WO2020177770A1 - 一种用于粒子束辐射样品的自动换样装置及方法 - Google Patents

一种用于粒子束辐射样品的自动换样装置及方法 Download PDF

Info

Publication number
WO2020177770A1
WO2020177770A1 PCT/CN2020/079125 CN2020079125W WO2020177770A1 WO 2020177770 A1 WO2020177770 A1 WO 2020177770A1 CN 2020079125 W CN2020079125 W CN 2020079125W WO 2020177770 A1 WO2020177770 A1 WO 2020177770A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
unit
radiation
sample tray
irradiated
Prior art date
Application number
PCT/CN2020/079125
Other languages
English (en)
French (fr)
Inventor
周利斌
毛瑞士
李欣
徐治国
杜艳
陈玉聪
李文建
康新才
金文杰
赵祖龙
魏堃
Original Assignee
中国科学院近代物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院近代物理研究所 filed Critical 中国科学院近代物理研究所
Priority to US17/436,191 priority Critical patent/US20220179110A1/en
Publication of WO2020177770A1 publication Critical patent/WO2020177770A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/08Means for conveying samples received
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0099Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor comprising robots or similar manipulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0418Plate elements with several rows of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0418Plate elements with several rows of samples
    • G01N2035/0425Stacks, magazines or elevators for plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/046General conveyor features
    • G01N2035/0465Loading or unloading the conveyor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0491Position sensing, encoding; closed-loop control

Definitions

  • the invention relates to an automatic sample changing device and method, in particular to an automatic sample changing device and method used for particle beam irradiation samples.
  • Particle beam radiation is different from electromagnetic radiation. Its mode of action with the target substance is very different, and it has the characteristics of strong radiation effect.
  • the particle beam contains leptons and hadrons. Leptons can be electrons or positrons. Hadrons include protons, light ions (such as helium ions) and heavy ions (such as carbon ions, oxygen ions, neon ions, argon ions, and iron ions, etc.) ).
  • the energy range of particle beams can range from thousands of electron volts to millions or even giga of electron volts close to the speed of light. As one of the emerging sources of physical mutagenesis, particle beams play an increasingly important role in radiation mutation breeding.
  • particle beam radiation mutation breeding has the characteristics of high mutation efficiency, wide mutation spectrum, and short stable period. It is used in the development of new varieties/new bacteria and the creation of germplasm resources. More and more applications.
  • particle beams In the field of tumor therapy, particle beams have the characteristics of high relative biological effects in the target area. In the process of penetrating or injecting the compound, the particle beam has the characteristics of energy deposition and mass deposition, causing atomic or molecular damage, rearranging the structure of some molecules, and forming new molecular groups, which can change the physical properties of the original material. And chemical properties, it has a wide range of applications in the basic and applied research of materials science. Particle beams are usually obtained by reactors and particle accelerators.
  • the existing turntable sample changing system has the disadvantages of low throughput and low efficiency, and cannot meet the increasing demand of domestic users.
  • the turntable sample change system requires fewer samples at one time, which leads to more sample changes, which increases the waste of beam time due to the turntable sample change.
  • the high-energy particle accelerator has a high operating cost, which costs tens of thousands of yuan for an hour. Therefore, it is extremely important to improve the efficiency of sample change and increase the throughput of sample change.
  • it is necessary to fully focus on the sample change system of the radiation sample greatly improve the sample change efficiency, and increase the sample flux of one sample change. Particle beam radiation biological and material samples industrial demand.
  • the purpose of the present invention is to provide an automatic sample change device and method for particle beam radiation samples to realize automatic change between sample trays instead of manual replacement without waiting for the environmental radiation dose in the radiation room to drop to Within the safety range, the particle beam beam time is saved and the beam utilization efficiency is improved.
  • an automatic sample changing device for particle beam irradiation samples including a sample tray unit, a sample tray transport unit, a sample tray handling unit, and a sample tray radiation table unit;
  • the sample tray unit is used to load the sample to be irradiated, the sample tray transport unit is used to carry the sample tray unit and send it into the radiation room;
  • the sample tray handling unit is arranged on the sample tray transport unit and the sample tray Between the radiation table units, it is used to move the sample plate unit on the sample plate transport unit to the sample plate radiation table unit or return the sample plate unit on the sample plate radiation table unit Onto the sample tray transport unit;
  • the sample tray radiation stage unit is used to carry the sample tray unit transferred by the sample tray handling unit and move the sample to be irradiated on the sample tray unit to the particle beam
  • the radiation area receives radiation.
  • the sample tray transport unit includes a cart mechanism, and the cart mechanism is provided with a shelf mechanism arranged in a height direction for accommodating at least one layer of the sample tray Unit; cart positioning mechanism, the cart mechanism is slidably arranged on the cart positioning mechanism, and the cart mechanism is sent into and fixed in a designated position in the radiation room through the cart positioning mechanism; toggle clamp positioning mechanism , Set on the shelf mechanism to ensure that the sample tray unit does not slide during transportation.
  • the sample tray handling unit includes a robot mechanism on which a sample tray holding bracket mechanism is provided for grasping and transferring the shelf mechanism or the The sample tray unit on the sample tray radiation table unit; the robot height adjustment mechanism is arranged on the carrying base along the Z axis direction and connected with the robot mechanism, and is used to adjust the Z axis height of the robot mechanism.
  • the sample tray radiation table unit includes: a Y-axis moving mechanism arranged on the base of the radiation table and extending along the Y-axis direction; an X-axis moving mechanism slidably arranged on the Y-axis The moving mechanism extends along the X-axis direction; the radiation table support mechanism, the lower end of the radiation table support mechanism is slidably arranged on the X-axis moving mechanism, and the upper end of the radiation table support mechanism is used to carry the robot mechanism for transfer The sample tray unit; a radiation table height adjustment mechanism, arranged on the radiation table support mechanism, used to adjust the distance between the upper end of the radiation table support mechanism and the beam vacuum window.
  • the sample tray unit is provided with a groove-type tray and a scale-type tray for loading different types of the samples to be irradiated.
  • the sample tray unit contains 1-24 samples to be irradiated; and the shelf mechanism on the cart mechanism contains 1-10 sample tray units.
  • the robot mechanism sets the moving speed according to the phase state of the sample to be irradiated: the moving speed of the solid sample is 50-120mm/s, the moving speed of the liquid sample is 10-60mm/s; the radiation stand mechanism is in the X axis direction
  • the moving distance of the radiation table is -200mm to 500mm, and the moving distance in the Y axis direction is -100mm to 300mm;
  • the height adjustment range of the radiation table height adjustment mechanism in the Z axis direction is -200mm to 600mm;
  • the sample tray radiation table unit With zero positioning function.
  • Step 1 Install the sample tray radiation table unit in front of the beam vacuum window
  • Step 2 Place the sample to be irradiated on the sample tray unit, insert the sample tray unit layer by layer into the shelf mechanism of the cart mechanism, fix it with the toggle clamp positioning mechanism, and push the cart mechanism to the cart positioning mechanism It is sent in and fixed at the designated position in the radiation room;
  • Step 3 The robot mechanism transfers the sample tray units in different shelf mechanisms from the cart mechanism to the radiation table support mechanism, and adjusts the beam vacuum window and the beam to be irradiated by the radiation table height adjustment mechanism according to the radiated particle energy and range The distance of the sample makes the radiation reach the best condition;
  • Step 4 Adjust the position of the radiation table holder mechanism through the X-axis moving mechanism and Y-axis moving mechanism, so that all samples to be irradiated in the sample tray unit on the radiation table holder mechanism move in sequence according to the preset coordinates, and the particle beam passes through the beam
  • the vacuum window and air layer irradiate each sample to be irradiated with a single sample in sequence;
  • Step 5 After all samples to be irradiated on the sample pan unit are irradiated, the sample pan unit is returned from the radiation table support mechanism to the designated shelf mechanism of the cart mechanism through the sample pan handling unit;
  • Step 6 Repeat steps 3 to 5 until all samples to be irradiated on the cart mechanism are irradiated, and push the cart mechanism out of the radiation room for the next round of sample replacement.
  • the particle beam includes nuclear particles and/or charged particles with an energy range of 8-400 MeV/u.
  • the sample to be irradiated is irradiated under atmospheric conditions.
  • the sample to be irradiated includes plant seeds, tissue cultured seedlings, tissue pieces, roots, stems, leaves, buds, pollen, algae fluid, spores, microbial fluid, colonies, spores, Mammalian adherence, suspension culture cells, small animals, compounds, metals or non-metals.
  • the present invention has the following advantages due to the above technical solutions: 1.
  • the sample tray unit, sample tray transport unit, sample tray handling unit and sample tray radiation table unit of the present invention cooperate with each other to realize the automatic sample change of the sample to be irradiated ,
  • the sample change flux is significantly improved, the beam waste caused by frequent manual entry and exit of the irradiation room to change the sample is greatly reduced, the particle beam beam time is saved, and the efficient sample change process of the sample to be irradiated is realized.
  • the present invention is suitable for the particle beam to irradiate the sample to be irradiated. It has the advantages of high flux and can radiate in the atmosphere.
  • the operator can realize the radiation sample change of hundreds of samples to be irradiated once in and out of the radiation room. Hundreds of irradiated samples can be replaced per hour, which is completely suitable for the efficient radiation treatment of the sample to be irradiated by the particle beam, which greatly improves the efficiency of sample replacement, and overcomes the shortcomings of high energy particle accelerator cost, which promotes particle beam Industrialization of radiation biology and material samples.
  • Figure 1 is a schematic diagram of the overall structure of the present invention.
  • Figure 2 is a schematic diagram of the structure of the sample tray unit of the present invention.
  • an automatic sample changing device for particle beam radiation samples includes a sample tray unit 1, a sample tray transport unit 2, a sample tray handling unit 3, and Sample tray radiation table unit 4; among them, the sample tray unit 1 is used to load the sample 5 to be irradiated, and the sample tray transport unit 2 is used to carry the sample tray unit 1 and send it into the radiation room; the sample tray handling unit 3 is set on the sample tray Between the transport unit 2 and the sample tray radiation table unit 4, it is used to transfer the sample tray unit 1 on the sample tray transport unit 2 to the sample tray radiation table unit 4 or to transfer the sample tray unit 1 on the sample tray radiation table unit 4 Return to the sample tray transport unit 2; the sample tray radiation table unit 4 is used to carry the sample tray unit 1 transferred by the sample tray handling unit 3 and move the sample 5 to be irradiated on the sample tray unit 1 to the particle beam radiation area 6 to receive radiation.
  • the sample tray transport unit 2 includes: a cart mechanism 2.1, on which the cart mechanism 2.1 is provided with a shelf mechanism 2.2 arranged in a height direction for accommodating at least one layer of sample tray unit 1;
  • the cart positioning mechanism 2.4, the cart mechanism 2.1 are slidably arranged on the cart positioning mechanism 2.4, the cart mechanism 2.1 can be fed in and fixed in the designated position in the radiation room through the cart positioning mechanism 2.4; the toggle clamp positioning mechanism 2.3 is set on the floor
  • the rack mechanism 2.2 is used to ensure that the sample tray unit 1 does not slide during transportation.
  • the sample tray handling unit 3 includes: a robot mechanism 3.1.
  • the robot mechanism 3.1 is provided with a sample tray holding bracket mechanism 3.2 for grabbing and transferring the shelf mechanism 2.2 or the sample tray radiation table unit.
  • the sample tray unit 1 on 4; the robot height adjustment mechanism 3.3 is arranged on the handling base 3.4 along the Z axis direction and connected with the robot mechanism 3.1, and is used to adjust the Z axis height of the robot mechanism 3.1.
  • the sample tray radiation table unit 4 includes: a Y-axis moving mechanism 4.3 arranged on the radiation table base 4.5 and extending along the Y-axis direction; an X-axis moving mechanism 4.2, slidingly arranged on the Y-axis moving mechanism 4.3 up and extending along the X-axis; the radiation table support mechanism 4.1, the lower end of the radiation table support mechanism 4.1 is slidably arranged on the X-axis moving mechanism 4.2, the upper end of the radiation table support mechanism 4.1 is used to carry the sample tray unit transferred by the robot mechanism 3.1 1;
  • the height adjustment mechanism 4.4 of the radiation table is set on the radiation table support mechanism 4.1, and is used to adjust the distance between the upper end of the radiation table support mechanism 4.1 and the beam vacuum window.
  • the sample tray unit 1 is provided with a groove-type tray 1.1 and a scale-type tray 1.2 for loading different types of samples 5 to be irradiated.
  • the sample tray unit 1 can also design the size and shape of the groove by itself according to experimental requirements to be compatible with sample containers of various specifications, including petri dishes with a diameter of 30-60 mm, T12.5, T25 Cell culture flasks, 0.2-50mL centrifuge tubes, plant tissue culture flasks, and sample entities to be irradiated.
  • the number of samples 5 to be irradiated contained in the sample tray unit 1 is 1-24.
  • the layer rack mechanism 2.2 on the cart mechanism 2.1 contains 1-10 layers of sample tray units 1, and the distance between each layer of sample tray units 1 can be adjusted according to specific conditions.
  • a single cart mechanism 2.1 can accommodate hundreds of samples 5 to be irradiated, and the staff pushes in and out a cart mechanism 2.1 once in and out of the radiation room, which can complete the radiation sample change of hundreds of samples 5 to be irradiated.
  • the robot mechanism 3.1 can set the moving speed according to the phase state of the sample 5 to be irradiated (such as a solid sample or a liquid sample): the moving speed of the solid sample is 50-120 mm/s, and the moving speed of the liquid sample is 10-60mm/s, so as to ensure that the sample will not be dumped or shaken during the sample change process.
  • the phase state of the sample 5 to be irradiated such as a solid sample or a liquid sample
  • the moving distance of the radiation table support mechanism 4.1 in the X-axis direction is -200mm to 500mm, and the moving distance in the Y-axis direction is -100mm to 300mm, and it can move according to preset coordinates to achieve The sequential irradiation of samples; the height adjustment range of the radiation table height adjustment mechanism 4.4 in the Z axis direction is -200mm to 600mm; at the same time, the sample tray radiation table unit 4 also has a zero-point positioning function to achieve beam current monitoring and dose calibration.
  • Embodiment 2 An automatic sample change method for particle beam irradiation samples, including the following steps:
  • Step 1 Install the sample tray radiation table unit 4 in front of the beam vacuum window;
  • Step 2 Place the plant seeds, pollen, tissue pieces, microbial colonies and spores waiting to be irradiated.
  • Samples 5 for irradiation are placed on 24 35mm petri dishes, and then placed on 1 sample tray unit 1, and 10 sample tray units 1 are placed one by one.
  • the layer is inserted into the shelf mechanism 2.2 of the cart mechanism 2.1, fixed with the toggle clamp positioning mechanism 2.3, and the cart mechanism 2.1 is pushed onto the cart positioning mechanism 2.4 to be fed and fixed at the designated position in the radiation room;
  • Step 3 The robot mechanism 3.1 transfers the sample tray unit 1 in different shelf mechanisms 2.2 from the cart mechanism 2.1 to the radiation table support mechanism 4.1, and the moving speed is 100mm/s; the radiation table support mechanism 4.1 is adjusted by the radiation table height Mechanism 4.4 adjusts the distance between the beam vacuum window and the sample 5 to be irradiated to 800mm;
  • Step 4 Adjust the position of the radiation table holder mechanism 4.1 through the X-axis moving mechanism 4.2 and Y-axis moving mechanism 4.3, so that all the samples 5 to be irradiated in the sample tray unit 1 on the radiation table holder mechanism 4.1 move in sequence according to the preset coordinates , And use 80MeV/u medium energy carbon ion beam to irradiate each sample 5 to be irradiated in sequence through the beam vacuum window and air layer;
  • Step 5 After all the samples 5 to be irradiated on the sample pan unit 1 are irradiated, the sample pan unit 1 is returned from the radiation table support mechanism 4.1 to the designated shelf mechanism 2.2 of the cart mechanism 2.1 through the sample pan handling unit 3, and the moving speed is selected 100mm/s;
  • Step 6 Repeat steps 3 to 5 until all the samples 5 to be irradiated on the cart mechanism 2.1 have been irradiated, and the staff enters the radiation room and pushes the cart mechanism 2.1 out of the radiation room for the next sample change.
  • Embodiment 3 An automatic sample change method used for particle beam irradiation samples, including the following steps:
  • Step 1 Install the sample tray radiation table unit 4 in front of the beam vacuum window;
  • Step 2 Place the plant seeds, pollen, tissue pieces, microbial colonies and spores waiting to be irradiated.
  • Samples 5 for irradiation are placed on 12 60mm petri dishes, and then placed on 1 sample tray unit, and the 5 sample tray units 1 are layered. Insert it into the shelf mechanism 2.2 of the cart mechanism 2.1, fix it with the toggle clamp positioning mechanism 2.3, push the cart mechanism 2.1 onto the cart positioning mechanism 2.4 and send it in and fix it at the designated position in the radiation room;
  • Step 3 The robot mechanism 3.1 transfers the sample tray unit 1 in different shelf mechanisms 2.2 from the cart mechanism 2.1 to the radiation table support mechanism 4.1, and the moving speed is 100mm/s; the radiation table support mechanism 4.1 is adjusted by the radiation table height Mechanism 4.4 adjusts the distance between the beam vacuum window and the sample 5 to be irradiated to 1000mm;
  • Step 4 Adjust the position of the radiation table holder mechanism 4.1 through the X-axis moving mechanism 4.2 and Y-axis moving mechanism 4.3, so that all the samples 5 to be irradiated in the sample tray unit 1 on the radiation table holder mechanism 4.1 move in sequence according to the preset coordinates , And use a 50MeV/u high-energy argon ion beam to irradiate each sample 5 to be irradiated in sequence through the beam vacuum window and the air layer;
  • Step 5 After all the samples 5 to be irradiated on the sample pan unit 1 are irradiated, the sample pan unit 1 is returned from the radiation table support mechanism 4.1 to the designated shelf mechanism 2.2 of the cart mechanism 2.1 through the sample pan handling unit 3, and the moving speed is selected 100mm/s;
  • Step 6 Repeat steps 3 to 5 until all the samples 5 to be irradiated on the cart mechanism 2.1 have been irradiated, and the staff enters the radiation room and pushes the cart mechanism 2.1 out of the radiation room for the next sample change.
  • Embodiment 4 An automatic sample change method used for particle beam irradiation samples, including the following steps:
  • Step 1 Install the sample tray radiation table unit 4 in front of the beam vacuum window;
  • Step 2 Place the irradiated mammalian adherent cells, suspension cells, plant algae liquid, microbial bacteria liquid and other liquid samples 5 to be irradiated into 24 35mm petri dishes, then place them on a sample tray unit, and place 10
  • the sample tray unit 1 is inserted layer by layer into the shelf mechanism 2.2 of the cart mechanism 2.1, fixed with the toggle clamp positioning mechanism 2.3, and the cart mechanism 2.1 is pushed onto the cart positioning mechanism 2.4 to be fed and fixed at the designated position in the radiation room;
  • Step 3 The robot mechanism 3.1 transfers the sample tray unit 1 in different shelf mechanisms 2.2 from the cart mechanism 2.1 to the radiation table support mechanism 4.1, and the moving speed is 50mm/s; the radiation table support mechanism 4.1 is adjusted by the radiation table height Mechanism 4.4 adjusts the distance between the beam vacuum window and the sample 5 to be irradiated to 800mm;
  • Step 4 Adjust the position of the radiation table holder mechanism 4.1 through the X-axis moving mechanism 4.2 and Y-axis moving mechanism 4.3, so that all the samples 5 to be irradiated in the sample tray unit 1 on the radiation table holder mechanism 4.1 move in sequence according to the preset coordinates , And use 80MeV/u medium energy carbon ion beam to irradiate each sample 5 to be irradiated in sequence through the beam vacuum window and air layer;
  • Step 5 After all the samples 5 to be irradiated on the sample pan unit 1 are irradiated, the sample pan unit 1 is returned from the radiation table support mechanism 4.1 to the designated shelf mechanism 2.2 of the cart mechanism 2.1 through the sample pan handling unit 3, and the moving speed is selected 50mm/s;
  • Step 6 Repeat steps 3 to 5 until all the samples 5 to be irradiated on the cart mechanism 2.1 have been irradiated, and the staff enters the radiation room and pushes the cart mechanism 2.1 out of the radiation room for the next sample change.
  • Embodiment 5 An automatic sample change method used for particle beam irradiation samples, including the following steps:
  • Step 1 Install the sample tray radiation table unit 4 in front of the beam vacuum window;
  • Step 2 Place the 12 plant tubers, rhizomes, branches to be irradiated, mice and rats waiting for radiation samples 5 directly on the sample tray unit 1, and insert the 10 sample tray units 1 layer by layer into the layer of the cart mechanism 2.1 On the rack mechanism 2.2, use the toggle clamp positioning mechanism 2.3 to fix, push the cart mechanism 2.1 to the cart positioning mechanism 2.4 and send it in and fix it at the designated position in the radiation room;
  • Step 3 The robot mechanism 3.1 transfers the sample tray unit 1 in different shelf mechanisms 2.2 from the cart mechanism 2.1 to the radiation table support mechanism 4.1, and the moving speed is 100mm/s; the radiation table support mechanism 4.1 is adjusted by the radiation table height Mechanism 4.4 adjusts the distance between the beam vacuum window and the sample 5 to be irradiated to 800mm;
  • Step 4 Adjust the position of the radiation table holder mechanism 4.1 through the X-axis moving mechanism 4.2 and Y-axis moving mechanism 4.3, so that all the samples 5 to be irradiated in the sample tray unit 1 on the radiation table holder mechanism 4.1 move in sequence according to the preset coordinates , And use 80MeV/u medium energy carbon ion beam to irradiate each sample 5 to be irradiated in sequence through the beam vacuum window and air layer;
  • Step 5 After all the samples 5 to be irradiated on the sample pan unit 1 are irradiated, the sample pan unit 1 is returned from the radiation table support mechanism 4.1 to the designated shelf mechanism 2.2 of the cart mechanism 2.1 through the sample pan handling unit 3, and the moving speed is selected 100mm/s;
  • Step 6 Repeat steps 3 to 5 until all the samples 5 to be irradiated on the cart mechanism 2.1 have been irradiated, and the staff enters the radiation room and pushes the cart mechanism 2.1 out of the radiation room for the next sample change.
  • Embodiment 6 An automatic sample change method used for particle beam irradiation samples, including the following steps:
  • Step 1 Install the sample tray radiation table unit 4 in front of the beam vacuum window;
  • Step 2 Place the 10 epodophylloside powder samples to be irradiated on the sample tray unit 1 directly, and insert the 5 sample tray units 1 into the shelf mechanism 2.2 of the cart mechanism 2.1. Use the toggle clamp positioning mechanism 2.3 to fix it, and push the cart mechanism 2.1 onto the cart positioning mechanism 2.4 to feed in and fix it at the designated position in the radiation room;
  • Step 3 The robot mechanism 3.1 transfers the sample tray unit 1 in different shelf mechanisms 2.2 from the cart mechanism 2.1 to the radiation table support mechanism 4.1, and the moving speed is 100mm/s; the radiation table support mechanism 4.1 is adjusted by the radiation table height Mechanism 4.4 adjusts the distance between the beam vacuum window and the sample 5 to be irradiated to 800mm;
  • Step 4 Adjust the position of the radiation table holder mechanism 4.1 through the X-axis moving mechanism 4.2 and Y-axis moving mechanism 4.3, so that all the samples 5 to be irradiated in the sample tray unit 1 on the radiation table holder mechanism 4.1 move in sequence according to the preset coordinates , And use 80MeV/u medium energy carbon ion beam to irradiate each sample 5 to be irradiated in sequence through the beam vacuum window and air layer;
  • Step 5 After all the samples 5 to be irradiated on the sample pan unit 1 are irradiated, the sample pan unit 1 is returned from the radiation table support mechanism 4.1 to the designated shelf mechanism 2.2 of the cart mechanism 2.1 through the sample pan handling unit 3, and the moving speed is selected 100mm/s;
  • Step 6 Repeat steps 3 to 5 until all the samples 5 to be irradiated on the cart mechanism 2.1 have been irradiated, and the staff enters the radiation room and pushes the cart mechanism 2.1 out of the radiation room for the next sample change.

Landscapes

  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种用于粒子束辐射样品的自动换样装置及方法,该装置包括样品盘单元(1)、样品盘运输单元(2)、样品盘搬运单元(3)和样品盘辐射台单元(4);样品盘单元(1)用于装载待辐射样品(5),样品盘运输单元(2)用于搭载样品盘单元(1)并将其送入辐射间;样品盘搬运单元(3)设置在样品盘运输单元(2)和样品盘辐射台单元(4)之间,用于将样品盘运输单元(2)上的样品盘单元(1)移送到样品盘辐射台单元(4)上或者将样品盘辐射台单元(4)上的样品盘单元(1)送回到样品盘运输单元(2)上;样品盘辐射台单元(4)用于搭载样品盘搬运单元(3)移送的样品盘单元(1)并将样品盘单元(1)上的待辐射样品(5)移动到粒子束辐射区域接受辐射。该自动换样装置及方法实现了样品盘间的自动更换,无需等待辐射间的环境辐射剂量下降至安全范围内,节省了粒子束束流时间,提高了束流的利用效率。

Description

一种用于粒子束辐射样品的自动换样装置及方法 技术领域
本发明涉及一种自动换样装置及方法,具体是关于一种用于粒子束辐射样品的自动换样装置及方法。
背景技术
随着核科学与核技术的发展,辐射在生物及材料科学中的应用日益广泛。生物方面,可进行植物及微生物的诱变育种,与常规育种相比,辐射诱变育种具有简单、安全、突变率高、节省人力和物力等优势,目前已成为改良性状、创新种质的有效手段。此外,还可应用于粒子束治癌及空间生物学研究,开展肿瘤放射治疗及载人航天生物学效应的地面模拟工作。亦可开展药物分子的辐射分子改性研究,有助于开发新的药物分子。材料方面,可在材料改性、抗辐射特性、纳米材料制备、半导体元器件辐射耐受等多个领域开展研究。
粒子束辐射不同于电磁辐射,其与靶物质作用方式有很大的不同,具有辐射效应强的特点。粒子束包含轻子及强子,轻子可以为电子或正电子,强子包括质子、轻离子(例如氦离子)以及重离子(例如碳离子、氧离子、氖离子、氩离子和铁离子等)。粒子束的能量范围可以从数千电子伏特直到接近光速的数百万甚至千兆电子伏特范围。粒子束作为新兴的物理诱变源之一,在辐射诱变育种中发挥越来越重要的作用。与传统光子辐射,如γ射线、X射线相比,粒子束辐射诱变育种具有突变效率高、突变谱广、稳定周期短的特点,在新品种/新菌种开发及种质资源创制中有越来越广的应用。粒子束在肿瘤治疗领域,具有靶区相对生物学效应高的特点。粒子束在贯穿或注入化合物过程中,具有能量沉积、质量沉积的特点,造成原子或分子损伤,使部分分子的结构发生重排,亦可形成新的分子基团,可改变原有材料的物理及化学性质,在材料学基础及应用研究中有广泛的用途。粒子束通常采用反应堆和粒子加速器等装置来获得。
现有的转盘式样品换样系统存在通量低、效率低的不足之处,无法满足日益增长的国内用户需求。由于转盘式样品换样系统一次换样的样品数较少,导致换样次数较多,因此增加了由于转盘换样而产生的束流时间的浪费。与此同时,高能粒子加速器运行成本高,运行一小时的费用为数万元。因此,提高换样效率、增加换样通量格外重要。为了充分利用加速器产生的束流,减少成本昂贵的束流的浪费,必须充分着眼于辐射样品的换样系统,极大的提高换样效率,增加一次换样的样本通 量,才有可能满足粒子束辐射生物及材料样品的产业化需求。
发明内容
针对上述问题,本发明的目的是提供一种用于粒子束辐射样品的自动换样装置及方法,以实现样品盘间的自动更换,代替人工手动更换,无需等待辐射间的环境辐射剂量下降至安全范围内,节省粒子束束流时间,提高束流的利用效率。
为实现上述目的,本发明采取以下技术方案:一种用于粒子束辐射样品的自动换样装置,包括样品盘单元、样品盘运输单元、样品盘搬运单元和样品盘辐射台单元;其中,所述样品盘单元用于装载待辐射样品,所述样品盘运输单元用于搭载所述样品盘单元并将其送入辐射间;所述样品盘搬运单元设置在所述样品盘运输单元和样品盘辐射台单元之间,用于将所述样品盘运输单元上的所述样品盘单元移送到所述样品盘辐射台单元上或者将所述样品盘辐射台单元上的所述样品盘单元送回到所述样品盘运输单元上;所述样品盘辐射台单元用于搭载所述样品盘搬运单元移送的所述样品盘单元并将所述样品盘单元上的所述待辐射样品移动到粒子束辐射区域接受辐射。
所述的自动换样装置,优选的,所述样品盘运输单元包括:推车机构,所述推车机构上设有沿高度方向布置的层架机构,用于容纳至少一层所述样品盘单元;推车定位机构,所述推车机构滑动设置在所述推车定位机构上,通过所述推车定位机构将所述推车机构送入并固定在辐射间指定位置;肘夹定位机构,设置在所述层架机构上,用于确保所述样品盘单元在运输过程中不发生滑动。
所述的自动换样装置,优选的,所述样品盘搬运单元包括:机器人机构,所述机器人机构上设有样品盘托取支架机构,用于抓取并转移所述层架机构或所述样品盘辐射台单元上的所述样品盘单元;机器人高度调节机构,沿Z轴方向设置在搬运底座上并与所述机器人机构连接,用于调节所述机器人机构的Z轴高度。
所述的自动换样装置,优选的,所述样品盘辐射台单元包括:Y轴移动机构,设置在辐射台底座上并沿Y轴方向延伸;X轴移动机构,滑动设置在所述Y轴移动机构上并沿X轴方向延伸;辐射台支架机构,所述辐射台支架机构的下端滑动设置在所述X轴移动机构上,所述辐射台支架机构的上端用于搭载所述机器人机构移送的所述样品盘单元;辐射台高度调节机构,设置在所述辐射台支架机构上,用于调节所述辐射台支架机构上端与束流真空窗的距离。
所述的自动换样装置,优选的,所述样品盘单元上设有凹槽型托盘和刻度型托盘,用于装载不同类型的所述待辐射样品。
所述的自动换样装置,优选的,所述样品盘单元所容纳待辐射样品的数量为1-24个;所述推车机构上的所述层架机构所容纳样品盘单元为1-10层;所述机器人机构根据待辐射样品的相态来设置移动速度:固态样品移动速度为50-120mm/s,液态样品移动速度为10-60mm/s;所述辐射台支架机构在X轴方向的移动距离为-200mm至500mm,在Y轴方向的移动距离为-100mm至300mm;所述辐射台高度调节机构在Z轴方向的高度调节范围为-200mm至600mm;所述样品盘辐射台单元具备零点定位功能。
一种用于粒子束辐射待辐射样品的自动换样方法,采用上述的自动换样装置,其特征在于,该方法包括以下步骤:
步骤一:将样品盘辐射台单元安装在束流真空窗前;
步骤二:将待辐射的待辐射样品安置在样品盘单元上,将样品盘单元逐层插入推车机构的层架机构上,使用肘夹定位机构固定,将推车机构推到推车定位机构上送入并固定在辐射间指定位置;
步骤三:机器人机构将处于不同层架机构的样品盘单元从推车机构上移送到辐射台支架机构上,并根据辐射的粒子能量和射程通过辐射台高度调节机构调节束流真空窗与待辐射样品的距离,使辐射达到最佳条件;
步骤四:通过X轴移动机构和Y轴移动机构调节辐射台支架机构位置,从而使辐射台支架机构上的样品盘单元中的所有待辐射样品按照预设坐标进行序列移动,粒子束通过束流真空窗和空气层对每个待辐射样品进行单个样品依顺序辐射;
步骤五:样品盘单元上所有待辐射样品被辐射后,样品盘单元通过样品盘搬运单元从辐射台支架机构送回推车机构的指定层架机构上;
步骤六:重复步骤三至步骤五,直至推车机构上所有待辐射样品完成辐射,将推车机构推出到辐射间外进行下一轮换样。
所述的自动换样方法,优选的,所述粒子束包括能量范围为8–400MeV/u的核子粒子和/或带电粒子。
所述的自动换样方法,优选的,所述待辐射样品在大气条件下进行辐射。
所述的自动换样方法,优选的,所述待辐射样品包括植物种子、组培苗、组织块、根、茎、叶、芽、花粉、藻液、孢子、微生物菌液、菌落、孢子、哺乳动物贴壁、悬浮培养细胞、小型动物、化合物、金属或非金属。
本发明由于采取以上技术方案,其具有以下优点:1、本发明的样品盘单元、样品盘运输单元、样品盘搬运单元和样品盘辐射台单元相互配合操作,实现了待辐射样品的自动化换样,换样通量显著提高,大幅减少了人工频繁进出照射间更换样 品引起的束流浪费,节约了粒子束束流时间,实现了待辐射样品辐射的高效换样过程。2、经多次实践验证,本发明适用于粒子束辐射待辐射样品,具有通量高、可以在大气中辐射的优势,操作人员进出一次辐射间可以实现数百个待辐射样品辐射换样,每小时可以完成数百个照射样品的换样,完全适用于待辐射样品的粒子束高效辐射处理,极大的提高换样效率,并且克服了高能粒子加速器成本过高的缺点,推动了粒子束辐射生物及材料样品的产业化。
附图说明
图1是本发明的整体结构示意图;
图2是本发明样品盘单元的结构示意图。
具体实施方式
以下将结合附图对本发明的较佳实施例进行详细说明,以便更清楚理解本发明的目的、特点和优点。应理解的是,附图所示的实施例并不是对本发明范围的限制,而只是为了说明本发明技术方案的实质精神。
实施例1:如图1、图2所示,本实施例提供的一种用于粒子束辐射样品的自动换样装置,包括样品盘单元1、样品盘运输单元2、样品盘搬运单元3和样品盘辐射台单元4;其中,样品盘单元1用于装载待辐射样品5,样品盘运输单元2用于搭载样品盘单元1并将其送入辐射间;样品盘搬运单元3设置在样品盘运输单元2和样品盘辐射台单元4之间,用于将样品盘运输单元2上的样品盘单元1移送到样品盘辐射台单元4上或者将样品盘辐射台单元4上的样品盘单元1送回到样品盘运输单元2上;样品盘辐射台单元4用于搭载样品盘搬运单元3移送的样品盘单元1并将样品盘单元1上的待辐射样品5移动到粒子束辐射区域6接受辐射。
在本实施例中,优选的,样品盘运输单元2包括:推车机构2.1,推车机构2.1上设有沿高度方向布置的层架机构2.2,用于容纳至少一层样品盘单元1;推车定位机构2.4,推车机构2.1滑动设置在推车定位机构2.4上,通过推车定位机构2.4可将推车机构2.1送入并固定在辐射间指定位置;肘夹定位机构2.3,设置在层架机构2.2上,用于确保样品盘单元1在运输过程中不发生滑动。
