WO2020175568A1 - Composition for feed - Google Patents

Composition for feed Download PDF

Info

Publication number
WO2020175568A1
WO2020175568A1 PCT/JP2020/007801 JP2020007801W WO2020175568A1 WO 2020175568 A1 WO2020175568 A1 WO 2020175568A1 JP 2020007801 W JP2020007801 W JP 2020007801W WO 2020175568 A1 WO2020175568 A1 WO 2020175568A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
promoter
aggregation
feed
aggregate
Prior art date
Application number
PCT/JP2020/007801
Other languages
French (fr)
Japanese (ja)
Inventor
太志 原
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2021502330A priority Critical patent/JP7480771B2/en
Publication of WO2020175568A1 publication Critical patent/WO2020175568A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome

Definitions

  • the present invention relates to a feed composition, which is made of a single cell microorganism as a raw material and is used as a feed for a juvenile fish or a juvenile crustacean.
  • Rotifer Shiomizutsubo rotifer
  • Artemia As an initial feed, Shiomizutsubo rotifer (hereinafter referred to as "rotifer") and artemia are mainly used.
  • Rotifers generally have a back shell length of 100 to 340 001, while Artemia have a size of 400 to 100 001, which are commonly used as initial feed. Has been done. Due to the small size of the larvae that start feeding, it is difficult to cultivate the fish species for which rotifers are not suitable for initial feeding.
  • rotifers need to be prepared at the time of use and are relatively difficult to mass-produce, and Artemia also needs to be prepared at the time of use, and the production cost is relatively high.
  • yeast single-cell microorganisms such as yeast form various aggregates, and the mechanism of aggregation has been gradually elucidated.
  • Saccharomyces budding yeast Flocculation Protein Family (F LO) Epit he U al Adhesin Family (EPA), Agg lut ini n-1 i ke Sequence Protein Fam are genes involved in aggregation in Saccharomyces cerevisiae and Candida. ily (ALS) is known (Non-Patent Documents 1 to 3).
  • S fission yeast Schizosaccharomyces pombe
  • Patent Document 1 Patent No. 59543 15 Publication
  • Patent Document 2 International Publication No. 201 4/030644
  • Non-Patent Document 1 Wi Uaert, Journal of Fungi, 2018, vo L.4(4), 119, doi: 10.
  • Non-Patent Document 2 Verstrepen et al., Applied Microbiology and Biotechnolog y, 2003, vol.61, p.197-205.
  • Non-Patent Document 3 Hoyer and Cota, Frontiers in Microbiology, 2016, vo L.7, Art i c Le 280.
  • Non-Patent Document 4 Matsuzawa et al., FEMS Yeast Research, 2013, vo L.13(2013 ), p.259-266.
  • Non-Patent Document 5 Yor i tsune et al., FEBS Letters, 2013, vo L.587, p.917-921
  • Non-Patent Document 6 MuLvihi LL et al., Molecular Biology of the CeU, 1999, v ⁇ U0, p. 2771-2785.
  • Non-Patent Document 7 Partow et al., Yeast, 2010, vo L.27, p.955-964. ⁇ 0 2020/175568 3 ((17 2020/007801)
  • Single-cell microorganisms such as yeast are relatively easy to cultivate in a large amount and are preferable as a biological feed.
  • the individual cells are too small to be suitable as an initial feed for fish or crustaceans.
  • the microorganisms that cause food poisoning are also unsuitable as initial feed.
  • An object of the present invention is to use a single-cell microorganism as a raw material, which is suitable as an initial feed for fish and crustaceans, and a method for raising fish or crustaceans using the feed composition. Is provided.
  • the present inventor regulates the aggregating ability of the single-cell microorganisms by substituting the promoter of a gene associated with the aggregation of the single-cell microorganisms or introducing a mutation into the gene, thereby cultivating fish larvae or shellfish.
  • the present invention has been completed based on the finding that it can be adjusted to a clump of a size that can be ingested by juveniles of the class and that the obtained clump is suitable as an initial feed for fish or crustaceans.
  • the present invention provides the following [1] to [15].
  • a composition comprising an aggregate of unicellular microorganisms selected from yeast, lactic acid bacteria, and microalgae; and the unicellular microorganisms that are not aggregated,
  • the total area of the single-celled microorganisms in the optical microscope image of the composition, the ratio of the total area of aggregates having a diameter within the range of 20 to 120 is characterized by being 25% or more.
  • composition for feed according to any one of [1] to [3], which is the body.
  • the gene involved in aggregation is a gene involved in aggregation promotion, and the modification of the gene is replacement with a promoter having a stronger transcriptional strength than the promoter of the endogenous gene.
  • a gene a gene involved in the aggregation is involved in aggregation-inhibiting, modifications of those said gene is a deletion of endogenous the gene or promoter _ evening of the gene endogenous has _ transfer strength than are substitutions weak to promote _ evening _, feed composition [4].
  • composition for feed according to [9] wherein the transformant is a transformant of Schizosaccharomyces cylinder, and the gene involved in the suppression of endogenous aggregation is the V91 gene. ..
  • [1 2] A method for breeding fish or crustaceans, which comprises feeding the composition for feed according to any one of [1] to [11] to a juvenile fish or a juvenile crustacean as a feed.
  • a microbial aggregate comprising an aggregate of single-cell microorganisms selected from yeast, lactic acid bacteria, and microalgae and the single-cell microorganisms that are not aggregated,
  • the ratio of the total area of aggregates having a diameter in the range of 20 to 120 to the total area of single-cell microorganisms in the optical microscope image of the microorganism aggregate is 2 ⁇ 2020/175568 5 ⁇ (: 171-1? 2020 /007801
  • Use of the microbial aggregate in an amount of 5% or more in feed Use of the microbial aggregate in an amount of 5% or more in feed.
  • the feed composition according to the present invention contains a relatively large amount of aggregates of unicellular microorganisms having a diameter within the range of 20 to 120. Therefore, the feed composition is suitable as a feed for larvae of fish or juveniles of crustaceans (larvae, etc.).
  • a feed composition according to the present invention is a composition containing an aggregate of single cell microorganisms selected from yeast, lactic acid bacteria, and microalgae, and the single cell microorganisms that are not aggregated, and having a diameter of 2 Include a sufficient amount of aggregates in the range of 0 to 1200 with respect to the total amount of unicellular microorganisms in the composition.
  • Larvae of fish and juveniles of crustaceans cannot be ingested because unaggregated unicellular microorganisms are too small to be recognized as food by larvae.
  • agglomerates that are too large in diameter exceed the mouth size of larvae or have a high sedimentation rate, it is difficult to ingest larvae.
  • the feed composition according to the present invention contains a unicellular microorganism as an aggregate having a size that can be efficiently ingested by larvae of fish and juveniles of crustacean, and therefore, as an initial feed of fish or crustacean. It is suitable.
  • the diameter of a single cell microorganism is the equivalent circle area diameter of each aggregate obtained by image analysis from an optical microscope image, that is, the diameter of a circle having the same area from the area of the aggregate. It means the value converted into. Is it an optical microscope image? ⁇ 2020/175568 6 ⁇ (:171? 2020 /007801
  • the area of each of these aggregates and the equivalent diameter of the circular area can be measured by general image analysis using image analysis software such as " ⁇ ! 396".
  • the diameter is within the range of 1 to 2 (X ! And is the natural number satisfying 1 ⁇ 2)
  • the percentage of aggregates in () is the total area of single-celled microorganisms (total area of aggregates and non-aggregated single-celled microorganisms included in the optical microscopic image obtained by measuring the diameter of aggregates). ), the ratio (%) of the total area of aggregates whose diameter is within the target numerical range.
  • the “ratio of aggregates having a diameter within the range of 1 to 2 with respect to the total amount of single-celled microorganisms in the feed composition” may be represented as “[3 ⁇ 4 ( ⁇ 1 _ ⁇ 2 )”.
  • the “number of particles of single-celled microorganisms” means the total number of aggregates and the number of unaggregated single-celled microorganisms.
  • the ratio is preferably measured for the number of single cell microorganisms of 1,000 or more, more preferably 2000 or more. It is also preferable to measure from an optical microscope image captured for two or more different visual fields.
  • the proportion of aggregates [8 (20-1 200)] in which the diameter of the feed composition according to the present invention is within the range of 20 to 1200 is preferably 25% or more, and more preferably 30% or more. It is preferably 35% or more, more preferably 45% or more, still more preferably 50% or more. From the viewpoint of obtaining a sample that matches the mouth size of juvenile fish and juvenile crustaceans and has an appropriate sedimentation rate, it is preferable to appropriately adjust the ratio of aggregates. Specifically, it is preferable to adjust the ratio of [8 (20-1 00)] and [[3 ⁇ 4 (20-1 200) ].
  • the diameter of the feed composition according to the present invention is in the range of 20 to 1 O Ogm.
  • the ratio [R d (20-1 00)] of the agglomerates in is preferably 30% or more, more preferably 40% or more, still more preferably 50% or more.
  • the unicellular microorganism contained in the feed composition of the present invention may be any of yeast, lactic acid bacterium, and microalgae, and may contain two or more kinds of unicellular microorganisms.
  • yeast include S. bomb, Schizosaccharomyces octosporus, Schizozaccharomyces japonicns, and Schizosaccharomyces japonicns.
  • Saccharomyces eluipoides Saccharomyces rouxii, Saccharomyces yeast, Saccharomyces roasted varus uvarum, Saccharomyces evarium var.
  • Candida yeasts Pichia pastoris (Pi chi a pastor is) % Pichia kluyveri Pichia yeasts: Brettanomyces bruxeUensis, Brettanomvces naardenensis Bretanomyces yeasts: Torulopsis rupis is Uris Toru lops is Candida's yeast: Mycotoru la japonica, Mycotoru la lipolytica Mycotorula: Torraspora-Delburtuki (Toru laspora de Ibruecki la la) (Rhodotoru la rubra) is mentioned in the genus Ordotora.
  • lactic acid bacterium examples include Bifidobacterium Lon gum, Bifidobacterium animalis % Bifidobacterium bifidum, Bif idobacter i um Lact is Bacteria: Lactobaci L Lus ac idophi Lus
  • Lactococcus plantarum examples include Eug Lena graci Lis N Chlorella (ChLoreLLa), Spirulina (Arthrospira genus), Icadamo (Acutodesmus dimorphus), Chlamydomonas (Ch Lamydom onas re i nhardt ii; J. (Synechococcus e Longatus)
  • yeast is preferable because gene modification technology and mass culture technology have been established, and it is relatively easy to prepare aggregates of a desired size. Further, fission yeast and budding yeast are more preferable because of their historical background as fermented foods and their safety as feeds is ensured.
  • the type of unicellular microorganisms contained in the feed composition according to the present invention can be selected according to the species of fish or crustaceans to which the feed composition is given and the degree of growth thereof.
  • yeast having a knowledge of genes involved in aggregation promotion is preferable, and S. cerevisiae, which has a lot of knowledge, is particularly preferable. Is preferred.
  • a cylinder is particularly preferred.
  • the aggregate of unicellular microorganisms contained in the feed composition according to the present invention may be formed by sexual aggregation or may be formed by nonsexual aggregation.
  • flocs composed of extracellular polymeric substances and bacterial cells are also included in the aggregate.
  • the size of the aggregate of single-celled microorganisms can be adjusted to a preferred size by, for example, adjusting the expression level of a gene involved in aggregation or the intensity of activity.
  • the expression level and activity intensity of genes involved in aggregation are regulated by modifying the promoter of the gene, modifying by introducing an amino acid mutation in the protein encoded by the gene, modifying the copy number of the gene. be able to. Specifically, incorporation of a promoter of a gene involved in agglutination promoter, transcription strength than Promo _ evening _ having the gene of the endogenous replaces strong promotion _ evening _, or pre SL exogenous gene into the genome ..
  • aggregation is promoted and the proportion of aggregates having a preferable size is increased. Furthermore, the deletion of genes you involved in aggregation inhibitor, or a promoter of the gene, also by transferring strength than the promoter having the gene of the endogenous replaces weak promoter _ evening _ aggregation promotes Transformants with an increased proportion of aggregates of the desired size are obtained. In addition, the size of the aggregate of single-celled microorganisms may be adjusted by combining these.
  • genes involved in aggregation promotion include !_ ⁇ 1 gene, !_ ⁇ 10 gene, 1_ ⁇ 11 gene (all derived from Saccharomyces cerevisiae), and 8 !_ 3 1 gene (Candida). ⁇ Albicans origin), Minamihachi 1 gene (Candida glabrata origin), 93 3 2 genes (3. cylinder origin), and homologues of these genes.
  • the genes involved in aggregation-inhibiting For example, 9 1 gene (3. From bomb), and these homologous genes are exemplified up.
  • the promoter of a gene involved in aggregation is modified, the promoter of the above-mentioned endogenous gene is used as a promoter of another gene originally possessed by the same species. ⁇ 2020/175568 10 units (:171? 2020/007801
  • It may be replaced with a lomotor or a promoter derived from another species.
  • the strength of the transcriptional strength of each promoter depends on the endogenous promoter of a gene involved in aggregation promotion such as the 93 2 gene ⁇ the II II 1 gene.
  • Promoter ⁇ Non-patent document 6, Patent document 2
  • the endogenous promoter of the gene involved in aggregation promotion should be the promoter of the 1 ⁇ 0141 gene, the promoter of the IIII01 gene, the promoter of the IIII2 gene, or the promoter of the II39 gene.
  • the degree of enhancement was different in each of the replaced transformants, the expression efficiency of genes involved in aggregation promotion was enhanced, 3.
  • the aggregation of cylinders was promoted, and the proportion of large aggregates increased. That is, by replacing the promoter of a gene involved in aggregation promotion with a promoter having an appropriate transcriptional strength, it is possible to regulate the strength of the aggregation ability of single-cell microorganisms and increase the proportion of aggregates of a desired size.
  • the strength of transcription of each promoter depends on the endogenous promoter ⁇ gene ⁇ 1 gene promoter ⁇ ⁇ 1 gene promoter or transcription of genes involved in aggregation promotion.
  • the order of the promoters is 1 (Non-Patent Document 7). Therefore, in transformants in which the endogenous promoters of the genes involved in aggregation promotion were replaced with the PYK ⁇ gene promoter, PGK ⁇ gene promoter or Ding 1 gene promoter, the degree of enhancement varied, but The efficiency of expression of genes involved in promotion is enhanced, the aggregation of S. cerevisiae is promoted, and the proportion of large aggregates is increased.
  • the promoter of the gene involved in the promotion of aggregation can be replaced with a promoter having an appropriate transcriptional strength to control the strength of the aggregation ability of a single-cell microorganism, and the aggregation mass of a desired size can be controlled. Can be increased.
  • the offspring may be introduced into the 3. cylinder, and the 93 genes derived from the cylinder may be introduced into the 3. cerevisiae.
  • Modifications of genes involved in aggregation include replacement of promoters, introduction of mutations, deletion of the above genes, and insertion of foreign genes. These can be performed alone or in combination, and can be performed by a genetic engineering method. Insertion of an exogenous gene may be introduced as an extrachromosomal gene or may be introduced into the chromosome. Examples of the genetic engineering method include, for example, JP-A-5_15380, WO 95/09914, JP-A-10-234375, JP-A-2000-262284, and JP-A-2005-1. The methods described in Japanese Patent Publication No. 986 12 and International Publication No. 201 0/087344 can be used.
  • the gene modified in order to improve the aggregating ability of the unicellular microorganism contained in the feed composition according to the present invention may be one kind or two or more kinds.
  • two or more kinds of genes involved in aggregation promotion may be modified, or both the genes involved in aggregation promotion and the genes involved in aggregation inhibition may be modified.
  • a microbial aggregate comprising the aggregates of single-cell microorganisms contained in the feed composition according to the present invention and the single-cell microorganisms that are not aggregated is obtained by culturing the single-cell microorganisms.
  • the unicellular microorganism can be cultured in the same manner as the naturally occurring microorganism of the same species.
  • a part thereof aggregates to form an aggregate, and the rest remains as a single cell without aggregation.
  • the microbial aggregate consisting of aggregates and single cells obtained by culturing is used as a raw material for feed.
  • Cultivation of a single-cell microorganism with modified agglutination ability is performed in a culture medium containing a carbon source, a nitrogen source, inorganic salts and the like that can be assimilated by the single-cell microorganism to be cultured.
  • a culture medium known culture media used for culturing microorganisms and modified media thereof can be appropriately used.
  • the culture medium a natural medium or a synthetic medium may be used. It is also possible to use a solution such as krill extract added to the culture medium.
  • carbon sources include sugars such as glucose, fructose, and sucrose. Can be mentioned.
  • nitrogen source examples include ammonia, ammonium sulfide, inorganic acid of ammonium acetate or ammonium salt of inorganic acid, peptone and casamino acid.
  • inorganic salts examples include magnesium phosphate, magnesium sulfate, and sodium chloride.
  • a nutrient medium such as YPD medium (MDRose et al., “Methods in Yes Genetics”, Cold Spring Harbor Laboratory Press (1990)) or a minimal medium such as MB medium (K. Okazaki et a. , Nucleic AcidsRes., vo 1.18, p.6485-6 489 (1990)) can be used.
  • a known yeast culture method can be used for the culture, and for example, shake culture and agitation culture can be performed.
  • the culture temperature is preferably 23 to 37 ° C. Also, the culture time can be appropriately determined.
  • the culture may be batch culture or continuous culture.
  • the feed composition according to the present invention may consist of only the microbial aggregates of the single-cell microorganisms described above, or may contain other components.
  • the other components include amino acids, peptides, proteins, nucleic acids, sugars, lipids, fatty acids, vitamins and minerals.
  • DHA docosahexaenoic acid
  • EPA eicosapentaenoic acid
  • DHA or EPA in the feed composition according to the present invention may be used in terms of the dry weight of the composition. , Preferably 0.1% by mass or more.
  • the feed composition according to the present invention is added to a cage of a fish or crustacean farm like any other feed.
  • the feed composition according to the present invention is easily ingested even by juvenile fish or juvenile crustaceans, it is preferable to feed the composition for feeding to a farm for raising these.
  • the rattle fragment was a fragment consisting of a region homologous to the genome of recombination and the I ⁇ ! 34 gene sequence of an auxotrophic marker that can be processed. When the target gene region is deleted from the genome, no traces of foreign alien sequences are left in the genome.
  • V 9 1 gene was deleted.
  • the cells were inoculated into a test tube containing and cultured at 30° for 3 days with shaking.
  • the obtained culture solution was mixed with a 50% glycerol solution at a ratio of 1:1 and frozen and stored as a glycerol stock at 180°.
  • a replacement ratwort fragment was prepared by gene synthesis.
  • the replacement rattle fragment consists of the sequence to be replaced by a region homologous to the genome of the recombination target to be integrated, and the gene sequence of the auxotrophic marker that can be processed (34 gene sequence).
  • Two bomber fragments for replacement of two gene promoters Each of the strains and the 7 8 6 strains was transformed, and then treated with Eighty-eight to replace the 93 2 promoter.
  • Each of these promoter-replaced strains was inoculated into a test tube containing each of the culture medium 3 (51_) and shake-cultured at 30 ° C for 3 days.
  • the obtained culture solutions were mixed with 50% glycerol solution at a ratio of 1:1 (volume ratio), and frozen and stored as glycerol stock at 180°.
  • Glycerol stock of each strain (1) was added to each of the 3 culture media (5 1_) was inoculated into a test tube.
  • a shaking incubator XV-1 6 [3 ⁇ 4_3 manufactured by Takasaki Kagaku Kikai Co., Ltd. was used.
  • the test tube was cultivated with shaking at 30° for 3 days, and the obtained culture broth 3 !_ was transferred to a Sakaro flask containing the Kakuguchi culture medium 150 1 _ containing the krill extract.
  • the bacterial cells collected by centrifugation were frozen at 80 ° C and freeze-dried using a freeze dryer L ABC ONCO (Asahi Life Science). The internal pressure of the device was kept below 0.1 33 mbar and dried briefly. The resulting dried product contained 0.2 to 0.5 mass% DHA per dry weight.
  • a sample was prepared by adding 0.1 g of each of the obtained yeast dry bodies to R 0 (R ev er s e O s mo s s s) water (1 mL) and suspending them.
  • the samples were observed with a light microscope CKC-T R 2 (manufactured by Olympus Co., Ltd.) at a magnification of 40 and photographed by using a digital camera U-CMAD3 (manufactured by Olympus Co., Ltd.) to obtain an image file.
  • the image file of the obtained micrograph was analyzed by the image analysis software Imag e J distributed by Nat i o n a l In n st i t u t e sof H e a It h (N I H). Specifically, first, the image file was binarized by the Ma ke b i n a r y process. Next, the scale was set by the Set-scaIe treatment, and finally the area value data of each individual particle (including both aggregates and non-aggregated unicellular microorganisms) was obtained by the Analyzeparticles treatment. .. Table 2 shows the image analysis results for each strain.
  • particles are particles identified as one region in the image, and include both aggregates and non-aggregated single-cell microorganisms.
  • total number of particles is the total number of aggregates and the number of unicellular microorganisms that have not aggregated.
  • total area value is the sum of the area values of all particles, and "1 200 3 d 3 20” is the value of [particle diameter (diameter equivalent to circular area) of 20 Mm or more and 1 200 Mm or less].
  • [Total area value] / [Total area value of all particles] (%), "100 3 d 3 20" is [diameter (circle area equivalent diameter
  • the strain with stronger transcriptional strength of the 93 chi 2 gene promoter showed that The proportion of particles with diameters over 100 is high, and the genes involved in aggregation are ⁇ 2020/175 568 17 ⁇ (:171? 2020/007801
  • the size of the aggregate could be controlled by controlling the transcription strength of the promoter.
  • the large proportion of aggregates of a size (diameter 20 to 100) easily ingested by juvenile fish or juvenile crustaceans was particularly suitable as an initial feed.
  • the ⁇ ⁇ 799 strain, ⁇ ⁇ 800 strain, and ⁇ ⁇ 798 strain are aggregates with a diameter of 100 to 1 200 0.01, which is about the same size as rotifer and artemia. It had many lumps and was suitable as a substitute feed for rotifer and artemia.
  • the replacement rattle fragment was prepared by gene synthesis.
  • the replacement rattle fragment is a sequence that you want to replace and integrate with a homologous region in the genome to be recombined, and a auxotrophic marker that can be processed. J It consists of 3 gene sequences.
  • the obtained !_ ⁇ 1 gene was used as a replacement for the rattle fragment 3.
  • the 192 strain was transformed to replace the 1_O1 promoter.
  • a replacement ratool fragment was prepared by gene synthesis.
  • the replacement rattle fragment is composed of a sequence to be replaced by a region homologous to the genome to be recombined and integrated, and II [3 ⁇ 43 gene sequence.
  • the Latwool fragment for replacement of the obtained 1_ ⁇ 10 gene promoter was used to transform the 3. cerevisiae 8 [3 ⁇ 4 ⁇ 192 strain and replace the !_ ⁇ 10 promoter.
  • the fragment is composed of the sequence to be integrated by substituting the homologous region in the recombination target genome, and II [3 ⁇ 43 gene sequence.
  • the Latwool fragment for replacement of the obtained 1_ ⁇ 1 1 gene promoter was used to transform 3 cerevisiae 8 [3 ⁇ 4 0 1 92 strain to replace the 1_ ⁇ 1 1 promoter.
  • the strain in which the promoter of the PYK ⁇ gene had been replaced was designated as ⁇ 887 strain.
  • the strain with the _ 192 strain as the host and the !_ ⁇ 1 promoter replaced by the promoter of phosphoglycerate kinase ⁇ ⁇ 1 gene was used as the strain 890.
  • Eight strains were used as hosts, and strains in which the !_ ⁇ 1 promoter was replaced with the promoter of the elongation factor Tingami 1 gene were designated as ⁇ 893 strains.
  • Strains in which the !_ ⁇ 10 promoter was replaced with the promoter of less than 1 gene were mainly set as the I 089 1 strain. Using the eight [3 ⁇ 4 ⁇ 192 strain as a host, the !_ ⁇ 1 0 promoter The strain in which the promoter of one gene was replaced was the ⁇ 888 strain. Using the strain as the host, the strain in which the !_ ⁇ 1 0 promoter was replaced with the promoter of the Tingmi 1 gene was used as strain ⁇ 894.
  • the strain in which the !_ ⁇ 11 promoter was replaced with the promoter of ⁇ 1 gene was designated as I ⁇ 889 strain.
  • the strain in which the promoter of one gene had been replaced was used as the ⁇ 829 strain.
  • the strain in which the !_ ⁇ 11 promoter was replaced with the promoter of the Tongmi 1 gene was used as the strain ⁇ 895.
  • Table 3 shows the promoters of !_ ⁇ genes of each strain.
  • Each of these promoter-replaced strains was inoculated into a test tube containing each of the culture medium 3 (51_) and shake-cultured at 30 ° C for 3 days.
  • the obtained culture solutions were mixed with 50% glycerol solution at a ratio of 1:1 (volume ratio), and frozen and stored as glycerol stock at 180°.
  • Glycerol stock of each strain (1) was added to each of the 3 culture media (5 1_) was inoculated into a test tube.
  • the test tube was shake-cultured at 30 ° ⁇ for 3 days, and the obtained culture broth 3 !_ was added to the mouth culture medium 150 1 _ supplemented with the krill extract.
  • Saka Lofrasco was shake-cultured at 30° for 3 days, and the obtained culture solution (150!_ each) was centrifuged in the same manner as in Example 1 and the supernatant was discarded to recover the bacterial cells. did.
  • the bacterial cells collected by centrifugation were frozen at 80°C and freeze-dried in the same manner as in Example 1 to obtain a dried product.
  • the resulting dried product contained 0.2 to 0.5 mass% of mouth ! ⁇ 18 per dry weight. ⁇ 2020/175 568 20 units (: 171-1?2020/007801
  • Each of the obtained yeast dry bodies (0.19) was suspended in water (1 !_). These samples were observed at 40x magnification using an optical microscope ⁇ 1Cho [3 ⁇ 4 2 (manufactured by Olympus) and photographed using a digital camera 11- ⁇ 1 ⁇ /1803 (manufactured by Olympus). , Got the image file.
  • the image file of the obtained micrograph was analyzed by image analysis software 1 01396" in the same manner as in Example 1 to obtain individual particles (including both aggregates and non-aggregated single cell microorganisms). Area value data was obtained.
  • Table 4 shows the image analysis results for each strain. In the table, “particle”, “total number of particles”, “total area value”, “1 200 3 3 20", “100 3 3 20", and “20>” mean the same as in Table 2. In addition, two independent trials were performed, the upper row of each strain shows the results of the first trial, and the lower row shows the results of the second trial.
  • the proportion of particles having a diameter of more than 100 is high, and the size of the aggregate can be regulated by controlling the transcription strength of the promoter of the gene involved in aggregation. was confirmed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Insects & Arthropods (AREA)
  • Mycology (AREA)
  • Birds (AREA)
  • Physiology (AREA)
  • Fodder In General (AREA)
  • Feed For Specific Animals (AREA)

