WO2020175808A1 - 무선전력 전송 시스템에서 펌웨어 업데이트를 수행하는 장치 및 방법 - Google Patents

무선전력 전송 시스템에서 펌웨어 업데이트를 수행하는 장치 및 방법 Download PDF

Info

Publication number
WO2020175808A1
WO2020175808A1 PCT/KR2020/001354 KR2020001354W WO2020175808A1 WO 2020175808 A1 WO2020175808 A1 WO 2020175808A1 KR 2020001354 W KR2020001354 W KR 2020001354W WO 2020175808 A1 WO2020175808 A1 WO 2020175808A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless power
firmware
power transmission
communication
transmission device
Prior art date
Application number
PCT/KR2020/001354
Other languages
English (en)
French (fr)
Inventor
김재휴
최진구
이민수
임진권
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/310,829 priority Critical patent/US11870271B2/en
Publication of WO2020175808A1 publication Critical patent/WO2020175808A1/ko

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/60Software deployment
    • G06F8/65Updates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • Wireless power transmission technology wirelessly transmits power between a power source and an electronic device.
  • wireless power transmission technology allows charging the battery of a wireless terminal by simply placing a wireless terminal such as a smartphone or tablet on the wireless charging pad, and charging the wire using the existing wired charging connector.
  • wireless power transmission technology can provide superior mobility, convenience, and safety compared to the environment.
  • various wearable devices such as electric vehicles, Bluetooth earphones and 3D glasses, home appliances, furniture, underground In various fields such as facilities, buildings, medical devices, robots, and leisure, it is attracting attention as a replacement for the existing wired power transmission environment.
  • the wireless power transmission method is also referred to as the contactless power transmission method, the no point of contact power transmission method, and the wireless charging method.
  • the wireless power transmission system includes a wireless power transmission device that supplies electrical energy through a wireless power transmission method, and a wireless power reception that supplies power to a power receiving device such as a battery cell by receiving electrical energy wirelessly supplied from the wireless power transmission device. It can be configured as a device.
  • Wireless power transmission technology is a method of transmitting power through magnetic coupling, a method of transmitting power through a radio frequency (RF), and a method of transmitting power through a microwave.
  • Magnetic induction method and magnetic resonance method are classified as magnetic induction method and magnetic resonance method.
  • the magnetic induction method is divided into the coil and the transmission side. This is a method of transmitting energy by using the current induced in the receiving coil due to the magnetic field generated in the transmitting coil battery cell due to electromagnetic coupling of the receiving coil.
  • the magnetic resonance method uses a magnetic field in that it uses a magnetic field.
  • the technical task of this specification is to provide a wireless power transmission device, a wireless power transmission method, a wireless power reception device, a wireless power reception method, and a wireless charging system capable of transmitting and updating the firmware of the wireless power transmission device.
  • Another technical task of this specification is to provide a method for checking the firmware version.
  • Another technical task of this specification is to provide a method for transferring firmware files using BLE.
  • Another technical challenge in this specification is to provide a technique for preventing falsification/tampering with firmware.
  • a wireless power transmitting device equipped with a primary coil at an operating frequency and a wireless power transmitting device through magnetic coupling. And, a power pick-up circuit configured to convert an AC signal generated by the wireless power into a DC signal, and the wireless power transmission device and out-band using a frequency other than the operating frequency.
  • Communication configured to carry out communication
  • a wireless power receiving device includes a communication circuit and a control circuit configured to control the processing of firmware.
  • the firmware is a firmware related to the wireless power transmission device
  • the communication circuit is an apparatus and method for transmitting the firmware to the wireless power transmission device based on the out-band communication.
  • the communication circuit is based on the out-band communication
  • control circuit based on the out-band communication
  • a wireless power reception device that controls to transmit the firmware information is started.
  • the firmware information is the manufacturer of the wireless power transmission device
  • a wireless power receiving device comprising at least one of an identifier and a firmware identifier is disclosed.
  • a power conversion circuit configured to transmit wireless power to the wireless power receiving device by using a primary coil that forms magnetic coupling with the wireless power receiving device and other than the operating frequency.
  • a communication/control circuit configured to perform out-band communication with the wireless power receiving device using a frequency, wherein the communication/control circuit comprises, the wireless power 2020/175808 1»(:1/10 ⁇ 020/001354 A wireless power transmission device that performs firmware update based on the firmware received from the receiving device is started.
  • the communication/control circuit is based on the out-band communication between the wireless power receiving device and the wireless power transmitting device.
  • An apparatus and method for receiving firmware are disclosed.
  • a wireless power transmission device for transmitting a transmission request for firmware information to a wireless power receiving device, receiving the firmware information from the wireless power receiving device, and determining whether the firmware needs to be updated is initiated.
  • the communication/control circuit determines whether or not the firmware needs to be updated based on the firmware information, and if the firmware needs to be updated, the firmware in the wireless power receiver based on the out-band communication
  • a wireless power transmission device that transmits a transmission request and receives the firmware from the wireless power receiving device based on the out-band communication is disclosed.
  • the firmware information is a wireless power receiving device including at least one of the manufacturer identifier and the firmware identifier of the wireless power transmission device is disclosed.
  • FIG. 1 is a block diagram of a wireless power system 10 according to an embodiment.
  • FIG. 2 is a block diagram of a wireless power system 10 according to another embodiment.
  • 3A is a diagram showing an embodiment of various electronic devices in which a wireless power transmission system is introduced.
  • FIG. 3B shows an example of WPC NDEF in a wireless power transmission system.
  • 4A is a block diagram of a wireless power transmission system according to another embodiment.
  • Figure 4b is a Bluetooth communication to which an embodiment of the present specification can be applied.
  • Figure 4c is a block diagram showing a wireless power transmission system using BLE communication according to an example.
  • 4D is a block diagram showing a wireless power transmission system using BLE communication according to another example.
  • 5 is a state transition diagram for explaining a wireless power transmission procedure.
  • FIG. 6 shows a power control control method according to an embodiment.
  • FIG. 7 is a block diagram of an apparatus for transmitting wireless power according to another embodiment.
  • FIG. 8 shows a wireless power receiving apparatus according to another embodiment.
  • FIG. 9 shows a communication frame structure according to an embodiment.
  • Fig. 10 is a structure of a sink pattern according to an embodiment.
  • 11 is a diagram illustrating an operating state of a wireless power transmitter and a wireless power receiver in a shared mode according to an embodiment.
  • FIG. 12 is a block diagram showing a format of a wireless charging certificate according to an embodiment.
  • FIG. 13 is a performance packet structure of a wireless power transmission device according to an embodiment.
  • FIG. 14 is a configuration packet structure of a wireless power receiving apparatus according to an embodiment.
  • 15 shows an application-level data stream between a wireless power transmission device and a receiving device according to an example.
  • Fig. 16 shows a firmware update system.
  • 17 is a flowchart of a method for updating firmware performed in a wireless power transmission device according to an embodiment.
  • FIG. 18 is a flowchart of a method for transmitting firmware performed in a wireless power receiving apparatus according to an embodiment.
  • 19 is a flow chart showing a method of checking and updating the firmware version.
  • 20 is a flow chart showing a request and response of information necessary for firmware update.
  • FIG. 21 is an example of a GET_FIRMWARE_INFO message.
  • Fig. 22 is an example of a FIRMWAREJNFO message.
  • FIG. 23 is an example of a FIRMWAREJNFO field.
  • 24 is a flow chart showing a method of transmitting the firmware.
  • Fig. 26 is a flow diagram illustrating a method of transmitting firmware based on L2CAP Connection-Oriented Channels (CoC) in LE Credit-Based Flow Control Mode.
  • CoC L2CAP Connection-Oriented Channels
  • Figure 27 is an example of a LE Credit-based Connection Request message.
  • FIG. 28 is an example of a LE Credit-based Connection Response message.
  • FIG. 29 is a diagram showing firmware transmission based on GATT fragmentation
  • FIG. 30 is a flow diagram showing firmware transmission based on GATT fragmentation according to an embodiment.
  • 31 is a flow diagram showing firmware transmission based on a GATT Read Blob Request according to an embodiment.
  • 32 is a flow chart showing firmware transmission based on a GATT Read Blob Request according to an embodiment.
  • 35 is a diagram showing the concept of signature generation of a firmware provider.
  • Fig. 36 is a diagram showing the concept of a validation procedure.
  • a or B can mean “only A”, “only B” or “both Showa B.”
  • a or B ( A or B) can be interpreted as “A and/or B”.
  • A, B or C (A, B or C) in this specification means “only A It can mean ”, “only B”, “only C”, or “any combination of A, B and C”.
  • A/B could mean “A and/or B.” So “A/B” could mean “only A”, “only B”, or “both Showa B” For example, “A, B, C” could mean “A, B or C”.
  • control information in this specification is not limited to “PDCCH”, and “PDDCH” may be suggested as an example of “control information”. Also, “control information” may be suggested as an example. (Ie, PDCCH)”, “PDCCH” may have been proposed as an example of “control information”.
  • wireless power refers to wireless power from a wireless power transmitter without the use of physical electromagnetic conductors.
  • Wireless power can also be called a wireless power signal, the primary coil and the secondary. It can mean an oscillating magnetic flux that is enclosed by the car coil.
  • the power conversion in the system is described here to wirelessly charge devices including mobile phones, cordless phones, iPods, MP3 players, headsets, etc.
  • the basic principle of wireless power transmission is, for example, For example, a method of transmitting power through magnetic coupling, radio frequency 2020/175808 1» (:1/10 ⁇ 020/001354 frequency: RF) includes the method of transmitting power, the method of transmitting power through the microwave, and the method of transmitting power through ultrasonic waves.
  • do. 1 is a block diagram of a wireless power system 10 according to an embodiment.
  • the wireless power system 10 includes a wireless power transmission device 100 and a wireless power receiving device 200.
  • the wireless power transmission device 100 receives power from an external power source (S)
  • the wireless power receiving device 200 receives power wirelessly by generating a current using the generated magnetic field.
  • the wireless power transmitter W0 and the wireless power receiver 200 can transmit and receive various types of information necessary for wireless power transmission.
  • the wireless power transmitter 100 and the wireless power receiver Communication between the devices 200 is performed according to either in-band communication using a magnetic field used for wireless power transmission or out-band communication using a separate communication carrier. Out-band communication can be performed.
  • out-of-band communication It can also be called out-of-band communication.
  • out-band communication examples include NFC, Bluetooth, and BLE (bluetooth low). energy).
  • the wireless power transmission device 100 may be provided in a fixed type or a mobile type.
  • fixed types are indoor ceilings, walls, or furniture such as tables.
  • Mobile wireless power transmission device is mobile.
  • a portable device of weight or size or the cover of a laptop computer As part of another device, such as a portable device of weight or size or the cover of a laptop computer.
  • the wireless power receiver 200 should be interpreted as a comprehensive concept including various electronic devices equipped with batteries and various home appliances driven by receiving power wirelessly instead of power cables. Typical examples of) include portable terminals, cellular phones,
  • Smartphone smart phone
  • PDA Personal Digital Assistant
  • PMP Portable Media Player
  • Wibro terminal tablet (tablet), phablet, laptop ( notebook), digital cameras, navigation terminals, televisions, and electric vehicles (EVs).
  • EVs electric vehicles
  • the wireless power receiving device 200 may be one or more.
  • the wireless power transmitting device 100 and the wireless power receiving device 200 transmit and receive power on a one-to-one basis.
  • one wireless power transmission device 100 to transmit power to a plurality of wireless power reception devices (200-1, 200-2,..., 200-M) as shown in FIG.
  • the transmission method or when one wireless power transmission device 100 is operated By applying the time division transmission method, power can be transmitted to multiple wireless power receiving devices (200-1, 200-2,...,200-M) at the same time.
  • Figure 1 shows a state in which the wireless power transmission device 100 directly transmits power to the wireless power receiving device 200, but between the wireless power transmission device 100 and the wireless power receiving device 200
  • a separate wireless power transmission and reception device such as a relay or a repeater may be provided to increase the wireless power transmission distance.
  • power is transferred from the wireless power transmission device (W0) to the wireless power transmission and reception device.
  • the wireless power transmitting and receiving device can transmit power to the wireless power receiving device 200 again.
  • the wireless power receiver, power receiver, and receiver mentioned in this specification refer to the wireless power receiver 200.
  • the wireless power transmitter, power transmitter, and transmitter mentioned in this specification are the wireless power receiver and transmitter (100 ).
  • Fig. 3A shows an embodiment of various electronic devices to which a wireless power transmission system is introduced.
  • Figure 3a shows the electronic devices classified according to the amount of power transmitted and received in the wireless power transmission system.
  • smart watch Smart watch
  • smart glass Smart Glass
  • HMD Head Mounted
  • wearable devices such as smart ring
  • mobile electronic devices or portable electronic devices
  • earphones remote controls
  • smart phones smart phones
  • PDAs personal digital assistant
  • tablet PCs have low power (approximately 5W or less or about 20W).
  • Wireless charging method can be applied.
  • Small and medium-sized home appliances such as laptops, robot cleaners, TVs, sound equipment, vacuum cleaners and monitor
  • Medium power (less than about 50W or less than about 200W) wireless charging method can be applied to the devices.
  • Kitchen appliances such as mixers, microwave ovens, rice cookers, wheel chairs, electric kickboards, electric bicycles, electric vehicles, etc.
  • the devices (or electronic devices/moving means) may use a high-power (about 2kW or less or 22kW or less) wireless charging method.
  • the electronic devices/moving means described above may each include a wireless power receiver to be described later. Therefore, the electronic devices/moving means described above wirelessly transmit power from the wireless power transmitter to the wireless power. It can be received and charged.
  • WPC wireless power consortium
  • AFA air fuel alliance
  • PMA power matters alliance
  • the WPC standard is based on a baseline power profile (BPP) and extended power.
  • EPP extended power profile
  • WPC categorizes wireless power transmission devices and receivers into power class (PC) -1, PCO, PCI, and PC2, and provides standard documents for each PC.
  • PC power class
  • the PC-1 standard relates to wireless power transmission and reception devices that provide guaranteed power less than 5W.
  • Applications of PC-1 include wearable devices such as smart watches.
  • the PC0 standard relates to wireless power transmission devices and receivers that provide 5W of guaranteed power.
  • the PC0 standard includes EPP with guaranteed power up to 30W.
  • In-band (IB) communication is the mandatory communication protocol of PC0, or an out-band ( ou t-) used as an optional backup channel.
  • Of-band : OOB) communication can also be used.
  • the wireless power receiver can identify whether OOB is supported by setting the OOB flag in the configuration packet.
  • the wireless power transmission device supporting OOB, as a response to the configuration packet, is used for OOB handover.
  • the OOB handover phase can be entered by transmitting a bit-pattern.
  • the response to the configuration packet can be NAK, ND, or a newly defined 8-bit pattern.
  • Applications of PC0 include smartphones.
  • PC1 standard is a wireless power transmission device that provides guaranteed power of 30W-L50W.
  • OOB is an indispensable communication channel for PC1
  • IB is used as the initialization and link establishment to OOB.
  • the wireless power transmission device is a response to the configuration packet, and the OOB hand uses the bit pattern for OOB handover. You can enter the overphase.
  • Moi's applications include laptops or power tools.
  • the PC2 standard is a wireless power transmission device that provides guaranteed power of 200W ⁇ 2kW.
  • the receiving device its applications include kitchen appliances.
  • PCs can be classified according to power levels, and between the same PCs
  • compatibility may be optional or mandatory.
  • the same PC-to-PC compatibility means that the same PCs can transmit and receive power.
  • the wireless power transmission device that is PC X can charge the wireless power receiver device that has the same PC X, the same PC compatibility can be maintained.
  • compatibility between different PCs can also be supported.
  • the compatibility between different PCs means that power transmission/reception is possible between different PCs. For example, when a PC wireless power transmission device can charge a wireless power receiver with a PC, it is possible between different PCs. It can be seen that compatibility is maintained.
  • the wireless power receiver of the same PC Even if it is a transmission device, there may be a problem in stably receiving power from a wireless power transmission device of the electric tool method that transmits power discontinuously.
  • the minimum guaranteed power is not When a 200W wireless power transmitter transmits power to a wireless power receiver with a maximum guaranteed power of 5W, there is a risk of damage to the wireless power receiver due to overvoltage.
  • the PC represents/indicates compatibility indicators/ It is difficult to take as a standard.
  • Wireless power transmission and reception devices provide a very convenient user experience and
  • UX/UI User Interface
  • smart wireless charging service can be provided, smart wireless charging service can be implemented based on UX/UI of smart phone including wireless power transmission device.
  • the interface between the smartphone's processor and the wireless charging/receiving device permits two-way communication between the wireless power transmission device and the receiving device “drop and play”.
  • users can experience a smart wireless charging service in a hotel.
  • the user enters the hotel room and places a smartphone on the wireless charger in the room.
  • the wireless charger When placed, the wireless charger transmits wireless power to the smartphone, and the smartphone receives wireless power. In this process, the wireless charger transmits information about the smart wireless charging service to the smartphone.
  • the smartphone is wireless charging. It detects that it is located in the weather, detects the reception of wireless power, or the smartphone
  • the smartphone Upon receiving information about the smart wireless charging service from the wireless charger, the smartphone enters a state of inquiring the user for their opt-in as an additional feature. For this purpose, the smartphone contains an alarm sound, or You can display a message on the screen in a way that doesn't contain it. An example of a message is
  • the smartphone receives the user's input to select Yes or No Thanks, and If yes is selected, the smartphone transmits the information to the wireless charger, and the smartphone and wireless charger perform the smart charging function together.
  • the smart wireless heavy electric service is also automatic with WiFi credentials.
  • Smart wireless charging service is also a hotel that provides hotel promotions
  • Running applications, remote check-in/check-out, and acquiring contact information Can include.
  • users can experience a smart wireless charging service in a vehicle.
  • the user boards the vehicle and places the smartphone on the wireless charger,
  • the wireless charger transmits wireless power to the smartphone, and the smartphone receives wireless power. In this process, the wireless charger transmits information about the smart wireless charging service to the smartphone.
  • the smartphone is located on the wireless charger.
  • the smartphone enters a state asking the user to confirm their identity.
  • the smartphone is automatically connected to the car via WiFi and/or Bluetooth.
  • the smartphone can display a message on the screen with or without a notification sound.
  • An example of a message is ”Welcome to your car.
  • the smartphone receives input from the user selecting Yes or No Thanks, and is selected by the user, followed by the procedure. If Yes is selected, the smartphone transmits the information to the wireless charger.
  • the wireless charger can perform the in-vehicle smart control function together by driving the in-vehicle application/display software.
  • the user can enjoy the desired music and check the regular map location.
  • the in-vehicle application/display software can pass through. It may include the ability to provide a synchronous approach for those who are.
  • the wireless charger transmits wireless power to the smartphone, and the smartphone receives wireless power.
  • the wireless charger receives information about the smart wireless charging service.
  • the smartphone detects that it is located on the wireless charger, detects the reception of wireless power, or the smartphone receives information about the smart wireless charging service from the wireless charger, the smartphone is sent to the user. Enter a state of inquiring for an opt-in as an additional feature. To do this, the smartphone can display a message on the screen with or without a notification sound. May contain phrases such as ⁇ Hi XXX, Would you like to activate night mode and secure the building?: Yes I No Thanks.'' The smartphone receives input from the user selecting Yes or No Thanks, and If yes is selected, the smartphone performs the following procedure.
  • Smartphones and wireless chargers can at least recognize the user's pattern and encourage the user to lock doors and windows, turn off lights, or set alarms.
  • a'profile' is newly defined as a representative/indicative indicator/standard of compatibility. That is, between wireless power transmission and reception devices having the same'profile' WO 2020/175808 1 » (:1 ⁇ 1 ⁇ 2020/001354 Stable power transmission/reception is possible because compatibility is maintained, and it can be interpreted that power transmission/reception is impossible between wireless power transmission and reception devices having different'profiles'. Profiles can be defined for compatibility and/or application independent of power class (or independently).
  • This profile can be broadly divided into three categories: i) mobile and computing, ii) electric tools, and iii) kitchen.
  • the profile is largely i) mobile, ii) electric tool, iii) kitchen and iv) wearable
  • PC0 and/or PC1 communication protocol/method can be defined as IB and OOB, and operating frequency can be defined as 87 ⁇ 205kHz. Examples of applications include smartphones, laptops, etc. Can exist
  • PC1 can be defined as PC1
  • communication protocol/method is IB
  • operating frequency can be defined as 87 ⁇ 145kHz
  • an example of an application can be a motorized tool.
  • PC PC2
  • communication protocol/method is NFC-based
  • the frequency can be defined to be less than 100 kHz, and kitchen/home appliances can exist as examples of applications.
  • WPC NDEF NFC Data Exchange Profile Format
  • WPC NDEF is an application profile as shown in Fig. 3b.
  • A) field e.g. 1B
  • a version field e.g. 1B
  • profile specific data e.g. 1B
  • the application profile field allows the device to be i) Mobile and Computing, ii) the electric tool, and iii) the kitchen, the upper nibble in the version field indicates the major version, and the lower nibble indicates the minor version.
  • Profile-specific data also defines the content for the kitchen.
  • the PC can be defined as PC-1, the communication protocol/method is IB, and the operating frequency is 87 ⁇ 205kHz, and examples of applications include wearable devices worn on the user's body. .
  • Maintaining compatibility between the same profile may be mandatory, and maintaining compatibility between different profiles may be optional.
  • Profiles may be generalized and expressed as the first to the n-profile, and new profiles may be added/replaced according to the WPC standards and embodiments.
  • the wireless power transmission device is
  • Power transmission is possible more stably by selectively transmitting power only to the wireless power receiving device of the profile.
  • the burden of the wireless power transmitting device is reduced. It is reduced and no attempt is made to transmit power to an incompatible wireless power receiving device, thereby reducing the risk of damage to the wireless power receiving device.
  • PC1 in the ‘mobile’ profile is based on PC0 and provides optional expansion like OOB.
  • the PC1'mobile' profile can be defined simply as a modified version. Also, up to now, it was defined for the purpose of maintaining compatibility between the same profiles, but in the future, compatibility between different profiles Technology can be developed in a sustained direction. Wireless power transmission devices or wireless power receivers can communicate their profile to the other party through various methods.
  • the AFA standard refers to a wireless power transmission device as a power transmitting circuit (PTU), and a wireless power receiving device as a power receiving circuit (PRU), and the PTU is classified into a number of classes as shown in Table 1, and PRU Together, they are classified into multiple categories.
  • PTU power transmitting circuit
  • PRU power receiving circuit
  • FIG. 1 is a block diagram of a wireless power transmission system according to an embodiment.
  • the wireless power transmission system 10 includes a mobile device 450 that receives power wirelessly and a base station 400 that transmits power wirelessly. do.
  • the base station 400 is a device that provides induction or resonance power, and may include at least one wireless power transmitter 100 and a system circuit 405.
  • Wireless power transmission device 100 Transmits induced power or resonance power, and can control the transmission.
  • the wireless power transmission device 100 converts electrical energy into a power signal by generating a magnetic field through a primary coil(s). Power conversion circuit (110) and power to an appropriate level.
  • Communication and control circuit (120) to control the communication and power transfer to the wireless power receiving device 200 to deliver.
  • the system circuit 405 may include input power provisioning, multiple wireless Other operation control of the base station 400, such as control of power transmission devices and user interface control, can be performed.
  • the primary coil can generate an electromagnetic field using AC power (or voltage or current).
  • the primary coil has a specific frequency output from the power conversion circuit (no ) .
  • the magnetic field can be generated in a non-radiative or radiative type, and the wireless power receiving device 200 receives it and generates a current.
  • the primary coil transmits power wirelessly.
  • the primary and secondary coils can have any suitable shape, for example, they can be copper wires wound around a high permeability formation such as ferrite or amorphous metal.
  • the primary coil can also be called a transmitting coil, a primary core, a primary winding, a primary loop antenna, etc.
  • the secondary coil is a receiving coil. (receiving coil), secondary core (secondary core), secondary winding (secondary winding), secondary loop antenna (secondary loop antenna), it can also be called a pickup antenna (pickup antenna).
  • the primary coil and the secondary coil can be provided in the form of a primary resonance antenna and a secondary resonance antenna, respectively.
  • the resonance antenna can have a resonance structure including a coil and a capacitor.
  • the resonant frequency of the resonant antenna is determined by the inductance of the coil and the capacitance of the capacitor.
  • the coil can be formed in the form of a loop.
  • a core can be placed inside the loop.
  • the core is the same as a ferrite core. It may contain a physical core or an air core.
  • the magnetic induction method is a magnetic resonance method. It can be implemented similarly to the method, but in this case the frequency of the magnetic field does not need to be the resonant frequency. Instead, in the magnetic induction method, matching between the loops constituting the primary coil and the secondary coil is required, and the distance between the loops must be very close.
  • the wireless power transmission device 100 Although not shown in the drawing, the wireless power transmission device 100
  • the communication antenna can transmit and receive communication signals using a communication carrier other than magnetic field communication.
  • the communication antenna is Wi-Fi, Bluetooth, Bluetooth LE, and ZigBee. It can transmit and receive communication signals such as, NFC.
  • the communication/control circuit 120 can transmit and receive information with the wireless power receiver 200.
  • the communication/control circuit 120 may include at least one of an IB communication module or an OOB communication module.
  • the IB communication module can transmit and receive information by using a magnetic wave with a specific frequency as the center frequency.
  • the communication/control circuit 120 carries the communication information on the operating frequency of the wireless power transmission.
  • In-band communication can be performed by transmitting through a coil or receiving an operating frequency containing information through the primary coil, at this time, binary phase shift keying (BPSK), frequency shift keying (FSK), or amplitude. Modulation methods such as amplitude shift keying (ASK) and
  • Coding methods such as Manchester coding or non-retum-to-zero level (NZR-L) coding can be used to contain information in a magnetic wave or to analyze a magnetic wave containing information.
  • the communication/control circuit 120 can transmit and receive information over distances up to several meters at a data rate of several kbps.
  • the OOB communication module can also perform out-band communication through the communication antenna.
  • the communication/control circuit 120 may be provided as a short-range communication module.
  • Examples of the short-range communication module include communication such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC. There are modules.
  • the communication/control circuit 120 can control the overall operation of the wireless power transmission device 100.
  • the communication/control circuit 120 performs calculation and processing of various types of information, and the wireless power transmission device ( Each component of 100) can be controlled.
  • the communication/control circuit 120 may be implemented as a device similar to a computer age using hardware, software, or a combination thereof. Communication/control by hardware
  • the circuit 120 may be provided in the form of an electronic circuit that performs a control function by processing electrical signals, and may be provided in the form of a program that drives the hardware communication/control circuit 120 in software.
  • the communication/control circuit 120 can control the transmission power by controlling an operating point.
  • the operating point to be controlled is a frequency (or phase), a duty cycle, and a duty ratio. ) And voltage amplitude.
  • the communication/control circuit 120 can control the transmission power by adjusting at least one of the frequency (or phase), duty cycle, duty ratio, and voltage amplitude.
  • the wireless power transmission device 100 supplies constant power and supplies a constant power.
  • the wireless power receiving device 200 may control the received power by controlling the resonance frequency.
  • the mobile device 450 receives wireless power through a secondary coil.
