WO2020175635A1 - Foamable resin composition and molded foam - Google Patents

Foamable resin composition and molded foam Download PDF

Info

Publication number
WO2020175635A1
WO2020175635A1 PCT/JP2020/008089 JP2020008089W WO2020175635A1 WO 2020175635 A1 WO2020175635 A1 WO 2020175635A1 JP 2020008089 W JP2020008089 W JP 2020008089W WO 2020175635 A1 WO2020175635 A1 WO 2020175635A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
foaming
layered silicate
foamed
biodegradable polymers
Prior art date
Application number
PCT/JP2020/008089
Other languages
French (fr)
Japanese (ja)
Inventor
泰正 奥野
智仁 市来
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2020513357A priority Critical patent/JP6810829B1/en
Publication of WO2020175635A1 publication Critical patent/WO2020175635A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Definitions

  • the present invention relates to a foaming resin composition and a foamed molded product.
  • a foamed molded article is generally obtained by foaming a resin composition for foaming (hereinafter, also simply referred to as "resin composition”), which enables weight reduction, cost reduction, and heat insulation. be able to. Therefore, it is used in various applications such as food containers, daily necessities, and household electrical appliances. Furthermore, in recent years, foam-molded articles in consideration of the environment have attracted attention, and foam-molded articles using biodegradable resins have been investigated.
  • Patent Document 1 discloses a foamed resin sheet formed from a composition containing a biodegradable resin as a main component and having sufficient mechanical strength, and containing starch as a main component and blending other materials. There is disclosed a foamed resin sheet and a foamed resin sheet molded article that can be bent and bag-formed by devising the ratio and devising the processing means. Further, in Patent Document 2, by mixing an equal amount or more of a polyester resin resin or foamed particles having insufficient rigidity with a resin or foamed particles made of a biodegradable resin having rigidity, the resin or foamed particles has higher rigidity than before. Polyester resin foamed particles, foamed molded products, and a method for producing the same are disclosed.
  • Patent Document 3 at least one polymer of a natural source and at least one
  • a mixture containing two diacid-diol type aliphatic monoaromatic polyesters By mixing a specific amount of at least two diacid-diol type aliphatic monoaromatic polyesters, excellent mechanical properties, sufficient It is disclosed that a stable physical property over time can be obtained together with a high melting point, a sufficient crystallization rate, and an improved biodegradation property. It is also disclosed that the mixture is used for expandable beads, expanded products, and expanded sheets for use in food packaging. ⁇ 0 2020/175 635 2 ⁇ (: 17 2020 /008089
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 1 0—2 5 4 8 5 9
  • Patent Document 2 Japanese Patent Laid-Open No. 20 1 4-0 4 0 5 0 6
  • Patent Document 3 Patent No. 5 7 2 7 4 9 7 Publication
  • the foamed molded article it is important for the foamed molded article that the cells formed by foaming (hereinafter, also referred to as “foamed particles”) are evenly distributed inside, and the distribution of the foamed particles is uneven. In that case, defects on the surface of the foamed molded product, reduction in strength, and the like are caused. In order to uniformly foam in the foamed molded product, it is necessary that the resin composition before foaming is uniformly dispersed. However, when a biodegradable polymer is used because of environmental considerations, a foamed molded article is produced using a resin composition containing only one type of biodegradable polymer, which is considered to have good dispersibility in the resin composition.
  • the present invention has been made in view of the above circumstances, and is a resin composition for foaming, which gives a foamed molded article having excellent foaming properties, heat insulating properties, and biodegradability, and the resin for foaming.
  • the object is to provide a foamed molded product obtained from the composition.
  • the present inventors have conducted a study on a method of using a biodegradable polymer to obtain a foamed molded article having a low environmental load and excellent molding processability, and found that the interfaces between incompatible polymers that do not dissolve each other Focusing on its high effect as a foam nuclei, two or more biodegradable polymers with a difference in melt mass flow rate of a specific value or more were separated. ⁇ 2020/175635 3 (: 171-1?2020/008089
  • a foamed molded article having excellent foaming properties can be obtained by dispersing. It was also found that the addition of the layered silicate improves the shearing force during mixing, improves the dispersibility of two or more types of biodegradable polymers, and provides excellent foaming properties. Furthermore, they have found that the expanded particle size of the expanded particles can be made smaller by increasing the adhesion between the two or more biodegradable polymers and the layered silicate. As a result, they have found that the foamed molded product obtained has improved foaming properties and heat insulating properties, and has excellent biodegradability, and completed the present invention.
  • the foaming resin composition of the present invention is a foaming resin composition containing two or more types of biodegradable polymers and a layered silicate, wherein the two or more types of biodegradable polymers are melts.
  • the first and second biodegradable polymers having a mass flow rate difference of 2.9 / 1001 or more are contained, and the content of the first and second biodegradable polymers is the entire foaming resin composition.
  • both are 10% by weight or more and 80% by weight or less, and the content of the layered silicate is 10% by weight or more and 40% by weight or less with respect to the entire foaming resin composition,
  • the average particle diameter of the layered silicate is ⁇ .
  • the difference between the whiteness of the layered silicate and the whiteness of the non-foamed resin molded product obtained by the foaming resin composition is 20% or less. It is characterized by being.
  • the foaming resin composition further contains a filler, and the content of the filler is 0.01% by weight or more and 0.5% by weight or less with respect to the entire foaming resin composition. preferable.
  • the specific gravity of the filler is preferably 0.5 or more and 4.0 or less.
  • the foamed molded article of the present invention is characterized by being formed by foaming the resin composition for foaming of the present invention.
  • the foam-formed product is one in which the foaming resin composition of the present invention and a supercritical fluid are mixed and foamed.
  • the foamed molded product is preferably obtained by injection molding the resin composition for foaming of the present invention.
  • the foaming resin composition of the present invention is excellent in dispersibility, biodegradability and molding processability.
  • the foamed molded article of the present invention is formed by foaming the resin composition for foaming having the above-mentioned properties, and is excellent in foamability, heat insulation and biodegradability.
  • Fig. 1 is a schematic cross-sectional view of a foam molded article of the present invention.
  • FIG. 2 is a schematic diagram for explaining an example of a molding device used for producing a foam molded article.
  • the foaming resin composition of the present invention is a foaming resin composition containing two or more types of biodegradable polymers and a layered silicate, wherein the two or more types of biodegradable polymers are melts.
  • the first and second biodegradable polymers having a mass flow rate difference of 2.9 / 1001 or more are contained, and the content of the first and second biodegradable polymers is the entire foaming resin composition.
  • both are 10% by weight or more and 80% by weight or less, and the content of the layered silicate is 10% by weight or more and 40% by weight or less with respect to the entire foaming resin composition,
  • the average particle diameter of the layered silicate is ⁇ .
  • the difference between the whiteness of the layered silicate and the whiteness of the non-foamed resin molded product obtained by the foaming resin composition is 20% or less. It is characterized by being.
  • Two or more types of biodegradable polymers have a difference in melt mass flow rate between the biodegradable polymers of 29/10. It includes a first and a second biodegradable polymer having a density of at least n. Since the first and second biodegradable polymers are not compatible with each other, even if they are mixed, they do not dissolve each other and an interface is formed. This interface acts as a foam nucleus. However, the dispersion of two or more biodegradable polymers is insufficient because the shearing force at the time of mixing is low only by mixing two or more biodegradable polymers. Therefore, by further adding a layered silicate, the dispersibility of two or more types of biodegradable polymers can be improved, and the foaming nuclei can be highly dispersed in the foaming resin composition.
  • Difference IV In the first and second biodegradable polymer is preferably 1 0 0 9 / Rei_1 ⁇ n below. 1 ⁇ /1 difference is 100 This is because if it exceeds n, the dispersibility of two or more biodegradable polymers may deteriorate.
  • the biodegradable polymer is not particularly limited, and a commonly used biodegradable polymer can be used.
  • examples of the biodegradable polymer include starch fatty acid ester, starch polyester, polylactic acid, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), polylactic acid/polycaprolactone copolymer, polyglycolic acid, and polyglycolic acid.
  • the first and second biodegradable polymers are biodegradable polymers selected from these groups and having a melt mass flow rate difference of 2 9/100 1 n or more.
  • the two or more biodegradable polymers may include different biodegradable polymers in addition to the first and second biodegradable polymers.
  • the types of biodegradable polymers, including the first and second biodegradable polymers are preferably 4 or less. This is because the handleability of the resin composition becomes complicated.
  • biodegradable polymer used in the resin composition of the present invention polylactic acid, polypropylene succinate, polypropylene adipate terephthalate and ⁇ 2020/175 635 6 ⁇ (:171? 2020 /008089
  • At least one selected from the group consisting of polycaprolactone can be preferably used, and at least one selected from polylactic acid and polypropylene succinate can be more preferably used.
  • polylactic acid when polylactic acid is used to form a two-component resin composition, the molding processability is good, and therefore it can be used particularly preferably.
  • the polylactic acid is not particularly limited, and! _ _ Lactic acid or a homopolymer of lactic acid,! _ _ Lactic acid and a copolymer of lactic acid, or a mixture of these homopolymers and/or copolymers.
  • Polylactic acid with different crystallinity obtained depending on the ratio of enantiomers of lactic acid, the method of copolymerization of enantiomers (random, block, graft, etc.) or the method of adding a crystal nucleating agent is used. You may choose.
  • polypropylene succinate is not particularly limited, and succinic acid (!!
  • the content of each of the first and second biodegradable polymers used in the resin composition of the present invention is 10% by weight or more and 80% by weight or less with respect to the entire resin composition. ..
  • the resin composition for foaming is foamed.
  • the foamability of the foamed molded product formed by molding becomes insufficient.
  • the content of the first biodegradable polymer is preferably 30% by weight or more and 70% by weight or less, more preferably 40% by weight or more and 60% by weight or less.
  • the content of the second biodegradable polymer is preferably 10% by weight or more and 45% by weight or less, more preferably 10% by weight or more and 36% by weight or less.
  • the types and contents of the first and second biodegradable polymers are appropriately set within the above range from the viewpoint of improving the fluidity of the resin composition and the moldability. be able to.
  • a more preferred lower limit of the melt viscosity of the biodegradable polymers is a 2 0 0 3 3, and a more preferred upper limit is 3 0 0 3 3.
  • the melt viscosity can be measured, for example, using a flow tester 0-500, manufactured by Shimadzu Corp. Specifically, the resin to be measured is heated to a predetermined temperature to fluidize it, and then it is passed through a cavity die (inner diameter 0 1, length 10 ), and a cylinder with a biston with a predetermined surface pressure of 11 ⁇ /1 3 is used. Viscosity characteristics can be evaluated by the amount of viston movement and the time it takes.
  • [0027] is 1 ⁇ / 1 [difference 3 ⁇ 4 2 9 / Rei_1 ⁇ n or as a method of mixing the first and second biodegradable polymers together, a method of forming a chemical bond between the two components Alternatively, a method of forming a crosslinked structure between the same polymer or the like can be used.
  • reactive extrusion reactive extrusion
  • a synthetic catalyst such as a metal complex or a radical generator. Processing
  • an interface formed between two or more specific biodegradable polymers acts as a foam nucleus, and unlike reactive extrusion in which kneading is performed while synthesizing polylactic acid, a synthetic catalyst is contained in a resin composition. It is not necessary to add a radical generator or the like.
  • tin 2-ethylhexanoate is used as a synthesis catalyst, and an antioxidant (eg, Irganox 1101 manufactured by Ciba Specialty Chemicals) is added.
  • the layered silicate is not particularly limited, and examples thereof include pyrophyllite, talc, kaolin (kaolinite), montmorillonite, fisheye stone, margara. ⁇ 2020/175 635 8 ⁇ (:171? 2020 /008089
  • plenite, mica (mica) and the like can be mentioned, and particularly, talc, force Olin, montmorillonite or mica (mica) is preferably used.
  • the above layered silicates may be used alone or in combination of two or more.
  • talc and/or mica it is preferable to use talc and/or mica as the layered silicate.
  • the content of the layered silicate is 10% by weight or more based on the entire resin composition
  • the content of the above layered silicate with respect to the entire resin composition is less than 10% by weight, the effect of improving the shearing force at the time of mixing cannot be sufficiently obtained, so that two or more biodegradable polymers should be used. It cannot be sufficiently dispersed, and if it exceeds 40% by weight, the moldability of the resin composition for foaming deteriorates.
  • the preferable lower limit of the content of the layer silicate with respect to the entire resin composition is 15% by weight, and the preferable upper limit is 35% by weight.
  • the average particle size of the layered silicate is 0.05 or more and 100 or less. If the average particle size of the layered silicate is less than 0.05, two or more types of biodegradation are obtained. This is because the effect of improving the shearing force at the time of mixing the water-soluble polymer cannot be sufficiently obtained, and when the average particle size exceeds 100, the strength of the foam-molded article is significantly reduced.
  • the preferable lower limit of the average particle diameter of the layered silicate is 0.5, and the more preferable lower limit is 1.
  • the preferred upper limit of the average particle diameter of the layered silicate is 80, and the more preferred upper limit thereof is 30.
  • the average particle size of the layered silicate is the average particle size measured in the state in which the two or more layered silicates used are mixed. means.
  • the average particle size of the layered silicate is 50% average particle size, and is measured using, for example, a Shimadzu laser diffraction particle size distribution analyzer (trade name: 3 1_ 0 _ 200 0 0). You ⁇ 2020/175 635 9 ⁇ (:171? 2020 /008089
  • the difference between the whiteness of the layered silicate and the whiteness of the non-foamed molded product obtained from the resin composition is 20% or less.
  • the addition of the layered silicate improves the dispersibility of two or more biodegradable polymers, but if the adhesion between the layered silicate and the two or more biodegradable polymers is poor, foaming
  • the expanded particles in the expanded molded article formed by expanding the resin composition are enlarged. That is, since the foamed particle diameter of the foamed particles inside the foamed molded article becomes large, it becomes difficult to produce a foamed molded article having dense foamed particles in which a large number of foamed particles having a small particle diameter are generated.
  • the layered silicate is It is considered that the adhesion between the layered silicate and the two or more types of biodegradable polymers in the resin composition is good by mixing the above and two or more types of biodegradable polymers.
  • the difference in whiteness can be adjusted by changing properties such as polarity from a commercially available layered silicate.
