WO2020138112A1 - Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2020138112A1
WO2020138112A1 PCT/JP2019/050692 JP2019050692W WO2020138112A1 WO 2020138112 A1 WO2020138112 A1 WO 2020138112A1 JP 2019050692 W JP2019050692 W JP 2019050692W WO 2020138112 A1 WO2020138112 A1 WO 2020138112A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal alignment
group
treatment agent
alignment treatment
Prior art date
Application number
PCT/JP2019/050692
Other languages
French (fr)
Japanese (ja)
Inventor
加名子 鈴木
雅章 片山
真文 高橋
保坂 和義
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to KR1020217019558A priority Critical patent/KR20210108963A/en
Priority to JP2020563324A priority patent/JP7424315B2/en
Priority to CN201980086389.7A priority patent/CN113260909A/en
Publication of WO2020138112A1 publication Critical patent/WO2020138112A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal alignment treatment agent used for manufacturing a liquid crystal display element, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display element using the liquid crystal alignment film.
  • a film made of an organic material such as a polymer material is widely used as an interlayer insulating film or a protective film in an electronic device because of its focus on ease of formation and insulating performance.
  • an organic film made of polyimide is used as a liquid crystal alignment film.
  • the liquid crystal alignment film is used for the purpose of controlling the alignment state of liquid crystals.
  • the liquid crystal display device has higher definition, it is required to reduce the contrast of the liquid crystal display device and suppress display defects due to long-term use.
  • liquid crystal display devices have been used for mobile applications such as smartphones and mobile phones.
  • mobile applications such as smartphones and mobile phones.
  • the drawing position of the sealant is at a position in contact with the end of the liquid crystal alignment film, which has weak adhesion to the sealant, or at the upper part of the liquid crystal alignment film. Therefore, in recent years, the adhesion between the substrates of the liquid crystal display element has become weaker than in the past.
  • the present invention has high adhesiveness (also referred to as adhesion) between substrates, and further suppresses bubble generation and element peeling in a liquid crystal display element even in an environment exposed to high temperature and high humidity for a long time
  • An object of the present invention is to provide a liquid crystal alignment treatment agent capable of obtaining a liquid crystal alignment film that can be obtained.
  • the present inventor has completed the present invention having the following points. That is, it is a liquid crystal alignment treatment agent containing the following components (A) and (B).
  • Component (A) A compound having three or more thiol groups in the molecule (also referred to as a specific compound).
  • Component (B) a polyimide precursor obtained by reacting a diamine component containing a diamine having a structure of the following formula [1] (also referred to as a specific structure) with a tetracarboxylic acid component, and imidization of the polyimide precursor. At least one polymer selected from the group consisting of the above polyimides (also referred to as a specific polymer).
  • X 1 and X 3 are each independently a single bond, —O—, —NH—, —N(CH 3 )—, —CH 2 O—, —CONH—, —NHCO—, —CON(CH 3 )-, —N(CH 3 )CO—, —COO— or —OCO—,
  • X 2 is an alkylene group having 1 to 18 carbon atoms, or at least one selected from a benzene ring, a cyclocyclohexane ring and a heterocycle.
  • X 4 has a structure selected from the following formulas [1-a] to [1-g]. Show.) (X a represents a hydrogen atom or a benzene ring.
  • X b represents a single bond, a benzene ring, a cyclohexane ring or a heterocycle.
  • X c represents an alkyl group having 1 to 18 carbon atoms, or a C 1 to 18 carbon atom.
  • a fluorine-containing alkyl group, an alkoxyl group having 1 to 18 carbon atoms or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms is shown.
  • the adhesiveness between the substrates of a liquid crystal display element is high, and furthermore, even in an environment exposed to high temperature and high humidity for a long time, it is possible to suppress the generation of bubbles in the liquid crystal display element and the peeling of the element.
  • a liquid crystal display device is obtained. Therefore, the element of the present invention is used for liquid crystal display elements such as smartphones and mobile phones.
  • the mechanism by which the liquid crystal display device having the above-mentioned excellent characteristics is obtained by the present invention is not necessarily clear, but it is presumed as follows.
  • the specific compound Since the specific compound has a thiol group, the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent containing the specific compound has high adhesion to the metal electrode. Moreover, this thiol group can react with X 4 in the specific structure of the specific polymer by ultraviolet rays or heat. Therefore, the specific compound having high adhesion to the metal electrode can be chemically bonded to the specific polymer serving as the base of the liquid crystal alignment film. Thereby, stronger adhesion is obtained.
  • the sealing agent in the sealing agent is cured by curing treatment of the sealing agent at the time of manufacturing the liquid crystal display element, specifically, irradiation of ultraviolet rays.
  • the adhesiveness between the liquid crystal alignment film and the sealant becomes strong. Due to these, after the liquid crystal alignment film is formed, the adhesion between the liquid crystal alignment film and the metal electrode and the liquid crystal alignment film and the sealant becomes high, and the liquid crystal display can be displayed even in an environment exposed to high temperature and high humidity for a long time. It is considered that the liquid crystal display device can suppress the generation of bubbles in the device and the peeling of the device.
  • the specific compound is a compound having three or more thiol groups in the molecule. Specifically, 1,2,3-propanetrithiol, 1,2,4-butanetrithiol, pentaerythritol tris(3-mercaptopropionate), 1,3,5-benzenetrithiol, 2,4 ,6-Mesitylenetrithiol, neopentanetetrathiol, 2,4,6-toluenthithiol, trimethylolpropane tris(3-mercaptopropionate), tris-[(3-mercaptopropionyloxy)-ethyl]-isocyanate Nulate, pentaerythritol tetrakis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate), trimethylolpropane tris (3-mercapto
  • the proportion of the specific compound used is preferably 0.1 to 30 parts by mass based on 100 parts by mass of the specific polymer from the viewpoint of adhesion between the liquid crystal alignment film of the liquid crystal display element and the metal electrode. More preferably, it is 0.5 to 20 parts by mass. Most preferred is 1 to 15 parts by weight.
  • the specific compound may be used alone or in combination of two or more depending on each characteristic.
  • X 1 , X 2 , X 3 , and X 4 are as defined above. Of these, the following are preferred.
  • X 1 is preferably a single bond, —O—, —CH 2 O—, —CONH—, —CON(CH 3 )— or —COO—, more preferably a single bond from the viewpoint of ease of synthesis.
  • X 2 is preferably an alkylene group having 2 to 12 carbon atoms or an organic group having 6 to 24 carbon atoms and having at least one cyclic group selected from a benzene ring and a cyclocyclohexane ring. More preferred are alkylene groups having 2 to 12 carbon atoms from the viewpoints of ease of synthesis and adhesion between the liquid crystal alignment film of the liquid crystal display element and the sealant.
  • X 3 is preferably a single bond, —O—, —NHCO—, —N(CH 3 )CO— or —OCO—. More preferred is a single bond, —O—, —NHCO— or —OCO— from the viewpoint of ease of synthesis.
  • X 4 is preferably the above formula [1-a], formula [1-b], formula [1-d] or formula [1-e].
  • the formula [1-a], the formula [1-b], or the formula [1-e] is more preferable from the viewpoint of ease of synthesis and adhesion between the liquid crystal alignment film of the liquid crystal display element and the sealant.
  • the combinations of X 1 to X 4 are, among others, (1-2a) to (1-4a), (1-6a) to (1-8a), (1-10a) to (1-12a), (1 -14a) to (1-16a), (1-18a) to (1-20a), (1-22a) to (1-24a), (1-26a) to (1-28a), (1-30a) )-(1-32a), (1-34a)-(1-36a), (1-38a)-(1-40a), (1-42a)-(1-44a) or (1-46a)- A combination of (1-48a) is preferable.
  • the specific polymer is a polyimide precursor obtained by reacting a diamine component containing a specific diamine and a tetracarboxylic acid component, or a polyimide obtained by imidizing the polyimide precursor.
  • the polyimide precursor has a structure represented by the following formula [A].
  • R 1 represents a tetravalent organic group.
  • R 2 represents a divalent organic group.
  • a 1 and A 2 each represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • a 3 and A 4 each represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acetyl group.
  • n represents a positive integer.
  • the diamine component is a diamine having two primary or secondary amino groups in the molecule
  • the tetracarboxylic acid component is a tetracarboxylic acid compound, tetracarboxylic acid dianhydride, tetracarboxylic acid dihalide compound, tetra Examples thereof include carboxylic acid dialkyl ester compounds and tetracarboxylic acid dialkyl ester dihalide compounds.
  • a polyimide-based polymer can be obtained relatively easily by using a tetracarboxylic acid dianhydride of the following formula [B] and a diamine of the following formula [C] as a raw material, so that the following formula [D]
  • a polyamic acid having a structural formula of a repeating unit or a polyimide obtained by imidizing the polyamic acid is preferable.
  • R 1 and R 2 are the same as defined in the formula [A].
  • the polymer of the formula [D] obtained by the above formula [A] alkyl group of A 1 and A 2 having 1 to 8 carbon atoms in, and in the formula [A] It is also possible to introduce an alkyl group having 1 to 5 carbon atoms or an acetyl group of A 3 and A 4 .
  • a method of introducing the specific structure into the polyimide polymer it is preferable to use a diamine having the specific structure as a part of the raw material.
  • a diamine of the following formula [1a] also referred to as a specific diamine).
  • Y represents the above formula [1], and the definition and preferable combinations of X 1 to X 4 are as in the above formula [1].
  • n represents an integer of 1 to 4. Among them, an integer of 1 is preferable.
  • Preferred specific examples of the specific diamine include diamines represented by the following formulas [1a-1] to [1a-9].
  • n in the formula is preferably each independently an integer of 2 to 10.
  • the use ratio of the specific diamine is preferably 1 to 50 mol% with respect to the entire diamine component. More preferred is 1 to 40 mol %. Particularly preferred is 5 to 40 mol %.
  • the specific diamine may be used alone or in combination of two or more depending on each characteristic.
  • the diamine component for producing the specific polymer may include a diamine other than the specific diamine (also referred to as other diamine).
  • a diamine other than the specific diamine also referred to as other diamine.
  • Other examples include diamine compounds and the diamine compounds of the formulas [DA1] to [DA15] described on pages 42 to 44 of the publication.
  • These diamine components may be used either individually or in combination of two or more, depending on the characteristics.
  • the tetracarboxylic acid component for producing the specific polymer is not particularly limited, but specifically, the tetracarboxylic acid dicarboxylic acid of the formula [4] described in International Publication WO2016/076412, pages 44 to 45, can be used. Examples include anhydrides and other tetracarboxylic acid components described on pages 45-46. These tetracarboxylic acid components may be used either individually or in combination of two or more, depending on the characteristics.
  • the method for synthesizing the specific polymer is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. Specific examples thereof include the methods described on pages 46 to 50 of International Publication WO2016/076412.
  • the reaction between the diamine component and the tetracarboxylic acid component is usually performed in a solvent containing the diamine component and the tetracarboxylic acid component.
  • the solvent used at that time is not particularly limited as long as it can dissolve the generated polyimide precursor.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinium Non is included.
  • the polyimide precursor has high solvent solubility, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone or a solvent represented by the following formula [D1] to [D3] is used. it can.
  • D 1 and D 2 represent an alkyl group having 1 to 3 carbon atoms.
  • D 3 represents an alkyl group having 1 to 4 carbon atoms.
  • the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2 when the total number of moles of the diamine component is 1.0.
  • Polyimide is obtained by ring-closing a polyimide precursor.
  • the polyimide does not necessarily have a ring closure rate (also referred to as an imidization rate) of an amic acid group of 100%, and can be arbitrarily prepared according to the application or purpose. Among them, 30 to 80% is preferable from the viewpoint of the solubility of the polyimide polymer in the solvent. More preferably, it is 40 to 70%.
  • the molecular weight of the specific polymer is 5, as a weight average molecular weight measured by GPC (Gel Permeation Chromatography) method, in consideration of the strength of the liquid crystal alignment film obtained therefrom, workability at the time of forming the liquid crystal alignment film, and coating property. It is preferably from 000 to 1,000,000, and more preferably from 10,000 to 150,000.
  • the liquid crystal alignment treatment agent is a solution for forming a liquid crystal alignment film, and is a solution containing a specific compound, a specific polymer and a solvent. In that case, two or more types can be used for a specific compound and a specific polymer, respectively.
  • the content of the solvent in the liquid crystal alignment treatment agent can be appropriately selected from the viewpoint of applying the liquid crystal alignment treatment agent and obtaining a target film thickness. Among them, the content of the solvent in the liquid crystal alignment treatment agent is preferably 50 to 99.9 mass% from the viewpoint of forming a uniform liquid crystal alignment film by coating. Among them, 60 to 99 mass% is preferable. More preferably, it is 65 to 99% by mass.
  • the solvent used for the liquid crystal alignment treatment agent is not particularly limited as long as it is a solvent that dissolves the specific compound and the specific polymer. Above all, it is preferable to use the following solvents (also referred to as solvent A).