  • It includes a power receiver 200 and a load 455 that receives and stores power received from the wireless power receiver 200 and supplies it to the device.
  • the wireless power receiving device 200 includes a power pick-up circuit 210 and
  • Power pickup circuit (2W) can receive wireless power through secondary coil and convert it into electric energy.
  • Power pickup circuit (2W) can contain 2 The AC signal obtained through the car coil is rectified and converted into a DC signal.
  • the communication/control circuit 220 can control transmission and reception of wireless power (power transmission and reception).
  • This secondary coil can receive the wireless power transmitted from the wireless power transmission device (W0).
  • the secondary coil can receive power by using the magnetic field generated by the primary coil.
  • a specific frequency is a resonance frequency
  • a magnetic resonance phenomenon occurs between the primary and secondary coils, and power is transmitted more efficiently. I can receive it.
  • the communication/control circuit 220 further includes a communication antenna.
  • the communication antenna can transmit and receive communication signals using a communication carrier other than magnetic field communication.
  • the communication antenna is Wi-Fi, Bluetooth, Bluetooth LE, and ZigBee.
  • the communication/control circuit 220 can transmit and receive information with the wireless power transmission device 100.
  • the communication/control circuit 220 may include at least one of an IB communication module or an OOB communication module.
  • the IB communication module can transmit and receive information using a magnetic wave with a specific frequency as the center frequency.
  • the communication/control circuit 220 loads information on the magnetic wave and transmits it through a secondary coil, or Magnetic waves containing information through the secondary coil
  • IB communication By receiving, IB communication can be performed, at this time, modulation methods such as binary phase shift keying (BPSK), frequency shift keying (FSK), or amplitude shift keying (ASK), and Manchester coding. Or, use a coding method such as non-retum-to-zero level (NZR-L) coding for magnetic waves. It is possible to contain information or to interpret the magnetic waves contained in the information.
  • modulation methods such as binary phase shift keying (BPSK), frequency shift keying (FSK), or amplitude shift keying (ASK), and Manchester coding.
  • BPSK binary phase shift keying
  • FSK frequency shift keying
  • ASK amplitude shift keying
  • Manchester coding such as non-retum-to-zero level (NZR-L) coding for magnetic waves. It is possible to contain information or to interpret the magnetic waves contained in the information.
  • NZR-L non-retum-to-zero level
  • the OOB communication module can also perform out-band communication through the communication antenna.
  • the communication/control circuit 220 may be provided as a short-range communication module.
  • Examples of short-range communication modules include communication modules such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
  • the communication/control circuit 220 can control the overall operation of the wireless power receiving device 200.
  • the communication/control circuit 220 performs calculation and processing of various types of information, and the wireless power receiving device ( 200) each component can be controlled.
  • the communication/control circuit 220 can be implemented as a device similar to a computer age by using hardware, software, or a combination thereof.
  • the communication/control circuit 220 has a control function by processing electrical signals. It may be provided in the form of an electronic circuit that performs the software, and in software, it may be provided in the form of a program that drives the hardware communication/control circuit 220.
  • the communication/control circuit 120 and the communication/control circuit 220 are Bluetooth or Bluetooth LE as an OOB communication module or a short-range communication module
  • the communication/control circuit 120 and the communication/control circuit 220 are each It can be implemented and operated with a communication architecture such as angle 4B.
  • Figure 4b is a Bluetooth communication to which an embodiment according to the present specification can be applied.
  • Figure 4b (a) is a Bluetooth BR supporting GATT (Basic
  • Rate/EDR Enhanced Data Rate
  • protocol stack shows an example of the protocol stack
  • LE Bluetooth Low Energy
  • the stack can include an upper controller stack (460) and a lower host stack (Host Stack, 470) based on a host controller interface (HCI, 18).
  • HCI host controller interface
  • the host stack (or host module) 470 refers to a wireless transmission/reception module that receives a 2.4 GHz Bluetooth signal and a hardware for transmitting or receiving a Bluetooth packet, and the control stack 460 is connected to the Bluetooth module. Controls the Bluetooth module and performs operations.
  • the host stack 470 may include a BR/EDR PHY layer 12, a BR/EDR baseband layer 14, and a link manager layer (Link Manager, 16).
  • the BR/EDR PHY layer 12 is a layer that transmits and receives 2.4GHz wireless signals.
  • GFSK Gausian Frequency Shift Keying
  • the BR/EDR baseband layer 14 is in charge of transmitting a digital signal, It selects a channel sequence that hopping 1400 times per second, and transmits a time slot of 625us length for each channel.
  • the link manager inheritance (16) controls the overall operation (link setup, control, security) of the Bluetooth connection by using LMP (Link Manager Protocol).
  • the link manager layer 16 can perform the following functions.
  • the host controller interface verification (18) is a host module and a controller module
  • the host stack (or host module, 20) is logical link control and adaptation
  • L2CAP Link to Physical Engineering Task Force
  • Attribute Protocol Protocol
  • GATT Generic Attribute Profile
  • GAP Generic Access Profile
  • BR/EDR Profile BR/EDR Profile
  • L2CAP logical link control and adaptation protocol
  • the L2CAP 21 can multiplex various protocols, profiles, etc. provided by the upper level of Bluetooth.
  • the L2CAP of Bluetooth BR/EDR uses a dynamic channel, supports protocol service multiplexer, retransmission, streaming mode, and supports segmentation and
  • Protocol (22) can be operated as a protocol describing how it is used; for example, the general attribute profile (23)
  • It may be operable to specify whether services are grouped together, and may be operable to describe features associated with services.
  • Features can be used to describe the state and services of a device, to describe how features are related to each other and how they are used.
  • the attribute protocol (22) and the BR/EDR profile (25) define a service profile using Bluetooth BR/EDR and an application protocol for sending and receiving these data, and the general access profile ( Generic Access Profile, GAP,
  • Controller operable to handle critical wireless device interfaces
  • Controller stack 480
  • high level data It includes the host stack (490).
  • the controller stack 480 may be implemented using a communication module that may include a Bluetooth wireless device, for example, a processor module that may include a processing device such as a microprocessor.
  • the host stack 490 may be implemented as part of an OS running on a processor module, or as an instantiation of a package on the OS.
  • controller stack and host stack may run or run on the same processing device within a processor module.
  • the control stack 480 is a physical layer (PHY, 32), link
  • Link Layer (Link Layer, 34) and Host Controller Interface (36).
  • the physical layer uses GFSK (Gaussian Frequency Shift Keying) modulation and a frequency hopping technique composed of 40 RF channels as a factor for transmitting and receiving 2.4 GHz wireless signals.
  • GFSK Gausian Frequency Shift Keying
  • the link layer 34 which plays a role of transmitting or receiving a Bluetooth packet, creates a connection between devices after performing advertising and scanning functions using three advertising channels, and up to 257 bytes of data through 37 data channels. It provides the function of sending and receiving data packets.
  • the host stack is GAP (Generic Access Profile, 40), logical link control and adaptation protocol (L2CAP, 41), security manager (Security Manager, SM, 42), properties
  • Attribute Protocol (Attribute Protocol, ATT, 440), Generic Attribute Profile (GATT, 44), Generic Access Profile (25), LT
  • the host stack 490 may include a profile 46.
  • the host stack 490 is not limited thereto and may include various protocols and profiles.
  • Host stack uses L2CAP to provide a variety of
  • L2CAP Logical Link Control and Adaptation Protocol, 41
  • L2CAP Logical Link Control and Adaptation Protocol
  • the L2CAP (41) transfers data between upper layer protocols.
  • It may be operable to reassemble and manage multicast data transmission.
  • BR/EDR Base Rate/Enhanced Data Rate
  • a dynamic channel is basically used, and protocol service multiplexer, retransmission, streaming mode, etc.
  • WO 2020/175808 1 » (:1 ⁇ 1 ⁇ 2020/001354 is supported.
  • SM Security Manager
  • ATT Attribute Protocol
  • ATT has the following 6 message types (Request, Response, Command, Notification, Indication, Confirmation).
  • Request message is a message for requesting and delivering specific information from the client device to the server device, and the response message is a response message to the request message.
  • a message that can be used for transmission to a client device A message that can be used for transmission to a client device.
  • Command message This is a message sent from the client device to the server device mainly to instruct a command for a specific operation.
  • the server device does not transmit a response to the command message to the client device.
  • Notification message This is a message sent from the server device to the client device for notifications such as events.
  • the client device does not send a confirmation message about the notification message to the server device.
  • This specification allows the client to clearly know the data length by transmitting the value for the data length when requesting a long data in the GATT profile using the above attribute protocol (ATT, 43). Characteristic) value can be transmitted.
  • This general access profile (GAP, 45) is a newly implemented layer for the Bluetooth LE technology, and is used to control the role selection for communication between Bluetooth LE devices, and how the multi-profile operation occurs.
  • the general access profile (45) is mainly used for device discovery, connection creation, and security procedures, defines a method of providing information to users, and defines the following attribute types.
  • the LE profile 46 is a profile that is dependent on GATT and is mainly used for Bluetooth. It is applied to LE devices.
  • LE Profile (46) may include, for example, Battery, Time, FindMe, Proximity, Time, etc., and the specific contents of GATT-based Profiles are as follows.
  • Protocol 43 may be operable as a protocol describing how it is used, e.g., the general attribute profile 44
  • It may be operable to specify whether services are grouped together, and may be operable to describe features associated with services.
  • Features can be used to describe the state and services of a device, to describe how features are related to each other and how they are used.
  • BLE procedure is a device filtering procedure, advertisement
  • Advertising Procedure Scanning Procedure
  • Discovery Procedure Discovery Procedure
  • Connecting Procedure It can be divided into Advertising Procedure, Scanning Procedure, Discovery Procedure, and Connecting Procedure.
  • the device filtering procedure is a method to reduce the number of devices that respond to requests, instructions, and notifications in the control stack.
  • the controller stack can reduce the number of sending requests, so that power consumption can be reduced in the BLE control stack.
  • the advertising device or scanning device may perform the above device filtering procedure to limit devices that receive advertising packets, scan requests, or connection requests.
  • the advertisement device transmits an advertisement event, that is, the advertisement
  • the scanning device is a device that performs scanning, and transmits a scan request.
  • the scanning device sends some advertising packets from the advertising device.
  • the scanning device Upon receiving, the scanning device must transmit the advertisement device scan request. However, if the device filtering procedure is used and thus it is not necessary to transmit the scan request, the scanning device may ignore the advertisement packets transmitted from the advertisement device.
  • the device filtering procedure may also be used in the connection request process. If device filtering is used in the connection request process, the need to transmit a response to the connection request is eliminated by ignoring the connection request.
  • the advertisement device performs an advertisement procedure to perform non-directional broadcasting to the devices in the area.
  • undirected advertising is not broadcasting for a specific device, but advertising for all (all) devices, and all devices are added by scanning advertising. You can request information or request a connection.
  • directed advertising is used as a receiving device.
  • the advertising procedure is to establish a Bluetooth connection with a nearby starting device.
  • the advertising procedure is a scanning that is listening in an advertising channel.
  • It can be used to provide periodic broadcasting of user data to devices.
  • Ad devices can receive scan requests from listening devices that are listening to obtain additional user data from the ad device.
  • the ad device transmits a response to the device scan request that sent the scan request through the same ad physical channel as the ad physical channel that received the scan request.
  • Broadcasting user data sent as part of advertisement packets is dynamic data, whereas scan response data is generally static data.
  • the ad device can receive a connection request from the initiating device on the ad (broadcasting) physical channel. If the ad device uses a connectable ad event and the initiating device is not filtered by the device filtering procedure, the ad The device stops advertising and enters connected mode. The advertising device can resume advertising after connected mode.
  • the device that performs scanning that is, the scanning device,
  • a scanning procedure is performed to listen to non-directional broadcasting of user data from the advertising devices used.
  • WO 2020/175808 1 » (:1 ⁇ 1 ⁇ 2020/001354
  • the scanning device transmits a scan request to the ad device through the ad physical channel to request additional data from the ad device.
  • the ad device includes the additional data requested by the scanning device through the ad physical channel. Send a scan response to the response.
  • the scanning device receives a broadcasted advertisement event and is in an initiator mode that can initiate a connection request, the scanning device sends a connection request to the advertisement device through the advertisement physical channel. You can start a Bluetooth connection with the device.
  • the device stops scanning initiator mode for further broadcasting and enters connected mode.
  • Devices capable of Bluetooth communication perform advertising and scanning procedures to discover nearby devices or to be discovered by other devices within a given area. .
  • the discovery process is performed asymmetrically.
  • a Bluetooth device that tries to find other devices around it is called a discovery device, and listens to find devices that advertise scannable advertising events.
  • a Bluetooth device that is discovered and available is called a discoverable device, and it actively advertises (broadcasting) advertisement events so that other devices can scan through physical channels.
  • Bluetooth devices may already be connected.
  • connection procedure is asymmetric, and the connection procedure is advertised by a specific Bluetooth device.
  • the advertising process may be the purpose, and as a result, only one device will respond to the advertisement. After receiving an accessible advertisement event from the advertisement device, it is connected to the advertisement device through the advertisement (broadcast) physical channel.
  • the connection can be initiated by sending.
  • This link layer enters the advertisement state by the instruction of the host (stack).
  • the link layer transmits advertisement packet data circuits (PDUs) in advertisement events.
  • PDUs advertisement packet data circuits
  • Each advertisement event consists of at least one advertisement PDU, and advertisement PDUs are transmitted through the advertisement channel indexes used.
  • the advertisement event ends when the advertisement PDU is transmitted through each advertisement channel index used. Or, if the advertising device needs to free up space to perform other functions, the advertising event can be terminated earlier.
  • the link layer enters the scanning state by the instruction of the host (stack).
  • the link layer listens for advertisement channel indexes.
  • scanning There are two types (scanning), and each scanning type is determined by the host.
  • the link inheritance listens for the advertisement channel index during the scanWindow duration.
  • the scan interval is defined as the interval (interval) between the start points of two consecutive scan windows.
  • the link layer should listen to complete all scan intervals of the scan window as directed by the host, in the absence of scheduling conflicts.
  • the link layer In the scan window, the link layer must scan other ad channel indices; the link layer uses all available ad channel indices.
  • the link layer In passive scanning, the link layer only receives packets and cannot transmit any packets.
  • the link layer is the ad device, ad PDUs and ad
  • Listening is performed to depend on the advertisement PDU type that can request additional device-related information.
  • the link layer enters the initiated state by the instruction of the host (stack).
  • the link layer checks the advertisement channel index during the scan window section.
  • the link layer is the device that performs the connection request, that is, the initiating device
  • connection state After entering the connection state, it is considered that the connection is created. However, the connection is connected It does not need to be considered to be established at the time it enters the state; the only difference between a newly created connection and an established connection is the value of the link inheritance supervision timeout.
  • the link layer that plays the master role is called the master, and plays the slave role.
  • the link layer that performs is called a slave
  • the master controls the timing of the connection event
  • the connection event is the point at which synchronization between the master and the slave is performed.
  • the Link Layer is for both advertising channel packets and data channel packets.
  • Each packet consists of four fields: Preamble, Access Address, PDU and CRC.
  • the PDU When one packet is transmitted on the advertising channel, the PDU will be the advertising channel PDU, and when one packet is transmitted on the data channel, the PDU will be the data channel PDU.
  • Advertising Channel PDU (Advertising Channel PDU)
  • the advertising channel PDU Packet Data Circuit
  • PDU Packet Data Circuit
  • the PDU type field of the advertisement channel PDU included in the header indicates the PDU type as defined in Table 3 below.
  • Advertisement 1)11 Show (! ⁇ 61 13 ⁇ 4 1)11
  • advertisement channel models 1)11 types are called advertisement models 1)11 and are used in specific events.
  • ADV_SCAN_IND scannable non-directional advertising event
  • the PDUs are transmitted in the link layer in the advertisement state, and are received by link inheritance in the scanning state or the initiating state.
  • the advertising channel PDU type below is called a scanning PDU
  • the advertisement channel PDU type below is called an initiating PDU.
  • CONNECT_REQ transmitted by the link layer in the start state, and received by the link layer in the advertisement state.
  • the data channel PDU has a 16-bit header, payloads of various sizes, and may include a Message Integrity Check (MIC) field.
  • MIC Message Integrity Check
  • the load 455 may be a battery.
  • the battery may store energy by using power output from the power pickup circuit 2W.
  • a battery in the mobile device 450 is provided. It does not have to be included.
  • the battery may be provided in an external configuration in a removable form.
  • the wireless power receiving device 200 has a drive means that drives the various operations of the electronic device. It may be included instead.
  • the mobile device 450 is shown to include a wireless power receiving device 200
  • the base station 400 is shown to include a wireless power transmitting device 100, but in a broad sense, wireless power
  • the receiving device 200 may be identified with the mobile device 450 and the wireless power transmission device 100 may be identified with the base station 400.
  • the communication/control circuit 120 and the communication/control circuit 220 include Bluetooth or Bluetooth LE as an OOB communication module or near-field communication module other than the IB communication module, the communication/control circuit 120 is included.
  • the wireless power receiving device 200 including the wireless power transmitting device 100 and the communication/control circuit 220 may be represented by a simplified block diagram as shown in FIG. 4C.
  • Figure 4c shows a wireless power transmission system using BLE communication according to an example It is a block diagram.
  • the wireless power transmission device 100 includes a power conversion circuit 110 and
  • a communication/control circuit 120 is included.
  • the communication/control circuit 120 includes an in-band communication module 121 and a BLE communication module 122.
  • the wireless power receiving device 200 communicates/controls with the power pickup circuit 210
  • the communication/control circuit 220 includes an in-band communication module 221 and a BLE communication module 222.
  • the BLE communication modules 122 and 222 perform the architecture and operation according to Fig. 4B.
  • the BLE communication modules 122 and 222 are wireless power transmission devices 100 and wireless It may also be used to establish a connection between the power receiving devices 200 and exchange control information and packets required for wireless power transmission.
  • the communication/control circuit 120 creates a profile for wireless charging.
  • the profile for wireless charging can be a GATT using BLE transmission.
  • the communication/control circuits 120 and 220 are respectively engraved band communication
  • the BLE communication modules 122 and 222 may be provided separately from the communication/control circuits 120 and 220.
  • the coil or coil portion may be referred to as a coil assembly, a coil cell, or a cell including at least one element adjacent to the coil and the coil.
  • 5 is a state transition diagram for explaining a wireless power transmission procedure.
  • the power transmission from the wireless power transmission device to the receiver is largely selected step (selection phase, 5 W), ping step (ping phase, 520), identification and Identification and configuration phase (530), negotiation
  • phase (negotiation phase, 540), a calibration phase (550), a power transfer phase (560), and a renegotiation phase (570).
  • the selection step 510 is a step in which when a specific error or specific event is detected while starting power transmission or maintaining power transmission, a step in which a transition is made-for example, includes drawing codes S502, S504, S508, S510 and S512.
  • the wireless power transmission device can monitor whether an object is present on the interface surface. When the transmission device detects that an object has been placed on the interface surface, it can transition to a ping step 520.
  • the wireless power transmission device is a power signal (or pulse) corresponding to a very short duration. It transmits an analog ping signal, and can detect whether an object exists in the active area of the interface surface based on the current change of the transmission coil or the primary coil.
  • the wireless power transmission device is It is possible to measure the quality factor of the resonant circuit (for example, the power transmission coil and/or the resonant capacitor).
  • the resonant circuit for example, the power transmission coil and/or the resonant capacitor.
  • wireless power is received together with a foreign substance in the charging area.
  • the quality factor can be measured to determine if the device is placed.
  • Coils equipped with wireless power transmission devices can reduce their inductance and/or series resistance component within the coil due to environmental changes, which results in a reduction in the quality factor value.
  • the wireless power transmission device calculates the reference quality factor value measured in advance in the state that no foreign substance is placed in the charging area.
  • the presence of a foreign substance can be determined by comparing the reference quality factor value received in the negotiation step 540 with the measured quality factor value.
  • a specific wireless power receiver may have a low reference quality factor value-, a large value between the quality factor value measured when a foreign substance is present and the reference quality factor value. Since there is no difference, there may be a problem that makes it difficult to determine the presence of a foreign substance. Therefore, it is necessary to further consider other factors or use a different method to determine the existence of a foreign substance.
  • a quality factor value within a specific frequency region may be measured to determine whether the object is placed together with the foreign substance in the charging region.
  • the inductance and/or the series resistance component in the coil may be reduced due to environmental changes, and the resonant frequency of the coil of the wireless power transmission device may be changed (shifted). That is, the quality factor peak frequency, which is the frequency at which the maximum quality factor value in the operating frequency band is measured, can be shifted.
  • step 520 when an object is detected, the wireless power transmission apparatus wakes up the receiver and transmits a digital ping to identify whether the detected object is a wireless power receiver.
  • the wireless power transmission device fails to receive a response signal for the digital ping—for example, a signal strength packet—from the receiver, it may transition to the selection step 510 again. Further, the ping step 520 When the wireless power transmission device receives a signal indicating that power transmission has been completed from the receiver-that is, a charging completion packet -, the wireless power transmission device may proceed to the selection step 510.
  • the wireless power transmission device may transition to the identification and configuration step 530 for identifying the receiver and collecting the receiver configuration and status information.
  • the wireless power transmission device In the identification and configuration step 530, the wireless power transmission device
  • the (no power transfer contract) selection step (510) If received (unexpected packet), the desired packet is not received for a predefined time (time out), there is a packet transmission error (transmission error), or if a power transmission contract is not established, the (no power transfer contract) selection step (510) ).
  • step 540 it is possible to check whether or not it is necessary to enter step 540. As a result of the confirmation, if negotiation is necessary, the wireless power transmission device may enter the negotiation step 540 and perform a predetermined FOD detection procedure. On the other hand, the confirmation result, negotiation If this is not necessary, the wireless power transmission device may proceed directly to the power transmission step 560.
  • the wireless power transmission device includes the reference quality factor value.
  • a FOD (Foreign Object Detection) status packet can be received, or a FOD status packet containing a reference peak frequency value can be received, or a status packet containing a reference quality factor value and a reference peak frequency value can be received.
  • the wireless power transmission device can determine the quality factor threshold for FO detection based on the reference quality factor value.
  • the wireless power transmission device can determine the peak frequency threshold for FO detection based on the reference peak frequency value.
  • the wireless power transmission device can detect whether FO is present in the charging area by using the quality factor threshold for detecting the determined FO and the currently measured quality factor value (the quality factor value measured before the ping step). Depending on the result, power transmission can be controlled. For example, when FO is detected, power transmission may be interrupted, but
  • the wireless power transmission device is the peak frequency threshold for the determined FO detection and the current
  • the measured peak frequency value (the peak frequency value measured before the ping step) can be used to detect whether the FO is present in the charging area, and power transmission can be controlled according to the FO detection result. For example, when FO is detected , Power transmission may be interrupted, but is not limited thereto.
  • the wireless power transmission device may return to the selection step 510. On the other hand, if the FO is not detected, the wireless power transmission device may go through the calibration step 550 and enter the power transmission step 560. In detail, when the FO is not detected, the wireless power transmission device transmits wireless power. The device may determine the strength of the power received at the receiving end in the calibration step 550, and measure the power loss at the receiving end and the transmitting end to determine the strength of the power transmitted by the transmitting end. That is, the wireless power transmission device is in the calibration step At 550, the power loss can be predicted based on the difference between the transmitting power of the transmitting end and the receiving power of the receiving end. The wireless power transmission device according to an embodiment reflects the predicted power loss and corrects the threshold for FOD detection. You may.
  • the wireless power transmission device receives unwanted packets.
  • step 570 The transition can be made to step 570.
  • the wireless power transmission device may return to the power transmission step 560.
  • the correction step 550 and the power transmission step 560 are divided into separate steps, but the correction step 550 may be integrated into the power transmission step 560. In this case, the correction step 550 The operations at may be performed in the power transfer step 560.
  • the above-described power transmission contract can be established based on the status and characteristic information of the wireless power transmission device and the receiver.
  • the wireless power transmission device status information is information on the maximum amount of power that can be transmitted, and the maximum acceptable receiver. It may include information on the number, etc., and receiver status information may include information on the required power.
  • FIG. 6 shows a power control control method according to an embodiment.
  • the receiving device 200 can control the amount of power transmitted by performing communication in parallel with the power transmission and reception.
  • the wireless power transmission device and the wireless power reception device operate at a specific control point.
  • the control point is a wireless power source when power transmission is performed. It represents the combination of voltage and current provided at the output of the power receiver.
  • the wireless power receiver is the desired control point (desired
  • Control Point Selects the desired output current/voltage, temperature at a specific location of the mobile device, etc., and determines the actual control point currently operating at the stock price.
  • the wireless power receiver is the desired control point and the actual control point.
  • the control error value can be calculated and transmitted as a control error packet to the wireless power transmission device.
  • the wireless power transmission device can control the power transfer by setting/controlling the new operating point-amplitude, frequency and duty cycle-using the received control error packet. Therefore, the control error packet is constant in the strategy transfer phase. Transmission/reception is performed at intervals of time, and as an embodiment, the wireless power receiving device can transmit by setting the control error value to a negative number when trying to reduce the current of the wireless power transmission device and setting the control error value to a positive number when increasing the current. In this way, in the induction mode, the wireless power receiving device can control power transfer by transmitting a control error packet to the wireless power transmitting device.
  • the resonance mode which will be described below, it can operate in a different way than in the induction mode.
  • a single wireless power transmission device can operate multiple wireless power sources.
  • the transmitted power is controlled by communication with one wireless power receiving device, so that the power is transmitted to additional wireless power receiving devices. Therefore, in the resonance mode of this specification, the wireless power transmitter transmits basic power in common, and the wireless power receiver controls its own resonance frequency to control the amount of received power.
  • the method described in FIG. It is not completely excluded, and additional transmission power control can be performed by the method of FIG.