  • the difference between the whiteness of the layered silicate and the whiteness of the non-foamed molded product obtained from the resin composition is preferably 10% or less, more preferably 5% or less.
  • the whiteness of the layered silicate and the whiteness of the non-foamed molded product should be measured using a spectral color difference meter 3600 made by Nippon Denshoku Industries Co., Ltd. You can
  • the non-foamed molded article can be obtained, for example, by mixing the two types of biodegradable polymers and the layered silicate, melt-kneading, and then transferring to a mold and cooling.
  • 6 It is formed into a flat plate having the following thickness. Therefore, when measuring the whiteness, Above, 6 It is a flat non-foamed molded product having a thickness of 0! or less.
  • the layered silicate When measuring the whiteness of the layered silicate, the layered silicate is rolled to form a sheet, and the whiteness is measured. In addition, there are two or more layered silicates. ⁇ 2020/175 635 10 ⁇ (:171? 2020 /008089
  • the foaming resin composition of the present invention preferably further contains a filler, and the content of the filler is from 0.01% by weight or more to 0.5% by weight or less based on the entire resin composition. Preferably.
  • the content of the above filler in the whole resin composition is less than 0.01% by weight, the addition of the filler will improve the dispersibility of the two biodegradable polymers and the foamability of the resulting foamed molded article.
  • the effect of improvement is not sufficiently obtained, and if it exceeds 0.5% by weight, the foamability of the obtained foamed molded product may be deteriorated.
  • the preferable upper limit of the content of the filler with respect to the entire resin composition is 0.3% by weight.
  • the filler has a density of 0.2% with respect to the density of the layered silicate. Those having different densities are preferable, and other components contained in the resin composition for foaming, that is, two or more kinds of biodegradable polymers, and a compound different from the layered silicate are composed of inorganic materials.
  • the inorganic filler may be an organic filler composed of an organic material, or a mixture thereof.
  • the filler the difference in density between the layered silicate ⁇ . More preferably 2 5 9 / Rei_rei_1 3 or more, ⁇ .
  • the density of the filler may be higher or lower than the density of the layered silicic acid.
  • the density of the filler and the density of the layered silicate can be measured by a pycnometer method.
  • Examples of the inorganic filler include metal oxides such as magnesium oxide and calcium oxide, graphite, carbon black, molybdenum disulfide, tungsten disulfide, calcium carbonate, silica, silica gel, zeolite, boron nitride. , And a filler containing alumina or the like.
  • organic filler examples include, for example, fluororesins such as polytetrafluoroethylene (Tomo), ultra high molecular weight polyethylene, electron beam cross-linking polyethylene, aromatic polyamides, aliphatic polyamides, silicon carbide, acrylic resins. , Hue ⁇ 2020/175 635 1 1 ⁇ (: 171? 2020 /008089
  • Examples include fillers containing a knoll resin and a melamine resin.
  • the above ultrahigh molecular weight polyethylene and electron beam crosslinkable polyethylene have extremely low fluidity even when they are in a molten state by heating above the melting point, and therefore cannot be numerically evaluated by the melt mass flow rate (IV! [3 ⁇ 4] measurement.
  • the filler preferably has a specific gravity of 0.5 or more and 4.0 or less. This is because at the time of blending, high dispersibility is easily obtained due to collision with polymer and collision between fillers.
  • the specific gravity of the filler is the ratio of the density of the filler to the density of water as a reference substance, and can be calculated using the density measured by the pycnometer method.
  • the method for producing the foaming resin composition of the present invention is not particularly limited, but a known method can be used. For example, a method of melting and kneading a mixture of each component with various single-screw or multi-screw extruders can be mentioned. Each component may be kneaded at once, or any component may be kneaded and then the remaining components may be added and kneaded.
  • a foamed molded article is obtained by foaming and molding the above-mentioned foaming resin composition.
  • a specific layered silicate is added to improve the dispersibility of two or more types of biodegradable polymers, and further, two or more types of biodegradable polymers and layered silicates are added. Since the adhesiveness is improved, fine bubbles can be uniformly present inside the foamed molded product obtained by foaming the same. Therefore, the foamed molded product is excellent in heat insulating property, strength and lightness in addition to biodegradability.
  • a pigment filler, a color masterbatch or the like may be added to the foam resin composition.
  • the foamed molded product is obtained by mixing and foaming the foaming resin composition and a supercritical fluid.
  • the foaming resin composition has a fine interface formed by highly dispersing two or more types of biodegradable polymers that are insoluble in each other. Therefore, in foaming using a supercritical fluid, the above interface becomes the foaming starting point. ⁇ 2020/175 635 12 ⁇ (:171? 2020 /008089
  • the supercritical fluid examples include carbon dioxide, nitrogen, argon, and an inert gas such as helium. Of these, a supercritical fluid of carbon dioxide or nitrogen is preferable, and a supercritical fluid of nitrogen is more preferable.
  • a supercritical fluid is injected into a melted resin composition for foaming under high pressure and stirred to obtain a resin composition for foaming.
  • a single phase melt with a supercritical fluid is obtained.
  • the supercritical fluid in the single-phase melt will undergo a phase transition to gas, and bubbles will be generated.
  • a foamed molded product containing a large number of fine expanded particles is obtained.
  • the foaming resin composition is foamed to obtain a foamed molded product having fine foamed particles.
  • the foamed molded product is preferably obtained by injection molding of the foaming resin composition.
  • the foamed molded product is preferably obtained by a method of performing injection molding while impregnating the foaming resin composition with a supercritical fluid (hereinafter, also referred to as supercritical injection molding).
  • the foaming resin composition can be processed into a precise shape and various shapes by supercritical injection molding.
  • in supercritical injection molding after filling the above-mentioned foaming resin composition in a molten state in the cavity part (cavity) of the mold, by moving a part of the mold before cooling and solidification proceed, It is preferable to foam by a method of forcibly expanding and causing a rapid pressure decrease (hereinafter, core back method). By using the core back method, the foaming amount can be greatly increased.
  • Fig. 1 is a schematic cross-sectional view of a foam molded article of the present invention.
  • the foamed resin composition of the present invention and a supercritical fluid are mixed, and then injection-molded to foam, whereby the foamed molded article 10 shown in FIG. 1 is obtained.
  • the foamed molded product 10 has skin layers (outer skin layers) 11 on both sides of the foamed layer 12.
  • the foam layer 12 is a region having uniform foam particles, and the skin layer 11 is formed by forming foam particles on the surface side of the foam molded article. ⁇ 2020/175 635 13 ⁇ (:171? 2020 /008089
  • the surface of the foamed molded article 10 is the skin layer 11, the strength of the foamed molded article 10 can be increased and the surface can be made smooth. Further, since the central portion is the foam layer 12, not only can the weight be reduced, but also heat cannot be transmitted easily, so that the heat insulation of the foam molded body 10 is improved.
  • the thickness of the foamed molded product is from 0.2 to 3.0. Is preferred.
  • the thickness of the foamed molded product is 0.2. If it is less than 3.0, foaming may not occur, and if it exceeds 3.0, unevenness may occur on the surface and the appearance may be impaired.
  • the foaming resin composition of the present invention since the foaming property and the moldability are superior to those of the conventional foaming resin composition, practically sufficient heat insulating property and strength are secured even if the foaming resin composition is thinner than the conventional one. It is possible to produce a foamed molded product.
  • the above-mentioned foamed layer preferably has 100 or more foamed particles in the range of 11 of the foamed layer when observing the cross section of the foamed molded article, and 100 foamed particles selected arbitrarily.
  • the average particle size of the particles is preferably 100 or less.
  • Foamed particles can be measured with a scanning electron microscope (3M IV!), for example, 3-4800 manufactured by Hitachi High-Technologies Co., Ltd. can be used.
  • foaming resin composition with the supercritical fluid, and foaming and molding the foaming resin composition can be performed, for example, by using an injection molding machine and a supercritical fluid generator.
  • An example of a device in which an injection molding machine and a super-realistic fluid generator are connected is, for example, I ⁇ injection molding machine (1 ⁇ / 1 ri ⁇ 6 ⁇ I is a "6 X 6 ⁇ . ⁇ ⁇ _ 1 _ 1 registered trademark) and the like.
  • Fig. 2 is a schematic diagram for explaining an example of a molding apparatus used for producing a foam molded article.
  • the molding device 20 is equipped with a hopper 21 for feeding material, a heating cylinder 2 2 equipped with a screw 23, and an injection molding machine equipped with a nozzle 24 via an injection controller 27.
  • the cylinder 25 and the supercritical fluid generator 26 are connected.
  • biodegradable polymers for example, poly ⁇ 2020/175 635 14 ⁇ (:171? 2020 /008089
  • Lactic acid and polyethylene succinate) and layered silicate are melt-mixed by a twin-screw extruder having a set temperature of 200 ° C. or higher to produce a pellet-shaped resin composition for foaming.
  • the pellet-shaped foaming resin composition obtained above was put into a hopper 21 and the screen 23 was rotated according to a general injection molding procedure to prepare the pellet-shaped foaming resin composition. Dissolve and weigh.
  • the supercritical fluid is introduced into the cylinder 2 2 through the injection controller 27 connected to the cylinder 25 and the supercritical fluid generator 26.
  • the screw 23 is rotated to mix and impregnate the melt of the foaming resin composition with the supercritical fluid, thereby forming a single-phase melt.
  • the measured single-phase melt is conveyed to the nozzle 24 side by the screw 23 and injected into the die 28. Due to the pressure loss in the mold 28, the supercritical fluid undergoes a phase transition to a gas at the time when the critical pressure is reached and bubbles are generated. Further, there is also a method of increasing the foaming amount by accelerating the pressure decrease in the mold 28 by expanding the cavity when the single-phase melt is injected into the mold 28.
  • the obtained pellet-shaped resin composition for foaming was put into a supercritical injection molding machine (manufactured by Toshiba Machine Co., Ltd.), and the resin composition for foaming was dissolved at a cylinder temperature of 210 °. While being impregnated with a supercritical fluid, a foamed molded body was obtained by a core back method using supercritical injection molding.
  • the mold temperature was set to 50°. Vertical 80, Horizontal 80, Thickness 2 was molded into a plate shape to obtain a foamed molded body.
  • the filling amount of supercritical fluid (unit:% by weight) can be calculated by the following formula (1).
  • the obtained foamed molded article was a foamed molded article having skin layers on both sides of the foamed layer, as shown in Fig. 1.
  • the foaming resin compositions and foam moldings according to Examples 2 to 15 were performed in the same manner as in Example 1 except that the blending raw materials and their blending amounts were changed to the blending raw materials and blending amounts shown in Table 2 below.
  • the body was made.
  • Table 2 shows the content of each compounding raw material in the entire foaming resin composition, the difference in IV! in the polymers used, the average particle diameter of the layered silicate, and the whiteness of the layered silicate. The difference from the whiteness of the non-foamed molded product obtained from the resin composition was described.
  • the foaming resin compositions and the foaming resin compositions according to Comparative Examples 1 to 12 were prepared in the same manner as in Example 1 except that the blending raw materials and their blending amounts were changed to the blending raw materials and blending amounts shown in Table 3 below. ⁇ 2020/175 635 17 ⁇ (:171? 2020/008089
  • Table 3 shows the content of each compounded raw material in the entire foaming resin composition, the difference in IV! in the polymers used, the average particle diameter of the layered silicate, and the whiteness of the layered silicate. The difference from the whiteness of the non-foamed molded product obtained from the resin composition was described.
  • the average particle diameter of the layered silicate and the granular silicate used in the examples and comparative examples was measured by the following procedure.
  • the whiteness of the layered silicate and the whiteness of the non-foamed molded product obtained from the resin composition were measured by the following methods.
  • the average particle size of the layered silicate and granular silicate is 50% average particle size, measured using a Shimadzu laser diffraction particle size distribution analyzer (trade name: 3 !_ 0 _ 200 0 0) did.
  • the foaming resin compositions prepared in Examples and Comparative Examples were evaluated for moldability, foamability, heat insulation and biodegradability. The results are shown in Table 4 below.
  • the moldability of the resin composition for foaming was evaluated by the fluidity during injection molding and the cooling and solidifying property after injection molding.
  • the case where the fluidity during injection molding and the cooling and solidifying property after injection molding were good was indicated by ⁇
  • the case where either the fluidity during injection molding or the cooling and solidifying property after injection molding was poor was indicated by X.
  • the cross section of the foamed molded article was observed by 3 1//1 (manufactured by Hitachi High-Technologies Corporation, 3-4800) to confirm the state of the foamed particles in the foamed layer.
  • the foamability was evaluated by observing the foamed molded article from the cross-section, and there were 100 or more foamed particles in the range of 10! and 10! in the foam layer, and 10 were selected arbitrarily. ⁇ When the average particle size of the foamed particles is less than 60, it is marked as ⁇ , when it is more than 60 and less than 80, it is marked as ⁇ , and when it is more than 800! , When the average particle size of the expanded particles is larger than 100
  • the solvent to be immersed was dried indoors for 12 hours to 24 hours to prepare a black colored plate-like sample for measurement. Then, place the measurement sample on the hot plate set at 90 °, and after 3 minutes, measure the surface temperature of the measurement sample on the side opposite to the hot plate contact surface from the center of the measurement sample.
  • the biodegradability of the foamed molded product was evaluated by a method according to 1 301 4855 ("1 3 X6953).
  • a 10 ⁇ 10 0 plate-shaped foam molded body was buried in microbially active soil for 180 days, and the appearance was observed and the mass was measured.
  • the culture temperature was set to 58 ° ⁇ ⁇ 2 ° ⁇ . If the mass of the plate-shaped foam molded article after the evaluation is 90% or less of the mass of the plate-shaped foam molded article before the evaluation, the evaluation result is ⁇ , and 90% of the mass of the plate-shaped foam molded article before the evaluation is The evaluation result in the case of exceeding is defined as X.

Abstract

The present invention provides a foamable resin composition that obtains a molded foam having excellent foamability, thermal insulating property, and biodegradability and a molded foam obtained from the foamable resin composition. This foamable resin composition contains two or more biodegradable polymers and a layered silicate, wherein the two or more biodegradable polymers include a first and a second biodegradable polymer having at least a 2 g/10 min difference in melt mass flow rate; the first and second biodegradable polymers are contained in an amount of 10 to 80 wt% inclusive with respect to the entire foamable resin composition; the layered silicate is contained in an amount of 10 to 40 wt% inclusive relative to the entire foamable resin composition; the average particle size of the layered silicate is 0.05 to 100 μm inclusive; and the difference between the whiteness of the layered silicate and the whiteness of a non-foamed resin molding obtained from the foamable resin composition is 20% or less.

