are a first diffusion adhesive layer, a second diffusion adhesive layer, and a third diffusion adhesive layer.
    The display panel, the first diffusion adhesive layer, the first film, the second diffusion adhesive layer, the second film, the third diffusion adhesive layer, the third film, the air layer, and the half mirror in order from the lower layer. Is provided,
    The first diffusion adhesive layer includes spherical first diffusion particles and a first adhesive,
    The second diffusion adhesive layer includes spherical second diffusion particles and a second adhesive,
    The third diffusion adhesive layer includes spherical third diffusion particles and a third adhesive,
    The refractive index of the first diffusing particles is 1.42 to 1.70,
    The first adhesive has a refractive index of 1.45 to 1.55,
    The difference in refractive index between the first diffusing particles and the first pressure-sensitive adhesive is 0.07 to 0.25.
    The refractive index of the second diffusing particles is 1.42 to 1.70,
    The second adhesive has a refractive index of 1.45 to 1.55,
    The refractive index difference between the second diffusing particles and the second adhesive is 0.07 to 0.25,
    The refractive index of the third diffusing particles is 1.42 to 1.70,
    The refractive index of the third pressure-sensitive adhesive is 1.45 to 1.55.
    The difference in refractive index between the third diffusing particles and the third pressure-sensitive adhesive is 0.07 to 0.25.
    10. The mirror display according to claim 9, wherein the haze when the first diffusion adhesive layer, the second diffusion adhesive layer, and the third diffusion adhesive layer are bonded together is 40 to 99%.
  14.  前記第1フィルムはλ/4板であり、前記第2フィルムは吸収偏光板であり、前記第3フィルムは透明フィルムである請求項13に記載のミラーディスプレイ。 The mirror display according to claim 13, wherein the first film is a λ / 4 plate, the second film is an absorption polarizing plate, and the third film is a transparent film.
  15.  前記表示パネルはフレキシブル表示パネルであって、前記表示パネルが前記ハーフミラー側に凸となる曲面形状である請求項1~14のいずれか1項に記載のミラーディスプレイ。 The mirror display according to any one of claims 1 to 14, wherein the display panel is a flexible display panel and has a curved surface shape in which the display panel is convex toward the half mirror side.
PCT/JP2019/008206 2019-03-01 2019-03-01 Mirror display WO2020178921A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008206 WO2020178921A1 (en) 2019-03-01 2019-03-01 Mirror display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008206 WO2020178921A1 (en) 2019-03-01 2019-03-01 Mirror display

Publications (1)

Publication Number Publication Date
WO2020178921A1 true WO2020178921A1 (en) 2020-09-10

Family

ID=72338238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008206 WO2020178921A1 (en) 2019-03-01 2019-03-01 Mirror display

Country Status (1)

Country Link
WO (1) WO2020178921A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191450A (en) * 2002-12-09 2004-07-08 Sumitomo Chem Co Ltd Spontaneously light-emitting display device
JP2014010291A (en) * 2012-06-29 2014-01-20 Nitto Denko Corp Circularly polarizing plate and display device
JP2015207377A (en) * 2014-04-17 2015-11-19 日東電工株式会社 Organic electroluminescence display device
WO2017175581A1 (en) * 2016-04-07 2017-10-12 日本化薬株式会社 Light reflecting film, and light control film and mirror display using same
WO2018008498A1 (en) * 2016-07-06 2018-01-11 シャープ株式会社 Display device, electronic apparatus, semi-transmissive reflection plate, and electrical apparatus
WO2018008497A1 (en) * 2016-07-06 2018-01-11 シャープ株式会社 Display device and electronic apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191450A (en) * 2002-12-09 2004-07-08 Sumitomo Chem Co Ltd Spontaneously light-emitting display device
JP2014010291A (en) * 2012-06-29 2014-01-20 Nitto Denko Corp Circularly polarizing plate and display device
JP2015207377A (en) * 2014-04-17 2015-11-19 日東電工株式会社 Organic electroluminescence display device
WO2017175581A1 (en) * 2016-04-07 2017-10-12 日本化薬株式会社 Light reflecting film, and light control film and mirror display using same
WO2018008498A1 (en) * 2016-07-06 2018-01-11 シャープ株式会社 Display device, electronic apparatus, semi-transmissive reflection plate, and electrical apparatus
WO2018008497A1 (en) * 2016-07-06 2018-01-11 シャープ株式会社 Display device and electronic apparatus

Similar Documents

Publication Publication Date Title
KR102606347B1 (en) Organic light emitting display apparatus
KR102513910B1 (en) Electroluminescent Display Device
US7402939B2 (en) Organic EL display
US9680132B1 (en) Display device and optical film
WO2021120314A1 (en) Display panel
KR102067969B1 (en) Organic light emitting diode display device
KR20160031108A (en) Organic light emitting display apparatus
US20210336226A1 (en) Display panel and display device
CN112349751B (en) Light emitting display device
KR20170010931A (en) Color Filter Array Substrate And Organic Light Emitting Diode Display Device Including The Same
WO2020178922A1 (en) Display device
CN113764471A (en) Display panel and display device including the same
KR101874863B1 (en) Organic light emitting diode
US20200212122A1 (en) Display device
KR20160039745A (en) Organic light-emitting display apparatus
KR20210010053A (en) Light emitting display apparatus
KR20180074644A (en) Organic light emitting diode display device
WO2020178921A1 (en) Mirror display
WO2021176539A1 (en) Display device
KR102450191B1 (en) Organic light emitting diodes display
KR102520566B1 (en) Organic light emitting diodes display
KR20210028803A (en) Display Apparatus
KR20200013353A (en) Organic light emitting diodes, Head mounted display including the same, and method for manufacturing the same.
KR102704563B1 (en) Organic light emitting diodes
US20240164193A1 (en) Display device and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP