WO2020175518A1 - Liquid crystal display element and method for manufacturing same - Google Patents

Liquid crystal display element and method for manufacturing same Download PDF

Info

Publication number
WO2020175518A1
WO2020175518A1 PCT/JP2020/007619 JP2020007619W WO2020175518A1 WO 2020175518 A1 WO2020175518 A1 WO 2020175518A1 JP 2020007619 W JP2020007619 W JP 2020007619W WO 2020175518 A1 WO2020175518 A1 WO 2020175518A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
display element
formula
tetracarboxylic acid
Prior art date
Application number
PCT/JP2020/007619
Other languages
French (fr)
Japanese (ja)
Inventor
真文 高橋
功一朗 別府
雅章 片山
加名子 鈴木
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2021502300A priority Critical patent/JP7494836B2/en
Priority to CN202080007789.7A priority patent/CN113287063A/en
Priority to KR1020217019017A priority patent/KR20210130703A/en
Publication of WO2020175518A1 publication Critical patent/WO2020175518A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent

Definitions

  • the present invention relates to a transmission/scattering type liquid crystal display element that controls a transparent state and a scattering state by applying a voltage and a method for manufacturing the same.
  • a TN (Twisted Nematic) mode liquid crystal display device has been put into practical use. In this mode, it is necessary to use a polarizing plate in order to switch the light by utilizing the optical rotatory property of the liquid crystal, but the use efficiency of the light becomes low when the polarizing plate is used.
  • As an element there is an element that switches between a transparent state (also called a transparent state) and a scattering state of liquid crystal.
  • PD LC Polymer Dispersed Liquid Crystal
  • PN LC Polymer Network Liquid Crystal
  • liquid crystal display elements a liquid crystal composition containing a polymerizable compound that is polymerized by ultraviolet rays is placed between a pair of substrates equipped with electrodes, and the liquid crystal composition is cured by irradiation with ultraviolet rays. And a cured product of a polymerizable compound (for example, a polymer network) are formed.
  • a polymerizable compound for example, a polymer network
  • Patent Document 1 Japanese Patent No. 3552328.
  • Patent Document 2 Japanese Patent No. 4630954.
  • the polymerizable compound in the liquid crystal composition is cured, so an ultraviolet irradiation step is required.
  • an object of the present invention is to provide a transmission/scattering type liquid crystal display element and a method for producing the same, which does not use a polymerizable compound in a liquid crystal composition and does not require an ultraviolet irradiation step.
  • the present inventor has found an invention having the following gist.
  • liquid crystal layer containing liquid crystal between a pair of substrates equipped with electrodes, and having a liquid crystal alignment film exhibiting liquid crystallinity on at least one of the substrates, transparent state and scattering state by voltage application Liquid crystal display element of transmission/scattering type for controlling light.
  • a transmission-scattering type liquid crystal display element that does not use a polymerizable compound in a liquid crystal composition and does not require an ultraviolet ray irradiation step.
  • the liquid crystal display device of the present invention can provide a liquid crystal display intended for display, a dimming window or an optical shutter device for controlling blocking and transmission of light.
  • FIG. 1 is a polarizing microscope image (the film shows liquid crystallinity) of the film of the glass substrate with the liquid crystal alignment film obtained in Example 1.
  • the present application provides a liquid crystal display element, particularly a transmission/scattering type liquid crystal display element that controls a transparent state and a scattering state by applying a voltage.
  • a method for manufacturing the liquid crystal display device is provided.
  • the present application has a liquid crystal layer containing liquid crystal between a pair of substrates provided with electrodes, and a liquid crystal alignment film exhibiting liquid crystallinity on at least one of the substrates.
  • a scattering transmission type liquid crystal display device for controlling
  • the liquid crystal display element of the present invention has a pair of substrates provided with electrodes.
  • the substrate is not particularly limited as long as it can have an electrode, but a substrate having high transparency is preferably used.
  • a substrate having high transparency is preferably used as the substrate.
  • a plastic substrate such as a polyamide substrate, a polyimide substrate, a polyethylene sulfone substrate, an acrylic substrate, a polycarbonate substrate, a PET (polyethylene terephthalate) substrate, and the like.
  • Those films can be used, but are not limited to these.
  • a plastic substrate or film is preferable.
  • the electrode is not particularly limited, but from the viewpoint of process simplification, a liquid crystal driving ⁇ T electrode, ⁇ Z 0 (Indium Zinc Oxide) electrode, ⁇ GZ ⁇ (Indiumum Gallium Zinc Oxide) It is preferable to use a substrate on which electrodes, organic conductive films, etc. are formed.
  • a substrate such as a silicon wafer or a metal such as aluminum or a substrate on which a dielectric multilayer film is formed can be used.
  • the pair of substrates are arranged in parallel at a predetermined distance, and a liquid crystal layer containing liquid crystal is arranged between the pair of substrates.
  • the electrode gap (also referred to as a gap) of the liquid crystal display element is preferably 2.0 to 50 Mm. It is more preferably 2.0 to 30 Mm, and particularly preferably 2.0 to 20 m.
  • At least one of the pair of substrates is a liquid crystal layer of the substrate.
  • a liquid crystal alignment film that exhibits liquid crystallinity is arranged on the side where is arranged.
  • liquid crystal contained in the liquid crystal layer nematic liquid crystal, smectic liquid crystal or cholesteric liquid crystal can be used.
  • those having a positive dielectric anisotropy are preferable in the present invention.
  • a liquid crystal having a positive dielectric anisotropy an element that absorbs (scatters) when no voltage is applied and becomes transparent when a voltage is applied can be obtained.
  • the liquid crystal display device is used for windows of automobiles, it is preferable that the clearing point (also referred to as T n i) is high.
  • the liquid crystal preferably has a large An, preferably an An of 0.20 or more, more preferably 0.22 or more, and particularly preferably 0.26 or more.
  • liquid crystal two or more kinds of liquid crystals can be mixed and used according to the physical property values of As and ⁇ n T n i.
  • liquid crystal display element As an active element such as a TFT (Thin Film Transistor), it is required that the liquid crystal has a high electric resistance and a high voltage holding ratio (also referred to as VHR). Therefore, as the liquid crystal, it is preferable to use a fluorine-based or chlorine-based liquid crystal which has a high electric resistance and whose V H R does not decrease due to active energy rays such as ultraviolet rays.
  • liquid crystal display element can be made into a guest-host type element by dissolving a dichroic dye in the liquid crystal layer.
  • the liquid crystal alignment film exhibiting liquid crystallinity is arranged on at least one of the pair of substrates, particularly on the side of the substrate where the liquid crystal layer is arranged.
  • the liquid crystal alignment film has a liquid crystallinity in the range of 80 to 350 ° C, preferably 100 to 300°C, more preferably 120 to 250°C. ⁇ 2020/175518 ⁇ (:171?2020/007619
  • the liquid crystal alignment film preferably contains a liquid crystalline polymer.
  • the liquid crystalline polymer is not particularly limited, but is not limited to acrylic polymer, methacrylic polymer, novolac resin, epoxy resin, polyhydroxystyrene, polyimide precursor, polyimide, polyamide, polyester, polyether, polyurethane, poly(ester). At least one polymer selected from the group consisting of amide), poly(ester-imide), poly(ester-anhydride), poly(ester-carbonate), cellulose and polysiloxane. More preferred is a polyimido precursor or polyimido (collectively referred to as polyimido-based polymer).
  • the polyimide precursor has a structure of the following formula [8].
  • 2 represents a divalent organic group.
  • Each eight 1 and 2 is a hydrogen atom or an alkyl group having a carbon number of 1-8.
  • 8 and 3 each represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acetyl group.
  • the door indicates a positive integer.
  • the diamine component is a diamine having two primary or secondary amino groups in the molecule
  • the tetracarboxylic acid component is a tetracarboxylic oxide compound or a tetracarboxylic dianhydride.
  • a tetracarboxylic acid dihalide compound, a tetracarboxylic acid dialkyl ester compound or a tetracarboxylic acid dialkyl ester dihalide compound is a tetracarboxylic oxide compound or a tetracarboxylic dianhydride.
  • a polyamic acid having a structural formula of a repeating unit of the formula [or] or a polyimide obtained by imidizing the polyamic acid is preferable. ⁇ 2020/175518 6 ⁇ (: 171-1? 2020/007619
  • the polymer of the formula [mouth] obtained above is added to the polymer of the formula [8], which is 1 or 2 having 1 to 8 carbon atoms, and 3 and eight 4 alkyl group or an acetyl group with carbon number from 1 to 5 can also be introduced.
  • the liquid crystalline polymer preferably has at least one partial structure (also referred to as a specific partial structure ()) selected from the following formulas [8 1] to [8 4], and preferably the formula [8] 4] is preferable.
  • the liquid crystalline polymer is at least one selected from the following formulas [Mis 1] to [Mis 7]. ⁇ 2020/175518 7 ⁇ (: 171-1? 2020/007619
  • Also has one kind of partial structure also referred to as a specific partial structure (Mi)
  • a specific partial structure Mi
  • each independently represents an alkyl group having 1 to 3 carbon atoms, preferably 1 to 2 carbon atoms.
  • n 1 to n 4 each independently represent an integer of 0 to 2, preferably 0 or 1. Hydrogen on the aromatic ring, _ ⁇ _1 to 1 3, ten 3, over one Rei_1 ⁇ 1, one thousand 1 to 1, one 1 ⁇ 1_Rei 2, one-! - snake hundred, Or — (600) 2 may be substituted (where ___ is ⁇ “1:-butoxycarbonyl group”).
  • the liquid crystalline polymer is selected from at least one partial structure selected from the following formulas [8 1] to [8 4] and the following formulas [M 1] to [M 7] It is preferably a polyimide-based polymer having at least one kind of partial structure.
  • a diamine having a specific partial structure (8) (also referred to as a specific diamine (8).) ⁇ 2020/175 518 8 ⁇ (:171? 2020 /007619
  • a tetracarboxylic acid having a specific partial structure (Minami) (also referred to as a specific tetracarboxylic acid (B)), a diamine of the following formula [18] and a tetracarboxylic acid of the formula [2] are used, respectively. It is preferable.
  • X 1 and X 3 are each independently a single bond, 101, -001, 100001, 10001, 1CNH- , 1 ⁇ 1 1 ⁇ 1 x 0 1 or 1 !-indicates at least one selected from. Among them, a single bond, 101, 1001, 100001 or 100001 is preferable.
  • X 2 represents at least one selected from the above formula [8 1] to formula [8 4]. Above all, the formula [1] or the formula [4] is preferable from the viewpoint of the optical characteristics of the liquid crystal display device. Also, formula [8 1] to formula [8 4]
  • each of 1 and 5 independently represents at least one selected from an aromatic ring, an alicyclic group and a heterocyclic group. Of these, an aromatic ring or an alicyclic group is preferable.
  • 2 and 4 are each independently a single bond, 101, 1001, -0000 -, 1001, ⁇ one or one Indicates at least one selected from Of these, a single bond, 101, 1001, 100001 or —0.000— is preferable.
  • Reference numeral 3 represents at least one selected from the above formulas [Mis 1] to [Mis 7]. Among them, from the viewpoint of the optical characteristics of the liquid crystal display device, the formula [Min 1], the formula [Min 4] or the formula [Min 7] is preferable. Further, the details and preferred values of 3 to 30 and n 1 to 114 in the formulas [Mis 1] to [Mis 7] are as described above.
  • n 5 and n 6 each independently represent an integer of 0 or 1.
  • n 5 and n 6 are integers of 0, the structures of the formulas [Mis 1] to [Mis 7] are assumed to be directly bonded to the bond of the tetracarboxylic acid.
  • the use ratios of the specific diamine (8) and the specific tetracarboxylic acid (Mitsumi) are preferably as follows. Specifically, the use ratio of the specific diamine (8) is preferably 30 to 100 mol%, and preferably 50 to 100 mol% with respect to the entire diamine component from the viewpoint of the optical characteristics of the liquid crystal display element. More preferable. From the viewpoint of the optical characteristics of the liquid crystal display element, the use ratio of the specific tetracarboxylic acid (Mitsumi) is preferably 30 to 100 mol %, and preferably 50 to 100 mol% based on the whole tetracarboxylic acid component. % Is more preferable. Further, the specific diamine (8) and the specific tetracarbonic acid (Mitsumi) can be used either individually or in combination of two or more, depending on their respective characteristics.
  • X 4 represents at least one selected from the formulas [1] to [7].
  • the formula [Mis 1], the formula [Mis 4] or the formula [Mis 7] is preferable.
  • 3 to 3° and 1 to in expression [Mis 1] to [Mis 7] The details and preferences of 4 are as described above.
  • each of 6 and 1 independently represents at least one selected from an aromatic ring, an alicyclic group and a heterocyclic group. Of these, an aromatic ring or an alicyclic group is preferable.
  • 7 and 9 are each independently a single bond, 101, 1001, -0000-, 10011, ⁇ one or one Few to choose from ⁇ 2020/175 518 10 ⁇ (:171? 2020 /007619
  • Reference numeral 8 represents at least one selected from the formula [8 1] to the formula [8 4]. Among them, the formula [84] is preferable from the viewpoint of the optical characteristics of the liquid crystal display device. Also,
  • Each of 7 and n 8 independently represents an integer of 0 or 1.
  • the use ratio of each of the specific diamine (Mitsumi) and the specific tetracarboxylic acid (8) is preferably as follows. Specifically, from the viewpoint of the optical characteristics of the liquid crystal display element, the usage ratio of the specific diamine (Mitsumi) is preferably 30 to 100 mol% with respect to the entire diamine component, and 50 to 100 mol% is preferable. More preferable. From the viewpoint of the optical characteristics of the liquid crystal display element, the use ratio of the specific tetratracarboxylic acid () is preferably 30 to 100 mol %, and preferably 50 to 100 mol% with respect to the whole tetracarboxylic acid component. Is more preferable. Further, the specific diamine (Mitsumi) and the specific tetracarbonic acid () can be used either individually or in combination of two or more, depending on their respective characteristics.
  • a diamine other than the specific diamine (8) and the specific diamine (Mitsumi) can be used as long as the effects of the present invention are not impaired.
  • the formula described on pages 34 to 38 of International Publication Gazette ⁇ / ⁇ 2 0 1 6/0 7 6 4 1 2 (2 0 16.5.19 publication) [3 3-1] to diamine compounds of the formula [3 3-5] other diamine compounds described on pages 39 to 42 of the publication, and on pages 42 to 44 of the publication. Examples include diamine compounds represented by the formulas [0 8 1] to [0 8 15].
  • Other Jami ⁇ 2020/175518 11 ⁇ (: 171-1? 2020/007619
  • the specific tetracarboxylic acid () and the specific tetracarboxylic acid (Mi) are the tetracarboxylic dianhydrides of the above formulas [2 8] and [2] and their tetracarboxylic acid derivatives.
  • a tetracarboxylic acid dihalide compound, a tetracarboxylic acid dialkyl ester compound or a tetracarboxylic acid dialkyl ester dihalide compound can be used.
  • tetracarboxylic acid component other tetracarboxylic acid other than the specific tetracarboxylic acid () and the specific tetracarboxylic acid (Mitsumi) can be used.
  • examples of other tetracarboxylic acids include the following tetracarboxylic acid compounds, tetracarboxylic acid dianhydrides, dicarboxylic acid dihalide compounds, dicarboxylic acid dialkyl ester compounds and dialkyl ester dihalide compounds.
  • the method for synthesizing the polyimide polymer is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. Specifically, the method described on pages 46 to 50 of WO 201 6/0764 1 2 (Published on May 6, 2010) can be mentioned.
  • the reaction between the diamine component and the tetracarboxylic acid component is usually performed in a solvent containing the diamine component and the tetracarboxylic acid component.
  • the solvent used at that time is not particularly limited as long as it can dissolve the formed polyimide precursor. Specifically, 1 ⁇ !-methyl-2-pyrrolidone, 1 ⁇ 1-ethyl-2-pyrrolidone, arbutyrolactone, 1 ⁇ 1, 1 ⁇ 1_dimethylformamide, 1 ⁇ 1, 1 ⁇ 1_dimethyl Acetamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone and the like can be mentioned.
  • methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy _4-methyl-2-pentanone or one of the following formulas [mouth 1] to formula [mouth 3] A solvent can be used.
  • Port 2 represents an alkyl group having 1 to 3 carbon atoms.