Description

\¥0 2020/175635 1 卩(:17 2020 /008089 明 細 書 \¥0 2020/175 635 1 卩 (: 17 2020 /008089 Clarification
発明の名称 : 発泡用樹脂組成物及び発泡成形体 Title of invention: Foaming resin composition and foamed molded product
技術分野 Technical field
[0001 ] 本発明は、 発泡用樹脂組成物及び発泡成形体に関する。 The present invention relates to a foaming resin composition and a foamed molded product.
背景技術 Background technology
[0002] 発泡成形体は、 一般的に発泡用樹脂組成物 (以下、 単に 「樹脂組成物」 とも いう) を発泡させることで得られ、 軽量化、 コスト削減ができ、 また、 断熱 性をもたせることができる。 そのため、 食品用容器、 日用品、 家庭用電化製 品等の様々な用途に用いられている。 更に、 近年、 環境に配慮した発泡成形 体が注目されており、 生分解性樹脂を用いた発泡成形体が検討されている。 [0002] A foamed molded article is generally obtained by foaming a resin composition for foaming (hereinafter, also simply referred to as "resin composition"), which enables weight reduction, cost reduction, and heat insulation. be able to. Therefore, it is used in various applications such as food containers, daily necessities, and household electrical appliances. Furthermore, in recent years, foam-molded articles in consideration of the environment have attracted attention, and foam-molded articles using biodegradable resins have been investigated.
[0003] 例えば、 特許文献 1では、 生分解性樹脂を主成分とする組成物から形成され 、 充分な機械的強度を有する発泡樹脂シートが開示され、 澱粉を主成分とし 、 その他の材料の配合割合を工夫し、 かつ、 加工手段を工夫することにより 、 折り曲げ加工や製袋加工することが可能な発泡樹脂シートおよび発泡樹脂 シート成形物が開示されている。 また、 特許文献 2では、 剛性を有する生分 解性樹脂製樹脂又は発泡粒子に対して、 剛性の不足するポリエステル樹脂製 樹脂又は発泡粒子を等量以上混合することにより、 従来よりも剛性を有する ポリエステル樹脂製発泡粒子及び発泡成形体並びにその製造方法が開示され ている。 [0003] For example, Patent Document 1 discloses a foamed resin sheet formed from a composition containing a biodegradable resin as a main component and having sufficient mechanical strength, and containing starch as a main component and blending other materials. There is disclosed a foamed resin sheet and a foamed resin sheet molded article that can be bent and bag-formed by devising the ratio and devising the processing means. Further, in Patent Document 2, by mixing an equal amount or more of a polyester resin resin or foamed particles having insufficient rigidity with a resin or foamed particles made of a biodegradable resin having rigidity, the resin or foamed particles has higher rigidity than before. Polyester resin foamed particles, foamed molded products, and a method for producing the same are disclosed.
[0004] また、 特許文献 3では、 少なくとも 1つの天然源のポリマーと、 少なくとも [0004] Further, in Patent Document 3, at least one polymer of a natural source and at least one
2つの二酸ージオール型の脂肪族一芳香族ポリエステル類とを含む混合物で 、 少なくとも 2つの二酸ージオール型の脂肪族一芳香族ポリエステル類を特 定量混合することで、 優れた機械的特性、 充分高い融点、 充分な晶析速度、 改善された生分解特性と共に、 時間経過時の安定した物理特性が得られるこ とが開示されている。 また、 当該混合物は、 発泡性ビーズ、 発泡製品、 及び 、 食品包装で使用するための発泡シート等に用いられることが開示されてい る。 \¥0 2020/175635 2 卩(:17 2020 /008089 A mixture containing two diacid-diol type aliphatic monoaromatic polyesters. By mixing a specific amount of at least two diacid-diol type aliphatic monoaromatic polyesters, excellent mechanical properties, sufficient It is disclosed that a stable physical property over time can be obtained together with a high melting point, a sufficient crystallization rate, and an improved biodegradation property. It is also disclosed that the mixture is used for expandable beads, expanded products, and expanded sheets for use in food packaging. \¥0 2020/175 635 2 卩 (: 17 2020 /008089
先行技術文献 Prior art documents
特許文献 Patent literature
[0005] 特許文献 1 :特開 2 0 1 0— 2 5 4 8 5 9号公報 Patent Document 1: Japanese Patent Laid-Open No. 2 0 1 0—2 5 4 8 5 9
特許文献 2 :特開 2 0 1 4 - 0 4 0 5 0 6号公報 Patent Document 2: Japanese Patent Laid-Open No. 20 1 4-0 4 0 5 0 6
特許文献 3 :特許第 5 7 2 7 4 9 7号公報 Patent Document 3: Patent No. 5 7 2 7 4 9 7 Publication
発明の概要 Summary of the invention
発明が解決しようとする課題 Problems to be Solved by the Invention
[0006] ここで、 発泡成形体は、 発泡によって形成された気泡 (以下、 「発泡粒子」 ともいう) がその内部に均一に分布していることが重要であり、 発泡粒子の 分布が不均一であると、 発泡成形体の表面の欠陥、 強度の低下等を招く。 発 泡成形体において、 均一に発泡させるためには、 発泡させる前の樹脂組成物 が均一に分散していることが必要である。 ところが、 環境への配慮から生分 解性ポリマーを用いる場合、 樹脂組成物の分散性が良いと考えられる一種類 の生分解性ポリマーのみを含有する樹脂組成物を用いて発泡成形体を製造す ると、 発泡粒子が不均一に分布するだけでなく、 その発泡成形体に占める発 泡粒子の割合が低いという問題があった。 すなわち、 発泡性が悪いという問 題があった。 また、 2種以上の生分解性ポリマーを用いる場合、 樹脂組成物 を均一に分散させることが困難であり、 樹脂組成物の分散性を向上させるた めに更なる検討の余地があった。 [0006] Here, it is important for the foamed molded article that the cells formed by foaming (hereinafter, also referred to as "foamed particles") are evenly distributed inside, and the distribution of the foamed particles is uneven. In that case, defects on the surface of the foamed molded product, reduction in strength, and the like are caused. In order to uniformly foam in the foamed molded product, it is necessary that the resin composition before foaming is uniformly dispersed. However, when a biodegradable polymer is used because of environmental considerations, a foamed molded article is produced using a resin composition containing only one type of biodegradable polymer, which is considered to have good dispersibility in the resin composition. Then, there are problems that not only the foamed particles are non-uniformly distributed but also the proportion of the foamed particles in the foamed molded product is low. That is, there was a problem that the foamability was poor. Further, when two or more biodegradable polymers are used, it is difficult to uniformly disperse the resin composition, and there is room for further study in order to improve the dispersibility of the resin composition.
[0007] 本発明は、 上記現状に鑑みてなされたものであり、 優れた発泡性、 断熱性及 び生分解性を有する発泡成形体が得られる発泡用樹脂組成物、 及び、 該発泡 用樹脂組成物から得られる発泡成形体を提供することを目的とする。 [0007] The present invention has been made in view of the above circumstances, and is a resin composition for foaming, which gives a foamed molded article having excellent foaming properties, heat insulating properties, and biodegradability, and the resin for foaming. The object is to provide a foamed molded product obtained from the composition.
課題を解決するための手段 Means for solving the problem
[0008] 本発明者らは、 生分解性ポリマーを用いて環境負荷の少ない、 成形加工性に 優れた発泡成形体を得る方法について検討を行い、 互いに溶解しない非相溶 のポリマー同士の界面が発泡核としての効果が高いことに着目し、 メルトマ スフローレートの差が特定の値以上である 2種以上の生分解性ポリマーを分 〇 2020/175635 3 卩(:171? 2020 /008089 [0008] The present inventors have conducted a study on a method of using a biodegradable polymer to obtain a foamed molded article having a low environmental load and excellent molding processability, and found that the interfaces between incompatible polymers that do not dissolve each other Focusing on its high effect as a foam nuclei, two or more biodegradable polymers with a difference in melt mass flow rate of a specific value or more were separated. 〇 2020/175635 3 (: 171-1?2020/008089
散させることで、 発泡性に優れた発泡成形体が得られることを見出した。 ま た、 層状ケイ酸塩を添加することで、 混合時のせん断力が向上し、 2種以上 の生分解性ポリマーの分散性が向上し、 優れた発泡性が得られることを見出 した。 さらに、 2種以上の生分解性ポリマーと層状ケイ酸塩との密着性を高 めることにより、 発泡粒子の発泡粒子径をより小さくすることができること を見出した。 これによって、 得られた発泡成形体の発泡性及び断熱性が向上 し、 優れた生分解性を有することを見出し、 本発明を完成した。 It has been found that a foamed molded article having excellent foaming properties can be obtained by dispersing. It was also found that the addition of the layered silicate improves the shearing force during mixing, improves the dispersibility of two or more types of biodegradable polymers, and provides excellent foaming properties. Furthermore, they have found that the expanded particle size of the expanded particles can be made smaller by increasing the adhesion between the two or more biodegradable polymers and the layered silicate. As a result, they have found that the foamed molded product obtained has improved foaming properties and heat insulating properties, and has excellent biodegradability, and completed the present invention.
[0009] 本発明の発泡用樹脂組成物は、 2種以上の生分解性ポリマーと層状ケイ酸塩 とを含む発泡用樹脂組成物であって、 上記 2種以上の生分解性ポリマーは、 メルトマスフローレートの差が 2 9 / 1 0 01 丨 以上である第一及び第二の 生分解性ポリマーを含み、 上記第一及び第二の生分解性ポリマーの含有量が 上記発泡用樹脂組成物全体に対しいずれも 1 〇重量%以上、 8 0重量%以下 であり、 上記層状ケイ酸塩の含有量が上記発泡用樹脂組成物全体に対し 1 〇 重量%以上、 4 0重量%以下であり、 上記層状ケイ酸塩の平均粒子径が〇. The foaming resin composition of the present invention is a foaming resin composition containing two or more types of biodegradable polymers and a layered silicate, wherein the two or more types of biodegradable polymers are melts. The first and second biodegradable polymers having a mass flow rate difference of 2.9 / 1001 or more are contained, and the content of the first and second biodegradable polymers is the entire foaming resin composition. On the other hand, both are 10% by weight or more and 80% by weight or less, and the content of the layered silicate is 10% by weight or more and 40% by weight or less with respect to the entire foaming resin composition, The average particle diameter of the layered silicate is 〇.
0 5 〇1以上、 1 0 0 以下であり、 上記層状ケイ酸塩の白色度と、 上記 発泡用樹脂組成物により得られた無発泡樹脂成形体の白色度との差が 2 0 % 以下であることを特徴とする。 0 5 0 1 or more and 100 0 or less, the difference between the whiteness of the layered silicate and the whiteness of the non-foamed resin molded product obtained by the foaming resin composition is 20% or less. It is characterized by being.
[0010] 上記発泡用樹脂組成物は、 フイラーをさらに含み、 上記フイラーの含有量が 上記発泡用樹脂組成物全体に対して〇. 0 1重量%以上、 〇. 5重量%以下 であることが好ましい。 [0010] The foaming resin composition further contains a filler, and the content of the filler is 0.01% by weight or more and 0.5% by weight or less with respect to the entire foaming resin composition. preferable.
[001 1 ] 上記フイラーの比重が〇. 5以上、 4 . 0以下であることが好ましい。 [001 1] The specific gravity of the filler is preferably 0.5 or more and 4.0 or less.
[0012] 本発明の発泡成形体は、 本発明の発泡用樹脂組成物を発泡させて成形したこ とを特徴とする。 The foamed molded article of the present invention is characterized by being formed by foaming the resin composition for foaming of the present invention.
[0013] 上記発泡形成体は、 本発明の発泡用樹脂組成物と超臨界流体とを混合して発 泡させたものであることが好ましい。 [0013] It is preferable that the foam-formed product is one in which the foaming resin composition of the present invention and a supercritical fluid are mixed and foamed.
[0014] 上記発泡成形体は、 本発明の発泡用樹脂組成物を射出成型して得られたこと が好ましい。 [0014] The foamed molded product is preferably obtained by injection molding the resin composition for foaming of the present invention.
発明の効果 〇 2020/175635 4 卩(:171? 2020 /008089 Effect of the invention 〇 2020/175 635 4 卩 (:171? 2020 /008089
[0015] 本発明の発泡用樹脂組成物は、 分散性、 生分解性及び成形加工性に優れる。 The foaming resin composition of the present invention is excellent in dispersibility, biodegradability and molding processability.
本発明の発泡成形体は、 上述した特性を有する発泡用樹脂組成物を発泡させ て成形したものであり、 発泡性、 断熱性及び生分解性に優れる。 The foamed molded article of the present invention is formed by foaming the resin composition for foaming having the above-mentioned properties, and is excellent in foamability, heat insulation and biodegradability.
図面の簡単な説明 Brief description of the drawings
[0016] [図 1 ]本発明の発泡成形体の断面模式図である。 [Fig. 1] Fig. 1 is a schematic cross-sectional view of a foam molded article of the present invention.
[図 2]発泡成形体の作製に使用する成形装置の一例を説明するための模式図で ある。 FIG. 2 is a schematic diagram for explaining an example of a molding device used for producing a foam molded article.
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0017] 本発明の発泡用樹脂組成物は、 2種以上の生分解性ポリマーと層状ケイ酸塩 とを含む発泡用樹脂組成物であって、 上記 2種以上の生分解性ポリマーは、 メルトマスフローレートの差が 2 9 / 1 0 01 丨 以上である第一及び第二の 生分解性ポリマーを含み、 上記第一及び第二の生分解性ポリマーの含有量が 上記発泡用樹脂組成物全体に対しいずれも 1 〇重量%以上、 8 0重量%以下 であり、 上記層状ケイ酸塩の含有量が上記発泡用樹脂組成物全体に対し 1 〇 重量%以上、 4 0重量%以下であり、 上記層状ケイ酸塩の平均粒子径が〇. The foaming resin composition of the present invention is a foaming resin composition containing two or more types of biodegradable polymers and a layered silicate, wherein the two or more types of biodegradable polymers are melts. The first and second biodegradable polymers having a mass flow rate difference of 2.9 / 1001 or more are contained, and the content of the first and second biodegradable polymers is the entire foaming resin composition. On the other hand, both are 10% by weight or more and 80% by weight or less, and the content of the layered silicate is 10% by weight or more and 40% by weight or less with respect to the entire foaming resin composition, The average particle diameter of the layered silicate is 〇.