Abstract

The present invention provides: a composition for a feed, said composition being obtained using a unicellular microorganism as a starting material and appropriately usable as an early stage feed for fishes and crustaceans; a method for raising fishes or crustaceans with the use of the composition for a feed, etc. The present invention pertains to a composition for a feed, said composition containing aggregates of a unicellular microorganism selected from among a yeast, a lactic acid bacterium and a microalga and the unicellular microorganism in a non-aggregated state, characterized in that, in an optical microscopic image of the composition, the ratio of the total area of aggregates having a diameter within a range of 20-1200 μm to the total area of the unicellular microorganism is 25% or greater.

Description

\¥0 2020/175568 1 卩(:17 2020 /007801 明 細 書 \¥0 2020/175568 1 卩 (: 17 2020 /007801 Clarification
発明の名称 : 飼料用組成物 Title of invention: Composition for feed
技術分野 Technical field
[0001 ] 本発明は、 単細胞微生物を原料とし、 魚類の仔稚魚又は甲殻類の幼体のた めの飼料となる飼料用組成物に関する。 [0001] The present invention relates to a feed composition, which is made of a single cell microorganism as a raw material and is used as a feed for a juvenile fish or a juvenile crustacean.
背景技術 Background technology
[0002] 魚類や甲殻類の養殖において最も困難なのは、 飼育初期の仔稚魚の飼育で ある。 仔稚魚は、 成魚用の配合飼料の摂取は困難であり、 しばしば摂餌不良 による生残率の低下が問題となる。 魚類の仔稚魚又は甲殻類の幼体のための 飼料、 いわゆる初期飼料は、 サイズが適切であることが重要である。 サイズ が小さ過ぎる初期飼料は、 餌として認識されず、 摂餌されない。 逆にサイズ が大きすぎる初期飼料は、 速く沈降して摂餌されにくく、 また、 仔稚魚の口 に入らず、 摂餌されない。 このように、 サイズが大きすぎる飼料と小さすぎ る飼料はいずれも、 初期飼料として不適である。 [0002] The most difficult part of aquaculture of fish and crustaceans is the rearing of larvae at the early stage of rearing. It is difficult for larvae and juveniles to ingest a mixed feed for adult fish, and the problem of reduced survival rate due to poor feeding is often a problem. It is important that the size of feeds for larvae of fish or juveniles of crustaceans, so-called initial feeds, is appropriate. Initial feeds that are too small are not recognized as feed and are not fed. On the other hand, too large initial feed settles quickly and is difficult to feed, and it does not enter the mouth of larvae and is not fed. Thus, both oversized and undersized feeds are unsuitable as initial feeds.
[0003] 一般に初期飼料としては、 主にシオミズツボワムシ (以下、 ワムシと記す ) とアルテミアが使用されている。 ワムシは、 一般的に背甲長 1 0 0〜 3 4 0 〇1の大きさのものが、 アルテミアは 4 0 0〜 1 0 0 0 〇1の大きさのも のが、 それぞれ初期飼料として汎用されている。 摂餌を開始する仔魚のサイ ズが小さいため、 ワムシが初期飼料に適さない魚種は、 養殖すること自体が 困難である。 また、 ワムシは用時調製する必要があるうえに大量生産が比較 的困難であり、 アルテミアも用時調製する必要があるうえに製造コストが比 較的高いという問題もある。 このため、 従来のワムシやアルテミアが適さな い魚種のための初期飼料の開発が求められている。 また、 従来の初期飼料よ りも製造しやすくかつ用時調製する必要がない初期飼料の開発が求められて いる。 [0003] Generally, as an initial feed, Shiomizutsubo rotifer (hereinafter referred to as "rotifer") and artemia are mainly used. Rotifers generally have a back shell length of 100 to 340 001, while Artemia have a size of 400 to 100 001, which are commonly used as initial feed. Has been done. Due to the small size of the larvae that start feeding, it is difficult to cultivate the fish species for which rotifers are not suitable for initial feeding. In addition, rotifers need to be prepared at the time of use and are relatively difficult to mass-produce, and Artemia also needs to be prepared at the time of use, and the production cost is relatively high. Therefore, there is a need for the development of an initial feed for fish species for which conventional rotifers and artemia are not suitable. In addition, there is a need for the development of an initial feed that is easier to manufacture than the conventional initial feed and does not require preparation at the time of use.
[0004] 酵母等の単細胞微生物は様々な凝集体を形成することが知られており、 凝 集のメカニズムも徐々に解明されてきている。 例えば、 出芽酵母サツカロミ セス ·セレビシエ (Saccharomyces cerevisiae) やカンジダ属菌において凝 集に関与する遺伝子として、 Flocculation Protein Family (F LO) 、 Epi t he U a l Adhesin Family ( E P A ) 、 Agg lut i n i n- 1 i ke Sequence Protein Fam ily (ALS) が知られている (非特許文献 1〜 3) 。 また、 分裂酵母シゾサ ツカロミセス ·ボンべ (Sch i zosaccharomyces pombe) (以下、 S . ボンベと いう) では、 外来の g s f 2 (Galactose-specific ceU agglutination pro tein) 遺伝子を組み込むことや、 内在性のピルビン酸転移酵素 p v g 1 (Pyr uvy I transferase 1) 遺伝子を欠失させたり、 P v g 1の酵素活性が低下又 は失活させる変異を導入したりして、 非性的凝集が促進されることが知られ ている (非特許文献 4〜 5、 特許文献 1 ) 。 [0004] It is known that single-cell microorganisms such as yeast form various aggregates, and the mechanism of aggregation has been gradually elucidated. For example, Saccharomyces budding yeast Flocculation Protein Family (F LO), Epit he U al Adhesin Family (EPA), Agg lut ini n-1 i ke Sequence Protein Fam are genes involved in aggregation in Saccharomyces cerevisiae and Candida. ily (ALS) is known (Non-Patent Documents 1 to 3). Also, in the fission yeast Schizosaccharomyces pombe (hereinafter referred to as S. It is known that nonsexual aggregation is promoted by deleting the transferase pvg 1 (Pyr uvy I transferase 1) gene or introducing a mutation that reduces or inactivates the enzymatic activity of P vg 1. (Non-Patent Documents 4 to 5, Patent Document 1).
先行技術文献 Prior art documents
特許文献 Patent literature
[0005] 特許文献 1 :特許第 59543 1 5号公報 [0005] Patent Document 1: Patent No. 59543 15 Publication
特許文献 2 :国際公開第 201 4/030644号 Patent Document 2: International Publication No. 201 4/030644
非特許文献 Non-patent literature
[0006] 非特許文献 1 : Wi Uaert, Journal of Fungi, 2018, vo L.4(4), 119, doi : 10. [0006] Non-Patent Document 1: Wi Uaert, Journal of Fungi, 2018, vo L.4(4), 119, doi: 10.
3390/ j of 4040119 3390/ j of 4040119
非特許文献 2 : Verstrepen et al. , Applied Microbiology and Biotechnolog y, 2003, vol.61, p.197-205. Non-Patent Document 2: Verstrepen et al., Applied Microbiology and Biotechnolog y, 2003, vol.61, p.197-205.
非特許文献 3 : Hoyer and Cota, Frontiers in Microbiology, 2016, vo L.7, Art i c Le 280. Non-Patent Document 3: Hoyer and Cota, Frontiers in Microbiology, 2016, vo L.7, Art i c Le 280.
非特許文献 4 : Matsuzawa et al. , FEMS Yeast Research, 2013, vo L.13(2013 ), p.259-266. Non-Patent Document 4: Matsuzawa et al., FEMS Yeast Research, 2013, vo L.13(2013 ), p.259-266.
非特許文献 5 : Yor i tsune et al. , FEBS Letters, 2013, vo L.587, p.917-921 非特許文献 6 : MuLvihi L L et al. , Molecular Biology of the CeU, 1999, v 〇U0, p. 2771-2785. Non-Patent Document 5: Yor i tsune et al., FEBS Letters, 2013, vo L.587, p.917-921 Non-Patent Document 6: MuLvihi LL et al., Molecular Biology of the CeU, 1999, v 〇 U0, p. 2771-2785.
非特許文献 7 : Partow et al. , Yeast, 2010, vo L.27, p.955-964. \¥0 2020/175568 3 卩(:17 2020 /007801 発明の概要 Non-Patent Document 7: Partow et al., Yeast, 2010, vo L.27, p.955-964. \¥0 2020/175568 3 ((17 2020/007801)
発明が解決しようとする課題 Problems to be Solved by the Invention
[0007] 酵母等の単細胞微生物は、 大量培養が比較的容易であり、 生物飼料として 好ましい。 しかし、 個々の細胞は小さすぎて、 魚類又は甲殻類の初期飼料と しては不適である。 また大量培養が比較的容易な単細胞微生物であったとし ても、 インドールやケトンなどのいわゆる腐敗アミンを生じさせる腐敗微生 物や、 感染症を引き起こす病原性微生物、 有害な化合物である毒素を生産し 食中毒の原因となる微生物なども、 初期飼料として不適である。 [0007] Single-cell microorganisms such as yeast are relatively easy to cultivate in a large amount and are preferable as a biological feed. However, the individual cells are too small to be suitable as an initial feed for fish or crustaceans. Even if it is a single-celled microorganism that is relatively easy to cultivate in large quantities, it produces spoilage microbes that cause so-called spoilage amines such as indoles and ketones, pathogenic microorganisms that cause infectious diseases, and toxins that are harmful compounds. The microorganisms that cause food poisoning are also unsuitable as initial feed.
[0008] 本発明に係る目的は、 単細胞微生物を原料とした、 魚類や甲殻類の初期飼 料として好適な飼料用組成物、 及び前記飼料用組成物を用いた魚類又は甲殻 類の飼育方法等の提供である。 [0008] An object of the present invention is to use a single-cell microorganism as a raw material, which is suitable as an initial feed for fish and crustaceans, and a method for raising fish or crustaceans using the feed composition. Is provided.
課題を解決するための手段 Means for solving the problem
[0009] 本発明者は、 単細胞微生物の凝集に関連する遺伝子のプロモーターを置換 したり、 前記遺伝子に変異を導入したりして、 前記単細胞微生物の凝集能を 調節し、 魚類の仔稚魚又は甲殻類の幼体が摂取可能な大きさの凝集塊に調節 できること、 及び、 得られた凝集塊は魚類又は甲殻類の初期飼料として好適 であることを見出し、 本発明を完成するに至った。 [0009] The present inventor regulates the aggregating ability of the single-cell microorganisms by substituting the promoter of a gene associated with the aggregation of the single-cell microorganisms or introducing a mutation into the gene, thereby cultivating fish larvae or shellfish. The present invention has been completed based on the finding that it can be adjusted to a clump of a size that can be ingested by juveniles of the class and that the obtained clump is suitable as an initial feed for fish or crustaceans.
[0010] すなわち、 本発明は、 以下 [1] 〜 [1 5] を提供する。 [0010] That is, the present invention provides the following [1] to [15].
[1] 酵母、 乳酸菌、 及び微細藻類から選ばれる単細胞微生物の凝集塊と 、 凝集していない前記単細胞微生物と、 を含む組成物であって、 [1] A composition comprising an aggregate of unicellular microorganisms selected from yeast, lactic acid bacteria, and microalgae; and the unicellular microorganisms that are not aggregated,
前記組成物の光学顕微鏡画像における前記単細胞微生物の総面積に対する 、 直径が 2〇〜 1 2 0 0 の範囲内にある凝集塊の総面積の割合が、 2 5 %以上であることを特徴とする、 飼料用組成物。 The total area of the single-celled microorganisms in the optical microscope image of the composition, the ratio of the total area of aggregates having a diameter within the range of 20 to 120 is characterized by being 25% or more. , A composition for feed.
[2] 前記直径が 2 0〜 1 0〇 の範囲内にある凝集塊の総面積の割合 が、 3 0 %以上である、 [1] の飼料用組成物。 [2] The feed composition according to [1], wherein the ratio of the total area of aggregates having a diameter within the range of 20 to 100 is 30% or more.
[3] 前記単細胞微生物が酵母である、 [1] 又は [2] の飼料用組成物 [3] The composition for feed according to [1] or [2], wherein the single cell microorganism is yeast.
[4] 前記単細胞微生物が、 凝集に関与する遺伝子が改変された形質転換 20/175568 4 卩(:171? 2020 /007801 [4] Transformation of the single-celled microorganism in which a gene involved in aggregation is modified 20/175568 4 卩 (: 171? 2020 /007801
体である、 [1] 〜 [3] のいずれかの飼料用組成物。 The composition for feed according to any one of [1] to [3], which is the body.
[5] 前記凝集に関与する遺伝子が凝集促進に関与する遺伝子であり、 当 該遺伝子の改変が、 内在性の当該遺伝子が有するプロモーターよりも転写強 度が強いプロモーターへの置換である、 [4] の飼料用組成物。 [5] The gene involved in aggregation is a gene involved in aggregation promotion, and the modification of the gene is replacement with a promoter having a stronger transcriptional strength than the promoter of the endogenous gene. ] The composition for feeds of.
[6] 前記形質転換体が酵母の形質転換体である、 [4] 又は [5] の飼 料用組成物。 [6] The veterinary composition according to [4] or [5], wherein the transformant is a yeast transformant.
[7] 前記形質転換体がシゾサツカロミセス ·ボンベの形質転換体であり 、 前記内在性の凝集促進に関与する遺伝子が 9 3 チ 2遺伝子である、 [5] の飼料用組成物。 [7] The feed composition according to [5], wherein the transformant is a Schizosaccharomyces sylvaticus transformant, and the gene involved in promoting endogenous aggregation is the 93 2 gene.
[8] 前記形質転換体がサツカロミセス ·セレビジェの形質転換体であり 、 前記内在性の凝集促進に関与する遺伝子が !_ 0遺伝子である、 [5] の 飼料用組成物。 [8] The composition for feed according to [5], wherein the transformant is a transformant of Saccharomyces cerevisiae, and the gene involved in the promotion of endogenous aggregation is !_ 0 gene.
[9] 前記凝集に関与する遺伝子が凝集抑制に関与する遺伝子であり、 当 該遺伝子の改変が、 内在性の当該遺伝子の欠失である、 又は、 内在性の当該 遺伝子が有するプロモ __よりも転写強度が弱いプロモ __への置換で ある、 [4] の飼料用組成物。 [9] a gene a gene involved in the aggregation is involved in aggregation-inhibiting, modifications of those said gene is a deletion of endogenous the gene or promoter _ evening of the gene endogenous has _ transfer strength than are substitutions weak to promote _ evening _, feed composition [4].
[1 0] 前記形質転換体がシゾサツカロミセス ·ボンベの形質転換体であ り、 前記内在性の凝集抑制に関与する遺伝子が V 9 1遺伝子である、 [9 ] の飼料用組成物。 [10] The composition for feed according to [9], wherein the transformant is a transformant of Schizosaccharomyces cylinder, and the gene involved in the suppression of endogenous aggregation is the V91 gene. ..
[1 1] ドコサへキサェン酸又はェイコサペンタェン酸を、 組成物の乾燥 重量当たり 0 . 1質量%以上含む、 [ 1] 〜 [ 1 0] のいずれかの飼料用組 成物。 [11] The feed composition according to any one of [1] to [10], which contains docosahexaenoic acid or eicosapentaenoic acid in an amount of 0.1% by mass or more based on the dry weight of the composition.