  • Port 3 represents an alkyl group having 1 to 4 carbon atoms.
  • these may be used alone or in combination.
  • a solvent that does not dissolve the polyimide precursor may be used as a mixture with the above-mentioned solvent as long as the formed polyimide precursor does not precipitate.
  • water in the organic solvent inhibits the polymerization reaction and causes hydrolysis of the formed polyimide precursor, it is preferable to use dehydrated and dried organic solvent.
  • the total number of moles of the tetracarboxylic acid component is 0.8 to 1.2 when the total number of moles of the diamine component is 1.0. ..
  • Polyimide is a polyimide obtained by ring closure of a polyimide precursor, and in this polyimide, the ring closure rate (also referred to as imidation rate) of amide acid groups does not necessarily have to be 100%. , It can be adjusted arbitrarily according to the application and purpose. Among them, 30 to 80% is preferable from the viewpoint of the solubility of the polyimide polymer in the solvent. More preferred is 40 to 70%.
  • the molecular weight of the polyimido polymer is determined by GPC (Gel Permeati on Chromatography)
  • the measured weight average molecular weight is preferably from 5,000 to 1,000, 000, more preferably from 10,000 to 150,000.
  • the liquid crystal display element of the present invention can be manufactured, for example, by the following manufacturing method. ⁇ 2020/175 518 13 ⁇ (: 171-1? 2020/007619
  • the first substrate and the second substrate obtained in the step (IV) are arranged such that the liquid crystal alignment film faces the second substrate, and the first substrate and the second substrate described above are arranged. Arranging so as to be spaced apart from the second substrate;
  • V I I A step of filling a liquid crystal into the separated space to form a liquid crystal layer
  • the step () is a step of preparing the first substrate.
  • the first substrate has the same definition as the above-mentioned substrate, and for example, a glass substrate or a plastic substrate can be used if it is a transparent substrate.
  • the step ( ⁇ ) is a step of preparing a liquid crystal alignment treatment agent having a liquid crystalline polymer.
  • the liquid crystalline polymer has the same definition as above.
  • the liquid crystal alignment treatment agent is a solution for forming a liquid crystal alignment film, and contains the liquid crystalline high molecule and a predetermined solvent.
  • the liquid crystal polymer one kind or two or more kinds can be used.
  • the content of the solvent in the liquid crystal alignment treatment agent can be appropriately selected from the viewpoint of a method of applying the liquid crystal alignment treatment agent and obtaining a target film thickness.
  • the content of the solvent in the liquid crystal alignment treatment agent is preferably 50 to 99.9 mass% from the viewpoint of forming a uniform liquid crystal alignment film by coating.
  • 60 to 99 mass% is preferable. More preferably, it is 65 to 99% by mass. ⁇ 2020/175 518 14 (:171? 2020/007619
  • the solvent used for the liquid crystal alignment treatment agent is not particularly limited as long as it is a solvent that dissolves the liquid crystalline polymer.
  • the liquid crystalline polymer is a polyimide precursor, a polyimide, a polyamide, a polyester, a polyether, a polyurethane, a poly(esteramide), a poly(ester-imide), a poly(ester-anhydride) or a poly(ester-anhydride).
  • solvent solvent It is also referred to as Eight kinds.
  • 1 ⁇ 1_methyl-2-pyrrolidone, 1 ⁇ 1-ethyl-2-pyrrolidone or ⁇ -butyrolactone is preferable. These may be used alone or in combination.
  • the liquid crystalline polymer is an acrylic polymer, a methacrylic polymer, a novolac resin, an epoxy resin, polyhydroxystyrene, cellulose or polysiloxane
  • the liquid crystalline polymer is a polyimido precursor, a polyimid , Poly(amide), polyester, polyether, polyurethane, poly(ester amide), poly(ester-imide), poly(ester-anhydride) or poly(ester-carbonate), and their solubility in these solvents is When it is high, the following solvents (also called solvent solvents) can be used.
  • solvent solvents are described on pages 58 to 60 of International Publication No. ⁇ 2 0 1 4/1 7 1 4 9 3 (2 0 1 4 1 .0.2 3 publication). Solvents such as Among them, 1-hexanol, cyclohexanol, 1,2-ethanedine
  • the liquid crystal polymer can be used as a polyimide precursor, a polyimide, a polyamide, or a polyester.
  • Polyether, polyurethane, poly(ester amide), poly(ester-imide), poly(ester-anhydride) or poly(ester-carbonate) should be used together with the above solvents.
  • the amount of the solvent is preferably 1 to 99% by mass of the whole solvent contained in the liquid crystal alignment treatment agent. Among them, 10 to 99 mass% is preferable. More preferably, it is 20 to 95% by mass.
  • a compound having an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a hydroxy group, a hydroxyalkyl group or a lower alkoxyalkyl group is introduced into the liquid crystal alignment treatment agent. You can also do it. In that case, it is necessary for the compound to have two or more of these groups.
  • crosslinkable compound having an epoxy group or an isocyanate group are described in International Publication WO 201 4/1 7 1 493 (published 201 4.10.23), pages 63 to 64.
  • examples thereof include crosslinkable compounds having a group or an isocyanate group.
  • crosslinkable compound having an oxetane group are represented by the formulas shown on pages 58 to 59 of International Publication WO ⁇ /0201 1/1 3275 1 (201 1.1.0.27 publication). ⁇ Crosslinkable compounds of the formula [4 ! ⁇ ] are mentioned.
  • crosslinkable compound having a cyclocarbonate group examples include compounds represented by the formula [5-1] disclosed on pages 76 to 82 of International Publication No. 0201 2/01 4898 (201 2.2.2 publication). ⁇ Crosslinkable compounds of the formula [5-42] are mentioned. Hydroxyl group, hydroxyalkyl group and lower alkoxyalkyl group ⁇ 2020/175 518 16 ⁇ (: 171-1? 2020/007619
  • crosslinkable compound examples have the melamine derivative or the benzoguanamine derivative described on pages 65 to 66 of International Publication No. 201 4/1 7 1 493 (published on 2 01 4.1 0.23), and International There are cross-linkable compounds represented by the formulas [6-1] to [6_48], which are described on pages 62 to 66 of Published Publication No. 201 1/1 3275 1 (published on January 1.1 0.27).
  • the content of the crosslinkable compound in the liquid crystal alignment treatment agent is not limited to all polymer components 1
  • 0.1 to 100 parts by mass is preferable with respect to 00 parts by mass.
  • 0.1 to 50 parts by mass is more preferable, and most preferably 1 to 30 parts by mass, relative to 100 parts by mass of all polymer components. It is a department.
  • liquid crystal alignment treatment agent a compound that improves the film thickness uniformity and the surface smoothness of the liquid crystal alignment film when the liquid crystal alignment treatment agent is applied can be used as long as the effect of the present invention is not impaired. .. Furthermore, a compound or the like that improves the adhesion between the liquid crystal alignment film and the electrode substrate can be used.
  • Examples of the compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant. Specifically, International Publication ⁇ 201 4/1 7 1 493 (
  • the use ratio thereof is preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of all polymer components contained in the liquid crystal alignment treatment agent. More preferred is 0.01 to 1 part by mass.
  • 30 parts by mass is preferred. More preferably, it is 1 to 20 parts by mass.
  • the liquid crystal alignment treatment agent may be added with a dielectric or conductive substance for the purpose of changing the electrical properties of the liquid crystal alignment film, such as the dielectric constant and conductivity.
  • the step ( ⁇ ) is a step of applying the liquid crystal alignment treatment agent to one surface of the first substrate.
  • the method of applying the liquid crystal alignment treatment agent is not particularly limited, but industrially, screen printing, offset printing, flexo printing ! ⁇ , ink jet method, dip method, mouth coater method, slit coater method, spinner method.
  • a spray method, etc. which can be appropriately selected according to the type of substrate and the film thickness of the target film.
  • Step (V) is a step of heating the obtained coated surface to form a liquid crystal alignment film on the first substrate.
  • the heating that is, the heat treatment, depends on the type of substrate used, the liquid crystal alignment treatment agent used, particularly the solvent used for the liquid crystal alignment treatment agent, and the temperature range where the liquid crystallinity of the liquid crystal alignment film develops.
  • the temperature is preferably 80 to 350°, preferably 100 to 300°, more preferably 120 to 250°.
  • the thickness of the liquid crystal alignment film after calcination,. 5 to 5 0 0 n m, preferably 1 0-3 0 0 11_Rei_1, more preferably 1 ⁇ _ ⁇ 2 5 0 ⁇ ! A is the good.
  • Step (V) is a step of preparing the second substrate.
  • the second substrate is not particularly limited as long as it has electrodes, and may be the same as or different from the first substrate.
  • the second substrate preferably has a liquid crystal alignment film, as in the first substrate.
  • the first substrate and the second substrate obtained in the step (IV) are arranged so that the liquid crystal alignment film faces the second substrate, and the first substrate and the second substrate are arranged.
  • the liquid crystal alignment film is preferably arranged so as to face the first substrate.
  • a spacer may be introduced in order to control the gap (also referred to as a gap) between the substrates.
  • the gap depends on the type of substrate used, the liquid crystal alignment treatment agent used, etc., but is preferably 2.0 to 50, preferably 2 to 25, and more preferably 2 to 20.
  • the step (V I I) is a step of filling a separated space with liquid crystal to form a liquid crystal layer.
  • liquid crystal and the liquid crystal layer have the same definition as described above.
  • the method of injecting liquid crystal is not particularly limited, but the following method may be mentioned, for example. That is, when using a glass substrate as a substrate, prepare a pair of substrates having a liquid crystal alignment film formed thereon, apply a sealant except for a part of four pieces of the substrate on one side, and then, Fabricate an empty cell with the other side of the substrate attached so that the surface is on the inside. Then, a method of obtaining a liquid crystal injection cell by injecting liquid crystal under reduced pressure from a position where the sealant is not applied can be mentioned.
  • the liquid crystal injection cell can be obtained by dropping the liquid crystal by the ink jet method or the ink jet method and then bonding the other substrate.
  • the gap of the liquid crystal display element can be controlled by the above spacer or the like.
  • a method of introducing a spacer of a desired size into the liquid crystal a method of using a substrate having a column spacer of a desired size, and the like can be mentioned.
  • the gap can be controlled without introducing spacers.
  • the liquid crystal display element in which liquid crystal is injected is added for the purpose of stabilizing the alignment of the liquid crystal. ⁇ 2020/175518 19 ⁇ (: 171-1? 2020/007619
  • the temperature at that time is preferably 40 to 150 ° . More preferably, it is 60 to 120 ° .
  • the method for manufacturing a liquid crystal display element of the present invention may include steps other than the above steps () to (VI). For example, as described above, heat treatment may be performed after the step (V I I) for the purpose of stabilizing the alignment of the liquid crystal.
  • the liquid crystal display device of the present invention can be applied to, for example, a liquid crystal display for display purposes, and further to a dimming window or an optical shutter device that controls blocking and transmission of light. Not limited to.
  • Liquid crystal with physical properties of !_ 3 ( Ding: 102 ° 0, 8 ⁇ :a. 4, 8: ⁇ .236)
  • Liquid crystal with physical properties of !_4 (Cho: 90°, eight ⁇ : a. 4, eight: ⁇ .299)
  • Haze meter 1 to 12- 3 (manufactured by Suga Test Instruments Co., Ltd.)
  • the medicine (7) was obtained. No abnormalities such as turbidity or precipitation were observed in this liquid crystal alignment treatment agent, and it was a uniform solution.
  • Table 1 shows the liquid crystal alignment treatment agents obtained in the synthesis examples.
  • the liquid crystal alignment treatment agent obtained by the method of Synthesis Example was pressure-filtered with a membrane filter having a pore size of 1.
  • the obtained solution was spin-coated on a glass substrate (vertical: 300111111, lateral: 400!, thickness: 0.0) washed with pure water and isopropyl alcohol. At 80 ° ⁇ at 120 seconds, I
  • a glass substrate with a liquid crystal alignment film having a film thickness of 100 mm was obtained by performing heat treatment at 150 ° C. for 30 minutes in an 8 (infrared) type heat circulation type clean oven.
  • the liquid crystallinity of the obtained glass substrate with a liquid crystal alignment film was confirmed using the above-mentioned polarizing microscope with a cooling and heating stage for a microscope. Specifically, by observation with a polarizing microscope, those with an optical texture derived from the liquid crystal phase as shown in Fig. 1 were regarded as having liquid crystallinity, and those not observed were regarded as having no liquid crystallinity.
  • a liquid crystal alignment film was sampled from the glass substrate with the liquid crystal alignment film obtained above, and the endothermic peak (liquid crystal phase/liquid crystal phase transition was measured using the differential scanning calorimeter (0 30). ) (Also referred to as Ding 1) and an endothermic peak (indicating a liquid crystal phase/isotropic phase transition) (also referred to as Ding 2) at which the rate of temperature rise/fall is 10 D/min and Ding 1 and Ding 2 were obtained from the second skiyan.
  • Ding 1 and Ding 2 an endothermic peak at which the rate of temperature rise/fall is 10 D/min and Ding 1 and Ding 2 were obtained from the second skiyan.
  • the liquid crystal alignment treatment agent obtained by the method of Synthesis Example was pressure-filtered with a membrane filter having a pore size of 1.
  • the obtained solution was washed with pure water and ⁇ (isopropyl alcohol) ⁇ ⁇
  • Glass substrate with electrodes (vertical: 40, horizontal: 3 0 01 111, thickness: 0.7 0 111 1 1) Spin coat on the surface and place it on the hot plate at 80 ° for 90 seconds.
  • a glass substrate with a liquid crystal alignment film of was obtained.
  • the heating treatment in the type I heat-circulation type clean oven was performed at 180° ⁇ for 30 minutes, and in Example 8 at 200° ⁇ for 30 minutes.
  • Example 9 Example 10 and Comparative Examples 5 to 8 were performed at 230 ° for 30 minutes.
  • a liquid crystal cell was obtained by leaving it at 23 ° for 15 hours.
  • the obtained liquid crystal cell was subjected to no voltage application ( ⁇ V) and voltage application (AC drive: 20 V). (Haze) was measured.
  • the measurement is based on I 3 ⁇ 7 1 3 6, and the higher the value of 1 to 1 3 2 6 when no voltage is applied, the better the scattering characteristics, and the lower the value of !! 3 2 6 when a voltage is applied, the more transparent it is. It is said that it has excellent properties.
  • the Examples using the liquid crystal alignment treatment agent containing the specific polyimide polymer using the specific diamine and the specific tetracarboxylic acid do not contain them, or either Compared to the comparative example of the liquid crystal alignment treatment agent containing only one, the liquid crystal alignment film exhibited liquid crystallinity and had good optical characteristics, that is, Haze in the state without voltage application was high, and Haze in voltage application state was high. Became lower.
  • the expression of liquid crystallinity is a comparison between Examples 1 to 3 and Comparative Examples 1 to 4, and the optical characteristics are a comparison between Examples 4 to 10 and Comparative Examples 5 to 8.
  • the present liquid crystal display element can be used for a liquid crystal display intended for display, and also for a dimming window or an optical shutter element for controlling the blocking and transmission of light.
  • a plastic substrate be able to.
  • the device can also be used as a light guide plate of a display device such as an LC D (Liquid Crystal Display) or an LED (Organic Light-emitting Diode) display, or a back plate of a transparent display using these displays.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a transmission and scattering type liquid crystal display element that does not comprise a polymerizable compound in a liquid crystal composition and does not require an ultraviolet ray irradiation step, and a method for manufacturing the liquid crystal display element. The transmission and scattering type liquid crystal display element controls a transparent state and a scattered state by applying a voltage, said liquid crystal display element having: a liquid crystal layer that includes liquid crystal between a pair of substrates that has an electrode; and a liquid crystal alignment film that exhibits liquid crystallinity on at least one of the substrates.

