WO2020177462A1 - 一种适用于氢燃料电池汽车系统的引射器及其使用方法 - Google Patents

一种适用于氢燃料电池汽车系统的引射器及其使用方法 Download PDF

Info

Publication number
WO2020177462A1
WO2020177462A1 PCT/CN2019/128887 CN2019128887W WO2020177462A1 WO 2020177462 A1 WO2020177462 A1 WO 2020177462A1 CN 2019128887 W CN2019128887 W CN 2019128887W WO 2020177462 A1 WO2020177462 A1 WO 2020177462A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulation channel
ejector
fuel cell
channel
hydrogen
Prior art date
Application number
PCT/CN2019/128887
Other languages
English (en)
French (fr)
Inventor
冯健美
韩济泉
侯天放
彭学院
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2020177462A1 publication Critical patent/WO2020177462A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the field of fuel cell vehicles, in particular to an ejector suitable for hydrogen fuel cell vehicle systems and a method of use thereof.
  • the hydrogen fuel cell can directly convert the chemical energy of hydrogen into electric energy without burning. Because of its high efficiency and power density, zero emission, silent operation, it is very suitable for fuel cell vehicles.
  • a hydrogen circulation pump is usually used as a hydrogen circulation device, but the processing and manufacturing of the hydrogen circulation pump is difficult, high cost, low reliability, and additional power consumption. Because the ejector has the outstanding advantages of simple structure, high reliability, low cost, and no extra power consumption when installed in the system, it has the development trend of replacing the hydrogen circulation pump.
  • the traditional ejector has a fixed structure, and the ejection performance is mainly determined by the power of the fuel cell.
  • the evaluation index of the ejector performance is the ejection rate, and the ejection rate is the secondary flow mass flow rate and the mainstream The ratio of mass flow.
  • the power of fuel cell vehicles often changes, which requires the hydrogen cycle device to work in a large power range, but when the application conditions of the ejector deviate from a certain power range, the ejection rate of the ejector will rapidly decrease.
  • the applicable power range of the ejector with the traditional structure cannot meet the power change requirements of the hydrogen fuel cell system, which is the main reason that restricts the application of the ejector to the hydrogen fuel cell vehicle system.
  • the purpose of the present invention is to provide an ejector suitable for hydrogen fuel cell automobile systems and a method of use thereof.
  • the present invention can broaden the power range of the ejector suitable for fuel cells and improve The ejection rate of hydrogen.
  • the mainstream nozzle of the ejector is provided with a central flow channel and at least a pair of flow channels symmetrical about the central flow channel.
  • the central flow channel is opened along the axis of the main flow nozzle.
  • the counter flow channel includes a first flow channel and a second flow channel.
  • the outlets of the central flow channel, the first flow channel and the second flow channel extend to the throat surface of the mainstream nozzle, wherein the throat diameter of the first flow channel and the second
  • the throats of the two circulation channels have the same diameter and are larger than the throat diameter of the central circulation channel; the diameter of the mixing section of the ejector matches the throat diameter of the central circulation channel and is also matched with the throats of the first and second circulation channels Match the diameter of the part.
  • the mainstream nozzle includes a cylindrical section and a tapered section.
  • the part of the central flow channel in the cylindrical section is cylindrical, and the part in the tapered section is conical; the first flow channel and the second flow channel in the cylindrical section are cylindrical,
  • the part in the tapered section is an oblique truncated cone-shaped channel, and the outlets of the first circulation channel and the second circulation channel are circular.
  • the central circulation channel, the first circulation channel and the second circulation channel have the same diameter in the cylindrical section.
  • the main stream hydrogen pressure of the ejector is less than 12barA, the temperature is 25°C, the secondary flow hydrogen pressure is 1.6barA, the temperature is 65°C; the ejector outlet pressure is 1.8 barA, temperature is 60°C; ejection rate is greater than 0.3;
  • the main flow nozzle is provided with a central flow channel and a pair of flow channels symmetrical about the central flow channel;
  • the diameter of the throat of the central circulation channel is 1.0mm
  • the diameter of the throat of the first circulation channel and the second circulation channel is 1.2mm
  • the diameter of the mixing section is 5mm.
  • the high-pressure mainstream hydrogen passes through the central circulation channel instead of the first and second circulation channels; when the fuel cell's working power is greater than 30kW, the high-pressure mainstream hydrogen flows through the first and second circulation channels The channel does not pass through the central flow channel.
  • the applicable power range of the ejector is 17 ⁇ 100kW.
  • the mainstream nozzle uses different flow channels to supply hydrogen under different fuel cell powers.
  • the high-pressure mainstream hydrogen passes through the central flow channel instead of the first flow.
  • Channels and second circulation channels when the working power of the fuel cell is greater than the preset power, the high-pressure mainstream hydrogen gas passes through the first circulation channel and the second circulation channel, and does not pass through the central circulation channel.
  • the present invention has the following beneficial effects:
  • the ejector designed in the present invention is suitable for hydrogen fuel cell vehicle system by opening a central flow channel and at least a pair of flow channels symmetrical about the central flow channel on the main flow nozzle, and meets the requirements of the diameter and center of the mixing section of the ejector.
  • the diameter of the throat of the flow channel matches and also matches the diameter of the throat of the first flow channel and the second flow channel.
  • the mainstream nozzle uses different flow channels to supply hydrogen under different fuel cell powers.
  • the high-pressure mainstream hydrogen passes through the central flow channel instead of the first and second flow channels; when the working power of the fuel cell is greater than the preset power, the high-pressure mainstream hydrogen passes through the first flow channel and The second flow channel does not pass through the central flow channel.
  • the ejector of the present invention can broaden the fuel cell power range of the ejector, and improve the narrow applicable power range of the conventional ejector, which cannot meet the requirements of fuel cell vehicles during driving. The disadvantage of large power changes.
  • the ejector designed in the present invention can be used in hydrogen fuel cell vehicles instead of hydrogen pumps, has the advantages of reduced volume, reduced weight, simple and reliable system, long life, no additional power consumption, and great market prospects.
  • the use method of the ejector of the present invention can broaden the power range of the fuel cell applicable to the ejector, and improve the narrow application power range of the conventional ejector, which cannot meet the fuel requirements.
  • Figure 1 is a cross-sectional view of an ejector with a conventional structure
  • Figure 2 is a cross-sectional view of an ejector according to an embodiment of the present invention.
  • Fig. 3 is a three-dimensional schematic diagram of the ejector of the embodiment shown in Fig. 2 of the present invention.
  • FIG. 4 is a three-dimensional schematic diagram of the mainstream nozzle of the ejector of the embodiment shown in FIG. 2 of the present invention.
  • Fig. 5 is the distribution of the circulation holes on the throat surface of the mainstream nozzle in the embodiment shown in Fig. 2 of the present invention
  • Fig. 6 is the distribution of the circulation holes on the throat surface of the mainstream nozzle in the ejector of another embodiment of the present invention.
  • Figure 7 is the size of the traditional ejector used in the numerical simulation
  • Fig. 8 is the size of the ejector used in the numerical simulation of the embodiment shown in Fig. 2 of the present invention.
  • Fig. 9 is the variation of the ejector performance with the diameter of the mixing section during the numerical simulation of the ejector shown in Fig. 8 of the present invention.
  • Fig. 10 is the variation of the ejector performance with the fuel cell power during the numerical simulation of the ejector of the conventional structure and the ejector of the present invention shown in Fig. 8.
  • the existing ejector used in industry is usually the main stream fluid is supplied through the conventional nozzle 1 to eject the secondary stream.
  • the battery power will change in a wide range.
  • the ejector performance will rapidly decrease, and the function of ejecting secondary hydrogen cannot be achieved.
  • the ejector with the traditional structure cannot meet the power change demand of the hydrogen fuel cell vehicle system, which is the main reason for restricting the application of the ejector in the fuel cell system. Therefore, the present invention aims at this problem and designs an ejector suitable for hydrogen fuel cell vehicle systems.
  • the ejector of the present invention mainly includes the main flow nozzle 2, the secondary flow inlet section 3, the mixing section 4 and the diffuser section 5.
  • the difference between the ejector and the traditional structure is the mainstream nozzle 2 and mixing section 4.
  • the mainstream nozzle 2 of the present invention includes a cylindrical section 6 and a tapered section 7.
  • the mainstream nozzle 2 is provided with a plurality of flow channels, including a central flow channel 8 and a symmetrical one about the central flow channel 8.
  • the counter flow channels are the first flow channel 9-1 and the second flow channel 9-2.
  • the double symmetrical flow passages of the mainstream nozzle 2 that is, the first flow passage 9-1 and the second flow passage 9-2 are arranged symmetrically.
  • the diameters of the central circulation channel 8, the first circulation channel 9-1, and the second circulation channel 9-2 in the cylindrical section have little effect on the ejection performance.
  • the shape of the tapered section 7 is a truncated cone, and the diameter of the flow channel on the throat surface 10 of the tapered section 7 is the most important size of the ejector.
  • the shape of the first circulation channel 9-1 and the second circulation channel 9-2 in the tapered section 7 is an oblique truncated cone shape, which is circular on the throat surface.
  • the diameter of the circulation hole on the throat surface 10 is called the throat diameter
  • the throat diameter of the central circulation hole 8 is equal to a
  • the throat diameter of the first circulation hole 9-1 and the second circulation hole 9-2 It is equal to b
  • a is smaller than b
  • the central flow channel 8 is suitable for lower fuel cell power.
  • the number of flow channels of the mainstream nozzle 2 of the present invention is determined according to the power of the fuel cell vehicle.
  • the power range of the fuel cell vehicle is widened, the number of flow channels can be increased, and one or more groups of bisymmetrical flow channels can be added. Broaden the applicable power of the ejector in a larger range; see Figure 6, adding two symmetrical flow channels, which can further broaden the application power.
  • the central circulation channel 8 and the bisymmetrical circulation channel (ie, the first circulation channel 9-1 and the second circulation channel 9-2) according to the present invention work separately under different fuel cell powers.
  • the power C of the fuel cell is used as the limit, which is called the preset power.
  • the high-pressure mainstream hydrogen passes through the central circulation channel 8, but does not pass through the first circulation channel 9-1 and the second circulation channel 9- 2.
  • the high-pressure mainstream hydrogen gas passes through the first circulation channel 9-1 and the second circulation channel 9-2 of the double symmetrical circulation holes, and does not pass through the central circulation channel 8.
  • the determination of the preset power C value is determined based on the working ranges of the two types of circulation channels (ie, the central circulation channel 8 and the bisymmetric circulation channel).
  • the diameter of the mixing section 4 described in the present invention is called the mixing section diameter Dm, and the mixing section diameter Dm is very important for the ejector performance.
  • the diameter of the mixing section Dm should be matched with the diameter of the throat Dt to ensure the best ejection performance.
  • the ejector of the present invention has two throat diameters.
  • the two throat diameters are respectively the throat diameter a of the central flow channel 8 and the throat diameter b of the bisymmetric flow channel. Therefore, the selection of the diameter of the mixing section requires Considering the cooperation with the two throat diameters, the central circulation channel 8 with different throat diameters and the double symmetrical circulation channel have higher ejection performance when working separately.
  • the central flow channel 8 when the power of the fuel cell vehicle is low (that is, less than the preset power), the central flow channel 8 is used to supply mainstream hydrogen, and the bisymmetric flow channel does not work, similar to the ejector of the traditional structure.
  • the mainstream hydrogen passes through the tapered section of the central flow channel 8, the flow cross-sectional area decreases and the flow speed increases.
  • a high-speed and low-pressure zone is formed at the nozzle outlet 11 position. The pressure at this position is lower than the secondary flow pressure, so that the secondary flow hydrogen It is entrained to achieve the ejection of the secondary stream of hydrogen.
  • the two streams are mixed in the mixing section, then enter the diffuser section to reduce the speed and increase the pressure, and finally enter the fuel cell from the outlet.
  • the dual symmetrical circulation channels are used to supply mainstream hydrogen, the central circulation channel 8 does not work, and the mainstream hydrogen circulates through the dual symmetrical channels.
  • the cross-sectional area of the flow is reduced to increase the flow speed.
  • the two air flows from the double symmetrical flow channel merge at the position of the nozzle outlet 11 to form a high-speed and low-pressure zone, so that the secondary flow of hydrogen is entrained. The ejection process of the secondary stream of hydrogen.
  • the invention also designs an ejector for the hydrogen circulation system of a 100kW hydrogen fuel cell automobile. Numerical simulation calculations have been performed for the ejector of the traditional structure and the ejector shown in Figure 2 of the present invention. The known conditions are as follows: (1) Mainstream hydrogen pressure is less than 12barA, temperature is 25°C, and secondary flow hydrogen pressure is 1.6barA, temperature is 65°C; outlet pressure is 1.8barA, temperature is 60°C; (2) The ejection rate (the ratio of secondary flow hydrogen to mainstream hydrogen) is greater than 0.3; (3) The ejector is designed to make it suitable The fuel cell power range is as wide as possible.
  • the present invention uses a numerical simulation method to verify the performance of the ejector of the invention.
  • Use fluent software to perform numerical simulation on ejectors of different geometric sizes, and obtain the better performance of the traditional structure ejector and the geometric size of the ejector of the invention; then compare the two ejectors under different fuel cell vehicle power The ejection performance.
  • the geometric dimensions shown in Fig. 7 are finally selected as the better design dimensions of the traditional structure ejector.
  • the main geometric dimensions are as follows: the diameter of the throat of the nozzle flow channel is 1.8mm, the length of the tapered section is 30mm, the distance between the throat surface of the mainstream nozzle and the mixing section is 18mm, the diameter of the mixing section is 9mm, the mixing section The length of the diffuser section is 54mm, the length of the diffuser section is 90mm, the diameter of the ejector outlet is 22mm, and the diameter of the secondary inflow section is 20mm.
  • the geometric size shown in FIG. 8 is finally selected as the preferred design size of the ejector of the present invention.
  • the main geometric dimensions are as follows: the diameter of the throat of the central circulation channel is 1.0mm, the diameter of the throat of the first circulation channel and the second circulation channel is 1.2mm, the diameter of the circulation channel in the cylindrical section is 5mm, and the length of the tapered section is 30mm, the distance between the throat surface of the mainstream nozzle and the mixing section is 10mm, the diameter of the mixing section is 5mm, the length of the mixing section is 30mm, the length of the diffuser section is 50mm, the diameter of the ejector outlet is 12mm, two The diameter of the secondary inlet section is 20mm.
  • the key dimensions are the diameter Dt of the throat surface and the diameter Dm of the mixing section.
  • Figure 9 is the change of the ejection rate of two Dt under different Dm obtained by numerical simulation at 40kW.
  • T1 represents the working range of the nozzle flow channel of the ejector with the traditional structure
  • N3 represents the ejector of the present invention.
  • the working range of the central flow channel 8 (Dt 1.0mm)
  • the present invention determines the power C value of 30kW according to the working ranges of the two circulation channels shown in N2 and N3, that is, the fuel cell power is 30kW as the limit.
  • the fuel cell working power is less than 30kW
  • the high-pressure mainstream hydrogen gas passes through the central circulation channel 8 , Does not pass through the double symmetrical flow channel; when the fuel cell working power is greater than 30kW, the high-pressure mainstream hydrogen passes through the double symmetrical flow channel, not through the central flow channel 8.
  • the power range of the ejector of the traditional structure is 55-100kW; the applicable power range of the ejector of the present invention is 17-100kW, which broadens the applicable power range of the ejector.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

一种适用于氢燃料电池汽车系统的引射器及其使用方法,所述引射器包括一个特殊的主流喷嘴(2)、二次流入口段(3)、混合段(4)和扩压段(5)。所述的喷嘴(2)具有多个流通孔道,包括中心流通孔道(8)以及关于中心流通孔道(8)对称的至少一对流通孔道。流通孔道的数量和分布情况根据燃料电池的功率范围确定,流通孔道具有不同大小的喉部直径。当燃料电池在不同功率下调节时,通过使用具有不同大小喉部直径的流通孔道供应主流氢气,来实现高效引射二次流氢气的目标。中心流通孔道(8)在较小的燃料电池的功率下工作,双对称流通孔道在较大的燃料电池的功率下工作。

Description

一种适用于氢燃料电池汽车系统的引射器及其使用方法 技术领域
本发明涉及燃料电池汽车领域,具体涉及一种适用于氢燃料电池汽车系统的引射器及其使用方法。
背景技术
氢燃料电池可直接将氢气的化学能转化为电能而无需燃烧,由于其高效率和功率密度,零排放,静音运行,非常适合于燃料电池汽车。在氢燃料电池汽车的氢气循环系统中,通常使用氢循环泵作为氢气循环的装置,但氢循环泵加工制造难度大、成本高、可靠性低且会额外耗功。因为引射器具有结构简单、可靠性高、成本低,并且安装在系统中不会额外耗功等突出优点,具有替代氢循环泵的发展趋势。
在实际的应用中,传统引射器结构固定,引射性能主要由燃料电池的功率决定,引射器的引射性能的评价指标是引射率,引射率是二次流质量流量与主流质量流量之比。燃料电池汽车的功率经常改变,这要求氢循环装置能够在大的功率范围内工作,但是当引射器的应用工况偏离一定的功率范围时,引射器的引射率会快速降低。而传统结构的引射器适用的功率范围不能满足氢燃料电池系统功率改变的需求,这是限制引射器应用于氢燃料电池汽车系统的主要原因。
发明内容
为解决现有技术中存在的问题,本发明的目的在于提出一种适用于氢燃料电池汽车系统的引射器及其使用方法,本发明能够拓宽适用燃料电池的引射器的功率范围,提高氢气的引射率。
为了实现上述目的,本发明采用了以下技术方案:
一种适用于氢燃料电池汽车系统的引射器,引射器的主流喷嘴上开设有中心流通孔道以及 关于中心流通孔道对称的至少一对流通孔道,中心流通孔道沿主流喷嘴的轴线开设,每对流通孔道包括第一流通孔道和第二流通孔道,中心流通孔道、第一流通孔道和第二流通孔道的出口延伸至主流喷嘴的喉部面,其中,第一流通孔道的喉部直径和第二流通孔道的喉部直径相同且大于中心流通孔道的喉部直径;引射器的混合段的直径与中心流通孔道的喉部直径相匹配并且还与第一流通孔道和第二流通孔道的喉部直径相匹配。
主流喷嘴包括圆柱段和渐缩段,中心流通孔道处于圆柱段的部分为圆柱形,处于渐缩段的部分为圆锥形;第一流通孔道和第二流通孔道处于圆柱段的部分为圆柱形,处于渐缩段的部分为斜圆台形孔道,第一流通孔道和第二流通孔道的出口为圆形。
中心流通孔道、第一流通孔道和第二流通孔道处于圆柱段的部分直径相同。
100kW氢燃料电池汽车氢循环系统的引射器中,引射器的主流氢气压力小于12barA、温度为25℃,二次流氢气压力为1.6barA、温度为65℃;引射器出口压力为1.8barA、温度为60℃;引射率大于0.3;
主流喷嘴上开设中心流通孔道以及关于中心流通孔道对称的一对流通孔道;
其中,中心流通孔道的喉部直径为1.0mm,第一流通孔道和第二流通孔道的喉部直径为1.2mm,混合段的直径为5mm。
当燃料电池工作功率小于30kW时,高压主流氢气通过中心流通孔道,不通过第一流通孔道和第二流通孔道;当燃料电池工作功率大于30kW时,高压主流氢气通过第一流通孔道和第二流通孔道,不通过中心流通孔道。
引射器适用的功率范围是17~100kW。
上述引射器的使用方法,主流喷嘴在不同的燃料电池的功率下使用不同的流通孔道供应氢气,当燃料电池工作功率小于预设功率时,高压主流氢气通过中心流通孔道,不通过第一流通孔道和第二流通孔道;当燃料电池工作功率大于预设功率时,高压主流氢气通过第一流通孔道 和第二流通孔道,不通过中心流通孔道。
与现有技术相比,本发明具有以下有益效果:
本发明设计的适用于氢燃料电池汽车系统的引射器通过在其主流喷嘴上开设中心流通孔道以及关于中心流通孔道对称的至少一对流通孔道,并且满足引射器的混合段的直径与中心流通孔道的喉部直径相匹配并且还与第一流通孔道和第二流通孔道的喉部直径相匹配,在使用时,主流喷嘴在不同的燃料电池的功率下使用不同的流通孔道供应氢气,当燃料电池工作功率小于预设功率时,高压主流氢气通过中心流通孔道,不通过第一流通孔道和第二流通孔道;当燃料电池工作功率大于预设功率时,高压主流氢气通过第一流通孔道和第二流通孔道,不通过中心流通孔道,本发明的引射器能够拓宽引射器的适用的燃料电池的功率范围,改善了常规引射器适用功率范围窄、不能满足燃料电池汽车行驶过程中功率变化大的缺点。同时本发明设计的引射器能够代替氢泵用在氢燃料电池汽车中,具有体积、重量减小、系统简单可靠、寿命长、不需要额外耗功,具有极大的市场前景。
由上述本发明引射器的有益效果可知,通过本发明引射器的使用方法,能够拓宽引射器的适用的燃料电池的功率范围,改善了常规引射器适用功率范围窄、不能满足燃料电池汽车行驶过程中功率变化大的缺点。
附图说明
图1是现有结构的引射器的剖面图;
图2是本发明一实施例的引射器的剖面图;
图3是本发明图2所示实施例的引射器的三维示意图;
图4是本发明图2所示实施例的引射器的主流喷嘴的三维示意图;
图5是本发明图2所示实施例中主流喷嘴的喉部面的流通孔道分布;
图6是本发明的另一实施例引射器中主流喷嘴的喉部面的流通孔道分布;
图7是传统结构引射器在数值模拟时使用的尺寸;
图8是本发明图2所示实施例的引射器在数值模拟时使用的尺寸;
图9是本发明图8所示引射器在数值模拟时的引射性能随混合段直径的变化情况;
图10是传统结构引射器和本发明图8所示引射器在数值模拟时的引射性能随燃料电池功率的变化情况。
图中,1-喷嘴,2-主流喷嘴,3-二次流入口段,4-混合段,5-扩压段,6-圆柱段,7-渐缩段,8-中心流通孔道,9-1-第一流通孔道,9-2-第二流通孔道,10-喉部面,11-喷嘴出口,12-引射器出口。
具体实施方式
下面结合附图和实施例来对本发明做进一步的说明。
参见图1,现有的工业上应用的引射器通常是主流流体经过常规的喷嘴1供应,对二次流进行引射。当燃料电池汽车在行驶过程中,电池功率会在大范围内变化,当偏离一定范围时,引射器的引射性能会快速降低,不能实现引射二次流氢气的功能。目前,传统结构的引射器不能满足氢燃料电池汽车系统功率改变的需求,这是限制引射器在燃料电池系统中应用的主要原因。因此,本发明针对这一问题,设计了一种适用于氢燃料电池汽车系统的引射器。
参见图2和图3,本发明所述引射器主要包括主流喷嘴2、二次流入口段3、混合段4和扩压段5,与传统结构的引射器之间的差别在于主流喷嘴2和混合段4。
如图2和图4所示,本发明的主流喷嘴2包括圆柱段6和渐缩段7,主流喷嘴2中设有多个流通孔道,包括中心流通孔道8以及关于中心流通孔道8对称的一对流通孔道,即第一流通孔道9-1和第二流通孔道9-2。
参见图4,主流喷嘴2的双对称流通孔道即第一流通孔道9-1和第二流通孔道9-2成对称布置。中心流通孔道8、第一流通孔道9-1和第二流通孔道9-2在圆柱段的直径对引射性能影 响较小,为了方便管路连接,使用大小一致的直径。渐缩段7的形状为圆台,渐缩段7的喉部面10上流通孔道的直径是引射器最重要的尺寸。第一流通孔道9-1和第二流通孔道9-2在的渐缩段7内的形状是斜圆台形,在喉部面上式圆形。
参见图5,在喉部面10上流通孔道的直径称为喉部直径,中心流通孔道8的喉部直径等于a,第一流通孔道9-1和第二流通孔道9-2的喉部直径等于b,a小于b,中心流通孔道8适合较低的燃料电池的功率。
本发明的主流喷嘴2的流通孔道的数量根据燃料电池汽车的功率确定,当燃料电池汽车功率范围变宽的情况下,可以增加流通孔道的数量,可以增加一组或多组双对称流通孔道以更大范围拓宽引射器的适用功率;参见图6,增加了2个左右对称的流通孔道,可以进一步拓宽应用功率。
本发明所述的中心流通孔道8和双对称流通孔道(即第一流通孔道9-1和第二流通孔道9-2)在不同的燃料电池功率下分别工作。以燃料电池的功率C做为界限,称为预设功率,当燃料电池工作功率小于C时,高压主流氢气通过中心流通孔道8,不通过第一流通孔道9-1和第二流通孔道9-2;当燃料电池工作功率大于C时,高压主流氢气通过双对称流通孔第一流通孔道9-1和第二流通孔道9-2,不通过中心流通孔道8。预设功率C值的确定依据两种流通孔道(即中心流通孔道8和双对称流通孔道)的工作范围确定。
本发明所述的混合段4的直径称为混合段直径Dm,混合段直径Dm对于引射器的引射性能很重要。对于传统结构的引射器,混合段直径Dm要与喉部直径Dt相配合以保证引射性能最佳。但本发明所述的引射器具有两个喉部直径,两个喉部直径分别为中心流通孔道8的喉部直径a和双对称流通孔道的喉部直径b,因此混合段直径的选取需要考虑与两个喉部直径配合,使具有不同喉部直径的中心流通孔道8和双对称流通孔道分别工作时都有较高的引射性能。
本发明的工作过程如下:
参见图2,当燃料电池汽车在行驶中的功率较低时(即小于预设功率时),使用中心流通孔道8供应主流氢气,双对称流通孔道不工作,类似于传统结构的引射器,主流氢气通过中心流通孔道8的渐缩段时,流动截面积减小使得流动速度提高,在喷嘴出口11位置处形成高速低压区,该位置的压力小于二次流压力,因此使得二次流氢气被卷吸,实现二次流氢气的引射,两股气流在混合段混合,然后进入扩压段使速度降低而压力升高,最后从出口进入燃料电池中。
参见图4和图2,当燃料电池汽车在行驶中的功率较高时(即大于预设功率时),使用双对称流通孔道供应主流氢气,中心流通孔道8不工作,主流氢气通过双对称流通孔道的渐缩段时,流动截面积减小使得流动速度提高,从双对称流通孔道出来的两股气流在喷嘴出口11位置处汇合,形成高速低压区,使得二次流氢气被卷吸,完成二次流氢气的引射过程。
本发明还针对100kW氢燃料电池汽车氢循环系统设计引射器。对于传统结构的引射器,以及本发明图2所示的引射器进行了数值模拟计算,已知条件如下:(1)主流氢气压力小于12barA、温度为25℃,二次流氢气压力为1.6barA、温度为65℃;出口压力1.8barA、温度为60℃;(2)引射率(二次流氢气与主流氢气之比)大于0.3;(3)设计引射器,使其适用的燃料电池功率范围尽可能宽。
本发明使用数值模拟方法验证所述发明引射器的性能。使用fluent软件对不同几何尺寸的引射器进行数值模拟,得到性能较优的传统结构引射器和发明所述引射器的几何尺寸;然后比较两种引射器在不同燃料电池汽车功率下的引射性能。
经过数值模拟计算,最终选择图7所示的几何尺寸作为传统结构引射器较优的设计尺寸。其主要几何尺寸如下:喷嘴流通孔道的喉部直径为1.8mm,渐缩段的长度为30mm,主流喷嘴的喉部面与混合段之间的距离是18mm,混合段的直径为9mm,混合段的长度为54mm,扩压段的长度为90mm,引射器出口的直径为22mm,二次流入口段的直径为20mm。
经过数值模拟计算,最终选择图8所示的几何尺寸作为本发明引射器较优的设计尺寸。其 主要几何尺寸如下:中心流通孔道的喉部直径为1.0mm,第一流通孔道和第二流通孔道的喉部直径为1.2mm,流通孔道在圆柱段的直径为5mm,渐缩段的长度为30mm,主流喷嘴的喉部面与混合段之间的距离是10mm,混合段的直径为5mm,混合段的长度为30mm,扩压段的长度为50mm,引射器出口的直径为12mm,二次流入口段的直径为20mm。
在本发明引射器的所有尺寸中,关键尺寸是喉部面的直径Dt和混合段的直径Dm,混合段直径Dm的选择应该保证使中心流通孔道8(Dt=1.0mm)和第一流通孔道9-1和第二流通孔道9-2(Dt=1.2mm)分别工作时都有较高的引射性能。图9是数值模拟得到的40kW时两个Dt在不同Dm下的引射率的变化情况,可以看到Dm等于5mm时可以使两个Dt(即中心流通孔道8喉部直径为1.0mm,第一流通孔道9-1和第二流通孔道9-2喉部直径为1.2mm)分别工作时都有较高的引射性能。经过数值模拟计算得到引射器的引射率ER随燃料电池的功率变化,如图10所示,T1表示传统结构的引射器喷嘴流通孔道的工作范围,N3表示本发明所述引射器的中心流动孔道8(Dt=1.0mm)的工作范围,N2表示本发明所述引射器的双对称流通孔道(Dt=1.2mm)的工作范围。本发明依据N2和N3所示两种流通孔道的工作范围确定功率C值为30kW,即以燃料电池的功率30kW做为界限,当燃料电池工作功率小于30kW时,高压主流氢气通过中心流通孔道8,不通过双对称流通孔道;当燃料电池工作功率大于30kW时,高压主流氢气通过双对称流通孔道,不通过中心流通孔道8。
结果表明传统结构的引射器的功率范围是55-100kW;本发明所述的引射器可以适用的功率范围是17-100kW,拓宽了引射器的适用功率范围。