0 5 〇1以上、 1 0 0 以下であり、 上記層状ケイ酸塩の白色度と、 上記 発泡用樹脂組成物により得られた無発泡樹脂成形体の白色度との差が 2 0 % 以下であることを特徴とする。 0 5 0 1 or more and 100 0 or less, the difference between the whiteness of the layered silicate and the whiteness of the non-foamed resin molded product obtained by the foaming resin composition is 20% or less. It is characterized by being.
[0018] 2種以上の生分解性ポリマーは、 生分解性ポリマーにおけるメルトマスフロ —レートの差が 2 9 / 1 0
Figure imgf000006_0001
丨 n以上である第一及び第二の生分解性ポリマ 一を含む。 第一及び第二の生分解性ポリマーは、 互いに相溶性を示さないた め、 混合しても互いに溶解せず界面が形成される。 この界面が発泡核として 作用する。 しかしながら、 2種以上の生分解性ポリマーを混合しただけでは 、 混合時のせん断力が低いため、 2種以上の生分解性ポリマーの分散は不充 分である。 そこで、 更に、 層状ケイ酸塩を添加することで、 2種以上の生分 解性ポリマーの分散性を改善し、 発泡用樹脂組成物中に発泡核を高分散させ ることができる。
[0018] Two or more types of biodegradable polymers have a difference in melt mass flow rate between the biodegradable polymers of 29/10.
Figure imgf000006_0001
It includes a first and a second biodegradable polymer having a density of at least n. Since the first and second biodegradable polymers are not compatible with each other, even if they are mixed, they do not dissolve each other and an interface is formed. This interface acts as a foam nucleus. However, the dispersion of two or more biodegradable polymers is insufficient because the shearing force at the time of mixing is low only by mixing two or more biodegradable polymers. Therefore, by further adding a layered silicate, the dispersibility of two or more types of biodegradable polymers can be improved, and the foaming nuclei can be highly dispersed in the foaming resin composition.
[0019] 2種以上の生分解性ポリマーは、 メルトマスフローレート (!\/! [¾) の差が 〇 2020/175635 5 卩(:171? 2020 /008089 [0019] Two or more biodegradable polymers have a difference in melt mass flow rate (!\/! [¾). 〇 2020/175 635 5 卩 (:171? 2020 /008089
2 9 / 1
Figure imgf000007_0001
I n以上である第一及び第二の生分解性ポリマーを含んでいれ ばよい。
2 9/1
Figure imgf000007_0001
It suffices to include the first and second biodegradable polymers having an I n or more.
第一及び第二の生分解性ポリマーにおける IV! の差は、 1 0 0 9 /〇1 丨 n 以下であることが好ましい。 1\/1 の差が 1 0 0
Figure imgf000007_0002
丨 nを超えると、 2 種以上の生分解性ポリマーの分散性が悪くなる可能性が生じるためである。 なお、
Figure imgf000007_0003
は、 」 丨 3 [< 7 2 1 0に準拠し、 用いられるポリマーに応じ て測定時の温度及び荷重を変更して測定した値である。
Difference IV! In the first and second biodegradable polymer is preferably 1 0 0 9 / Rei_1丨n below. 1\/1 difference is 100
Figure imgf000007_0002
This is because if it exceeds n, the dispersibility of two or more biodegradable polymers may deteriorate. In addition,
Figure imgf000007_0003
Is a value measured in accordance with “3 [<7 210] and changing the temperature and load during measurement according to the polymer used.
[0020] 上記生分解性ポリマーは、 特に限定されず、 一般的に用いられる生分解性ポ リマーを使用することができる。 上記生分解性ポリマーとしては、 例えば、 澱粉脂肪酸エステル、 澱粉ポリエステル、 ポリ乳酸、 ポリ (3—ヒドロキシ プチレートーコー3 -ヒドロキシヘキサノエート) 、 ポリ乳酸/ポリカプロ ラクトン共重合体、 ポリグリコール酸、 ポリ乳酸/ポリエーテル共重合体、 ブタンジオール/長鎖ジカルボン酸共重合体、 ポリプチレンアジべ一卜/テ レフタレート、 ポリテトラメチレンアジべ一卜 · コ テレフタレート、 ポリ エチレンテレフタレート共重合体 ( 1 , 4 - 6 0 , 琥珀酸、 アジべ一卜、 乳 酸) コボリマー、 ポリエチレンセバケート、 ポリプチレンサクシネート、 ポ リプチレンサクシネートアジべ一卜、 ポリプチレンアジべ一トテレフタレー 卜、 ポリビニルアルコール、 ポリヒドロキシ酪酸、 ポリカプロラクトン、 ポ リ (カプロラクトン/ブチレンサクシネート) 及びポリ (プチレンサクシネ —卜/力ーボネート) 等を挙げることができる。 第一及び第二の生分解性ポ リマーは、 これらの群より選択されるメルトマスフローレートの差が 2 9 / 1 0 01 丨 n以上の生分解性ポリマーである。 2種以上の生分解性ポリマーは 、 第一及び第二の生分解性ポリマーの他に、 異なる生分解性ポリマーを含ん でいてもよい。 ただし、 生分解性ポリマーの種類は、 第一及び第二の生分解 性ポリマーを含め、 4種類以下であることが好ましい。 樹脂組成物の取り扱 い性が煩雑になるためである。 [0020] The biodegradable polymer is not particularly limited, and a commonly used biodegradable polymer can be used. Examples of the biodegradable polymer include starch fatty acid ester, starch polyester, polylactic acid, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), polylactic acid/polycaprolactone copolymer, polyglycolic acid, and polyglycolic acid. Lactic acid/polyether copolymer, butanediol/long-chain dicarboxylic acid copolymer, polyptyrene adipite/terephthalate, polytetramethylene adipate·coterephthalate, polyethylene terephthalate copolymer (1, 4-6 0, succinic acid, adibe acid, milk acid) Cobolimer, polyethylene sebacate, polypropylene succinate, polypropylene succinate adipate, polyptyrene adipate terephthalate, polyvinyl alcohol, polyhydroxybutyric acid, poly Examples thereof include caprolactone, poly (caprolactone/butylene succinate), and poly (ptyrene succine-carbohydrate). The first and second biodegradable polymers are biodegradable polymers selected from these groups and having a melt mass flow rate difference of 2 9/100 1 n or more. The two or more biodegradable polymers may include different biodegradable polymers in addition to the first and second biodegradable polymers. However, the types of biodegradable polymers, including the first and second biodegradable polymers, are preferably 4 or less. This is because the handleability of the resin composition becomes complicated.
[0021 ] また、 本発明の樹脂組成物に用いられる生分解性ポリマーとして、 ポリ乳酸 、 ポリプチレンサクシネート、 ポリプチレンアジべ一トテレフタレート及び 〇 2020/175635 6 卩(:171? 2020 /008089 [0021] Further, as the biodegradable polymer used in the resin composition of the present invention, polylactic acid, polypropylene succinate, polypropylene adipate terephthalate and 〇 2020/175 635 6 卩 (:171? 2020 /008089
ポリカプロラクトンからなる群より選択される少なくとも 1種を好適に用い ることができ、 ポリ乳酸及びポリプチレンサクシネートの少なくとも 1種を より好適に用いることができる。 特に、 ポリ乳酸を使用して 2成分系の樹脂 組成物にすると成形加工性がよいため、 特に好適に用いることができる。 At least one selected from the group consisting of polycaprolactone can be preferably used, and at least one selected from polylactic acid and polypropylene succinate can be more preferably used. In particular, when polylactic acid is used to form a two-component resin composition, the molding processability is good, and therefore it can be used particularly preferably.
[0022] 上記ポリ乳酸は、 特に限定されず、 !_ _乳酸又は 乳酸の単重合体、 !_ _ 乳酸及び 乳酸の共重合体、 又は、 これらの単重合体及び/又は共重合体 の混合物であってよい。 乳酸の鏡像異性体比率や、 鏡像異性体が共重合する 方法 (ランダム、 ブロック、 グラフトなど) や、 結晶核剤を添加する方法の 使用等に応じて得られる、 結晶性が異なるポリ乳酸を適宜選択してよい。 [0022] The polylactic acid is not particularly limited, and! _ _ Lactic acid or a homopolymer of lactic acid,! _ _ Lactic acid and a copolymer of lactic acid, or a mixture of these homopolymers and/or copolymers. Polylactic acid with different crystallinity obtained depending on the ratio of enantiomers of lactic acid, the method of copolymerization of enantiomers (random, block, graft, etc.) or the method of adding a crystal nucleating agent is used. You may choose.
[0023] 上記ポリプチレンサクシネートは、 特に限定されず、 コハク酸 (! !〇〇〇〇 [0023] The above-mentioned polypropylene succinate is not particularly limited, and succinic acid (!!
1~1 2〇1~1 2〇〇〇 1~1) と 1 , 4—ブタンジオール (1~1〇 (〇1~1 24〇1~1) とを 原料として脱水重縮合により合成したものや、 市販品 (例えば、 巳 丨 〇 巳 3 (三菱ケミカル社製) 等) を用いることができる。 1 ~ 1 2 ○ 1 ~ 1 2 ○ ○ ○ 1 ~ 1) and 1,4-butanediol (1 ~ 1 ○ (○ 1 ~ 1 2 ) 4 ○ 1 ~ 1) as raw materials synthesized by dehydration polycondensation The commercially available products (for example, Mimi Tatsumi 3 (manufactured by Mitsubishi Chemical Corporation), etc.) can be used.
[0024] 本発明の樹脂組成物に用いられる上記第一及び第二の生分解性ポリマーの含 有量は、 樹脂組成物全体に対しいずれも 1 〇重量%以上、 8 0重量%以下で ある。 [0024] The content of each of the first and second biodegradable polymers used in the resin composition of the present invention is 10% by weight or more and 80% by weight or less with respect to the entire resin composition. ..
上記第一及び第二の生分解性ポリマーのうちいずれか一方の樹脂組成物全体 に対する含有量が 1 〇重量%未満、 又は、 8 0重量%を超えると、 発泡用樹 脂組成物を発泡させて成形した発泡成形体の発泡性が不充分となる。 第一の 生分解性ポリマーの含有量は好ましくは 3 0重量%以上、 7 0重量%以下で あり、 より好ましくは 4 0重量%以上、 6 0重量%以下である。 第二の生分 解性ポリマーの含有量は好ましくは 1 〇重量%以上、 4 5重量%以下であり 、 より好ましくは 1 0重量%以上、 3 6重量%以下である。 When the content of the resin composition of either one of the first and second biodegradable polymers is less than 10% by weight or more than 80% by weight, the resin composition for foaming is foamed. The foamability of the foamed molded product formed by molding becomes insufficient. The content of the first biodegradable polymer is preferably 30% by weight or more and 70% by weight or less, more preferably 40% by weight or more and 60% by weight or less. The content of the second biodegradable polymer is preferably 10% by weight or more and 45% by weight or less, more preferably 10% by weight or more and 36% by weight or less.
[0025] なお、 上記第一及び第二の生分解性ポリマーの種類及び含有量は、 樹脂組成 物の流動性、 及び、 成形加工性を良好にする観点から、 上記範囲内で適宜設 定することができる。 [0025] The types and contents of the first and second biodegradable polymers are appropriately set within the above range from the viewpoint of improving the fluidity of the resin composition and the moldability. be able to.
[0026] 本発明の樹脂組成物に用いられる生分解性ポリマーの溶融粘度 (2 2 0 °〇 は、 1 5 0 3 3以上、 4 0 0 3 3以下であることが好ましい。 上記 〇 2020/175635 7 卩(:171? 2020 /008089 [0026] The melt viscosity (2 2 0 ° 〇 biodegradable polymers used in the resin composition of the present invention, 1 5 0 3 3 or more, preferably 4 0 0 3 3 below. The above 〇 2020/175 635 7 卩 (:171? 2020 /008089
生分解性ポリマーの溶融粘度のより好ましい下限は、 2 0 0 3 3であり 、 より好ましい上限は 3 0 0 3 3である。 溶融粘度は、 例えば、 株式会 社島津製作所製、 フローテスター 0 丁一 5 0 0口を用いて測定することが できる。 具体的には、 測定対象となる樹脂を所定温度に加熱し流動化させ、 キャビラリーダイ (内径 0 1 、 長さ 1 0 ) を通して、 所定面圧を 1 1\/1 3としたビストンによってシリンダから押し出し、 ビストンの移動量と、 かかった時間により粘度特性を評価することができる。 A more preferred lower limit of the melt viscosity of the biodegradable polymers is a 2 0 0 3 3, and a more preferred upper limit is 3 0 0 3 3. The melt viscosity can be measured, for example, using a flow tester 0-500, manufactured by Shimadzu Corp. Specifically, the resin to be measured is heated to a predetermined temperature to fluidize it, and then it is passed through a cavity die (inner diameter 0 1, length 10 ), and a cylinder with a biston with a predetermined surface pressure of 11 \/1 3 is used. Viscosity characteristics can be evaluated by the amount of viston movement and the time it takes.
[0027] 1\/1 [¾の差が 2 9 /〇1 丨 n以上である第一及び第二の生分解性ポリマー同士 を混合する方法としては、 両成分間に化学結合を形成させる方法、 又は、 同 —ポリマー間で架橋構造を形成させる方法等を用いることができる。 [0027] is 1 \ / 1 [difference ¾ 2 9 / Rei_1丨n or as a method of mixing the first and second biodegradable polymers together, a method of forming a chemical bond between the two components Alternatively, a method of forming a crosslinked structure between the same polymer or the like can be used.
例えば、 生分解性ポリマーとしてポリ乳酸を用いて発泡成形体を得る場合に は、 金属錯体等の合成触媒、 ラジカル発生剤等を用いて、 ポリ乳酸を合成し ながら混練を行う反応押出 (リアクティブプロセッシング) が用いられるこ とがある。 本発明は、 特定の 2種以上の生分解性ポリマー間で生じる界面を 発泡核として作用させるものであり、 ポリ乳酸を合成しながら混練を行う反 応押出とは異なり樹脂組成物中に合成触媒、 ラジカル発生剤等を添加する必 要はない。 For example, when polylactic acid is used as a biodegradable polymer to obtain a foamed molded article, reactive extrusion (reactive extrusion) is performed in which kneading is performed while synthesizing polylactic acid using a synthetic catalyst such as a metal complex or a radical generator. Processing) may be used. INDUSTRIAL APPLICABILITY According to the present invention, an interface formed between two or more specific biodegradable polymers acts as a foam nucleus, and unlike reactive extrusion in which kneading is performed while synthesizing polylactic acid, a synthetic catalyst is contained in a resin composition. It is not necessary to add a radical generator or the like.
[0028] なお、 ポリ乳酸の反応押出の例としては、 例えば、 合成触媒として 2 -エチ ルヘキサン酸スズを用い、 酸化防止剤 (例えば、 チバスペシャルティケミカ ルズ社のイルガノックス 1 0 1 0) を添加して!-—ラクチドと £ _カプロラ クトンを反応させる方法;ジクミルパーオキサイ ド等のラジカル発生剤を用 いて、 ポリ乳酸とポリエチレングリコールを反応させる方法; ラジカル発生 剤を用いて、 ポリ乳酸にポリカーボネート、 ポリプチレンアジべ一トテレフ タレート ( 巳八丁) 、 ポリカプロラクトン ( 〇!_) 、 ポリプチレンサク シネート ( 巳3) 、 ポリプチレンサクシネートアジべ一卜 ( 巳3八) 等 をグラフト重合させる方法等が挙げられる。 [0028] As an example of reactive extrusion of polylactic acid, for example, tin 2-ethylhexanoate is used as a synthesis catalyst, and an antioxidant (eg, Irganox 1101 manufactured by Ciba Specialty Chemicals) is added. do it! --- Method of reacting lactide with £ _ caprolacton; Method of reacting polylactic acid with polyethylene glycol using a radical generator such as dicumyl peroxide; Method of reacting polylactic acid with polycarbonate using a radical generator Examples include a method of graft-polymerizing polyptyrene adduct monoterephthalate (Mitsuhaccho), polycaprolactone (○!_), polyptyrene succinate (M3), polyptyrene succinate adibe (Mitsuhachi), and the like.
[0029] 上記層状ケイ酸塩としては、 特に限定されず、 例えば、 パイロフィライ ト、 タルク、 カオリン (カオリナイ ト) 、 モンモリロナイ ト、 魚眼石、 マーガラ 〇 2020/175635 8 卩(:171? 2020 /008089 [0029] The layered silicate is not particularly limited, and examples thereof include pyrophyllite, talc, kaolin (kaolinite), montmorillonite, fisheye stone, margara. 〇 2020/175 635 8 卩 (:171? 2020 /008089