Description

明 細 書 Specification
発明の名称 : 液晶表示素子及びその製造方法 Title of invention: Liquid crystal display device and manufacturing method thereof
技術分野 Technical field
[0001] 本発明は、 電圧印加により透明状態と散乱状態とを制御する透過散乱型の 液晶表示素子及びその製造方法に関する。 The present invention relates to a transmission/scattering type liquid crystal display element that controls a transparent state and a scattering state by applying a voltage and a method for manufacturing the same.
背景技術 Background technology
[0002] TN (Twisted Nematic) モードの液晶表示素子が実用化されている。 こ のモードでは、 液晶の旋光特性を利用して、 光のスイッチングを行うために 、 偏光板を用いる必要があるが、 偏光板を用いると光の利用効率が低くなる 偏光板を用いない液晶表示素子として、 液晶の透過状態 (透明状態ともい う) と散乱状態との間でスイッチングを行う素子がある。 一般的には、 高分 子分散型液晶 (P D LC (Polymer Dispersed Liquid Crystal) ともいう 。 ) や高分子ネッ トワーク型液晶 (P N LC (Polymer Network Liquid C rystal) ともいう。 ) を用いたものが知られている。 [0002] A TN (Twisted Nematic) mode liquid crystal display device has been put into practical use. In this mode, it is necessary to use a polarizing plate in order to switch the light by utilizing the optical rotatory property of the liquid crystal, but the use efficiency of the light becomes low when the polarizing plate is used. As an element, there is an element that switches between a transparent state (also called a transparent state) and a scattering state of liquid crystal. Generally, those using high molecular dispersed liquid crystal (also referred to as PD LC (Polymer Dispersed Liquid Crystal)) or polymer network liquid crystal (PN LC (Polymer Network Liquid Crystal)) are used. Are known.
これらの液晶表示素子では、 電極を備えた一対の基板の間に、 紫外線によ り重合する重合性化合物を含む液晶組成物を配置し、 紫外線の照射により液 晶組成物の硬化を行い、 液晶と重合性化合物の硬化物 (例えば、 ポリマーネ ッ トワーク) との複合体を形成する。 そして、 この液晶表示素子では、 電圧 の印加により、 液晶の透過状態と散乱状態が制御される (特許文献 1、 2参 照) 。 In these liquid crystal display elements, a liquid crystal composition containing a polymerizable compound that is polymerized by ultraviolet rays is placed between a pair of substrates equipped with electrodes, and the liquid crystal composition is cured by irradiation with ultraviolet rays. And a cured product of a polymerizable compound (for example, a polymer network) are formed. In this liquid crystal display element, the transmission state and the scattering state of the liquid crystal are controlled by applying a voltage (see Patent Documents 1 and 2).
先行技術文献 Prior art documents
特許文献 Patent literature
[0003] 特許文献 1 : 日本特許第 3552328号。 [0003] Patent Document 1: Japanese Patent No. 3552328.
特許文献 2 : 日本特許第 4630954号。 Patent Document 2: Japanese Patent No. 4630954.
発明の概要 Summary of the invention
発明が解決しようとする課題 〇 2020/175518 2 卩(:171? 2020 /007619 Problems to be Solved by the Invention 〇 2020/175518 2 (:171? 2020/007619
[0004] 上述の 0 1_ (3や 1_ (3の液晶表示素子は、 液晶組成物中の重合性化合 物の硬化を行うため、 紫外線照射工程が必要となる。 [0004] In the liquid crystal display device of 0 1_ ( 3 or 1_ ( 3), the polymerizable compound in the liquid crystal composition is cured, so an ultraviolet irradiation step is required.
_方、 液晶組成物中に重合性化合物を用いることなく、 且つ、 紫外線照射 工程が不要な透過散乱型の液晶表示素子を提供することが要望されている。 そこで、 本発明の目的は、 液晶組成物中に重合性化合物を用いることなく 、 且つ、 紫外線照射工程が不要な透過散乱型の液晶表示素子及びその製造方 法を提供することにある。 On the other hand, it is desired to provide a transmission/scattering type liquid crystal display element that does not use a polymerizable compound in the liquid crystal composition and does not require an ultraviolet irradiation step. Therefore, an object of the present invention is to provide a transmission/scattering type liquid crystal display element and a method for producing the same, which does not use a polymerizable compound in a liquid crystal composition and does not require an ultraviolet irradiation step.
課題を解決するための手段 Means for solving the problem
[0005] 本発明者は、 以下の要旨を有する発明を見出した。 The present inventor has found an invention having the following gist.
1 . 電極を備えた一対の基板の間に液晶を含む液晶層を有し、 且つ、 基 板の少なくとも一方に液晶性を発現する液晶配向膜を備える、 電圧印加によ り透明状態と散乱状態を制御する透過散乱型の液晶表示素子。 1. Having a liquid crystal layer containing liquid crystal between a pair of substrates equipped with electrodes, and having a liquid crystal alignment film exhibiting liquid crystallinity on at least one of the substrates, transparent state and scattering state by voltage application Liquid crystal display element of transmission/scattering type for controlling light.
発明の効果 Effect of the invention
[0006] 本発明により、 液晶組成物中に重合性化合物を用いることなく、 且つ、 紫 外線照射工程が不要である、 透過散乱型の液晶表示素子を提供することがで きる。 According to the present invention, it is possible to provide a transmission-scattering type liquid crystal display element that does not use a polymerizable compound in a liquid crystal composition and does not require an ultraviolet ray irradiation step.
また、 本発明の液晶表示素子により、 表示を目的とする液晶ディスプレイ や、 光の遮断と透過とを制御する調光窓や光シャッター素子などを提供する ことができる。 Further, the liquid crystal display device of the present invention can provide a liquid crystal display intended for display, a dimming window or an optical shutter device for controlling blocking and transmission of light.
図面の簡単な説明 Brief description of the drawings
[0007] [図 1 ]実施例 1で得られた液晶配向膜付きのガラス基板の膜の偏光顕微鏡像 ( 膜が液晶性を示す) である。 発明を実施するための形態 FIG. 1 is a polarizing microscope image (the film shows liquid crystallinity) of the film of the glass substrate with the liquid crystal alignment film obtained in Example 1. MODE FOR CARRYING OUT THE INVENTION
[0008] 本願は、 液晶表示素子、 特に電圧印加により透明状態と散乱状態とを制御 する透過散乱型の液晶表示素子を提供する。 また、 該液晶表示素子の製造方 法を提供する。 The present application provides a liquid crystal display element, particularly a transmission/scattering type liquid crystal display element that controls a transparent state and a scattering state by applying a voltage. In addition, a method for manufacturing the liquid crystal display device is provided.
以下、 本願に記載する発明について、 順に説明する。 <液晶表示素子> Hereinafter, the inventions described in the present application will be described in order. <Liquid crystal display element>
本願は、 電極を備えた一対の基板の間に液晶を含む液晶層を有し、 且つ、 基板の少なくとも一方に液晶性を発現する液晶配向膜を備える、 電圧印加に より透明状態と散乱状態とを制御する散乱透過型の液晶表示素子を提供する The present application has a liquid crystal layer containing liquid crystal between a pair of substrates provided with electrodes, and a liquid crystal alignment film exhibiting liquid crystallinity on at least one of the substrates. Provide a scattering transmission type liquid crystal display device for controlling
[0009] <基板> [0009] <Substrate>
本発明の液晶表示素子は、 電極を備えた一対の基板を有する。 The liquid crystal display element of the present invention has a pair of substrates provided with electrodes.
ここで、 基板は、 電極を備えることができれば、 特に限定されないが、 透 明性の高い基板が用いられることが好ましい。 基板として、 例えば、 ガラス 基板の他、 ポリアミ ド基板、 ポリイミ ド基板、 ポリェーテルサルホン基板、 アクリル基板、 ポリカーボネート基板、 P ET (ポリェチレンテレフタレー 卜) 基板などのプラスチック基板、 更には、 それらのフイルムを用いること ができるがこれらに限定されない。 特に、 調光窓などに用いる場合には、 プ ラスチック基板やフイルムが好ましい。 Here, the substrate is not particularly limited as long as it can have an electrode, but a substrate having high transparency is preferably used. As the substrate, for example, in addition to the glass substrate, a plastic substrate such as a polyamide substrate, a polyimide substrate, a polyethylene sulfone substrate, an acrylic substrate, a polycarbonate substrate, a PET (polyethylene terephthalate) substrate, and the like. Those films can be used, but are not limited to these. In particular, when used for a light control window or the like, a plastic substrate or film is preferable.
[0010] 電極は、 特に限定されないが、 プロセスの簡素化の観点からは、 液晶駆動 のための丨 T〇電極、 丨 Z 0 (Indium Zinc Oxide) 電極、 丨 GZ〇 (Indi um Gallium Zinc Oxide) 電極、 有機導電膜などが形成された基板を用い ることが好ましい。 [0010] The electrode is not particularly limited, but from the viewpoint of process simplification, a liquid crystal driving 丨T electrode, 丨Z 0 (Indium Zinc Oxide) electrode, 丨GZ 〇 (Indiumum Gallium Zinc Oxide) It is preferable to use a substrate on which electrodes, organic conductive films, etc. are formed.
なお、 反射型の液晶表示素子とする場合には、 片側の基板のみにならば、 シリコンウェハやアルミニウムなどの金属や誘電体多層膜が形成された基板 を使用できる。 In the case of a reflective liquid crystal display element, if only one substrate is used, a substrate such as a silicon wafer or a metal such as aluminum or a substrate on which a dielectric multilayer film is formed can be used.
[0011] 本発明の液晶表示素子において、 上記一対の基板は、 所定間隔を離間させ て平行に配置させ、 該一対の基板間に液晶を含む液晶層を有するように配置 する。 [0011]In the liquid crystal display element of the present invention, the pair of substrates are arranged in parallel at a predetermined distance, and a liquid crystal layer containing liquid crystal is arranged between the pair of substrates.
ここで、 液晶表示素子の電極間隙 (ギャップともいう。 ) は、 2. 〇〜 5 0 Mmが好ましい。 より好ましくは 2. 〇〜 30 Mm、 特に好ましくは 2. 〇〜 20 mである。 Here, the electrode gap (also referred to as a gap) of the liquid crystal display element is preferably 2.0 to 50 Mm. It is more preferably 2.0 to 30 Mm, and particularly preferably 2.0 to 20 m.
また、 上記一対の基板の少なくとも一方の基板には、 特に該基板の液晶層 を配置する側には、 液晶性を発現する液晶配向膜が配置される。 In addition, at least one of the pair of substrates is a liquid crystal layer of the substrate. A liquid crystal alignment film that exhibits liquid crystallinity is arranged on the side where is arranged.
[0012] <液晶> [0012] <Liquid crystal>
液晶層に含まれる液晶として、 ネマチック液晶、 スメクチック液晶又はコ レステリック液晶を用いることができる。 As the liquid crystal contained in the liquid crystal layer, nematic liquid crystal, smectic liquid crystal or cholesteric liquid crystal can be used.
なかでも、 本発明においては、 正の誘電異方性を有するものが好ましい。 正の誘電異方性を有する液晶を用いた場合には、 電圧無印加時は吸収 (散乱 ) で、 電圧印加時に透明となる素子を得ることができる。 Of these, those having a positive dielectric anisotropy are preferable in the present invention. When a liquid crystal having a positive dielectric anisotropy is used, an element that absorbs (scatters) when no voltage is applied and becomes transparent when a voltage is applied can be obtained.
[0013] また、 低電圧駆動及び散乱特性の点からは、 誘電率異方性 (△£ともいう 。 ) が大きく、 屈折率異方性 (Anともいう。 ) が大きいものが好ましい。 更に、 液晶表示素子を自動車などの窓に使用する場合には、 透明点 (T n i ともいう。 ) が高い方が好ましい。 特に、 液晶は、 大きな Anを有するの がよく、 好ましくは Anが 0. 20以上、 より好ましくは 0. 22以上、 特 に好ましくは 0. 26以上であるのがよい。 [0013] From the viewpoint of low voltage driving and scattering characteristics, a material having a large dielectric anisotropy (also referred to as Δ£) and a large refractive index anisotropy (also referred to as An) is preferable. Furthermore, when the liquid crystal display device is used for windows of automobiles, it is preferable that the clearing point (also referred to as T n i) is high. In particular, the liquid crystal preferably has a large An, preferably an An of 0.20 or more, more preferably 0.22 or more, and particularly preferably 0.26 or more.
また、 液晶には、 As、 △n T n iの各物性値に応じて、 2種類以上 の液晶を混合して用いることができる。 Further, as the liquid crystal, two or more kinds of liquid crystals can be mixed and used according to the physical property values of As and Δn T n i.
[0014] 液晶表示素子を T F T (Thin Fi lm Transistor) などの能動素子として 駆動させるためには、 液晶の電気抵抗が局くて電圧保持率 (V H Rともいう 。 ) が高いことが求められる。 そのため、 液晶は、 電気抵抗が高くて紫外線 などの活性エネルギー線により V H Rが低下しないフッ素系や塩素系の液晶 を用いることが好ましい。 [0014] In order to drive a liquid crystal display element as an active element such as a TFT (Thin Film Transistor), it is required that the liquid crystal has a high electric resistance and a high voltage holding ratio (also referred to as VHR). Therefore, as the liquid crystal, it is preferable to use a fluorine-based or chlorine-based liquid crystal which has a high electric resistance and whose V H R does not decrease due to active energy rays such as ultraviolet rays.
[0015] 更に、 液晶表示素子は、 液晶層に二色性染料を溶解させてゲストホスト型 の素子とすることもできる。 Further, the liquid crystal display element can be made into a guest-host type element by dissolving a dichroic dye in the liquid crystal layer.
[0016] <液晶配向膜> [0016] <Liquid crystal alignment film>
上述したように、 本発明の液晶表示素子は、 一対の基板の少なくとも一方 の基板に、 特に該基板の液晶層を配置する側に、 液晶性を発現する液晶配向 膜が配置される。 As described above, in the liquid crystal display element of the present invention, the liquid crystal alignment film exhibiting liquid crystallinity is arranged on at least one of the pair of substrates, particularly on the side of the substrate where the liquid crystal layer is arranged.
本発明の液晶表示素子において、 液晶配向膜が、 80〜350°C、 好まし くは 1 00〜 300°C、 より好ましくは 1 20〜 250 °Cの範囲で液晶性を 〇 2020/175518 卩(:171? 2020 /007619 In the liquid crystal display device of the present invention, the liquid crystal alignment film has a liquid crystallinity in the range of 80 to 350 ° C, preferably 100 to 300°C, more preferably 120 to 250°C. 〇2020/175518 卩(:171?2020/007619
発現するのがよい。 Good to express.
[0017] 該液晶配向膜は、 液晶性高分子を含むのがよい。 [0017] The liquid crystal alignment film preferably contains a liquid crystalline polymer.
液晶性高分子としては、 特に限定されないが、 アクリルポリマー、 メタク リルポリマー、 ノボラック樹脂、 エポキシ樹脂、 ポリヒドロキシスチレン、 ポリイミ ド前駆体、 ポリイミ ド、 ポリアミ ド、 ポリエステル、 ポリエーテル 、 ポリウレタン、 ポリ (エステルアミ ド) 、 ポリ (エステルーイミ ド) 、 ポ リ (エステルー無水物) 、 ポリ (エステルーカーボナート) 、 セルロース又 はポリシロキサンから選ばれる少なくとも 1種の重合体が好ましい。 より好 ましいのは、 ポリイミ ド前駆体又はポリイミ ド (総称してポリイミ ド系重合 体ともいう。 ) である。 The liquid crystalline polymer is not particularly limited, but is not limited to acrylic polymer, methacrylic polymer, novolac resin, epoxy resin, polyhydroxystyrene, polyimide precursor, polyimide, polyamide, polyester, polyether, polyurethane, poly(ester). At least one polymer selected from the group consisting of amide), poly(ester-imide), poly(ester-anhydride), poly(ester-carbonate), cellulose and polysiloxane. More preferred is a polyimido precursor or polyimido (collectively referred to as polyimido-based polymer).
[0018] ここで、 ポリイミ ド前駆体とは、 下記式 [八] の構造を有する。 [0018] Here, the polyimide precursor has a structure of the following formula [8].
式 [ ] において、
Figure imgf000006_0001
は 4価の有機基を示す。
Figure imgf000006_0002
2は 2価の有機基を示す 。 八1及び 2はそれぞれ、 水素原子又は炭素数 1〜 8のアルキル基を示す。 八3及び はそれぞれ、 水素原子、 炭素数 1〜 5のアルキル基又はアセチル 基を示す。 门は正の整数を示す。
In the formula [],
Figure imgf000006_0001
Represents a tetravalent organic group.
Figure imgf000006_0002
2 represents a divalent organic group. Each eight 1 and 2 is a hydrogen atom or an alkyl group having a carbon number of 1-8. And 8 and 3 each represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acetyl group. The door indicates a positive integer.
[0019] [化 1] [0019] [Chemical 1]
Figure imgf000006_0003
Figure imgf000006_0003
[0020] ジアミン成分としては、 分子内に第一級又は第二級のアミノ基を 2個有す るジアミンであり、 テトラカルボン酸成分としては、 テトラカルボン酸化合 物、 テトラカルボン酸二無水物、 テトラカルボン酸ジハライ ド化合物、 テト ラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエ ステルジハライ ド化合物が挙げられる。 [0020] The diamine component is a diamine having two primary or secondary amino groups in the molecule, and the tetracarboxylic acid component is a tetracarboxylic oxide compound or a tetracarboxylic dianhydride. , A tetracarboxylic acid dihalide compound, a tetracarboxylic acid dialkyl ester compound or a tetracarboxylic acid dialkyl ester dihalide compound.
[0021] ポリイミ ド系重合体は、 下記式 [巳] のテトラカルボン酸二無水物と下記 式 [0] のジアミンとを原料とすることで、 比較的簡便に得られるという理 由から、 下記式 [口] の繰り返し単位の構造式から成るポリアミ ド酸又は該 ポリアミ ド酸をイミ ド化させたポリイミ ドが好ましい。 〇 2020/175518 6 卩(:171? 2020 /007619 [0021] From the reason that the polyimide-based polymer can be obtained relatively easily by using the tetracarboxylic acid dianhydride of the following formula [M] and the diamine of the following formula [0] as the raw materials, A polyamic acid having a structural formula of a repeating unit of the formula [or] or a polyimide obtained by imidizing the polyamic acid is preferable. 〇 2020/175518 6 卩 (: 171-1? 2020/007619
なお、 式中、 1及び 2は、 式 [八] で定義したものと同じである。 In the formula, 1 and 2 are the same as defined in the formula [8].
[0022] [化 2] [0022] [Chemical 2]
Figure imgf000007_0001
Figure imgf000007_0001