  • solvents also referred to as solvent A.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone is preferable. Moreover, these may be used individually or may be mixed and used.
  • the following solvent (also referred to as solvent B) can be used.
  • the solvent Bs include the solvent Bs described on pages 58 to 60 of International Publication WO2014/171493. Among them, 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, dipropylene glycol dimethyl ether, cyclohexanone, cyclopentanone or the above formula [D1] To Formula [D3] are preferred.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone of the above-mentioned solvent A is used in combination for the purpose of improving the coating property of the liquid crystal alignment treatment agent. It is preferable to use. Since these solvents B can enhance the coating property and surface smoothness of the liquid crystal alignment film when applying the liquid crystal alignment treatment agent, when a polyimide precursor, polyimide, polyamide or polyester is used as the polymer, It is preferable to use it in combination with the above solvents A. At that time, the amount of the solvent B is preferably 1 to 99% by mass of the whole solvent contained in the liquid crystal alignment treatment agent. Among them, 10 to 99 mass% is preferable, and 20 to 95 mass% is more preferable.
  • the liquid crystal alignment treatment agent includes a compound having an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a hydroxy group, a hydroxyalkyl group or a lower alkoxyalkyl group (collectively, a crosslinker in order to enhance the film strength of the liquid crystal alignment film It is also preferable to introduce a compound). In that case, it is necessary to have two or more groups in the compound.
  • the liquid crystal alignment treatment agent is a group selected from an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group, an alkoxyalkyl group having 1 to 3 carbon atoms, or a polymerizable unsaturated bond group. It is preferable to include at least one crosslinkable compound composed of a compound having two or more. Specific examples of the crosslinkable compound having an epoxy group or an isocyanate group include the crosslinkable compounds having an epoxy group or an isocyanate group described on pages 63 to 64 of WO 2014/171493.
  • crosslinkable compound having an oxetane group examples include crosslinkable compounds of the formulas [4a] to [4k] described on pages 58 to 59 of International Publication WO2011/132751.
  • Specific examples of the crosslinkable compound having a cyclocarbonate group include crosslinkable compounds of the formulas [5-1] to [5-42] described on pages 76 to 82 of WO 2012/014898.
  • crosslinkable compound having a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group include melamine derivatives or benzoguanamine derivatives described on pages 65 to 66 of WO2014/171349, and WO2011/132751. And the crosslinkable compounds of the formulas [6-1] to [6-48] listed on pages 62 to 66.
  • the content of the crosslinkable compound in the liquid crystal alignment treatment agent is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of all polymer components. In order to allow the crosslinking reaction to proceed and to produce the desired effect, 0.1 to 50 parts by mass is more preferable, and 1 to 30 parts by mass is most preferable, relative to 100 parts by mass of all polymer components. ..
  • a compound that improves the film thickness uniformity and the surface smoothness of the liquid crystal alignment film when the liquid crystal alignment treatment agent is applied can be used. Further, a compound or the like that improves the adhesiveness between the liquid crystal alignment film and the electrode substrate can be used.
  • Compounds that improve the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonion-based surfactants. Specific examples thereof include the surfactants described on page 67 of International Publication WO2014/171493. Further, the use ratio thereof is preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of all polymer components contained in the liquid crystal alignment treatment agent. More preferably, it is 0.01 to 1 part by mass.
  • the compound that improves the adhesiveness between the liquid crystal alignment film and the electrode substrate include the compounds described on pages 67 to 69 of International Publication WO2014/171493. Further, the use ratio thereof is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of all polymer components contained in the liquid crystal alignment treatment agent. More preferably, it is 1 to 20 parts by mass.
  • a liquid crystal alignment treatment agent may be added with a dielectric or a conductive substance for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film.
  • the liquid crystal alignment treatment agent can be used as a liquid crystal alignment film by applying alignment treatment by rubbing treatment or light irradiation after coating and baking on the substrate. Further, in the case of vertical alignment applications, it can be used as a liquid crystal alignment film without alignment treatment.
  • the substrate used in this case is not particularly limited as long as it is a highly transparent substrate, and in addition to glass substrates, acrylic substrates, polycarbonate substrates, plastic substrates such as PET (polyethylene terephthalate) substrates, and further films thereof. Can be used.
  • a substrate on which an ITO electrode for driving liquid crystal, a metal electrode such as an IZO (Indium Zinc Oxide) electrode and an IGZO (Indium Gallium Zinc Oxide) electrode, and an organic conductive film are formed. Is preferably used. Further, in the case of a reflective liquid crystal display element, if only one substrate is used, a substrate such as a silicon wafer or a metal such as aluminum or a substrate on which a dielectric multilayer film is formed can be used.
  • the method for applying the liquid crystal alignment treatment agent is not particularly limited, but industrially, a method such as screen printing, offset printing, flexographic printing or an inkjet method is generally used. Other coating methods include a dip method, a roll coater method, a slit coater method, a spinner method or a spray method, and these may be used depending on the purpose.
  • After applying the liquid crystal alignment treatment agent on the substrate it is preferably heated at 30 to 300° C., depending on the solvent used for the liquid crystal alignment treatment agent, by a heating means such as a hot plate, a heat circulation type oven or an IR (infrared) type oven. Can be used as a liquid crystal alignment film by evaporating the solvent at a temperature of 30 to 250° C.
  • the thickness of the liquid crystal alignment film after firing is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display device, and if it is too thin, the reliability of the liquid crystal display device may be deteriorated. Is 10 to 200 nm.
  • the liquid crystal alignment film after firing is treated by rubbing or irradiation with polarized ultraviolet light.
  • the liquid crystal used for the liquid crystal display element is not particularly limited, but for example, nematic liquid crystal, smectic liquid crystal or cholesteric liquid crystal can be used.
  • a liquid crystal having a positive or negative dielectric anisotropy can be selected according to the method of the liquid crystal display element.
  • a dichroic dye may be dissolved in the liquid crystal to form a guest-host type liquid crystal display device.
  • the method of injecting the liquid crystal is not particularly limited, but for example, the following method may be mentioned. That is, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and a sealant is applied to all four of the substrates on one side except for a part thereof, and then the liquid crystal alignment film surface is placed inside and the other side is applied. An empty cell in which the above substrates are bonded together is produced. Then, a method of injecting liquid crystal under reduced pressure from a place where the sealant is not applied to obtain a liquid crystal injection cell can be mentioned. Furthermore, prepare a pair of substrates on which a liquid crystal alignment film is formed, drop the liquid crystal on one substrate by ODF (One Drop Filling) method or inkjet method, and then bond the other substrate. Another method is to obtain a liquid crystal injection cell.