[1 2] 魚類の仔稚魚又は甲殻類の幼体に、 [ 1] 〜 [ 1 1] のいずれか の飼料用組成物を餌として与えて飼育する、 魚類又は甲殻類の飼育方法。 [1 2] A method for breeding fish or crustaceans, which comprises feeding the composition for feed according to any one of [1] to [11] to a juvenile fish or a juvenile crustacean as a feed.
[1 3] 酵母、 乳酸菌及び微細藻類から選ばれる単細胞微生物の凝集塊と 凝集していない前記単細胞微生物とを含む微生物集合体であって、 [1 3] A microbial aggregate comprising an aggregate of single-cell microorganisms selected from yeast, lactic acid bacteria, and microalgae and the single-cell microorganisms that are not aggregated,
前記微生物集合体の光学顕微鏡画像における単細胞微生物の総面積に対す る、 直径が 2〇〜 1 2 0 0 の範囲内にある凝集塊の総面積の割合が、 2 〇 2020/175568 5 卩(:171? 2020 /007801 The ratio of the total area of aggregates having a diameter in the range of 20 to 120 to the total area of single-cell microorganisms in the optical microscope image of the microorganism aggregate is 2 〇 2020/175568 5 卩 (: 171-1? 2020 /007801
5 %以上である、 前記微生物集合体の、 飼料への使用。 Use of the microbial aggregate in an amount of 5% or more in feed.
[1 4] 単細胞微生物の凝集に関与する遺伝子を、 内在性の前記遺伝子が 有するプロモーターとは転写強度が異なるプロモーターへ置換する、 前記遺 伝子を欠失させる、 又は外来の前記遺伝子をゲノムに組込むことにより、 単 細胞微生物の凝集塊の大きさを所望の範囲内に調整する、 単細胞微生物の凝 集塊の調製方法。 [14] Replacing a gene involved in aggregation of single-celled microorganisms with a promoter having a transcriptional strength different from that of the endogenous gene, deleting the gene, or adding the foreign gene to the genome A method for preparing an aggregate of unicellular microorganisms, wherein the size of an aggregate of unicellular microorganisms is adjusted within a desired range by incorporating it.
[1 5] 魚類の仔稚魚又は甲殻類の幼体に、 [1 4] の単細胞微生物の凝 集塊の調製方法により調製された凝集塊を餌として与えて飼育する、 魚類又 は甲殻類の飼育方法。 [15] Rearing of fish or crustaceans by feeding the larvae of fish or juveniles of crustaceans with the aggregate prepared by the method for preparing aggregates of unicellular microorganisms of [1 4] as food. Method.
発明の効果 Effect of the invention
[001 1] 本発明に係る飼料用組成物は、 直径が 2 0〜 1 2 0 0 の範囲内にある 大きさの単細胞微生物の凝集塊を比較的多く含む。 このため、 前記飼料用組 成物は、 魚類の仔稚魚又は甲殻類の幼体 (仔稚魚等) のための飼料として好 適である。 [001 1] The feed composition according to the present invention contains a relatively large amount of aggregates of unicellular microorganisms having a diameter within the range of 20 to 120. Therefore, the feed composition is suitable as a feed for larvae of fish or juveniles of crustaceans (larvae, etc.).
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明に係る飼料用組成物は、 酵母、 乳酸菌、 及び微細藻類から選ばれる 単細胞微生物の凝集塊と、 凝集していない前記単細胞微生物と、 を含む組成 物であって、 直径が 2 0〜 1 2 0〇 の範囲内にある凝集塊を、 組成物中 の単細胞微生物全量に対して充分な割合で含む。 魚類の仔稚魚及び甲殻類の 幼体は、 凝集していない単細胞微生物は小さすぎて仔魚に餌として認識され ないなどの理由で摂取できない。 また、 直径が大きすぎる凝集塊は、 仔魚の 口の大きさを超えていたり、 沈降速度が速かったりするために、 仔稚魚等は 摂取し難い。 本発明に係る飼料用組成物は、 単細胞微生物を、 魚類の仔稚魚 及び甲殻類の幼体が効率よく摂取可能な大きさの凝集塊として含んでおり、 このため、 魚類又は甲殻類の初期飼料として好適である。 [0012] A feed composition according to the present invention is a composition containing an aggregate of single cell microorganisms selected from yeast, lactic acid bacteria, and microalgae, and the single cell microorganisms that are not aggregated, and having a diameter of 2 Include a sufficient amount of aggregates in the range of 0 to 1200 with respect to the total amount of unicellular microorganisms in the composition. Larvae of fish and juveniles of crustaceans cannot be ingested because unaggregated unicellular microorganisms are too small to be recognized as food by larvae. In addition, because agglomerates that are too large in diameter exceed the mouth size of larvae or have a high sedimentation rate, it is difficult to ingest larvae. The feed composition according to the present invention contains a unicellular microorganism as an aggregate having a size that can be efficiently ingested by larvae of fish and juveniles of crustacean, and therefore, as an initial feed of fish or crustacean. It is suitable.
[0013] 本発明及び本願明細書において、 単細胞微生物の直径は、 光学顕微鏡画像 から画像解析により得られた各凝集塊の円面積相当径、 すなわち、 凝集塊の 面積から同等の面積の円の直径に換算した値を意味する。 光学顕微鏡画像か 〇 2020/175568 6 卩(:171? 2020 /007801 [0013] In the present invention and the specification of the present application, the diameter of a single cell microorganism is the equivalent circle area diameter of each aggregate obtained by image analysis from an optical microscope image, that is, the diameter of a circle having the same area from the area of the aggregate. It means the value converted into. Is it an optical microscope image? 〇 2020/175568 6 卩 (:171? 2020 /007801
らの各凝集塊の面積及び円面積相当径の計測は、 丨 〇! 396」などの画像解 析ソフトウェアを用いた一般的な画像解析により行うことができる。 The area of each of these aggregates and the equivalent diameter of the circular area can be measured by general image analysis using image analysis software such as "○! 396".
[0014] 本発明及び本願明細書において、 「飼料用組成物中の単細胞微生物全量に 対する、 直径が乂1〜乂2 の範囲内 (X!及び は、 乂1<乂2を満たす自 然数) にある凝集塊の割合 (%) 」 とは、 凝集塊の直径を計測した光学顕微 鏡画像中に含まれている単細胞微生物の総面積 (凝集塊と凝集していない単 細胞微生物の総面積) に対する、 直径が目的の数値範囲内にある凝集塊の総 面積の割合 (%) を意味する。 以下、 「飼料用組成物中の単細胞微生物全量 に対する、 直径が乂1〜乂2 の範囲内にある凝集塊の割合」 は、 「[¾ ( 乂1_乂2) 」 と表すことがある。 また、 「単細胞微生物の粒子数」 とは、 凝 集塊の個数と凝集していない単細胞微生物の個数の総数を意味する。 より信 頼性の高い結果を得るために、 前記割合の計測は、 単細胞微生物の粒子数が 1 000個以上に対して行うことが好ましく、 2000個以上に対して行う ことがより好ましい。 また、 2以上の異なる視野に対して撮像された光学顕 微鏡画像から計測することも好ましい。 [0014] In the present invention and the specification of the present application, "with respect to the total amount of unicellular microorganisms in the composition for feed, the diameter is within the range of 1 to 2 (X ! And is the natural number satisfying 1 < 2) The percentage of aggregates in () is the total area of single-celled microorganisms (total area of aggregates and non-aggregated single-celled microorganisms included in the optical microscopic image obtained by measuring the diameter of aggregates). ), the ratio (%) of the total area of aggregates whose diameter is within the target numerical range. Hereinafter, the “ratio of aggregates having a diameter within the range of 1 to 2 with respect to the total amount of single-celled microorganisms in the feed composition” may be represented as “[¾ (乂1 _ 乂2 )”. The “number of particles of single-celled microorganisms” means the total number of aggregates and the number of unaggregated single-celled microorganisms. In order to obtain a more reliable result, the ratio is preferably measured for the number of single cell microorganisms of 1,000 or more, more preferably 2000 or more. It is also preferable to measure from an optical microscope image captured for two or more different visual fields.
[0015] 本発明に係る飼料用組成物の直径が 20〜 1 200 の範囲内にある凝 集塊の割合 [8 (20— 1 200) ] は、 25 %以上が好ましく、 30 % 以上がより好ましく、 35 %以上がさらに好ましく、 45 %以上がよりさら に好ましく、 50 %以上が特に好ましい。 魚類の仔稚魚及び甲殻類の幼体の 口の大きさに合っており、 かつ沈降速度が適切である試料を得る観点から、 凝集塊の割合は適宜調整することが好ましい。 具体的には、 [8 (20- 1 00) ] と [[¾ (20- 1 200) ] の比を調整することが好ましい。 例えば、 飼料用組成物が与えられる対象の魚類の仔稚魚及び甲殻類の幼体の 口の大きさが小さい場合などのように仔稚魚等が比較的大きな凝集塊を摂取 し難い場合、
Figure imgf000007_0001
(20- 1 200) ] に対 して高めに調整することが考えられる。 一方で、 魚類の仔稚魚及び甲殻類の 幼体の口の大きさが比較的大きく、 仔稚魚等に餌としてより小さな凝集塊が 認識され難い場合、
Figure imgf000007_0002
(20- 1 200) ] に対して低めに調整することが考えられる。 魚類の仔稚魚又は甲殻類の幼 体による摂取効率が良好であることと沈降速度とを考慮した一例として、 例 えば、 本発明に係る飼料用組成物の直径が 20〜 1 O Ogmの範囲内にある 凝集塊の割合 [R d (20— 1 00) ] は、 30%以上が好ましく、 40% 以上がより好ましく、 50 %以上がさらに好ましい。
[0015] The proportion of aggregates [8 (20-1 200)] in which the diameter of the feed composition according to the present invention is within the range of 20 to 1200 is preferably 25% or more, and more preferably 30% or more. It is preferably 35% or more, more preferably 45% or more, still more preferably 50% or more. From the viewpoint of obtaining a sample that matches the mouth size of juvenile fish and juvenile crustaceans and has an appropriate sedimentation rate, it is preferable to appropriately adjust the ratio of aggregates. Specifically, it is preferable to adjust the ratio of [8 (20-1 00)] and [[¾ (20-1 200) ]. For example, when it is difficult for the larvae and the like to ingest a relatively large agglomerate, such as when the larvae of the fish to which the composition for feed is given and the mouth of the larvae of the crustaceans are small,
Figure imgf000007_0001
(20-1 200)], it is possible to adjust it higher. On the other hand, when the mouth size of juvenile fish and juvenile crustaceans is relatively large, it is difficult to recognize smaller agglomerates as bait in juvenile fish.
Figure imgf000007_0002
(20-1 200) ], it is possible to adjust it lower. As an example in consideration of the good intake efficiency by the larvae of fish or the larvae of crustaceans and the sedimentation rate, for example, the diameter of the feed composition according to the present invention is in the range of 20 to 1 O Ogm. The ratio [R d (20-1 00)] of the agglomerates in is preferably 30% or more, more preferably 40% or more, still more preferably 50% or more.
[0016] 本発明に係る飼料用組成物に含まれる単細胞微生物は、 酵母、 乳酸菌、 及 び微細藻類のいずれであつてもよく、 2種類以上の単細胞微生物を含んでい てもよい。 前記酵母としては、 例えば、 S. ボンべ、 シゾサツカロミセス · オクトスポラス (Sch i zosaccharomyces octosporus) 、 シゾサツカロミセス ジャポニクス (Sch i zosaccharomyces japonicns) のシゾサツカロミセス属 酵母 (分裂酵母) :サツカロミセス ·セレビシエ、 サツカロミセス ·エリポ イデス (Saccharomyces eUipoides) 、 サツカロミセス ルーキシ (Sacchar omyces rouxii) 、 サツカロミセス ·サケ (Saccharomyces sake) 、 サツカロ ミセス · ウバラム (Saccharomyces uvarum) のサツカロミセス属酵母 (出芽 酵母) :カンジダ · アルビカンス (Candida albicans) 、 カンジダ · グラブ ラタ (Candida glabrata) 、 カンジダ ·ユテイリス (Candida utilis) 、 力 ンジダ ·シュードトロピカリス (Candida pseudotropical is) のカンジダ属 酵母: ピキア ·パストリス (Pi chi a pastor is) % ピキア · クルイベリ (Pich ia kluyveri) のピキア属酵母: ブレタノミセス · ブルクセレンシス (Bretta nomyces bruxeUensis) 、 ブレタノミセス ·ナーデネンシス (Brettanomvces naardenensis) のブレタノミセス属酵母: トルロプシス · ウテイリス (Toru lops i s utilis) 、 トルロプシス ·カンジダ (Toru lops i s Candida) のトルロ プシス属酵母: ミコトルラ ·ジャポニカ (Mycotoru la japonica) 、 ミコトル ラ · リポリチカ (Mycotoru la lipolytica) のミコトルラ属: トルラスポラ - デルブルツキ (Toru laspora de Ibruecki i ) のトルラスポラ属: 口ードトルラ ルブラ (Rhodotoru la rubra) の口ードトルラ属が挙げられる。 前記乳酸菌 としては、 例えば、 ビフイ ドバクテリウム · ロンガム (Bifidobacterium Lon gum) 、 ビフイ ドバクテリウム · アニマリス (Bifidobacterium animal is) % ビフイ ドバクテリウ厶 · ビフイ ドム (Bifidobacterium bifidum) 、 ビフイ ド バクテリウ厶 ラクテイス (Bif idobacter i um Lact is) のビフイ ドバクテリ ウ厶属菌: ラクトバチルス · アシドフイリス (Lactobaci L Lus ac idophi Lus)[0016] The unicellular microorganism contained in the feed composition of the present invention may be any of yeast, lactic acid bacterium, and microalgae, and may contain two or more kinds of unicellular microorganisms. Examples of the yeast include S. bomb, Schizosaccharomyces octosporus, Schizozaccharomyces japonicns, and Schizosaccharomyces japonicns. ): Saccharomyces eluipoides, Saccharomyces rouxii, Saccharomyces yeast, Saccharomyces roasted varus uvarum, Saccharomyces evarium var. Albicans (Candida albicans), Candida glabrata (Candida glabrata), Candida utilis, Candida pseudotropical is (Candida pseudotropical is) Candida yeasts: Pichia pastoris (Pi chi a pastor is) % Pichia kluyveri Pichia yeasts: Brettanomyces bruxeUensis, Brettanomvces naardenensis Bretanomyces yeasts: Torulopsis rupis is Uris Toru lops is Candida's yeast: Mycotoru la japonica, Mycotoru la lipolytica Mycotorula: Torraspora-Delburtuki (Toru laspora de Ibruecki la la) (Rhodotoru la rubra) is mentioned in the genus Ordotora. Examples of the lactic acid bacterium include Bifidobacterium Lon gum, Bifidobacterium animalis % Bifidobacterium bifidum, Bif idobacter i um Lact is Bacteria: Lactobaci L Lus ac idophi Lus
、 ラクトバチルス · アミロヴォラス (Lactobaci L Lus amylovorus) N ラクト バチルス · ブレビス (Lactobaci L Lus brevis) 、 ラクトバチルス ·カゼイ (L actobaci L Lus casei) 、 ラクトバチルス ·デルブルツキ (Lactobaci L Lus del brueckii) 、 ラクトバチルス ·ガセリ (Lactobaci L Lus gasseri) 、 ラクトバ チルス ·ヘルべチカス (Lactobacillus helveticus) N ラクトバチルス ·パ ラカゼイ (Lactobaci L Lus paracasei) 、 ラクトバチルス ·ペントーサス (La ctobaci L Lus pentosus) 、 ラクトバチルス ルーモサス (Lactobacillus rhn mosus) のラクトバチルス属菌:エンテロコツカス · フェカリス (Enterococc us faecalis) のエンテロコツカス属菌: ラクトコツカス · ラクティス (Lact ococcus Lact is) N ラクトコツカス · ラフイノラクテイス (Lactococcus raf fi no Lact is) N ラクトコツカス · プランタラム (Lactococcus plantarum) の ラクトコッカス属菌が挙げられる。 前記微細藻類としては、 例えば、 ミ ドリ ムシ (Eug Lena graci Lis) N クロレラ (ChLoreLLa) 、 スピルリナ (Arthrosp ira属) 、 イカダモ (Acutodesmus dimorphus) 、 クラミ ドモナス (Ch Lamydom onas re i nhardt i i ; 、 シアノバクテ· Jア (Synechococcus e Longatus) が挙げ られる。 なかでも、 遺伝子改変技術及び大量培養技術が確立されており、 所 望の大きさの凝集塊の調製が比較的容易であることから、 酵母が好ましい。 さらに発酵食品としての歴史的な背景があり飼料としての安全性が担保され ている事から、 分裂酵母及び出芽酵母がより好ましい。 Lactobaci L Lus amylovorus N Lactobaci L Lus brevis Lactobaci L Lus casei Lactobaci L Lus del brueckii Lactobaci L Lus del brueckii Lactobaci L Lus del brueckii Lactobaci L Lus del brueckii Lactobaci L Lus gasseri, Lactobacillus helveticus N Lactobacillus paracasei, Lactobacillus pentosus L Las ctobaci L Lus pentosus rhus bacillus molus Lactobacillus spp.): Enterokotsukasu belonging to the genus of Enterokotsukasu faecalis (Enterococc us faecalis): Rakutokotsukasu lactis (Lact ococcus Lact is) N Rakutokotsukasu Ruff Ino lactate chair (Lactococcus raf fi no Lact is) N Rakutokotsukasu · Lactococcus spp. of Lactococcus plantarum can be mentioned. Examples of the microalgae include Eug Lena graci Lis N Chlorella (ChLoreLLa), Spirulina (Arthrospira genus), Icadamo (Acutodesmus dimorphus), Chlamydomonas (Ch Lamydom onas re i nhardt ii; J. (Synechococcus e Longatus) Among them, yeast is preferable because gene modification technology and mass culture technology have been established, and it is relatively easy to prepare aggregates of a desired size. Further, fission yeast and budding yeast are more preferable because of their historical background as fermented foods and their safety as feeds is ensured.