[0023] また、 通常の合成手法で、 前記で得られた式 [口] の重合体に、 式 [八] 中の 1及び 2の炭素数 1〜 8のアルキル基、 及び式 [ ] 中の 3及び八4 の炭素数 1〜 5のアルキル基又はアセチル基を導入することもできる。 [0023] In addition, according to a usual synthetic method, the polymer of the formula [mouth] obtained above is added to the polymer of the formula [8], which is 1 or 2 having 1 to 8 carbon atoms, and 3 and eight 4 alkyl group or an acetyl group with carbon number from 1 to 5 can also be introduced.
[0024] 液晶性高分子は、 下記式 [八 1] 〜 [八 4] から選ばれる少なくとも 1種 の部分構造 (特定部分構造 ( ) ともいう。 ) を有するのがよく、 好ましく は式 [八 4] の部分構造を有するのがよい。 [0024] The liquid crystalline polymer preferably has at least one partial structure (also referred to as a specific partial structure ()) selected from the following formulas [8 1] to [8 4], and preferably the formula [8] 4] is preferable.
下記式 [八 1] ~ [八 4] において、
Figure imgf000007_0002
はそれぞれ独立して、 1 〜 1 2、 好ましくは 1〜 8、 より好ましくは 1〜 6の整数を示す。
In the following formulas [8 1] to [8 4],
Figure imgf000007_0002
Each independently represents an integer of 1 to 12, preferably 1 to 8, and more preferably 1 to 6.
3 4は 1〜 5、 好ましくは 1〜 3、 より好ましくは 1〜 2の整数を示す。
Figure imgf000007_0003
して、 単結合又は炭素数 1〜 1 2、 好ましくは 1〜 6、 より好ましくは 1〜 4のアルキレン基を示す。
34 represents an integer of 1 to 5, preferably 1 to 3, and more preferably 1 to 2.
Figure imgf000007_0003
A single bond or an alkylene group having 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
はそれぞれ独立して、 水素原子、 炭素数 1〜 5、 好ましくは 1〜 3のアルキル基又はアルコキシ基から選ばれる少なくとも 1種を示し、 更に より好ましくは炭素数 1又は 2のアルキル基であるのがよい。 Each independently represents at least one selected from a hydrogen atom, a C1 to C5, preferably a C1 to C3 alkyl group or an alkoxy group, and more preferably a C1 or C2 alkyl group. Is good.
[0025] [化 3] [0025] [Chemical Formula 3]
Figure imgf000007_0004
Figure imgf000007_0004
[0026] また、 液晶性高分子は、 下記式 [巳 1] 〜 [巳 7] から選ばれる少なくと 〇 2020/175518 7 卩(:171? 2020 /007619 [0026] Further, the liquid crystalline polymer is at least one selected from the following formulas [Mis 1] to [Mis 7]. 〇 2020/175518 7 卩(: 171-1? 2020/007619
も 1種の部分構造 (特定部分構造 (巳) ともいう。 ) を有するのがよく、 好 ましくは、 式 [巳 1] 、 式 [巳4] 又は式 [巳 7] であるのがよい。 Also has one kind of partial structure (also referred to as a specific partial structure (Mi)), and preferably the formula [Mis 1], the formula [Mis 4] or the formula [Mis 7]. ..
式 [巳 1] 〜 [巳 7] において、
Figure imgf000008_0001
〇はそれぞれ独立して、 炭素数 1 〜 3、 好ましくは 1〜 2のアルキル基を示す。 n 1〜n 4はそれぞれ独立し て、 〇〜 2、 好ましくは 0又は 1の整数を示す。 芳香環上の水素は、 _〇1~1 3 、 一〇 3、 ー 、 一〇1\1、 一〇〇〇 1~1、 一 1\1〇2、 一 !·!—巳〇〇、 または — ( 6〇〇) 2で置き換えられていてもよい (巳〇〇は、 ㊀ 「 1:—ブトキ シカルボニル基を表す) 。
In the formulas [Min 1] to [Min 7],
Figure imgf000008_0001
◯ each independently represents an alkyl group having 1 to 3 carbon atoms, preferably 1 to 2 carbon atoms. n 1 to n 4 each independently represent an integer of 0 to 2, preferably 0 or 1. Hydrogen on the aromatic ring, _〇_1 to 1 3, ten 3, over one Rei_1 \ 1, one thousand 1 to 1, one 1 \ 1_Rei 2, one-! - snake hundred, Or — (600) 2 may be substituted (where ___ is ㊀ “1:-butoxycarbonyl group”).
[0027] [化 4] [0027] [Chemical 4]
Figure imgf000008_0002
Figure imgf000008_0002
[0028] 特に、 液晶性高分子は、 下記式 [八 1] 〜式 [八 4] から選ばれる少なく とも 1種の部分構造と、 下記式 [巳 1] 〜式 [巳 7] から選ばれる少なくと も 1種の部分構造を有するポリイミ ド系重合体であることが好ましい。 [0028] In particular, the liquid crystalline polymer is selected from at least one partial structure selected from the following formulas [8 1] to [8 4] and the following formulas [M 1] to [M 7] It is preferably a polyimide-based polymer having at least one kind of partial structure.
[0029] 特定部分構造 ( ) 及び特定部分構造 (巳) を、 ポリイミ ド系重合体に導 入する方法としては、 前記式 [ 1] 〜式 [ 4] 又は前記式 [巳 1] 〜式 [巳 7] の部分構造を有するジアミンを含むジアミン成分と、 式 [八 1] 〜 式 [八 4] 又は式 [巳 1] 〜式 [巳 7] の部分構造を有するテトラカルボン 酸を含むテトラカルボン酸成分を用いることが好ましい。 [0029] As a method of introducing the specific partial structure () and the specific partial structure (Mi) into the polyimide polymer, the formula [1] to the formula [4] or the formula [M1] to the formula [ A diamine component containing a diamine having a partial structure of [7] and a tetracarboxylic acid containing a tetracarboxylic acid having a partial structure of the formula [8 1] to [8] or the formula [1] to [7] It is preferable to use an acid component.
[0030] 具体的には、 特定部分構造 ( ) を有するジアミンと特定部分構造 (巳) を有するテトラカルボン酸を用いる場合と、 特定部分構造 (巳) を有するジ アミンと特定部分構造 (八) を有するテトラカルボン酸を用いる場合が挙げ られる。 [0030] Specifically, when a diamine having a specific partial structure () and a tetracarboxylic acid having a specific partial structure (M) are used, a diamine having a specific partial structure (M) and a specific partial structure (8) are used. The case where a tetracarboxylic acid having is used is mentioned.
特定部分構造 (八) を有するジアミン (特定ジアミン (八) ともいう。 ) 〇 2020/175518 8 卩(:171? 2020 /007619 A diamine having a specific partial structure (8) (also referred to as a specific diamine (8).) 〇 2020/175 518 8 卩 (:171? 2020 /007619
と特定部分構造 (巳) を有するテトラカルボン酸 (特定テトラカルボン酸 ( B) ともいう。 ) を用いる場合、 それぞれ、 下記式 [1 八] のジアミン及び 式 [2巳] のテトラカルボン酸を用いることが好ましい。 And a tetracarboxylic acid having a specific partial structure (Minami) (also referred to as a specific tetracarboxylic acid (B)), a diamine of the following formula [18] and a tetracarboxylic acid of the formula [2] are used, respectively. It is preferable.
[0031] 式 [1 八] において、 X 1及び X 3はそれぞれ独立して、 単結合、 一〇一、 -〇〇一、 一〇〇〇一、 一〇〇〇一、 一 C〇N H -、 一1\1 1~1〇〇一又は一 ! ! -から選ばれる少なくとも 1種を示す。 なかでも、 単結合、 一〇一、 一〇 〇一、 一〇〇〇一又は一〇〇〇一が好ましい。 [0031] In the formula [18], X 1 and X 3 are each independently a single bond, 101, -001, 100001, 10001, 1CNH- , 1 \ 1 1 ~ 1 x 0 1 or 1 !!-indicates at least one selected from. Among them, a single bond, 101, 1001, 100001 or 100001 is preferable.
X 2は前記式 [八 1] 〜式 [八 4] から選ばれる少なくとも 1種を示す。 な かでも、 液晶表示素子の光学特性の点から、 式 [ 1] 又は式 [ 4] が好 ましい。 また、 式 [八 1] 〜式 [八 4]
Figure imgf000009_0001
X 2 represents at least one selected from the above formula [8 1] to formula [8 4]. Above all, the formula [1] or the formula [4] is preferable from the viewpoint of the optical characteristics of the liquid crystal display device. Also, formula [8 1] to formula [8 4]
Figure imgf000009_0001
の詳細及び好ましいものは、 前記の通りである。 The details and preferences of are as described above.
[0032] 式 [2巳] において、 丫1及び丫5はそれぞれ独立して、 芳香環、 脂環式基 又は複素環基から選ばれる少なくとも 1種を示す。 なかでも、 芳香環又は脂 環式基が好ましい。 [0032] In the formula [2], each of 1 and 5 independently represents at least one selected from an aromatic ring, an alicyclic group and a heterocyclic group. Of these, an aromatic ring or an alicyclic group is preferable.
2及び丫4はそれぞれ独立して、 単結合、 一〇一、 一 0〇一、 - 0 0 0 - 、 一〇〇〇一、
Figure imgf000009_0003
〇一又は一
Figure imgf000009_0002
ら選ばれる少な くとも 1種を示す。 なかでも、 単結合、 一〇一、 一〇〇一、 一〇〇〇一又は — 0 0〇—が好ましい。
2 and 4 are each independently a single bond, 101, 1001, -0000 -, 1001,
Figure imgf000009_0003
〇 one or one
Figure imgf000009_0002
Indicates at least one selected from Of these, a single bond, 101, 1001, 100001 or —0.000— is preferable.
3は前記式 [巳 1] 〜式 [巳 7] から選ばれる少なくとも 1種を示す。 な かでも、 液晶表示素子の光学特性の点から、 式 [巳 1] 、 式 [巳 4] 又は式 [巳 7] が好ましい。 また、 式 [巳 1] 〜式 [巳 7] 中の 3 〜3〇及び n 1 〜11 4の詳細及び好ましいものは、 前記の通りである。 Reference numeral 3 represents at least one selected from the above formulas [Mis 1] to [Mis 7]. Among them, from the viewpoint of the optical characteristics of the liquid crystal display device, the formula [Min 1], the formula [Min 4] or the formula [Min 7] is preferable. Further, the details and preferred values of 3 to 30 and n 1 to 114 in the formulas [Mis 1] to [Mis 7] are as described above.
n 5及び n 6はそれぞれ独立して、 0又は 1の整数を示す。 n 5 and n 6 each independently represent an integer of 0 or 1.
また、 n 5及び n 6が 0の整数の場合、 式 [巳 1] 〜式 [巳 7] の構造は テトラカルボン酸の結合手と直接結合しているものとする。 Further, when n 5 and n 6 are integers of 0, the structures of the formulas [Mis 1] to [Mis 7] are assumed to be directly bonded to the bond of the tetracarboxylic acid.
[0033] 〇 2020/175518 9 卩(:171? 2020 /007619 [0033] 〇 2020/175518 9 卩(: 171-1? 2020/007619
Figure imgf000010_0001
Figure imgf000010_0001
[0034] 特定ジアミン (八) と特定テトラカルボン酸 (巳) を用いた場合のそれぞ れの使用割合は、 次のものが好ましい。 具体的には、 特定ジアミン (八) の 使用割合は、 液晶表示素子の光学特性の点から、 ジアミン成分全体に対し 3 〇〜 1 0 0モル%が好ましく、 5 0 ~ 1 0 0モル%がより好ましい。 特定テ トラカルボン酸 (巳) の使用割合は、 液晶表示素子の光学特性の点から、 テ トラカルボン酸成分全体に対し、 3 0〜 1 0 0モル%が好ましく、 5 0〜 1 0 0モル%がより好ましい。 また、 特定ジアミン (八) 及び特定テトラカル ボン酸 (巳) は、 それぞれ、 各特性に応じて、 1種類又は 2種類以上を混合 して使用できる。 [0034] The use ratios of the specific diamine (8) and the specific tetracarboxylic acid (Mitsumi) are preferably as follows. Specifically, the use ratio of the specific diamine (8) is preferably 30 to 100 mol%, and preferably 50 to 100 mol% with respect to the entire diamine component from the viewpoint of the optical characteristics of the liquid crystal display element. More preferable. From the viewpoint of the optical characteristics of the liquid crystal display element, the use ratio of the specific tetracarboxylic acid (Mitsumi) is preferably 30 to 100 mol %, and preferably 50 to 100 mol% based on the whole tetracarboxylic acid component. % Is more preferable. Further, the specific diamine (8) and the specific tetracarbonic acid (Mitsumi) can be used either individually or in combination of two or more, depending on their respective characteristics.
[0035] 特定部分構造 (巳) を有するジアミン (特定ジアミン (巳) ともいう。 ) と特定部分構造 (八) を有するテトラカルボン酸 (特定テトラカルボン酸 ( 八) ともいう。 ) を用いる場合、 それぞれ、 下記式 [1 巳] のジアミン及び 式 [2八] のテトラカルボン酸を用いることが好ましい。 [0035] When using a diamine having a specific partial structure (Mi) (also referred to as a specific diamine (Mi)) and a tetracarboxylic acid having a specific partial structure (8) (also referred to as a specific tetracarboxylic acid (8)), It is preferable to use a diamine of the following formula [1] and a tetracarboxylic acid of the following formula [2 8], respectively.
式 [1 巳] において、 X 4は前記式 [巳 1] 〜式 [巳 7] から選ばれる少な くとも 1種を示す。 なかでも、 光学特性の点から、 式 [巳 1] 、 式 [巳4] 又は式 [巳 7] が好ましい。 また、 式 [巳 1] 〜式 [巳 7] 中の 3 〜3 °及 び 1〜
Figure imgf000010_0002
4の詳細及び好ましいものは、 前記の通りである。
In the formula [1], X 4 represents at least one selected from the formulas [1] to [7]. Among them, from the viewpoint of optical characteristics, the formula [Mis 1], the formula [Mis 4] or the formula [Mis 7] is preferable. In addition, 3 to 3° and 1 to in expression [Mis 1] to [Mis 7]
Figure imgf000010_0002
The details and preferences of 4 are as described above.
[0036] また、 式 [2八] において、 丫 6及び丫1◦はそれぞれ独立して、 芳香環、 脂 環式基又は複素環基から選ばれる少なくとも 1種を示す。 なかでも、 芳香環 又は脂環式基が好ましい。 [0036] Further, in the formula [28], each of 6 and 1 independently represents at least one selected from an aromatic ring, an alicyclic group and a heterocyclic group. Of these, an aromatic ring or an alicyclic group is preferable.
7及び丫 9はそれぞれ独立して、 単結合、 一〇一、 一 0〇一、 - 0 0 0 - 、 一〇〇〇一、
Figure imgf000010_0004
〇一又は一
Figure imgf000010_0003
ら選ばれる少な 〇 2020/175518 10 卩(:171? 2020 /007619
7 and 9 are each independently a single bond, 101, 1001, -0000-, 10011,
Figure imgf000010_0004
〇 one or one
Figure imgf000010_0003
Few to choose from 〇 2020/175 518 10 卩 (:171? 2020 /007619
くとも 1種を示す。 なかでも、 単結合、 一〇一、 一〇〇一、 一〇〇〇一又は — 0 0〇—が好ましい。 Indicates at least one species. Of these, a single bond, 101, 1001, 100001 or —0.000— is preferable.
8は前記式 [八 1] 〜式 [八 4] から選ばれる少なくとも 1種を示す。 な かでも、 液晶表示素子の光学特性の点から、 式 [八 4] が好ましい。 また、
Figure imgf000011_0001
Reference numeral 8 represents at least one selected from the formula [8 1] to the formula [8 4]. Among them, the formula [84] is preferable from the viewpoint of the optical characteristics of the liquid crystal display device. Also,
Figure imgf000011_0001
好ましいものは、 前記の通りである。 Preferred ones are as described above.
门 7及び n 8はそれぞれ独立して、 0又は 1の整数を示す。 Each of 7 and n 8 independently represents an integer of 0 or 1.
[0037] [化 6] [0037] [Chemical 6]
Figure imgf000011_0002
Figure imgf000011_0002
[0038] 特定ジアミン (巳) と特定テトラカルボン酸 (八) を用いた場合のそれぞ れの使用割合は、 次のものが好ましい。 具体的には、 特定ジアミン (巳) の 使用割合は、 液晶表示素子の光学特性の点から、 ジアミン成分全体に対し 3 〇〜 1 0 0モル%が好ましく、 5 0 ~ 1 0 0モル%がより好ましい。 特定テ トラカルボン酸 ( ) の使用割合は、 液晶表示素子の光学特性の点から、 テ トラカルボン酸成分全体に対し、 3 0〜 1 0 0モル%が好ましく、 5 0〜 1 0 0モル%がより好ましい。 また、 特定ジアミン (巳) 及び特定テトラカル ボン酸 ( ) は、 それぞれ、 各特性に応じて、 1種類又は 2種類以上を混合 して使用できる。 [0038] The use ratio of each of the specific diamine (Mitsumi) and the specific tetracarboxylic acid (8) is preferably as follows. Specifically, from the viewpoint of the optical characteristics of the liquid crystal display element, the usage ratio of the specific diamine (Mitsumi) is preferably 30 to 100 mol% with respect to the entire diamine component, and 50 to 100 mol% is preferable. More preferable. From the viewpoint of the optical characteristics of the liquid crystal display element, the use ratio of the specific tetratracarboxylic acid () is preferably 30 to 100 mol %, and preferably 50 to 100 mol% with respect to the whole tetracarboxylic acid component. Is more preferable. Further, the specific diamine (Mitsumi) and the specific tetracarbonic acid () can be used either individually or in combination of two or more, depending on their respective characteristics.
[0039] ジアミン成分には、 本発明の効果を損なわない限りにおいて、 特定ジアミ ン (八) 及び特定ジアミン (巳) 以外のジアミン (その他ジアミンともいう 。 ) を用いることもできる。 具体的には、 国際公開公報 \^/〇2 0 1 6 / 0 7 6 4 1 2 (2 0 1 6 . 5 . 1 9公開) の 3 4頁〜 3 8頁に記載される式 [ 3 3 - 1] 〜式 [3 3— 5] のジアミン化合物、 同公報の 3 9頁〜 4 2頁に記 載されるその他ジアミン化合物、 及び同公報の 4 2頁〜 4 4頁に記載される 式 [0八 1] 〜 [0八 1 5] のジアミン化合物が挙げられる。 その他ジアミ 〇 2020/175518 11 卩(:171? 2020 /007619 [0039] As the diamine component, a diamine other than the specific diamine (8) and the specific diamine (Mitsumi) (also referred to as other diamine) can be used as long as the effects of the present invention are not impaired. Specifically, the formula described on pages 34 to 38 of International Publication Gazette \^/〇 2 0 1 6/0 7 6 4 1 2 (2 0 16.5.19 publication) [3 3-1] to diamine compounds of the formula [3 3-5], other diamine compounds described on pages 39 to 42 of the publication, and on pages 42 to 44 of the publication. Examples include diamine compounds represented by the formulas [0 8 1] to [0 8 15]. Other Jami 〇 2020/175518 11 卩(: 171-1? 2020/007619
ンは、 各特性に応じて、 1種又は 2種以上を混合して使用できる。 These can be used singly or as a mixture of two or more types according to each characteristic.
[0040] 特定テトラカルボン酸 ( ) 及び特定テトラカルボン酸 (巳) は、 前記式 [2八] 及び式 [2巳] のテトラカルボン酸二無水物や、 そのテトラカルボ ン酸誘導体であるテトラカルボン酸、 テトラカルボン酸ジハライ ド化合物、 テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキ ルエステルジハライ ド化合物を用いることができる。 [0040] The specific tetracarboxylic acid () and the specific tetracarboxylic acid (Mi) are the tetracarboxylic dianhydrides of the above formulas [2 8] and [2] and their tetracarboxylic acid derivatives. A tetracarboxylic acid dihalide compound, a tetracarboxylic acid dialkyl ester compound or a tetracarboxylic acid dialkyl ester dihalide compound can be used.
テトラカルボン酸成分には、 特定テトラカルボン酸 ( ) 及び特定テトラ カルボン酸 (巳) 以外のその他のテトラカルボン酸を用いることができる。 その他のテトラカルボン酸としては、 次に示すテトラカルボン酸化合物、 テ トラカルボン酸二無水物、 ジカルボン酸ジハライ ド化合物、 ジカルボン酸ジ アルキルエステル化合物又はジアルキルエステルジハライ ド化合物が挙げら れる。 具体的には、 国際公開公報 〇 201 5/01 2368 (201 5. As the tetracarboxylic acid component, other tetracarboxylic acid other than the specific tetracarboxylic acid () and the specific tetracarboxylic acid (Mitsumi) can be used. Examples of other tetracarboxylic acids include the following tetracarboxylic acid compounds, tetracarboxylic acid dianhydrides, dicarboxylic acid dihalide compounds, dicarboxylic acid dialkyl ester compounds and dialkyl ester dihalide compounds. Specifically, International Publication Gazette 〇 201 5/01 2368 (201 5.
1. 29公開) の 33頁〜 34頁に記載される式 [3] のテトラカルボン酸 が挙げられる。 1.29 publication), pages 33 to 34, and tetracarboxylic acids of the formula [3].