在本实施例中,优选的,样品盘搬运单元3包括:机器人机构3.1,机器人机构3.1上设有样品盘托取支架机构3.2,用于抓取并转移层架机构2.2或样品盘辐射台单元4上的样品盘单元1;机器人高度调节机构3.3,沿Z轴方向设置在搬运底座3.4上并与机器人机构3.1连接,用于调节机器人机构3.1的Z轴高度。
在本实施例中,优选的,样品盘辐射台单元4包括:Y轴移动机构4.3,设置在辐射台底座4.5上并沿Y轴方向延伸;X轴移动机构4.2,滑动设置在Y轴移动机构4.3上并沿X轴方向延伸;辐射台支架机构4.1,辐射台支架机构4.1的下端滑动设置在X轴移动机构4.2上,辐射台支架机构4.1的上端用于搭载机器人机构3.1转移的样品盘单元1;辐射台高度调节机构4.4,设置在辐射台支架机构4.1上,用于调节辐射台支架机构4.1上端与束流真空窗的距离。
在本实施例中,优选的,样品盘单元1上设有凹槽型托盘1.1和刻度型托盘1.2,用于装载不同类型的待辐射样品5。
在本实施例中,优选的,样品盘单元1也可以根据实验需求自行设计凹槽的大小、形状等,以兼容多种规格的样品容器,包括直径30-60mm培养皿,T12.5、T25细胞培养瓶,0.2-50mL离心管,植物组织培养瓶以及待辐射样品实体等。
在本实施例中,优选的,样品盘单元1所容纳待辐射样品5的数量为1-24个。
在本实施例中,优选的,推车机构2.1上的层架机构2.2所容纳样品盘单元1为1-10层,每层样品盘单元1之间距离可根据具体情况进行调节。由此,单个推车机构2.1可容纳数百个待辐射样品5,工作人员一次进出辐射间推入推出一个推车机构2.1,可完成数百个的待辐射样品5的辐射换样。
在本实施例中,优选的,机器人机构3.1可根据待辐射样品5的相态(如固态样品或液态样品)来设置移动速度:固态样品移动速度为50-120mm/s,液态样品移动速度为10-60mm/s,从而确保样品在换样过程中不会倾倒或晃出。
在本实施例中,优选的,辐射台支架机构4.1在X轴方向的移动距离为-200mm至500mm,在Y轴方向的移动距离为-100mm至300mm,并且可以按照预设坐标移动,从而实现样品的序列照射;辐射台高度调节机构4.4在Z轴方向的高度调节范围为-200mm至600mm;同时,样品盘辐射台单元4还具备零点定位功能,以实现束流监测和剂量标定的需要。
实施例2:一种用于粒子束辐射样品的自动换样方法,包括以下步骤:
步骤一:将样品盘辐射台单元4安装在束流真空窗前;
步骤二:将待辐射的植物种子、花粉、组织块,微生物菌落及孢子等待辐射样品5置于24个35mm培养皿后,安置在1个样品盘单元1上,将10个样品盘单元1逐层插入推车机构2.1的层架机构2.2上,使用肘夹定位机构2.3固定,将推车机构2.1推到推车定位机构2.4上送入并固定在辐射间指定位置;
步骤三:机器人机构3.1将处于不同层架机构2.2的样品盘单元1从推车机构 2.1上移送到辐射台支架机构4.1上,移动速度选取100mm/s;辐射台支架机构4.1通过辐射台高度调节机构4.4调节束流真空窗与待辐射样品5的距离为800mm;
步骤四:通过X轴移动机构4.2和Y轴移动机构4.3调节辐射台支架机构4.1位置,从而使辐射台支架机构4.1上的样品盘单元1中的所有待辐射样品5按照预设坐标进行序列移动,并采用80MeV/u的中能碳离子束通过束流真空窗和空气层对每个待辐射样品5进行单个样品依顺序辐射;
步骤五:样品盘单元1上所有待辐射样品5被辐射后,样品盘单元1通过样品盘搬运单元3从辐射台支架机构4.1送回推车机构2.1的指定层架机构2.2上,移动速度选取100mm/s;
步骤六:重复步骤三至步骤五,直至推车机构2.1上所有待辐射样品5完成照射,工作人员进入辐射间将推车机构2.1推出到辐射间外进行下一轮换样。
实施例3:一种用于粒子束辐射样品的自动换样方法,包括以下步骤:
步骤一:将样品盘辐射台单元4安装在束流真空窗前;
步骤二:将待辐射的植物种子、花粉、组织块,微生物菌落及孢子等待辐射样品5置于12个60mm培养皿后,安置在1个样品盘单元上,将5个样品盘单元1逐层插入推车机构2.1的层架机构2.2上,使用肘夹定位机构2.3固定,将推车机构2.1推到推车定位机构2.4上送入并固定在辐射间指定位置;
步骤三:机器人机构3.1将处于不同层架机构2.2的样品盘单元1从推车机构2.1上移送到辐射台支架机构4.1上,移动速度选取100mm/s;辐射台支架机构4.1通过辐射台高度调节机构4.4调节束流真空窗与待辐射样品5的距离为1000mm;
步骤四:通过X轴移动机构4.2和Y轴移动机构4.3调节辐射台支架机构4.1位置,从而使辐射台支架机构4.1上的样品盘单元1中的所有待辐射样品5按照预设坐标进行序列移动,并采用50MeV/u的高能氩离子束通过束流真空窗和空气层对每个待辐射样品5进行单个样品依顺序辐射;
步骤五:样品盘单元1上所有待辐射样品5被辐射后,样品盘单元1通过样品盘搬运单元3从辐射台支架机构4.1送回推车机构2.1的指定层架机构2.2上,移动速度选取100mm/s;
步骤六:重复步骤三至步骤五,直至推车机构2.1上所有待辐射样品5完成照射,工作人员进入辐射间将推车机构2.1推出到辐射间外进行下一轮换样。
实施例4:一种用于粒子束辐射样品的自动换样方法,包括以下步骤:
步骤一:将样品盘辐射台单元4安装在束流真空窗前;
步骤二:将待辐射的哺乳动物贴壁细胞、悬浮细胞,植物藻液,微生物菌液等液体待辐射样品5置于24个35mm培养皿后,安置在1个样品盘单元上,将10个样品盘单元1逐层插入推车机构2.1的层架机构2.2上,使用肘夹定位机构2.3固定,将推车机构2.1推到推车定位机构2.4上送入并固定在辐射间指定位置;
步骤三:机器人机构3.1将处于不同层架机构2.2的样品盘单元1从推车机构2.1上移送到辐射台支架机构4.1上,移动速度选取50mm/s;辐射台支架机构4.1通过辐射台高度调节机构4.4调节束流真空窗与待辐射样品5的距离为800mm;
步骤四:通过X轴移动机构4.2和Y轴移动机构4.3调节辐射台支架机构4.1位置,从而使辐射台支架机构4.1上的样品盘单元1中的所有待辐射样品5按照预设坐标进行序列移动,并采用80MeV/u的中能碳离子束通过束流真空窗和空气层对每个待辐射样品5进行单个样品依顺序辐射;
步骤五:样品盘单元1上所有待辐射样品5被辐射后,样品盘单元1通过样品盘搬运单元3从辐射台支架机构4.1送回推车机构2.1的指定层架机构2.2上,移动速度选取50mm/s;
步骤六:重复步骤三至步骤五,直至推车机构2.1上所有待辐射样品5完成照射,工作人员进入辐射间将推车机构2.1推出到辐射间外进行下一轮换样。
实施例5:一种用于粒子束辐射样品的自动换样方法,包括以下步骤:
步骤一:将样品盘辐射台单元4安装在束流真空窗前;
步骤二:将待辐射的12个植物块茎、根茎、枝条,小鼠、大鼠等待辐射样品5直接安置在样品盘单元1上,将10个样品盘单元1逐层插入推车机构2.1的层架机构2.2上,使用肘夹定位机构2.3固定,将推车机构2.1推到推车定位机构2.4上送入并固定在辐射间指定位置;
步骤三:机器人机构3.1将处于不同层架机构2.2的样品盘单元1从推车机构2.1上移送到辐射台支架机构4.1上,移动速度选取100mm/s;辐射台支架机构4.1通过辐射台高度调节机构4.4调节束流真空窗与待辐射样品5的距离为800mm;
步骤四:通过X轴移动机构4.2和Y轴移动机构4.3调节辐射台支架机构4.1位置,从而使辐射台支架机构4.1上的样品盘单元1中的所有待辐射样品5按照预设坐标进行序列移动,并采用80MeV/u的中能碳离子束通过束流真空窗和空气层对每个待辐射样品5进行单个样品依顺序辐射;
步骤五:样品盘单元1上所有待辐射样品5被辐射后,样品盘单元1通过样品 盘搬运单元3从辐射台支架机构4.1送回推车机构2.1的指定层架机构2.2上,移动速度选取100mm/s;
步骤六:重复步骤三至步骤五,直至推车机构2.1上所有待辐射样品5完成照射,工作人员进入辐射间将推车机构2.1推出到辐射间外进行下一轮换样。
实施例6:一种用于粒子束辐射样品的自动换样方法,包括以下步骤:
步骤一:将样品盘辐射台单元4安装在束流真空窗前;
步骤二:将待辐射的10个鬼臼乙叉甙粉末压片样品待辐射样品5直接安置在样品盘单元1上,将5个样品盘单元1逐层插入推车机构2.1的层架机构2.2上,使用肘夹定位机构2.3固定,将推车机构2.1推到推车定位机构2.4上送入并固定在辐射间指定位置;
步骤三:机器人机构3.1将处于不同层架机构2.2的样品盘单元1从推车机构2.1上移送到辐射台支架机构4.1上,移动速度选取100mm/s;辐射台支架机构4.1通过辐射台高度调节机构4.4调节束流真空窗与待辐射样品5的距离为800mm;
步骤四:通过X轴移动机构4.2和Y轴移动机构4.3调节辐射台支架机构4.1位置,从而使辐射台支架机构4.1上的样品盘单元1中的所有待辐射样品5按照预设坐标进行序列移动,并采用80MeV/u的中能碳离子束通过束流真空窗和空气层对每个待辐射样品5进行单个样品依顺序辐射;
步骤五:样品盘单元1上所有待辐射样品5被辐射后,样品盘单元1通过样品盘搬运单元3从辐射台支架机构4.1送回推车机构2.1的指定层架机构2.2上,移动速度选取100mm/s;
步骤六:重复步骤三至步骤五,直至推车机构2.1上所有待辐射样品5完成照射,工作人员进入辐射间将推车机构2.1推出到辐射间外进行下一轮换样。
上述各实施例仅用于说明本发明,其中各部件的结构、连接方式和制作工艺等都是可以有所变化的,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。