イ ト、 プレナイ ト、 又は、 マイカ (雲母) 等が挙げられ、 特に、 タルク、 力 オリン、 モンモリロナイ ト、 又は、 マイカ (雲母) が好適に用いられる。 上 記層状ケイ酸塩は、 単独で用いてもよく、 2種以上を併用してもよい。 なお 、 上記層状ケイ酸塩として、 タルク及び/又はマイカを用いることが好まし い。 It, plenite, mica (mica) and the like can be mentioned, and particularly, talc, force Olin, montmorillonite or mica (mica) is preferably used. The above layered silicates may be used alone or in combination of two or more. In addition, it is preferable to use talc and/or mica as the layered silicate.
[0030] 上記層状ケイ酸塩は、 樹脂組成物全体に対する含有量が 1 0重量%以上、 4 [0030] The content of the layered silicate is 10% by weight or more based on the entire resin composition,
0重量%以下である。 なお、 上記層状ケイ酸塩が 2種以上併用される場合は 、 合計含有量が上記範囲内であればよい。 It is 0% by weight or less. When two or more layered silicates are used in combination, the total content should be within the above range.
上記層状ケイ酸塩の樹脂組成物全体に対する含有量が、 1 0重量%未満であ ると混合時のせん断力を向上させる効果が充分に得られないため、 2種以上 の生分解性ポリマーを充分に分散させることができず、 4 0重量%を超える と、 発泡用樹脂組成物の成形性が低下する。 If the content of the above layered silicate with respect to the entire resin composition is less than 10% by weight, the effect of improving the shearing force at the time of mixing cannot be sufficiently obtained, so that two or more biodegradable polymers should be used. It cannot be sufficiently dispersed, and if it exceeds 40% by weight, the moldability of the resin composition for foaming deteriorates.
上記層状ケイ酸塩の樹脂組成物全体に対する含有量の好ましい下限は 1 5重 量%、 好ましい上限は 3 5重量%である。 The preferable lower limit of the content of the layer silicate with respect to the entire resin composition is 15% by weight, and the preferable upper limit is 35% by weight.
[0031 ] 上記層状ケイ酸塩の平均粒子径は、 〇. 0 5 以上 1 0 0 以下である 上記層状ケイ酸塩の平均粒子径が〇. 0 5 未満であると、 2種以上の生 分解性ポリマーを混合する際のせん断力を向上させる効果が充分に得られな いためであり、 平均粒子径が 1 0 0 を超えると、 発泡成形品の強度低下 が著しくなるためである。 上記層状ケイ酸塩の平均粒子径の好ましい下限は 〇. 5 であり、 より好ましい下限は 1 である。 また、 上記層状ケイ 酸塩の平均粒子径の好ましい上限は 8 0 であり、 より好ましい上限は 3 0 である。 [0031] The average particle size of the layered silicate is 0.05 or more and 100 or less. If the average particle size of the layered silicate is less than 0.05, two or more types of biodegradation are obtained. This is because the effect of improving the shearing force at the time of mixing the water-soluble polymer cannot be sufficiently obtained, and when the average particle size exceeds 100, the strength of the foam-molded article is significantly reduced. The preferable lower limit of the average particle diameter of the layered silicate is 0.5, and the more preferable lower limit is 1. The preferred upper limit of the average particle diameter of the layered silicate is 80, and the more preferred upper limit thereof is 30.
なお、 上記層状ケイ酸塩が 2種以上併用される場合、 層状ケイ酸塩の平均粒 子径は、 用いられる 2種以上の層状ケイ酸塩が混合された状態で測定される 平均粒子径を意味する。 When two or more of the above layered silicates are used in combination, the average particle size of the layered silicate is the average particle size measured in the state in which the two or more layered silicates used are mixed. means.
[0032] 層状ケイ酸塩の平均粒子径は、 5 0 %平均粒子径であり、 例えば、 島津レー ザ回折式粒度分布測定装置 (商品名 : 3 1_ 0 _ 2 0 0 0) を用いて測定す 〇 2020/175635 9 卩(:171? 2020 /008089 [0032] The average particle size of the layered silicate is 50% average particle size, and is measured using, for example, a Shimadzu laser diffraction particle size distribution analyzer (trade name: 3 1_ 0 _ 200 0 0). You 〇 2020/175 635 9 卩 (:171? 2020 /008089
ることができる。 You can
[0033] また、 上記層状ケイ酸塩の白色度と、 上記樹脂組成物により得られた無発泡 成形体の白色度との差が 2 0 %以下である。 層状ケイ酸塩を添加することで 、 2種以上の生分解性ポリマーの分散性は改善されるが、 層状ケイ酸塩と 2 種以上の生分解性ポリマーとの密着性が悪いと、 発泡用樹脂組成物を発泡さ せて形成される発泡成形体中の発泡粒子が肥大化する。 すなわち、 発泡成形 体内部の発泡粒子の発泡粒子径が大きくなるため、 粒子径の小さい発泡粒子 を多数発生させた緻密な発泡粒子を有する発泡成形体を作製することが困難 となる。 [0033] Further, the difference between the whiteness of the layered silicate and the whiteness of the non-foamed molded product obtained from the resin composition is 20% or less. The addition of the layered silicate improves the dispersibility of two or more biodegradable polymers, but if the adhesion between the layered silicate and the two or more biodegradable polymers is poor, foaming The expanded particles in the expanded molded article formed by expanding the resin composition are enlarged. That is, since the foamed particle diameter of the foamed particles inside the foamed molded article becomes large, it becomes difficult to produce a foamed molded article having dense foamed particles in which a large number of foamed particles having a small particle diameter are generated.
[0034] ここで、 上記層状ケイ酸塩の白色度と、 上記樹脂組成物により得られた無発 泡樹脂成形体の白色度との差が 2 0 %以下である場合、 上記層状ケイ酸塩と 上記 2種以上の生分解性ポリマーとが混合され樹脂組成物における上記層状 ケイ酸塩と上記 2種以上の生分解性ポリマーとの密着性が良好であると考え られる。 なお、 上記白色度の差は、 市販の層状ケイ酸塩から極性等の特性を 変更することによって調整することができる。 [0034] Here, when the difference between the whiteness of the layered silicate and the whiteness of the foam-free resin molding obtained from the resin composition is 20% or less, the layered silicate is It is considered that the adhesion between the layered silicate and the two or more types of biodegradable polymers in the resin composition is good by mixing the above and two or more types of biodegradable polymers. The difference in whiteness can be adjusted by changing properties such as polarity from a commercially available layered silicate.
また、 上記層状ケイ酸塩の白色度と、 上記樹脂組成物により得られた無発泡 成形体の白色度との差は、 好ましくは 1 0 %以下であり、 より好ましくは 5 %以下である。 The difference between the whiteness of the layered silicate and the whiteness of the non-foamed molded product obtained from the resin composition is preferably 10% or less, more preferably 5% or less.
[0035] また、 上記層状ケイ酸塩の白色度、 及び、 上記無発泡成形体の白色度は、 日 本電色工業株式会社製の分光色差計 3巳 6 0 0 0を用いて測定することがで きる。 [0035] The whiteness of the layered silicate and the whiteness of the non-foamed molded product should be measured using a spectral color difference meter 3600 made by Nippon Denshoku Industries Co., Ltd. You can
また、 上記無発泡成形体は、 例えば、 上記 2種の生分解性ポリマーと上記層 状ケイ酸塩とを混合した後、 溶融混錬後、 金型に移し冷却することで得るこ とができ、
Figure imgf000011_0001
以上、 6
Figure imgf000011_0002
以下の厚さを有する平板状に成形されたもの である。 従って、 白色度を測定する際の無発泡成形体は、 3
Figure imgf000011_0004
以上、 6
Figure imgf000011_0003
0!以下の厚さを有する平板状無発泡成形体である。
Further, the non-foamed molded article can be obtained, for example, by mixing the two types of biodegradable polymers and the layered silicate, melt-kneading, and then transferring to a mold and cooling. ,
Figure imgf000011_0001
Above, 6
Figure imgf000011_0002
It is formed into a flat plate having the following thickness. Therefore, when measuring the whiteness,
Figure imgf000011_0004
Above, 6
Figure imgf000011_0003
It is a flat non-foamed molded product having a thickness of 0! or less.
また、 上記層状ケイ酸塩の白色度を測定する場合、 上記層状ケイ酸塩を、 圧 延してシートの状態にして白色度を測定する。 また、 層状ケイ酸塩が 2種以 〇 2020/175635 10 卩(:171? 2020 /008089 When measuring the whiteness of the layered silicate, the layered silicate is rolled to form a sheet, and the whiteness is measured. In addition, there are two or more layered silicates. 〇 2020/175 635 10 卩 (:171? 2020 /008089
上併用される場合、 用いられる 2種以上の層状ケイ酸塩が混合された状態で の白色度を測定する。 When used together, measure the whiteness of the mixture of two or more layered silicates used.
[0036] 本発明の発泡用樹脂組成物は、 フイラーをさらに含むことが好ましく、 上記 フイラーの含有量が樹脂組成物全体に対して〇. 0 1重量%以上、 0 . 5重 量%以下であることが好ましい。 [0036] The foaming resin composition of the present invention preferably further contains a filler, and the content of the filler is from 0.01% by weight or more to 0.5% by weight or less based on the entire resin composition. Preferably.
上記フイラーの樹脂組成物全体に対する含有量が、 〇. 0 1重量%未満であ るとフイラーの添加によって 2種の生分解性ポリマーの分散性、 及び、 得ら れる発泡成形体の発泡性を向上する効果が充分に得られず、 〇. 5重量%を 超えると得られる発泡成形体の発泡性が低下するおそれがある。 When the content of the above filler in the whole resin composition is less than 0.01% by weight, the addition of the filler will improve the dispersibility of the two biodegradable polymers and the foamability of the resulting foamed molded article. The effect of improvement is not sufficiently obtained, and if it exceeds 0.5% by weight, the foamability of the obtained foamed molded product may be deteriorated.
上記フイラーの樹脂組成物全体に対する含有量の好ましい上限は、 〇. 3重 量%である。 The preferable upper limit of the content of the filler with respect to the entire resin composition is 0.3% by weight.
[0037] 上記フイラーは、 上記層状ケイ酸塩の密度に対して〇. 2
Figure imgf000012_0001
以上異 なる密度を有するものが好ましく、 発泡用樹脂組成物に含まれる他の成分、 すなわち 2種以上の生分解性ポリマー、 層状ケイ酸塩とは異なる化合物であ れば、 無機材料から構成される無機フイラーであってもよく、 有機材料から 構成される有機フイラーであってもよく、 これらの混合物であってもよい。 上記フイラーと、 上記層状ケイ酸塩との密度の差は、 〇. 2 5 9 /〇〇1 3以上 であることがより好ましく、 〇.
Figure imgf000012_0002
[0037] The filler has a density of 0.2% with respect to the density of the layered silicate.
Figure imgf000012_0001
Those having different densities are preferable, and other components contained in the resin composition for foaming, that is, two or more kinds of biodegradable polymers, and a compound different from the layered silicate are composed of inorganic materials. The inorganic filler may be an organic filler composed of an organic material, or a mixture thereof. And the filler, the difference in density between the layered silicate 〇. More preferably 2 5 9 / Rei_rei_1 3 or more, 〇.
Figure imgf000012_0002
い。 また、 上記フイラーの密度は、 上記層状ケイ酸の密度より大きくてもよ いし、 小さくてもよい。 上記フイラーの密度及び上記層状ケイ酸塩の密度は 、 ピクノメーター法により測定することができる。 Yes. The density of the filler may be higher or lower than the density of the layered silicic acid. The density of the filler and the density of the layered silicate can be measured by a pycnometer method.
[0038] 上記無機フイラーとしては、 例えば、 酸化マグネシウム、 酸化カルシウム等 の金属酸化物、 グラフアイ ト、 力ーボンブラック、 二硫化モリブデン、 二硫 化タングステン、 炭酸カルシウム、 シリカ、 シリカゲル、 ゼオライ ト、 窒化 ホウ素、 及び、 アルミナ等を含むフイラーが挙げられる。 [0038] Examples of the inorganic filler include metal oxides such as magnesium oxide and calcium oxide, graphite, carbon black, molybdenum disulfide, tungsten disulfide, calcium carbonate, silica, silica gel, zeolite, boron nitride. , And a filler containing alumina or the like.
[0039] 上記有機フイラーとしては、 例えば、 ポリテトラフルオロエチレン ( 丁 巳) 等のフッ素樹脂、 超高分子量ポリエチレン、 電子線架橋型ポリエチレン 、 芳香族ポリアミ ド、 脂肪族ポリアミ ド、 炭化ケイ素、 アクリル樹脂、 フエ 〇 2020/175635 1 1 卩(:171? 2020 /008089 [0039] Examples of the organic filler include, for example, fluororesins such as polytetrafluoroethylene (Tomo), ultra high molecular weight polyethylene, electron beam cross-linking polyethylene, aromatic polyamides, aliphatic polyamides, silicon carbide, acrylic resins. , Hue 〇 2020/175 635 1 1 卩 (: 171? 2020 /008089
ノール樹脂、 及び、 メラミン樹脂等を含むフイラーが挙げられる。 なお、 上 記超高分子量ポリエチレン及び電子線架橋型ポリエチレンは、 融点以上に加 熱し溶融状態となっても極めて流動性が低いため、 メルトマスフローレート ( IV! [¾) 測定では数値評価ができない。 Examples include fillers containing a knoll resin and a melamine resin. The above ultrahigh molecular weight polyethylene and electron beam crosslinkable polyethylene have extremely low fluidity even when they are in a molten state by heating above the melting point, and therefore cannot be numerically evaluated by the melt mass flow rate (IV! [¾] measurement.
[0040] 上記フイラーは比重が〇. 5以上、 4 . 0以下であることが好ましい。 ブレ ンド時、 ポリマーとの衝突及びフイラー同士の衝突により高い分散性が得ら れやすいためである。 [0040] The filler preferably has a specific gravity of 0.5 or more and 4.0 or less. This is because at the time of blending, high dispersibility is easily obtained due to collision with polymer and collision between fillers.
なお、 フイラーの比重は、 フイラーの密度と基準物質となる水の密度との比 であり、 ピクノメーター法により測定した密度を用いて算出することができ る。 The specific gravity of the filler is the ratio of the density of the filler to the density of water as a reference substance, and can be calculated using the density measured by the pycnometer method.
[0041] 本発明の発泡用樹脂組成物の製法は特に限定されるものではないが、 公知の 方法を用いることができる。 例えば、 単軸又は多軸の各種押出機により各成 分の混合物を溶融混練する方法が挙げられる。 各成分を一括で混練してもよ く、 任意の成分を混練した後、 残りの成分を添加して混練してもよい。 [0041] The method for producing the foaming resin composition of the present invention is not particularly limited, but a known method can be used. For example, a method of melting and kneading a mixture of each component with various single-screw or multi-screw extruders can be mentioned. Each component may be kneaded at once, or any component may be kneaded and then the remaining components may be added and kneaded.