  • the shared mode can refer to a mode that performs one-to-many communication and charging between the wireless power transmission device and the wireless power receiving device.
  • the shared mode can be implemented in a magnetic induction method or a resonance method.
  • the wireless power transmission device 700 includes a cover 720 that covers the coil assembly, a power adapter 730 that supplies power to the power transmitter 740, and a power transmitter that transmits wireless power ( 740) or a user interface 750 that provides power delivery progress and other pertinent information.
  • the interface 750 may be optionally included, or may be included as another user interface 750 of the wireless power transmission device 700.
  • the power transmitter 740 may include at least one of a coil assembly 760, an impedance matching circuit 770, an inverter 780, a communication circuit 790, or a control circuit (group 0).
  • the coil assembly 760 includes at least one primary coil that generates a magnetic field, and may be referred to as a coil cell.
  • the impedance matching circuit 770 performs impedance matching between the inverter and the primary coil(s).
  • Impedance matching circuit 770 is capable of generating resonance at a suitable frequency that boosts the primary coil current.
  • the impedance matching circuit may additionally include a multi-tex to route signals from the inverter to a subset of the primary coils.
  • the impedance matching circuit is a tank circuit. It can also be referred to as ).
  • the impedance matching circuit 770 is used to switch capacitors, inductors, and their connections.
  • the impedance matching detects the reflected wave of wireless power transmitted through the coil assembly 760, and switches the switching element based on the detected reflected wave to adjust the connection state of the capacitor or inductor, or adjust the connection state of the capacitor or the capacitor. This can be done either by adjusting the capacitance or by adjusting the inductance of the inductor.
  • the impedance matching circuit 770 may be omitted, and the present specification also includes an embodiment of the wireless power transmission device 700 in which the impedance matching circuit 770 is omitted.
  • Inverter 780 can convert DC input to AC signal. Inverter 780
  • the inverter can be driven as a half-bridge or full-bridge.
  • the inverter may contain multiple stages to adjust the input voltage level.
  • the communication circuit 790 is capable of communicating with the power receiver.
  • the power receiver performs load modulation to communicate requests and information to the power transmitter.
  • the power transmitter 740 uses the communication circuit 790 to transmit the power
  • the amplitude and/or phase of the current and/or voltage of the primary coil can be monitored to demodulate the data.
  • the power transmitter 7 40 can control the output power to transmit data through the communication circuit 7 90 using FSK (Frequency Shift Keying).
  • FSK Frequency Shift Keying
  • the control circuit (group 0) can control the communication and power transmission of the power transmitter 740.
  • the control circuit (Q0) can control the power transmission by adjusting the operation points described above.
  • the operating point can be determined, for example, by at least one of the operating frequency, duty cycle and input voltage.
  • the communication circuit 790 and the control circuit (group 0) may be provided as separate circuits/elements/chipsets, or may be provided as one circuit/element/chipset.
  • FIG. 8 shows a wireless power receiving device according to another embodiment. This may belong to a wireless power transmission system of a self-resonant method or a shared mode.
  • the wireless power receiving device 800 is the power transmission progress and other related information
  • the interface 820 may be optionally included, or may be included as another user interface 82 of the power receiving device.
  • It may include at least one of an assembly 880, a communication circuit 890, or a control circuit 810.
  • This power converter 860 can convert AC power received from the secondary coil into a voltage and current suitable for a load circuit.
  • the power converter 860 may include a rectifier.
  • the rectifier can rectify the received wireless power and convert it from AC to DC.
  • the rectifier can convert AC to DC using a diode or transistor, and smooth it using a capacitor and a resistor.
  • a rectifier a full-wave rectifier, a half-wave rectifier, a voltage multiplier, etc. implemented by a bridge circuit can be used.
  • the power converter is a power receiver of the power receiver.
  • Reflected impedances can also be applied.
  • the impedance matching circuit 870 can provide impedance matching between the combination of the power converter 860 and the load circuit 840 and the secondary coil.
  • the impedance matching circuit is around 100 kHz that can enhance power transmission.
  • the impedance matching circuit 870 may be composed of a switching element for switching a capacitor, an inductor, and a combination thereof.
  • the matching of the impedance is the voltage value or current value, power value, power value, frequency of the received wireless power. It can be performed by controlling the switching elements of the circuit constituting the impedance matching circuit 870 based on values, etc.
  • the impedance matching circuit 870 may be omitted and implemented, and in this specification, impedance matching can be performed.
  • the coil assembly 880 includes at least one secondary coil, and may optionally further include an element for shielding a metal part of the receiver from a magnetic field.
  • the communication circuit 890 may perform load modulation to communicate requests and other information to the power transmitter.
  • the power receiver 830 is a resistor or a resistor to change the reflection impedance.
  • the control circuit 810 can control the received power.
  • the circuit 810 can determine/calculate the difference between the actual operation point of the power receiver 830 and the desired operation point, and the control circuit (8W) adjusts the reflected impedance of the power transmitter and/or the operation point of the power transmitter. By fulfilling the request, the difference between the actual operation point and the desired operation point can be adjusted/reduced. If this difference is minimized, optimum power reception can be achieved.
  • the communication circuit 890 and the control circuit 810 may be provided as separate devices/chipsets, or may be provided as one device/chipset.
  • Fig. 9 shows a communication frame structure according to an embodiment.
  • It may be a communication frame structure in a shared mode.
  • the shared mode (slotted frame having a plurality of slots as described above) and It is possible to use a free format frame without a specific shape such as (B). More specifically, the slot frame consists of short data packets from the wireless power receiving device 200 to the wireless power transmitting device 100. It is a frame for transmission, and a free-form frame may be a frame capable of transmitting long data packets without having a plurality of slots.
  • the slot frame and the free-form frame may be renamed to various names by the person skilled in the art.
  • the slot frame may be changed to a channel frame, a free-form frame to a message frame, and so on.
  • a slot frame may include a sync pattern indicating the beginning of the slot, a measurement slot, nine slots, and an additional sync pattern having the same time interval before each of the nine slots.
  • the additional sync pattern is a sync pattern different from the sync pattern indicating the start of the frame described above. More specifically, the additional sync pattern does not indicate the start of the frame, but adjacent slots (ie It can display information related to the two consecutive slots located on either side of the sync pattern.
  • a sync pattern may be positioned between two consecutive slots among the nine slots.
  • the sync pattern may provide information related to the two consecutive slots.
  • a sink provided before each of the nine slots and the nine slots may have the same time interval.
  • the nine slots may have a time interval of 50 ms.
  • the nine sync patterns may also have a time length of 50 ms.
  • a free-form frame such as (may not have a specific shape other than a sink pattern and a measurement slot indicating the start of the frame. That is, the free-form frame is intended to perform a different role than the slot frame.
  • a plurality of It can be used for the role of selecting any one of the coils.
  • FIG. 10 is a structure of a sink pattern according to an embodiment.
  • the sync pattern is a preamble, a start bit, a response field, a type field, an information field, and a parity bit. bit).
  • the start bit is shown as ZERO.
  • the preamble consists of consecutive bits, and all can be set to 0.
  • the preamble can be bits to match the time length of the sync pattern.
  • the number of bits constituting the preamble is the most when the length of the sync pattern is 50ms.
  • the sync pattern may consist of three preamble bits.
  • This start bit can mean zero (ZERO) as a bit following the preamble.
  • the zero (ZERO) may be a bit indicating the type of the sync pattern.
  • the type of the sync pattern is a frame sync including information related to a frame and a slot sync including information of the slot.
  • the sync pattern is located between successive frames and is a frame sync indicating the start of a frame, or is located between consecutive slots among a plurality of slots constituting a frame, and the continuous It may be a slot sink that contains information related to the slot being played.
  • the corresponding slot is located between the slot and the slot, and that it is a slot sync, and when it is 1, it can mean that the corresponding sync pattern is a frame sync located between the frame and the frame .
  • the parity bit is the last bit of the sync pattern and may indicate information on the number of bits constituting the data fields of the sync pattern (ie, response field, type field, information field).
  • the parity bit is a parity bit.
  • the data fields of the sync pattern WO 2020/175808 1 » (:1 ⁇ 1 ⁇ 2020/001354 When the number of bits is an even number, it can be 1, and in other cases (ie, an odd number), it can be 0.
  • the Response field may contain the response information of the wireless power transmission device for communication with the wireless power receiving device, within the slot before the sync pattern.
  • the response field may contain the response information of the wireless power receiving device. It may have '00', if the performance of communication with and is not detected.
  • the response field above communicates with the wireless power receiving device.
  • an error (communication error) is detected, it may have '01' In a communication error, two or more wireless power receiving devices attempt to access one slot, causing a conflict between two or more wireless power receiving devices. It may have occurred.
  • the response field correctly retrieves the data packet from the wireless power receiving device.
  • the response field is "10" (10-not acknowledge, NAK) when the wireless power transmission device denies the data packet, and the wireless power transmission device When the data packet is confirmed, “ir(11 -acknowledge, ACK) can be obtained.
  • the type field can indicate the type of sync pattern. More specifically, the type field is when the sync pattern is the first sync pattern of the frame (i.e., the first sync pattern of the frame, and is located before the measurement slot), It may have a '1' indicating that it is frame sync.
  • the type field may have '0' indicating that it is a slot sync when the sync pattern is not the first sync pattern of the frame.
  • the meaning can be determined, e.g. if the type field is 1 (i.e. indicates frame sync), the meaning of the info field can indicate the type of frame i.e. the info field is the current frame is slot frame (i.e. slotted frame) or freestyle
  • the information field is '00', if the next slot is an allocated slot for a specific wireless power receiving device. For temporary use of the wireless power receiver, it may have '01' if the slot is locked, or 10' if the random wireless power receiver is a freely usable slot.
  • FIG. 11 is a diagram illustrating an operation state of a wireless power transmission device and a wireless power reception device in a shared mode according to an embodiment.
  • the wireless power receiving device operating in the shared mode is selected
  • the wireless power transmission device can transmit a wireless power signal to detect the wireless power reception device. That is, a process of detecting the wireless power reception device using the wireless power signal is performed. It can be called analog ping.
  • the wireless power receiving device that has received the wireless power signal is in the selected state (1 W0).
  • the wireless power receiving device entering the selection state (noo ) can detect the presence of the FSK signal on the wireless power signal as described above.
  • the wireless power receiver can communicate in either the exclusive mode or the shared mode depending on the presence or absence of the FSK signal.
  • the wireless power receiver has an FSK signal in the wireless power signal.
  • the receiving device can enter the introduction state 1110.
  • the wireless power receiving device transmits a control information packet (CI) in the setting state, the negotiation state, and the power transmission state.
  • the control information packet can be transmitted to the wireless power transmission device.
  • the control information packet can have a header and information related to control.
  • the control information packet can have a header of 0X53.
  • the wireless power receiver attempts to request a free slot to transmit a control information (CI) packet through the following configuration, negotiation, and power transmission steps.
  • the wireless power transmission device selects a free slot and transmits the first CI packet. If the wireless power transmission device responds with an ACK to the CI packet, the wireless power transmission device enters the configuration phase. If the transmitting device responds with NAK, another wireless power receiving device is proceeding through the configuration and negotiation phase. In this case, the wireless power receiving device retry the request for the free slot.
  • CI control information
  • the wireless power receiving device takes the remaining slot syncs up to the first frame sync.
  • the wireless power receiver By counting, the position of a private slot in the frame is determined. In all subsequent slot-based frames, the wireless power receiver transmits a CI packet through that slot.
  • the wireless power transmitter provides a series of locked slots for exclusive use of the wireless power receiver, which ensures that the wireless power receiver proceeds through the configuration steps without interruption.
  • the wireless power receiver transmits a sequence of data packets such as two identification data packets (IDHI and IDLO) using a lock slot. Upon completion of this step, the wireless power receiver enters the negotiation phase. At the negotiation stage, wireless power
  • the transmitting device continues to have a lock slot for exclusive use to the wireless power receiving device. This ensures that the wireless power receiver proceeds through the negotiation phase without interruption.
  • This wireless power receiver transmits one or more negotiated data packets using the corresponding lock slot, which may be intermingled with private data packets. Eventually, the sequence must be combined with a specific request (SRQ) packet. Upon completion of the sequence, the wireless power receiver enters the power transmission phase, and the wireless power transmitter stops providing the lock slot.
  • SRQ specific request
  • the wireless power receiving device transmits the CI packet using the assigned slot and receives the power.
  • the wireless power receiving device may include a regulator circuit.
  • the regulator circuit is communication/reception
  • the wireless power receiving device can self-regulate the reflection impedance of the wireless power receiving device through the regulator circuit. In other words, the wireless power receiving device is the amount required by the external load.
  • the reflected impedance can be adjusted to transmit the power of the device, which can prevent excessive power reception and overheating.
  • Wireless power transmission systems using in-band communication can use USB-C authentication.
  • the authentication includes the authentication of the wireless power transmission device by the wireless power receiving device and the authentication of the wireless power receiving device by the wireless power transmission device.
  • FIG. 12 is a block diagram showing a format of a wireless charging certificate according to an embodiment.
  • the wireless charging certificate format is a wireless charging standard certificate structure version (Qi Authentication Certificate Structure Version), a spare bit, a certificate type, a signature offset, and a serial number. ), issuer ID, subject ID, public key, and signature. .
  • the certificate type is, for example, 3-bit, and the corresponding certificate is root certificate/intermediate
  • It can indicate either a certificate/leaf certificate, a certificate for a wireless power transmission device, or a certificate for a wireless power receiver, or both.
  • the certificate type is 3 bits, and it can represent information about each of the Root Certificate, Manufacturer/Secondary Certificate, Product Unit Certificate (for the Power Transmitter, etc.). More specifically, the certificate type is '001'b In the case of, the root certificate is indicated, in the case of'OlO'b, the intermediate certificate is indicated, and in the case of ll l'b, the leaf certificate of the wireless power transmission device is indicated. In addition, the certificate type is '011'b. In this case, the leaf certificate of the wireless power receiving device can be indicated.
  • a wireless power transmission device uses a capability packet to You can inform the receiving device whether the authentication function is supported (in the case of authentication of the wireless power transmission device by the wireless power receiving device (in the case of authentication of PTx by PRx)).
  • the wireless power receiving device uses a configuration packet. You can inform the wireless power transmission device whether it supports the authentication function (in the case of authentication of the wireless power transmission device (authentication of PRx by PTx) by the wireless power transmission device).Instruction information about whether or not the authentication function is supported below (performance packet and The structure of the configuration packet) is disclosed in more detail.
  • FIG. 13 is a performance packet structure of a wireless power transmission apparatus according to an embodiment.
  • the first byte (Bo) contains the power class and guaranteed power value
  • the second byte (B ! ) contains the reserved and potential power values
  • the third Rebyte (B 2 ) is the authentication initiator (Authentication
  • the authentication initiator is 1 bit, for example, if the value is lb', the wireless power transmission device is authenticated. Indicates that it can act as an initiator.
  • the authentication responder is 1 bit, for example, if its value is lb', it indicates that the wireless power transmission device can operate as an authentication responder.
  • FIG. 14 is a configuration packet structure of a wireless power receiving apparatus according to an embodiment.
  • the first byte (Bo) contains the power class and maximum power value
  • the second byte () contains AI, AR, and spare
  • the third byte (B 2 ) is Prop, spare, ZERO.
  • Count the fourth byte (B 3 ) contains the window size, window offset
  • the fifth byte (B 4 ) is Neg, polarity, depth, authentication (Auth)
  • the authentication initiator is 1 bit, for example, if the value is lb', it indicates that the wireless power receiver can operate as the authentication initiator.
  • the authentication responder is 1 bit, For example, a value of lb' indicates that the wireless power receiver can act as an authentication responder.
  • the message used in the authentication procedure is an authentication message.
  • the authentication message is used to carry information related to authentication.
  • the wireless power transmitting device and the receiving device can be an authentication initiator or an authentication responder. For example, if the wireless power transmitting device is the authentication initiator, the wireless power receiving device becomes the authentication responder, and the wireless power receiving device is the authentication initiator. In this case, the wireless power transmission device becomes the authentication responder.
  • the authentication request message is GET_DIGESTS (ie 4 bytes), GET_CERTIFICATE (ie 8 Bytes), and CHALLENGE (ie 36 bytes).
  • Authentication messages can be called authentication packets, authentication data, authentication control information, etc.
  • messages such as GET_DIGEST and DIGESTS can also be called GET_DIGEST packets, DIGEST packets, etc.
  • 15 is a diagram illustrating an application-level data stream between a wireless power transmission device and a receiving device according to an example.
  • auxiliary data control auxiliary data control
  • ADC auxiliary data transport
  • ADC data packet is used to open the data stream.
  • ADC data packets can indicate the type of message contained in the stream and the number of bytes of data, whereas ADT data packets are sequences of data that contain the actual message.
  • ADC/end data packets are used to signal the end of the stream. do. For example, the maximum number of data bytes in the data transmission stream may be limited to 2047.
  • ACK or NACK is used.
  • control information necessary for wireless charging such as a control error packet (CE) or DSR, can be transmitted.
  • CE control error packet
  • Application level information can be transmitted and received between the wireless power transmission device and the receiving device.
  • the technical idea of the specification is to include not only the Qi standard, but also an embodiment of a wireless power transmission device and method based on other standards, and a wireless power receiving device and method.
  • This specification is a wireless power transmission device using short-range wireless communication.
  • Qi is a self-induction wireless wireless power supply led by WPC (Wireless Power Consortium). Charging standard. Qi defines various messages for exchanging charge-related information between PTx and PRx. PTx and PRx share a variety of information based on a variety of messages prior to charging.
  • the wireless power transmission device and the receiving device are identical to the WPC standard.
  • BLE Bluetooth Low Energy
  • PTx is an embedded device with limited resources, and Internet access is not available in most cases. Therefore, the user directly offline the PTx firmware.
  • PTx utilizes BLE to access the PRx from the PRx without a separate Internet connection.
  • the latest firmware can be delivered and updated.
  • a digital signature can be used to check whether the firmware is forged or tampered with.
  • in-band communication is basically suitable for sending and receiving simple information within 20 bytes, while programs such as firmware are stable and stable.
  • FIG. 16 shows a firmware update system
  • the wireless power transmission device in the embodiment described with reference to FIG. 16 corresponds to the wireless power transmission device or wireless power transmitter or power transmission unit disclosed in FIGS. 1 to 15. Therefore, the wireless power transmission in this embodiment.
  • the operation of the device is implemented by one or a combination of two or more of the respective components of the wireless power transmission device in Figs. 1 to 15.
  • firmware or data (or packet) by the wireless power transmission device in this embodiment Or signals) processing, transmission and reception operations can be performed by the communication/control unit 120.
  • the wireless power receiving device in this embodiment described with reference to Fig. 16 corresponds to the wireless power receiving device or the wireless power receiving device or the power receiving unit disclosed in Figs. 1 to 15. Therefore, the wireless power receiving unit in the present embodiment.
  • the operation of the receiving device is implemented by one or a combination of two or more of the respective components of the wireless power receiving device in Figs. 1 to 15.
  • firmware or data by the wireless power receiving device can be performed by the communication/control unit 220.
  • 17 is a flow diagram of a method for updating firmware performed in a wireless power transmission device according to an embodiment.
  • the method of updating the firmware of the wireless power transmission device includes a wireless power receiving device between the wireless power transmitting device and the wireless power receiving device.
  • 2020/175808 1»(:1 ⁇ 1 ⁇ 2020/001354 May include steps to establish out-of-band communication connection( ⁇ 100).
  • Step 1400 of determining whether an update is necessary by comparing the currently installed firmware with the received firmware version information may be performed.
  • the installed firmware version and It may include comparing the version of the firmware received from from and determining to update the firmware if the version of the firmware already installed in is lower than the version of the firmware received from (ie, it is older). On the other hand, if the already installed firmware version is the same as the firmware version received from Moyo or is a higher version, It can be determined that the firmware update is not required.
  • Step (500) If Moyo transmits the firmware in response to the step 1500 for requesting the firmware, it may include a step (600) for receiving the temporary firmware. It may include a step (700) of determining the validity of the firmware in the case where the reception of the firmware transmitted from is completed. The validity of the published firmware
  • the dating step 1800) may be included.
  • Figure 18 is a This is a flow chart of the firmware transmission method performed by the user.
  • the method of transmitting the firmware performed in according to an embodiment may include a step 2100) of first establishing an out-band communication connection between and. After that, it is determined whether a request for firmware version information is received from Step 2200) may be included.
  • the firmware version information request is received from Sending step 2300) may be included. It includes a step 2400) of determining whether a transmission request of the firmware has been received from, and a step 2500) of receiving and transmitting a transmission request of the firmware from A.
  • 19 is a flow chart showing a method of checking and updating the firmware version.
  • the request and response of information necessary for firmware update can be As shown in 20, it can be defined based on BLE's Read Request / Notification message. Specifically, if PTx composes GET_FIRMWARE_INFO message as Write Request and sends it to PRx, PRx is Manufacturer ID, Firmware Version, FIRMWAREJNFO message composed of Update Capability, etc.
  • It is configured as a notification and sent to PTx.
  • FIG. 22 An example of the FIRMWAREJNFO message is shown in Fig. 22, and Fig. 23 is
  • the firmware is received. That is, if the PRx successfully transmits the information necessary for the firmware update, the PRx transmits the firmware to the PTx.
  • An example of such a firmware transmission operation is shown in Fig. 24.
  • Fig. 24 shows a method of transmitting the firmware.
  • PTx determines whether firmware update is necessary based on firmware-related information received from PRx. If it is determined that firmware update is necessary, PTx requests firmware update from PRx. For this purpose, PTx sends a REQUEST_FIRMWARE_UPDATE message to PRx through a Write Request. For example, an example of a REQUEST_FIRMWARE_UPDATE message is shown in Figure 25.
  • PRx Upon receiving the REQUEST_FIRMWARE_UPDATE message, PRx transmits the previously acquired firmware (or firmware file) to PTx.
  • the firmware of an embedded device is 5-10KB or more, and a separate protocol is required to transmit data of this size in a BLE environment.
  • the PRx can transmit the PTx firmware to the PTx based on the L2CAP Connection-Oriented Channels (CoC) in LE Credit-Based Flow Control Mode as shown in FIG. 26. That is, PRx and PTx are also Like 26 L2CAP CoC in LE
  • the transmission and reception of firmware can be performed.
  • CoC up to 65535 bytes of data can be transmitted through a single packet.
  • PTx writes requesting firmware update to PRx.
  • the request is transmitted, and the PRx sends a notification in response to the firmware update.
  • the PTx sends a LE Credit-based Connection Request message requesting a CoC connection to the PRx, and the PRx sends a LE Credit-based Connection Response message to the PTx responding a CoC connection.
  • An example of the LE Credit-based Connection Request message is shown in Figure 27, and LE
  • FIG. 28 An example of a Credit-based Connection Response message is shown in Figure 28.
  • the PRx transmits the firmware (or firmware file or data) to the PRx.
  • An example of a firmware file or data message is shown in FIG. 29.
  • GATT firmware transmission based on GATT fragmentation according to an embodiment.
  • the responder may be a PRx.
  • the divided and transmitted information may be information required for firmware update or firmware (firmware file or data).
  • the divided and transmitted information authentication information or firmware An example of) is shown in Fig. 24.
  • FIG. 31 is a flow diagram illustrating a firmware transmission based on a GATT Read Blob Request according to an embodiment. (Authentication) GATT when the length of information is longer than MTU
  • Figure 32 is a flow diagram showing the transmission of the firmware based on the GATT Read Blob Request according to an embodiment. Referring to Figure 32, by repeating the Blob Request / Response while increasing the Offset value by MTU, MTU long
  • FIG. 33 is an example of a GATT Read Blob Request message.
  • PTx Upon receipt, PTx verifies the validity of the firmware based on the information required for the firmware update, and then performs the firmware update.
  • the format is basically structured to contain at least one of the firmware data and signature.
  • Fig. 35 is a diagram showing the concept of signature generation of a firmware provider.
  • a firmware provider has its own private key (Root CA Private Key) and firmware data of (firmware data)
  • Signatures can be generated based on the hash value.
  • Fig. 36 is a diagram showing the concept of a validation procedure.
  • validation of the firmware can be performed based on the public key of the Root CA that is installed in advance in PTx and PRx. .
  • the wireless power transmission device in the embodiment described with reference to Figs. 16 to 36 corresponds to the wireless power transmission device or wireless power transmitter or power transmission unit disclosed in Figs. 1 to 15. Therefore, in this embodiment The operation of the wireless power transmission device is implemented by one or a combination of two or more of the respective components of the wireless power transmission device in Figs. 1 to 15. For example, data by the wireless power transmission device in the present embodiment ( Or packet or signal) processing, transmission and reception operations
  • the wireless power receiving apparatus in this embodiment described with reference to FIGS. 16 to 36 corresponds to the wireless power receiving apparatus or wireless power receiver or power receiving unit disclosed in Figs. 1 to 15. Therefore, this embodiment The operation of the wireless power receiver in Figs. 1 to 15 is implemented by one or a combination of two or more of the respective components of the wireless power receiver in Figs. 1 to 15. For example, data by the wireless power receiver in this embodiment ( Alternatively, processing, transmitting and receiving operations of packets or signals) may be performed by the communication/control unit 220.
  • the operation of switching from in-band communication to out-band communication between the wireless power transmission device and the receiving device is referred to as handover to out-band, and in out-band communication.
  • the operation of switching to band communication is called handover to in-band.
  • Out-band communication can include, for example, Bluetooth or Low Power Bluetooth (BLE), or NFC.
  • BLE Low Power Bluetooth
  • the handover connection procedure is When the out-band communication (ie BLE) module receives a handover message from the in-band communication module, it may include a procedure for establishing a connection for out-band communication.
  • the in-band communication module (or control unit) establishes a wireless connection for exchanging information related to wireless power transmission to the out-band communication module.
  • out-band communication In order for out-band communication to be applied to a wireless power transmission system, it needs to be modified to suit the unique characteristics of the wireless power transmission system. For example, the characteristics of information exchanged between the wireless power transmission device and the receiving device (ex. The message type, format, and procedures according to the existing out-band communication must be redesigned in consideration of whether it is urgent information, whether the content is transmitted only when the state is changed, whether a large amount of information needs to be exchanged in a short time, etc.) Transmission-related setting information, control information, management information, and procedures related to their exchange are described as out-band communication protocols.
  • out-band communication is specified as BLE as an example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 명세서는 무선전력 전송장치와 무선전력 수신장치간 아웃밴드 통신으로 무선전력 전송장치의 펌웨어를 전송하고 업데이트할 수 있는 무선전력 전송장치 및 무선전력 수신장치, 그리고 아웃밴드 통신을 이용한 무선전력 전송장치의 펌웨어 업데이트에 관한 것이다.