[0017] 本発明に係る飼料用組成物に含まれる単細胞微生物の種類は、 前記飼料用 組成物が与えられる対象の魚類又は甲殻類の生物種及びそれらの成長の度合 いに応じて選択できる。 例えば、 仔稚魚又は幼体の成長の度合いに合わせて 、 幅広く適切なサイズの飼料用組成物を調整するには、 凝集促進に関与する 遺伝子の知見がある酵母が好ましく、 特に知見が多い S. セレビジェが好ま しい。 さらに、 前記に加えて、 凝集抑制に関与する遺伝子の知見がある S. 〇 2020/175568 9 卩(:171? 2020 /007801 [0017] The type of unicellular microorganisms contained in the feed composition according to the present invention can be selected according to the species of fish or crustaceans to which the feed composition is given and the degree of growth thereof. For example, in order to adjust a wide range of suitable sizes of feed composition according to the degree of growth of larvae or juveniles, yeast having a knowledge of genes involved in aggregation promotion is preferable, and S. cerevisiae, which has a lot of knowledge, is particularly preferable. Is preferred. Furthermore, in addition to the above, there is knowledge of genes involved in aggregation inhibition. 〇 2020/175 568 9 卩 (: 171-1? 2020 /007801
ボンベが特に好ましい。 A cylinder is particularly preferred.
[0018] 本発明に係る飼料用組成物に含まれる単細胞微生物の凝集塊は、 性的凝集 により形成されたものであってもよく、 非性的凝集によって形成されたもの であってもよい。 また、 乳酸菌の場合、 細胞外高分子物質及び菌体などから 構成されるフロックも凝集塊に含まれる。 [0018] The aggregate of unicellular microorganisms contained in the feed composition according to the present invention may be formed by sexual aggregation or may be formed by nonsexual aggregation. In the case of lactic acid bacteria, flocs composed of extracellular polymeric substances and bacterial cells are also included in the aggregate.
[0019] 単細胞微生物の凝集塊の大きさは、 例えば、 凝集に関与する遺伝子の発現 量や活性の強度を調節して、 好ましい大きさに調整できる。 凝集に関与する 遺伝子の発現量や活性強度の調節は、 前記遺伝子のプロモーターの改変、 前 記遺伝子がコードするタンパク質のアミノ酸変異を導入する改変、 前記遺伝 子のコピー数を増大させる改変などにより行うことができる。 具体的には、 凝集促進に関与する遺伝子のプロモーターを、 内在性の前記遺伝子が有する プロモ __よりも転写強度が強いプロモ __に置換する、 又は外来の前 記遺伝子をゲノムへ組み込む。 こうして得られた形質転換体は、 凝集が促進 され、 好ましい大きさの凝集塊の割合が増大する。 また、 凝集抑制に関与す る遺伝子を欠失させる、 又は、 前記遺伝子のプロモーターを、 内在性の前記 遺伝子が有するプロモーターよりも転写強度が弱いプロモ _夕 _に置換する ことでも、 凝集が促進し、 好ましい大きさの凝集塊の割合が増大した形質転 換体が得られる。 また、 単細胞微生物の凝集塊の大きさは、 これらの組み合 わせで調整してもよい。 [0019] The size of the aggregate of single-celled microorganisms can be adjusted to a preferred size by, for example, adjusting the expression level of a gene involved in aggregation or the intensity of activity. The expression level and activity intensity of genes involved in aggregation are regulated by modifying the promoter of the gene, modifying by introducing an amino acid mutation in the protein encoded by the gene, modifying the copy number of the gene. be able to. Specifically, incorporation of a promoter of a gene involved in agglutination promoter, transcription strength than Promo _ evening _ having the gene of the endogenous replaces strong promotion _ evening _, or pre SL exogenous gene into the genome .. In the transformant thus obtained, aggregation is promoted and the proportion of aggregates having a preferable size is increased. Furthermore, the deletion of genes you involved in aggregation inhibitor, or a promoter of the gene, also by transferring strength than the promoter having the gene of the endogenous replaces weak promoter _ evening _ aggregation promotes Transformants with an increased proportion of aggregates of the desired size are obtained. In addition, the size of the aggregate of single-celled microorganisms may be adjusted by combining these.
[0020] 凝集促進に関与する遺伝子としては、 例えば、 !_〇 1遺伝子、 !_〇 1 〇遺伝子、 1_〇 1 1遺伝子 (いずれもサッカロミセス ·セレビシエ由来) 、 八 !_ 3 1遺伝子 (カンジダ · アルビカンス由来) 、 巳 八 1遺伝子 (カン ジダ · グラブラタ由来) 、 9 3 干 2遺伝子 (3 . ボンべ由来) 、 及びこれら のホモログ遺伝子が挙げられる。 凝集抑制に関与する遺伝子としては、 例え ば、 9 1遺伝子 (3 . ボンべ由来) 、 及びこれらのホモログ遺伝子が挙 げられる。 [0020] Examples of genes involved in aggregation promotion include !_〇 1 gene, !_〇 10 gene, 1_〇 11 gene (all derived from Saccharomyces cerevisiae), and 8 !_ 3 1 gene (Candida). ·Albicans origin), Minamihachi 1 gene (Candida glabrata origin), 93 3 2 genes (3. cylinder origin), and homologues of these genes. The genes involved in aggregation-inhibiting, For example, 9 1 gene (3. From bomb), and these homologous genes are exemplified up.
[0021 ] 凝集に関与する遺伝子のプロモーターを改変する場合、 内在性の前記遺伝 子が有するプロモーターを、 同種の生物種が本来有している他の遺伝子のプ 〇 2020/175568 10 卩(:171? 2020 /007801 [0021] When the promoter of a gene involved in aggregation is modified, the promoter of the above-mentioned endogenous gene is used as a promoter of another gene originally possessed by the same species. 〇 2020/175568 10 units (:171? 2020/007801
ロモーターに置換してもよく、 他の生物種に由来するプロモーターに置換し てもよい。 It may be replaced with a lomotor or a promoter derived from another species.
[0022] 例えば、 単細胞微生物が 3 . ボンベの場合、 各プロモーターの転写強度の 強さは、 9 3 チ 2遺伝子等の凝集促進に関与する遺伝子の内在性のプロモー モーター<丨 II〇 1遺伝子のプロモーター<
Figure imgf000011_0001
の順である (非特許文献 6、 特許文献 2)
[0022] For example, when the unicellular microorganism is a cylinder, the strength of the transcriptional strength of each promoter depends on the endogenous promoter of a gene involved in aggregation promotion such as the 93 2 gene <the II II 1 gene. Promoter <
Figure imgf000011_0001
(Non-patent document 6, Patent document 2)
。 このため、 凝集促進に関与する遺伝子の内在性のプロモーターを、 1^ 01 4 1遺伝子のプロモーター、 丨 II〇 1遺伝子のプロモーター、 丨 II〇 2遺伝 子のプロモーター、 又は II 3 9遺伝子のプロモーターに置換した形質転換 体では、 それぞれ増強の程度は異なるものの凝集促進に関与する遺伝子の発 現効率が高められ、 3 . ボンベの凝集が促進され、 大きい凝集塊の割合が増 大する。 すなわち、 凝集促進に関与する遺伝子のプロモーターを適当な転写 強度のプロモーターに置換して、 単細胞微生物の凝集能の強さを調節でき、 所望の大きさの凝集塊の割合を大きくできる。 .. For this reason, the endogenous promoter of the gene involved in aggregation promotion should be the promoter of the 1^0141 gene, the promoter of the IIII01 gene, the promoter of the IIII2 gene, or the promoter of the II39 gene. Although the degree of enhancement was different in each of the replaced transformants, the expression efficiency of genes involved in aggregation promotion was enhanced, 3. The aggregation of cylinders was promoted, and the proportion of large aggregates increased. That is, by replacing the promoter of a gene involved in aggregation promotion with a promoter having an appropriate transcriptional strength, it is possible to regulate the strength of the aggregation ability of single-cell microorganisms and increase the proportion of aggregates of a desired size.
[0023] 単細胞微生物がサツカロミセス ·セレビシェの場合、 各プロモーターの転 写強度の強さは、 凝集促進に関与する遺伝子の内在性のプロモーター< 丫 < 1遺伝子のプロモーター< ◦< 1遺伝子のプロモーター又は丁巳 1遺 伝子のプロモーター、 の順である (非特許文献 7) 。 このため、 凝集促進に 関与する遺伝子の内在性のプロモーターを、 P Y K ^遺伝子のプロモーター 、 P G K ^遺伝子のプロモーター又は丁巳 1遺伝子のプロモーターに置換 した形質転換体では、 それぞれ増強の程度は異なるものの凝集促進に関与す る遺伝子の発現効率が高められ、 サツカロミセス ·セレピシェの凝集が促進 され、 大きい凝集塊の割合が増大する。 すなわち、 サツカロミセス ·セレビ シェにおいても、 凝集促進に関与する遺伝子のプロモーターを適当な転写強 度のプロモーターに置換して、 単細胞微生物の凝集能の強さを調節でき、 所 望の大きさの凝集塊の割合を大きくできる。 [0023] When the unicellular microorganism is Saccharomyces cerevisiae, the strength of transcription of each promoter depends on the endogenous promoter <gene <1 gene promoter <◦ <1 gene promoter or transcription of genes involved in aggregation promotion. The order of the promoters is 1 (Non-Patent Document 7). Therefore, in transformants in which the endogenous promoters of the genes involved in aggregation promotion were replaced with the PYK^ gene promoter, PGK^ gene promoter or Ding 1 gene promoter, the degree of enhancement varied, but The efficiency of expression of genes involved in promotion is enhanced, the aggregation of S. cerevisiae is promoted, and the proportion of large aggregates is increased. That is, also in S. cerevisiae, the promoter of the gene involved in the promotion of aggregation can be replaced with a promoter having an appropriate transcriptional strength to control the strength of the aggregation ability of a single-cell microorganism, and the aggregation mass of a desired size can be controlled. Can be increased.
[0024] 単細胞微生物の凝集塊の割合を調整するには、 凝集に関与する外来遺伝子 をゲノムに導入してもよい。 例えば 3 . セレビジェに由来する !_〇 1遺伝 〇 2020/175568 11 卩(:171? 2020 /007801 [0024] To adjust the proportion of aggregates of single-celled microorganisms, foreign genes involved in aggregation may be introduced into the genome. For example, 3! 〇 2020/175568 11 卩(: 171-1? 2020/007801
子を 3. ボンベに導入してもよく、 3. ボンベに由来する 93 干 2遺伝子を 3. セレビジェに導入してもよい。 The offspring may be introduced into the 3. cylinder, and the 93 genes derived from the cylinder may be introduced into the 3. cerevisiae.
[0025] 凝集に関与する遺伝子の改変は、 プロモーターの置換、 変異の導入、 前記 遺伝子の欠失、 及び外来遺伝子の揷入などである。 これらは、 単独で又は組 み合わせて行うことができ、 遺伝子工学的方法により行うことができる。 外 来遺伝子の揷入は、 染色体外遺伝子として導入してもよく、 染色体に導入し てもよい。 前記遺伝子工学的方法としては、 例えば、 特開平 5_ 1 5380 号公報、 国際公開第 95/099 1 4号、 特開平 1 0— 234375号公報 、 特開 2000 -262284号公報、 特開 2005 - 1 986 1 2号公報 、 国際公開第 201 0/087344号に記載の方法を使用できる。 [0025] Modifications of genes involved in aggregation include replacement of promoters, introduction of mutations, deletion of the above genes, and insertion of foreign genes. These can be performed alone or in combination, and can be performed by a genetic engineering method. Insertion of an exogenous gene may be introduced as an extrachromosomal gene or may be introduced into the chromosome. Examples of the genetic engineering method include, for example, JP-A-5_15380, WO 95/09914, JP-A-10-234375, JP-A-2000-262284, and JP-A-2005-1. The methods described in Japanese Patent Publication No. 986 12 and International Publication No. 201 0/087344 can be used.
[0026] 本発明に係る飼料用組成物に含まれる単細胞微生物の凝集能を向上させる ために改変する遺伝子は、 1種類であってもよく、 2種類以上であってもよ い。 例えば、 2種類以上の凝集促進に関与する遺伝子に対して改変してもよ く、 凝集促進に関与する遺伝子と凝集抑制に関与する遺伝子の両方に対して 改変してもよい。 [0026] The gene modified in order to improve the aggregating ability of the unicellular microorganism contained in the feed composition according to the present invention may be one kind or two or more kinds. For example, two or more kinds of genes involved in aggregation promotion may be modified, or both the genes involved in aggregation promotion and the genes involved in aggregation inhibition may be modified.
[0027] 本発明に係る飼料用組成物に含まれる単細胞微生物の凝集塊と凝集してい ない前記単細胞微生物とからなる微生物集合体は、 前記単細胞微生物を培養 して得られる。 前記単細胞微生物は、 天然の同種の微生物と同様に培養でき る。 前記単細胞微生物を培養すると、 その一部が凝集し凝集塊を形成し、 残 りは凝集せずに単細胞のまま存在する。 培養により得られた凝集塊と単細胞 からなる微生物集合体は、 飼料の原料として用いられる。 [0027] A microbial aggregate comprising the aggregates of single-cell microorganisms contained in the feed composition according to the present invention and the single-cell microorganisms that are not aggregated is obtained by culturing the single-cell microorganisms. The unicellular microorganism can be cultured in the same manner as the naturally occurring microorganism of the same species. When the above-mentioned single cell microorganism is cultured, a part thereof aggregates to form an aggregate, and the rest remains as a single cell without aggregation. The microbial aggregate consisting of aggregates and single cells obtained by culturing is used as a raw material for feed.
[0028] 凝集能を改変した単細胞微生物の培養は、 培養する対象の単細胞微生物が 資化しうる炭素源、 窒素源、 無機塩類等を含む培養培地で行う。 前記培養培 地としては、 微生物の培養に使用される公知の培養培地及びその改変培地を 適宜使用できる。 また、 前記培養培地としては、 天然培地を用いてもよく、 合成培地を用いてもよい。 オキアミ抽出液のようなェキスを培養培地に添加 して用いてもよい。 [0028] Cultivation of a single-cell microorganism with modified agglutination ability is performed in a culture medium containing a carbon source, a nitrogen source, inorganic salts and the like that can be assimilated by the single-cell microorganism to be cultured. As the culture medium, known culture media used for culturing microorganisms and modified media thereof can be appropriately used. As the culture medium, a natural medium or a synthetic medium may be used. It is also possible to use a solution such as krill extract added to the culture medium.