[0042] 上記発泡用樹脂組成物を発泡させて成形することで、 発泡成形体が得られる 。 上記発泡用樹脂組成物は、 特定の層状ケイ酸塩が添加され、 2種以上の生 分解性ポリマーの分散性が向上され、 さらに、 2種以上の生分解性ポリマー と層状ケイ酸塩との密着性が向上されていることから、 これを発泡させて得 られた発泡成形体の内部には、 微細な気泡を均一に存在させることができる 。 このため、 上記発泡成形体は、 生分解性に加え、 断熱性、 強度及び軽量性 に優れている。 [0042] A foamed molded article is obtained by foaming and molding the above-mentioned foaming resin composition. In the foaming resin composition, a specific layered silicate is added to improve the dispersibility of two or more types of biodegradable polymers, and further, two or more types of biodegradable polymers and layered silicates are added. Since the adhesiveness is improved, fine bubbles can be uniformly present inside the foamed molded product obtained by foaming the same. Therefore, the foamed molded product is excellent in heat insulating property, strength and lightness in addition to biodegradability.
[0043] 上記発泡成形体の表面にランダムな模様、 色彩又は文字等を施す場合、 上記 発泡用樹脂組成物に顔料フイラー、 カラーマスターバッチ等を添加してもよ い。 [0043] When a random pattern, color, characters or the like is applied to the surface of the foam molded article, a pigment filler, a color masterbatch or the like may be added to the foam resin composition.
[0044] 上記発泡成形体は、 上記発泡用樹脂組成物と超臨界流体とを混合して発泡さ せたものであることが好ましい。 上記発泡用樹脂組成物は、 互いに溶解しな い 2種以上の生分解性ポリマーの高分散化によって形成された微細な界面を 有する。 そのため、 超臨界流体を用いた発泡において上記界面が発泡起点と 〇 2020/175635 12 卩(:171? 2020 /008089 [0044] It is preferable that the foamed molded product is obtained by mixing and foaming the foaming resin composition and a supercritical fluid. The foaming resin composition has a fine interface formed by highly dispersing two or more types of biodegradable polymers that are insoluble in each other. Therefore, in foaming using a supercritical fluid, the above interface becomes the foaming starting point. 〇 2020/175 635 12 卩 (:171? 2020 /008089
なり、 発泡成形体の内部に微細な気泡を均一に存在させることができ、 断熱 性、 強度及び軽量性等の特性が充分に発揮される。 上記超臨界流体としては 、 例えば、 二酸化炭素、 窒素、 アルゴン、 及び、 ヘリウム等の不活性ガスの 超臨界流体が挙げられる。 なかでも、 二酸化炭素、 又は、 窒素の超臨界流体 が好ましく、 窒素の超臨界流体がより好ましい。 Therefore, fine bubbles can be uniformly present inside the foamed molded product, and the properties such as heat insulating property, strength, and lightness can be sufficiently exhibited. Examples of the supercritical fluid include carbon dioxide, nitrogen, argon, and an inert gas such as helium. Of these, a supercritical fluid of carbon dioxide or nitrogen is preferable, and a supercritical fluid of nitrogen is more preferable.
[0045] 上記超臨界流体を用いた発泡成形体の製造方法は、 まず、 溶解した発泡用樹 脂組成物に高圧力下で超臨界流体を注入し攪拌することで、 発泡用樹脂組成 物と超臨界流体との単一相溶解物を得る。 次に、 減圧することで、 単一相溶 解物中の超臨界流体が気体へ相転移するため、 気泡が発生する。 発泡起点が 均一に多数存在する場合には、 微細な発泡粒子を多数含む発泡成形体となる 。 これにより、 発泡用樹脂組成物が発泡し、 微細な発泡粒子を有する発泡成 形体が得られる。 [0045] In the method for producing a foamed molded article using the above-mentioned supercritical fluid, first, a supercritical fluid is injected into a melted resin composition for foaming under high pressure and stirred to obtain a resin composition for foaming. A single phase melt with a supercritical fluid is obtained. Next, by reducing the pressure, the supercritical fluid in the single-phase melt will undergo a phase transition to gas, and bubbles will be generated. When a large number of foaming starting points are present uniformly, a foamed molded product containing a large number of fine expanded particles is obtained. As a result, the foaming resin composition is foamed to obtain a foamed molded product having fine foamed particles.
[0046] 上記発泡成形体は、 上記発泡用樹脂組成物を射出成形して得られたことが好 ましい。 特に、 上記発泡成形体は、 上記発泡用樹脂組成物に超臨界流体を含 浸しながら射出成形を行なう方法 (以後、 超臨界射出成形ともいう。 ) によ り得られたことが好ましい。 上記発泡用樹脂組成物は、 超臨界射出成形によ り、 上記発泡成形体を精密な形状、 及び、 多彩な形状に加工することができ る。 中でも、 超臨界射出成形において、 金型の空洞部分 (キヤビティ) 内に 上記発泡用樹脂組成物を溶融した状態で充填した後、 冷却固化が進行する前 に金型の一部を動かすことによってキヤビティを強制的に広げ急激な圧力減 少を引き起こす方法 (以後、 コアバック法) により発泡させることが好まし く、 コアバック法を用いることにより、 発泡量を大幅に増大させることがで きる。 [0046] The foamed molded product is preferably obtained by injection molding of the foaming resin composition. In particular, the foamed molded product is preferably obtained by a method of performing injection molding while impregnating the foaming resin composition with a supercritical fluid (hereinafter, also referred to as supercritical injection molding). The foaming resin composition can be processed into a precise shape and various shapes by supercritical injection molding. Among them, in supercritical injection molding, after filling the above-mentioned foaming resin composition in a molten state in the cavity part (cavity) of the mold, by moving a part of the mold before cooling and solidification proceed, It is preferable to foam by a method of forcibly expanding and causing a rapid pressure decrease (hereinafter, core back method). By using the core back method, the foaming amount can be greatly increased.
[0047] 図 1は、 本発明の発泡成形体の断面模式図である。 本発明の発泡用樹脂組成 物と超臨界流体とを混合し、 その後射出成形して発泡させることで、 図 1 に 示した発泡成形体 1 〇が得られる。 発泡成形体 1 〇は、 発泡層 1 2の両面に スキン層 (外皮層) 1 1 を有する。 発泡層 1 2は、 均一な発泡粒子を有する 領域をいい、 スキン層 1 1は、 発泡成形体の表面側に発泡粒子が形成されて 〇 2020/175635 13 卩(:171? 2020 /008089 [0047] Fig. 1 is a schematic cross-sectional view of a foam molded article of the present invention. The foamed resin composition of the present invention and a supercritical fluid are mixed, and then injection-molded to foam, whereby the foamed molded article 10 shown in FIG. 1 is obtained. The foamed molded product 10 has skin layers (outer skin layers) 11 on both sides of the foamed layer 12. The foam layer 12 is a region having uniform foam particles, and the skin layer 11 is formed by forming foam particles on the surface side of the foam molded article. 〇 2020/175 635 13 卩 (:171? 2020 /008089
いない領域をいう。 発泡成形体 1 〇は、 表面がスキン層 1 1であるため、 発 泡成形体 1 〇の強度を高くすることができ、 また、 表面を平滑にすることが できる。 更に、 中心部分が発泡層 1 2であるため、 軽量化できるだけではな く、 熱が伝わり難くなるため、 発泡成形体 1 〇の断熱性が向上する。 It refers to the area that does not exist. Since the surface of the foamed molded article 10 is the skin layer 11, the strength of the foamed molded article 10 can be increased and the surface can be made smooth. Further, since the central portion is the foam layer 12, not only can the weight be reduced, but also heat cannot be transmitted easily, so that the heat insulation of the foam molded body 10 is improved.
[0048] 上記発泡成形体の厚さは、 〇. 2 ~ 3 . 0
Figure imgf000015_0001
であることが好ましい。 上記 発泡成形体の厚さが〇. 2
Figure imgf000015_0002
未満であると、 発泡しないことがあり、 3 . 〇 を超えると表面に凹凸が生じ、 外観を損なうことがある。 本発明の発 泡用樹脂組成物によれば、 従来の発泡用樹脂組成物よりも発泡性及び成形性 に優れるので、 従来よりも薄く しても、 実用上充分な断熱性及び強度が確保 された発泡成形体を製造することができる。
[0048] The thickness of the foamed molded product is from 0.2 to 3.0.
Figure imgf000015_0001
Is preferred. The thickness of the foamed molded product is 0.2.
Figure imgf000015_0002
If it is less than 3.0, foaming may not occur, and if it exceeds 3.0, unevenness may occur on the surface and the appearance may be impaired. According to the foaming resin composition of the present invention, since the foaming property and the moldability are superior to those of the conventional foaming resin composition, practically sufficient heat insulating property and strength are secured even if the foaming resin composition is thinner than the conventional one. It is possible to produce a foamed molded product.
[0049] 上記発泡層は、 発泡成形体の断面を観察した場合に、 発泡層の 1 1 の範囲に発泡粒子を 1 0 0個以上有することが好ましく、 任意に選択した 1 0 0個の発泡粒子の平均粒子径が 1 0 0 以下であることが好ましい。 発泡粒子の測定は、 走査型電子顕微鏡 (3巳 IV!) で行うことができ、 例えば 、 株式会社日立ハイテクノジーズ製、 3 - 4 8 0 0等を用いることができる [0049] The above-mentioned foamed layer preferably has 100 or more foamed particles in the range of 11 of the foamed layer when observing the cross section of the foamed molded article, and 100 foamed particles selected arbitrarily. The average particle size of the particles is preferably 100 or less. Foamed particles can be measured with a scanning electron microscope (3M IV!), for example, 3-4800 manufactured by Hitachi High-Technologies Co., Ltd. can be used.
[0050] 上記発泡用樹脂組成物と上記超臨界流体とを混合すること、 及び、 上記発泡 用樹脂組成物を発泡させて成形することは、 例えば、 射出成形機と超臨界流 体発生機とが連結された装置を用いて行うことができる。 射出成形機と超臨 界流体発生機とが連結された装置としては、 例えば、
Figure imgf000015_0003
I 丨射出成形 機 (1\/1リ〇6 丨 I は丁 「 6 X 6 丨 . 〇〇 . 1_ 〇1の登録商標) 等が挙げられ る。
Mixing the foaming resin composition with the supercritical fluid, and foaming and molding the foaming resin composition can be performed, for example, by using an injection molding machine and a supercritical fluid generator. Can be performed using a device connected to the. An example of a device in which an injection molding machine and a super-realistic fluid generator are connected is, for example,
Figure imgf000015_0003
I 丨 injection molding machine (1 \ / 1 ri 〇 6 丨 I is a "6 X 6 丨. 〇 〇 _ 1 _ 1 registered trademark) and the like.
[0051 ] 図 2は、 発泡成形体の作製に使用する成形装置の一例を説明するための模式 図である。 図 2に示すように、 成形装置 2 0は、 材料を投入するホッパ 2 1 、 スクリユ 2 3を備えた加熱シリンダ 2 2、 ノズル 2 4を備える射出成形機 に、 注入制御部 2 7を介してボンべ 2 5及び超臨界流体発生部 2 6が接続さ れている。 [0051] Fig. 2 is a schematic diagram for explaining an example of a molding apparatus used for producing a foam molded article. As shown in Fig. 2, the molding device 20 is equipped with a hopper 21 for feeding material, a heating cylinder 2 2 equipped with a screw 23, and an injection molding machine equipped with a nozzle 24 via an injection controller 27. The cylinder 25 and the supercritical fluid generator 26 are connected.
[0052] 製法の具体例としては、 まず、 2種以上の生分解性ポリマー (例えば、 ポリ 〇 2020/175635 14 卩(:171? 2020 /008089 [0052] As a specific example of the production method, first, two or more biodegradable polymers (for example, poly 〇 2020/175 635 14 卩 (:171? 2020 /008089
乳酸及びポリプチレンサクシネート) 、 層状ケイ酸塩を 2 0 0 °〇以上の設定 温度とした二軸押出機で溶融混合させ、 ペレツ ト状の発泡用樹脂組成物を作 製する。 次に、 得られた上記ペレツ ト状の発泡用樹脂組成物をホツパ 2 1 に 投入し、 一般的な射出成形の手順に従ってスクリユ 2 3を回転させ上記ペレ ツ ト状の発泡用樹脂組成物を溶解及び計量する。 ペレツ ト状の発泡用樹脂組 成物の溶解及び計量中に、 ボンべ 2 5及び超臨界流体発生部 2 6に接続され た注入制御部 2 7を介して、 シリンダ 2 2内に超臨界流体を注入し、 スクリ ユ 2 3を回転させることで、 発泡用樹脂組成物の溶融物に超臨界流体を混合 及び含浸することで、 単一相溶解物とする。 計量された上記単一相溶解物を スクリユ 2 3でノズル 2 4側に搬送し、 金型 2 8に射出する。 金型 2 8内で の圧力損失により、 超臨界流体は臨界圧力に達した時点で気体への相転移が 引き起こされ気泡が発生する。 更に、 上記単一相溶解物を金型 2 8に射出す る際に、 キヤビティを広げることで金型 2 8内での圧力減少を加速させ発泡 量を増大させる方法もある。 Lactic acid and polyethylene succinate) and layered silicate are melt-mixed by a twin-screw extruder having a set temperature of 200 ° C. or higher to produce a pellet-shaped resin composition for foaming. Next, the pellet-shaped foaming resin composition obtained above was put into a hopper 21 and the screen 23 was rotated according to a general injection molding procedure to prepare the pellet-shaped foaming resin composition. Dissolve and weigh. During melting and weighing of the pellet-shaped foaming resin composition, the supercritical fluid is introduced into the cylinder 2 2 through the injection controller 27 connected to the cylinder 25 and the supercritical fluid generator 26. Is injected and the screw 23 is rotated to mix and impregnate the melt of the foaming resin composition with the supercritical fluid, thereby forming a single-phase melt. The measured single-phase melt is conveyed to the nozzle 24 side by the screw 23 and injected into the die 28. Due to the pressure loss in the mold 28, the supercritical fluid undergoes a phase transition to a gas at the time when the critical pressure is reached and bubbles are generated. Further, there is also a method of increasing the foaming amount by accelerating the pressure decrease in the mold 28 by expanding the cavity when the single-phase melt is injected into the mold 28.
実施例 Example
[0053] 以下、 本発明について実施例を掲げてさらに詳しく説明するが、 本発明はこ れらの実施例のみに限定されるものではない。 [0053] Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0054] (配合原料) [0054] (Ingredients)
下記の実施例及び比較例において、 発泡用樹脂組成物を調製するために使用 した配合原料を下記表 1 に示した。 The compounding raw materials used for preparing the resin compositions for foaming in the following Examples and Comparative Examples are shown in Table 1 below.
[0055] [0055]
〔¾二 [¾ji
Figure imgf000017_0001
Figure imgf000017_0001
〇 2020/175635 16 卩(:171? 2020 /008089 〇 2020/175 635 16 卩 (: 171? 2020 /008089
[0056] (実施例 1) [0056] (Example 1)