[0041] ポリイミ ド系重合体を合成する方法は、 特に限定されない。 通常、 ジアミ ン成分とテトラカルボン酸成分とを反応させて得られる。 具体的には、 国際 公開公報 〇 201 6/0764 1 2 (201 6. 5. 1 9公開) の 46頁 〜 50頁に記載される方法が挙げられる。 [0041] The method for synthesizing the polyimide polymer is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. Specifically, the method described on pages 46 to 50 of WO 201 6/0764 1 2 (Published on May 6, 2010) can be mentioned.
[0042] ジアミン成分とテトラカルボン酸成分との反応は、 通常、 ジアミン成分と テトラカルボン酸成分とを含む溶媒中で行う。 その際に用いる溶媒としては 、 生成したポリイミ ド前駆体が溶解するものであれば特に限定されない。 具体的には、 1\! -メチルー 2 -ピロリ ドン、 1\1 -エチルー 2 -ピロリ ドン 、 アーブチロラクトン、 1\1, 1\1_ジメチルホルムアミ ド、 1\1, 1\1_ジメチル アセトアミ ド、 ジメチルスルホキシド又は 1 , 3—ジメチルー 2—イミダゾ リジノンなどが挙げられる。 また、 ポリイミ ド前駆体の溶媒溶解性が高い場 合は、 メチルエチルケトン、 シクロへキサノン、 シクロペンタノン、 4 -ヒ ドロキシ _4—メチルー 2—ペンタノン又は下記式 [口 1] 〜式 [口3] の 溶媒を用いることができる。 なお、 式 [口 1] 〜式 [03] において、 及 び口 2は炭素数 1 〜 3のアルキル基を示す。 口 3は炭素数 1 〜 4のアルキル基 を示す。 [0042] The reaction between the diamine component and the tetracarboxylic acid component is usually performed in a solvent containing the diamine component and the tetracarboxylic acid component. The solvent used at that time is not particularly limited as long as it can dissolve the formed polyimide precursor. Specifically, 1\!-methyl-2-pyrrolidone, 1\1-ethyl-2-pyrrolidone, arbutyrolactone, 1\1, 1\1_dimethylformamide, 1\1, 1\1_dimethyl Acetamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone and the like can be mentioned. Further, when the solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy _4-methyl-2-pentanone or one of the following formulas [mouth 1] to formula [mouth 3] A solvent can be used. In addition, in formula [mouth 1] to formula [03], Port 2 represents an alkyl group having 1 to 3 carbon atoms. Port 3 represents an alkyl group having 1 to 4 carbon atoms.
[0043] [化 7] [0043] [Chemical 7]
Figure imgf000013_0001
Figure imgf000013_0001
[0044] また、 これらは単独で使用しても、 混合して使用してもよい。 更に、 ポリ イミ ド前駆体を溶解させない溶媒であっても、 生成したポリイミ ド前駆体が 析出しない範囲で、 前記の溶媒に混合して使用してもよい。 また、 有機溶媒 中の水分は重合反応を阻害し、 更には、 生成したポリイミ ド前駆体を加水分 解させる原因となるので、 有機溶媒は脱水乾燥させたものを用いることが好 ましい。 [0044] Further, these may be used alone or in combination. Furthermore, even a solvent that does not dissolve the polyimide precursor may be used as a mixture with the above-mentioned solvent as long as the formed polyimide precursor does not precipitate. Further, since water in the organic solvent inhibits the polymerization reaction and causes hydrolysis of the formed polyimide precursor, it is preferable to use dehydrated and dried organic solvent.
[0045] ポリイミ ド前駆体の重合反応においては、 ジアミン成分の合計モル数を 1 . 0にした際のテトラカルボン酸成分の合計モル数は、 0. 8〜 1 . 2であ ることが好ましい。 [0045] In the polymerization reaction of the polyimide precursor, it is preferable that the total number of moles of the tetracarboxylic acid component is 0.8 to 1.2 when the total number of moles of the diamine component is 1.0. ..
ポリイミ ドはポリイミ ド前駆体を閉環させて得られるポリイミ ドであり、 このポリイミ ドにおいては、 アミ ド酸基の閉環率 (イミ ド化率ともいう。 ) は必ずしも 1 00%である必要はなく、 用途や目的に応じて任意に調整でき る。 なかでも、 ポリイミ ド系重合体の溶媒への溶解性の点から、 30〜 80 %が好ましい。 より好ましいのは、 40〜 70%である。 Polyimide is a polyimide obtained by ring closure of a polyimide precursor, and in this polyimide, the ring closure rate (also referred to as imidation rate) of amide acid groups does not necessarily have to be 100%. , It can be adjusted arbitrarily according to the application and purpose. Among them, 30 to 80% is preferable from the viewpoint of the solubility of the polyimide polymer in the solvent. More preferred is 40 to 70%.
[0046] ポリイミ ド系重合体の分子量は、 そこから得られる液晶配向膜の強度、 液 晶配向膜形成時の作業性及び塗膜性を考慮した場合、 G PC (Gel Permeati on Chromatography) 法で測定した重量平均分子量で 5 , 000〜 1 , 00 0, 000とするのが好ましく、 より好ましいのは、 1 0, 000〜 1 50 , 000である。 [0046] Considering the strength of the liquid crystal alignment film, the workability at the time of forming the liquid crystal alignment film, and the coating property, the molecular weight of the polyimido polymer is determined by GPC (Gel Permeati on Chromatography) The measured weight average molecular weight is preferably from 5,000 to 1,000, 000, more preferably from 10,000 to 150,000.
[0047] <液晶表示素子の製造方法> <Manufacturing Method of Liquid Crystal Display Device>
本発明の液晶表示素子は、 例えば次の製造方法により製造することができ る。 〇 2020/175518 13 卩(:171? 2020 /007619 The liquid crystal display element of the present invention can be manufactured, for example, by the following manufacturing method. 〇 2020/175 518 13 卩(: 171-1? 2020/007619
即ち、 That is,
(丨 ) 第 1の基板を準備する工程; (丨) Step of preparing the first substrate;
( I I ) 液晶性高分子を有する液晶配向処理剤を準備する工程; (II) A step of preparing a liquid crystal alignment treatment agent having a liquid crystalline polymer;
( I I I ) 前記液晶配向処理剤を前記第 1の基板の片面に塗布する工程; (IIII) A step of applying the liquid crystal alignment treatment agent on one surface of the first substrate;
( I V) 得られた塗布面を加温して、 液晶配向膜を前記第 1の基板上に形 成する工程; (IV) A step of heating the obtained coated surface to form a liquid crystal alignment film on the first substrate;
(V) 第 2の基板を準備する工程; (V) a step of preparing a second substrate;
(V I ) ( I V) 工程で得られた第 1の基板と第 2の基板とを、 前記液晶 配向膜が前記第 2の基板と対向するように配置させ且つ前記第 1の基板と前 記第 2の基板とが離間するように配置させる工程;及び (VI) The first substrate and the second substrate obtained in the step (IV) are arranged such that the liquid crystal alignment film faces the second substrate, and the first substrate and the second substrate described above are arranged. Arranging so as to be spaced apart from the second substrate; and
(V I I ) 前記離間した空間に液晶を充填して液晶層とする工程; を有する、 液晶表示素子の製造方法、 により製造することができる。 (V I I) A step of filling a liquid crystal into the separated space to form a liquid crystal layer;
[0048] «工程 (丨 ) >> [0048] «Process (丨) >>
工程 (丨 ) は、 第 1の基板を準備する工程である。 The step () is a step of preparing the first substrate.
第 1の基板として、 上述の基板と同じ定義を有し、 例えば透明な基板であ ればガラス基板又はプラスチック基板などを用いることをできる。 The first substrate has the same definition as the above-mentioned substrate, and for example, a glass substrate or a plastic substrate can be used if it is a transparent substrate.
[0049] «工程 (丨 I ) » [0049] «Process (丨I)»
工程 (丨 丨 ) は、 液晶性高分子を有する液晶配向処理剤を準備する工程で ある。 The step (丨丨) is a step of preparing a liquid crystal alignment treatment agent having a liquid crystalline polymer.
液晶性高分子は、 上述と同じ定義を有する。 The liquid crystalline polymer has the same definition as above.
液晶配向処理剤は、 液晶配向膜を形成するための溶液であり、 該液晶性高 分子及び所定の溶媒を含有する。 なお、 液晶性高分子として、 1種又は 2種 以上を用いることができる。 The liquid crystal alignment treatment agent is a solution for forming a liquid crystal alignment film, and contains the liquid crystalline high molecule and a predetermined solvent. As the liquid crystal polymer, one kind or two or more kinds can be used.
[0050] 液晶配向処理剤中の溶媒の含有量は、 液晶配向処理剤の塗布方法や目的と する膜厚を得るという観点から、 適宜選択できる。 なかでも、 塗布により均 一な液晶配向膜を形成するという観点から、 液晶配向処理剤中の溶媒の含有 量は 50〜 99. 9質量%が好ましい。 なかでも、 60〜 99質量%が好ま しい。 より好ましいのは、 65〜 99質量%である。 〇 2020/175518 14 卩(:171? 2020 /007619 [0050] The content of the solvent in the liquid crystal alignment treatment agent can be appropriately selected from the viewpoint of a method of applying the liquid crystal alignment treatment agent and obtaining a target film thickness. Among them, the content of the solvent in the liquid crystal alignment treatment agent is preferably 50 to 99.9 mass% from the viewpoint of forming a uniform liquid crystal alignment film by coating. Among them, 60 to 99 mass% is preferable. More preferably, it is 65 to 99% by mass. 〇 2020/175 518 14 (:171? 2020/007619
[0051] 液晶配向処理剤に用いる溶媒は、 液晶性高分子を溶解させる溶媒であれば 特に限定されない。 なかでも、 液晶性高分子が、 ポリイミ ド前駆体、 ポリイ ミ ド、 ポリアミ ド、 ポリエステル、 ポリエーテル、 ポリウレタン、 ポリ (エ ステルアミ ド) 、 ポリ (エステルーイミ ド) 、 ポリ (エステルー無水物) 又 はポリ (エステルーカーボナート) の場合、 或いは、 アクリルポリマー、 メ タクリルポリマー、 ノボラック樹脂、 エポキシ樹脂、 ポリヒドロキシスチレ ン、 セルロース又はポリシロキサンの溶媒への溶解性が低い場合は、 下記の 溶媒 (溶媒八類ともいう。 ) を用いることが好ましい。 [0051] The solvent used for the liquid crystal alignment treatment agent is not particularly limited as long as it is a solvent that dissolves the liquid crystalline polymer. Among them, the liquid crystalline polymer is a polyimide precursor, a polyimide, a polyamide, a polyester, a polyether, a polyurethane, a poly(esteramide), a poly(ester-imide), a poly(ester-anhydride) or a poly(ester-anhydride). In the case of (ester carbonate), or when the solubility of acrylic polymer, methacryl polymer, novolac resin, epoxy resin, polyhydroxystyrene, cellulose or polysiloxane in the solvent is low, the following solvent (solvent It is also referred to as Eight kinds).
[0052] 例えば、 1\1 , 1\1—ジメチルホルムアミ ド、 1\1 , 1\1—ジメチルアセトアミ ド 、 1\1 _メチルー 2—ピロリ ドン、 1\1 _エチルー 2—ピロリ ドン、 ジメチルス ルホキシド、 ァーブチロラクトン、 1 , 3—ジメチルー 2—イミダゾリジノ ン、 メチルエチルケトン、 シクロへキサノン、 シクロペンタノン、 4—ヒド ロキシ _ 4—メチルー 2—ペンタノンなどである。 なかでも、 1\1 _メチルー 2—ピロリ ドン、 1\1—エチルー 2—ピロリ ドン又は· ^—ブチロラクトンが好 ましい。 また、 これらは単独で使用しても、 混合して使用してもよい。 [0052] For example, 1\1 ,1\1—dimethylformamide, 1\1 ,1\1—dimethylacetamide, 1\1 _methyl-2-pyrrolidone, 1\1 _ethyl-2-pyrrolidone , Dimethyl sulfoxide, arbutyrolactone, 1,3-dimethyl-2-imidazolidone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone and the like. Of these, 1\1_methyl-2-pyrrolidone, 1\1-ethyl-2-pyrrolidone or ^^-butyrolactone is preferable. These may be used alone or in combination.
[0053] 液晶性高分子が、 アクリルポリマー、 メタクリルポリマー、 ノボラック樹 月旨、 エポキシ樹脂、 ポリヒドロキシスチレン、 セルロース又はポリシロキサ ンである場合、 更には、 液晶性高分子が、 ポリイミ ド前駆体、 ポリイミ ド、 ポリアミ ド、 ポリエステル、 ポリエーテル、 ポリウレタン、 ポリ (エステル アミ ド) 、 ポリ (エステルーイミ ド) 、 ポリ (エステルー無水物) 又はポリ (エステルーカーボナート) であり、 これらの溶媒への溶解性が高い場合は 、 下記の溶媒 (溶媒巳類ともいう。 ) を用いることができる。 [0053] When the liquid crystalline polymer is an acrylic polymer, a methacrylic polymer, a novolac resin, an epoxy resin, polyhydroxystyrene, cellulose or polysiloxane, further, the liquid crystalline polymer is a polyimido precursor, a polyimid , Poly(amide), polyester, polyether, polyurethane, poly(ester amide), poly(ester-imide), poly(ester-anhydride) or poly(ester-carbonate), and their solubility in these solvents is When it is high, the following solvents (also called solvent solvents) can be used.
[0054] 溶媒巳類の具体例は、 国際公開公報 〇 2 0 1 4 / 1 7 1 4 9 3 (2 0 1 4 . 1 0 . 2 3公開) の 5 8頁〜 6 0頁に記載される溶媒巳類が挙げられる 。 なかでも、 1 —へキサノール、 シクロへキサノール、 1 , 2—エタンジオ [0054] Specific examples of solvent solvents are described on pages 58 to 60 of International Publication No. 〇 2 0 1 4/1 7 1 4 9 3 (2 0 1 4 1 .0.2 3 publication). Solvents such as Among them, 1-hexanol, cyclohexanol, 1,2-ethanedine
—ル、 1 , 2—プロパンジオール、 プロピレングリコールモノプチルエーテ ル、 エチレングリコールモノプチルエーテル、 ジプロピレングリコールジメ チルエーテル、 シクロへキサノン、 シクロペンタノン又は前記式 [0 1] 〜 〇 2020/175518 15 卩(:171? 2020 /007619 -L, 1,2-propanediol, propylene glycol monoptyl ether, ethylene glycol monoptyl ether, dipropylene glycol dimethyl ether, cyclohexanone, cyclopentanone or the above formula [0 1] ~ 〇 2020/175 518 15 卩 (: 171-1? 2020/007619
式 [口 3] が好ましい。 The formula [mouth 3] is preferred.
[0055] また、 これら溶媒巳類を用いる際、 液晶配向処理剤の塗布性を改善する目 的に、 前記溶媒八類の 1\1—メチルー 2—ピロリ ドン、 1\1—エチルー 2—ピロ リ ドン又は·)^_ブチロラクトンを併用して用いることが好ましい。 [0055] Further, when using these solvent spins, in order to improve the coating property of the liquid crystal alignment treatment agent, 1\1-methyl-2-pyrrolidone and 1\1-ethyl-2-pyrolide of the above-mentioned solvent baths are used. It is preferable to use redone or ·)^_butyrolactone in combination.
これら溶媒巳類は、 液晶配向処理剤を塗布する際の液晶配向膜の塗膜性や 表面平滑性を高めることができるため、 液晶性高分子にポリイミ ド前駆体、 ポリイミ ド、 ポリアミ ド、 ポリエステル、 ポリエーテル、 ポリウレタン、 ポ リ (エステルアミ ド) 、 ポリ (エステルーイミ ド) 、 ポリ (エステルー無水 物) 又はポリ (エステルーカーボナート) を用いた場合、 前記溶媒 類と併 用して用いることが好ましい。 その際、 溶媒巳類は、 液晶配向処理剤に含ま れる溶媒全体の 1〜 99質量%が好ましい。 なかでも、 1 0〜 99質量%が 好ましい。 より好ましいのは、 20〜 95質量%である。 These solvents can improve the coating property and surface smoothness of the liquid crystal alignment film when applying the liquid crystal alignment treatment agent, so that the liquid crystal polymer can be used as a polyimide precursor, a polyimide, a polyamide, or a polyester. , Polyether, polyurethane, poly(ester amide), poly(ester-imide), poly(ester-anhydride) or poly(ester-carbonate) should be used together with the above solvents. preferable. At that time, the amount of the solvent is preferably 1 to 99% by mass of the whole solvent contained in the liquid crystal alignment treatment agent. Among them, 10 to 99 mass% is preferable. More preferably, it is 20 to 95% by mass.
[0056] 液晶配向処理剤には、 液晶配向膜の膜強度を高めるために、 エポキシ基、 イソシアネート基、 オキセタン基、 シクロカーボネート基、 ヒドロキシ基、 ヒドロキシアルキル基又は低級アルコキシアルキル基を有する化合物を導入 することもできる。 その際、 これらの基は、 化合物中に 2個以上有する必要 がある。 [0056] In order to enhance the film strength of the liquid crystal alignment film, a compound having an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a hydroxy group, a hydroxyalkyl group or a lower alkoxyalkyl group is introduced into the liquid crystal alignment treatment agent. You can also do it. In that case, it is necessary for the compound to have two or more of these groups.
[0057] エポキシ基又はイソシアネート基を有する架橋性化合物の具体例は、 国際 公開公報 〇 201 4/1 7 1 493 (201 4. 1 0. 23公開) の 63 頁〜 64頁に記載されるエポキシ基又はイソシアネート基を有する架橋性化 合物が挙げられる。 [0057] Specific examples of the crosslinkable compound having an epoxy group or an isocyanate group are described in International Publication WO 201 4/1 7 1 493 (published 201 4.10.23), pages 63 to 64. Examples thereof include crosslinkable compounds having a group or an isocyanate group.
オキセタン基を有する架橋性化合物の具体例は、 国際公開公報 \^/0201 1 /1 3275 1 (201 1. 1 0. 27公開) の 58頁〜 59頁に掲載さ れる式
Figure imgf000016_0001
〜式 [4 !<] の架橋性化合物が挙げられる。
Specific examples of the crosslinkable compound having an oxetane group are represented by the formulas shown on pages 58 to 59 of International Publication WO^/0201 1/1 3275 1 (201 1.1.0.27 publication).
Figure imgf000016_0001
~ Crosslinkable compounds of the formula [4 !<] are mentioned.
[0058] シクロカーボネート基を有する架橋性化合物の具体例は、 国際公開公報 0201 2/01 4898 (201 2. 2. 2公開) の 76頁〜 82頁に掲 載される式 [5- 1] 〜式 [5-42] の架橋性化合物が挙げられる。 ヒドロキシル基、 ヒドロキシアルキル基及び低級アルコキシアルキル基を 〇 2020/175518 16 卩(:171? 2020 /007619 [0058] Specific examples of the crosslinkable compound having a cyclocarbonate group include compounds represented by the formula [5-1] disclosed on pages 76 to 82 of International Publication No. 0201 2/01 4898 (201 2.2.2 publication). ~ Crosslinkable compounds of the formula [5-42] are mentioned. Hydroxyl group, hydroxyalkyl group and lower alkoxyalkyl group 〇 2020/175 518 16 卩 (: 171-1? 2020/007619
有する架橋性化合物の具体例は、 国際公開公報 201 4/1 7 1 493 (2 01 4. 1 0. 23公開) の 65頁〜 66頁に記載されるメラミン誘導体又 はべンゾグアナミン誘導体、 及び国際公開公報 〇 201 1 /1 3275 1 (201 1. 1 0. 27公開) の 62頁〜 66頁に掲載される、 式 [6- 1 ] 〜式 [6_48] の架橋性化合物が挙げられる。 Specific examples of the crosslinkable compound have the melamine derivative or the benzoguanamine derivative described on pages 65 to 66 of International Publication No. 201 4/1 7 1 493 (published on 2 01 4.1 0.23), and International There are cross-linkable compounds represented by the formulas [6-1] to [6_48], which are described on pages 62 to 66 of Published Publication No. 201 1/1 3275 1 (published on January 1.1 0.27).
[0059] 液晶配向処理剤における架橋性化合物の含有量は、 すべての重合体成分 1 [0059] The content of the crosslinkable compound in the liquid crystal alignment treatment agent is not limited to all polymer components 1
00質量部に対して、 〇. 1〜 1 〇〇質量部が好ましい。 架橋反応が進行し 、 目的の効果を発現させるためには、 すべての重合体成分 1 〇〇質量部に対 して〇. 1〜 50質量部がより好ましく、 最も好ましいのは、 1〜 30質量 部である。 0.1 to 100 parts by mass is preferable with respect to 00 parts by mass. In order for the crosslinking reaction to proceed and to produce the intended effect, 0.1 to 50 parts by mass is more preferable, and most preferably 1 to 30 parts by mass, relative to 100 parts by mass of all polymer components. It is a department.