[0029] 炭素源としては、 例えば、 グルコース、 フルクトース、 スクロースの糖が 挙げられる。 [0029] Examples of carbon sources include sugars such as glucose, fructose, and sucrose. Can be mentioned.
窒素源としては、 例えば、 アンモニア、 硫化アンモニウム、 酢酸アンモニ ウムの無機酸又は無機酸のアンモニウム塩、 ペプトン、 カザミノ酸が挙げら れる。 Examples of the nitrogen source include ammonia, ammonium sulfide, inorganic acid of ammonium acetate or ammonium salt of inorganic acid, peptone and casamino acid.
無機塩類としては、 例えば、 リン酸マグネシウム、 硫酸マグネシウム、 塩 化ナトリウムが挙げられる。 Examples of the inorganic salts include magnesium phosphate, magnesium sulfate, and sodium chloride.
具体的には、 YPD培地等の栄養培地 (M.D.Rose et al., ” Methods In Ye ast Genetics”, Cold Spring Harbor Labo latoryPress (1990)) 又は MB培 地等の最少培地 (K. Okazaki et a 1. , Nucleic AcidsRes. , vo 1.18, p.6485-6 489 (1990)) を使用できる。 Specifically, a nutrient medium such as YPD medium (MDRose et al., “Methods in Yes Genetics”, Cold Spring Harbor Laboratory Press (1990)) or a minimal medium such as MB medium (K. Okazaki et a. , Nucleic AcidsRes., vo 1.18, p.6485-6 489 (1990)) can be used.
[0030] 培養には公知の酵母培養方法を用いることができ、 例えば、 振とう培養、 攪拌培養ができる。 [0030] A known yeast culture method can be used for the culture, and for example, shake culture and agitation culture can be performed.
また、 培養温度は、 23〜 37°Cが好ましい。 また、 培養時間は適宜決定 できる。 The culture temperature is preferably 23 to 37 ° C. Also, the culture time can be appropriately determined.
また、 培養は、 回分培養であってもよく、 連続培養であってもよい。 Further, the culture may be batch culture or continuous culture.
[0031] 本発明に係る飼料用組成物は、 前記単細胞微生物の微生物集合体のみから なるものであってもよく、 その他の成分を含んでいてもよい。 前記その他の 成分としては、 アミノ酸、 ペプチド、 タンパク質、 核酸、 糖類、 脂質、 脂肪 酸、 ビタミン、 ミネラルが挙げられる。 DHA (ドコサへキサエン酸) 、 E P A (エイコサペンタエン酸) 等が成長に必要な生物用の飼料組成物の場合 、 本発明に係る飼料用組成物における D H A又は E P Aは、 組成物の乾燥重 量当たり、 好ましくは 0. 1質量%以上含む。 [0031] The feed composition according to the present invention may consist of only the microbial aggregates of the single-cell microorganisms described above, or may contain other components. Examples of the other components include amino acids, peptides, proteins, nucleic acids, sugars, lipids, fatty acids, vitamins and minerals. In the case of a feed composition for a living organism that requires growth such as DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid), DHA or EPA in the feed composition according to the present invention may be used in terms of the dry weight of the composition. , Preferably 0.1% by mass or more.
[0032] 本発明に係る飼料用組成物は、 他の飼料と同様にして、 魚類又は甲殻類の 養殖場の生け簀に投入する。 特に、 本発明に係る飼料用組成物は、 魚類の仔 稚魚又は甲殻類の幼体でも摂取しやすいため、 これらを飼育する養殖場に、 餌として与えて飼育することが好ましい。 [0032] The feed composition according to the present invention is added to a cage of a fish or crustacean farm like any other feed. In particular, since the feed composition according to the present invention is easily ingested even by juvenile fish or juvenile crustaceans, it is preferable to feed the composition for feeding to a farm for raising these.
実施例 Example
[0033] 以下、 実施例を示して本発明を詳細に説明する。 ただし、 本発明は以下の 〇 2020/175568 13 卩(:171? 2020 /007801 [0033] Hereinafter, the present invention will be described in detail with reference to Examples. However, the present invention is as follows. 〇 2020/175 568 13 卩 (: 171-1? 2020 /007801
記載によっては限定されない。 It is not limited depending on the description.
[0034] [実施例 1 ] [0034] [Example 1]
3 . ボンベの凝集に関与する遺伝子を改変し、 凝集能の異なる菌株を作製 した。 3. Genes involved in the aggregation of cylinders were modified to produce strains with different aggregation ability.
[0035] < V 9 1遺伝子の削除> [0035] <Deletion of V91 gene>
3 . ボンベの染色体から V 9 1遺伝子を削除するために、 遺伝子削除用 のラトウールフラグメントを遺伝子合成にて作製した。 ラトウールフラグメ ントは、 組換え対象のゲノムに相同な領域と、 〇 処理が可能な栄養要求 性マーカーの I·! 「 3 4遺伝子配列からなる断片とした。 なお、 前記断片を用 いて対象のゲノムから目的の遺伝子領域を削除すると、 外来の口 八配列の 痕跡がゲノムに残らない。 3. To remove the V91 gene from the cylinder of the bomb, a ratool fragment for gene deletion was prepared by gene synthesis. The rattle fragment was a fragment consisting of a region homologous to the genome of recombination and the I·! 34 gene sequence of an auxotrophic marker that can be processed. When the target gene region is deleted from the genome, no traces of foreign alien sequences are left in the genome.
[0036] 得られた V 9 1遺伝子削除用のラトウールフラグメントによって 3 . ポ ンベの八[¾(3 0 3 2株 (特許文献 1) を形質転換した後に、 〇八処理をし て V 9 1遺伝子を削除した。 得られた V 9 1削除株を 丨 ◦ 7 8 6株と 名付け、
Figure imgf000014_0001
の入った試験管へ植菌し、 3 0 °〇で 3日間、 振とう培養をした。 得られた培養液を 5 0 %グリセロール溶液と 1対 1の割 合で混ぜ、 グリセロールストックとして一 8 0 °〇で凍結保存した。
[0036] After transforming 3. Pombe 8 [¾ (3 0 3 2 strain (Patent Document 1)] with the obtained rattle fragment for V 91 gene deletion, V 9 1 gene was deleted.The obtained V 9 1 deleted strain was named 丨 ◦ 7 86 strain,
Figure imgf000014_0001
The cells were inoculated into a test tube containing and cultured at 30° for 3 days with shaking. The obtained culture solution was mixed with a 50% glycerol solution at a ratio of 1:1 and frozen and stored as a glycerol stock at 180°.
[0037] <9 3 † 2プロモーターの置換> [0037] <Replacement of 9 3 † 2 promoter>
ガラクトース特異的細胞凝集タンパク質 9 3 干 2遺伝子のプロモーターを 置換するために、 置換用のラトウールフラグメントを遺伝子合成にて作製し た。 置換用ラトウールフラグメントは、 組換え対象のゲノムに相同な領域と 置換して組込みたい配列と、 〇 処理が可能な栄養要求性マーカーのリ 「 3 4遺伝子配列からなる。 得られた 9 3 干 2遺伝子プロモーター置換用のラ トウールフラグメントで 3 . ボンべ八
Figure imgf000014_0002
株及び丨 ◦ 7 8 6株をそ れぞれ形質転換した後に 〇八処理をして、 9 3 チ 2プロモーターを置換し た。
In order to replace the promoter of the galactose-specific cell aggregation protein 93 3 gene, a replacement ratwort fragment was prepared by gene synthesis. The replacement rattle fragment consists of the sequence to be replaced by a region homologous to the genome of the recombination target to be integrated, and the gene sequence of the auxotrophic marker that can be processed (34 gene sequence). Two bomber fragments for replacement of two gene promoters.
Figure imgf000014_0002
Each of the strains and the 7 8 6 strains was transformed, and then treated with Eighty-eight to replace the 93 2 promoter.
[0038] 八 [¾〇 0 3 2株を宿主として 9 3 干 2プロモーターを|-|〇1 1 4 1 プロモー 夕一に置換した株を八
Figure imgf000014_0003
した。 丨 ◦ 7 8 6株を宿主として 9 3 干 2プロモーターを 01 4 1 プロモーターに置換した株を八 〇 1 39 株とした。 丨 ◦ 786株を宿主として同様にして、 1 〇 1 プロモーター に置換した株を I ◦ 799株とし、 I 〇 2プロモーターに置換した株を I ◦ 800株とし、 3 9プロモーターに置換した株を I ◦ 798株 と、 それぞれ名付けた。 各株の 93 干 2遺伝子のプロモーターと V 9 1遺 伝子の欠失の有無を表 1 に示す。
[0038] 8 [¾ 0 0 3 2 strain as a host and 9 3 x 2 promoter replaced with |-| 〇 1 1 4 1 promoted strain
Figure imgf000014_0003
did.丨 ◦ 7 8 6 strain as host The strain in which the 3 2 promoter was replaced with the 01 4 1 promoter was designated as 801 39 strains. In the same manner, using the 786 strain as the host, the strain with the 101 promoter replaced was the I 799 strain, the strain with the I 02 promoter was the I 800 strain, and the strain with the 39 promoter was the I strain. ◦ Named each 798 shares. Table 1 shows the presence or absence of deletion of the promoter and V91 gene of the 93 genes in each strain.
[0039] [表 1] [0039] [Table 1]
Figure imgf000015_0002
Figure imgf000015_0002
[0040] これらのプロモーター置換株を、 それぞれ丫巳 3培地 (5 1_) の入った 試験管へ植菌し、 30°◦で 3日間、 振とう培養をした。 得られた培養液をそ れぞれ 50 %グリセロール溶液と 1対 1 (容量比) の割合で混ぜ、 グリセロ —ルストックとして一 80 °〇で凍結保存した。 [0040] Each of these promoter-replaced strains was inoculated into a test tube containing each of the culture medium 3 (51_) and shake-cultured at 30 ° C for 3 days. The obtained culture solutions were mixed with 50% glycerol solution at a ratio of 1:1 (volume ratio), and frozen and stored as glycerol stock at 180°.
[0041] <菌体の培養> [0041] <Culture of bacterial cells>
各菌株のグリセロールストック (1 し) を、 それぞれ丫巳 3培地 (5
Figure imgf000015_0001
1_) の入った試験管へ植菌した。 振とう培養には高崎科学機械社製の振とう 培養器丁 XV— 1 6 [¾_3 を用いた。 試験管を 30°〇で 3日間振とう培養 し、 得られた培養液 3 !_を、 それぞれオキアミ抽出液を添加した丫 口培 地 1 50 1_の入った坂ロフラスコへ植継いだ。
Glycerol stock of each strain (1) was added to each of the 3 culture media (5
Figure imgf000015_0001
1_) was inoculated into a test tube. For the shaking culture, a shaking incubator XV-1 6 [¾_3 manufactured by Takasaki Kagaku Kikai Co., Ltd. was used. The test tube was cultivated with shaking at 30° for 3 days, and the obtained culture broth 3 !_ was transferred to a Sakaro flask containing the Kakuguchi culture medium 150 1 _ containing the krill extract.
[0042] 坂ロフラスコを 30°〇で 3日間振とう培養し、 得られた培養液 (各 1 50 [0042] The Sakaro flask was shake-cultured at 30° for 3 days, and the resulting culture solution (each 150
!_) を、 遠心機 7780 1 1 (<11巳〇丁八社製) にて 4800 X 9、 1 0分間の条件で遠心分離した。 遠心分離後、 上清を捨てて菌体を回収した。!_) with a centrifuge 7780 11 (<11 manufactured by Mitsuhoha Co., Ltd.) 4800 X 9, 1 It was centrifuged under the condition of 0 minutes. After centrifugation, the supernatant was discarded and the bacterial cells were collected.
[0043] <乾燥体の作製> [0043] <Production of dried body>
遠心分離により回収した菌体を一 80 °Cで凍結させ、 凍結乾燥機 L ABC ONCO (朝日ライフサイエンス社製) を用いて凍結乾燥させた。 装置の内 部圧力が 0. 1 33 m b a rを下回るように維持し、 一晚乾燥させた。 得ら れた乾燥体は、 乾燥重量当たり〇. 2〜 0. 5質量パーセントの DH Aを含 んでいた。 The bacterial cells collected by centrifugation were frozen at 80 ° C and freeze-dried using a freeze dryer L ABC ONCO (Asahi Life Science). The internal pressure of the device was kept below 0.1 33 mbar and dried briefly. The resulting dried product contained 0.2 to 0.5 mass% DHA per dry weight.
[0044] <顕微鏡観察> [0044] <Microscopic observation>
得られた酵母乾燥体各 0. 1 gに R〇 (R e v e r s e O s mo s i s ) 水 (1 mL) を添加して懸濁したものを、 サンプルとした。 それらのサン プルを、 光学顕微鏡 CKC-T R 2 (オリンパス社製) を用いて 40倍で観 察し、 デジタルカメラ U-CMAD3 (オリンパス社製) を用いて撮影し、 画像ファイルを得た。 A sample was prepared by adding 0.1 g of each of the obtained yeast dry bodies to R 0 (R ev er s e O s mo s s s) water (1 mL) and suspending them. The samples were observed with a light microscope CKC-T R 2 (manufactured by Olympus Co., Ltd.) at a magnification of 40 and photographed by using a digital camera U-CMAD3 (manufactured by Olympus Co., Ltd.) to obtain an image file.
[0045] <画像解析> [0045] <Image analysis>
得られた顕微鏡写真の画像ファイルを、 N a t i o n a l I n s t i t u t e s o f H e a I t h(N I H)が頒布する画像解析ソフトウェア I m a g e Jにて解析した。 具体的には、 まず、 画像ファイルを Ma k e b i n a r y処理で二値化した。 次に、 S e t— s c a I e処理によって目盛 りを設定し、 最後に A n a l y z e p a r t i c l e s処理によって個々 の粒子 (凝集塊と凝集していない単細胞微生物の両方を含む。 ) それぞれの 面積値データを得た。 各株の画像解析結果を表 2に示す。 表中、 「粒子」 は 、 画像中で 1個の領域として識別された粒子であり、 凝集塊と凝集していな い単細胞微生物のどちらも含む。 すなわち、 「総粒子数」 は、 凝集塊の個数 と凝集していない単細胞微生物の個数の総和である。 また、 「総面積値」 は 、 全粒子の面積値の総和であり、 「 1 200 ³ d ³ 20」 は、 [直径 (円面 積相当径) が 20 Mm以上 1 200 Mm以下である粒子の総面積値] / [全 粒子の総面積値] (%) 、 「 1 00 ³ d ³ 20」 は、 [直径 (円面積相当径 The image file of the obtained micrograph was analyzed by the image analysis software Imag e J distributed by Nat i o n a l In n st i t u t e sof H e a It h (N I H). Specifically, first, the image file was binarized by the Ma ke b i n a r y process. Next, the scale was set by the Set-scaIe treatment, and finally the area value data of each individual particle (including both aggregates and non-aggregated unicellular microorganisms) was obtained by the Analyzeparticles treatment. .. Table 2 shows the image analysis results for each strain. In the table, "particles" are particles identified as one region in the image, and include both aggregates and non-aggregated single-cell microorganisms. In other words, the "total number of particles" is the total number of aggregates and the number of unicellular microorganisms that have not aggregated. Also, "total area value" is the sum of the area values of all particles, and "1 200 ³ d ³ 20" is the value of [particle diameter (diameter equivalent to circular area) of 20 Mm or more and 1 200 Mm or less]. [Total area value] / [Total area value of all particles] (%), "100 ³ d ³ 20" is [diameter (circle area equivalent diameter
) が 20 Mm以上 1 00 Mm以下である粒子の総面積値] / [全粒子の総面 〇 2020/175568 16 卩(:171? 2020 /007801 ) Is more than 20 Mm and less than 100 Mm total area value] / [total surface of all particles] 〇2020/175568 16 卩(: 171-1?2020/007801
積値] (%) 、 「20> は、 [直径 (円面積相当径) が 2〇 未満で ある粒子の総面積値] / [全粒子の総面積値] (%) を示す。 また、 独立し た 2回の試行を行い、 各株の上段が 1回目の試行の結果を、 下段が 2回目の 試行の結果を示す。 Product value] (%), “20>” is [total area value of particles whose diameter (circular area equivalent diameter) is less than 20] / [total area value of all particles] (%). The upper row of each strain shows the results of the first trial, and the lower row shows the results of the second trial.
[0046] [表 2] [0046] [Table 2]
Figure imgf000017_0002
Figure imgf000017_0002