Description

명세서
발명의명칭:무선전력전송시스템에서펌웨어 업데이트를 수행하는장치 및방법
기술분야
[1] 본명세서는무선전력전송에관한것으로서,보다상세하게는무선전력
전송장치와무선전력수신장치간펌웨어전송및펌웨어를업데이트하는 무선전력전송장치및방법,그리고무선전력수신장치및방법에관한것이다. 배경기술
[2] 무선전력전송기술은전원소스와전자기기사이에무선으로전력을
전달하는기술이다.일예로무선전력전송기술은스마트폰이나태블릿등의 무선단말기를단지무선충전패드상에올려놓는것만으로무선단말기의 배터리를충전할수있도록함으로써 ,기존의유선충전커넥터를이용하는유선 충전환경에비해보다뛰어난이동성과편의성그리고안전성을제공할수 있다.무선전력전송기술은무선단말기의무선충전이외에도,전기자동차, 블루투스이어폰이나 3D안경등각종웨어러블디바이스 (wearable device), 가전기기,가구,지중시설물,건물,의료기기,로봇,레저등의다양한분야에서 기존의유선전력전송환경을대체할것으로주목받고있다.
[3] 무선전력전송방식을비접족 (contactless)전력전송방식또는무접점 (no point of contact)전력전송방식 ,무선중전 (wireless charging)방식이라하기도한다. 무선전력전송시스템은,무선전력전송방식으로전기에너지를공급하는 무선전력전송장치와,상기무선전력전송장치로부터무선으로공급되는 전기에너지를수신하여배터리셀등수전장치에전력을공급하는무선전력 수신장치로구성될수있다.
[4] 무선전력전송기술은자기커플링 (magnetic coupling)을통해전력을전달하는 방식,무선주파수 (radio frequency: RF)를통해전력을전달하는방식, 마이크로웨이브 (microwave)를통해전력을전달하는방식,초음파를통해 전력을전달하는방식등다양하다.자기커플링에기반한방식은다시자기 유도 (magnetic induction)방식과자기공진 (magnetic resonance)방식으로 분류된다.자기유도방식은전송측의코일과수신측의코일간의전자기결합에 따라전송측코일배터리셀에서발생시킨자기장로인해수신측코일에 유도되는전류를이용하여에너지를전송하는방식이다.자기공진방식은 자기장을이용한다는점에서자기유도방식과유사하다.하지만,자기공진 방식은전송측의코일과수신측의코일에특정공진주파수가인가될때 공진이발생하고,이로인해전송측과수신측양단에자기장이집중되는 현상에의해에너지가전달되는측면에서자기유도와는차이가있다.
발명의상세한설명 2020/175808 1»(:1/10公020/001354 기술적과제
[5] 본명세서의기술적과제는무선전력전송장치의펌웨어의전송및펌웨어를 업데이트할수있는무선전력전송장치,무선전력전송방법,무선전력수신장치, 무선전력수신방법및무선충전시스템을제공함에있다.
[6] 본명세서의기술적과제는 PTx펌웨어업데이트시스템을제공함에 있다.
[7] 본명세서의다른기술적과제는펌웨어버전체크방법을제공함에 있다.
[8] 본명세서의또다른기술적과제는 BLE를활용한펌웨어파일전송방법을 제공함에 있다.
[9] 본명세서의또다른기술적과제는펌웨어위/변조방지기법을제공함에
있다.
과제해결수단
[10] 일즉면에서,무선전력수신장치로서,동작주파수 (operating frequency)에서 1차 코일을구비한무선전력전송장치와자기커늘링 (magnetic coupling)에의해상기 무선전력전송장치로부터무선전력을수신하고,상기무선전력에의해 발생하는교류신호를직류신호로변환하도록구성된전력픽업회로 (power pick-up circuit),상기동작주파수이외의주파수를이용하여상기무선전력 전송장치와아웃밴드 (out-band)통신을수행하도록구성된통신
회로 (communication circuit),펌웨어 (firmware)의처리를제어하도록구성된 컨트롤회로 (control circuit)를포함하는무선전력수신장치가개시된다.
[11] 다른측면에서 ,상기펌웨어는상기무선전력전송장치에관한펌웨어이고, 상기통신회로는상기아웃밴드통신을기반으로무선전력전송장치에게상기 펌웨어를전송하는장치및방법이개시된다.
[12] 또다른측면에서,상기통신회로는상기아웃밴드통신에기반하여상기
무선전력전송장치로부터펌웨어전송요청을수신하는경우상기펌웨어를 전송하는장치및방법이개시된다.
[13] 다른측면에서,상기컨트롤회로는,상기아웃밴드통신에기반하여상기
무선전력전송장치로부터펌웨어정보를요청받는경우상기펌웨어정보를 전송하도록제어하는무선전력수신장치가개시된다.
[14] 또다른측면에서 ,상기펌웨어정보는상기무선전력전송장치의제조사
식별자및펌웨어식별자중적어도하나를포함하는무선전력수신장치가 개시된다.
[15] 일양태에따르면,무선전력전송장치로서,동작주파수 (operating
frequency)에서무선전력수신장치와의자기커늘링 (magnetic coupling)을형성한 1차코일을이용하여상기무선전력수신장치로무선전력을전송하도록구성된 전력변환회로 (power conversion circuit)및상기동작주파수이외의주파수를 이용하여상기무선전력수신장치와아웃밴드 (out-band)통신을수행하도록 구성된통신/컨트롤회로를포함하되,상기통신/컨트롤회로는,상기무선전력 2020/175808 1»(:1/10公020/001354 수신장치로부터수신된펌웨어 (firmware)를기반으로펌웨어 업데이트를 수행하는무선전력 전송장치가개시된다.
일측면에서,상기통신/컨트롤회로는,상기무선전력수신장치와상기 무선전력 전송장치간의상기아웃밴드통신에기반하여상기
펌웨어 (firmware)를수신하는장치 및방법이 개시된다.
17] 다른측면에서,상기통신/컨트롤회로는,상기 아웃밴드통신으로상기
무선전력수신장치에펌웨어 정보의 전송요청을전송하고,상기무선전력 수신장치로부터상기펌웨어 정보를수신하고상기펌웨어의 업데이트필요 여부를판단하는무선전력 전송장치가개시된다.
또다른측면에서,상기통신/컨트롤회로는,상기펌웨어 정보를기반으로 상기 펌웨어의 업데이트가필요한지 여부를판단하며,상기펌웨어의 업데이트가필요한경우상기아웃밴드통신에기반하여상기무선전력 수신장치에 펌웨어 전송요청을전송하며,상기무선전력수신장치로부터상기 아웃밴드통신에기반하여상기펌웨어를수신하는무선전력 전송장치가 개시된다.
19] 다른측면에서,상기 펌웨어정보는상기무선전력 전송장치의제조사식별자 및펌웨어식별자중적어도하나를포함하는무선전력수신장치가개시된다. 발명의효과
무선전력 전송장치의 펌웨어를최신상태로유지할수있는효과가있다. 도면의간단한설명
도 1은일실시예에 따른무선전력시스템 (10)의블록도이다.
도 2는다른실시예에 따른무선전력시스템 (10)의블록도이다.
도 3a는무선전력 전송시스템이도입되는다양한전자기기들의실시예를
] ] ] ] ] ]
425631 나타낸다.
222222201
도 3b는무선전력 전송시스템에서 WPC NDEF의 일례를나타낸다. 도 4a는다른실시예에따른무선전력 전송시스템의블록도이다. 도 4b는본명세서의실시예가적용될수있는블루투스통신
아키텍처 (Architecture)의 일예를나타낸도이다.
[27] 도 4c는일례에 따른 BLE통신을사용하는무선전력 전송시스템을도시한 블록도이다.
[28] 도 4d는다른예에 따른 BLE통신을사용하는무선전력 전송시스템을도시한 블록도이다.
[29] 도 5는무선전력 전송절차를설명하기위한상태천이도이다.
[3이 도 6은일실시예에 따른전력 제어 컨트롤방법을나타낸다.
[31] 도 7은다른실시예에 따른무선전력 전송장치의블록도이다.
[32] 도 8은다른실시예에 따른무선전력수신장치를나타낸다.
[33] 도 9는일실시예에 따른통신프레임구조를나타낸다. 2020/175808 1»(:1/10公020/001354 도 10은일실시예에 따른싱크패턴의구조이다.
도 11은일실시예에 따른쉐어드모드에서무선전력 전송장치 및무선전력 수신장치의동작상태를도시하였다.
[36] 도 12는일실시예에 따른무선충전인증서포맷을도시한블록도이다.
[37] 도 13은일실시예에 따른무선전력 전송장치의성능패킷구조이다.
[38] 도 14는일실시예에 따른무선전력수신장치의구성 패킷구조이다.
[39] 도 15는일례에따른무선전력 전송장치와수신장치간에 어플리이션레벨의 데이터스트림을도시한것이다.
[4이 도 16은펌웨어 업데이트시스템을도시한것이다.
[41] 도 17은일실시예에 따른무선전력 전송장치에서수행되는펌웨어 업데이트 방법의흐름도이다.
[42] 도 18은일실시예에 따른무선전력수신장치에서수행되는펌웨어 전송방법의 흐름도이다.
[43] 도 19는펌웨어버전을확인하고업데이트하는방법을도시한흐름도이다.
[44] 도 20은펌웨어 업데이트에 필요한정보의요청과응답을도시한흐름도이다.
[45] 도 21은 GET_FIRMWARE_INFO메시지의 일례이다.
[46] 도 22는 FIRMWAREJNFO메시지의 일례이다.
[47] 도 23은 FIRMWAREJNFO field의 일예이다.
[48] 도 24는펌웨어를전송하는방법을도시한흐름도이다.
[49] 도 25는 REQUEST_FIRMWARE_UPDATE메시지의 일례이다.
[5이 도 26은 L2CAP CoC(Connection-Oriented Channels) in LE Credit-Based Flow Control Mode를기반으로펌웨어를전송하는방법을도시한흐름도이다.
[51] 도 27은 LE Credit-based Connection Request메시지의 일례이다.
[52] ] ] 도 28은 LE Credit-based Connection Response메시지의 일례이다.
45
[33 55631] 도 29는 GATT분할 (Fragmentation)에기반한펌웨어 전송을도시한
흐름도이다.
[54] 도 30은일실시예에 따른 GATT분할 (Fragmentation)에 기반한펌웨어 전송을 도시한흐름도이다.
[55] 도 31은일실시예에 따른 GATT Read Blob Request에기반한펌웨어 전송을 도시한흐름도이다.
도 32는일실시예에 따른 GATT Read Blob Request에기반한펌웨어 전송을 도시한흐름도이다.
[57] 도 33은 GATT Read Blob Request메시지의 일례이다.
[58] 도 34는펌웨어파일의포멧의 일 예이다.
[59] 도 35는펌웨어제공자의시그니처 생성의 개념을도시한도면이다.
[6이 도 36은유효성절차의 개념을도시한도면이다.
발명의실시를위한형태 [61] 본명세서에서“A또는 B(A or B)”는“오직 A”,“오직 B”또는“쇼와 B모두”를 의미할수있다.달리표현하면,본명세서에서“A또는 B(A or B)”는“A및/또는 B(A and/or B)”으로해석될수있다.예를들어 ,본명세서에서“A, B또는 C(A, B or C)”는“오직 A”,“오직 B”,“오직 C”,또는“A, B및 C의임의의모든조합 (any combination of A, B and C)”를의미할수있다.
[62] 본명세서에서사용되는슬래쉬 (/)나쉼표 (comma)는“및/또는 (and/or)”을
의미할수있다.예를들어,“ A/B”는“A및/또는 B”를의미할수있다.이에따라 “A/B”는“오직 A”,“오직 B”,또는“쇼와 B모두”를의미할수있다.예를들어 ,“A, B, C”는“A, B또는 C”를의미할수있다.
[63] 본명세서에서“적어도하나의 A및 B(at least one of A and B)”는,“오직 A”,
“오직 B”또는“A와 B모두”를의미할수있다.또한,본명세서에서“적어도 하나의 A또는 B(at least one of A or B)”나“적어도하나의 A및/또는 B(at least one of A and/or B)”라는표현은“적어도하나의 A및 B(at least one of A and B)”와 동일하게해석될수있다.
[64] 또한,본명세서에서“적어도하나의 A, B및 C(at least one of A, B and C)”는,
“오직 A”,“오직 B”,“오직 C”,또는“A, B및 C의임의의모든조합 (any
combination of A, B and C)”를의미할수있다.또한,“적어도하나의 A, B또는 C(at least one of A, B or C)”나“적어도하나의 A, B및/또는 C(at least one of A, B and/or C)”는“적어도하나의 A, B및 C(at least one of A, B and C)”를의미할수 있다.
[65] 또한,본명세서에서사용되는괄호는“예를들어 (for example)”를의미할수 있다.구체적으로,“제어정보 (PDCCH)”로표시된경우,“제어정보”의일례로 “PDCCH”가제안된것일수있다.달리표현하면본명세서의“제어정보”는 “PDCCH”로제한 (limit)되지않고,“ PDDCH”가“제어정보”의일례로제안될 것일수있다.또한,“제어정보 (즉, PDCCH)”로표시된경우에도,“제어정보”의 일례로“PDCCH”가제안된것일수있다.
[66] 본명세서에서하나의도면내에서개별적으로설명되는기술적특징은,
개별적으로구현될수도있고,동시에구현될수도있다.
[67] 이하에서사용되는”무선전력”이라는용어는,물리적인전자기전도체들의 사용없이무선전력전송기 (wireless power transmitter)로부터무선전력
수신장치 (wireless power receiver)로전달되는전기장,자기장,전자기장등과 관련된임의의형태의에너지를의미하도록사용된다.무선전력은무선전력 신호 (wireless power signal)이라고불릴수도있으며 , 1차코일과 2차코일에의해 둘러싸이는 (enclosed)진동하는자속 (oscillating magnetic flux)을의미할수있다. 예를들어,이동전화기,코드리스전화기, iPod, MP3플레이어,헤드셋등을 포함하는디바이스들을무선으로충전하기위해시스템에서의전력변환이 여기에설명된다.일반적으로,무선전력전송의기본적인원리는,예를들어, 자기커늘링 (magnetic coupling)을통해전력을전달하는방식,무선주파수 (radio 2020/175808 1»(:1/10公020/001354 frequency: RF)를통해전력을전달하는방식,마이크로웨이브 (microwave)를통해 전력을전달하는방식,초음파를통해전력을전달하는방식을모두포함한다. 도 1은일실시예에 따른무선전력시스템 (10)의블록도이다.
도 1을참조하면,무선전력시스템 (10)은무선전력 전송장치 (100)와무선 전력수신장치 (200)를포함한다.
[70] 무선전력 전송장치 (100)는외부의 전원소스 (S)로부터 전원을인가받아
자기장을발생시킨다.무선전력수신장치 (200)는발생된자기장을이용하여 전류를발생시켜무선으로전력을수신받는다.
또한,무선전력시스템 (10)에서무선전력 전송장치 (W0)와무선전력수신 장치 (200)는무선전력 전송에 필요한다양한정보를송수신할수있다.여기서, 무선전력 전송장치 (100)와무선전력수신장치 (200)간의통신은무선전력 전송에 이용되는자기장을이용하는인-밴드통신 (in-band communication)이나 별도의통신캐리어를이용하는아웃-밴드통신 (out-band communication)중어느 하나의 방식에따라수행될수있다.아웃-밴드통신은
아웃-오브-밴드 (out-of-band)통신이라불릴수도있다.이하에서는아웃-밴드 통신으로용어를통일하여 기술한다.아웃-밴드통신의 예로서 NFC, 블루투스 (bluetooth), BLE(bluetooth low energy)등을포함할수있다.
[72] 여기서,무선전력 전송장치 (100)는고정형또는이동형으로제공될수있다. 고정형의 예로는실내의 천장이나벽면또는테이블등의가구에
임베디드 (embedded)되는형태 ,실외의주차장,버스정류장이나지하철역등에 임플란트형식으로설치되는형태나차량이나기차등의운송수단에 설치되는 형태등이 있다.이동형인무선전력 전송장치 (W0)는이동가능한무게나 크기의 이동형장치나노트북컴퓨터의 덮개등과같이다른장치의 일부로
] ] 구현될수있다.
98
766 73 또무선전력수신장치 (200)는배터리를구비하는각종전자기기 및전원 케이블대신무선으로전원을공급받아구동되는각종가전기기를포함하는 포괄적인개념으로해석되어야한다.무선전력수신장치 (200)의 대표적인 예로는,이동단말기 (portable terminal),휴대전화기 (cellular phone),
스마트폰 (smart phone),개인정보단말기 (PDA: Personal Digital Assistant),휴대 미디어늘레이어 (PMP: Portable Media Player),와이브로단말기 (Wibro terminal), 태블릿 (tablet),패블릿 (phablet),노트북 (notebook),디지털카메라,네비게이션 단말기 ,텔레비전,전기차량 (EV: Electronic Vehicle)등이 있다.
[74] 무선전력시스템 (10)에서무선전력수신장치 (200)는하나또는복수일수 있다.도 1에서는무선전력 전송장치 (100)와무선전력수신장치 (200)가 일대일로전력을주고받는것으로표현되고있으나,도 2와같이하나의무선 전력 전송장치 (100)가복수의무선전력수신장치 (200-1, 200-2,..., 200-M)로 전력을전달하는것도가능하다.특히,자기공진방식으로무선전력 전송을 수행하는경우에는하나의무선전력 전송장치 (100)가동시 전송방식이나 시분할전송방식을응용하여동시에여러대의무선전력수신장치 (200-1, 200-2,...,200-M)로전력을전달할수있다.
5] 또한,도 1에는무선전력전송장치 (100)가무선전력수신장치 (200)에바로 전력을전달하는모습이도시되어있으나,무선전력전송장치 (100)와무선전력 수신장치 (200)사이에무선전력전송거리를증대시키기위한릴레이 (relay) 또는중계기 (repeater)와같은별도의무선전력송수신장치가구비될수있다.이 경우,무선전력전송장치 (W0)로부터무선전력송수신장치로전력이
전달되고,무선전력송수신장치가다시무선전력수신장치 (200)로전력을 전달할수있다.
R6] 이하본명세서에서언급되는무선전력수신기,전력수신기,수신기는무선 전력수신장치 (200)를지칭한다.또한본명세서에서언급되는무선전력전송기 , 전력전송기 ,전송기는무선전력수신전송장치 (100)를지칭한다.
7] 도 3a는무선전력전송시스템이도입되는다양한전자기기들의실시 예를 나타낸다.
8] 도 3a에는무선전력전송시스템에서송신및수신하는전력양에따라전자 기기들을분류하여도시하였다.도 3을참조하면,스마트시계 (Smart watch), 스마트글래스 (Smart Glass), HMD(Head Mounted Display),및스마트링 (Smart ring)과같은웨어러블기기들및이어폰,리모콘,스마트폰, PDA,태블릿 PC등의 모바일전자기기들 (또는포터블전자기기들)에는소전력 (약 5W이하또는약 20W이하)무선충전방식이적용될수있다.
9] 노트북,로봇청소기 , TV,음향기기 ,청소기,모니터와같은중/소형가전
기기들에는중전력 (약 50W이하또는약 200W)이하)무선충전방식이적용될수 있다.믹서기,전자레인지,전기밥솥과같은주방용가전기기,훨체어,전기 킥보드,전기자전거,전기자동차등의개인용이동기기들 (또는,전자기기/이동 수단들)은대전력 (약 2kW이하또는 22kW이하)무선충전방식이적용될수 있다.
[8이 상술한 (또는도 1에도시된)전자기기들/이동수단들은후술하는무선전력 수신기를각각포함할수있다.따라서,상술한전자기기들/이동수단들은무선 전력송신기로부터무선으로전력을수신하여충전될수있다.
[81] 이하에서는전력무선충전방식이적용되는모바일기기를중심으로설명하나 이는실시예에불과하며 ,본명세서에따른무선충전방법은상술한다양한 전자기기에적용될수있다.
[82] 무선전력전송에관한표준 (standard)은 WPC( wireless power consortium),
AFA(air fuel alliance), PMA(power matters alliance)을포함한다.
[83] WPC표준은기본전력프로파일 (baseline power profile: BPP)과확장전력
프로파일 (extended power profile: EPP)을정의한다. BPP는 5W의전력전송을 지원하는무선전력전송장치와수신장치에관한것이고, EPP는 5W보다크고 30W보다작은범위의전력전송을지원하는무선전력전송장치와수신장치에 관한것이다.
[84] 서로다른전력레벨 (power level)을사용하는다양한무선전력전송장치와 수신장치들이각표준별로커버되고,서로다른전력클래스 (power class)또는 카테고리로분류될수있다.
[85] 예를들어, WPC는무선전력전송장치와수신장치를전력클래스 (power class : PC) -1, PCO, PCI, PC2로분류하고,각 PC에대한표준문서를제공한다. PC-1 표준은 5W미만의보장전력 (guaranteed power)을제공하는무선전력전송장치와 수신장치에관한것이다. PC-1의어플리케이션은스마트시계와같은웨어러블 기기를포함한다.
[86] PC0표준은 5W의보장전력을제공하는무선전력전송장치와수신장치에관한 것이다. PC0표준은보장전력이 30W까지인 EPP를포함한다.인-밴드 (in-band :IB)통신이 PC0의필수적인 (mandatory)통신프로토콜이나,옵션의백업채널로 사용되는아웃-밴드 (out-of-band: OOB)통신도사용될수있다.무선전력 수신장치는 OOB의지원여부를구성패킷 (configuration packet)내의 OOB 플래그를설정함으로써식별할수있다. OOB를지원하는무선전력전송장치는 상기구성패킷에대한응답으로서 , OOB핸드오버를위한
비트패턴 (bit-pattern)을전송함으로써 OOB핸드오버페이즈 (handover phase)로 진입할수있다.상기구성패킷에대한응답은 NAK, ND또는새롭게정의되는 8비트의패턴일수있다. PC0의어플리케이션은스마트폰을포함한다.
[87] PC1표준은 30W- L50W의보장전력을제공하는무선전력전송장치와
수신장치에관한것이다. OOB는 PC1을위한필수적인통신채널이며 , IB는 OOB로의초기화및링크수립 (link establishment)로서사용된다.무선전력 전송장치는구성패킷에대한응답으로서 , OOB핸드오버를위한비트패턴을 이용하여 OOB핸드오버페이즈로진입할수있다.모이의어플리케이션은 랩탑이나전동공구 (power tool)을포함한다.
[88] PC2표준은 200W~2kW의보장전력을제공하는무선전력전송장치와
수신장치에관한것으로서,그어플리케이션은주방가전을포함한다.
[89] 이렇듯전력레벨에따라 PC가구별될수있으며,동일한 PC간
호환성 (compatibility)을지원할지여부는선택또는필수사항일수있다.여기서 동일한 PC간호환성은,동일한 PC간에는전력송수신이가능함을의미한다. 예를들어, PC X인무선전력전송장치가동일한 PC X를갖는무선전력 수신장치의충전이가능한경우,동일한 PC간호환성이유지되는것으로볼수 있다.이와유사하게서로다른 PC간의호환성역시지원가능할수있다.여기서 서로다른 PC간호환성은,서로다른 PC간에도전력송수신이가능함을 의미한다.예를들어, PC 인무선전력전송장치가 PC 를갖는무선전력 수신장치의충전이가능한경우,서로다른 PC간호환성이유지되는것으로볼 수있다.
[90] PC간호환성의지원은사용자경험 (User Experience)및인프라구죽즉면에서 매우중요한이슈이다.다만, PC간호환성유지에는기술적으로아래와같은 여러문제점이존재한다.
[91] 동일한 PC간호환성의경우,예를들어,연속적으로전력이전송되는경우에만 안정적으로충전이가능한랩-탑충전 (lap-top charging)방식의무선전력 수신장치는,동일한 PC의무선전력송신장치라하더라도,불연속적으로전력을 전송하는전동툴방식의무선전력송신장치로부터전력을안정적으로 공급받는데문제가있을수있다.또한,서로다른 PC간호환성의경우,예를 들어,최소보장전력이 200W인무선전력송신장치는최대보장전력이 5W인 무선전력수신장치로전력을송신하는경우,과전압으로인해무선전력 수신장치가파손될위험이 있다.그결과, PC는호환성을대표/지시하는 지표/기준으로삼기어렵다.
[92] 무선전력전송및수신장치들은매우편리한사용자경험과
인터페이스 (UX/UI)를제공할수있다.즉,스마트무선충전서비스가제공될수 있다,스마트무선충전서비스는무선전력전송장치를포함하는스마트폰의 UX/UI에기초하여구현될수있다.이러한어플리케이션을위해,스마트폰의 프로세서와무선충전수신장치간의인터페이스는무선전력전송장치와 수신장치간의”드롭앤플레이 (drop and play)"양방향통신을허용한다.
[93] 일례로서,사용자는호텔에서스마트무선충전서비스를경험할수있다. 사용자가호텔방으로입장하고방안의무선충전기위에스마트폰을
올려놓으면,무선충전기는스마트폰으로무선전력을전송하고,스마트폰은 무선전력을수신한다.이과정에서,무선충전기는스마트무선충전서비스에 관한정보를스마트폰으로전송한다.스마트폰이무선충전기상에위치됨을 감지하거나,무선전력의수신을감지하거나,또는스마트폰이
무선충전기로부터스마트무선충전서비스에관한정보를수신하면, 스마트폰은사용자에게부가적특징으로의동의 (opt-in)를문의하는상태로 진입한다.이를위해,스마트폰은알람소리를포함하거나또는포함하지않는 방식으로스크린상에메시지를디스플레이할수있다.메시지의일례는
"Welcome to ### hotel. Select "Yes" to activate smart charging functions: Yes I No Thanks.”와같은문구를포함할수있다.스마트폰은 Yes또는 No Thanks를 선택하는사용자의입력을받고,사용자에의해선택된다음절차를수행한다. 만약 Yes가선택되면스마트폰은무선충전기에해당정보를전송한다.그리고 스마트폰과무선충전기는스마트충전기능을함께수행한다.
[94] 스마트무선중전서비스는또한 WiFi자격 (wifi credentials)자동
입력 (auto-filled)을수신하는것을포함할수있다.예를들어,무선충전기는 WiFi 자격을스마트폰으로전송하고,스마트폰은적절한앱을실행하여
무선충전기로부터수신된 WiFi자격을자동적으로입력한다.
[95] 스마트무선충전서비스는또한호텔프로모션을제공하는호텔
어플리케이션을실행하거나,원격체크인/체크아웃및컨택정보들을획득하는 것을포함할수있다.
[96] 다른예로서 ,사용자는차량내에서스마트무선충전서비스를경험할수있다. 사용자가차량에탑승하고스마트폰을무선충전기위에올려놓으면,
무선충전기는스마트폰에무선전력을전송하고,스마트폰은무선전력을 수신한다.이러한과정에서,무선충전기는스마트무선충전서비스에관한 정보를스마트폰으로전송한다.스마트폰이무선충전기상에위치됨을
감지하거나,무선전력의수신을감지하거나,또는스마트폰이
무선충전기로부터스마트무선충전서비스에관한정보를수신하면,
스마트폰은사용자에게신분 (identity)를확인을문의하는상태로진입한다.
[97] 이상태에서,스마트폰은 WiFi및/또는블루투스를통해자동적으로자동차와 연결된다.스마트폰은알림소리를포함하거나또는포함하지않는방식으로 스크린상에메시지를디스플레이할수있다.메시지의일례는” Welcome to your car. Select "Yes" to synch device with in-car controls: Yes I No Thanks.”와같은 문구를포함할수있다.스마트폰은 Yes또는 No Thanks를선택하는사용자의 입력을받고,사용자에의해선택된다음절차를수행한다.만약 Yes가선택되면 스마트폰은무선충전기에해당정보를전송한다.그리고스마트폰과
무선충전기는차량내어플리케이션/디스플레이소프트웨어를구동함으로써 , 차량내스마트제어기능을함께수행할수있다.사용자는원하는음악을즐길 수있고,정규적인맵위치를확인할수있다.차량내어플리케이션/디스플레이 소프트웨어는통행자들을위한동기화접근을제공하는성능을포함할수있다.
[98] 또다른예로서,사용자는스마트무선충전을댁내에서경험할수있다.
사용자가방으로들어가서방안의무선충전기위에스마트폰을올려놓으면, 무선충전기는스마트폰으로무선전력을전송하고,스마트폰은무선전력을 수신한다.이과정에서,무선충전기는스마트무선충전서비스에관한정보를 스마트폰으로전송한다.스마트폰이무선충전기상에위치됨을감지하거나, 무선전력의수신을감지하거나,또는스마트폰이무선충전기로부터스마트 무선충전서비스에관한정보를수신하면,스마트폰은사용자에게부가적 특징으로의동의 (opt-in)를문의하는상태로진입한다.이를위해 ,스마트폰은 알림소리를포함하거나또는포함하지않는방식으로스크린상에메시지를 디스늘레이할수있다.메시지의일례는 "Hi XXX, Would you like to activate night mode and secure the building?: Yes I No Thanks.’’와같은문구를포함할수있다. 스마트폰은 Yes또는 No Thanks를선택하는사용자의입력을받고,사용자에 의해선택된다음절차를수행한다.만약 Yes가선택되면스마트폰은
무선충전기에해당정보를전송한다.스마트폰과무선충전기는적어도 사용자의패턴을인지하고사용자에게문과창문을잠그거나불을끄거나, 알람을설정하도록권유할수있다.
[99] 이하에서는호환성을대표/지시하는지표/기준으로’프로필 (profile)’을새롭게 정의하기로한다.즉,동일한’프로필’을갖는무선전력송수신장치간에는 WO 2020/175808 1»(:1^1{2020/001354 호환성이유지되어안정적인전력송수신이가능하며,서로다른’프로필’을갖는 무선전력송수신장치간에는전력송수신이불가한것으로해석될수있다. 프로필은전력클래스와무관하게 (또는독립적으로)호환가능여부및/또는 어플리케이션에따라정의될수있다.
[10이 프로필은크게 i)모바일및컴퓨팅, ii)전동툴,및 iii)주방이렇게 3가지로 구분될수있다.
[101] 또는,프로필은크게 i)모바일, ii)전동툴, iii)주방및 iv)웨어러블이렇게
4가지로구분될수있다.
[102] ,모바일’프로필의경우, PC는 PC0및/또는 PC1,통신프로토콜/방식은 IB및 OOB,동작주파수는 87~205kHz로정의될수있으며,어플리케이션의예시로는 스마트폰,랩-탑등이존재할수있다.
[103] ’전동툴’프로필의경우, PC는 PC1,통신프로토콜/방식은 IB,동작주파수는 87~145kHz로정의될수있으며,어플리케이션의 예시로는전동툴등이존재할 수있다.
[104] ,주방’프로필의경우, PC는 PC2,통신프로토콜/방식은 NFC-기반,동작
주파수는 100kHz미만으로정의될수있으며,어플리케이션의 예시로는 주방/가전기기등이존재할수있다.
[105] 전동툴과주방프로필의경우,무선전력전송장치와수신장치간에 NFC
통신이사용될수있다.무선전력전송장치와수신장치는 WPC NDEF(NFC Data Exchange Profile Format)을교환함으로써상호간에 NFC기기임을확인할수 있다.예를들어 WPC NDEF는도 3b와같이어플리케이션프로파일 (application profile)필드 (예를들어 1B),버전필드 (예를들어 1B),및프로파일특정 데이터 (profile specific data,예를들어 1B)를포함할수있다.어플리케이션 프로파일필드는해당장치가 i)모바일및컴퓨팅 , ii)전동툴,및 iii)주방중어느 것인지를지시하고,버전필드의상위니블 (upper nibble)은메이저버전 (major version)을지시하고하위니블 (lower nibble)은마이너버전 (minor version)을 지시한다.또한프로파일특정데이터는주방을위한컨텐츠를정의한다.
[106] ,웨어러블’프로필의경우, PC는 PC-1,통신프로토콜/방식은 IB,동작주파수는 87~205kHz으로정의될수있으며,어플리케이션의 예시로는사용자몸에 착용하는웨어러블기기등이존재할수있다.
[107] 동일한프로필간에는호환성유지는필수사항일수있으며,다른프로필간의 호환성유지는선택사항일수있다.
[108] 상술한프로필 (모바일프로필,전동툴프로필,주방프로필및웨어러블
프로필)들은제 1내지제 n프로필로일반화되어표현될수있으며, WPC규격및 실시 예에따라새로운프로필이추가/대체될수있다.
[109] 이와같이프로필이정의되는경우,무선전력전송장치가자신과동일한
프로필의무선전력수신장치에대해서만선택적으로전력송신을수행하여 보다안정적으로전력송신이가능하다.또한무선전력전송장치의부담이 줄어들고,호환이불가능한무선전력수신장치로의전력송신을시도하지않게 되므로무선전력수신장치의파손위험이줄어든다는효과가발생한다.
[110] ’모바일’프로필내의 PC1은 PC0를기반으로 OOB와같은선택적확장을