Claims (7)

  1. 一种适用于氢燃料电池汽车系统的引射器,其特征在于,引射器的主流喷嘴(2)上开设有中心流通孔道(8)以及关于中心流通孔道(8)对称的至少一对流通孔道,中心流通孔道(8)沿主流喷嘴(2)的轴线开设,每对流通孔道包括第一流通孔道(9-1)和第二流通孔道(9-2),中心流通孔道(8)、第一流通孔道(9-1)和第二流通孔道(9-2)的出口延伸至主流喷嘴(2)的喉部面(10),其中,第一流通孔道(9-1)的喉部直径和第二流通孔道(9-2)的喉部直径相同且大于中心流通孔道(8)的喉部直径;引射器的混合段(4)的直径与中心流通孔道(8)的喉部直径相匹配并且同时与第一流通孔道(9-1)和第二流通孔道(9-2)的喉部直径相匹配。
  2. 根据权利要求1所述的一种适用于氢燃料电池汽车系统的引射器,其特征在于,主流喷嘴(2)包括圆柱段(6)和渐缩段(7),中心流通孔道(8)处于圆柱段(6)的部分为圆柱形,处于渐缩段(7)的部分为圆锥形;第一流通孔道(9-1)和第二流通孔道(9-2)处于圆柱段(6)的部分为圆柱形,处于渐缩段(7)的部分为斜圆台形孔道,第一流通孔道(9-1)和第二流通孔道(9-2)的出口为圆形。
  3. 根据权利要求2所述的一种适用于氢燃料电池汽车系统的引射器,其特征在于,中心流通孔道(8)、第一流通孔道(9-1)和第二流通孔道(9-2)处于圆柱段(6)的部分直径相同。
  4. 根据权利要求1所述的一种适用于氢燃料电池汽车系统的引射器,其特征在于,100kW氢燃料电池汽车氢循环系统的引射器中,引射器的主流氢气压力小于12barA、温度为25℃,二次流氢气压力为1.6barA、温度为65℃;引射器出口压力为1.8barA、温度为60℃;引射率大于0.3;
    主流喷嘴(2)上开设中心流通孔道(8)以及关于中心流通孔道(8)对称的一对流通孔道;
    其中,中心流通孔道(8)的喉部直径为1.0mm,第一流通孔道(9-1)和第二流通孔道(9-2)的喉部直径为1.2mm,混合段(4)的直径为5mm。
  5. 根据权利要求4所述的一种适用于氢燃料电池汽车系统的引射器,其特征在于,引射器适用的功率范围是17~100kW。
  6. 权利要求1所述的适用于氢燃料电池汽车系统的引射器的使用方法,其特征在于,主流喷嘴(2)在不同的燃料电池的功率下使用不同的流通孔道供应氢气,当燃料电池工作功率小于预设功率时,高压主流氢气通过中心流通孔道(8),不通过第一流通孔道(9-1)和第二流通孔道(9-2);当燃料电池工作功率大于预设功率时,高压主流氢气通过第一流通孔道(9-1)和第二流通孔道(9-2),不通过中心流通孔道(8)。
  7. 根据权利要求6所述的使用方法,其特征在于,100kW氢燃料电池汽车氢循环系统的引射器中,引射器的主流氢气压力小于12barA、温度为25℃,二次流氢气压力为1.6barA、温度为65℃;引射器出口压力为1.8barA、温度为60℃;引射率大于0.3;
    主流喷嘴(2)上开设中心流通孔道(8)以及关于中心流通孔道(8)对称的一对流通孔道;
    其中,中心流通孔道的喉部直径为1.0mm,第一流通孔道(9-1)和第二流通孔道(9-2)的喉部直径为1.2mm,混合段(4)的直径为5mm;
    在使用时,当燃料电池工作功率小于30kW时,高压主流氢气通过中心流通孔道(8),不通过第一流通孔道(9-1)和第二流通孔道(9-2);当燃料电池工作功率大于30kW时,高压主流氢气通过第一流通孔道(9-1)和第二流通孔道(9-2),不通过中心流通孔道(8)。
PCT/CN2019/128887 2019-03-01 2019-12-26 一种适用于氢燃料电池汽车系统的引射器及其使用方法 WO2020177462A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910155778.2A CN109873181B (zh) 2019-03-01 2019-03-01 一种适用于氢燃料电池汽车系统的引射器及其使用方法
CN201910155778.2 2019-03-01

Publications (1)

Publication Number Publication Date
WO2020177462A1 true WO2020177462A1 (zh) 2020-09-10