[0060] 液晶配向処理剤には、 本発明の効果を損なわない限り、 液晶配向処理剤を 塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を 用いることができる。 更に、 液晶配向膜と電極基板との密着性を向上させる 化合物などを用いることもできる。 [0060] As the liquid crystal alignment treatment agent, a compound that improves the film thickness uniformity and the surface smoothness of the liquid crystal alignment film when the liquid crystal alignment treatment agent is applied can be used as long as the effect of the present invention is not impaired. .. Furthermore, a compound or the like that improves the adhesion between the liquid crystal alignment film and the electrode substrate can be used.
[0061] 液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、 フ ッ素系界面活性剤、 シリコーン系界面活性剤、 又はノニオン系界面活性剤な どが挙げられる。 具体的には、 国際公開公報 〇 201 4/1 7 1 493 ( [0061] Examples of the compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant. Specifically, International Publication 〇 201 4/1 7 1 493 (
201 4. 1 0. 23公開) の 67頁に記載される界面活性剤が挙げられる 。 また、 その使用割合は、 液晶配向処理剤に含有されるすべての重合体成分 1 〇〇質量部に対して、 〇. 〇 1〜 2質量部が好ましい。 より好ましいのは 、 〇. 01〜 1質量部である。 201 4.1 0.23), page 67. Further, the use ratio thereof is preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of all polymer components contained in the liquid crystal alignment treatment agent. More preferred is 0.01 to 1 part by mass.
[0062] 液晶配向膜と電極基板との密着性を向上させる化合物の具体例は、 国際公 開公報 〇 201 4/1 7 1 493 (201 4. 1 0. 23公開) の 67頁 〜 69頁に記載される化合物が挙げられる。 また、 その使用割合は、 液晶配 向処理剤に含有されるすべての重合体成分 1 00質量部に対して、 0. 1〜 [0062] Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the electrode substrate are described on pages 67 to 69 of International Publication WO 201 4/1 7 1 493 (201 4.1 0.23 publication). And the compounds described in 1. The ratio of its use is 0.1 to 100 parts by mass of all polymer components contained in the liquid crystal orientation treatment agent.
30質量部が好ましい。 より好ましいのは、 1〜 20質量部である。 30 parts by mass is preferred. More preferably, it is 1 to 20 parts by mass.
液晶配向処理剤には、 前記以外の化合物の他に、 液晶配向膜の誘電率や導 電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい 〇 2020/175518 17 卩(:171? 2020 /007619 In addition to the compounds other than the above, the liquid crystal alignment treatment agent may be added with a dielectric or conductive substance for the purpose of changing the electrical properties of the liquid crystal alignment film, such as the dielectric constant and conductivity. 〇 2020/175518 17 卩(: 171-1? 2020/007619
[0063] «工程 (丨 I I) » [0063] «Process (丨 I I)»
工程 (丨 丨 丨) は、 液晶配向処理剤を第 1の基板の片面に塗布する工程で ある。 The step (丨丨丨) is a step of applying the liquid crystal alignment treatment agent to one surface of the first substrate.
液晶配向処理剤の塗布方法は、 特に限定されないが、 工業的には、 スクリ —ン印刷、 オフセッ ト印刷、 フレキソ印!^、 インクジェッ ト法、 ディップ法 、 口ールコータ法、 スリッ トコータ法、 スピンナー法、 スプレー法などがあ り、 基板の種類や目的とする膜の膜厚に応じて、 適宜選択することができる The method of applying the liquid crystal alignment treatment agent is not particularly limited, but industrially, screen printing, offset printing, flexo printing !^, ink jet method, dip method, mouth coater method, slit coater method, spinner method. There is a spray method, etc., which can be appropriately selected according to the type of substrate and the film thickness of the target film.
[0064] «工程 ( I V) » [0064] «Process (IV)»
工程 (丨 V) は、 得られた塗布面を加温して、 液晶配向膜を前記第 1の基 板上に形成する工程である。 Step (V) is a step of heating the obtained coated surface to form a liquid crystal alignment film on the first substrate.
加温、 即ち加熱処理は、 用いる基板の種類、 用いる液晶配向処理剤、 特に 液晶配向処理剤に用いられる溶媒、 液晶配向膜の液晶性の発現の温度領域な どに依存するが、 ホッ トプレート、 熱循環型オーブン、 丨
Figure imgf000018_0001
(赤外線) 型才 —ブンなどによる加熱処理することができる。 また、 その温度は、 8 0〜 3 5 0 °〇、 好ましくは 1 0 0〜 3 0 0 °〇、 より好ましくは 1 2 0〜 2 5 0 °〇で あるがのがよい。
The heating, that is, the heat treatment, depends on the type of substrate used, the liquid crystal alignment treatment agent used, particularly the solvent used for the liquid crystal alignment treatment agent, and the temperature range where the liquid crystallinity of the liquid crystal alignment film develops. , Heat cycle type oven, 丨
Figure imgf000018_0001
(Infrared ray) Type-Can be heat-treated with a heater. Further, the temperature is preferably 80 to 350°, preferably 100 to 300°, more preferably 120 to 250°.
焼成後の液晶配向膜の厚みは、 5〜 5 0 0 n m、 好ましくは 1 0〜 3 0 0 11〇1、 より好ましくは 1 〇〜 2 5 0 〇!であるのがよい。 The thickness of the liquid crystal alignment film after calcination,. 5 to 5 0 0 n m, preferably 1 0-3 0 0 11_Rei_1, more preferably 1 〇_~ 2 5 0 〇! A is the good.
[0065] «工程 (V) >> [0065] «Process (V) >>
工程 (V) は、 第 2の基板を準備する工程である。 Step (V) is a step of preparing the second substrate.
第 2の基板は、 電極を備えていれば特に限定されず、 第 1の基板と同じで あっても異なってもよい。 なお、 第 2の基板は、 第 1の基板と同様に、 液晶 配向膜を備えるのが好ましい。 The second substrate is not particularly limited as long as it has electrodes, and may be the same as or different from the first substrate. The second substrate preferably has a liquid crystal alignment film, as in the first substrate.
[0066] «工程 (V I) » [0066] «Process (V I)»
工程 (V I) は、 ( I V) 工程で得られた第 1の基板と第 2の基板とを、 前記液晶配向膜が前記第 2の基板と対向するように配置させ且つ前記第 1の 〇 2020/175518 18 卩(:171? 2020 /007619 In the step (VI), the first substrate and the second substrate obtained in the step (IV) are arranged so that the liquid crystal alignment film faces the second substrate, and the first substrate and the second substrate are arranged. 〇 2020/175 518 18 卩 (:171? 2020 /007619
基板と前記第 2の基板とが離間するように配置させる工程である。 This is a step of disposing the substrate and the second substrate so as to be separated from each other.
ここで、 第 2の基板が液晶配向膜を備える場合、 該液晶配向膜は、 第 1の 基板と対向するように配置させるのがよい。 Here, when the second substrate includes a liquid crystal alignment film, the liquid crystal alignment film is preferably arranged so as to face the first substrate.
なお、 この工程において、 基板間の間隙 (ギャップともいう。 ) を制御す るために、 スぺーサーを導入することもできる。 ギャップは、 用いる基板の 種類、 用いる液晶配向処理剤などに依存するが、 2 . 〇〜 5 0 、 好まし くは 2〜 2 5 、 より好ましくは 2〜 2 0 であるのがよい。 In addition, in this step, a spacer may be introduced in order to control the gap (also referred to as a gap) between the substrates. The gap depends on the type of substrate used, the liquid crystal alignment treatment agent used, etc., but is preferably 2.0 to 50, preferably 2 to 25, and more preferably 2 to 20.
[0067] «工程 (V I I) » [0067] «Process (V I I)»
工程 (V I I) は、 離間した空間に液晶を充填して液晶層とする工程であ る。 The step (V I I) is a step of filling a separated space with liquid crystal to form a liquid crystal layer.
ここで、 液晶及び液晶層は、 上述と同じ定義を有する。 Here, the liquid crystal and the liquid crystal layer have the same definition as described above.
液晶の注入方法は、 特に限定されないが、 例えば、 次の方法が挙げられる 。 即ち、 基板にガラス基板を用いる場合、 液晶配向膜が形成された一対の基 板を用意し、 片側の基板の 4片を、 一部分を除いてシール剤を塗布し、 その 後、 液晶配向膜の面が内側になるようにして、 もう片側の基板を貼り合わせ た空セルを作製する。 そして、 シール剤が塗布されていない場所から液晶を 減圧注入して、 液晶注入セルを得る方法が挙げられる。 更に、 基板にプラス チック基板やフィルムを用いる場合には、 液晶配向膜が形成された一対の基 板を用意し、 片側の基板の上に〇ロ (〇 0「〇卩 ド丨 丨叩) 法やインクジ エッ ト法などで、 液晶を滴下し、 その後、 もう片側の基板を貼り合わせて、 液晶注入セルを得る方法が挙げられる。 The method of injecting liquid crystal is not particularly limited, but the following method may be mentioned, for example. That is, when using a glass substrate as a substrate, prepare a pair of substrates having a liquid crystal alignment film formed thereon, apply a sealant except for a part of four pieces of the substrate on one side, and then, Fabricate an empty cell with the other side of the substrate attached so that the surface is on the inside. Then, a method of obtaining a liquid crystal injection cell by injecting liquid crystal under reduced pressure from a position where the sealant is not applied can be mentioned. Furthermore, when using a plastic substrate or film as the substrate, prepare a pair of substrates on which a liquid crystal alignment film is formed, and place one substrate on top of the substrate with a ◯ (○ 0 "○ 卩丩丨丨) method. The liquid crystal injection cell can be obtained by dropping the liquid crystal by the ink jet method or the ink jet method and then bonding the other substrate.
[0068] 液晶表示素子のギャップは、 前記のスぺーサーなどで制御できる。 その方 法は、 前記の通りに、 液晶中に目的とする大きさのスぺーサーを導入する方 法や、 目的とする大きさのカラムスべーサーを有する基板を用いる方法など が挙げられる。 また、 基板にプラスチックやフィルムを用いて、 基板の貼り 合わせをラミネートで行う場合は、 スぺーサーを導入せずに、 ギャップを制 御できる。 [0068] The gap of the liquid crystal display element can be controlled by the above spacer or the like. As the method, as described above, a method of introducing a spacer of a desired size into the liquid crystal, a method of using a substrate having a column spacer of a desired size, and the like can be mentioned. Also, when using plastic or film for the substrate and laminating the substrates together, the gap can be controlled without introducing spacers.
[0069] 液晶を注入した液晶表示素子は、 液晶の配向性を安定化させる目的で、 加 〇 2020/175518 19 卩(:171? 2020 /007619 [0069] The liquid crystal display element in which liquid crystal is injected is added for the purpose of stabilizing the alignment of the liquid crystal. 〇 2020/175518 19 卩(: 171-1? 2020/007619
熱処理を行うことが好ましい。 その際の温度は、 40~ 1 50°〇が好ましい 。 より好ましいのは、 60〜 1 20°〇である。 It is preferable to perform heat treatment. The temperature at that time is preferably 40 to 150 ° . More preferably, it is 60 to 120 ° .
[0070] 本発明の液晶表示素子の製造方法は、 上記工程 (丨) 〜 (V I I) 以外の 工程を含んでもよい。 例えば、 上述のように、 工程 (V I I) 後に、 液晶の 配向性を安定化させる目的で、 加熱処理を行ってもよい。 [0070] The method for manufacturing a liquid crystal display element of the present invention may include steps other than the above steps () to (VI). For example, as described above, heat treatment may be performed after the step (V I I) for the purpose of stabilizing the alignment of the liquid crystal.
[0071] 本発明の液晶表示素子は、 例えば、 表示を目的とする液晶ディスプレイ、 更には、 光の遮断と透過とを制御する調光窓や光シャッター素子などに応用 することができるが、 これらに限定されない。 [0071] The liquid crystal display device of the present invention can be applied to, for example, a liquid crystal display for display purposes, and further to a dimming window or an optical shutter device that controls blocking and transmission of light. Not limited to.
実施例 Example
[0072] 以下に実施例を挙げ、 本発明をさらに詳しく説明するが、 これらに限定さ れるものではない。 [0072] The present invention is described in more detail below by referring to Examples, but the invention is not limited thereto.
本実施例で用いる略語及び評価機器は下記の通りである。 The abbreviations and evaluation equipment used in this example are as follows.
[0073] <液晶> [0073] <Liquid crystal>
1_ 1 : !_ 1 -2293 (丁 : 85°0, △£ : ! 0 0,
Figure imgf000020_0001
〇.
1_ 1 : !_ 1 -2293 (Ding: 85° 0, △£: !0 0,
Figure imgf000020_0001
〇.
1 32) (メルク社製) 1 32) (Merck)
!_ 2 : (丁 : 92°〇, △5 : 1 2. 2, 八门 : 〇. 220) の物性値 を有する液晶 !_ 2: (Diameter: 92° 〇, △5: 1 2. 2, Eighth: 〇. 220) Liquid crystal with physical property value
!_ 3 : (丁 : 1 02°0, 八 ^ : ァ. 4, 八门 : 〇. 236) の物性値 を有する液晶 Liquid crystal with physical properties of !_ 3 :( Ding: 102 ° 0, 8 ^ :a. 4, 8: 〇.236)
!_4 : (丁 : 90°〇, 八^ : ァ. 4, 八门 : 〇. 299) の物性値を 有する液晶 Liquid crystal with physical properties of !_4: (Cho: 90°, eight ^: a. 4, eight: 〇.299)
<液晶配向処理剤に用いる化合物類> <Compounds used for liquid crystal alignment treatment agent>
<特定ジアミン ( ) > <Specific diamine ()>
[0074] \¥0 2020/175518 20 卩(:17 2020 /007619 [0074] \¥0 2020/175518 20 20 (: 17 2020 /007619
[化 8] [Chemical 8]
Figure imgf000021_0001
Figure imgf000021_0001
[0075] <特定ジアミン (巳) > [0075] <Specific diamine (Mimi)>
[0076] [化 9]
Figure imgf000021_0002
[0076] [Chemical 9]
Figure imgf000021_0002
[0077] <特定テトラカルボン酸 (八) > [0077] <Specific tetracarboxylic acid (8)>
[0078] [化 10] [0078] [Chemical 10]
Figure imgf000021_0003
Figure imgf000021_0003
[0079] <特定テトラカルボン酸 (巳) > [Specific Tetracarboxylic Acid (Mitsumi)]
[0080] [化 1 1 ] [0080] [Chemical 1 1]
Figure imgf000021_0004
Figure imgf000021_0004
[0081 ] <その他テトラカルボン酸> [0081] <Other tetracarboxylic acids>
[0082] 〇 2020/175518 21 卩(:171? 2020 /007619 [0082] 〇 2020/175518 21 卩 (: 171-1? 2020/007619
[化 12] [Chemical 12]
Figure imgf000022_0001
Figure imgf000022_0001
[0083] <溶媒> [0083] <Solvent>
1\/1 ? : 1\1 -メチルー 2 -ピロリ ドン 1\/1 ?: 1\1-methyl-2-pyrrolidone
603 : エチレングリコールモノブチルエーテル 603: Ethylene glycol monobutyl ether
[0084] 「評価機器」 [0084] "Evaluation equipment"
偏光顕微鏡: 巳〇 !_ 丨 ? 3巳 [-V 1 00 〇し (ニコン社製) 顕微鏡用冷却加熱ステージ: 1 〇 841_ (ジャパンハイテック社製) 示差走査熱量計
Figure imgf000022_0002
Polarization microscope: 跳〇 !_ 丨? 3M[-V 100 〇 (manufactured by Nikon Corporation) Cooling/heating stage for microscope: 1 〇 841_ (manufactured by Japan High Tech Co.) Differential scanning calorimeter
Figure imgf000022_0002
丁丁 1_巳 [¾ 丁〇 1_巳 0〇社製) Ding 1__ [Made by ¾ Ding 0_ 1_00 company]
ヘイズメーター: 1~12- 3 (スガ試験機社製) Haze meter: 1 to 12- 3 (manufactured by Suga Test Instruments Co., Ltd.)
粘度計: 巳型粘度計丁 V巳一 221~1, コーンロータ丁巳一 1 (1 ° 34’ , 824) (東機産業社製) Viscometer: Minami-type viscometer V-Michiichi 221-2 ~ 1, Cone rotor Domiichi 1 (1 ° 34', 824) (manufactured by Toki Sangyo Co., Ltd.)
[0085] 「液晶配向処理剤の製造」 [0085] "Production of liquid crystal alignment treatment agent"
<合成例 1> <Synthesis example 1>
1 八一 1 (4. 449, 8. 59〇1〇1〇 1) を 1\/1? (20. 89) で溶 解させ、 その溶液に、 2巳一 1 (2. 509, 8.
Figure imgf000022_0003
を加えた
1 8 1 1 (4.449, 8. 59 〇 1 〇 10 1) was dissolved with 1\/1? (20. 89), and 2 1 1 (2. 50 9 ,8) was added to the solution. .
Figure imgf000022_0003
Added
。 その後、 1\/1? (6. 959) を加え、 40°〇で 2時間反応させ、 樹脂固 形分濃度が 20質量%のポリアミ ド酸溶液 (八) を得た。 このポリアミ ド酸 の粘度は、 380〇1 3 3 (25°〇 であった。 .. Thereafter, 1 \ / 1? A (6.95 9) was added, reacted for 2 hours at 40 ° 〇, resin solid content concentration to obtain a 20% by weight made of Polyamide acid solution (eight). The viscosity of this polyamic acid was 380 〇 13 3 (25 ° 〇).
得られたポリアミ ド酸溶液 (八) (5. 009) に、 1\/1? (9. 759 ) 及び巳〇3 (3. 459) を加え、 25°〇で 2時間撹拌して、 液晶配向処 理剤 (1) を得た。 この液晶配向処理剤には、 濁りや析出などの異常は見ら れず、 均一な溶液であった。 To the resulting made of Polyamide acid solution (eight) (5. 009), 1 \ / 1? (9.75 9) and Snake Rei_3 a (3.45 9) was added, and stirred 2 hours at 25 ° 〇 Thus, a liquid crystal alignment treatment agent (1) was obtained. No abnormalities such as turbidity or precipitation were observed in this liquid crystal alignment treatment agent, and it was a uniform solution.
[0086] <合成例 2> [0086] <Synthesis example 2>
1 八一2 (4. 749, 8. 57〇1〇1〇 1) を 1\/1? (2 1. 1 で溶 〇 2020/175518 22 卩(:171? 2020 /007619 1 eighty-one 2 (4.74 9, 8. 57_Rei_1_rei_1_rei 1) soluble in the 1 \ / 1? (2 1. 1 〇 2020/175 518 22 卩 (: 171? 2020 /007619
解させ、 その溶液に、 2巳一 1 (2. 509, 8.
Figure imgf000023_0001
を加えた
Dissolve the solution, and add to the solution 2 1 1 (2. 50 9 ,8.
Figure imgf000023_0001
Added
。 その後、 1\/1? (7. 259) を加え、 40°〇で 2時間反応させ、 樹脂固 形分濃度が 20質量%のポリアミ ド酸溶液 (巳) を得た。 このポリアミ ド酸 の粘度は、 375〇1 3 3 (25°〇) であった。 .. Thereafter, 1 \ / 1? A (7.25 9) was added, reacted for 2 hours at 40 ° 〇, resin solid content concentration was obtained 20 wt% of the polyamic de acid solution (Serpent). The viscosity of this polyamic acid was 375 〇 1 3 3 (25° 〇).
得られたポリアミ ド酸溶液 (巳) (5. 009) に、 1\/1? (9. 759 ) 及び巳〇3 (3. 459) を加え、 25°〇で 2時間撹拌して、 液晶配向処 理剤 (2) を得た。 この液晶配向処理剤には、 濁りや析出などの異常は見ら れず、 均一な溶液であった。 To the resulting made of Polyamide acid solution (Snake) (5.00 9), 1 \ / 1? A (9.75 9) and Snake Rei_3 (3.45 9) was added, and stirred for 2 hours at 25 ° 〇 Thus, a liquid crystal alignment treatment agent (2) was obtained. No abnormalities such as turbidity or precipitation were observed in this liquid crystal alignment treatment agent, and it was a uniform solution.
[0087] <合成例 3> [0087] <Synthesis example 3>
1 八一3 (3. 449, 1 2. 0〇1〇1〇 1 ) を 1\/1? (20. 89) で溶 解させ、 その溶液に、 2巳一 1 (3. 509, 1 1.
Figure imgf000023_0002
を加えた
1 eighty-one 3 (3.44 9, 1 2. 0_Rei_1_rei_1_rei 1) 1 \ / 1? Is dissolve in (20.89) and, to the solution, 2 Snake one 1 (3.50 9 , 1 1.
Figure imgf000023_0002
Added
。 その後、 1\/1? (6. 959) を加え、 40°〇で 2時間反応させ、 樹脂固 形分濃度が 20質量%のポリアミ ド酸溶液 (〇) を得た。 このポリアミ ド酸 の粘度は、 450〇1 3 3 (25°〇) であった。 .. Thereafter, 1 \ / 1? A (6.95 9) was added, reacted for 2 hours at 40 ° 〇, resin solid content concentration to obtain a 20% by weight made of Polyamide acid solution (〇). The viscosity of this polyamic de acid was 450_Rei_1 3 3 (25 ° 〇).