차용함으로써정의될수있으며,’전동툴’프로필의경우, PC1’모바일’프로필이 단순히변경된버전으로서정의될수있다.또한,현재까지는동일한프로필간의 호환성유지를목적으로정의되었으나,추후에는서로다른프로필간의호환성 유지방향으로기술이발전될수있다.무선전력전송장치또는무선전력 수신장치는다양한방식을통해자신의프로필을상대방에게알려줄수있다.
[111] AFA표준은무선전력전송장치를 PTU (power transmitting circuit)이라칭하고, 무선전력수신장치를 PRU(power receiving circuit)이라칭하며 , PTU는표 1과 같이다수의클래스로분류되고, PRU는표 2와같이다수의카테고리로 분류된다.
[112] [표 1]
Figure imgf000014_0001
[113] [표 2]
Figure imgf000014_0002
[114] 표 1에서와같이,클래스 n PTU의최대출력전력성능 (capability)은해당
클래스의 PTX-IN-MAX값보다크거나같다. PRU는해당카테고리에서
명시된 (specified)전력보다더큰전력을끌어당길 (draw)수는없다.도 4a는다른 실시 예에따른무선전력전송시스템의블록도이다.
[115] 도 4a를참조하면,무선전력전송시스템 (10)은무선으로전력을수신하는 모바일기기 (Mobile Device)(450)및무선으로전력을송신하는베이스 스테이션 (Base Station)(400)을포함한다.
[116] 베이스스테이션 (400)은유도전력또는공진전력을제공하는장치로서 , 적어도하나의무선전력전송장치 (power transmitter, 100)및시스템회로 (405)을 포함할수있다.무선전력전송장치 (100)는유도전력또는공진전력을 전송하고,전송을제어할수있다.무선전력전송장치 (100)는, 1차코일 (primary coil(s))을통해자기장을생성함으로써전기에너지를전력신호로변환하는 전력변환회로 (power conversion circuit, 110)및적절한레벨로전력을
전달하도록무선전력수신장치 (200)와의통신및전력전달을컨트롤하는 통신/컨트롤회로 (communications & control circuit, 120)을포함할수있다.시스템 회로 (405)은입력전력프로비저닝 (provisioning),복수의무선전력전송장치들의 컨트롤및사용자인터페이스제어와같은베이스스테이션 (400)의기타동작 제어를수행할수있다.
[117] 1차코일은교류전력 (또는전압또는전류)을이용하여전자기장을발생시킬 수있다. 1차코일은전력변환회로 (no)에서출력되는특정주파수의
교류전력 (또는전압또는전류)을인가받고,이에따라특정주파수의자기장을 발생시킬수있다.자기장은비방사형또는방사형으로발생할수있는데,무선 전력수신장치 (200)는이를수신하여전류를생성하게된다.다시말해 1차 코일은무선으로전력을전송하는것이다.
[118] 자기유도방식에서, 1차코일과 2차코일은임의의적합한형태들을가질수 있으며,예컨대,페라이트또는비정질금속과같은고투자율의형성물의 주위에감긴동선일수있다. 1차코일은전송코일 (transmitting coil), 1차 코어 (primary core), 1차와인딩 (primary winding), 1차루프안테나 (primary loop antenna)등으로불릴수도있다.한편, 2차코일은수신코일 (receiving coil), 2차 코어 (secondary core), 2차와인딩 (secondary winding), 2차루프안테나 (secondary loop antenna),픽업안테나 (pickup antenna)등으로불릴수도있다.
[119] 자기공진방식을이용하는경우에는 1차코일과 2차코일은각각 1차공진 안테나와 2차공진안테나형태로제공될수있다.공진안테나는코일과 캐패시터를포함하는공진구조를가질수있다.이때공진안테나의공진 주파수는코일의인덕턴스와캐패시터의캐패시턴스에의해결정된다.여기서, 코일은루프의형태로이루어질수있다.또루프의내부에는코어가배치될수 있다.코어는페라이트코어 (ferrite core)와같은물리적인코어나공심코어 (air core)를포함할수있다.
[120] 1차공진안테나와 2차공진안테나간의에너지전송은자기장의공진현상을 통해이루어질수있다.공진현상이란하나의공진안테나에서공진주파수에 해당하는근접자기장이발생할때주위에다른공진안테나가위치하는경우, 양공진안테나가서로커플링되어공진안테나사이에서높은효율의에너지 전달이일어나는현상을의미한다. 1차공진안테나와 2차공진안테나안테나 사이에서공진주파수에해당하는자기장이발생하면, 1차공진안테나와 2차 공진안테나가서로공진하는현상이발생되고,이에따라일반적인경우 1차 공진안테나에서발생한자기장이자유공간으로방사되는경우에비해보다 높은효율로 2차공진안테나를향해자기장이집속되며 ,따라서 1차공진 안테나로부터 2차공진안테나에높은효율로에너지가전달될수있다.자기 유도방식은자기공진방식과유사하게구현될수있으나이때에는자기장의 주파수가공진주파수일필요가없다.대신자기유도방식에서는 1차코일과 2차코일을구성하는루프간의정합이필요하며루프간의간격이매우 근접해야한다.
[121] 도면에도시되지않았으나,무선전력전송장치 (100)는통신안테나를더
포함할수도있다.통신안테나는자기장통신이외의통신캐리어를이용하여 통신신호를송수신할수있다.예를들어,통신안테나는와이파이 (Wi-Fi), 블루투스 (Bluetooth),블루투스 LE,직비 (ZigBee), NFC등의통신신호를송수신 할수있다.
[122] 통신/컨트롤회로 (120)은무선전력수신장치 (200)와정보를송수신할수있다. 통신/컨트롤회로 (120)은 IB통신모듈또는 OOB통신모듈중적어도하나를 포함할수있다.
[123] IB통신모듈은특정주파수를중심주파수로하는자기파를이용하여정보를 송수신할수있다.예를들어,통신/컨트롤회로 (120)은무선전력전송의동작 주파수에통신정보를실어 1차코일을통해전송하거나또는정보가담긴동작 주파수를 1차코일을통해수신함으로써인-밴드통신을수행할수있다.이때, 이진위상편이 (BPSK: binary phase shift keying), FSK(Frequency Shift Keying) 또는진폭편이 (ASK: amplitude shift keying)등의변조방식과
맨체스터 (Manchester)코딩또는넌제로복귀레벨 (NZR-L: non-retum-to-zero level)코딩등의코딩방식을이용하여자기파에정보를담거나정보가담긴 자기파를해석할수있다.이러한 IB통신을이용하면통신/컨트롤회로 (120)은 수 kbps의데이터전송률로수미터에이르는거리까지정보를송수신할수있다.
[124] OOB통신모듈은통신안테나를통해아웃-밴드통신을수행할수도있다. 예를들어,통신/컨트롤회로 (120)은근거리통신모듈로제공될수있다.근거리 통신모듈의예로는와이파이 (Wi-Fi),블루투스 (Bluetooth),블루투스 LE, 직비 (ZigBee), NFC등의통신모듈이 있다.
[125] 통신/컨트롤회로 (120)은무선전력전송장치 (100)의전반적인동작을제어할 수있다.통신/컨트롤회로 (120)은각종정보의연산및처리를수행하고,무선 전력전송장치 (100)의각구성요소를제어할수있다.
[126] 통신/컨트롤회로 (120)은하드웨어 ,소프트웨어또는이들의조합을이용하여 컴퓨터나이와유사한장치로구현될수있다.하드웨어적으로통신/컨트롤 회로 (120)은전기적인신호를처리하여제어기능을수행하는전자회로형태로 제공될수있으며 ,소프트웨어적으로는하드웨어적인통신/컨트롤회로 (120)을 구동시키는프로그램형태로제공될수있다.
[127] 통신/컨트롤회로 (120)은동작포인트 (operating point)를컨트롤함으로써송신 전력을컨트롤할수있다.컨트롤하는동작포인트는주파수 (또는위상),듀티 사이클 (duty cycle),듀티비 (duty ratio)및전압진폭의조합에해당될수있다. 통신/컨트롤회로 (120)은주파수 (또는위상),듀티사이클,듀티비및전압진폭 중적어도하나를조절하여송신전력을컨트롤할수있다.또한,무선전력 전송장치 (100)는일정한전력을공급하고,무선전력수신장치 (200)가공진 주파수를컨트롤함으로써수신전력을컨트롤할수도있다.
[128] 모바일기기 (450)는 2차코일 (Secondary Coil)을통해무선전력을수신하는
무선전력수신장치 (power receiver, 200)와무선전력수신장치 (200)에서수신된 전력을전력을전달받아저장하고기기에공급하는부하 (load, 455)를포함한다.
[129] 무선전력수신장치 (200)는전력픽업회로 (power pick-up circuit, 210)및
통신/컨트롤회로 (communications & control circuit, 220)을포함할수있다.전력 픽업회로 (2W)은 2차코일을통해무선전력을수신하여전기에너지로변환할 수있다.전력픽업회로 (2W)은 2차코일을통해얻어지는교류신호를정류하여 직류신호로변환한다.통신/컨트롤회로 (220)은무선전력의송신과수신 (전력 전달및수신)을제어할수있다.
[13이 2차코일은무선전력전송장치 (W0)에서전송되는무선전력을수신할수
있다. 2차코일은 1차코일에서발생하는자기장을이용하여전력을수신할수 있다.여기서,특정주파수가공진주파수인경우에는 1차코일과 2차코일간에 자기공진현상이발생하여보다효율적으로전력을전달받을수있다.
[131] 도 4a에는도시되지않았으나통신/컨트롤회로 (220)은통신안테나를더
포함할수도있다.통신안테나는자기장통신이외의통신캐리어를이용하여 통신신호를송수신할수있다.예를들어,통신안테나는와이파이 (Wi-Fi), 블루투스 (Bluetooth),블루투스 LE,직비 (ZigBee), NFC등의통신신호를 송수신할수있다.
[132] 통신/컨트롤회로 (220)은무선전력전송장치 (100)와정보를송수신할수있다. 통신/컨트롤회로 (220)은 IB통신모듈또는 OOB통신모듈중적어도하나를 포함할수있다.
[133] IB통신모듈은특정주파수를중심주파수로하는자기파를이용하여정보를 송수신할수있다.예를들어,통신/컨트롤회로 (220)은자기파에정보를실어 2차 코일을통해송신하거나또는정보가담긴자기파를 2차코일을통해
수신함으로써 IB통신을수행할수있다.이때,이진위상편이 (BPSK: binary phase shift keying)), FSK(Frequency Shift Keying)또는진폭편이 (ASK: amplitude shift keying)등의변조방식과맨체스터 (Manchester)코딩또는넌제로복귀 레벨 (NZR-L: non-retum-to-zero level)코딩등의코딩방식을이용하여자기파에 정보를담거나정보가담긴자기파를해석할수있다.이러한 IB통신을 이용하면통신/컨트롤회로 (220)은수 kbps의데이터전송률로수미터에이르는 거리까지정보를송수신할수있다.
[134] OOB통신모듈은통신안테나를통해아웃-밴드통신을수행할수도있다. 예를들어,통신/컨트롤회로 (220)은근거리통신모듈로제공될수있다.
[135] 근거리통신모듈의예로는와이파이 (Wi-Fi),블루투스 (Bluetooth),블루투스 LE,직비 (ZigBee), NFC등의통신모듈이 있다.
[136] 통신/컨트롤회로 (220)은무선전력수신장치 (200)의전반적인동작을제어할 수있다.통신/컨트롤회로 (220)은각종정보의연산및처리를수행하고,무선 전력수신장치 (200)의각구성요소를제어할수있다.
[137] 통신/컨트롤회로 (220)은하드웨어 ,소프트웨어또는이들의조합을이용하여 컴퓨터나이와유사한장치로구현될수있다.하드웨어적으로통신/컨트롤 회로 (220)은전기적인신호를처리하여제어기능을수행하는전자회로형태로 제공될수있으며 ,소프트웨어적으로는하드웨어적인통신/컨트롤회로 (220)을 구동시키는프로그램형태로제공될수있다.
[138] 통신/컨트롤회로 (120)과통신/컨트롤회로 (220)이 OOB통신모듈또는근거리 통신모듈로서블루투스또는블루투스 LE일경우,통신/컨트롤회로 (120)과 통신/컨트롤회로 (220)은각각도 4B와같은통신아키텍처로구현되어동작할 수있다.
[139] 도 4b는본명세서에따른일실시예가적용될수있는블루투스통신
아키텍처 (Architecture)의일예를나타낸도이다.
[140] 도 4b를참고하면,도 4b의 (a)는 GATT를지원하는블루투스 BR(Basic
Rate)/EDR(Enhanced Data Rate)의프로토콜스택의일예를나타내며, (b)는 블루투스 LE(Low Energy)의프로토콜스택의일예를나타낸다.
[141] 구체적으로,도 4b의 (a)에도시된바와같이 ,블루투스 BR/EDR프로토콜
스택은호스트컨트롤러인터페이스 (Host Controller Interface, HCI, 18)를 기준으로상부의컨트롤러스택 (Controller stack, 460)과하부의호스트스택 (Host Stack, 470)을포함할수있다.
[142] 상기호스트스택 (또는호스트모듈) (470)은 2.4GHz의블루투스신호를받는 무선송수신모듈과블루투스패킷을전송하거나수신하기위한하드웨어를 말하며,상기컨트롤러스택 (460)은블루투스모듈과연결되어블루투스모듈을 제어하고동작을수행한다.
[143] 상기호스트스택 (470)은 BR/EDR PHY계층 (12), BR/EDR Baseband계층 (14), 링크매니저계층 (Link Manager, 16)을포함할수있다.
[144] 상기 BR/EDR PHY계층 (12)은 2.4GHz무선신호를송수신하는계층으로, GFSK (Gaussian Frequency Shift Keying) modulation을사용하는경우 79개의 RF 채널을 hopping하여데이터를전송할수있다.
[145] 상기 BR/EDR Baseband계층 (14)은 Digital Signal을전송하는역할을담당하며 , 초당 1400번 hopping하는채널시퀀스를선택하며 ,각채널별 625us길이의 time slot을전송한다.
[146] 상기링크매니저계증 (16)은 LMP(Link Manager Protocol)을활용하여 Bluetooth Connection의전반적인동작 (link setup, control, security)을제어한다.
[147] 상기링크매니저계층 (16)은아래와같은기능을수행할수있다.
[148] - ACL/SCO logical transport, logical link setup및 control을한다.
[149] - Detach: connection을중단하고,중단이유를상대디바이스에게알려준다.
[150] - Power control및 Role switch를한다.
[151] - Security(au比 lentication, pairing, encryption)기능을수행한다.
[152] 상기호스트컨트롤러인터페이스계증 (18)은 Host모듈과 Controller모듈
사이의인터페이스제공하여 Host가 command와 Data를 Controller에게제공하게 하며 , Controller가 event와 Data를 Host에게제공할수있도록해준다.
[153] 상기호스트스택 (또는호스트모듈, 20)은논리적링크제어및적응
프로토콜 (L2CAP, 21),속성프로토콜 (Protocol, 22),일반속성프로파일 (Generic Attribute Profile, GATT, 23),일반접근프로파일 (Generic Access Profile, GAP, 24), BR/EDR프로파일 (25)을포함한다.
[154] 상기논리적링크제어및적응프로토콜 (L2CAP, 21)은특정프로토콜또는 포로파일에게데이터를전송하기위한하나의양방향채널을제공할수있다.
[155] 상기 L2CAP(21)은블루투스상위에서제공하는다양한프로토콜,프로파일 등을멀티플렉싱 (multiplexing)할수있다.
[156] 블루투스 BR/EDR의 L2CAP에서는 dynamic채널사용하며 , protocol service multiplexer, retransmission, streaming mode를지원하고, Segmentation및
reassembly, per-channel flow control, error control을제공한다.
[157] 상기일반속성프로파일 (GATT, 23)은서비스들의구성시에상기속성
프로토콜 (22)이어떻게이용되는지를설명하는프로토콜로서동작가능할수 있다.예를들어,상기일반속성프로파일 (23)은 ATT속성들이어떻게
서비스들로함께그룹화되는지를규정하도록동작가능할수있고,서비스들과 연계된특징들을설명하도록동작가능할수있다.
[158] 따라서,상기일반속성프로파일 (23)및상기속성프로토콜 (ATT, 22)은
디바이스의상태와서비스들을설명하고,특징들이서로어떻게관련되며 이들이어떻게이용되는지를설명하기위하여,특징들을사용할수있다.
[159] 상기속성프로토콜 (22)및상기 BR/EDR프로파일 (25)은블루트스 BR/EDR를 이용하는서비스 (profile)의정의및이들데이터를주고받기위한 application 프로토콜을정의하며 ,상기일반접근프로파일 (Generic Access Profile, GAP,
24)은디바이스발견,연결,및보안수준을정의한다.
[16이 도 4b의 (비에도시된바와같이,블루투스 LE프로토콜스택은타이밍이
중요한무선장치인터페이스를처리하도록동작가능한컨트롤러
스택 (Controller stack, 480)과고레벨 (high level)데이터를처리하도록동작가능한 호스트스택 (Host stack, 490)을포함한다.
[161] 먼저,컨트롤러스택 (480)은블루투스무선장치를포함할수있는통신모듈, 예를들어,마이크로프로세서와같은프로세싱디바이스를포함할수있는 프로세서모듈을이용하여구현될수있다.
[162] 호스트스택 (490)은프로세서모듈상에서작동되는 OS의일부로서,또는 OS 위의패키지 (package)의인스턴스생성 (instantiation)으로서구현될수있다.
[163] 일부사례들에서,컨트롤러스택및호스트스택은프로세서모듈내의동일한 프로세싱디바이스상에서작동또는실행될수있다.
[164] 상기컨트롤러스택 (480)은물리계층 (Physical Layer, PHY, 32),링크
레이어 (Link Layer, 34)및호스트컨트롤러인터페이스 (Host Controller Interface, 36)를포함한다.
[165] 상기물리계층 (PHY,무선송수신모듈, 32)은 2.4 GHz무선신호를송수신하는 계증으로 GFSK (Gaussian Frequency Shift Keying) modulation과 40개의 RF 채널로구성된 frequency hopping기법을사용한다.
[166] 블루투스패킷을전송하거나수신하는역할을하는상기링크레이어 (34)는 3개의 Advertising채널을이용하여 Advertising, Scanning기능을수행한후에 디바이스간연결을생성하고, 37개 Data채널을통해최대 257bytes의데이터 패킷을주고받는기능을제공한다.
[167] 상기호스트스택은 GAP(Generic Access Profile, 40),논리적링크제어및적응 프로토콜 (L2CAP, 41),보안매니저 (Security Manager, SM, 42),속성
프로토콜 (Attribute Protocol, ATT, 440),일반속성프로파일 (Generic Attribute Profile, GATT, 44),일반접근프로파일 (Generic Access Profile, 25), LT
프로파일 (46)을포함할수있다.다만,상기호스트스택 (490)은이것으로 한정되지는않고다양한프로토콜들및프로파일들을포함할수있다.
[168] 호스트스택은 L2CAP을사용하여블루투스상위에서제공하는다양한
프로토콜,프로파일등을다중화 (multiplexing)한다.
[169] 먼저 , L2CAP(Logical Link Control and Adaptation Protocol, 41)은특정프로토콜 또는프로파일에게데이터를전송하기위한하나의양방향채널을제공할수 있다.
[17이 상기 L2CAP(41)은상위계층프로토콜들사이에서데이터를
다중화 (multiplex)하고,패키지 (package)들을분할 (segment)및
재조립 (reassemble)하고,멀티캐스트데이터송신을관리하도록동작가능할수 있다.
[171] 블루투스 LE에서는 3개의고정채널 (signaling CH을위해 1개, Security
Manager를위해 1개 , Attribute protocol을위해 1개)을기본적으로사용한다. 그리고,필요에따라동적채널을사용할수도있다.
[172] 반면, BR/EDR(Basic Rate/Enhanced Data Rate)에서는동적인채널을기본적으로 사용하며 , protocol service multiplexer, retransmission, streaming mode등을 WO 2020/175808 1»(:1^1{2020/001354 지원한다.
[173] SM(Security Manager, 42)은디바이스를인증하며 ,키분배 (key distribution)를 제공하기위한프로토콜이다.
[174] ATT( Attribute Protocol, 43)는서버 -클라이언트 (Server-Client)구조로상대
디바이스의데이터를접근하기위한규칙을정의한다. ATT에는아래의 6가지의 메시지유형 (Request, Response, Command, Notification, Indication, Confirmation)이 있다.
[175] ① Request및 Response메시지 : Request메시지는클라이언트디바이스에서 서버디바이스로특정정보요청및전달하기위한메시지이며, Response 메시지는 Request메시지에대한응답메시지로서,서버디바이스에서
클라이언트디바이스로전송하는용도로사용할수있는메시지를말한다.
[176] ② Command메시지 :클라이언트디바이스에서서버디바이스로주로특정 동작의명령을지시하기위해전송하는메시지로,서버디바이스는 Command 메시지에대한응답을클라이언트디바이스로전송하지않는다.
[177] ③ Notification메시지 :서버디바이스에서클라이언트디바이스로이벤트등과 같은통지를위해전송하는메시지로,클라이언트디바이스는 Notification 메시지에대한확인메시지를서버디바이스로전송하지않는다.
[178] ④ Indication및 Confirm메시지 :서버디바이스에서클라이언트디바이스로 이벤트등과같은통지를위해전송하는메시지로, Notification메시지와는달리 , 클라이언트디바이스는 Indication메시지에대한확인메시지 (Confirm
message)를서버디바이스로전송한다.
[179] 본명세서는상기속성프로토콜 (ATT, 43)을사용하는 GATT프로파일에서긴 데이터요청시데이터길이에대한값을전송하여클라이언트가데이터길이를 명확히알수있게하며, UUID를이용하여서버로부터특성 (Characteristic)값을 전송받을수있다.
[18이 상기일반접근프로파일 (GAP, 45)은블루투스 LE기술을위해새롭게구현된 계층으로,블루투스 LE디바이스들간의통신을위한역할선택,멀티프로파일 작동이어떻게일어나는지를제어하는데사용된다.
[181] 또한,상기일반접근프로파일 (45)은디바이스발견,연결생성및보안절차 부분에주로사용되며 ,사용자에게정보를제공하는방안을정의하며 ,하기와 같은 attribute의 type을정의한다.
[182] ① Service:데이터와관련된 behavior의조합으로디바이스의기본적인동작을 정의
[183] ② Include:서비스사이의관계를정의
[184] ③ Characteristics:서비스에서사용되는 data값
[185] ④ Behavior: UUID(Universal Unique Identifier, value type)로정의된컴퓨터가 읽을수있는포맷
[186] 상기 LE프로파일 (46)은 GATT에의존성을가지는 profile들로주로블루투스 LE디바이스에적용된다. LE프로파일 (46)은예를들면, Battery, Time, FindMe, Proximity, Time등이 있을수있으며 , GATT -based Profiles의구체적인내용은 하기와같다.
[187] ① Battery:배터리정보교환방법
[188] ② Time:시간정보교환방법
[ 189] ③ FindMe:거리에따른알람서비스제공
[19이 ④ Proximity:배터리정보교환방법
[191] ⑤ Time:시간정보교환방법
[192] 상기일반속성프로파일 (GATT, 44)은서비스들의구성시에상기속성
프로토콜 (43)이어떻게이용되는지를설명하는프로토콜로서동작가능할수 있다.예를들어,상기일반속성프로파일 (44)은 ATT속성들이어떻게
서비스들로함께그룹화되는지를규정하도록동작가능할수있고,서비스들과 연계된특징들을설명하도록동작가능할수있다.
[193] 따라서,상기일반속성프로파일 (44)및상기속성프로토콜 (ATT, 43)은
디바이스의상태와서비스들을설명하고,특징들이서로어떻게관련되며 이들이어떻게이용되는지를설명하기위하여,특징들을사용할수있다.
[194] 이하에서 ,블루투스저전력에너지 (Bluetooth Low Energy:BLE)기술의
절차 (Procedure)들에대해간략히살펴보기로한다.
[195] BLE절차는디바이스필터링절차 (Device Filtering Procedure),광고
절차 (Advertising Procedure),스캐닝절차 (Scanning Procedure),디스커버링 절차 (Discovering Procedure),연결절차 (Connecting Procedure)등으로구분될수 있다.
[196] 디바이스필터링절차 (Device Filtering Procedure)
[197] 디바이스필터링절차는컨트롤러스택에서요청,지시,알림등에대한응답을 수행하는디바이스들의수를줄이기위한방법이다.
[198] 모든디바이스에서요청수신시,이에대해응답하는것이불필요하기때문에, 컨트롤러스택은요청을전송하는개수를줄여서, BLE컨트롤러스택에서전력 소비가줄수있도록제어할수있다.
[199] 광고디바이스또는스캐닝디바이스는광고패킷,스캔요청또는연결요청을 수신하는디바이스를제한하기위해상기디바이스필터링절차를수행할수 있다.
[200] 여기서,광고디바이스는광고이벤트를전송하는즉,광고를수행하는
디바이스를말하며,광고자 (Advertiser)라고도표현된다.
[201] 스캐닝디바이스는스캐닝을수행하는디바이스,스캔요청을전송하는
디바이스를말한다.
[202] BLE에서는,스캐닝디바이스가일부광고패킷들을광고디바이스로부터
수신하는경우,상기스캐닝디바이스는상기광고디바이스로스캔요청을 전송해야한다. [203] 하지만,디바이스필터링절차가사용되어스캔요청전송이불필요한경우, 상기스캐닝디바이스는광고디바이스로부터전송되는광고패킷들을무시할 수있다.
[204] 연결요청과정에서도디바이스필터링절차가사용될수있다.만약,연결요청 과정에서디바이스필터링이사용되는경우,연결요청을무시함으로써상기 연결요청에대한응답을전송할필요가없게된다.
[205] 광고절차 (Advertising Procedure)
[206] 광고디바이스는영역내디바이스들로비지향성의브로드캐스팅을수행하기 위해광고절차를수행한다.
[207] 여기서 ,비지향성의브로드캐스팅 (Undirected Advertising)는특정디바이스를 향한브로드캐스팅이아닌전 (모든)디바이스를향한광고 (Advertising)이며 , 모든디바이스가광고 (Advertising)을스캔 (Scan)하여추가정보요청이나연결 요청을할수있다.
[208] 이와달리 ,지향성브로드캐스팅 (Directed advertising)는수신디바이스로
지정된디바이스만광고 (Advertising)을스캔 (Scan)하여추가정보요청이나연결 요청을할수있다.
[209] 광고절차는근처의개시디바이스와블루투스연결을확립하기위해
사용된다.
[210] 또는,광고절차는광고채널에서리스닝을수행하고있는스캐닝
디바이스들에게사용자데이터의주기적인브로드캐스팅을제공하기위해 사용될수있다.
[211] 광고절차에서모든광고 (또는광고이벤트)는광고물리채널을통해
브로드캐스팅된다.
[212] 광고디바이스들은광고디바이스로부터추가적인사용자데이터를얻기위해 리스닝을수행하고있는리스닝디바이스들로부터스캔요청을수신할수있다. 광고디바이스는스캔요청을수신한광고물리채널과동일한광고물리채널을 통해,스캔요청을전송한디바이스로스캔요청에대한응답을전송한다.
[213] 광고패킷들의일부분으로서보내지는브로드캐스팅사용자데이터는동적인 데이터인반면에 ,스캔응답데이터는일반적으로정적인데이터이다.
[214] 광고디바이스는광고 (브로드캐스팅)물리채널상에서개시디바이스로부터 연결요청을수신할수있다.만약,광고디바이스가연결가능한광고이벤트를 사용하였고,개시디바이스가디바이스필터링절차에의해필터링되지 않았다면,광고디바이스는광고를멈추고연결모드 (connected mode)로 진입한다.광고디바이스는연결모드이후에다시광고를시작할수있다.
[215] 스캐닝절차 (Scanning Procedure)
[216] 스캐닝을수행하는디바이스즉,스캐닝디바이스는광고물리채널을
사용하는광고디바이스들로부터사용자데이터의비지향성브로드캐스팅을 청취하기위해스캐닝절차를수행한다. WO 2020/175808 1»(:1^1{2020/001354
[217] 스캐닝디바이스는광고디바이스로부터추가적인데이터를요청하기위해, 광고물리채널을통해스캔요청을광고디바이스로전송한다.광고디바이스는 광고물리채널을통해스캐닝디바이스에서요청한추가적인데이터를 포함하여상기스캔요청에대한응답인스캔응답을전송한다.
[218] 상기스캐닝절차는 BLE피코넷에서다른 BLE디바이스와연결되는동안 사용될수있다.
[219] 만약,스캐닝디바이스가브로드캐스팅되는광고이벤트를수신하고,연결 요청을개시할수있는개시자모드 (initiator mode)에있는경우,스캐닝 디바이스는광고물리채널을통해광고디바이스로연결요청을전송함으로써 광고디바이스와블루투스연결을시작할수있다.
[22이 스캐닝디바이스가광고디바이스로연결요청을전송하는경우,스캐닝
디바이스는추가적인브로드캐스팅을위한개시자모드스캐닝을중지하고, 연결모드로진입한다.
[221] 디스커버링절차 (Discovering Procedure)
[222] 블루투스통신이가능한디바이스 (이하,’블루투스디바이스’라한다.)들은 근처에존재하는디바이스들을발견하기위해또는주어진영역내에서다른 디바이스들에의해발견되기위해광고절차와스캐닝절차를수행한다.
[223] 디스커버링절차는비대칭적으로수행된다.주위의다른디바이스를찾으려고 하는블루투스디바이스를디스커버링디바이스 (discovering device)라하며 ,스캔 가능한광고이벤트를광고하는디바이스들을찾기위해리스닝한다.다른 디바이스로부터발견되어이용가능한블루투스디바이스를디스커버러블 디바이스 (discoverable device)라하며 ,적극적으로광고 (브로드캐스팅 )물리 채널을통해다른디바이스가스캔가능하도록광고이벤트를
브로드캐스팅한다.
[224] 디스커버링디바이스와디스커버러블디바이스모두피코넷에서다른
블루투스디바이스들과이미연결되어있을수있다.
[225] 연결절차 (Connecting Procedure)
[226] 연결절차는비대칭적이며,연결절차는특정블루투스디바이스가광고
절차를수행하는동안다른블루투스디바이스는스캐닝절차를수행할것을 요구한다.
[227] 즉,광고절차가목적이될수있으며 ,그결과단지하나의디바이스만광고에 응답할것이다.광고디바이스로부터접속가능한광고이벤트를수신한이후, 광고 (브로트캐스트)물리채널을통해광고디바이스로연결요청을
전송함으로써연결을개시할수있다.
[228] 다음으로, BLE기술에서의동작상태즉,광고상태 (Advertising State),스캐닝 상태 (Scanning State),개시상태 (Initiating State),연결상태 (connection state)에 대해간략히살펴보기로한다.
[229] 광고상태 (Advertising State) [23이 링크계층 (LL)은호스트 (스택)의지시에의해,광고상태로들어간다.링크 계층이광고상태에 있을경우,링크계층은광고이벤트들에서광고 PDU(Packet Data Circuit)들을전송한다.
[231] 각각의광고이벤트는적어도하나의광고 PDU들로구성되며,광고 PDU들은 사용되는광고채널인덱스들을통해전송된다.광고이벤트는광고 PDU가 사용되는광고채널인덱스들을통해각각전송되었을경우,종료되거나광고 디바이스가다른기능수행을위해공간을확보할필요가있을경우좀더일찍 광고이벤트를종료할수있다.