  • ODF One Drop Filling
  • the method of controlling the gap of the liquid crystal display device is not particularly limited, for example, a method of introducing a spacer of a desired size in the liquid crystal, a method of coating on a substrate having a column spacer of the desired size, the purpose A method using a liquid crystal containing a column spacer having a size of
  • the size of the gap of the liquid crystal display element is preferably 1 to 100 ⁇ m. More preferably, it is 1 to 50 ⁇ m. Particularly preferred is 2 to 30 ⁇ m. If the gap is too small, the contrast of the liquid crystal display device will be lowered, and if it is too large, the driving voltage of the device will be high.
  • solvent NMP: N-methyl-2-pyrrolidone
  • NEP N-ethyl-2-pyrrolidone
  • BCS ethylene glycol monobutyl ether
  • PB propylene glycol monobutyl ether
  • the imidization ratio is determined by using a proton derived from a structure that does not change before and after imidization as a reference proton, and the peak integrated value of this proton and the proton peak derived from the NH group of amic acid that appears near 9.5 ppm to 10.0 ppm. It was calculated by the following formula using the integrated value.
  • Imidization rate (%) (1- ⁇ x/y) ⁇ 100 (X is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, ⁇ is a reference proton for one NH group proton of amic acid in the case of polyamic acid (imidization rate is 0%) Is the proportion of the number of.)
  • Table 4 shows the polyimide-based polymers obtained in Synthesis Examples 1 to 11. *1: Polyamic acid. *2: Polyamic acid alkyl ester.
  • “Storage stability test for liquid crystal alignment agents” A storage stability test was conducted using the liquid crystal alignment treatment agents obtained in Examples and Comparative Examples. Specifically, the liquid crystal alignment treatment agent was pressure-filtered with a membrane filter having a pore size of 1 ⁇ m and stored at ⁇ 15° C. for 72 hours. Then, by visual observation, it was confirmed that turbidity and precipitates were generated in the liquid crystal alignment treatment agent. As a result, all the liquid crystal alignment treatment agents of Examples and Comparative Examples were uniform solutions without turbidity or precipitates.
  • a 6 ⁇ m spacer is applied to the liquid crystal alignment film surface of one substrate, and a sealant (723K1) (manufactured by Kyoritsu Chemical Industry Co., Ltd.) is applied to the liquid crystal alignment film surface of the other substrate.
  • the substrates were laminated so that the liquid crystal alignment film surfaces of the substrates face each other.
  • the application amount of the sealing agent was adjusted so that the area of the sealing agent after the bonding was 5 ⁇ 50 mm (length ⁇ width).
  • the bonded substrates are irradiated with 3 J/cm 2 of ultraviolet rays at a wavelength conversion of 365 nm by using a metal halide lamp with an illuminance of 20 mW/cm 2 , and then in a heat cycle type clean oven at 120° C. for 60 minutes. A heat treatment was performed to produce a cell for evaluation of adhesion.
  • the evaluation of the adhesiveness was carried out using a tabletop precision universal testing machine (AGS-X 500N) (manufactured by Shimadzu Corporation). Specifically, after fixing the upper and lower ends of the obtained cell, the breaking strength (N) when pulled in the vertical direction was measured. In the evaluation, the larger the value of the breaking strength, the more excellent the adhesion is, that is, the more excellent this evaluation is. The results are shown in Tables 8 to 10.
  • the liquid crystal alignment treatment agents obtained in Examples and Comparative Examples were pressure-filtered with a membrane filter having a pore size of 1 ⁇ m, and washed with pure water and IPA.
  • a substrate with ITO electrodes (length 40 mm ⁇ width 30 mm, thickness) (0.7 mm) ITO surface is spin-coated, and heat-treated at 120° C. for 2 minutes on a hot plate and at 230° C. for 30 minutes in a heat circulation type clean oven to have a liquid crystal alignment film with a thickness of 100 nm.
  • the ITO substrate of was obtained.
  • liquid crystal alignment film surface of this substrate was rubbed with a rubbing device having a roll diameter of 120 mm under the conditions of a roll rotation speed of 500 rpm, a roll advancing speed of 30 mm/sec, and a pushing amount of 0.3 mm. Processed.
  • a spacer of 4 ⁇ m is applied to the liquid crystal alignment film surface of one substrate, and a sealant (XN- 1500T) (manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.) was applied, and the substrates were laminated so that the liquid crystal alignment film surfaces of these substrates face each other. At that time, the substrates were laminated so that the rubbing directions of the substrates were opposite to each other.
  • heat treatment was performed at 120° C. for 90 minutes in a heat circulation type clean oven to prepare an empty cell. Liquid crystal was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal cell.
  • MLC-2003 positive type liquid crystal
  • MLC-6608 negative liquid crystal
  • Example 3 A1 (0.30 g), K1 (0.18 g), NMP (23.8 g) and BCS (7.83 g) were added to the polyamic acid solution (2) (10.0 g) obtained in Synthesis Example 2, The mixture was stirred at 25°C for 15 hours to obtain a liquid crystal alignment treatment agent (3).
  • NEP (31.3 g) was added to the polyimide powder (3) (2.50 g) obtained in Synthesis Example 3 and stirred at 60° C. for 24 hours to be dissolved.
  • A2 (0.15 g) and BCS (7.83 g) were added to this solution and stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (4).
  • Example 5 In the polyamic acid solution (4) (10.0 g) obtained in Synthesis Example 4, A1 (0.13 g), A2 (0.075 g), NMP (19.9 g), BCS (7.83 g) and PB ( 3.92 g) was added and stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (5).
  • A1 (0.15 g), NMP (16.0 g) and BCS (15.7 g) were added to the polyamic acid solution (5) (10.0 g) obtained in Synthesis Example 5, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (6) was obtained.
  • NEP (23.5 g) was added to the polyimide powder (6) (2.50 g) obtained in Synthesis Example 6 and stirred at 60° C. for 24 hours to be dissolved.
  • A2 (0.20 g) and PB (15.7 g) were added to this solution, and the mixture was stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (7).
  • NEP (23.5 g) was added to the polyimide powder (6) (2.50 g) obtained in Synthesis Example 6 and stirred at 60° C. for 24 hours to be dissolved.
  • A2 (0.20 g), K1 (0.18 g) and PB (15.7 g) were added to this solution, and the mixture was stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (8).
  • Example 9 To the polyamic acid solution (7) (10.0 g) obtained in Synthesis Example 7, A1 (0.10 g), K2 (0.08 g), NMP (19.9 g), BCS (7.83 g) and PB( 3.92 g) was added and stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (9).