[0047] 表 2に示すように、
Figure imgf000017_0001
株と比較して、 9 1遺伝子を削除し た八[¾〇 1 38株と、 さらに 93 干 2遺伝子のプロモーターを転写強度が強 いプロモーターに置換した I ◦ 786株、 八[¾〇 1 39株、 1 〇 799 株、 丨 ◦ 800株、 及び丨 ◦ 798株では、 直径が 20 未満の小さ な粒子の割合が顕著に減少していた。 これは、 凝集能が向上して凝集が促進 され、 凝集していない酵母が減少したためと推察される。 特に、 丨 ◦ 78 6株、 八[¾〇 1 39株、 1 〇 799株、 1 〇 800株、 及び I ◦ 79 8株を比較すると、 93 チ 2遺伝子のプロモーターの転写強度が強い株ほど 、 直径 1 0〇 超の粒子の割合が多くなっており、 凝集に関与する遺伝子 〇 2020/175568 17 卩(:171? 2020 /007801
[0047] As shown in Table 2,
Figure imgf000017_0001
Compared to strain, 9 1 gene has been deleted viii [¾_〇 1 38 strain and, I ◦ 786 strain further transfer strength promoters 93 NOTE 2 gene was replaced with strong promoters, eight [¾_〇 1 39 Strains, 10 799 shares, 丨 ◦ 800 shares, and 丨 ◦ 798 strains had a significant decrease in the proportion of small particles with a diameter of less than 20. It is speculated that this is because the aggregation ability was improved and the aggregation was promoted, and the number of non-aggregated yeasts decreased. In particular, comparing the ∨ 786 strain, 8 [¾ 〇 1 39 strain, 10 799 strain, 1 800 strain, and I ◦ 798 strain, the strain with stronger transcriptional strength of the 93 chi 2 gene promoter showed that The proportion of particles with diameters over 100 is high, and the genes involved in aggregation are 〇 2020/175 568 17 卩(:171? 2020/007801
のプロモーターの転写強度を調節して凝集塊の大きさを調節できた。 なかで も、
Figure imgf000018_0001
丨 ◦ 7 8 6株、 及び八
Figure imgf000018_0002
魚類の仔稚 魚又は甲殻類の幼体が摂取しやすい大きさ (直径 2 0〜 1 〇〇 ) の凝集 塊の割合が多く、 初期飼料として特に好適であった。 一方で、 丨 ◦ 7 9 9 株、 丨 ◦ 8 0 0株、 及び丨 ◦ 7 9 8株は、 ワムシやアルテミアと同程度 の大きさである直径 1 0 0〜 1 2 0 0 〇1の凝集塊が多く、 ワムシやアルテ ミアの代替飼料として好適であった。
The size of the aggregate could be controlled by controlling the transcription strength of the promoter. Among them,
Figure imgf000018_0001
丨 ◦ 7 8 6 shares, and 8
Figure imgf000018_0002
The large proportion of aggregates of a size (diameter 20 to 100) easily ingested by juvenile fish or juvenile crustaceans was particularly suitable as an initial feed. On the other hand, the 丨 ◦ 799 strain, 丨 ◦ 800 strain, and 丨 ◦ 798 strain are aggregates with a diameter of 100 to 1 200 0.01, which is about the same size as rotifer and artemia. It had many lumps and was suitable as a substitute feed for rotifer and artemia.
[0048] [実施例 2 ] [0048] [Example 2]
3 . セレビジェの凝集に関与する遺伝子を改変し、 凝集能の異なる菌株を 作製した。 3. Genes involved in cerevisiae aggregation were modified to produce strains with different aggregation abilities.
[0049] < !_〇 1 プロモーターの置換> [0049] <Replacement of !_〇 1 promoter>
凝集タンパク質 !_〇 1遺伝子のプロモーターを置換するために、 置換用 のラトウールフラグメントを遺伝子合成にて作製した。 置換用ラトウールフ ラグメントは、 組換え対象のゲノムに相同な領域と置換して組込みたい配列 と、 〇 処理が可能な栄養要求性マーカーの! J
Figure imgf000018_0003
3遺伝子配列とからな る。 得られた !_〇 1遺伝子プロモーター置換用のラトウールフラグメント で 3 . セレビジェ八
Figure imgf000018_0004
1 9 2株を形質転換して、 1_〇 1 プロモーターを 置換した。
In order to replace the promoter of the aggregation protein !_○ 1 gene, the replacement rattle fragment was prepared by gene synthesis. The replacement rattle fragment is a sequence that you want to replace and integrate with a homologous region in the genome to be recombined, and a auxotrophic marker that can be processed. J
Figure imgf000018_0003
It consists of 3 gene sequences. The obtained !_〇1 gene was used as a replacement for the rattle fragment 3.
Figure imgf000018_0004
The 192 strain was transformed to replace the 1_O1 promoter.
[0050] < !_〇 1 0プロモーターの置換> [0050] <!_ 〇 10 Promoter replacement>
凝集タンパク質 1_〇 1 0遺伝子のプロモーターを置換するために、 置換 用のラトウールフラグメントを遺伝子合成にて作製した。 置換用ラトウール フラグメントは、 組換え対象のゲノムに相同な領域と置換して組込みたい配 列と、 II [¾八3遺伝子配列とからなる。 得られた 1_〇 1 0遺伝子プロモー 夕一置換用のラトウールフラグメントで 3 . セレビジェ八[¾〇 1 9 2株を形 質転換して、 !_〇 1 0プロモーターを置換した。 In order to replace the promoter of the aggregate protein 1_〇10 gene, a replacement ratool fragment was prepared by gene synthesis. The replacement rattle fragment is composed of a sequence to be replaced by a region homologous to the genome to be recombined and integrated, and II [¾3 gene sequence. The Latwool fragment for replacement of the obtained 1_○10 gene promoter was used to transform the 3. cerevisiae 8 [¾〇192 strain and replace the !_○10 promoter.
[0051 ] < !_〇 1 1 プロモーターの置換> [0051] <!_〇 1 1 Promoter replacement>
凝集タンパク質 1_〇 1 1遺伝子のプロモーターを置換するために、 置換 用のラトウールフラグメントを遺伝子合成にて作製した。 置換用ラトウール 〇 2020/175568 18 卩(:171? 2020 /007801 In order to replace the promoter of the aggregated protein 1_〇 11 gene, a replacement ratool fragment was prepared by gene synthesis. Replacement Lat Wool 〇 2020/175 568 18 卩 (: 171-1? 2020 /007801
フラグメントは、 組換え対象のゲノムに相同な領域と置換して組込みたい配 列と、 II[¾八3遺伝子配列とからなる。 得られた 1_〇 1 1遺伝子プロモー 夕一置換用のラトウールフラグメントで 3 . セレビジェ八[¾〇 1 9 2株を形 質転換して、 1_〇 1 1 プロモーターを置換した。 The fragment is composed of the sequence to be integrated by substituting the homologous region in the recombination target genome, and II [¾3 gene sequence. The Latwool fragment for replacement of the obtained 1_○ 1 1 gene promoter was used to transform 3 cerevisiae 8 [¾ 0 1 92 strain to replace the 1_○ 1 1 promoter.
[0052] 八 1 9 2株を宿主として !_〇 1 プロモーターをピルビン酸キナーゼ [0052] Pyruvate kinase as the !_〇 1 promoter using the 8192 strain as a host.
P Y K ^遺伝子のプロモーターに置換した株を 丨 ◦ 8 8 7株とした。
Figure imgf000019_0001
〇 1 9 2株を宿主として !_〇 1 プロモーターをホスホグリセリン酸キナー ゼ ◦< 1遺伝子のプロモーターに置換した株を 丨 ◦ 8 9 0株とした。 八 株を宿主として !_〇 1 プロモーターを伸長因子丁巳 1遺伝子 のプロモーターに置換した株を 丨 ◦ 8 9 3株とした。
Figure imgf000019_0002
The strain in which the promoter of the PYK ^ gene had been replaced was designated as Ũ 887 strain.
Figure imgf000019_0001
The strain with the _ 192 strain as the host and the !_ 〇 1 promoter replaced by the promoter of phosphoglycerate kinase ◦ <1 gene was used as the strain 890. Eight strains were used as hosts, and strains in which the !_○1 promoter was replaced with the promoter of the elongation factor Tingami 1 gene were designated as Ō 893 strains.
Figure imgf000019_0002
主として !_〇 1 0プロモーターを 丫< 1遺伝子のプロモーターに置換し た株を I 〇 8 9 1株とした。 八[¾〇 1 9 2株を宿主として !_〇 1 0プロ モーターを
Figure imgf000019_0003
1遺伝子のプロモーターに置換した株を 丨 ◦ 8 8 8株と した。
Figure imgf000019_0004
株を宿主として !_〇 1 0プロモーターを丁巳 1遺伝 子のプロモーターに置換した株を 丨 ◦ 8 9 4株とした。
Figure imgf000019_0005
Strains in which the !_○ 10 promoter was replaced with the promoter of less than 1 gene were mainly set as the I 089 1 strain. Using the eight [¾ 〇 192 strain as a host, the !_ 〇 1 0 promoter
Figure imgf000019_0003
The strain in which the promoter of one gene was replaced was the Ÿ 888 strain.
Figure imgf000019_0004
Using the strain as the host, the strain in which the !_○ 1 0 promoter was replaced with the promoter of the Tingmi 1 gene was used as strain ◦ 894.
Figure imgf000019_0005
宿主として !_〇 1 1 プロモーターを 丫< 1遺伝子のプロモーターに置換 した株を I ◦ 8 8 9株とした。
Figure imgf000019_0006
を宿主として !_〇 1 1 プ ロモーターを
Figure imgf000019_0007
1遺伝子のプロモーターに置換した株を 丨 ◦ 8 9 2株 とした。
Figure imgf000019_0008
株を宿主として !_〇 1 1 プロモーターを丁巳 1遺 伝子のプロモーターに置換した株を 丨 ◦ 8 9 5株とした。 各株の !_〇遺 伝子のプロモーターを表 3に示す。
As the host, the strain in which the !_○ 11 promoter was replaced with the promoter of <1 gene was designated as I ◦ 889 strain.
Figure imgf000019_0006
As the host!_〇 1 1 Promoter
Figure imgf000019_0007
The strain in which the promoter of one gene had been replaced was used as the Ō 829 strain.
Figure imgf000019_0008
Using the strain as a host, the strain in which the !_○ 11 promoter was replaced with the promoter of the Tongmi 1 gene was used as the strain ◦ 895. Table 3 shows the promoters of !_○ genes of each strain.
[0053] [表 3] [0053] [Table 3]
Figure imgf000020_0002
Figure imgf000020_0002
[0054] これらのプロモーター置換株を、 それぞれ丫巳 3培地 (5 1_) の入った 試験管へ植菌し、 30°◦で 3日間、 振とう培養をした。 得られた培養液をそ れぞれ 50 %グリセロール溶液と 1対 1 (容量比) の割合で混ぜ、 グリセロ —ルストックとして一 80 °〇で凍結保存した。 [0054] Each of these promoter-replaced strains was inoculated into a test tube containing each of the culture medium 3 (51_) and shake-cultured at 30 ° C for 3 days. The obtained culture solutions were mixed with 50% glycerol solution at a ratio of 1:1 (volume ratio), and frozen and stored as glycerol stock at 180°.
[0055] <菌体の培養> [Cultivation of bacterial cells]
各菌株のグリセロールストック (1 し) を、 それぞれ丫巳 3培地 (5
Figure imgf000020_0001
1_) の入った試験管へ植菌した。 実施例 1 と同様にして、 該試験管を 30°〇 で 3日間振とう培養し、 得られた培養液 3 !_を、 それぞれオキアミ抽出液 を添加した丫 口培地 1 50 1_の入った坂ロフラスコへ植継いだ。 坂ロフ ラスコを 30°〇で 3日間振とう培養し、 得られた培養液 (各 1 50 !_) を 、 実施例 1 と同様にして遠心分離した後、 上清を捨てて菌体を回収した。
Glycerol stock of each strain (1) was added to each of the 3 culture media (5
Figure imgf000020_0001
1_) was inoculated into a test tube. In the same manner as in Example 1, the test tube was shake-cultured at 30 ° 〇 for 3 days, and the obtained culture broth 3 !_ was added to the mouth culture medium 150 1 _ supplemented with the krill extract. I transferred to Sakaro Flask. Saka Lofrasco was shake-cultured at 30° for 3 days, and the obtained culture solution (150!_ each) was centrifuged in the same manner as in Example 1 and the supernatant was discarded to recover the bacterial cells. did.
[0056] <乾燥体の作製> <Preparation of dried body>
遠心分離により回収した菌体を一 80°〇で凍結させ、 実施例 1 と同様にし て凍結乾燥させ、 乾燥体を得た。 得られた乾燥体は、 乾燥重量当たり〇. 2 〜 0. 5質量パーセントの口 !~1八を含んでいた。 〇 2020/175568 20 卩(:171? 2020 /007801 The bacterial cells collected by centrifugation were frozen at 80°C and freeze-dried in the same manner as in Example 1 to obtain a dried product. The resulting dried product contained 0.2 to 0.5 mass% of mouth ! ~ 18 per dry weight. 〇 2020/175 568 20 units (: 171-1?2020/007801
[0057] <顕微鏡観察> [0057] <Microscopic observation>
得られた酵母乾燥体各 0. 1 9に 〇水 ( 1 !_) を添加して懸濁したも のを、 サンプルとした。 それらのサンプルを、 光学顕微鏡〇<〇一丁 [¾ 2 ( オリンパス社製) を用いて 40倍で観察し、 デジタルカメラ 11-〇1\/1八03 (オリンパス社製) を用いて撮影し、 画像ファイルを得た。 Each of the obtained yeast dry bodies (0.19) was suspended in water (1 !_). These samples were observed at 40x magnification using an optical microscope 〇<○1Cho [¾ 2 (manufactured by Olympus) and photographed using a digital camera 11-〇1\/1803 (manufactured by Olympus). , Got the image file.
[0058] <画像解析> [0058] <Image analysis>
得られた顕微鏡写真の画像ファイルを、 画像解析ソフトウェア 1 01396 」にて、 実施例 1 と同様にして解析し、 個々の粒子 (凝集塊と凝集していな い単細胞微生物の両方を含む。 ) それぞれの面積値データを得た。 各株の画 像解析結果を表 4に示す。 表中、 「粒子」 、 「総粒子数」 、 「総面積値」 、 「1 200 ³ ³20」 、 「1 00 ³ ³20」 、 及び 「20> 」 は、 表 2と同じものを意味する。 また、 独立した 2回の試行を行い、 各株の上段が 1回目の試行の結果を、 下段が 2回目の試行の結果を示す。 The image file of the obtained micrograph was analyzed by image analysis software 1 01396" in the same manner as in Example 1 to obtain individual particles (including both aggregates and non-aggregated single cell microorganisms). Area value data was obtained. Table 4 shows the image analysis results for each strain. In the table, "particle", "total number of particles", "total area value", "1 200 ³ ³ 20", "100 ³ ³ 20", and "20>" mean the same as in Table 2. In addition, two independent trials were performed, the upper row of each strain shows the results of the first trial, and the lower row shows the results of the second trial.
[0059] [表 4] [0059] [Table 4]
Figure imgf000021_0002
Figure imgf000021_0002
[0060] 表 4に示すように、
Figure imgf000021_0001
と比較して、 1_〇 1遺伝子、 !_〇
[0060] As shown in Table 4,
Figure imgf000021_0001
Compared with 1_〇 1 gene, !_〇
1 0遺伝子又は 1_〇 1 1遺伝子のプロモーターを転写強度が強いプロモー 20/175568 21 卩(:171? 2020 /007801 Promote the promoter of 10 gene or 1_〇 1 1 gene with strong transcription. 20/175568 21 卩 (: 171? 2020 /007801
夕一に置換した丨 ◦ 888株、 丨 〇 889株、 丨 〇 893株、 及び 1 ◦ 89 1株では、 直径が 20 以上の大きな粒子の割合が顕著に増加し ていた。 これは、 凝集能が向上して凝集が促進され、 凝集していない酵母が 減少したためと推察される。 特に、 丨 〇 889株や丨 〇 89 1株では、 直径 1 00 超の粒子の割合が多くなっており、 凝集に関与する遺伝子の プロモーターの転写強度を調節して凝集塊の大きさを調節できることが確認 された。 The ratio of large particles with a diameter of 20 or more increased significantly in the 丨 888 strains, 丨 〇 889 strains, 丨 〇 893 strains, and 1 ◦ 891 strains that were replaced by Yuichi. It is speculated that this is because the aggregating ability was improved and the agglutination was promoted, and the number of non-aggregated yeasts decreased. In particular, in the 08989 and 0891 strains, the proportion of particles having a diameter of more than 100 is high, and the size of the aggregate can be regulated by controlling the transcription strength of the promoter of the gene involved in aggregation. Was confirmed.
なお、 201 9年 02月 28日に出願された日本特許出願 201 9— 03 5860号の明細書、 特許請求の範囲及び要約書の全内容をここに引用し、 本発明の明細書の開示として、 取り入れるものである。 The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2019-035860 filed on Feb. 28, 2010 are cited herein as a disclosure of the specification of the present invention. , To be incorporated.