[232] 스캐닝상태 (Scanning State)
[233] 링크계층은호스트 (스택)의지시에의해스캐닝상태로들어간다.스캐닝
상태에서,링크계층은광고채널인덱스들을리스닝한다.
[234] 스캐닝상태에는수동적스캐닝 (passive scanning),적극적스캐닝 (active
scanning)의두타입이있으며,각스캐닝타입은호스트에의해결정된다.
[235] 스캐닝을수행하기위한별도의시간이나광고채널인덱스가정의되지는
않는다.
[236] 스캐닝상태동안,링크계증은스캔윈도우 (scanWindow)구간 (duration)동안 광고채널인덱스를리스닝한다.스캔인터벌 (scanlnterval)은두개의연속적인 스캔윈도우의시작점사이의간격 (인터벌)으로서정의된다.
[237] 링크계층은스케쥴링의충돌이없는경우,호스트에의해지시되는바와같이 스캔윈도우의모든스캔인터벌완성을위해리스닝해야한다.각
스캔윈도우에서,링크계층은다른광고채널인덱스를스캔해야한다.링크 계층은사용가능한모든광고채널인덱스들을사용한다.
[238] 수동적인스캐닝일때,링크계층은단지패킷들만수신하고,어떤패킷들도 전송하지못한다.
[239] 능동적인스캐닝일때,링크계층은광고디바이스로광고 PDU들과광고
디바이스관련추가적인정보를요청할수있는광고 PDU타입에의존하기위해 리스닝을수행한다.
[240] 개시상태 (Initiating State)
[241] 링크계층은호스트 (스택)의지시에의해개시상태로들어간다.
[242] 링크계층이개시상태에 있을때,링크계층은광고채널인덱스들에대한
리스닝을수행한다.
[243] 개시상태동안,링크계층은스캔윈도우구간동안광고채널인덱스를
리스닝한다.
[244] 연결상태 (connection state)
[245] 링크계층은연결요청을수행하는디바이스즉,개시디바이스가
CONNECT_REQ PDU를광고디바이스로전송할때또는광고디바이스가개시 디바이스로부터 CONNECT_REQ PDU를수신할때연결상태로들어간다.
[246] 연결상태로들어간이후,연결이생성되는것으로고려된다.다만,연결이연결 상태로들어간시점에서확립되도록고려될필요는없다.새로생성된연결과기 확립된연결간의유일한차이는링크계증연결감독타임아웃 (supervision timeout)값뿐이다.
[247] 두디바이스가연결되어있을때,두디바이스들은다른역할로활동한다.
[248] 마스터역할을수행하는링크계층은마스터로불리며,슬레이브역할을
수행하는링크계층은슬레이브로불린다.마스터는연결이벤트의타이밍을 조절하고,연결이벤트는마스터와슬레이브간동기화되는시점을말한다.
[249] 이하에서 ,블루투스인터페이스에서정의되는패킷에대해간략히살펴보기로 한다. BLE디바이스들은하기에서정의되는패킷들을사용한다.
[250] 패킷포맷 (Packet Format)
[251] 링크계층 (Link Layer)은광고채널패킷과데이터채널패킷둘다를위해
사용되는단지하나의패킷포맷만을가진다.
[252] 각패킷은프리엠블 (Preamble),접속주소 (Access Address), PDU및 CRC 4개의 필드로구성된다.
[253] 하나의패킷이광고채널에서송신될때 , PDU는광고채널 PDU가될것이며 , 하나의패킷이데이터채널에서전송될때 , PDU는데이터채널 PDU가될 것이다.
[254] 광고채널 PDU(Advertising Channel PDU)
[255] 광고채널 PDU(Packet Data Circuit)는 16비트헤더와다양한크기의페이로드를 가진다.
[256] 헤더에포함되는광고채널 PDU의 PDU타입필드는하기표 3에서정의된 바와같은 PDU타입을나타낸다.
[257] [표 3]
Figure imgf000026_0001
[258] 광고 1)11(쇼(!¥61번 1¾ 1)11)아래광고채널모1)11타입들은광고모1)11로불리고 구체적인이벤트에서사용된다.
[259] 가능한비지향성광고이벤트 [26이 ADV_DIRECT_IND:연결가능한지향성광고이벤트
[261] ADV_NONCONN_IND:연결가능하지않은비지향성광고이벤트
[262] ADV_SCAN_IND:스캔가능한비지향성광고이벤트
[263] 상기 PDU들은광고상태에서링크계층 (Link Layer)에서전송되고,스캐닝 상태또는개시상태 (Initiating State)에서링크계증에의해수신된다.
[264] 스캐닝 PDU(Scanning PDU)
[265] 아래광고채널 PDU타입은스캐닝 PDU로불리며 ,하기에서설명되는
상태에서사용된다.
[266] SCAN.REQ:스캐닝상태에서링크계층에의해전송되며 ,광고상태에서링크 계층에의해수신된다.
[267] SCAN.RSP:광고상태에서링크계층에의해전송되며,스캐닝상태에서링크 계층에의해수신된다.
[268] 개시 PDU(Initiating PDU)
[269] 아래광고채널 PDU타입은개시 PDU로불린다.
[27이 CONNECT_REQ:개시상태에서링크계층에의해전송되며 ,광고상태에서 링크계층에의해수신된다.
[271 ] 데이터채널 PDU(Data Channel PDU)
[272] 데이터채널 PDU는 16비트헤더 ,다양한크기의페이로드를가지고,메시지 무결점체크 (Message Integrity Check:MIC)필드를포함할수있다.
[273] 앞에서살펴본, BLE기술에서의절차,상태,패킷포맷등은본명세서에서 제안하는방법들을수행하기위해적용될수있다.
[274] 다시도 4a를참조하면,부하 (455)는배터리일수있다.배터리는전력픽업 회로 (2W)으로부터출력되는전력을이용하여에너지를저장할수있다.한편, 모바일기기 (450)에배터리가반드시포함되어야하는것은아니다.예를들어, 배터리는탈부착이가능한형태의외부구성으로제공될수있다.다른예를 들어,무선전력수신장치 (200)에는전자기기의다양한동작을구동하는구동 수단이배터리대신포함될수도있다.
[275] 모바일기기 (450)는무선전력수신장치 (200)을포함하는것을도시되어 있고, 베이스스테이션 (400)은무선전력전송장치 (100)를포함하는것으로도시되어 있으나,넓은의미에서는무선전력수신장치 (200)는모바일기기 (450)와 동일시될수있고무선전력전송장치 (100)는베이스스테이션 (400)와동일시될 수도있다.
[276] 통신/컨트롤회로 (120)과통신/컨트롤회로 (220)이 IB통신모듈이외에 OOB 통신모듈또는근거리통신모듈로서블루투스또는블루투스 LE을포함하는 경우,통신/컨트롤회로 (120)을포함하는무선전력전송장치 (100)와통신/컨트롤 회로 (220)을포함하는무선전력수신장치 (200)은도 4C와같은단순화된 블록도로표현될수있다.
[277] 도 4c는일례에따른 BLE통신을사용하는무선전력전송시스템을도시한 블록도이다.
[278] 도 4c를참조하면,무선전력전송장치 (100)는전력변환회로 (110)과
통신/컨트롤회로 (120)을포함한다.통신/컨트롤회로 (120)은인밴드통신 모듈 (121)및 BLE통신모듈 (122)를포함한다.
[279] 한편무선전력수신장치 (200)는전력픽업회로 (210)과통신/컨트롤
회로 (220)을포함한다.통신/컨트롤회로 (220)은인밴드통신모듈 (221)및 BLE 통신모듈 (222)를포함한다.
[28이 일측면에서, BLE통신모듈들 (122, 222)은도 4B에따른아키텍처및동작을 수행한다.예를들어, BLE통신모듈들 (122, 222)은무선전력전송장치 (100)와 무선전력수신장치 (200)사이의접속을수립하고,무선전력전송에필요한제어 정보와패킷들을교환하는데사용될수도있다.
[281] 다른측면에서,통신/컨트롤회로 (120)은무선충전을위한프로파일을
동작시키도록구성될수있다.여기서,무선충전을위한프로파일은 BLE전송을 사용하는 GATT일수있다.
[282] 한편,통신/컨트롤회로들 (120, 220)은도 4d와같이각각인밴드통신
모듈들 (121, 221)만을포함하고, BLE통신모듈들 (122, 222)은통신/컨트롤 회로들 (120, 220)과분리되어구비되는형태도가능하다.
[283] 이하에서코일또는코일부는코일및코일과근접한적어도하나의소자를 포함하여코일어셈블리,코일셀또는셀로서지칭할수도있다.
[284] 도 5는무선전력전송절차를설명하기위한상태천이도이다.
[285] 도 5를참조하면,본명세서의일실시 예에따른무선전력전송장치로부터 수신기로의파워전송은크게선택단계 (selection phase, 5 W),핑단계 (ping phase, 520),식별및구성단계 (identification and configuration phase, 530),협상
단계 (negotiation phase, 540),보정단계 (calibration phase, 550),전력전송 단계 (power transfer phase, 560)단계및재협상단계 (renegotiation phase, 570)로 구분될수있다.
[286] 선택단계 (510)는파워전송을시작하거나파워전송을유지하는동안특정 오류또는특정이벤트가감지되면,천이되는단계-예를들면,도면부호 S502, S504, S508, S510및 S512를포함함-일수있다.여기서,특정오류및특정 이벤트는이하의설명을통해명확해질것이다.또한,선택단계 (510)에서 무선전력전송장치는인터페이스표면에물체가존재하는지를모니터링할수 있다.만약,무선전력전송장치가인터페이스표면에물체가놓여진것이 감지되면,핑단계 (520)로천이할수있다.선택단계 (510)에서무선전력 전송장치는매우짧은구간 (duration)에해당하는전력신호 (또는펄스)인 아날로그핑 (Analog Ping)신호를전송하며 ,송신코일또는 1차코일 (Primary Coil)의전류변화에기반하여인터페이스표면의활성영역 (Active Area)에 물체가존재하는지를감지할수있다.
[287] 선택단계 (510)에서물체가감지되는경우,무선전력전송장치는무선전력 공진회로 (예를들어전력전송코일및/또는공진캐패시터)의품질인자를 측정할수있다.본명세서의일실시예에서는선택단계 (510)에서물체가 감지되면,충전영역에이물질과함께무선전력수신장치가놓였는지판단하기 위하여품질인자를측정할수있다.무선전력전송장치에구비되는코일은환경 변화에의해인덕턴스및/또는코일내직렬저항성분이감소될수있고,이로 인해품질인자값이감소하게된다.측정된품질인자값을이용하여이물질의 존재여부를판단하기위해,무선전력전송장치는충전영역에이물질이 배치되지않은상태에서미리측정된기준품질인자값을무선전력
수신장치로부터수신할수있다.협상단계 (540)에서수신된기준품질인자값과 측정된품질인자값을비교하여이물질존재여부를판단할수있다.그러나 기준품질인자값이낮은무선전력수신장치의경우-일예로,무선전력 수신장치의타입,용도및특성등에따라특정무선전력수신장치는낮은기준 품질인자값을가질수있음-,이물질이존재하는경우에측정되는품질인자 값과기준품질인자값사이의큰차이가없어이물질존재여부를판단하기 어려운문제가발생할수있다.따라서다른판단요소를더고려하거나,다른 방법을이용하여이물질존재여부를판단해야한다.
[288] 본명세서의또다른실시예에서는선택단계 (510)에서물체가감지되면,충전 영역에이물질과함께배치되었는지판단하기위하여특정주파수영역내 (ex 동작주파수영역)품질인자값을측정할수있다.무선전력전송장치의코일은 환경변화에의해인덕턴스및/또는코일내직렬저항성분이감소될수있고, 이로인해무선전력전송장치의코일의공진주파수가변경 (시프트)될수있다. 즉,동작주파수대역내최대품질인자값이측정되는주파수인품질인자 피크 (peak)주파수가이동될수있다.
[289] 단계 (520)에서무선전력전송장치는물체가감지되면,수신기를활성화 (Wake up)시키고,감지된물체가무선전력수신기인지를식별하기위한디지털 핑 (Digital Ping)을전송한다.핑단계 (520)에서무선전력전송장치는디지털핑에 대한응답시그널-예를들면,신호세기패킷-을수신기로부터수신하지못하면, 다시선택단계 (510)로천이할수있다.또한,핑단계 (520)에서무선전력 전송장치는수신기로부터파워전송이완료되었음을지시하는신호-즉,충전 완료패킷-을수신하면,선택단계 (510)로천이할수도있다.
[29이 핑단계 (520)가완료되면,무선전력전송장치는수신기를식별하고수신기 구성및상태정보를수집하기위한식별및구성단계 (530)로천이할수있다.
[291] 식별및구성단계 (530)에서무선전력전송장치는원하지않은패킷이
수신되거나 (unexpected packet),미리정의된시간동안원하는패킷이수신되지 않거나 (time out),패킷전송오류가있거나 (transmission error),파워전송계약이 설정되지않으면 (no power transfer contract)선택단계 (510)로천이할수있다.
[292] 무선전력전송장치는식별및구성단계 (530)에서수시된구성
패킷 (Configuration packet)의협상필드 (Negotiation Field)값에기반하여협상 단계 (540)로의진입이필요한지여부를확인할수있다.확인결과,협상이 필요하면,무선전력전송장치는협상단계 (540)로진입하여소정 FOD검출 절차를수행할수있다.반면,확인결과,협상이필요하지않은경우,무선전력 전송장치는곧바로전력전송단계 (560)로진입할수도있다.
[293] 협상단계 (540)에서,무선전력전송장치는기준품질인자값이포함된
FOD(Foreign Object Detection)상태패킷을수신할수있다.또는기준피크 주파수값이포함된 FOD상태패킷을수신할수있다.또는기준품질인자값및 기준피크주파수값이포함된상태패킷을수신할수있다.이때,무선전력 전송장치는기준품질인자값에기반하여 FO검출을위한품질계수임계치를 결정할수있다.무선전력전송장치는기준피크주파수값에기반하여 FO 검출을위한피크주파수임계치를결정할수있다.
[294] 무선전력전송장치는결정된 FO검출을위한품질계수임계치및현재측정된 품질인자값 (핑단계이전에측정된품질인자값)을이용하여충전영역에 FO가 존재하는지를검출할수있으며, FO검출결과에따라전력전송을제어할수 있다.일예로, FO가검출된경우,전력전송이중단될수있으나,이에
한정되지는않는다.
[295] 무선전력전송장치는결정된 FO검출을위한피크주파수임계치및현재
측정된피크주파수값 (핑단계이전에측정된피크주파수값)을이용하여충전 영역에 FO가존재하는지를검출할수있으며, FO검출결과에따라전력전송을 제어할수있다.일예로, FO가검출된경우,전력전송이중단될수있으나,이에 한정되지는않는다.
[296] FO가검출된경우,무선전력전송장치는선택단계 (510)로회귀할수있다. 반면, FO가검출되지않은경우,무선전력전송장치는보정단계 (550)를거쳐 전력전송단계 (560)로진입할수도있다.상세하게,무선전력전송장치는 FO가 검출되지않은경우,무선전력전송장치는보정단계 (550)에서수신단에수신된 전력의세기를결정하고,송신단에서전송한전력의세기를결정하기위해 수신단과송신단에서의전력손실을측정할수있다.즉,무선전력전송장치는 보정단계 (550)에서송신단의송신파워와수신단의수신파워사이의차이에 기반하여전력손실을예측할수있다.일실시 예에따른무선전력전송장치는 예측된전력손실을반영하여 FOD검출을위한임계치를보정할수도있다.
[297] 전력전송단계 (560)에서,무선전력전송장치는원하지않은패킷이
수신되거나 (unexpected packet),미리정의된시간동안원하는패킷이수신되지 않거나 (time out),기설정된파워전송계약에대한위반이발생되거나 (power transfer contract violation),중전이완료된경우,선택단계 (5W)로천이할수있다.
[298] 또한,전력전송단계 (560)에서,무선전력전송장치는무선전력전송장치상태 변화등에따라파워전송계약을재구성할필요가있는경우,재협상
단계 (570)로천이할수있다.이때,재협상이정상적으로완료되면,무선전력 전송장치는전력전송단계 (560)로회귀할수있다. [299] 본실시 예에서는보정단계 (550)와전력전송단계 (560)를별개의단계로 구분하였지만,보정단계 (550)는전력전송단계 (560)에통합될수있다.이경우 보정단계 (550)에서의동작들은전력전송단계 (560)에서수행될수있다.
[300] 상기한파워전송계약은무선전력전송장치와수신기의상태및특성정보에 기반하여설정될수있다.일예로,무선전력전송장치상태정보는최대전송 가능한파워량에대한정보,최대수용가능한수신기개수에대한정보등을 포함할수있으며,수신기상태정보는요구전력에대한정보등을포함할수 있다.
[301] 도 6은일실시 예에따른전력제어컨트롤방법을나타낸다.
[302] 도 6에서전력전송단계 (560)에서,무선전력전송장치 (100)및무선전력
수신장치 (200)는전력송수신과함께통신을병행함으로써전달되는전력의 양을컨트롤할수있다.무선전력전송장치및무선전력수신장치는특정컨트롤 포인트에서동작한다.컨트롤포인트는전력전달이수행될때무선전력 수신장치의줄력단 (output)에서제공되는전압및전류의조합 (combination)을 나타낸다.
[303] 더상세히설명하면,무선전력수신장치는원하는컨트롤포인트 (desired
Control Point)-원하는출력전류/전압,모바일기기의특정위치의온도등을 선택하고,주가로현재동작하고있는실제컨트롤포인트 (actual control point)를 결정한다.무선전력수신장치는원하는컨트롤포인트와실제컨트롤포인트를 사용하여 ,컨트롤에러값 (control error value)을산줄하고,이를컨트롤에러 패킷으로서무선전력전송장치로전송할수있다.
[304] 그리고무선전력전송장치는수신한컨트롤에러패킷을사용하여새로운동작 포인트-진폭,주파수및듀티사이클-를설정/컨트롤하여전력전달을제어할수 있다.따라서컨트롤에러패킷은전략전달단계에서일정시간간격으로 전송/수신되며,실시예로서무선전력수신장치는무선전력전송장치의전류를 저감하려는경우컨트롤에러값을음수로,전류를증가시키려는경우컨트롤 에러값을양수로설정하여전송할수있다.이와같이유도모드에서는 무선전력수신장치가컨트롤에러패킷을무선전력전송장치로송신함으로써 전력전달을제어할수있다.
[305] 이하에서설명할공진모드에서는유도모드에서와는다른방식으로동작할수 있다.공진모드에서는하나의무선전력전송장치가복수의무선전력
수신장치를동시에서빙할수있어야한다.다만상술한유도모드와같이전력 전달을컨트롤하는경우,전달되는전력이하나의무선전력수신장치와의 통신에의해컨트롤되므로추가적인무선전력수신장치들에대한전력전달은 컨트롤이어려울수있다.따라서본명세서의공진모드에서는무선전력 전송장치는기본전력을공통적으로전달하고,무선전력수신장치가자체의 공진주파수를컨트롤함으로써수신하는전력량을컨트롤하는방법을 사용하고자한다.다만,이러한공진모드의동작에서도도 6에서설명한방법이 완전히배제되는것은아니며,추가적인송신전력의제어를도 6의방법으로 수행할수도있다.
[306] 도 7은다른실시예에따른무선전력전송장치의블록도이다.이는자기공진 방식또는쉐어드모드 (shared mode)의무선전력전송시스템에속할수있다. 쉐어드모드는무선전력전송장치와무선전력수신장치간에 1대다통신및 충전을수행하는모드를지칭할수있다.쉐어드모드는자기유도방식또는 공진방식으로구현될수있다.
[307] 도 7을참조하면,무선전력전송장치 (700)는코일어셈블리를덮는커버 (720), 전력송신기 (740)로전력을공급하는전력어답터 (730),무선전력을송신하는 전력송신기 (740)또는전력전달진행및다른관련정보를제공하는사용자 인터페이스 (750)중적어도하나를포함할수있다.특히 ,사용자
인터페이스 (750)는옵셔널하게포함되거나,무선전력전송장치 (700)의다른 사용자인터페이스 (750)로서포함될수도있다.
[308] 전력송신기 (740)는코일어셈블리 (760),임피던스매칭회로 (770),인버터 (780), 통신회로 (790)또는컨트롤회로 (기 0)중적어도하나를포함할수있다.
[309] 코일어셈블리 (760)는자기장을생성하는적어도하나의 1차코일을포함하며, 코일셀로지칭될수도있다.
[310] 임피던스매칭회로 (770)는인버터와 1차코일 (들)간의임피던스매칭을
제공할수있다.임피던스매칭회로 (770)는 1차코일전류를부스팅 (boost)하는 적합한 (suitable)주파수에서공진 (resonance)을발생시킬수있다.
다중-코일 (multi-coil)전력송신기 (740)에서임피던스매칭회로는인버터에서 1차코일들의서브세트로신호를라우팅하는멀티플텍스를추가로포함할수도 있다.임피던스매칭회로는탱크회로 (tank circuit)로지칭될수도있다.
[311] 임피던스매칭회로 (770)는캐패시터,인덕터및이들의연결을스위칭하는
스위칭소자를포함할수있다.임피던스의매칭은코일어셈블리 (760)를통해 전송되는무선전력의반사파를검출하고,검출된반사파에기초하여스위칭 소자를스위칭하여캐패시터나인덕터의연결상태를조정하거나캐패시터의 캐패시턴스를조정하거나인덕터의인덕턴스를조정함으로써수행될수있다. 경우에따라임피던스매칭회로 (770)는생략되어실시될수도있으며,본 명세서는임피던스매칭회로 (770)가생략된무선전력전송장치 (700)의실시 예도포함한다.
[312] 인버터 (780)는 DC인풋을 AC신호로전환할수있다.인버터 (780)는
가변 (adjustable)주파수의펄스웨이브및듀티사이클을생성하도록
하프-브리지또는풀-브리지로구동될수있다.또한인버터는입력전압레벨을 조정하도록복수의스테이지들을포함할수도있다.
[313] 통신회로 (790)은전력수신기와의통신을수행할수있다.전력수신기는전력 송신기에대한요청및정보를통신하기위해로드 (load)변조를수행한다.
따라서전력송신기 (740)는통신회로 (790)을사용하여전력수신기가전송하는 데이터를복조하기위해 1차코일의전류및/또는전압의진폭및/또는위상을 모니터링할수있다.
[314] 또한,전력송신기 (740)는통신회로 (790)을통해 FSK(Frequency Shift Keying) 방식등을사용하여데이터를전송하도록출력전력을컨트롤할수도있다.
[315] 컨트롤회로 (기 0)은전력송신기 (740)의통신및전력전달을컨트롤할수있다. 컨트롤회로 (기 0)은상술한동작포인트를조정하여전력전송을제어할수있다. 동작포인트는,예를들면,동작주파수,듀티사이클및입력전압중적어도 하나에의해결정될수있다.
[316] 통신회로 (790)및컨트롤회로 (기 0)은별개의회로/소자/칩셋으로구비되거나, 하나의회로/소자/칩셋으로구비될수도있다.
[317] 도 8은다른실시 예에따른무선전력수신장치를나타낸다.이는자기공진 방식또는쉐어드모드 (shared mode)의무선전력전송시스템에속할수있다.
[318] 도 8에서,무선전력수신장치 (800)는전력전달진행및다른관련정보를
제공하는사용자인터페이스 (820),무선전력을수신하는전력수신기 (830),로드 회로 (load circuit, 840)또는코일어셈블리를받치며커버하는베이스 (850)중 적어도하나를포함할수있다.특히 ,사용자인터페이스 (820)는옵셔널하게 포함되거나,전력수신장비의다른사용자인터페이스 (82)로서포함될수도 있다.
[319] 전력수신기 (830)는전력컨버터 (860),임피던스매칭회로 (870),코일
어셈블리 (880),통신회로 (890)또는컨트롤회로 (810)중적어도하나를포함할 수있다.
[32이 전력컨버터 (860)는 2차코일로부터수신하는 AC전력을로드회로에적합한 전압및전류로전환 (convert)할수있다.실시예로서,전력컨버터 (860)는 정류기 (rectifier)를포함할수있다.정류기는수신된무선전력을정류하여 교류에서직류로변환할수있다.정류기는다이오드나트랜지스터를이용하여 교류를직류로변환하고,캐패시터와저항을이용하여이를평활할수있다. 정류기로는브릿지회로등으로구현되는전파정류기,반파정류기,전압 체배기등이이용될수있다.추가로,전력컨버터는전력수신기의
반사 (reflected)임피던스를적용 (adapt)할수도있다.
[321] 임피던스매칭회로 (870)는전력컨버터 (860)및로드회로 (840)의조합과 2차 코일간의임피던스매칭을제공할수있다.실시예로서,임피던스매칭회로는 전력전달을강화할수있는 100kHz근방의공진을발생시킬수있다.임피던스 매칭회로 (870)는캐패시터,인덕터및이들의조합을스위칭하는스위칭소자로 구성될수있다.임피던스의정합은수신되는무선전력의전압값이나전류값, 전력값,주파수값등에기초하여임피던스매칭회로 (870)를구성하는회로의 스위칭소자를제어함으로써수행될수있다.경우에따라임피던스매칭 회로 (870)는생략되어실시될수도있으며,본명세서는임피던스매칭
회로 (870)가생략된무선전력수신장치 (200)의실시예도포함한다. [322] 코일어셈블리 (880)는적어도하나의 2차코일을포함하며,옵셔널하게는 자기장으로부터수신기의금속부분을쉴딩 (shield)하는엘러먼트 (element)를더 포함할수도있다.
[323] 통신회로 (890)은전력송신기로요청 (request)및다른정보를통신하기위해 로드변조를수행할수있다.
[324] 이를위해전력수신기 (830)는반사임피던스를변경하도록저항또는
커패시터를스위칭할수도있다.
[325] 컨트롤회로 (810)은수신전력을컨트롤할수있다.이를위해컨트롤
회로 (810)은전력수신기 (830)의실제동작포인트와원하는동작포인트의 차이를결정/산출할수있다.그리고컨트롤회로 (8W)은전력송신기의반사 임피던스의조정및/또는전력송신기의동작포인트조정요청을수행함으로써 실제동작포인트와원하는동작포인트의차이를조정/저감할수있다.이 차이를최소화하는경우최적의전력수신을수행할수있다.
[326] 통신회로 (890)및컨트롤회로 (810)은별개의소자/칩셋으로구비되거나, 하나의소자/칩셋으로구비될수도있다.
[327] 도 9는일실시예에따른통신프레임구조를나타낸다.이는쉐어드
모드 (shared mode)에서의통신프레임구조일수있다.
[328] 도 9를참조하면,쉐어드모드에서는,서로다른형태의프레임이함께사용될 수있다.예를들어,상기쉐어드모드에서는, (서와같은복수의슬롯을가지는 슬롯프레임 (slotted frame)및 (B)와같은특정형태가없는자유형식프레임 (free format frame)을사용할수있다.보다구체적으로,슬롯프레임은무선전력 수신장치 (200)로부터,무선전력전송장치 (100)에게짧은데이터패킷들의 전송을위한프레임이고,자유형식프레임은복수의슬롯들을구비하지않아, 긴데이터패킷들의전송이가능한프레임일수있다.
[329] 한편,슬롯프레임및자유형식프레임은,당업자에의하여다양한명칭으로 변경될수있다.예를들어,슬롯프레임은,채널프레임으로,자유형식 프레임은,메시지프레임등으로변경되어명명될수있다.
[33이 보다구체적으로,슬롯프레임은,슬롯의시작을나타내는싱크패턴,측정 슬롯, 9개의슬롯들및상기 9개의슬롯들각각에앞서,동일한시간간격을갖는 추가적인싱크패턴을포함할수있다.
[331] 여기에서 ,상기추가적인싱크패턴은,앞서설명한프레임의시작을나타내는 싱크패턴과다른싱크패턴이다.보다구체적으로,상기추가적인싱크패턴은, 프레임의시작을나타내지않고,인접한슬롯들 (즉,싱크패턴의양옆에위치한 연속하는두개의슬롯들)과관련된정보를나타낼수있다.
[332] 상기 9개의슬롯들중연속하는두개의슬롯들사이에는,각각싱크패턴이 위치할수있다.이경우,상기싱크패턴은,상기연속하는두개의슬롯들과 관련된정보를제공할수있다.
[333] 또한,상기 9개의슬롯들및상기 9개의슬롯들각각에앞서제공되는싱크 패턴들은,각각동일한시간간격을가질수있다.예를들어,상기 9개의 슬롯들은 50ms의시간간격을가질수있다.또한,상기 9개의싱크패턴들도 50ms의시간길이를가질수있다.
[334] 한편, ( 와같은자유형식프레임은,프레임의시작을나타내는싱크패턴및 측정슬롯이외에 ,구체적인형태을가지지않을수있다.즉,상기자유형식 프레임은,상기슬롯프레임과다른역할을수행하기위한것으로,예를들어, 상기무선전력전송장치와무선전력수신장치간에긴데이터패킷들 (예를 들어,추가소유자정보패킷들)의통신을수행하거나,복수의코일로구성된 무선전력전송장치에 있어서,복수의코일중어느하나의코일을선택하는 역할을위하여사용될수있다.
[335] 이하에서는,각프레임에포함된싱크패턴 (sync pattern)에대하여도면과함께 보다구체적으로살펴본다.
[336] 도 10은일실시 예에따른싱크패턴의구조이다.
[337] 도 10을참조하면,싱크패턴은프리엠블 (preamble),시작비트 (start bit),응답 필드 (Response field),타입필드 (type field),정보필드 (info field)및패리티 비트 (parity bit)로구성될수있다.도 W에서는시작비트가 ZERO로도시되어 있다.
[338] 보다구체적으로,프리엠블은연속되는비트들로이루어져있으며,모두 0으로 설정될수있다.즉,프리엠블은싱크패턴의시간길이를맞추기위한비트들일 수있다.
[339] 프리엠블을구성하는비트들의개수는싱크패턴의길이가 50ms에가장
가깝도록,그러나, 50ms를초과하지않는범위내에서,동작주파수에종속될수 있다.예를들어,동작주파수가 WOkHz인경우,싱크패턴은 2개의프리엠블 비트들로구성되고,동작주파수가 W5kHz인경우,싱크패턴은, 3개의프리엠블 비트들로구성될수있다.
[34이 시작비트는프리엠블다음에따라오는비트로제로 (ZERO)를의미할수있다. 상기제로 (ZERO)는싱크패턴의종류를나타내는비트일수있다.여기에서, 싱크패턴의종류는,프레임과관련된정보를포함하는프레임싱크 (frame sync)와슬롯의정보를포함하는슬롯싱크 (slot sync)를포함할수있다.즉,상기 싱크패턴은,연속하는프레임들사이에위치하며 ,프레임의시작을나타내는 프레임싱크이거나,프레임을구성하는복수의슬롯중연속하는슬롯들사이에 위치하며,상기연속하는슬롯과관련된정보를포함하는슬롯싱크일수있다.
[341] 예를들어,상기제로가 0인경우,해당슬롯이슬롯과슬롯사이에위치한,슬롯 싱크임을의미하고 , 1인경우,해당싱크패턴이프레임과프레임사이에위치한 프레임싱크임을의미할수있다.
[342] 패리티비트는싱크패턴의마지막비트로,싱크패턴의데이터필드들 (즉, 응답필드,타입필드,정보필드)를구성하는비트들의개수정보를나타낼수 있다.예를들어,기패리티비트는싱크패턴의데이터필드들을구성하는 WO 2020/175808 1»(:1^1{2020/001354 비트의개수가짝수인경우, 1,그밖의경우 (즉,홀수인경우), 0이될수있다.
[343] 응답 (Response)필드는싱크패턴이전의슬롯내에서,무선전력수신장치와의 통신에대한,무선전력전송장치의응답정보를포함할수있다.예를들어,응답 필드는무선전력수신장치와통신의수행이감지되지않은경우,’ 00’을가질수 있다.또한,상기응답필드는무선전력수신장치와의통신에통신
에러 (communication error)가감지된경우, '01'을가질수있다.통신에러는,두개 또는그이상의무선전력수신장치가하나의슬롯에접근을시도하여,두개 또는그이상의무선전력수신장치간의충돌이발생한경우일수있다.
[344] 또한,응답필드는,무선전력수신장치로부터데이터패킷을정확하게
수신하였는지여부를나타내는정보를포함할수있다.보다구체적으로, 응답필드는,무선전력전송장치가데이터패킷을거부 (deni)한경우, "10"(10-not acknowledge, NAK),무선전력전송장치가상기데이터패킷을확인 (confirm)한 경우,” i r( 11 -acknowledge, ACK)이될수있다.
[345] 타입필드는싱크패턴의종류를나타낼수있다.보다구체적으로,타입필드는 싱크패턴이프레임의첫번째싱크패턴인경우 (즉,프레임의첫번째싱크 패턴으로,측정슬롯이전에위치한경우),프레임싱크임을나타내는’ 1’을가질 수있다.
[346] 또한,타입필드는슬롯프레임에서,싱크패턴이프렘임의첫번째싱크패턴이 아닌경우,슬롯싱크임을나타내는’0’을가질수있다.
[347] 또한,정보필드는타입필드가나타내는싱크패턴의종류에따라그값의
의미가결정될수있다.예를들어,타입필드가 1인경우 (즉,프레임싱크를 나타내는경우),정보필드의의미는프레임의종류를나타낼수있다.즉,정보 필드는현재프레임이슬롯프레임 (slotted frame)인지또는자유형식
프레임 (free-format frame)인지나타낼수있다.예를들어 ,정보필드가 '00'인 경우,슬롯프레임을,정보필드가’01’인경우,자유형식프레임을나타낼수 있다.
[348] 이와달리,타입필드가 0인경우 (즉,슬롯싱크인경우),정보필드는싱크
패턴의뒤에위치한다음슬롯 (next slot)의상태를나타낼수있다.보다 구체적으로,정보필드는다음슬롯이특정 (specific)무선전력수신장치에 할당된 (allocated)슬롯인경우,’00’,특정무선전력수신장치가일시적으로 사용하기위하여,잠겨있는슬롯인경우,’ 01’,또는임의의무선전력수신장치가 자유롭게사용가능한슬롯인경우, 10’을가질수있다.