  • Example 10 To the polyamic acid solution (8) (10.0 g) obtained in Synthesis Example 8, A2 (0.15 g), K2 (0.18 g), NMP (19.9 g) and BCS (11.8 g) were added, The mixture was stirred at 25°C for 15 hours to obtain a liquid crystal alignment treatment agent (10).
  • Example 11 A1 (0.23 g), NMP (19.9 g) and BCS (11.8 g) were added to the polyamic acid solution (9) (10.0 g) obtained in Synthesis Example 9, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (11) was obtained.
  • Example 12 To the polyamic acid solution (9) (10.0 g) obtained in Synthesis Example 9, A1 (0.23 g), K1 (0.13 g), NMP (19.9 g) and BCS (11.8 g) were added, The mixture was stirred at 25°C for 15 hours to obtain a liquid crystal alignment treatment agent (12).
  • NMP (31.3 g) was added to the polyamic acid alkyl ester powder (10) (2.50 g) obtained in Synthesis Example 10, and the mixture was stirred at 40° C. for 24 hours to be dissolved. A1 (0.30 g) and BCS (7.83 g) were added to this solution, and the mixture was stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (13).
  • NEP (31.3 g) was added to the polyamic acid alkyl ester powder (10) (2.50 g) obtained in Synthesis Example 10, and the mixture was stirred at 40° C. for 24 hours to be dissolved. A2 (0.20 g), K2 (0.13 g) and BCS (7.83 g) were added to this solution, and the mixture was stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (14).
  • ⁇ Comparative example 3> A1 (0.20 g), NMP (23.8 g) and BCS (7.83 g) were added to the polyamic acid solution (11) (10.0 g) obtained in Synthesis Example 11, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (17) was obtained.
  • ⁇ Comparative example 4> A1 (0.15 g), NMP (16.0 g) and BCS (15.7 g) were added to the polyamic acid solution (12) (10.0 g) obtained in Synthesis Example 12, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (18) was obtained.
  • *3 Indicates the content (parts by mass) of the specific compound with respect to 100 parts by mass of the polymer.
  • *4 Indicates the content (parts by mass) of the crosslinkable compound with respect to 100 parts by mass of the polymer.
  • *5 A very small amount of bubbles were found in the device.
  • *6 A small amount of bubbles were found in the element (more than *5).
  • *7 Bubbles were found in the element (more than *6).
  • *8 Many bubbles were found in the element (more than *7).
  • the example using the liquid crystal alignment treatment agent containing a specific compound having three or more thiol groups in the molecule has the above characteristics in comparison with the comparative example of the liquid crystal alignment treatment agent containing a compound having two thiol groups.
  • the comparative example of the liquid crystal alignment treatment agent containing a compound having two thiol groups. was excellent.
  • Example 1 and Comparative Example 7 there are comparison between Example 1 and Comparative Example 7, and comparison between Example 6 and Comparative Example 8.
  • the crosslinkable compound was introduced into the liquid crystal alignment treatment agent, no bubbles were generated in the liquid crystal cell in the emphasis test.
  • there are a comparison between Example 2 and Example 3 a comparison between Example 7 and Example 8
  • the liquid crystal alignment treatment agent of the present invention has high adhesiveness between substrates of a liquid crystal display element by using the obtained liquid crystal alignment film, and further, even in a harsh environment exposed to high temperature and high humidity for a long time. It is possible to obtain a liquid crystal display element capable of suppressing the generation of bubbles in the liquid crystal display element and the peeling of the element. Therefore, it can be suitably used for liquid crystal display devices such as smartphones and mobile phones.
  • the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-246262 filed on Dec. 27, 2018 are cited herein as disclosure of the specification of the present invention. , Take in.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Provided are: a liquid crystal alignment treatment agent with which it is possible to obtain a liquid crystal alignment film that provides high adhesiveness (adhesion) between substrates and can suppress air bubbles generating within the liquid crystal display element as well as detachment of the elements even in an environment exposed to high temperature and high humidity for a long period; a liquid crystal alignment film obtained using said agent; and a liquid crystal display element. The liquid crystal alignment treatment agent contains the following component (A) and component (B). Component (A) is a compound that contains at least three thiol groups within the molecule. Component (B) is at least one type of polymer selected from the group consisting of: polyimide precursors obtained by a reaction between a diamine component that contains a diamine having the structure shown in formula [1] and a tetracarboxylic acid component; and polyimides formed by imidization of said polyimide precursor. (Definitions of the symbols used in the formula are as given in the description.)

Description

液晶配向処理剤、液晶配向膜及び液晶表示素子Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
 本発明は、液晶表示素子の製造に用いられる液晶配向処理剤、該液晶配向処理剤から得られる液晶配向膜、及び該液晶配向膜を使用した液晶表示素子に関する。 The present invention relates to a liquid crystal alignment treatment agent used for manufacturing a liquid crystal display element, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display element using the liquid crystal alignment film.
 高分子材料など有機材料からなる膜は、形成の容易さや絶縁性能などが着目され、電子デバイス中の層間絶縁膜や保護膜等として広く用いられている。なかでも、表示デバイスとして良く知られた液晶表示素子では、ポリイミドからなる有機膜が液晶配向膜として使用されている。
 液晶配向膜は、液晶の配向状態を制御する目的で使用されるものである。しかしながら、液晶表示素子の高精細化に伴い、液晶表示素子のコントラスト低下や長期使用に伴う表示不良の抑制が求められている。
BACKGROUND ART A film made of an organic material such as a polymer material is widely used as an interlayer insulating film or a protective film in an electronic device because of its focus on ease of formation and insulating performance. Among them, in a liquid crystal display element well known as a display device, an organic film made of polyimide is used as a liquid crystal alignment film.
The liquid crystal alignment film is used for the purpose of controlling the alignment state of liquid crystals. However, as the liquid crystal display device has higher definition, it is required to reduce the contrast of the liquid crystal display device and suppress display defects due to long-term use.
 これらに対して、ポリイミドを用いた液晶配向膜において、液晶配向性を高め、液晶表示画面周辺部に表示不良が生じにくくする手法として、アルコキシシラン化合物を添加した液晶配向処理剤を用いた液晶配向膜が提案されている(特許文献1、2参照)。 On the other hand, in a liquid crystal alignment film using polyimide, a liquid crystal alignment treatment using a liquid crystal alignment treatment agent containing an alkoxysilane compound is used as a method of improving the liquid crystal alignment property and making it difficult for a display defect to occur in the peripheral portion of the liquid crystal display screen. Membranes have been proposed (see Patent Documents 1 and 2).