得られたポリアミ ド酸溶液 (〇) (5. 009) に、 1\/1? (9. 759 ) 及び巳〇3 (3. 459) を加え、 25°〇で 2時間撹拌して、 液晶配向処 理剤 (3) を得た。 この液晶配向処理剤には、 濁りや析出などの異常は見ら れず、 均一な溶液であった。 To the resulting made of Polyamide acid solution (〇) (5. 009), 1 \ / 1? (9.75 9) and Snake Rei_3 a (3.45 9) was added, and stirred 2 hours at 25 ° 〇 Thus, a liquid crystal alignment treatment agent (3) was obtained. No abnormalities such as turbidity or precipitation were observed in this liquid crystal alignment treatment agent, and it was a uniform solution.
[0088] <合成例 4> [0088] <Synthesis example 4>
1 巳一 1 (2. 389, 8. 87〇1〇1〇 1 ) を 1\/1? (23. 69) で溶 解させ、 その溶液に、 2八一 1 (5. 509, 8.
Figure imgf000023_0003
を加えた
1 Minichi 1 (2.389, 8.87 〇 1 〇 1 〇 1) was dissolved with 1\/1? (23. 69) and the solution was added to 2 81 1 (5. 50 9 ,8). .
Figure imgf000023_0003
Added
。 その後、 1\/1? (7. 889) を加え、 40°〇で 2時間反応させ、 樹脂固 形分濃度が 20質量%のポリアミ ド酸溶液 (0) を得た。 このポリアミ ド酸 の粘度は、 360〇1 3 3 (25°〇 であった。 .. Thereafter, 1 \ / 1? A (7.88 9) was added, reacted for 2 hours at 40 ° 〇, resin solid content concentration to obtain a 20% by weight made of Polyamide acid solution (0). The viscosity of this polyamide acid was 360 ° 133 (25°°).
得られたポリアミ ド酸溶液 (口) (5. 009) に、 1\/1? (9. 759 Add 1\/1? (9. 75 9 to the obtained polyamic acid solution (mouth) (5.009).
) 及び巳〇3 (3. 459) を加え、 25°〇で 2時間撹拌して、 液晶配向処 理剤 (4) を得た。 この液晶配向処理剤には、 濁りや析出などの異常は見ら れず、 均一な溶液であった。 〇 2020/175518 23 卩(:171? 2020 /007619 ) And Snake Rei_3 a (3.45 9) was added to give stirred for 2 hours at 25 ° 〇, the liquid crystal alignment treatment agent (4). No abnormalities such as turbidity or precipitation were observed in this liquid crystal alignment treatment agent, and it was a uniform solution. 〇 2020/175 518 23 卩 (:171? 2020 /007619
[0089] <合成例 5> [0089] <Synthesis example 5>
1 八一3 (4. 1 39, 1 4. 4〇1〇1〇 1) を 1\/1? (20. 89) で溶 解させ、 その溶液に、 2- 1 (2. 809, 1 4. 3 〇 丨) を加えた。 その後、
Figure imgf000024_0001
(6. 959) を加え、 25 °〇で 4時間反応させ、 樹脂固形 分濃度が 20質量%のポリアミ ド酸溶液 (巳) を得た。 このポリアミ ド酸の 粘度は、 530〇1 3 3 (25°〇) であった。
1 eighty-one 3 (4.1 39, 1 4. 4_Rei_1_rei_1_rei 1) 1 \ / 1? Is dissolve in (20.89) and, to the solution, 2-1 (2.80 9, 1 4.3 〇) was added. afterwards,
Figure imgf000024_0001
(6.95 9) was added, and reacted for 4 hours at 25 ° 〇, the resin solids concentration was obtained 20 wt% of the polyamic de acid solution (Serpent). The viscosity of this polyamic de acid was 530_Rei_1 3 3 (25 ° 〇).
得られたポリアミ ド酸溶液 (巳) (5. 009) に、 1\/1? (9. 759 ) 及び巳〇3 (3. 459) を加え、 25°〇で 2時間撹拌して、 液晶配向処 理剤 (5) を得た。 この液晶配向処理剤には、 濁りや析出などの異常は見ら れず、 均一な溶液であった。 To the resulting made of Polyamide acid solution (Snake) (5. 009), 1 \ / 1? (9.75 9) and Snake Rei_3 a (3.45 9) was added, and stirred 2 hours at 25 ° 〇 Thus, a liquid crystal alignment treatment agent (5) was obtained. No abnormalities such as turbidity or precipitation were observed in this liquid crystal alignment treatment agent, and it was a uniform solution.
[0090] <合成例 6> [0090] <Synthesis example 6>
1 巳一2 (2. 5 1 9, 23. 2〇1〇1〇 1) を 1\/1? (2 1. 09) で溶 解させ、 その溶液に、 2- 1 (4. 509, 23. 0 〇 1) を加えた。 その後、
Figure imgf000024_0002
(7. 009) を加え、 25 °〇で 4時間反応させ、 樹脂固形 分濃度が 20質量%のポリアミ ド酸溶液 ( ) を得た。 このポリアミ ド酸の 粘度は、 720〇1 3 3 (25°〇) であった。
1 Snake one 2 (2.5 1 9, 23. 2_Rei_1_rei_1_rei 1) 1 \ / 1? (2 1.0 9) was dissolve in the solution, 2-1 (4.50 9 , 23.0.01) was added. afterwards,
Figure imgf000024_0002
(7.009) was added, and the mixture was reacted at 25° for 4 hours to obtain a polyamic acid solution () having a resin solid content concentration of 20% by mass. The viscosity of this polyamic de acid was 720_Rei_1 3 3 (25 ° 〇).
得られたポリアミ ド酸溶液 ( ) (5. 009) に、 1\/1? (9. 759 ) 及び巳〇3 (3. 459) を加え、 25°〇で 2時間撹拌して、 液晶配向処 理剤 (6) を得た。 この液晶配向処理剤には、 濁りや析出などの異常は見ら れず、 均一な溶液であった。 To the resulting made of Polyamide acid solution () (5.00 9), 1 \ / 1? (9.75 9) and Snake Rei_3 a (3.45 9) was added, and stirred 2 hours at 25 ° 〇 Thus, a liquid crystal alignment treatment agent (6) was obtained. No abnormalities such as turbidity or precipitation were observed in this liquid crystal alignment treatment agent, and it was a uniform solution.
[0091] <合成例 7> [0091] <Synthesis example 7>
1 八一3 (2. 3 1 9, 8. 07〇1〇1〇 1) を 1\/1? (2 1. 99) で溶 解させ、 その溶液に、 2八一 1 (5. 009 , 7.
Figure imgf000024_0003
を加えた
1 8 1 3 (2. 3 1 9, 8. 07 0 1 0 1 0 1) was dissolved with 1\/1? (2 1.99 9 ), and 2 81 1 (5. 009, 7.
Figure imgf000024_0003
Added
。 その後、 1\/1? (7. 3 1 9) を加え、 40°〇で 2時間反応させ、 樹脂固 形分濃度が 20質量%のポリアミ ド酸溶液 (◦) を得た。 このポリアミ ド酸 の粘度は、 490〇1 3 3 (25°〇 であった。 .. After that, 1\/1? (7.39) was added and reacted at 40 ° for 2 hours to obtain a polyamic acid solution (◦) with a resin solids concentration of 20% by mass. The viscosity of this polyamic acid was 490 〇 1 3 3 (25 ° 〇).
得られたポリアミ ド酸溶液 (◦) (5. 009) に、 1\/1? (9. 759 To the resulting made of Polyamide acid solution (◦) (5. 009), 1 \ / 1? (9. 75 9
) 及び巳〇3 (3. 459) を加え、 25°〇で 2時間撹拌して、 液晶配向処 〇 2020/175518 24 卩(:171? 2020 /007619 ) And Snake Rei_3 a (3.45 9) was added, and stirred 2 hours at 25 ° 〇 liquid crystal alignment treatment 〇 2020/175 518 24 (:171? 2020/007619
理剤 (7) を得た。 この液晶配向処理剤には、 濁りや析出などの異常は見ら れず、 均一な溶液であった。 The medicine (7) was obtained. No abnormalities such as turbidity or precipitation were observed in this liquid crystal alignment treatment agent, and it was a uniform solution.
[0092] <合成例 8> [0092] <Synthesis example 8>
1 巳一2 (1. 869, 1 7. 2〇1〇1〇 1 ) を 1\/1? (20. 69) で溶 解させ、 その溶液に、 2巳一 1 (5. 009, 1 7. 0〇!〇!〇 I ) を加えた 。 その後、 1\/1? (6. 869) を加え、 25 °〇で 4時間反応させ、 樹脂固 形分濃度が 20質量%のポリアミ ド酸溶液 (!!) を得た。 このポリアミ ド酸 の粘度は、 720〇1 3 3 (25°〇) であった。 1 Minichi 2 (1. 869, 1 7. 2 ○ 1 ○ 10 1) was dissolved with 1\/1? (20. 69), and 2 Minichi 1 1 (5.0091, 1) 7.0 〇 〇 〇! 〇 I) was added. Thereafter, 1 \ / 1? A (6.86 9) was added, and reacted for 4 hours at 25 ° 〇, resin solid content concentration was obtained 20 wt% of the polyamic de acid solution (!!). The viscosity of this polyamic de acid was 720_Rei_1 3 3 (25 ° 〇).
得られたポリアミ ド酸溶液 (1~1) (5. 009) に、 1\/1? (9. 759 To the obtained polyamic acid solution (1 to 1) (5.009), 1\/1? (9. 75 9
) 及び巳〇3 (3. 459) を加え、 25°〇で 2時間撹拌して、 液晶配向処 理剤 (8) を得た。 この液晶配向処理剤には、 濁りや析出などの異常は見ら れず、 均一な溶液であった。 ) And Snake Rei_3 a (3.45 9) was added to give stirred for 2 hours at 25 ° 〇, the liquid crystal alignment treatment agent (8). No abnormalities such as turbidity or precipitation were observed in this liquid crystal alignment treatment agent, and it was a uniform solution.
合成例で得られた液晶配向処理剤を表 1 に示す。 Table 1 shows the liquid crystal alignment treatment agents obtained in the synthesis examples.
[0093] [表 1] [0093] [Table 1]
表 1 table 1
Figure imgf000025_0001
Figure imgf000025_0001
[0094] 「液晶配向膜の液晶性の確認」 〇 2020/175518 25 卩(:171? 2020 /007619 [0094] "Confirmation of liquid crystallinity of liquid crystal alignment film" 〇 2020/175 518 25 卩 (: 171? 2020 /007619
<実施例·!〜 3及び比較例 1〜 4 > <Examples! ~ 3 and Comparative Examples 1 to 4>
合成例の手法で得られた液晶配向処理剤を、 細孔径 1 のメンブランフ ィルタで加圧濾過した。 得られた溶液を、 純水及び丨 (イソプロピルア ルコール) で洗浄したガラス基板 (縦: 3 0〇1 111、 横: 4 0 〇!、 厚さ : 0 . にスピンコートし、 ホツ トプレート上にて 8 0 °〇で 1 2 0秒、 I The liquid crystal alignment treatment agent obtained by the method of Synthesis Example was pressure-filtered with a membrane filter having a pore size of 1. The obtained solution was spin-coated on a glass substrate (vertical: 300111111, lateral: 400!, thickness: 0.0) washed with pure water and isopropyl alcohol. At 80 ° 〇 at 120 seconds, I
8 (赤外線) 型熱循環型クリーンオーブンにて 1 5 0 °〇で 3 0分間加熱処理 をして、 膜厚が 1 〇〇门 の液晶配向膜付きのガラス基板を得た。 A glass substrate with a liquid crystal alignment film having a film thickness of 100 mm was obtained by performing heat treatment at 150 ° C. for 30 minutes in an 8 (infrared) type heat circulation type clean oven.
得られた液晶配向膜付きのガラス基板を、 前記の顕微鏡用冷却加熱ステー ジ付きの偏光顕微鏡を用いて液晶性を確認した。 具体的には、 偏光顕微鏡観 察により、 図 1 に示すような液晶相に由来する光学組織が見られたものを液 晶性有りとし、 見られなかったものを液晶性無しとした。 The liquid crystallinity of the obtained glass substrate with a liquid crystal alignment film was confirmed using the above-mentioned polarizing microscope with a cooling and heating stage for a microscope. Specifically, by observation with a polarizing microscope, those with an optical texture derived from the liquid crystal phase as shown in Fig. 1 were regarded as having liquid crystallinity, and those not observed were regarded as having no liquid crystallinity.
偏光顕微鏡観察の結果を、 表 2にまとめて示す。 The results of the polarization microscope observation are summarized in Table 2.
[0095] 次に、 前記で得られた液晶配向膜付きのガラス基板から液晶配向膜を採取 し、 前記の示差走査熱量計 (0 3 0 を用いて、 吸熱ピーク (液晶相 ®液晶 相転位を示す。 ) (丁 1 ともいう。 ) 及び、 吸熱ピーク (液晶相 ®等方相転 位を示す。 ) (丁 2ともいう。 ) を得た。 その際、 昇温/降温速度は、 1 0 で/分とし、 丁 1及び丁 2は、 2回目のスキヤンから得た。 [0095] Next, a liquid crystal alignment film was sampled from the glass substrate with the liquid crystal alignment film obtained above, and the endothermic peak (liquid crystal phase/liquid crystal phase transition was measured using the differential scanning calorimeter (0 30). ) (Also referred to as Ding 1) and an endothermic peak (indicating a liquid crystal phase/isotropic phase transition) (also referred to as Ding 2) at which the rate of temperature rise/fall is 10 D/min and Ding 1 and Ding 2 were obtained from the second skiyan.
丁 1及び丁 2の結果を、 表 2にまとめて示す。 なお、 比較例 1〜 4では、 丁 1及び丁 2は観察されなかった。 The results of Ding 1 and Ding 2 are summarized in Table 2. In Comparative Examples 1 to 4, Ding 1 and Ding 2 were not observed.
[0096] [表 2] [0096] [Table 2]
表 2 . Table 2.
Figure imgf000026_0001
Figure imgf000026_0001
[0097] 「液晶セル (液晶表示素子) の作製及び光学特性の評価」 〇 2020/175518 26 卩(:171? 2020 /007619 [Preparation of Liquid Crystal Cell (Liquid Crystal Display Element) and Evaluation of Optical Properties] 〇 2020/175 518 26 卩 (:171? 2020 /007619
<実施例 4〜 1 0及び比較例 5〜 8 > <Examples 4 to 10 and Comparative Examples 5 to 8>
合成例の手法で得られた液晶配向処理剤を、 細孔径 1 のメンブランフ ィルタで加圧濾過した。 得られた溶液を、 純水及び丨 (イソプロピルア ルコール) で洗浄した丨 丁〇電極付きガラス基板 (縦: 4 0 、 横: 3 0 01 111、 厚さ : 〇. 7〇1 111) の丨 丁〇面上にスピンコートし、 ホッ トプレート 上にて 8 0 °〇で 9 0秒、 丨
Figure imgf000027_0001
(赤外線) 型熱循環型クリーンオーブンにて加 熱処理をして、 膜厚が 1 〇〇
Figure imgf000027_0002
の液晶配向膜付きのガラス基板を得た。 な お、 実施例 4〜実施例 7では、 I 型熱循環型クリーンオーブンでの加熱処 理は、 1 8 0 °〇で 3 0分行い、 実施例 8は、 2 0 0 °〇で 3 0分行い、 実施例 9、 実施例 1 0及び比較例 5〜 8は、 2 3 0 °〇で 3 0分行った。
The liquid crystal alignment treatment agent obtained by the method of Synthesis Example was pressure-filtered with a membrane filter having a pore size of 1. The obtained solution was washed with pure water and 丨 (isopropyl alcohol) 丨 〇 Glass substrate with electrodes (vertical: 40, horizontal: 3 0 01 111, thickness: 0.7 0 111 1 1) Spin coat on the surface and place it on the hot plate at 80 ° for 90 seconds.
Figure imgf000027_0001
(Infrared) Heat cycle in a clean oven to obtain a film thickness of 100
Figure imgf000027_0002
A glass substrate with a liquid crystal alignment film of was obtained. In Examples 4 to 7, the heating treatment in the type I heat-circulation type clean oven was performed at 180° 〇 for 30 minutes, and in Example 8 at 200° 〇 for 30 minutes. Example 9, Example 10 and Comparative Examples 5 to 8 were performed at 230 ° for 30 minutes.
[0098] この液晶配向膜付きの丨 丁〇基板を 2枚用意し、 液晶配向膜面を内側に、 液晶セルのギャップを制御するためのビーズスぺーサー (6 . 〇 ) を挟 み、 シール剤 (乂1\1 - 1 5 0 0丁 :協立化学産業社製) で周囲を接着して空 セルを作製した。 [0098] Prepare two substrates with this liquid crystal alignment film, sandwich the bead spacer (6.0) for controlling the gap of the liquid crystal cell with the liquid crystal alignment film surface inside, and sealant. A blank cell was prepared by adhering the surrounding area with (1:1-150: manufactured by Kyoritsu Chemical Industry Co., Ltd.).
この空セルに減圧注入法にて前記の液晶 !_ 1〜 !_ 4を注入し、 注入口を封 止して液晶セルを作製した。 その後、 1 2 0 °〇で 3 0分間加熱処理を行い、The above liquid crystals !_ 1 to !_ 4 were injected into this empty cell by a reduced pressure injection method, and the injection port was closed to manufacture a liquid crystal cell. After that, heat treatment at 120 ° 〇 for 30 minutes,
2 3 °〇で1 5時間放置して、 液晶セルを得た。 A liquid crystal cell was obtained by leaving it at 23 ° for 15 hours.
得られた液晶セルを、 前記のヘイズメーターを用いて、 電圧無印加状態 ( 〇 V) 及び電圧印加状態 (交流駆動: 2 0 V)
Figure imgf000027_0003
(曇り度) を測定 した。
Using the haze meter, the obtained liquid crystal cell was subjected to no voltage application (〇 V) and voltage application (AC drive: 20 V).
Figure imgf000027_0003
(Haze) was measured.
その際、
Figure imgf000027_0004
の測定は、 」 I 3 < 7 1 3 6に準拠し、 電圧無印加 状態の 1~1 3 2 6が高いほど散乱特性に優れ、 電圧印加状態での ! ! 3 2 6が低 いほど透明性に優れるとした。
that time,
Figure imgf000027_0004
The measurement is based on I 3 <7 1 3 6, and the higher the value of 1 to 1 3 2 6 when no voltage is applied, the better the scattering characteristics, and the lower the value of !! 3 2 6 when a voltage is applied, the more transparent it is. It is said that it has excellent properties.
の測定結果を、 表 3にまとめて示す。 Table 3 summarizes the measurement results.
[0099] [表 3] [0099] [Table 3]
表 3 . Table 3.
Figure imgf000028_0001
Figure imgf000028_0001
[0100] 上記の結果からわかるように、 特定ジアミン及び特定テトラカルボン酸を 用いた特定ポリイミ ド系重合体を含む液晶配向処理剤を用いた実施例は、 そ れらを含まない、 或いはどちらか一方のみを含む液晶配向処理剤の比較例に 比べて、 液晶配向膜が液晶性を発現し、 良好な光学特性、 即ち、 電圧無印加 状態での H a z eが高く、 電圧印加状態での H a z eが低くなった。 具体的 には、 液晶性の発現は、 実施例 1〜 3と比較例 1〜 4との比較であり、 光学 特性は、 実施例 4〜 1 0と比較例 5〜 8との比較である。 [0100] As can be seen from the above results, the Examples using the liquid crystal alignment treatment agent containing the specific polyimide polymer using the specific diamine and the specific tetracarboxylic acid do not contain them, or either Compared to the comparative example of the liquid crystal alignment treatment agent containing only one, the liquid crystal alignment film exhibited liquid crystallinity and had good optical characteristics, that is, Haze in the state without voltage application was high, and Haze in voltage application state was high. Became lower. Specifically, the expression of liquid crystallinity is a comparison between Examples 1 to 3 and Comparative Examples 1 to 4, and the optical characteristics are a comparison between Examples 4 to 10 and Comparative Examples 5 to 8.
また、 液晶の△ nが大きくなるほど、 電圧無印加状態での H a z eが高く なった。 具体的には、 実施例 4〜実施例 7の比較である。 Moreover, the larger the Δ n of the liquid crystal, the higher the H az e in the absence of applied voltage. Specifically, it is a comparison of Examples 4 to 7.
産業上の利用可能性 Industrial availability
[0101 ] 液晶性を発現する液晶配向膜を用いることで、 液晶組成物中に重合性化合 物を用いることなく、 且つ、 紫外線照射工程が不要な透過散乱型の液晶表示 素子が得られる。 そのため、 本液晶表示素子は、 表示を目的とする液晶ディ スプレイ、 更には、 光の遮断と透過とを制御する調光窓や光シャッター素子 などに用いることができ、 この素子の基板には、 プラスチック基板を用いる ことができる。 また、 本素子は、 LC D (Liquid Crystal Display) や〇 L E D (Organic Light-emitting Diode) ディスプレイなどのディスプレ イ装置の導光板やこれらディスプレイを用いた透明ディスプレイの裏板に用 いることもできる。 [0101] By using the liquid crystal alignment film exhibiting liquid crystallinity, a transmission-scattering liquid crystal display device can be obtained without using a polymerizable compound in the liquid crystal composition and requiring no ultraviolet irradiation step. Therefore, the present liquid crystal display element can be used for a liquid crystal display intended for display, and also for a dimming window or an optical shutter element for controlling the blocking and transmission of light. Use a plastic substrate be able to. The device can also be used as a light guide plate of a display device such as an LC D (Liquid Crystal Display) or an LED (Organic Light-emitting Diode) display, or a back plate of a transparent display using these displays.