[349] 도 11은일실시예에따른쉐어드모드에서무선전력전송장치및무선전력 수신장치의동작상태를도시하였다.
[35이 도 11을참조하면,쉐어드모드로동작하는무선전력수신장치는,선택
상태 (Selection Phase) (1100),도입상태 (Introduction Phase)(l 110),설정
상태 (Configuration Phase) (1120),교섭상태 (Negotiation Phase)( 1130)및전력전송 상태 (Power Transfer Phase) (1140)중어느하나의상태로동작할수있다. [351] 우선,일실시예에따른무선전력전송장치는무선전력수신장치를감지하기 위하여,무선전력신호를전송할수있다.즉,무선전력신호를이용하여,무선 전력수신장치를감지하는과정을아날로그핑 (Analog ping)이라할수있다.
[352] 한편,무선전력신호를수신한무선전력수신장치는선택상태 (1 W0)에
진입할수있다.선택상태 (noo)에진입한무선전력수신장치는앞서설명한 바와같이,상기무선전력신호상에 FSK신호의존재를감지할수있다.
[353] 즉,무선전력수신장치는 FSK신호의존재여부에따라익스클루시브모드 또는쉐어드모드중어느하나의방식으로통신을수행할수있다.
[354] 보다구체적으로,무선전력수신장치는무선전력신호에 FSK신호가
포함되어 있으면,쉐어드모드로동작하고,그렇지않은경우,익스클루시브 모드로동작할수있다.
[355] 무선전력수신장치가쉐어드모드로동작하는경우,상기무선전력
수신장치는도입상태 (1110)에진입할수있다.도입상태 (1110)에서,무선전력 수신장치는,설정상태,교섭상태및전력전송상태에서,제어정보패킷 (CI, Control Information packet)을전송하기위하여,무선전력전송장치에게제어 정보패킷을전송할수있다.제어정보패킷은,헤더 (Header)및제어와관련된 정보를가질수있다.예를들어,제어정보패킷은,헤더가 0X53일수있다.
[356] 도입상태 (1110)에서,무선전력수신장치는제어정보 (control information: CI) 패킷을전송하기위해자유슬롯 (free slot)을요청하는시도를다음의구성 ,협상, 전력전송단계에걸쳐수행한다.이때무선전력수신장치는자유슬롯을 선택하고최초 CI패킷을전송한다.만약무선전력전송장치가해당 CI패킷에 ACK으로응답하면,무선전력전송장치는구성단계로진입한다.만약무선전력 전송장치가 NAK으로응답하면,다른무선전력수신장치가구성및협상단계를 통해진행되고있는것이다.이경우,무선전력수신장치는자유슬롯의요구를 재시도한다.
[357] 만약무선전력수신장치가 CI패킷에대한응답으로 ACK을수신하면,
무선전력수신장치는최초프레임싱크까지나머지슬롯싱크들을
카운팅함으로써프레임내의개인슬롯 (private slot)의위치를결정한다.모든 후속슬롯기반프레임들에서,무선전력수신장치는해당슬롯을통해 CI패킷을 전송한다.
[358] 만약무선전력전송장치가무선전력수신장치에게구성단계로진행함을
허락하면,무선전력전송장치는무선전력수신장치의배타적사용을위한잠금 슬롯 (locked slot)시리즈를제공한다.이는무선전력수신장치가중돌없이구성 단계를진행하는것을확실시해준다.
[359] 무선전력수신장치는 2개의식별데이터패킷들 (IDHI와 IDLO)와같은데이터 패킷의시퀀스들을잠금슬롯을사용하여전송한다.본단계를완료하면, 무선전력수신장치는협상단계로진입한다.협상단계에서 ,무선전력
전송장치가무선전력수신장치에게배타적사용을위한잠금슬롯을계속 제공한다.이는이는무선전력수신장치가중돌없이협상단계를진행하는것을 확실시해준다.
[36이 무선전력수신장치는해당잠금슬롯을사용하여하나또는그이상의협상 데이터패킷들을전송하며,이는사적데이터패킷들과섞일수도있다.결국 해당시퀀스는특정요청 (specific request (SRQ))패킷과함께종료된다.해당 시퀀스를완료하면,무선전력수신장치는전력전송단계로진입하고,무선전력 전송장치는잠금슬롯의제공을중단한다.
[361] 전력전송상태에서,무선전력수신장치는할당된슬롯을사용하여 CI패킷의 전송을수행하며,전력을수신한다.무선전력수신장치는레굴레이터회로를 포함할수있다.레귤레이터회로는통신/제어회로에포함될수있다.무선전력 수신장치는레귤레이터회로를통해무선전력수신장치의반사임피턴스를 자가-조절 (self-regulated수있다.다시말해,무선전력수신장치는외부부하에 의해요구되는양의파워를전송하기위해반사되는임피던스를조정할수있다. 이는과도한전력의수신과과열을방지할수있다.
[362] 쉐어드모드에서,무선전력전송장치는수신되는 CI패킷에대한응답으로서 전력을조정하는것을수행하지않을수있기때문에 (동작모드에따라),이 경우에는과전압상태를막기위한제어가필요할수있다.
[363] 이하에서는무선전력전송장치와무선전력수신장치간에
인증 (authentication)에관하여개시된다.
[364] 인밴드통신을사용하는무선전력전송시스템은 USB-C인증을사용할수
있다.인증은무선전력수신장치에의한무선전력전송장치의인증과,무선전력 전송장치에의한무선전력수신장치의인증을포함한다.
[365] 도 12는일실시 예에따른무선충전인증서포맷을도시한블록도이다.
[366] 도 12를참조하면,무선충전인증서포맷은무선충전표준인증서구조버전 (Qi Authentication Certificate Structure Version),예비비트,인증서타입 (certificate type),서명오프셋 (signature offset),시리얼번호 (serial number),발행자 ID(issuer ID),서브젝트 ID(subject ID),공공키 (public key)및서명 (signature)를포함한다. .
[367] 인증서타입은예를들어 3비트로서,해당인증서가루트인증서/중간
인증서/리프인증서중어느하나임을나타낼수있으며,무선전력전송장치에 관한인증서또는무선전력수신장치에관한인증서임을나타낼수도있으며, 이들을모두나타낼수도있다.
[368] 예를들어 ,인증서타입은 3비트로서 , Root Certificate, Manufacturer/Secondary Certificate, Product Unit Certificate(for the Power Transmitter등에대한정보를 각각나타낼수있다.보다구체적으로,인증서타입이’001’b일경우에는루트 인증서를나타내고,’ OlO’b일경우에는중간인증서를타나내고, l l l’b일 경우에는무선전력전송장치의리프인증서를나타낼수있다.또한,인증서 타입이’011’b일경우에는무선전력수신장치의리프인증서를나타낼수있다.
[369] 무선전력전송장치는성능패킷 (capability packet)을이용하여무선전력 수신장치에게인증기능을지원하는지를알려줄수있다 (무선전력수신장치에 의한무선전력전송장치의인증 (authentication of PTx by PRx)의경우).한편 무선전력수신장치는구성패킷 (configuration packet)을이용하여무선전력 전송장치에게인증기능을지원하는지를알려줄수있다 (무선전력전송장치에 의한무선전력수신장치의인증 (authentication of PRx by PTx)의경우).이하에서 인증기능지원여부에관한지시정보 (성능패킷와구성패킷)의구조에관하여 보다상세히개시된다.
[37이 도 13은일실시예에따른무선전력전송장치의성능패킷구조이다.
[371] 도 13을참조하면,대응하는헤더 (header)값이 0X31인성능패킷은,
3바이트로서첫번째바이트 (Bo)는전력클래스,보장된전력값 (guaranteed power value)을포함하고,두번째바이트 (B!)는예비 (reserved),잠재적전력값 (potential power value)을포함하며,세번재바이트 (B2)는인증개시자 (Authentication
Initiator: AI),인증응답자 (Authentication Responder: AR),예비 , WPID, Not Res Sens를포함한다.구체적으로,인증개시자는 1비트로서,예를들어그값이 lb’이면해당무선전력전송장치는인증개시자로서동작할수있음을지시한다. 또한,인증응답자는 1비트로서,예를들어그값이 lb’이면해당무선전력 전송장치는인증응답자로서동작할수있음을지시한다.
[372] 도 14는일실시 예에따른무선전력수신장치의구성패킷구조이다.
[373] 도 14를참조하면,대응하는헤더 (header)값이 0X51인구성패킷은,
5바이트로서첫번째바이트 (Bo)는전력클래스,최대전력값 (maximum power value)을포함하고,두번째바이트 ( )는 AI, AR,예비를포함하며,세번째 바이트 (B2)는 Prop,예비, ZERO, Count를포함하고,네번째바이트 (B3)는윈도우 크기 (Window size),윈도우오프셋을포함하며,다섯번재바이트 (B4)는 Neg, 극성 (polarity),깊이 (Depth),인증 (Auth),예비를포함한다.구체적으로,인증 개시자는 1비트로서,예를들어그값이 lb’이면해당무선전력수신장치는인증 개시자로서동작할수있음을지시한다.또한,인증응답자는 1비트로서,예를 들어그값이 lb’이면해당무선전력수신장치는인증응답자로서동작할수 있음을지시한다.
[374] 인증절차 (authentication procedure)에서사용되는메시지를인증메시지라
한다.인증메시지는인증에관련된정보를운반하는데사용된다.인증
메시지에는 2가지타입이존재한다.하나는인증요청 (authentication request)이고, 다른하나는인증응답 (authentication response)이다.인증요청은인증개시자에 의해전송되고,인증응답은인증응답자에의해전송된다.무선전력전송장치와 수신장치는인증개시자또는인증응답자가될수있다.예를들어,무선전력 전송장치가인증개시자인경우무선전력수신장치는인증응답자가되고, 무선전력수신장치가인증개시자인경우무선전력전송장치가인증응답자가 된다.
[375] 인증요청메시지는 GET_DIGESTS(i.e. 4바이트), GET_CERTIFICATE(i.e. 8 바이트), CHALLENGE(i.e. 36바이트)를포함한다.
[376] 인증응답메시지는 DIGESTS(i.e. 4+32바이트), CERTIFICATE(i.e. 4+인증서 체인 (3x512바이트) =1540바이트), CHALLENGE_AUTH(i.e. 168바이트), ERROR(i.e. 4바이트)를포함한다.
[377] 인증메시지는인증패킷이라불릴수도있고,인증데이터 ,인증제어정보라 불릴수도있다.또한, GET_DIGEST, DIGESTS등의메시지는 GET_DIGEST 패킷, DIGEST패킷등으로불릴수도있다.
[378] 도 15는일례에따른무선전력전송장치와수신장치간에어플리이션레벨의 데이터스트림을도시한것이다.
[379] 도 15를참조하면,데이터스트림은보조데이터제어 (auxiliary data control:
ADC)데이터패킷및/또는보조데이터전송 (auxiliary data transport: ADT) 데이터패킷을포함할수있다.
[38이 ADC데이터패킷은데이터스트림을시작 (opening)하는데사용된다. ADC 데이터패킷은스트림에포함된메시지의타입과,데이터바이트의개수를 지시할수있다.반면 ADT데이터패킷은실제메시지를포함하는데이터의 시퀀스들이다.스트림의종료를알릴때에는 ADC/end데이터패킷이사용된다. 예를들어,데이터전송스트림내의데이터바이트의최대개수는 2047로 제한될수있다.
[381] ADC데이터패킷과 ADT데이터패킷의정상적인수신여부를알리기위해, ACK또는 NACK이사용된다. ADC데이터패킷과 ADT데이터패킷의전송 타이밍사이에,제어오류패킷 (CE)또는 DSR등무선충전에필요한제어 정보들이전송될수있다.
[382] 이러한데이터스트림구조를이용하여,인증관련정보또는기타
어플리케이션레벨의정보들이무선전력전송장치와수신장치간에송수신될 수있다.
[383] 이하의도면은본명세서의구체적인일례를설명하기위해작성되었다. 도면에기재된구체적인장치의명칭이나구체적인신호/메시지/필드의명칭은 예시적으로제시된것이므로,본명세서의기술적특징이이하의도면에사용된 구체적인명칭에제한되지않는다.
[384] 본명세서에서는표준기술로서 WPC의 Qi표준을예시로들수있으나,본
명세서의기술적사상은 Qi표준뿐만아니라다른표준을기반으로하는 무선전력전송장치및방법,그리고무선전력수신장치및방법의실시예까지 포함하는것이다.
[385] 본명세서는근거리무선통신을이용하여무선전력전송장치 (Power
Transmitter: PTx)또는무선전력수신장치 (Power Receiver: PRx)의보안펌웨어 업데이트를수행하는방법에관한것이다.여기서근거리무선통신으로서 BLE가사용될수있다.
[386] Qi는 WPC (Wireless Power Consortium)에서주도하는자기유도방식의무선 충전표준이다. Qi는 PTx와 PRx사이의충전관련정보교환을위한다양한 메시지들을정의하고있다. PTx와 PRx는충전을수행하기에앞서다양한 메시지들을기반으로다양한정보들을공유한다.
[387] WPC표준에따르면,무선전력전송장치와수신장치는무선충전시스템과
관련된다양한상태정보및명령어를인밴드 (In-Band)통신을이용하여교환할 수있도록설계되어 있다.그러나인밴드통신의경우통신에특화되어설계된 시스템이아니기때문에고속,대용량의정보교환및다양한정보를교환하기 위해서는부적합하다.따라서기존인밴드통신에다른무선통신시스템 (즉, 아웃밴드통신시스템)을결합하여무선충전시스템관련정보를교환하는 방법이논의되고있다.아웃밴드통신은예를들어 NFC와 BLE(Bluetooth Low Energy)통신을포함한다. BLE는무선충전을위한대표적인아웃밴드통신기술 중하나로서 ,기존 In-band채널대비빠른전송속도, GATT를기반으로한 편리한데이터전송방식등을장점으로갖는다.
[388] PTx및 PRx는주기적으로펌웨어업데이트를수행할필요가있다. PRx는
스마트폰등인터넷접속이가능한기기등을많이포함하는반면, PTx는 리소스가제한된임베디드디바이스로서인터넷접속이불가능한경우가 대부분이다.따라서사용자가직접오프라인 (offline)으로 PTx의펌웨어
업데이트를수행할수밖에없다.
[389] 본명세서는 WPC의대표적인아웃밴드기술중하나인 BLE를이용하여,
PTx가 PRx로부터최신의펌웨어를전달받아펌웨어업데이트를수행하는 방법과, PRx로부터최신의펌웨어를전달받고펌웨어업데이트를수행하는 PTx, 그리고 PTx의펌웨어를전달하는방법과, PTx의펌웨어를전달하는 PRx를 제공한다.어의 In-Band채널은용량이 5KB-10KB에이르는대용량의펌웨어 파일을전송하기에적합하지않다.본명세서에나타난실시예를통해 PTx는 BLE를활용하여별도의인터넷접속없이 PRx로부터최신의펌웨어를전달받아 업데이트할수있다.이과정에서 digital signature를사용하여펌웨어의위/변조 여부를확인할수있다.
[39이 PTx가온라인으로펌웨어업데이트를지원하지않는경우, PTx의최신펌웨어 유지에어려움이있다.한편인밴드통신은기본적으로 20 byte이내의간단한 정보를주고받기에적합한반면 firmware등의프로그램을안정적으로
전송하기에는부적합하다.
[391] 또한,펌웨어업데이트를위해 BLE의 L2CAP혹은 GATT를이용하기위해서는 별도의프로토콜의정의가필요하다.즉,기존 BLE에는펌웨어버전을
체크하거나,펌웨어전송가능여부를확인하는등의프로토콜이없으므로,이를 새롭게정의해주어야한다. BLE GATT의기본 MTU는 23바이트,그리고 MTU의 크기는기기의성능및주변환경에따라그한계가정해진다.따라서 5- L0KB의 펌웨어프로그램이전송하기위한방법이요구된다.또한,업데이트를위해 수신된또는전송된펌웨어가유효한지확인하는방식이요구된다.이하에서 2020/175808 1»(:1^1{2020/001354 펌웨어는펌웨어프로그램또는펌웨어 파일또는펌웨어 데이터등으로혼용될 수있으나용어에차이가있을뿐그개념과특징은균등하다.
[392] 도 16은펌웨어 업데이트시스템을도시한것이다.
[393] 도 16을참조하면, 가인터넷연결기능을구비하지 않은경우인터넷을 통해펌웨어 업데이트시스템으로부터펌웨어를수신할수없고,오프라인으로 신규펌웨어를제공받아야한다.이러한불편함을해결하기위해 ,본명세서는 간에아웃밴드통신을수립하고,아웃밴드통신을기반으로펌웨어를 전송하는방법을개시한다.여기서,아웃밴드통신은 81고를포함한다.또한, 인터넷연결이 가능하고 가인터넷연결이불가능한경우,
Figure imgf000042_0001
Figure imgf000042_0003
펌웨어를
Figure imgf000042_0002
전송할수있다.반면, 가인터넷연결이가능하고
Figure imgf000042_0004
가인터넷연결이 불가능한
Figure imgf000042_0005
펌웨어를확보하고아웃밴트통신을이용하여 모요 의 펌웨어를모요 로전송할수도있다.이하본명세서에서는 가인터넷 연결이 가능하고
Figure imgf000042_0006
가인터넷연결이불가능한경우를중심으로실시예들을 개시한다.그러나,이러한본실시예들의 기술적사상과특징들은 가인터넷 연결이 가능하고
Figure imgf000042_0007
가인터넷연결이불가능한경우에도동일하게적용되되 와 가뒤바뀐실시예들로변형될수있으며 ,본명세서는이러한변형된 실시예들도포함한다.
[394] 도 16를참조하여설명되는실시예에서의무선전력 전송장치는도 1내지도 15에서 개시된무선전력 전송장치또는무선전력 전송기또는전력 전송부에 해당한다.따라서,본실시예에서의무선전력 전송장치의동작은도 1내지도 15에서의무선전력 전송장치의 각구성요소들중하나또는둘이상의조합에 의해구현된다.예를들어,본실시예에서무선전력 전송장치에의한펌웨어 또는데이터 (또는패킷또는신호)의처리,전송및수신동작은통신/컨트롤 유닛 (120)에의해수행될수있다.
[395] 또한도 16를참조하여 설명되는본실시예에서의무선전력수신장치는도 1 내지도 15에서 개시된무선전력수신장치또는무선전력수신기또는전력 수신부에 해당한다.따라서,본실시예에서의무선전력수신장치의동작은도 1 내지도 15에서의무선전력수신장치의 각구성요소들중하나또는둘이상의 조합에 의해구현된다.예를들어,본실시예에서무선전력수신장치에 의한 펌웨어또는데이터 (또는패킷또는신호)의 처리,전송및수신동작은 통신/컨트롤유닛 (220)에의해수행될수있다.
[396] 도 17은일실시예에 따른무선전력 전송장치에서수행되는펌웨어 업데이트 방법의흐름도이다.
[397] 이하에서설명되는무선전력수신장치는무선전력 전송장치에 설치될수있는 상위버전의 펌웨어가저장될수있음을전제로설명한다.
[398] 도 17을참조하면일실시예에따른무선전력 전송장치의 펌웨어 업데이트 방법은무선전력수신장치가무선전력 전송장치와무선전력수신장치간 2020/175808 1»(:1^1{2020/001354 아웃밴드통신연결을수립하는단계를포함할수있다(別 100).
[399] 아웃밴드통신연결이 이루어지면
Figure imgf000043_0001
보유하고있는펌웨어의
버전정보를아웃밴드통신으로요청하는단계를수행한다(別200).
[40이 는이후펌웨어의 버전정보요청에 따라모요 로부터응답,즉펌웨어
버전정보를수신하는단계를수행한다 1300).
Figure imgf000043_0002
현재설치되어 있는 펌웨어와수신된펌웨어 버전정보를비교하여 업데이트가필요한지 여부를 판단하는단계 1400)가수행될수있다.
[401] 업데이트가필요한지 여부를판단하는
Figure imgf000043_0003
설치되어 있는펌웨어의 버전과
Figure imgf000043_0004
로부터수신한펌웨어의 버전을비교하는 단계와, 에 이미 설치되어 있는펌웨어의버전이 로부터수신한펌웨어의 버전보다더낮은경우(즉,더오래된것)펌웨어의 업데이트를결정하는단계를 포함할수있다.반면 에 이미설치되어 있는펌웨어의 버전이모요 로부터 수신한펌웨어버전과동일한버전이거나,더높은버전인경우,
Figure imgf000043_0005
펌웨어의 업데이트가필요하지 않은것으로판단할수있다.
[402] 펌웨어의 업데이트가필요하다고판단된경우펌웨어를요청하는
단계( 500)를포함할수있다.펌웨어를요청하는단계 1500)에 대응하여 모요 에서 펌웨어를송신하면, 가펌웨어를수신하는단계( 600)를포함할수 있다.
Figure imgf000043_0006
로부터 전송된펌웨어의수신이 완료된경우 에서 펌웨어의유효성을판단하는단계( 700)를포함할수있다.이후
Figure imgf000043_0007
가수신된 펌웨어의유효성이확인된
Figure imgf000043_0008
데이트하는단계 1800)를 포함할수있다.
[403] 도 18은일실시예에
Figure imgf000043_0009
서수행되는펌웨어 전송방법의흐름도이다. 도 18을참조하면,일실시예에따른 에서수행되는펌웨어 전송방법은먼저 와 간아웃밴드통신연결을수립하는단계 2100)가포함될수 있다.이후 가 로부터펌웨어 버전정보의요청이수신되었는지를 판단하는단계 2200)를포함할수있다. 로부터 에 펌웨어버전정보의 요청이수신된
Figure imgf000043_0010
송신하는단계 2300)를 포함할수있다.
Figure imgf000043_0011
로부터펌웨어의 전송요청이수신되었는지를 판단하는단계 2400)를포함하며 , 가 로부터 펌웨어 전송요청을수신한 송신하는단계 2500)를포함할수있다.
[404]
Figure imgf000043_0012
0을참조하여무선전력 전송장치의펌웨어
업데이트하는방법에 대하여상세히설명하도록한다.
[405] 도 19는펌웨어버전을확인하고업데이트하는방법을도시한흐름도이다.
[406] 도 19를참조하면,:81止연결이수립된이후펌웨어 업데이트를수행하기에 앞서 , 는 에 펌웨어버전등을체크하는동작을수행한다.이를위해, 는펌웨어 업데이트에필요한정보 요 FIRMWARE_INFO메시지)를 모요 에게요청한다.
[407] 일측면에서 ,펌웨어 업데이트에필요한정보의요청과응답은예를들어도 20과같이 BLE의읽기요청 (Write Request) /통지 (Notification)메시지에 기반하여정의될수있다.구체적으로, PTx가 GET_FIRMWARE_INFO메시지를 Write Request로구성하여 PRx로전송하면, PRx는 Manufacturer ID, Firmware Version, Update Capability등으로구성된 FIRMWAREJNFO메시지를
Notification으로구성하여 PTx로전송한다.
[408] GET_FIRMWARE_INFO메시지의일례는도 21과같다.또한
FIRMWAREJNFO메시지의일례는도 22와같으며,도 23은도 22의
FIRMWAREJNFO field의일례이다.
[409] PTx가펌웨어업데이트에필요한정보를성공적으로수신하면, PTx는
펌웨어를수신한다.즉, PRx가펌웨어업데이트에필요한정보를성공적으로 전송하면, PRx는펌웨어를 PTx에게전송한다.이러한펌웨어전송동작의 일례는도 24와같다.도 24는펌웨어를전송하는방법을도시한흐름도이다.도 24를참조하면, PTx는 PRx로부터수신한펌웨어관련정보를기반으로펌웨어의 업데이트가필요한지판단한다.만약펌웨어업데이트가필요하다고판단되면 PTx는 PRx에게펌웨어업데이트를요청한다.이를위해 , PTx는 Write Request를 통해 REQUEST_FIRMWARE_UPDATE메시지를 PRx로전송한다.예를들어 REQUEST_FIRMWARE_UPDATE메시지의일례는도 25와같다.
REQUEST_FIRMWARE_UPDATE메시지를수신하면, PRx는미리입수한 펌웨어 (또는펌웨어파일)을 PTx로전송한다.
[410] 일반적으로 embedded device의펌웨어는 5 - 10KB이상으로, BLE환경에서이 정도크기의데이터를전송하기위해서는별도의프로토콜이요구된다.
[411] 일실시예에따르면 PRx는도 26과같이 L2CAP CoC(Connection- Oriented Channels) in LE Credit-Based Flow Control Mode를기반으로 PTx의펌웨어를 PTx로전송할수있다.즉, PRx와 PTx는도 26과같이 L2CAP CoC in LE
Credit-Based Flow Control Mode를기반으로펌웨어의송수신동작을수행할수 있다. CoC를이용하면하나의패킷을통해최대 65535 bytes의데이터가전송될 수있다.
[412] 도 26을참조하면, PTx는 PRx에게펌웨어업데이트를요청하는 Write
Request를전송하고, PRx는펌웨어업데이트에응답하는통지 (Notification)를 전송한다. PRx로부터응답에관한통지가전송되면, PTx는 PRx에게 CoC연결을 요청하는 LE Credit-based Connection Request메시지를전송하고, PRx는 PTx에게 CoC연결을응답하는 LE Credit-based Connection Response메시지를전송한다. LE Credit-based Connection Request메시지의일례는도 27과같고, LE
Credit-based Connection Response메시지의일례는도 28과같다. CoC연결이 완료되면 PRx는펌웨어 (또는펌웨어파일또는데이터 )를 PRx로전송한다. 펌웨어파일또는데이터메시지의일례는도 29와같다.
[413] 도 30은일실시예에따른 GATT분할 (Fragmentation)에기반한펌웨어전송을 도시한흐름도이다. (인증)정보의길이가 MTU보다길때 GATT WO 2020/175808 1»(:1^1{2020/001354 분할 (Fragmentation)에기반한펌웨어전송이사용될수있다.
[414] 도 30을참조하면,응답자 (Responder)는긴인증정보를여러조각으로
분할 (fragmentation)하여전송한다.여기서,응답자는 PRx일수있다.또한 분할되어전송되는정보는펌웨어업데이트에필요한정보또는펌웨어 (펌웨어 파일또는데이터)일수있다.여기서분할되어전송되는정보 (인증정보또는 펌웨어 )의일례는도 24와같다.
[415] 도 31은일실시예에따른 GATT Read Blob Request에기반한펌웨어전송을 도시한흐름도이다. (인증)정보의길이가 MTU보다길때 GATT
분할 (Fragmentation)에기반한펌웨어전송이사용될수있다.
[416] 도 32는일실시예에따른 GATT Read Blob Request에기반한펌웨어전송을 도시한흐름도이다.도 32를참조하면, 와 PRx는 Offset값을 MTU만큼 증가시키면서 Blob Request / Response를반복함으로써 , MTU보다긴
정보 (펌웨어 )를교환할수있다.도 33는 GATT Read Blob Request메시지의 일례이다.
[417] 다시도 16을참조하면,펌웨어업데이트에필요한정보를 PRx로부터
수신하면, PTx는펌웨어업데이트에필요한정보에기반하여펌웨어의유효성을 검증한뒤펌웨어업데이트를수행한다.
[418] 이하에서는도 34내지도 6을참조하여일실시예에따른펌웨어의유효성을 검증하는방법에대하여설명하도록한다.
[419] 도 34는펌웨어파일의포멧의일예이다.도 34를참조하면,펌웨어파일의
포맷은기본적으로펌웨어데이터및시그니쳐 (signature)중적어도하나를 포함하도록구성된다.
[42이 도 35는펌웨어제공자의시그니처생성의개념을도시한도면이다.일례로서 , 도시된바와같이 ,펌웨어제공자 (Firmware Provider)는자신의프라이빗 키 (private key, Root CA Private Key)와펌웨어데이터 (firmware data)의
해시 (hash)값을기반으로시그니처를생성할수있다.
[421] 도 36은유효성절차의개념을도시한도면이다.일예로서,펌웨어의유효성 확인 (validation)은 PTx및 PRx에사전에탑재되어있는 Root CA의공공키 (public key)를기반하여수행될수있다.
[422] PRx의경우, PTx에펌웨어파일을전송해주기이전에펌웨어제공자로부터 해당파일을내려받고유효성및업데이트적용을완료한것으로본다.
[423] 도 16내지도 36을참조하여설명되는실시예에서의무선전력전송장치는도 1 내지도 15에서개시된무선전력전송장치또는무선전력전송기또는전력 전송부에해당한다.따라서,본실시예에서의무선전력전송장치의동작은도 1 내지도 15에서의무선전력전송장치의각구성요소들중하나또는둘이상의 조합에의해구현된다.예를들어,본실시예에서무선전력전송장치에의한 데이터 (또는패킷또는신호)의처리 ,전송및수신동작은통신/컨트롤
유닛 (120)에의해수행될수있다. [424] 또한도 16내지도 36을참조하여설명되는본실시예에서의무선전력 수신장치는도 1내지도 15에서개시된무선전력수신장치또는무선전력 수신기또는전력수신부에해당한다.따라서,본실시예에서의무선전력 수신장치의동작은도 1내지도 15에서의무선전력수신장치의각구성요소들 중하나또는둘이상의조합에의해구현된다.예를들어,본실시예에서 무선전력수신장치에의한데이터 (또는패킷또는신호)의처리,전송및수신 동작은통신/컨트롤유닛 (220)에의해수행될수있다.
[425] 이하에서인밴드통신과아웃밴드통신간의전환동작을
핸드오버 (handover)라한다.특히,무선전력전송장치와수신장치가인밴드 통신에서아웃밴드통신으로전환하는동작을아웃밴드로의핸드오버 (handover to out-band)라하고,아웃밴드통신에서인밴드통신으로전환하는동작을 인밴드로의핸드오버 (handover to in-band)라부른다.아웃밴드통신은예를들어 블루투스또는저전력블루투스 (BLE),또는 NFC를포함할수있다.핸드오버 연결절차는아웃밴드통신 (i.e. BLE)모듈이인밴드통신모듈로부터핸드오버 메시지를수신하면아웃밴드통신의연결을수립하는절차를포함할수있다. 여기서,핸드오버메시지는인밴드통신모듈 (또는제어부)가아웃밴드통신 모듈에게무선전력전송에관련된정보를교환하기위한무선연결을
개시하라는메시지일수있다.
[426] 아웃밴드통신이무선전력전송시스템에적용되려면,무선전력전송시스템의 고유한특성에맞게수정될필요가있다.예를들어,무선전력전송장치와 수신장치간에교환되는정보의특성 (ex.긴급한정보인지,상태가변경되었을 경우만전송하는내용인지,대용량의정보를단시간에교환해야하는지등)을 고려하여기존아웃밴드통신에따른메시지타입과포맷,그리고절차들이 재설계되어야한다.이와같이무선전력전송에관한설정정보,제어정보,관리 정보및이들의교환에관한절차들을아웃밴드통신프로토콜로서
정의함으로써,무선전력의다양한응용이지원될수있다.
[427] 이하본명세서에서는예시적으로아웃밴드통신을 BLE로특정하여
설명하도록한다.그러나 BLE를기준으로설명된실시 예들에있어서, BLE가 다른아웃밴드통신으로치환된실시 예들또한본발명의기술적사상에 해당함은당업자에게자명하다.
[428] 상술한본명세서의실시 예에따른무선전력송신방법및장치,또는수신 장치및방법은모든구성요소또는단계가필수적인것은아니므로,무선전력 송신장치및방법,또는수신장치및방법은상술한구성요소또는단계의일부 또는전부를포함하여수행될수있다.또상술한무선전력송신장치및방법 , 또는수신장치및방법의실시예들은서로조합되어수행될수도있다.또 상술한각구성요소또는단계들은반드시설명한순서대로수행되어야하는 것은아니며,나중에설명된단계가먼저설명된단계에앞서수행되는것도 가능하다. 2020/175808 1»(:1^1{2020/001354
[429] 이상의설명은본명세서의 기술사상을예시적으로설명한것에불과한
것으로서,본명세서에속하는기술분야에서통상의지식을가진자라면본 명세서의본질적인특성에서 벗어나지 않는범위에서다양한수정 및변형이 가능할것이다.따라서,이상에서설명한본명세서의실시 예들은서로별개로 또는조합되어구현되는것도가능하다.
[43이 따라서 ,본명세서에 개시된실시 예들은본명세서의기술사상을한정하기 위한것이아니라설명하기위한것이고,이러한실시 예에의하여본명세서의 기술사상의범위가한정되는것은아니다.본명세서의보호범위는아래의 청구범위에 의하여해석되어야하며,그와동등한범위내에 있는모든기술 사상은본명세서의 권리범위에포함되는것으로해석되어야할것이다.
[431] 본명세서에 기재된청구항들은다양한방식으로조합될수있다.예를들어, 본명세서의방법 청구항의기술적특징이조합되어장치로구현될수있고,본 명세서의장치 청구항의 기술적특징이조합되어방법으로구현될수있다. 또한,본명세서의방법 청구항의기술적특징과장치 청구항의기술적특징이 조합되어장치로구현될수있고,본명세서의방법 청구항의기술적특징과 장치 청구항의기술적특징이조합되어 방법으로구현될수있다.