Claims (10)

  1. 一种用于粒子束辐射样品的自动换样装置,其特征在于,包括样品盘单元(1)、样品盘运输单元(2)、样品盘搬运单元(3)和样品盘辐射台单元(4);
    其中,所述样品盘单元(1)用于装载待辐射样品(5),所述样品盘运输单元(2)用于搭载所述样品盘单元(1)并将其送入辐射间;
    所述样品盘搬运单元(3)设置在所述样品盘运输单元(2)和样品盘辐射台单元(4)之间,用于将所述样品盘运输单元(2)上的所述样品盘单元(1)移送到所述样品盘辐射台单元(4)上或者将所述样品盘辐射台单元(4)上的所述样品盘单元(1)送回到所述样品盘运输单元(2)上;
    所述样品盘辐射台单元(4)用于搭载所述样品盘搬运单元(3)移送的所述样品盘单元(1)并将所述样品盘单元(1)上的所述待辐射样品(5)移动到粒子束辐射区域(6)接受辐射。
  2. 根据权利要求1所述的自动换样装置,其特征在于,所述样品盘运输单元(2)包括:
    推车机构(2.1),所述推车机构(2.1)上设有沿高度方向布置的层架机构(2.2),用于容纳至少一层所述样品盘单元(1);
    推车定位机构(2.4),所述推车机构(2.1)滑动设置在所述推车定位机构(2.4)上,通过所述推车定位机构(2.4)将所述推车机构(2.1)送入并固定在辐射间指定位置;
    肘夹定位机构(2.3),设置在所述层架机构(2.2)上,用于确保所述样品盘单元(1)在运输过程中不发生滑动。
  3. 根据权利要求2所述的自动换样装置,其特征在于,所述样品盘搬运单元(3)包括:
    机器人机构(3.1),所述机器人机构(3.1)上设有样品盘托取支架机构(3.2),用于抓取并转移所述层架机构(2.2)或所述样品盘辐射台单元(4)上的所述样品盘单元(1);
    机器人高度调节机构(3.3),沿Z轴方向设置在搬运底座(3.4)上并与所述机器人机构(3.1)连接,用于调节所述机器人机构(3.1)的Z轴高度。
  4. 根据权利要求3所述的自动换样装置,其特征在于,所述样品盘辐射台单元(4)包括:
    Y轴移动机构(4.3),设置在辐射台底座(4.5)上并沿Y轴方向延伸;
    X轴移动机构(4.2),滑动设置在所述Y轴移动机构(4.3)上并沿X轴方向延伸;
    辐射台支架机构(4.1),所述辐射台支架机构(4.1)的下端滑动设置在所述X轴移动机构(4.2)上,所述辐射台支架机构(4.1)的上端用于搭载所述机器人机构(3.1)移送的所述样品盘单元(1);
    辐射台高度调节机构(4.4),设置在所述辐射台支架机构(4.1)上,用于调节所述辐射台支架机构(4.1)上端与束流真空窗的距离。
  5. 根据权利要求1到4任一项所述的自动换样装置,其特征在于,所述样品盘单元(1)上设有凹槽型托盘(1.1)和刻度型托盘(1.2),用于装载不同类型的所述待辐射样品(5)。
  6. 根据权利要求1到4任一项所述的自动换样装置,其特征在于,所述样品盘单元(1)所容纳待辐射样品(5)的数量为1-24个;
    所述推车机构(2.1)上的所述层架机构(2.2)所容纳样品盘单元(1)为1-10层;
    所述机器人机构(3.1)根据待辐射样品(5)的相态来设置移动速度:固态样品移动速度为50-120mm/s,液态样品移动速度为10-60mm/s;
    所述辐射台支架机构(4.1)在X轴方向的移动距离为-200mm至500mm,在Y轴方向的移动距离为-100mm至300mm;
    所述辐射台高度调节机构(4.4)在Z轴方向的高度调节范围为-200mm至600mm;
    所述样品盘辐射台单元(4)具备零点定位功能。
  7. 一种用于粒子束辐射样品的自动换样方法,采用如权利要求4所述的自动换样装置,其特征在于,该方法包括以下步骤:
    步骤一:将样品盘辐射台单元(4)安装在束流真空窗前;
    步骤二:将待辐射的待辐射样品(5)安置在样品盘单元(1)上,将样品盘单元(1)逐层插入推车机构(2.1)的层架机构(2.2)上,使用肘夹定位机构(2.2)固定,将推车机构(2.1)推到推车定位机构(2.4)上送入并固定在辐射间指定位置;
    步骤三:机器人机构(3.1)将处于不同层架机构(2.2)的样品盘单元(1)从推车机构(2.1)上移送到辐射台支架机构(4.1)上,并根据辐射的粒子能量和射程通过辐射台高度调节机构(4.4)调节束流真空窗与待辐射样品(5)的距离,使辐射达到最佳条件;
    步骤四:通过X轴移动机构(4.2)和Y轴移动机构(4.3)调节辐射台支架机构(4.1)位置,从而使辐射台支架机构(4.1)上的样品盘单元(1)中的所有待辐射样品(5)按照预设坐标进行序列移动,粒子束通过束流真空窗和空气层对每个待辐射样品(5)进行单个样品依顺序辐射;
    步骤五:样品盘单元(1)上所有待辐射样品(5)被辐射后,样品盘单元(1)通过样品盘搬运单元(3)从辐射台支架机构(4.1)送回推车机构(2.1)的指定层架机构(2.2)上;
    步骤六:重复步骤三至步骤五,直至推车机构(2.1)上所有待辐射样品(5)完成辐射,将推车机构(2.1)推出到辐射间外进行下一轮换样。
  8. 根据权利要求7所述的自动换样方法,其特征在于,所述粒子束包括能量范围为8–400MeV/u的核子粒子和/或带电粒子。
  9. 根据权利要求7所述的自动换样方法,其特征在于,所述待辐射样品(5)在大气条件下进行辐射。
  10. 根据权利要求7所述的自动换样方法,其特征在于,所述待辐射样品(5)包括植物种子、组培苗、组织块、根、茎、叶、芽、花粉、藻液、孢子,微生物菌液、菌落、孢子,哺乳动物贴壁、悬浮培养细胞、小型动物、化合物、金属或非金属。
PCT/CN2020/079125 2019-03-07 2020-03-13 一种用于粒子束辐射样品的自动换样装置及方法 WO2020177770A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/436,191 US20220179110A1 (en) 2019-03-07 2020-03-13 Automatic sample-changing device and method for particle beam radiation sample