Family

ID=66919626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128887 WO2020177462A1 (zh) 2019-03-01 2019-12-26 一种适用于氢燃料电池汽车系统的引射器及其使用方法

Country Status (2)

Country Link
CN (1) CN109873181B (zh)
WO (1) WO2020177462A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109873181B (zh) * 2019-03-01 2020-10-27 西安交通大学 一种适用于氢燃料电池汽车系统的引射器及其使用方法
CN112856413B (zh) * 2021-01-15 2022-03-18 西安交通大学 一种可调氢气引射/二次进风的燃烧器与燃烧方法
CN114396396A (zh) * 2022-03-25 2022-04-26 北京亿华通科技股份有限公司 一种具有多模式喷头的引射器、燃料电池系统及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020022171A1 (en) * 2000-08-10 2002-02-21 Honda Giken Kogyo Kabushiki Kaisha Fuel supply device for fuel cell
CN108550880A (zh) * 2018-05-31 2018-09-18 安徽江淮汽车集团股份有限公司 氢燃料电池汽车氢气控制系统
CN208157534U (zh) * 2018-01-17 2018-11-27 安徽明天氢能科技股份有限公司 一种用于燃料电池系统的可变喉口引射器
CN109033579A (zh) * 2018-07-11 2018-12-18 清华大学 燃料电池宽域引射器设计方法及装置
CN109873181A (zh) * 2019-03-01 2019-06-11 西安交通大学 一种适用于氢燃料电池汽车系统的引射器及其使用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101412011A (zh) * 2008-11-07 2009-04-22 浙江大学 可调式喷射器
KR20110062467A (ko) * 2009-12-03 2011-06-10 한국전력공사 다유체 혼합 이젝터와 그를 적용한 연료전지 시스템
KR101601325B1 (ko) * 2010-11-29 2016-03-08 현대자동차주식회사 연료전지용 병렬형 다단 수소 재순환 이젝터 장치
KR101583931B1 (ko) * 2014-05-16 2016-01-21 현대자동차주식회사 연료전지 시스템의 이젝터
JP2018060757A (ja) * 2016-10-07 2018-04-12 日産自動車株式会社 エゼクタ、燃料供給装置および燃料電池システム
CN106784930A (zh) * 2017-02-24 2017-05-31 安徽康诺新能源汽车技术有限公司 燃料电池汽车动力系统的双喷氢引射器装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020022171A1 (en) * 2000-08-10 2002-02-21 Honda Giken Kogyo Kabushiki Kaisha Fuel supply device for fuel cell
CN208157534U (zh) * 2018-01-17 2018-11-27 安徽明天氢能科技股份有限公司 一种用于燃料电池系统的可变喉口引射器
CN108550880A (zh) * 2018-05-31 2018-09-18 安徽江淮汽车集团股份有限公司 氢燃料电池汽车氢气控制系统
CN109033579A (zh) * 2018-07-11 2018-12-18 清华大学 燃料电池宽域引射器设计方法及装置
CN109873181A (zh) * 2019-03-01 2019-06-11 西安交通大学 一种适用于氢燃料电池汽车系统的引射器及其使用方法

Also Published As

Publication number Publication date
CN109873181B (zh) 2020-10-27
CN109873181A (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
WO2020177462A1 (zh) 一种适用于氢燃料电池汽车系统的引射器及其使用方法
CN103090601B (zh) 分流器及具有其的空调器
CN109529738A (zh) 一种旋流空化装置
CN104772241B (zh) 一种接受室为缩放喷管的喷射器
CN111120008A (zh) 一种新型透平叶片旋流冷却结构
CN106152585A (zh) 空气制冷器
CN206444470U (zh) 一种静态气体混合装置
CN106761947A (zh) 一种用于涡轮叶片的漏斗型气膜孔结构
CN104847708A (zh) 超声速引射器
CN110608203A (zh) 带有蜗壳螺旋式二次流的引射器装置
CN112922678B (zh) 一种用于汽轮机的轴向出汽的进汽室
CN114109514A (zh) 一种涡轮叶片压力面冷却结构
CN211782111U (zh) 管式分流器及空调器
CN103240207B (zh) 一种喷射器
CN111282462A (zh) 一种混合器介质的注入方法
CN103016425A (zh) 一种三级多喷管中心引射器
CN106524793B (zh) 一种换热器
CN210831992U (zh) 燃气灶喷嘴、燃气灶
CN112397746B (zh) 一种燃料电池发动机的阳极引射回流装置
CN211008774U (zh) 一种新型透平叶片旋流冷却结构
CN220354160U (zh) 一种燃料电池引射器的喷嘴结构
CN108416183B (zh) 一种用于引射器的二维支板一体化结构设计方法
CN106287763A (zh) 一种利用小流量末级过热蒸汽的吹灰器汽源装置
CN201331215Y (zh) 干式蒸发器
CN117174982B (zh) 一种燃料电池的空气出入堆分配结构及其出入堆总成

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918205

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A 29/04/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19918205

Country of ref document: EP

Kind code of ref document: A1