生分解性ポリマーであるポリプチレンサクシネート ( 巳3) 6 4 . 5重量 %及びポリ乳酸 ( !_八) 1 0 . 5重量%と、 層状ケイ酸塩であるタルク 2 5重量%とをドライブレンドし、 二軸押出機 (日本製鋼所社製、 丁巳乂3 0 ) を使って温度設定 2 2 0 °◦で混練し、 ペレッ ト状の発泡用樹脂組成物を得 た。 64.5% by weight of biodegradable polymer, poly(ethylene succinate) (3) and 10.5% by weight of polylactic acid (!_8), and 25% by weight of layered silicate, talc (25%). The mixture was dry-blended and kneaded with a twin-screw extruder (manufactured by Nippon Steel Works, Ltd., Dingumi 30) at a temperature setting of 220 ° to obtain a pellet-shaped foaming resin composition.
[0057] 次に、 超臨界射出成形機 (東芝機械社製) に得られたペレッ ト状の発泡用樹 脂組成物を投入し、 シリンダ温度 2 1 0 °〇で発泡用樹脂組成物を溶解させな がら超臨界流体を含浸し、 超臨界射出成形を用いてコアバック法により発泡 成形体を得た。 超臨界流体には窒素の超臨界流体を使用し、 充填量〇. 1重 量%、 充填圧力 1 3 0 IV! 3とした。 成形条件は、 スクリユ背圧 1 5 IV! 3 、 射出速度
Figure imgf000018_0001
金型温度 5 0 °〇とした。 縦 8 0 、 横 8 0 、 厚さ 2
Figure imgf000018_0002
の板形状に成形し、 発泡成形体とした。 なお超臨界流体の充 填量 (単位:重量%) は、 下記式 (1) で計算することができる。
[0057] Next, the obtained pellet-shaped resin composition for foaming was put into a supercritical injection molding machine (manufactured by Toshiba Machine Co., Ltd.), and the resin composition for foaming was dissolved at a cylinder temperature of 210 °. While being impregnated with a supercritical fluid, a foamed molded body was obtained by a core back method using supercritical injection molding. The supercritical fluid using supercritical fluids nitrogen loading 〇. 1 by weight%, and the filling pressure 1 3 0 IV! 3. Molding conditions are Screwil back pressure 15 IV! 3 , injection speed
Figure imgf000018_0001
The mold temperature was set to 50°. Vertical 80, Horizontal 80, Thickness 2
Figure imgf000018_0002
Was molded into a plate shape to obtain a foamed molded body. The filling amount of supercritical fluid (unit:% by weight) can be calculated by the following formula (1).
[ (超臨界流体の流量 X超臨界流体の流入時間 X換算係数 2 7 . 8) ÷発泡 用樹脂組成物の重量] X 1 〇〇 ( 1) [(Flow rate of supercritical fluid X Inflow time of supercritical fluid X Conversion coefficient 27.8) ÷ Weight of resin composition for foaming] X 1 〇 〇 (1)
[0058] 得られた発泡成形体は、 図 1 に示したように、 発泡層の両面にスキン層を有 する発泡成形体であった。 [0058] The obtained foamed molded article was a foamed molded article having skin layers on both sides of the foamed layer, as shown in Fig. 1.
[0059] (実施例 2〜 1 5) [0059] (Examples 2 to 15)
各配合原料及びその配合量を下記表 2に示した配合原料及び配合量に変更し た以外は、 実施例 1 と同様にして実施例 2〜 1 5に係る発泡用樹脂組成物及 び発泡成形体を作製した。 表 2には、 各配合原料の発泡用樹脂組成物全体に 対する含有量、 用いられたポリマーにおける IV! の差、 層状ケイ酸塩の平 均粒子径、 及び、 層状ケイ酸塩の白色度と樹脂組成物から得られた無発泡成 形体の白色度との差を記載した。 The foaming resin compositions and foam moldings according to Examples 2 to 15 were performed in the same manner as in Example 1 except that the blending raw materials and their blending amounts were changed to the blending raw materials and blending amounts shown in Table 2 below. The body was made. Table 2 shows the content of each compounding raw material in the entire foaming resin composition, the difference in IV! in the polymers used, the average particle diameter of the layered silicate, and the whiteness of the layered silicate. The difference from the whiteness of the non-foamed molded product obtained from the resin composition was described.
[0060] (比較例 1〜 1 2) [0060] (Comparative Examples 1 to 12)
各配合原料及びその配合量を下記表 3に示した配合原料及び配合量に変更し た以外は、 実施例 1 と同様にして比較例 1〜 1 2に係る発泡用樹脂組成物及 〇 2020/175635 17 卩(:171? 2020 /008089 The foaming resin compositions and the foaming resin compositions according to Comparative Examples 1 to 12 were prepared in the same manner as in Example 1 except that the blending raw materials and their blending amounts were changed to the blending raw materials and blending amounts shown in Table 3 below. 〇 2020/175 635 17 卩(:171? 2020/008089
び発泡成形体を作製した。 表 3には、 各配合原料の発泡用樹脂組成物全体に 対する含有量、 用いられたポリマーにおける IV! の差、 層状ケイ酸塩の平 均粒子径、 及び、 層状ケイ酸塩の白色度と樹脂組成物から得られた無発泡成 形体の白色度との差を記載した。 And a foamed molded body were produced. Table 3 shows the content of each compounded raw material in the entire foaming resin composition, the difference in IV! in the polymers used, the average particle diameter of the layered silicate, and the whiteness of the layered silicate. The difference from the whiteness of the non-foamed molded product obtained from the resin composition was described.
[0061 ] 実施例及び比較例で使用した層状ケイ酸塩及び粒状ケイ酸塩の平均粒子径は 、 下記手順により測定した。 また、 層状ケイ酸塩の白色度と樹脂組成物から 得られた無発泡成形体の白色度は下記方法で測定した。 The average particle diameter of the layered silicate and the granular silicate used in the examples and comparative examples was measured by the following procedure. The whiteness of the layered silicate and the whiteness of the non-foamed molded product obtained from the resin composition were measured by the following methods.
[0062] (層状ケイ酸塩及び粒状ケイ酸塩の平均粒子径の測定) (Measurement of average particle diameter of layered silicate and granular silicate)
層状ケイ酸塩及び粒状ケイ酸塩の平均粒子径は、 5 0 %平均粒子径であり、 島津レーザ回折式粒度分布測定装置 (商品名 : 3 !_ 0 _ 2 0 0 0) を用い て測定した。 The average particle size of the layered silicate and granular silicate is 50% average particle size, measured using a Shimadzu laser diffraction particle size distribution analyzer (trade name: 3 !_ 0 _ 200 0 0) did.
[0063] (層状ケイ酸塩及び樹脂組成物から得られた無発泡成形体の白色度の測定) ケイ酸塩粉末及び樹脂組成物から得られた無発泡成形体の表面を日本電色エ 業株式会社製の分光色差計 3日 6 0 0 0を用いて測定した。 無発泡成形体 については厚み 3 01 01以上の板状無発泡成形体を 1 0 01 111 X 1 〇 〇!にカツ 卜したものを用いた。 (Measurement of Whiteness of Foam-Free Molded Article Obtained from Layered Silicate and Resin Composition) The surface of the non-foamed molded article obtained from the silicate powder and the resin composition was treated by Nippon Denshoku Industries Co., Ltd. The measurement was carried out using a spectrophotometer manufactured by Co., Ltd. 3 days 600. As the non-foamed molded product, a plate-shaped non-foamed molded product having a thickness of 301 0 1 or more was cut into 100 1 0 1 111 X 100!
[0064] [0064]
Figure imgf000020_0001
Figure imgf000020_0001
Figure imgf000020_0002
Figure imgf000020_0002
〔〕〔姍006 5 - 〔〕 〔卍006 5-
Figure imgf000021_0001
Figure imgf000021_0001
〇 2020/175635 20 卩(:171? 2020 /008089 〇 2020/175 635 20 卩 (:171? 2020 /008089
[0066] (発泡用樹脂組成物及び発泡成形体の評価) (Evaluation of Foaming Resin Composition and Foamed Molded Product)
実施例及び比較例で作製した発泡用樹脂組成物について、 成形加工性、 発泡 性、 断熱性及び生分解性を評価した。 結果を下記表 4に示した。 The foaming resin compositions prepared in Examples and Comparative Examples were evaluated for moldability, foamability, heat insulation and biodegradability. The results are shown in Table 4 below.
[0067] ( 1) 発泡用樹脂組成物の成形加工性 (1) Moldability of foaming resin composition
発泡用樹脂組成物の成形加工性は、 射出成形時の流動性、 及び、 射出成形後 の冷却固化性で評価した。 射出成形時の流動性及び射出成形後の冷却固化性 がよい場合を〇、 射出成形時の流動性又は射出成形後の冷却固化性のいずれ かが悪い場合を Xとした。 The moldability of the resin composition for foaming was evaluated by the fluidity during injection molding and the cooling and solidifying property after injection molding. The case where the fluidity during injection molding and the cooling and solidifying property after injection molding were good was indicated by ◯, and the case where either the fluidity during injection molding or the cooling and solidifying property after injection molding was poor was indicated by X.
射出成形時の流動性の評価は、 発泡用樹脂組成物を射出圧力 1
Figure imgf000022_0001
以 下で 2 0回射出し、 未充填が確認されなかった場合に流動性がよいと判断し 、 未充填が 1回以上確認された場合に流動性が悪いと判断した。 射出成形後 の冷却固化性の評価は、 5 0 °〇に設定した金型で 1分間冷却し、 発泡成形体 を金型から取り出す際に目視で変形を確認し、 変形が確認されなかった場合 に冷却固化性がよい、 変形が確認された場合に冷却固化性が悪いと判断した 。 なお、 流動性の評価及び冷却固化性の評価には共に、 縦 8 0 、 横 8 0 01 111、 厚さ 2 01 01の板形状の金型を用いた。
For evaluation of fluidity during injection molding, injection pressure of resin composition for foaming
Figure imgf000022_0001
Below, 20 injections were performed, and it was judged that the liquidity was good when unfilled was not confirmed, and the liquidity was judged to be poor when unfilled was confirmed at least once. After injection molding, the cooling and solidifying property was evaluated by cooling the mold for 1 minute with a mold set at 50 ° and visually confirming the deformation when the foamed molded product was taken out from the mold, and if no deformation was confirmed. It was judged that the cooling and solidifying property was good, and when the deformation was confirmed, the cooling and solidifying property was bad. For the evaluation of fluidity and the evaluation of solidification by cooling, a plate-shaped mold having a length of 80, a width of 8001111, and a thickness of 201101 was used.
[0068] (2) 発泡性 [0068] (2) Foaming property
発泡成形体の断面を、 3巳1\/1 (日立ハイテクノロジーズ社製、 3 - 4 8 0 0 ) で観察し、 発泡層における発泡粒子の状態を確認した。 The cross section of the foamed molded article was observed by 3 1//1 (manufactured by Hitachi High-Technologies Corporation, 3-4800) to confirm the state of the foamed particles in the foamed layer.
発泡性の評価は、 発泡成形体を断面から観察し、 発泡層の縦 1 〇!、 横 1 0! の範囲に、 発泡粒子が 1 0 0個以上存在し、 かつ、 任意に選択した 1 〇〇 個の発泡粒子の平均粒子径が 6 0 未満である場合を◎とし、 6 0 以 上 8 0 未満である場合を〇とし、 8 0 〇!以上 1 〇〇 以下である場 合を△とし、 発泡粒子の平均粒子径が 1 0〇 より大きい場合を Xとした The foamability was evaluated by observing the foamed molded article from the cross-section, and there were 100 or more foamed particles in the range of 10! and 10! in the foam layer, and 10 were selected arbitrarily. ○ When the average particle size of the foamed particles is less than 60, it is marked as ◎, when it is more than 60 and less than 80, it is marked as ◯, and when it is more than 800! , When the average particle size of the expanded particles is larger than 100
[0069] (3) 断熱性 [0069] (3) Thermal insulation
板状の発泡成形体 (1 5 0 1 5 0 ) に、 黒体スプレー (タスコジ ャパン株式会社製、 「丁!~1 I _ 1 巳」 ) を吹き付けた後、 黒体スプレーに含 〇 2020/175635 21 卩(:171? 2020 /008089 After spraying a black-body spray (Taskojapan Co., Ltd., "Cho! ~ 1 I _ 1 Mimi") on a plate-shaped foamed molded product (150 1 500), it was included in the black-body spray. 〇 2020/175 635 21 卩 (:171? 2020 /008089
まれる溶剤を室内で 1 2時間以上 24時間以下の条件で乾燥し、 黒く着色さ れた板状の測定用試料を作製した。 そして、 測定用試料を 90°〇に設定され たホッ トプレート上に載置し、 3分後に測定用試料のホッ トプレート接触面 とは反対側の表面温度を、 測定用試料の中心から 08
Figure imgf000023_0001
の範囲で、 放射 率〇. 94に調整した赤外放射温度計 (日本アビオニクス株式会社製の 「丁 3— 200」 ) を用いて測定した。
The solvent to be immersed was dried indoors for 12 hours to 24 hours to prepare a black colored plate-like sample for measurement. Then, place the measurement sample on the hot plate set at 90 °, and after 3 minutes, measure the surface temperature of the measurement sample on the side opposite to the hot plate contact surface from the center of the measurement sample.
Figure imgf000023_0001
The infrared radiation thermometer adjusted to an emissivity of 0.94 (“Dai 3-200” manufactured by Japan Avionics Co., Ltd.) was used for the measurement.
測定された表面温度が 60°〇以下であった場合を◎とし、 60°〇より高く 6 5 °0以下であった場合を〇とし、 65 °0より高かった場合を Xとした。 Where the measured surface temperature was 60 ° 〇 below and ◎, a case was 60 ° 6 5 ° 0 higher than 〇 hereinafter as 〇, the case was higher than 65 ° 0 was X.
[0070] (4) 生分解性 [0070] (4) Biodegradability
発泡成形体の生分解性を、 1 301 4855 (」 1 3 X6953) に準拠し た方法にて評価した。 微生物活性な土壌に 1 0 X 1 0 の板状発泡成 形体を 1 80日間埋設し、 外観観察、 質量測定を行った。 培養温度は 58°〇 ±2°〇とした。 評価後の板状発泡成形体の質量が、 評価前の板状発泡成形体 の質量の 90%以下であれば、 評価結果を〇とし、 評価前の板状発泡成形体 の質量の 90 %を超える場合の評価結果を Xとした。 The biodegradability of the foamed molded product was evaluated by a method according to 1 301 4855 ("1 3 X6953). A 10×10 0 plate-shaped foam molded body was buried in microbially active soil for 180 days, and the appearance was observed and the mass was measured. The culture temperature was set to 58 ° 〇 ± 2 ° 〇. If the mass of the plate-shaped foam molded article after the evaluation is 90% or less of the mass of the plate-shaped foam molded article before the evaluation, the evaluation result is ◯, and 90% of the mass of the plate-shaped foam molded article before the evaluation is The evaluation result in the case of exceeding is defined as X.
[0071] [0071]
〇 2020/175635 22 卩(:171? 2020 /008089 〇 2020/175 635 22 卩 (:171? 2020 /008089
[表 4] [Table 4]
Figure imgf000024_0001
Figure imgf000024_0001
符号の説明 Explanation of symbols
[0072] 1 0 発泡成形体 [0072] 10 Foam molded article
1 1 スキン層 (外皮層) 1 1 Skin layer (outer skin layer)
1 2 発泡層 1 2 foam layer
20 成形装置 20 Molding equipment
2 1 ホッパ 2 1 hopper
22 シリンダ 22 cylinders
23 スクリユ 23 Skrill
24 ノズル 24 nozzles
25 ボンべ \¥02020/175635 23 卩(:17 2020 /008089 25 cylinders \¥02020/175635 23 卩 (: 17 2020 /008089
26 超臨界流体発生部 26 Supercritical fluid generator
27 注入制御部 27 Injection controller
28 金型 28 Mold