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910171417.7A CN109917446B (zh) 2019-03-07 2019-03-07 一种用于粒子束辐射样品的自动换样装置及方法
CN201910171417.7 2019-03-07

Publications (1)

Publication Number Publication Date
WO2020177770A1 true WO2020177770A1 (zh) 2020-09-10

Family

ID=66963749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079125 WO2020177770A1 (zh) 2019-03-07 2020-03-13 一种用于粒子束辐射样品的自动换样装置及方法

Country Status (3)

Country Link
US (1) US20220179110A1 (zh)
CN (1) CN109917446B (zh)
WO (1) WO2020177770A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109917446B (zh) * 2019-03-07 2020-11-03 中国科学院近代物理研究所 一种用于粒子束辐射样品的自动换样装置及方法
CN111025379A (zh) * 2019-12-26 2020-04-17 中广核久源(成都)科技有限公司 能够自动换样的智能型低本底αβ测量仪
CN111638538B (zh) * 2020-06-10 2021-06-01 南京幸庄科技创新产业园管理有限公司 一种检测辐射区域植物辐射量的装置
CN111912938B (zh) * 2020-07-24 2023-08-08 郑州龙之樾自控设备科技有限公司 一种高温环境下的阳极二氧化碳装载输送系统
CN112858705A (zh) * 2021-01-05 2021-05-28 中国原子能科学研究院 用于质子束流辐照实验的换样装置和样品安装机构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475965A (en) * 1987-09-18 1989-03-22 Nittec Co Ltd Robot for hemocytometer
KR20120071793A (ko) * 2010-12-23 2012-07-03 한국원자력연구원 방사선 검출용 시료 자동교체기
CN106178967A (zh) * 2016-06-29 2016-12-07 中国科学院近代物理研究所 核孔膜大气辐照传动装置
CN107884807A (zh) * 2017-11-22 2018-04-06 同方威视技术股份有限公司 基于伽马能谱仪的自动换样设备
CN108169267A (zh) * 2017-12-22 2018-06-15 通标标准技术服务(上海)有限公司 一种自动化xrf测试系统及测试方法
CN109406211A (zh) * 2018-11-15 2019-03-01 中国核电工程有限公司 放射性物料自动取样装置
CN109917446A (zh) * 2019-03-07 2019-06-21 中国科学院近代物理研究所 一种用于粒子束辐射样品的自动换样装置及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138629B2 (en) * 2003-04-22 2006-11-21 Ebara Corporation Testing apparatus using charged particles and device manufacturing method using the testing apparatus
JP4474337B2 (ja) * 2005-07-08 2010-06-02 株式会社日立ハイテクノロジーズ 試料作製・観察方法及び荷電粒子ビーム装置
CN104330817B (zh) * 2014-09-13 2017-06-16 中国科学院近代物理研究所 高能强流加速器用法拉第筒
CN105548220B (zh) * 2016-01-25 2018-04-10 中国工程物理研究院核物理与化学研究所 一种辐照样品自动调节探测装置
CN106483148B (zh) * 2016-10-11 2019-05-21 中国科学院上海应用物理研究所 一种射线微探针的热台、热台装置及其实验方法
CN107525712B (zh) * 2017-08-18 2020-01-03 中国工程物理研究院核物理与化学研究所 用于中子活化的样品辐照装置
CN107727674A (zh) * 2017-12-04 2018-02-23 上海航天精密机械研究所 基于数字射线与物联网技术的智能化检测系统
CN108593685A (zh) * 2018-03-06 2018-09-28 北京百慕航材高科技股份有限公司 数字射线自动检测装置及其检测方法
CN108969907B (zh) * 2018-07-05 2021-01-29 惠州离子科学研究中心 获得小束斑的粒子束治疗头装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475965A (en) * 1987-09-18 1989-03-22 Nittec Co Ltd Robot for hemocytometer
KR20120071793A (ko) * 2010-12-23 2012-07-03 한국원자력연구원 방사선 검출용 시료 자동교체기
CN106178967A (zh) * 2016-06-29 2016-12-07 中国科学院近代物理研究所 核孔膜大气辐照传动装置
CN107884807A (zh) * 2017-11-22 2018-04-06 同方威视技术股份有限公司 基于伽马能谱仪的自动换样设备
CN108169267A (zh) * 2017-12-22 2018-06-15 通标标准技术服务(上海)有限公司 一种自动化xrf测试系统及测试方法
CN109406211A (zh) * 2018-11-15 2019-03-01 中国核电工程有限公司 放射性物料自动取样装置
CN109917446A (zh) * 2019-03-07 2019-06-21 中国科学院近代物理研究所 一种用于粒子束辐射样品的自动换样装置及方法

Also Published As

Publication number Publication date
CN109917446B (zh) 2020-11-03
CN109917446A (zh) 2019-06-21
US20220179110A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
WO2020177770A1 (zh) 一种用于粒子束辐射样品的自动换样装置及方法
Raju et al. Radiobiology of ultrasoft x rays: I. Cultured hamster cells (V79)
Barendsen et al. Effects of different ionizing radiations on human cells in tissue culture: II. Biological experiments
Abe et al. Ion beam radiation mutagenesis.
Andreassi et al. Radiobiological effectiveness of ultrashort laser-driven electron bunches: Micronucleus frequency, telomere shortening and cell viability
WO2022206385A1 (zh) 一种便于更换坩埚的高通量薄膜制备装置及其应用
Ryuto et al. Heavy-ion beam irradiation facility for biological samples in RIKEN
CN215481225U (zh) 一种便于更换坩埚的高通量薄膜制备装置
CN202171959U (zh) 高能x射线生物辐照仪
Kraft-Weyrather et al. The preparation of biological targets for heavy-ion experiments up to 20 MeV/u
WO2011049743A1 (en) Self contained irradiation system using flat panel x-ray sources
Berry On the shape of X-ray dose-response curves for the reproductive survival of mammalian cells
Zeisler et al. Multilayer carbon foils for cyclotron beam extraction
CN115704086A (zh) 一种离子同极溅射镀膜装置及方法
Sowa et al. A variable-energy electron microbeam: a unique modality for targeted low-LET radiation
Straticiuc et al. New setup for basic radiobiology studies using a 3 MV TandetronTM: Design and developments
Lenker Characterization of neutron and proton exposure on the radiation resistant bacterium, deinococcus radiodurans
CN218302770U (zh) 动物转运装置及动物辐照系统
De Lucio et al. Study of tungsten based positron moderators
Bhat et al. Proton beam set-up for radiobiological studies
Green et al. Characterization of accelerated iron-ion-induced damage in gap junction-competent and-incompetent thyroid follicular cells
Bobeica et al. Dose calculations in a cell monolayer for high-throughput irradiation with proton beams generated by PW lasers for space applications
Hoshikawa et al. Development of an automatic sample changer for iMATERIA
Prakrajang et al. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations
Rykkelid Method for in vitro Cell Irradiation with Low Energy Protons

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20765534

Country of ref document: EP

Kind code of ref document: A1