Claims

\¥0 2020/175568 22 卩(:17 2020 /007801 請求の範囲 \¥0 2020/175568 22 卩(: 17 2020/007801 Claims
[請求項 1 ] 酵母、 乳酸菌、 及び微細藻類から選ばれる単細胞微生物の凝集塊と [Claim 1] Yeast, lactic acid bacteria, and aggregates of unicellular microorganisms selected from microalgae
、 凝集していない前記単細胞微生物と、 を含む組成物であって、 前記組成物の光学顕微鏡画像における前記単細胞微生物の総面積に 対する、 直径が 2 0〜 1 2 0 0 の範囲内にある凝集塊の総面積の 割合が、 2 5 %以上であることを特徴とする、 飼料用組成物。 A composition containing the non-aggregated unicellular microorganisms, wherein the total area of the unicellular microorganisms in an optical microscope image of the composition, the aggregate having a diameter within a range of 20 to 120 A feed composition, wherein the ratio of the total area of the lumps is 25% or more.
[請求項 2] 前記直径が 2 0〜 1 0 0 の範囲内にある凝集塊の総面積の割合 が、 3 0 %以上である、 請求項 1 に記載の飼料用組成物。 [Claim 2] The feed composition according to claim 1, wherein the ratio of the total area of the aggregates having the diameter within the range of 20 to 100 is 30% or more.
[請求項 3] 前記単細胞微生物が酵母である、 請求項 1又は 2に記載の飼料用組 成物。 [Claim 3] The feed composition according to claim 1 or 2, wherein the unicellular microorganism is yeast.
[請求項 4] 前記単細胞微生物が、 凝集に関与する遺伝子が改変された形質転換 体である、 請求項 1〜 3のいずれか一項に記載の飼料用組成物。 [Claim 4] The feed composition according to any one of claims 1 to 3, wherein the unicellular microorganism is a transformant in which a gene involved in aggregation is modified.
[請求項 5] 前記凝集に関与する遺伝子が凝集促進に関与する遺伝子であり、 当 該遺伝子の改変が、 内在性の当該遺伝子が有するプロモーターよりも 転写強度が強いプロモーターへの置換である、 請求項 4に記載の飼料 用組成物。 [Claim 5] The gene involved in aggregation is a gene involved in aggregation promotion, and the modification of the gene is replacement with a promoter having a stronger transcriptional strength than the promoter of the endogenous gene. Item 4. The feed composition according to item 4.
[請求項 6] 前記形質転換体が酵母の形質転換体である、 請求項 4又は 5に記載 の飼料用組成物。 6. The feed composition according to claim 4 or 5, wherein the transformant is a yeast transformant.
[請求項 7] 前記形質転換体がシゾサツカロミセス ·ボンベの形質転換体であり [Claim 7] The transformant is a transformant of Schizosaccharomyces cylinder.
、 前記内在性の凝集促進に関与する遺伝子が 9 3 チ 2遺伝子である、 請求項 5に記載の飼料用組成物。 The feed composition according to claim 5, wherein the gene involved in the promotion of endogenous aggregation is the 93 2 gene.
[請求項 8] 前記形質転換体がサツカロミセス ·セレビジェの形質転換体であり [Claim 8] The transformant is a Satsucaromyces cerevisiae transformant
、 前記内在性の凝集促進に関与する遺伝子が !_ 0遺伝子である、 請 求項 5に記載の飼料用組成物。 The feed composition according to claim 5, wherein the gene involved in promoting endogenous aggregation is the !_ 0 gene.
[請求項 9] 前記凝集に関与する遺伝子が凝集抑制に関与する遺伝子であり、 当 該遺伝子の改変が、 内在性の当該遺伝子の欠失である、 又は、 内在性 の当該遺伝子が有するプロモーターよりも転写強度が弱いプロモータ 一への置換である、 請求項 4に記載の飼料用組成物。 〇 2020/175568 23 卩(:171? 2020 /007801 [Claim 9] The gene involved in aggregation is a gene involved in aggregation inhibition, and the modification of the gene is a deletion of the endogenous gene, or a promoter contained in the endogenous gene. The composition for feed according to claim 4, which is also a substitution of a promoter having a low transcription strength. 〇 2020/175 568 23 卩 (:171? 2020 /007801
[請求項 10] 前記形質転換体がシゾサッカロミセス ·ボンベの形質転換体であり 、 前記内在性の凝集抑制に関与する遺伝子が V 9 1遺伝子である、 請求項 9に記載の飼料用組成物。 10. The feed composition according to claim 9, wherein the transformant is a Schizosaccharomyces cylinder cylinder transformant, and the gene involved in the suppression of endogenous aggregation is the V 91 gene. ..
[請求項 1 1 ] ドコサへキサエン酸又はエイコサペンタエン酸を、 組成物の乾燥重 量当たり〇. 1質量%以上含む、 請求項 1〜 1 0のいずれか一項に記 載の飼料用組成物。 [Claim 11] The feed composition according to any one of claims 1 to 10, which contains docosahexaenoic acid or eicosapentaenoic acid in an amount of 0.1% by mass or more based on the dry weight of the composition. ..
[請求項 12] 魚類の仔稚魚又は甲殻類の幼体に、 請求項 1〜 1 1のいずれか一項 に記載の飼料用組成物を餌として与えて飼育する、 魚類又は甲殻類の 飼育方法。 [Claim 12] A method for breeding fish or crustaceans, which comprises feeding the composition for feed according to any one of claims 1 to 11 as feed to the larvae of fish or juveniles of crustaceans.
[請求項 13] 酵母、 乳酸菌及び微細藻類から選ばれる単細胞微生物の凝集塊と凝 集していない前記単細胞微生物とを含む微生物集合体であって、 前記微生物集合体の光学顕微鏡画像における単細胞微生物の総面積 に対する、 直径が 2 0〜 1 2 0 0 の範囲内にある凝集塊の総面積 の割合が、 2 5 %以上である、 前記微生物集合体の、 飼料への使用。 [Claim 13] A microbial aggregate comprising an aggregate of single-cell microorganisms selected from yeast, lactic acid bacteria, and microalgae and the single-cell microorganisms that are not aggregated, wherein the single-cell microorganisms in an optical microscope image of the microorganism aggregate are Use of the microbial aggregate in feed, wherein the ratio of the total area of aggregates having a diameter within the range of 20 to 120 to the total area is 25% or more.
[請求項 14] 単細胞微生物の凝集に関与する遺伝子を、 内在性の前記遺伝子が有 するプロモーターとは転写強度が異なるプロモーターへ置換する、 前 記遺伝子を欠失させる、 又は外来の前記遺伝子をゲノムに組込むこと により、 単細胞微生物の凝集塊の大きさを所望の範囲内に調整する、 単細胞微生物の凝集塊の調製方法。 [Claim 14] A gene involved in the aggregation of a single-cell microorganism is replaced with a promoter having a transcriptional strength different from that of a promoter of the endogenous gene, the gene is deleted, or the foreign gene is replaced with a genome. A method for preparing an aggregate of unicellular microorganisms, which comprises adjusting the size of an aggregate of unicellular microorganisms within a desired range by incorporating the above into a.
[請求項 15] 魚類の仔稚魚又は甲殻類の幼体に、 請求項 1 4に記載の単細胞微生 物の凝集塊の調製方法により調製された凝集塊を餌として与えて飼育 する、 魚類又は甲殻類の飼育方法。 [Claim 15] A fish or shellfish, which is bred by feeding to a fish larva or a crustacean juvenile the agglutinate prepared by the method for preparing an aggregate of single-cell microbes according to claim 14. Breeding method.
PCT/JP2020/007801 2019-02-28 2020-02-26 Composition for feed WO2020175568A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021502330A JP7480771B2 (en) 2019-02-28 2020-02-26 Feed composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-035860 2019-02-28
JP2019035860 2019-02-28

Publications (1)

Publication Number Publication Date
WO2020175568A1 true WO2020175568A1 (en) 2020-09-03

Family

ID=72238623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007801 WO2020175568A1 (en) 2019-02-28 2020-02-26 Composition for feed

Country Status (2)

Country Link
JP (1) JP7480771B2 (en)
WO (1) WO2020175568A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007656A1 (en) * 2021-07-29 2023-02-02 日本電信電話株式会社 Method for determining feed for herbivorous fish/shellfish, method for feeding herbivorous fish/shellfish, and method for producing feed

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106867A (en) * 1998-10-01 2000-04-18 Asahi Glass Co Ltd Fission yeast having nonsexual flocculency
JP2001512029A (en) * 1997-08-01 2001-08-21 マーテック・バイオサイエンスィズ・コーポレーション DHA-containing nutritional compositions and methods for their production
WO2007063919A1 (en) * 2005-11-29 2007-06-07 Asahi Glass Company, Limited Method of modifying chromosome
WO2014030644A1 (en) * 2012-08-20 2014-02-27 旭硝子株式会社 Transformant of schizosaccharomyces pombe mutant, and cloning vector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001512029A (en) * 1997-08-01 2001-08-21 マーテック・バイオサイエンスィズ・コーポレーション DHA-containing nutritional compositions and methods for their production
JP2000106867A (en) * 1998-10-01 2000-04-18 Asahi Glass Co Ltd Fission yeast having nonsexual flocculency
WO2007063919A1 (en) * 2005-11-29 2007-06-07 Asahi Glass Company, Limited Method of modifying chromosome
WO2014030644A1 (en) * 2012-08-20 2014-02-27 旭硝子株式会社 Transformant of schizosaccharomyces pombe mutant, and cloning vector

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAUER W. ET AL.: "Substitution of fishmeal with microbial floc meal and soy protein concentrate in diets for the pacific white shrimp Litopenaeus vannamei", AQUACULTURE, vol. 342, no. 343, 2012, pages 112 - 116, XP055735136 *
GIGA-HAMA Y. ET AL.: "Schizosaccharomyces pombe minimum genome factory, Biotechnol", APPL. BIOCHEM, vol. 46, 2007, pages 147 - 155, XP027490309 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007656A1 (en) * 2021-07-29 2023-02-02 日本電信電話株式会社 Method for determining feed for herbivorous fish/shellfish, method for feeding herbivorous fish/shellfish, and method for producing feed

Also Published As

Publication number Publication date
JPWO2020175568A1 (en) 2020-09-03
JP7480771B2 (en) 2024-05-10

Similar Documents

Publication Publication Date Title
Kaparapu Application of microalgae in aquaculture
WO2019107385A1 (en) Novel microalgae and use for same
JP2017077186A (en) Tolerance improvement method of aquatic organism to abnormal proliferation of plankton
RU2689701C1 (en) Quail growing method
US20220267716A1 (en) Methods and compositions for culturing hemoglobin-dependent bacteria
RU2689730C1 (en) Method for quail feeding
JP2023552342A (en) Novel Schizochytrium strain and method for producing polyunsaturated fatty acids using it
JP2009159955A (en) Probiotics lactic acid bacterium separated from inside of prawn intestine
JP6888035B2 (en) Production of omega-3 fatty acids from phytium species
WO2020175568A1 (en) Composition for feed
KR101612421B1 (en) Novel Yeast Overproducing Glutathione and Method for Glutathione Overproduction by Using it
TWI715088B (en) Novel microalgal strains of thraustochytrium genus, and producing polyunsaturated fatty acids using the same
JP2004298080A (en) Feed for fish and shellfish, and method for producing the same
KR20180137494A (en) How to adjust the composition ratio of intestinal flora, medicines, food, and intestinal flora
JP7066593B2 (en) Food and drink, feed, or feed containing algae variants
KR101323873B1 (en) Novel Nannochloropsis sp. capable high growth and use thereof
KR101323887B1 (en) Novel Nannochloris sp. Capable High Temperature Growth and Use Thereof
JP4990606B2 (en) Lactic acid bacteria-containing feed
KR20140132226A (en) Novel Phaeodactylum tricornutum derived from fresh water and use thereof
Poulose et al. OPTIMIZATIONOF CULTURE CONDITIONS FOR THE PRODUCTION OF SINGLE CELL PROTEIN FROM MARINE YEAST CANDIDA MCCF 101 AS FEED SUPPLEMENT IN AQUACULTURE
RU2633067C1 (en) Method for increase of adhesive activity of lactobacilles used in production of probiotics and fermented milk
Ladygina et al. Cultivation of the diatom algae Chaetoceros calcitrans f. pumilus (Paulsen) Takano, 1968 as food for giant oyster larvae Crassostrea gigas (Thunberg)
RU2661116C1 (en) Strains of single-cell microalgae eustigmatos magnus - product of eicosapentaenoic acid
KHUDYI et al. Effect of algal monocultures and combined algal drug on the survival of Artemia nauplii
TW202319534A (en) Novel schizochytrium sp. strain easy to extract oil in cell and method for producing oil containing omega-3 using thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502330

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762602

Country of ref document: EP

Kind code of ref document: A1