Claims

\¥0 2020/175518 29 卩(:17 2020 /007619 \¥0 2020/175 518 29 卩 (: 17 2020 /007619
請求の範囲 The scope of the claims
[請求項 1] 電極を備えた一対の基板の間に液晶を含む液晶層を有し、 且つ、 基 板の少なくとも一方に液晶性を発現する液晶配向膜を備える、 電圧印 加により透明状態と散乱状態とを制御する透過散乱型の液晶表示素子 [Claim 1] A liquid crystal layer containing liquid crystal is provided between a pair of substrates provided with electrodes, and a liquid crystal alignment film exhibiting liquid crystallinity is provided on at least one of the substrates, and a transparent state is obtained by voltage application. Liquid crystal display device of transmission scattering type for controlling scattering state
[請求項 2] 前記透過散乱型の液晶表示素子が、 電圧無印加時に散乱状態になり[Claim 2] The transmission-scattering liquid crystal display element is in a scattering state when no voltage is applied.
、 電圧印加時に透明状態となる請求項 1 に記載の液晶表示素子。The liquid crystal display device according to claim 1, wherein the liquid crystal display device becomes transparent when a voltage is applied.
[請求項 3] 前記液晶が、 正の誘電異方性を有する請求項 1又は請求項 2に記載 の液晶表示素子。 [Claim 3] The liquid crystal display element according to claim 1 or 2, wherein the liquid crystal has a positive dielectric anisotropy.
[請求項 4] 前記液晶の屈折率異方性 (△n) が、 〇. 2 0以上である請求項 1[Claim 4] The liquid crystal refractive index anisotropy (△ n) is 〇. 2 0 or in which claim 1
〜 3のいずれか一項に記載の液晶表示素子。 4. The liquid crystal display device according to any one of items 3 to 3.
[請求項 5] 前記液晶配向膜が、 液晶性高分子を含む請求項 1〜 4のいずれか一 項に記載の液晶表示素子。 [Claim 5] The liquid crystal display device according to any one of claims 1 to 4, wherein the liquid crystal alignment film contains a liquid crystalline polymer.
[請求項 6] 前記液晶性高分子が、 アクリルポリマー、 メタクリルポリマー、 ノ ボラック樹脂、 エポキシ樹脂、 ポリヒドロキシスチレン、 ポリイミ ド 前駆体、 ポリイミ ド、 ポリアミ ド、 ポリエステル、 ポリエーテル、 ポ リウレタン、 ポリ (エステルアミ ド) 、 ポリ (エステルーイミ ド) 、 ポリ (エステルー無水物) 、 ポリ (エステルーカーボナート) 、 セル 口ース又はポリシロキサンから選ばれる少なくとも 1種である請求項 5に記載の液晶表示素子。 [Claim 6] The liquid crystalline polymer is an acrylic polymer, a methacrylic polymer, a novolac resin, an epoxy resin, a polyhydroxystyrene, a polyimide precursor, a polyimide, a polyamide, a polyester, a polyether, a polyurethane, or a poly(polyurethane). 6. The liquid crystal display device according to claim 5, which is at least one selected from ester ester), poly(ester-imide), poly(ester-anhydride), poly(ester-carbonate), cellulose and polysiloxane. ..
[請求項 7] 前記液晶性高分子が、 下記式 [八 1] 〜式 [八 4] (式中、 3 1〜 [Claim 7] The liquid crystalline polymer has the following formula [8 1] to formula [8 4] (wherein 31 to
3 3はそれぞれ独立して、 1〜 1 2の整数を示す。 3 4は 1〜 5の整 数を示す。
Figure imgf000030_0001
及び はそれぞれ独立して、 単結合又は炭素数 1〜
3 3 each independently represents an integer of 1 to 12. 34 indicates an integer from 1 to 5.
Figure imgf000030_0001
And each independently, a single bond or a carbon number of 1 to
1 2のアルキレン基を示す。
Figure imgf000030_0002
はそれぞれ独立して、 水素原 子、 炭素数 1〜 5のアルキル基又は炭素数 1〜 5のアルコキシ基から 選ばれる少なくとも 1種を示す。 ) からなる群八から選ばれる少なく とも 1種の部分構造八と、 下記式 [巳 1] 〜式 [巳 7] (式中、 3八
Figure imgf000030_0003
はそれぞれ独立して、 炭素数 1〜 3のアルキル基を示す。 n 1 〇 2020/175518 30 卩(:171? 2020 /007619
1 2 represents an alkylene group.
Figure imgf000030_0002
Each independently represents at least one selected from a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms. ) And at least one substructure 8 selected from the group consisting of the following formulas [M[1] to [M[7]]
Figure imgf000030_0003
Each independently represents an alkyl group having 1 to 3 carbon atoms. n 1 〇 2020/175 518 30 (: 171? 2020 /007619
〜门 4はそれぞれ独立して、 〇〜 2の整数を示す。 ) からなる群巳か ら選ばれる少なくとも 1種の部分構造巳を有するポリイミ ド前駆体又 は該ポリイミ ド前駆体をイミ ド化したポリイミ ドである請求項 5又は 6に記載の液晶表示素子。 ~ 4 are each independently an integer from 0 to 2. 7. The liquid crystal display element according to claim 5 or 6, which is a polyimido precursor having at least one kind of substructure selected from the group consisting of: or a polyimide obtained by imidizing the polyimido precursor.
[化 1] [Chemical 1]
Figure imgf000031_0001
Figure imgf000031_0001
[請求項 8] 前記ポリイミ ド前駆体又は該ポリイミ ド前駆体をイミ ド化したポリ イミ ドがジアミン成分とテトラカルボン酸成分とから得られ、 前記ジ アミン成分が、 前記少なくとも 1種の部分構造 及び前記少なくとも 1種の部分構造巳のうち、 いずれか一方又は双方を有するジアミンを 有し、 前記テトラカルボン酸成分が、 いずれか一方以外である他方又 は双方を有するテトラカルボン酸を有する請求項 7に記載の液晶表示 素子。 [Claim 8] The polyimide precursor or a polyimide obtained by imidizing the polyimide precursor is obtained from a diamine component and a tetracarboxylic acid component, and the diamine component is the at least one partial structure. And a diamine having any one or both of the at least one partial structure, and the tetracarboxylic acid component has a tetracarboxylic acid having the other or both other than either The liquid crystal display element described in 7.
[請求項 9] 前記ジアミン成分が、 前記少なくとも 1種の部分構造 を有する第 [Claim 9] The diamine component has the at least one partial structure
1のジアミンを有し、 前記テトラカルボン酸成分が、 前記少なくとも 1種の部分構造巳を有する第 1のテトラカルボン酸を有する請求項 8 に記載の液晶表示素子。 9. The liquid crystal display device according to claim 8, wherein the liquid crystal display device has one diamine, and the tetracarboxylic acid component has a first tetracarboxylic acid having the at least one kind of partial structure.
[請求項 10] 前記第 1のジアミンが、 下記式 [1 八] (式中、 X I及び X 3はそ れぞれ独立して、 単結合、 一〇一、 一 0〇一、 - 0 0 0 - 0 0 0 —、 _ C〇N H—、 _ !\1 ! !〇〇_又は _ !\1 —から選ばれる少なくと 〇 2020/175518 31 卩(:171? 2020 /007619 [Claim 10] The first diamine has the following formula [18] (wherein, X I and X 3 are each independently a single bond, 101, 1001, -0) 0 0-0 0 0 —, _ C 〇 NH—, _ !\1! !〇 〇 _ or _ !\1 — at least 〇 2020/175518 31 卩(: 171-1? 2020/007619
も 1種を示す。 X 2は前記式 [八 1] 〜式 [八 4] から選ばれる少な くとも 1種を示す。 ) であり、 前記第 1のテトラカルボン酸が、 下記 式 [2巳] (式中、 丫1及び丫5はそれぞれ独立して、 芳香環、 脂環 式基又は複素環基から選ばれる少なくとも 1種を示す。 丫2及び丫4 はそれぞれ独立して、 単結合、 一〇一、 一0〇一 0 0 0 s 0 〇〇一、
Figure imgf000032_0002
〇一又は一
Figure imgf000032_0001
Also indicates one species. X 2 represents at least one selected from the above formula [8 1] to formula [8 4]. Wherein the first tetracarboxylic acid has the following formula [2] (wherein, 1 and 5 are each independently at least 1 selected from an aromatic ring, an alicyclic group or a heterocyclic group) 2 and 4 are each independently a single bond, 10 1, 100 1 0 0 0 s 0 0 0 1,
Figure imgf000032_0002
〇 one or one
Figure imgf000032_0001
くとも 1種を示す。 丫 3は前記式 [巳 1] 〜式 [巳 7] から選ばれる 少なくとも 1種を示す。 门 5及び n 6はそれぞれ独立して、 0又は 1 の整数を示す。 ) である請求項 9に記載の液晶表示素子。 Indicates at least one species. Reference numeral 3 represents at least one selected from the formulas [Mis 1] to [Mis 7]. Each of 5 and n 6 independently represents an integer of 0 or 1. ) The liquid crystal display element according to claim 9.
[化 2] [Chemical 2]
Figure imgf000032_0003
Figure imgf000032_0003
[請求項 1 1] 前記ジアミン成分が、 前記少なくとも 1種の部分構造巳を有する第 [Claim 11] The diamine component having the at least one kind of partial structure
2のジアミンを有し、 前記テトラカルボン酸成分が、 前記少なくとも 1種の部分構造 を有する第 2のテトラカルボン酸を有する請求項 8 〜 1 0のいずれか一項に記載の液晶表示素子。 The liquid crystal display element according to any one of claims 8 to 10, wherein the liquid crystal display device has a diamine of 2 and the tetracarboxylic acid component has a second tetracarboxylic acid having the at least one partial structure.
[請求項 12] 前記第 2のジアミンが、 下記式 [1 巳] (式中、 X 4は前記式 [巳 [Claim 12] The second diamine has the following formula [1] (wherein X 4 is the formula [
1] 〜式 [巳 7] から選ばれる少なくとも 1種を示す。 ) であり、 前 記第 2のテトラカルボン酸が、 下記式 [2八] (式中、 丫6及び丫1〇 はそれぞれ独立して、 芳香環、 脂環式基又は複素環基から選ばれる少 なくとも 1種を示す。 丫7及び丫9はそれぞれ独立して、 単結合、 一 〇一、 _〇〇一、 _〇〇〇_、 _〇〇〇_、 _ C〇N H—、
Figure imgf000032_0004
1] to formula [Minami 7]. ), And pre-Symbol second tetracarboxylic acid is a compound represented by the following formula [2 eight (wherein丫6 and丫1 〇 are independently selected from an aromatic ring, an alicyclic group or a heterocyclic group 7 and 9 are independent of each other, single bond, 10 1, _ 〇 001, _ 〇 〇 _, _ 〇 〇 _, _ C 〇 NH—,
Figure imgf000032_0004
〇一又は _ 1\1 1~1—から選ばれる少なくとも 1種を示す。 丫 8は前記式 [八 1] 〜式 [八 4] から選ばれる少なくとも 1種を示す。 n 7及び 门 8はそれぞれ独立して、 0又は 1の整数を示す。 ) \¥0 2020/175518 32 卩(:17 2020 /007619 〇1 or at least one selected from _ 1\1 1 to 1—. Reference numeral 8 represents at least one selected from the formula [8 1] to the formula [8 4]. n 7 and door 8 each independently represent an integer of 0 or 1. ) \\0 2020/175 518 32 (: 17 2020 /007619
である請求項 1 1 に記載の液晶表示素子。 The liquid crystal display element according to claim 11, wherein
[化 3] [Chemical 3]
Figure imgf000033_0001
Figure imgf000033_0001
[請求項 13] 前記液晶配向膜が、 8 0〜 3 5 0 °◦の範囲で液晶性を発現する請求 項 1〜 1 2のいずれか一項に記載の液晶表示素子。 13. The liquid crystal display device according to any one of claims 1 to 12, wherein the liquid crystal alignment film exhibits liquid crystallinity in a range of 80 to 350 ° .
[請求項 14] 液晶表示素子の液晶層のギャップが、 2 . 〇〜 5 0 〇1である請求 項 1〜 1 3のいずれか一項に記載の液晶表示素子。 [Claim 14] The liquid crystal display element according to any one of claims 1 to 13, wherein the liquid crystal layer of the liquid crystal display element has a gap of 2.0 to 5001.
[請求項 15] 前記液晶表示素子の基板が、 ガラス基板又はプラスチック基板であ る請求項 1〜 1 4のいずれか一項に記載の液晶表示素子。 15. The liquid crystal display element according to any one of claims 1 to 14, wherein the substrate of the liquid crystal display element is a glass substrate or a plastic substrate.
PCT/JP2020/007619 2019-02-27 2020-02-26 Liquid crystal display element and method for manufacturing same WO2020175518A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021502300A JP7494836B2 (en) 2019-02-27 2020-02-26 Liquid crystal display element and its manufacturing method
CN202080007789.7A CN113287063A (en) 2019-02-27 2020-02-26 Liquid crystal display element and method for manufacturing the same
KR1020217019017A KR20210130703A (en) 2019-02-27 2020-02-26 Liquid crystal display device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-034266 2019-02-27
JP2019034266 2019-02-27

Publications (1)

Publication Number Publication Date
WO2020175518A1 true WO2020175518A1 (en) 2020-09-03

Family

ID=72239952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007619 WO2020175518A1 (en) 2019-02-27 2020-02-26 Liquid crystal display element and method for manufacturing same

Country Status (4)

Country Link
KR (1) KR20210130703A (en)
CN (1) CN113287063A (en)
TW (1) TW202104361A (en)
WO (1) WO2020175518A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634979A (en) * 1992-07-21 1994-02-10 Hitachi Chem Co Ltd Composition for liquid crystal oriented film, production of liquid crystal oriented film, liquid crystal oriented film, liquid crystal holding substrate and liquid crystal display element
JPH10227906A (en) * 1997-02-13 1998-08-25 Asahi Glass Co Ltd Projection type optical device
JP2002155113A (en) * 2000-11-20 2002-05-28 Science Univ Of Tokyo Method for manufacturing novel liquid crystal polymer having chalcone derivative and liquid crystal orientation characteristics in said photo-crosslinked film material
WO2012141173A1 (en) * 2011-04-13 2012-10-18 シャープ株式会社 Scattering-type liquid crystal display device and method for manufacturing same
WO2018135657A1 (en) * 2017-01-23 2018-07-26 日産化学工業株式会社 Liquid crystal aligning agent and method for producing liquid crystal alignment film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3552328B2 (en) 1995-04-03 2004-08-11 大日本インキ化学工業株式会社 Liquid crystal device manufacturing method
JP4630954B2 (en) 2007-05-22 2011-02-09 株式会社ビジョンマルチメディアテクノロジ Polymer / liquid crystal composite material
ES2716084T3 (en) * 2014-06-25 2019-06-10 Nissan Chemical Corp Liquid crystal display element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634979A (en) * 1992-07-21 1994-02-10 Hitachi Chem Co Ltd Composition for liquid crystal oriented film, production of liquid crystal oriented film, liquid crystal oriented film, liquid crystal holding substrate and liquid crystal display element
JPH10227906A (en) * 1997-02-13 1998-08-25 Asahi Glass Co Ltd Projection type optical device
JP2002155113A (en) * 2000-11-20 2002-05-28 Science Univ Of Tokyo Method for manufacturing novel liquid crystal polymer having chalcone derivative and liquid crystal orientation characteristics in said photo-crosslinked film material
WO2012141173A1 (en) * 2011-04-13 2012-10-18 シャープ株式会社 Scattering-type liquid crystal display device and method for manufacturing same
WO2018135657A1 (en) * 2017-01-23 2018-07-26 日産化学工業株式会社 Liquid crystal aligning agent and method for producing liquid crystal alignment film

Also Published As

Publication number Publication date
CN113287063A (en) 2021-08-20
KR20210130703A (en) 2021-11-01
JPWO2020175518A1 (en) 2021-12-23
TW202104361A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
JP7096533B2 (en) Compounds, liquid crystal compositions and liquid crystal display elements
WO2016140278A1 (en) Liquid crystal display element
WO2020184420A1 (en) Resin composition, resin film and liquid crystal display element
CN110945416B (en) Resin composition, resin film, and liquid crystal display element
JP7424364B2 (en) Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
WO2020175517A1 (en) Film and method for manufacturing same
WO2020175518A1 (en) Liquid crystal display element and method for manufacturing same
JP7494836B2 (en) Liquid crystal display element and its manufacturing method
WO2017146216A1 (en) Lcd element
WO2021065933A1 (en) Liquid crystal light control element
CN113474723B (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7226429B2 (en) liquid crystal display element
JP7424363B2 (en) Resin compositions, resin films and liquid crystal display elements
JP7424366B2 (en) Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
JP7494837B2 (en) Resin composition, resin film and liquid crystal display element
WO2020138112A1 (en) Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2020138109A1 (en) Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502300

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762065

Country of ref document: EP

Kind code of ref document: A1