日本特開昭61-171762号公報Japanese Patent Laid-Open No. 61-171762 日本特開平11-119226号公報Japanese Patent Laid-Open No. 11-119226
 近年、スマートフォンや携帯電話などのモバイル用途向けに、液晶表示素子が用いられている。これら用途では、できるだけ広い表示面を確保するため、液晶表示素子の基板間を接着させるために用いるシール剤の幅を、従来に比べて狭くする必要がある。更に前記理由により、シール剤の描画位置を、シール剤との接着性が弱い液晶配向膜の端部に接した位置、或いは液晶配向膜の上部にすることも求められている。
 そのため、近年では、従来に比べて、液晶表示素子の基板間の接着が弱い状況となっている。更に、このような場合、高温高湿条件下での使用により、シール剤と液晶配向膜との間から水が混入しやすくなり、液晶表示素子の額縁付近での表示ムラや素子内での気泡の発生、更には、素子の剥がれが起こってしまう。
In recent years, liquid crystal display devices have been used for mobile applications such as smartphones and mobile phones. In these applications, in order to secure a display surface as wide as possible, it is necessary to make the width of the sealant used for bonding the substrates of the liquid crystal display element narrower than in the conventional case. Further, for the above reason, it is also required that the drawing position of the sealant is at a position in contact with the end of the liquid crystal alignment film, which has weak adhesion to the sealant, or at the upper part of the liquid crystal alignment film.
Therefore, in recent years, the adhesion between the substrates of the liquid crystal display element has become weaker than in the past. Furthermore, in such a case, when used under high temperature and high humidity conditions, water easily mixes in between the sealant and the liquid crystal alignment film, resulting in display unevenness near the frame of the liquid crystal display element and bubbles in the element. Occurs, and the element peels off.
 この問題に対して、液晶配向膜とシール剤との密着性を高める手法として、液晶配向処理剤にアルコキシラン化合物を添加する手法がある。しかし、アルコキシシラン化合物を液晶配向処理剤中に添加した場合、シール剤と液晶配向膜との接着性を高めることができるが、液晶配向処理剤の保存中にアルコキシ化合物中のアルコキシ基の縮合反応が進行し、液晶配向処理剤の粘度上昇やゲル化物の発生など、液晶配向処理剤の保存安定性が悪くなる問題がある。 For this problem, there is a method of adding an alkoxysilane compound to the liquid crystal alignment treatment agent as a method of improving the adhesion between the liquid crystal alignment film and the sealant. However, when the alkoxysilane compound is added to the liquid crystal alignment treatment agent, the adhesiveness between the sealant and the liquid crystal alignment film can be increased, but the condensation reaction of the alkoxy group in the alkoxy compound during storage of the liquid crystal alignment treatment agent Occurs, and there is a problem that the storage stability of the liquid crystal alignment treatment agent deteriorates, such as an increase in the viscosity of the liquid crystal alignment treatment agent and the generation of a gelled product.
 本発明は、基板間の接着性(密着性ともいう。)が高く、更には、長時間、高温高湿に曝される環境においても、液晶表示素子内の気泡の発生や素子の剥がれを抑制できる液晶配向膜が得られる液晶配向処理剤を提供することを目的とする。加えて、上記の液晶配向処理剤から得られる液晶配向膜、及び該液晶配向膜を有する液晶表示素子を提供することも目的とする。 INDUSTRIAL APPLICABILITY The present invention has high adhesiveness (also referred to as adhesion) between substrates, and further suppresses bubble generation and element peeling in a liquid crystal display element even in an environment exposed to high temperature and high humidity for a long time An object of the present invention is to provide a liquid crystal alignment treatment agent capable of obtaining a liquid crystal alignment film that can be obtained. In addition, it is also an object to provide a liquid crystal alignment film obtained from the above liquid crystal alignment treatment agent, and a liquid crystal display device having the liquid crystal alignment film.
 本発明者は、前記の目的を達成するため鋭意研究を進めた結果、以下の要旨を有する本発明を完成するに至った。
 即ち、下記(A)成分及び(B)成分を含有する液晶配向処理剤である。
 (A)成分:分子内にチオール基を3個以上有する化合物(特定化合物ともいう。)。
 (B)成分:下記式[1]の構造(特定構造ともいう。)を有するジアミンを含有するジアミン成分とテトラカルボン酸成分との反応で得られるポリイミド前駆体、及び該ポリイミド前駆体をイミド化したポリイミドからなる群から選ばれる少なくとも1種の重合体(特定重合体ともいう。)。
Figure JPOXMLDOC01-appb-C000008
(X、Xは、それぞれ独立して、単結合、-O-、-NH-、-N(CH)-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-又は-OCO-を示す。Xは炭素数1~18のアルキレン基、又はベンゼン環、シクロシクロヘキサン環及び複素環から選ばれる少なくとも1種の環状基を有する炭素数6~24の有機基を示し、これら環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。Xは下記式[1-a]~式[1-g]から選ばれる構造を示す。)
Figure JPOXMLDOC01-appb-C000009
(Xは,水素原子又はベンゼン環を示す。Xは単結合、ベンゼン環、シクロへキサン環又は複素環を示す。Xは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を示す。)
As a result of earnest research to achieve the above-mentioned object, the present inventor has completed the present invention having the following points.
That is, it is a liquid crystal alignment treatment agent containing the following components (A) and (B).
Component (A): A compound having three or more thiol groups in the molecule (also referred to as a specific compound).
Component (B): a polyimide precursor obtained by reacting a diamine component containing a diamine having a structure of the following formula [1] (also referred to as a specific structure) with a tetracarboxylic acid component, and imidization of the polyimide precursor. At least one polymer selected from the group consisting of the above polyimides (also referred to as a specific polymer).
Figure JPOXMLDOC01-appb-C000008
(X 1 and X 3 are each independently a single bond, —O—, —NH—, —N(CH 3 )—, —CH 2 O—, —CONH—, —NHCO—, —CON(CH 3 )-, —N(CH 3 )CO—, —COO— or —OCO—, X 2 is an alkylene group having 1 to 18 carbon atoms, or at least one selected from a benzene ring, a cyclocyclohexane ring and a heterocycle. 6 represents an organic group having 6 to 24 carbon atoms having a cyclic group, and any hydrogen atom on these cyclic groups represents an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms. It may be substituted with a fluorine-containing alkyl group of 3, a fluorine-containing alkoxyl group of 1 to 3 carbon atoms, or a fluorine atom. X 4 has a structure selected from the following formulas [1-a] to [1-g]. Show.)