Claims

\¥0 2020/175635 24 卩(:17 2020 /008089 請求の範囲 \¥0 2020/175 635 24 (: 17 2020/008089 Claims
[請求項 1 ] 2種以上の生分解性ポリマーと層状ケイ酸塩とを含む発泡用樹脂組成 物であって、 [Claim 1] A foaming resin composition comprising two or more biodegradable polymers and a layered silicate,
前記 2種以上の生分解性ポリマーは、 メルトマスフローレートの差が 2 9 / 1 0
Figure imgf000026_0001
I n以上である第一及び第二の生分解性ポリマーを含み 前記第一及び第二の生分解性ポリマーの含有量が前記発泡用樹脂組成 物全体に対しいずれも 1 〇重量%以上、 8 0重量%以下であり、 前記層状ケイ酸塩の含有量が前記発泡用樹脂組成物全体に対し 1 0重 量%以上、 4 0重量%以下であり、
The two or more biodegradable polymers, the difference is 2 9/1 0 melt mass flow rate
Figure imgf000026_0001
Including the first and second biodegradable polymer is I n or more, the content of the first and second biodegradable polymer are both 10 wt% or more with respect to the entire foaming resin composition, 8 0% by weight or less, the content of the layered silicate is 10% by weight or more and 40% by weight or less with respect to the entire foaming resin composition,
前記層状ケイ酸塩の平均粒子径が 0 . 0 5 以上、 1 0 0 以下 であり、 The average particle size of the layered silicate is 0.05 or more, 100 or less,
前記層状ケイ酸塩の白色度と、 前記発泡用樹脂組成物により得られた 無発泡樹脂成形体の白色度との差が 2 0 %以下であることを特徴とす る発泡用樹脂組成物。 A foaming resin composition, wherein the difference between the whiteness of the layered silicate and the whiteness of a non-foamed resin molding obtained from the foaming resin composition is 20% or less.
[請求項 2] フイラーをさらに含み、 前記フイラーの含有量が前記発泡用樹脂組成 物全体に対して〇. 0 1重量%以上、 〇. 5重量%以下であることを 特徴とする請求項 1 に記載の発泡用樹脂組成物。 [Claim 2] A filler is further included, and the content of the filler is not less than 0.01% by weight and not more than 0.5% by weight with respect to the entire foaming resin composition. The resin composition for foaming according to.
[請求項 3] 前記フイラーの比重が〇. 5以上、 4 . 0以下であることを特徴とす る請求項 2に記載の発泡用樹脂組成物。 [Claim 3] The foaming resin composition according to claim 2, wherein the filler has a specific gravity of 0.5 or more and 4.0 or less.
[請求項 4] 請求項 1〜 3のいずれか一項に記載の発泡用樹脂組成物を発泡させて 成形したことを特徴とする発泡成形体。 [Claim 4] A foam-molded article obtained by foaming and molding the resin composition for foaming according to any one of claims 1 to 3.
[請求項 5] 請求項 1〜 3のいずれか一項に記載の発泡用樹脂組成物と超臨界流体 とを混合して発泡させたものであることを特徴とする請求項 4に記載 の発泡成形体。 [Claim 5] The foam according to claim 4, wherein the foaming resin composition according to any one of claims 1 to 3 is foamed by mixing with a supercritical fluid. Molded body.
[請求項 6] 請求項 1〜 3のいずれか一項に記載の発泡用樹脂組成物を射出成型し て得られたことを特徴とする請求項 4又は 5に記載の発泡成形体。 [Claim 6] The foam-molded article according to claim 4 or 5, which is obtained by injection-molding the foaming resin composition according to any one of claims 1 to 3.
PCT/JP2020/008089 2019-02-28 2020-02-27 Foamable resin composition and molded foam WO2020175635A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020513357A JP6810829B1 (en) 2019-02-28 2020-02-27 Foaming Resin Composition and Foaming Mold

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019036009 2019-02-28
JP2019-036009 2019-02-28

Publications (1)

Publication Number Publication Date
WO2020175635A1 true WO2020175635A1 (en) 2020-09-03

Family

ID=72238496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008089 WO2020175635A1 (en) 2019-02-28 2020-02-27 Foamable resin composition and molded foam

Country Status (2)

Country Link
JP (1) JP6810829B1 (en)
WO (1) WO2020175635A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086793A (en) * 1998-09-17 2000-03-28 Teijin Ltd Cellulose acetate foam and its production
JP2001247866A (en) * 2000-03-06 2001-09-14 Suzuki Sogyo Co Ltd Material for imparting plant growth environment, its preparation process, soil composition containing the material and soil conditioning process using the material
JP2003147182A (en) * 2001-11-13 2003-05-21 Unitika Ltd Biodegradable polyester resin composition, its production method, and foam obtained from the composition
JP2004262217A (en) * 2003-03-04 2004-09-24 Jsp Corp Composite, ester-modified starch resin foam board and manufacturing method
JP2005170426A (en) * 2003-12-10 2005-06-30 Toyo Seikan Kaisha Ltd Injection molded container excellent in biodegradability, heat resistance, and shock resistance, and its manufacturing method
WO2008098888A2 (en) * 2007-02-15 2008-08-21 Basf Se Foam layer produced of a biodegradable polyester mixture
WO2018123221A1 (en) * 2016-12-28 2018-07-05 バンドー化学株式会社 Food container manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086793A (en) * 1998-09-17 2000-03-28 Teijin Ltd Cellulose acetate foam and its production
JP2001247866A (en) * 2000-03-06 2001-09-14 Suzuki Sogyo Co Ltd Material for imparting plant growth environment, its preparation process, soil composition containing the material and soil conditioning process using the material
JP2003147182A (en) * 2001-11-13 2003-05-21 Unitika Ltd Biodegradable polyester resin composition, its production method, and foam obtained from the composition
JP2004262217A (en) * 2003-03-04 2004-09-24 Jsp Corp Composite, ester-modified starch resin foam board and manufacturing method
JP2005170426A (en) * 2003-12-10 2005-06-30 Toyo Seikan Kaisha Ltd Injection molded container excellent in biodegradability, heat resistance, and shock resistance, and its manufacturing method
WO2008098888A2 (en) * 2007-02-15 2008-08-21 Basf Se Foam layer produced of a biodegradable polyester mixture
WO2018123221A1 (en) * 2016-12-28 2018-07-05 バンドー化学株式会社 Food container manufacturing method

Also Published As

Publication number Publication date
JP6810829B1 (en) 2021-01-06
JPWO2020175635A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
CN102858859B (en) Polylactic acid composition, foam-molded article thereof and method for producing same
JP5264176B2 (en) Biodegradable resin foam and biodegradable resin molded container
EP2253659B1 (en) Preparation and application of chain-extending concentrates for polyester foaming process
JP5993108B1 (en) Foaming resin composition and foamed molded article
US20230076268A1 (en) Foamed sheet, manufacture, and method for producing foamed sheet
WO2017073165A1 (en) Foam molding manufacturing method
JP2021134348A (en) Foam, foam sheet, product, and method for producing foam sheet
EP2009043B1 (en) Concentrate of polyfunctional compounds usable for the preparation of foamed polyester materials
KR102160456B1 (en) Excellent moldability foam sheet, preparation method thereof, and food container using the same
KR101997619B1 (en) Foam sheet containing inorganic particle, and preparation method thereof
JP2021116412A (en) Foam sheet, product, and method for producing foam sheet
JP6768251B2 (en) Foaming Resin Composition and Foaming Mold
EP4097172B1 (en) Foamed sheet, manufacture, and method for producing foamed sheet
WO2020175635A1 (en) Foamable resin composition and molded foam
JP2015000963A (en) Polylactic acid expanded material and method for producing the same
KR102190656B1 (en) Foam sheet having excellent cell expression uniformity, and preparation method thereof
KR102339321B1 (en) Masterbatch composition and manufacturing method of foam sheet using the same
KR102339308B1 (en) Masterbatch composition and manufacturing method of foam sheet using the same
KR101967808B1 (en) Foam sheet containing inorganic particle, and preparation method thereof
JPWO2017073165A1 (en) Manufacturing method of foam molded product
JP2021116413A (en) Foam sheet, product, and method for producing foam sheet
CN113853406A (en) Masterbatch composition and method for producing foamed sheet using same
JP5482429B2 (en) Method for producing foamed particles and resin composition for foamed particles

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020513357

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762076

Country of ref document: EP

Kind code of ref document: A1