Claims

청구범위
[청구항 1] 무선전력수신장치로서,
동작주파수 (operating frequency)에서 1차코일을구비한무선전력 전송장치와자기커플링 (magnetic coupling)에의해상기무선전력 전송장치로부터무선전력을수신하고,상기무선전력에의해발생하는 교류신호를직류신호로변환하도록구성된전력픽업회로 (power pick-up circuit);
상기동작주파수이외의주파수를이용하여상기무선전력전송장치와 아웃밴드 (out-band)통신을수행하도록구성된통신회로 (communication circuit);및
펌웨어 (firmware)의처리를제어하도록구성된컨트롤회로 (control circuit)를포함하는,무선전력수신장치 .
[청구항 2] 제 1항에있어서,
상기펌웨어는상기무선전력전송장치에관한펌웨어이고,
상기통신회로는상기아웃밴드통신을기반으로상기무선전력 전송장치에게상기펌웨어를전송하는것을특징으로하는,무선전력 수신장치.
[청구항 3] 제 2항에있어서,
상기통신회로는,
아웃밴드통신에기반하여상기무선전력전송장치로부터펌웨어전송 요청을수신하는경우상기펌웨어를송신하는것을특징으로하는, 무선전력수신장치.
[청구항 4] 제 2항에있어서,
상기컨트롤회로는,
상기아웃밴드통신에기반하여상기무선전력전송장치로부터펌웨어 정보를요청받는경우상기펌웨어정보를전송하도록제어하는것을 특징으로하는,무선전력수신장치 .
[청구항 5] 제 4항에있어서,
상기펌웨어정보는상기무선전력전송장치의제조사식별자및펌웨어 식별자중적어도하나를포함하는것을특징으로하는,무선전력 수신장치.
[청구항 6] 무선전력전송장치로서,
동작주파수 (operating frequency)에서무선전력수신장치와의자기 커늘링 (magnetic coupling)을형성한 1차코일을이용하여상기무선전력 수신장치로무선전력을전송하도록구성된전력변환회로 (power conversion circuit);및
상기동작주파수이외의주파수를이용하여상기무선전력수신장치와 2020/175808 1»(:1^1{2020/001354 아웃밴드(0아七^(1)통신을수행하도록구성된통신/컨트롤회로를 포함하되,
상기통신/컨트롤회로는,
상기무선전력수신장치로부터수신된펌웨어(&11^3 )를기반으로 펌웨어업데이트를수행하는것을특징으로하는,무선전력전송장치 . [청구항 7] 제 6항에있어서,
상기통신/컨트롤회로는,
상기무선전력수신장치와상기무선전력전송장치간의아웃밴드 통신에기반하여상기펌웨어 ]111\¥3 )를수신하는것을특징으로하는, 무선전력전송장치.
[청구항 8] 제 7항에있어서,
상기통신/컨트롤회로는,
상기아웃밴드통신을기반으로상기무선전력수신장치에펌웨어 정보의전송요청을전송하고,
상기무선전력수신장치로부터상기펌웨어정보를수신하고상기 펌웨어의업데이트필요여부를판단하는것을특징으로하는,무선전력 전송장치.
[청구항 9] 제 7항에있어서,
상기통신/컨트롤회로는,
상기펌웨어정보를근거로상기펌웨어의업데이트필요여부를 판단하며 ,
상기펌웨어의업데이트가필요한경우상기아웃밴드통신을기반으로 상기무선전력수신장치에펌웨어전송요청을전송하며, 상기무선전력수신장치로부터상기아웃밴드통신을기반으로전송되는 상기펌웨어를수신하는것을특징으로하는,무선전력전송장치.
[청구항 10] 제 9항에있어서 ,
상기펌웨어정보는상기무선전력전송장치의제조사식별자및펌웨어 식별자중적어도하나를포함하는것을특징으로하는,무선전력 전송장치.
PCT/KR2020/001354 2019-02-26 2020-01-29 무선전력 전송 시스템에서 펌웨어 업데이트를 수행하는 장치 및 방법 WO2020175808A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/310,829 US11870271B2 (en) 2019-02-26 2020-01-29 Apparatus and method for performing firmware update in wireless power transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190022677 2019-02-26
KR10-2019-0022677 2019-02-26

Publications (1)

Publication Number Publication Date
WO2020175808A1 true WO2020175808A1 (ko) 2020-09-03

Family

ID=72240097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001354 WO2020175808A1 (ko) 2019-02-26 2020-01-29 무선전력 전송 시스템에서 펌웨어 업데이트를 수행하는 장치 및 방법

Country Status (2)

Country Link
US (1) US11870271B2 (ko)
WO (1) WO2020175808A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7420025B2 (ja) * 2020-09-07 2024-01-23 トヨタ自動車株式会社 プログラムの更新方法および更新システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012014422A (ja) * 2010-06-30 2012-01-19 Sony Corp 端末装置更新方法、データ書込装置及び端末装置
KR20150146327A (ko) * 2014-06-23 2015-12-31 에스케이플래닛 주식회사 무선 충전 장치와 단말과 서비스 제공 장치, 그를 포함하는 무선 충전 시스템, 그 제어 방법 및 컴퓨터 프로그램이 기록된 기록매체
JP2016099848A (ja) * 2014-11-25 2016-05-30 株式会社日立製作所 電子機器の情報管理システムおよび電子機器の情報管理方法
KR20170110437A (ko) * 2016-03-23 2017-10-11 주식회사 아모텍 무선 전력 전송 모듈 및 이를 이용한 서비스 제공 방법
WO2018093099A1 (ko) * 2016-11-15 2018-05-24 엘지전자(주) 무선 전력 전달 방법 및 이를 위한 장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150002350A1 (en) * 2013-07-01 2015-01-01 Sony Corporation Wireless electronic devices including a variable tuning component
US10929314B2 (en) * 2016-07-29 2021-02-23 Razer (Asia-Pacific) Pte. Ltd. Interface devices, methods for controlling an interface device, and computer-readable media
KR102590943B1 (ko) * 2016-09-01 2023-10-19 삼성전자주식회사 전력 전송 장치 및 전력 전송 방법
US10749368B2 (en) * 2017-06-01 2020-08-18 Logitech Europe S.A. Computer mouse clock tuning to reduce electromagnetic induced noise in a wireless charging system
US10862329B2 (en) * 2017-06-01 2020-12-08 Apple Inc. Electronic device with activity-based power management
US10305314B2 (en) * 2017-06-02 2019-05-28 Dell Products L.P. System and method of wirelessly charging devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012014422A (ja) * 2010-06-30 2012-01-19 Sony Corp 端末装置更新方法、データ書込装置及び端末装置
KR20150146327A (ko) * 2014-06-23 2015-12-31 에스케이플래닛 주식회사 무선 충전 장치와 단말과 서비스 제공 장치, 그를 포함하는 무선 충전 시스템, 그 제어 방법 및 컴퓨터 프로그램이 기록된 기록매체
JP2016099848A (ja) * 2014-11-25 2016-05-30 株式会社日立製作所 電子機器の情報管理システムおよび電子機器の情報管理方法
KR20170110437A (ko) * 2016-03-23 2017-10-11 주식회사 아모텍 무선 전력 전송 모듈 및 이를 이용한 서비스 제공 방법
WO2018093099A1 (ko) * 2016-11-15 2018-05-24 엘지전자(주) 무선 전력 전달 방법 및 이를 위한 장치

Also Published As

Publication number Publication date
US20220123590A1 (en) 2022-04-21
US11870271B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
JP7477563B2 (ja) 無線電力伝送システムにおいてデータストリームの送信を行う装置及び方法
US11949467B2 (en) Apparatus and method for supporting heterogeneous communication in wireless power transmission system
KR102622769B1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 이를 이용한 무선전력 전송방법
US11469627B2 (en) Apparatus and method for two-channel communication in a wireless power transfer
US11764623B2 (en) Method and device for transmitting data in wireless power transmission system
US12095524B2 (en) Device and method for performing wireless power transfer on basis of heterogeneous communication
US20220190646A1 (en) Device and method enabling out-band communication in wireless charging device, method and system
US20220216737A1 (en) Method for controlling wireless power link, and device therefor
US11817717B2 (en) Low power- and medium power-compatible wireless charging receiving device and method
JP2022505719A (ja) 無線電力送信システムにおけるデータを送信または受信する装置及び方法
US20220158504A1 (en) Device and method capable of out-band communication in wireless charging device, method, and system
EP3965262A1 (en) Wireless charging device, method and system for negotiating power class by using short range wireless communication
US20230208194A1 (en) Wireless power transmission apparatus, wireless power transmission method by wireless power transmission apparatus, wireless power reception apparatus, and wireless power reception method by wireless power reception apparatus
US20230208206A1 (en) Wireless power reception device and wireless power transmission device
US11829747B2 (en) Wireless charging device, method, and system for updating firmware
KR20230010644A (ko) 무선전력 수신장치 및 무선전력 수신장치에 의한 통신 방법
WO2020175808A1 (ko) 무선전력 전송 시스템에서 펌웨어 업데이트를 수행하는 장치 및 방법
US20230187981A1 (en) Wireless power transmission method and wireless power reception method
US20230198318A1 (en) Wireless power reception device, wireless power reception method, and wireless charging service providing method
US20200235784A1 (en) Device and method for transmitting data in wireless power transmission system
US20220182102A1 (en) Method for controlling communication connection in wireless power transmission system, and apparatus therefor
KR20220159410A (ko) 무선전력 수신장치 및 무선전력 전송장치
US20220077893A1 (en) Device and method for wirelessly transmitting power on basis of reestablishment of out-band communication
US20230319562A1 (en) Wireless power transmission apparatus and wireless power reception apparatus
US12095289B2 (en) Device and method for performing power allocation and out-band activation by using short-range communication in wireless power transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763218

Country of ref document: EP

Kind code of ref document: A1