Figure JPOXMLDOC01-appb-C000009
(X a represents a hydrogen atom or a benzene ring. X b represents a single bond, a benzene ring, a cyclohexane ring or a heterocycle. X c represents an alkyl group having 1 to 18 carbon atoms, or a C 1 to 18 carbon atom. A fluorine-containing alkyl group, an alkoxyl group having 1 to 18 carbon atoms or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms is shown.)
 本発明によれば、液晶表示素子の基板間の接着性が高く、更には、長時間、高温高湿に曝される環境においても、液晶表示素子内の気泡の発生や素子の剥がれを抑制できる液晶表示素子が得られる。そのため、本発明の素子は、スマートフォンや携帯電話などの液晶表示素子に用いられる。
 本発明により何故に上記の優れた特性を有する液晶表示素子が得られるメカニズムは、必ずしも明らかではないが、ほぼ次のように推定される。
ADVANTAGE OF THE INVENTION According to this invention, the adhesiveness between the substrates of a liquid crystal display element is high, and furthermore, even in an environment exposed to high temperature and high humidity for a long time, it is possible to suppress the generation of bubbles in the liquid crystal display element and the peeling of the element. A liquid crystal display device is obtained. Therefore, the element of the present invention is used for liquid crystal display elements such as smartphones and mobile phones.
The mechanism by which the liquid crystal display device having the above-mentioned excellent characteristics is obtained by the present invention is not necessarily clear, but it is presumed as follows.
 特定化合物は、チオール基を有することから、それを含む液晶配向処理剤から得られる液晶配向膜は金属電極との密着性が高くなる。また、このチオール基は、紫外線や熱により、特定重合体の特定構造中のXと反応することができる。そのため、金属電極との密着性が高くなる特定化合物を、液晶配向膜のベースとなる特定重合体に化学結合させることができる。それにより、より強い密着性が得られる。 Since the specific compound has a thiol group, the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent containing the specific compound has high adhesion to the metal electrode. Moreover, this thiol group can react with X 4 in the specific structure of the specific polymer by ultraviolet rays or heat. Therefore, the specific compound having high adhesion to the metal electrode can be chemically bonded to the specific polymer serving as the base of the liquid crystal alignment film. Thereby, stronger adhesion is obtained.
 更に、特定化合物中のチオール基と特定構造中のXは、紫外線により光反応することから、液晶表示素子作製時のシール剤の硬化処理、具体的には紫外線の照射により、シール剤中の重合性化合物の反応基と反応し、液晶配向膜とシール剤との密着性が強固なものとなる。
 これらのことより、液晶配向膜を形成後、液晶配向膜と金属電極、及び液晶配向膜とシール剤との密着性が高くなり、長時間、高温高湿に曝される環境においても、液晶表示素子内の気泡の発生や素子の剥がれを抑制することができる液晶表示素子となると考えられる。
Further, since the thiol group in the specific compound and X 4 in the specific structure are photoreacted by ultraviolet rays, the sealing agent in the sealing agent is cured by curing treatment of the sealing agent at the time of manufacturing the liquid crystal display element, specifically, irradiation of ultraviolet rays. By reacting with the reactive group of the polymerizable compound, the adhesiveness between the liquid crystal alignment film and the sealant becomes strong.
Due to these, after the liquid crystal alignment film is formed, the adhesion between the liquid crystal alignment film and the metal electrode and the liquid crystal alignment film and the sealant becomes high, and the liquid crystal display can be displayed even in an environment exposed to high temperature and high humidity for a long time. It is considered that the liquid crystal display device can suppress the generation of bubbles in the device and the peeling of the device.
<特定化合物>
 特定化合物は、分子内にチオール基を3個以上有する化合物である。
 具体的には、1,2,3-プロパントリチオール、1,2,4-ブタントリチオール、ペンタエリスリトールトリス(3-メルカプトプロピオネート)、1,3,5-ベンゼントリチオール、2,4,6-メシチレントリチオール、ネオペンタンテトラチオール、2,4,6-トルエントリチオール、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、ジペンタエリストールヘキサキス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールエタントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6-(1H.3H.5H)-トリオン、ネオペンタンテトラチオール、2,2’-ビス(メルカプトメチル)-1,3-プロパンジチオール、ペンタエリトリトールテトラキス(3-メルカプトプロピオネート)又はジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)が挙げられる。
<Specific compound>
The specific compound is a compound having three or more thiol groups in the molecule.
Specifically, 1,2,3-propanetrithiol, 1,2,4-butanetrithiol, pentaerythritol tris(3-mercaptopropionate), 1,3,5-benzenetrithiol, 2,4 ,6-Mesitylenetrithiol, neopentanetetrathiol, 2,4,6-toluenthithiol, trimethylolpropane tris(3-mercaptopropionate), tris-[(3-mercaptopropionyloxy)-ethyl]-isocyanate Nulate, pentaerythritol tetrakis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate), trimethylolpropane tris (3-mercapto) Butyrate), trimethylolethane tris(3-mercaptobutyrate), pentaerythritol tetrakis(3-mercaptobutyrate), 1,3,5-tris(3-mercaptobutyryloxyethyl)-1,3,5- Triazine-2,4,6-(1H.3H.5H)-trione, neopentanetetrathiol, 2,2'-bis(mercaptomethyl)-1,3-propanedithiol, pentaerythritoltetrakis(3-mercaptopropio) )) or dipentaerythritol hexakis(3-mercaptopropionate).
 なかでも、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、ジペンタエリストールヘキサキス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールエタントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6-(1H.3H.5H)-トリオン又はネオペンタンテトラチオール、ペンタエリトリトールテトラキス(3-メルカプトプロピオネート)又はジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)が好ましい。 Among them, trimethylolpropane tris(3-mercaptopropionate), tris-[(3-mercaptopropionyloxy)-ethyl]-isocyanurate, pentaerythritol tetrakis(3-mercaptopropionate), tetraethylene glycol bis( 3-mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate), trimethylolpropane tris (3-mercaptobutyrate), trimethylolethane tris (3-mercaptobutyrate), pentaerythritol tetrakis (3-mercaptobutyrate), 1,3,5-tris(3-mercaptobutyryloxyethyl)-1,3,5-triazine-2,4,6-(1H.3H.5H)-trione or neo Pentanetetrathiol, pentaerythritol tetrakis(3-mercaptopropionate) or dipentaerythritol hexakis(3-mercaptopropionate) are preferred.
 特定化合物の使用割合は、液晶表示素子の液晶配向膜と金属電極との密着性の点から、特定重合体100質量部に対して、0.1~30質量部が好ましい。より好ましいのは、0.5~20質量部である。最も好ましいのは、1~15質量部である。また、特定化合物は、各特性に応じて、1種類又は2種類以上を混合して使用することもできる。 The proportion of the specific compound used is preferably 0.1 to 30 parts by mass based on 100 parts by mass of the specific polymer from the viewpoint of adhesion between the liquid crystal alignment film of the liquid crystal display element and the metal electrode. More preferably, it is 0.5 to 20 parts by mass. Most preferred is 1 to 15 parts by weight. In addition, the specific compound may be used alone or in combination of two or more depending on each characteristic.
<特定構造>
 特定構造は、前記式[1]で表される。式[1]中、X、X、X、Xは、上記に定義した通りである。なかでも、それぞれ、以下のものが好ましい。
 Xは、単結合、-O-、-CHO-、-CONH-、-CON(CH)-又は-COO-が好ましく、より好ましくは、合成のし易さの点から、単結合、-O-、-CHO-又は-COO-である。
<Specific structure>
The specific structure is represented by the above formula [1]. In formula [1], X 1 , X 2 , X 3 , and X 4 are as defined above. Of these, the following are preferred.
X 1 is preferably a single bond, —O—, —CH 2 O—, —CONH—, —CON(CH 3 )— or —COO—, more preferably a single bond from the viewpoint of ease of synthesis. , —O—, —CH 2 O— or —COO—.
 Xは、炭素数2~12のアルキレン基、又はベンゼン環及びシクロシクロヘキサン環から選ばれる少なくとも1種の環状基を有する炭素数6~24の有機基が好ましい。より好ましいのは、合成のし易さ及び液晶表示素子の液晶配向膜とシール剤との密着性の点から、炭素数2~12のアルキレン基である。
 Xは、単結合、-O-、-NHCO-、-N(CH)CO-又は-OCO-が好ましい。より好ましいのは、合成のし易さの点から、単結合、-O-、-NHCO-又は-OCO-である。
X 2 is preferably an alkylene group having 2 to 12 carbon atoms or an organic group having 6 to 24 carbon atoms and having at least one cyclic group selected from a benzene ring and a cyclocyclohexane ring. More preferred are alkylene groups having 2 to 12 carbon atoms from the viewpoints of ease of synthesis and adhesion between the liquid crystal alignment film of the liquid crystal display element and the sealant.
X 3 is preferably a single bond, —O—, —NHCO—, —N(CH 3 )CO— or —OCO—. More preferred is a single bond, —O—, —NHCO— or —OCO— from the viewpoint of ease of synthesis.
 Xは、前記式[1-a]、式[1-b]、式[1-d]又は式[1-e]が好ましい。合成のし易さ及び液晶表示素子の液晶配向膜とシール剤との密着性の点から、式[1-a]、式[1-b]又は式[1-e]がより好ましい。 X 4 is preferably the above formula [1-a], formula [1-b], formula [1-d] or formula [1-e]. The formula [1-a], the formula [1-b], or the formula [1-e] is more preferable from the viewpoint of ease of synthesis and adhesion between the liquid crystal alignment film of the liquid crystal display element and the sealant.
 式[1]における好ましいX~Xの組み合せは、下記の表1~表3に示される。
Figure JPOXMLDOC01-appb-T000010
Preferred combinations of X 1 to X 4 in the formula [1] are shown in Tables 1 to 3 below.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 X~Xの組み合せは、なかでも、(1-2a)~(1-4a)、(1-6a)~(1-8a)、(1-10a)~(1-12a)、(1-14a)~(1-16a)、(1-18a)~(1-20a)、(1-22a)~(1-24a)、(1-26a)~(1-28a)、(1-30a)~(1-32a)、(1-34a)~(1-36a)、(1-38a)~(1-40a)、(1-42a)~(1-44a)又は(1-46a)~(1-48a)の組み合わせが好ましい。 The combinations of X 1 to X 4 are, among others, (1-2a) to (1-4a), (1-6a) to (1-8a), (1-10a) to (1-12a), (1 -14a) to (1-16a), (1-18a) to (1-20a), (1-22a) to (1-24a), (1-26a) to (1-28a), (1-30a) )-(1-32a), (1-34a)-(1-36a), (1-38a)-(1-40a), (1-42a)-(1-44a) or (1-46a)- A combination of (1-48a) is preferable.
 より好ましくは、(1-3a)、(1-4a)、(1-7a)、(1-8a)、(1-11a)、(1-12a)、(1-15a)、(1-16a)、(1-19a)~(1-21a)、(1-23a)、(1-24a)、(1-27a)、(1-28a)、(1-31a)~(1-33a)、(1-35a)、(1-36a)、(1-39a)、(1-40a)、(1-43a)~(1-45a)、(1-47a)又は(1-48a)の組み合わせである。
 最も好ましいのは、合成のし易さ及び液晶表示素子の液晶配向膜とシール剤との密着性の点から、(1-20a)、(1-21a)、(1-28a)、(1-32a)、(1-33a)、(1-40a)、(1-44a)又は(1-45a)の組み合わせである。
More preferably, (1-3a), (1-4a), (1-7a), (1-8a), (1-11a), (1-12a), (1-15a), (1-16a) ), (1-19a) to (1-21a), (1-23a), (1-24a), (1-27a), (1-28a), (1-31a) to (1-33a), A combination of (1-35a), (1-36a), (1-39a), (1-40a), (1-43a) to (1-45a), (1-47a) or (1-48a) is there.
Most preferable are (1-20a), (1-21a), (1-28a), (1-28a), (1-28a) and (1- 32a), (1-33a), (1-40a), (1-44a) or (1-45a).
<特定重合体>
 特定重合体は、特定ジアミンを含有するジアミン成分とテトラカルボン酸成分との反応で得られるポリイミド前駆体又は該ポリイミド前駆体をイミド化したポリイミドである。
 ポリイミド前駆体とは、下記式[A]の構造を有する。
Figure JPOXMLDOC01-appb-C000013
<Specific polymer>
The specific polymer is a polyimide precursor obtained by reacting a diamine component containing a specific diamine and a tetracarboxylic acid component, or a polyimide obtained by imidizing the polyimide precursor.
The polyimide precursor has a structure represented by the following formula [A].
Figure JPOXMLDOC01-appb-C000013
 式[A]中、Rは4価の有機基を示す。Rは2価の有機基を示す。A及びAはそれぞれ、水素原子又は炭素数1~8のアルキル基を示す。A及びAはそれぞれ、水素原子、炭素数1~5のアルキル基又はアセチル基を示す。nは正の整数を示す。
 ジアミン成分としては、分子内に1級又は2級のアミノ基を2個有するジアミンであり、テトラカルボン酸成分としては、テトラカルボン酸化合物、テトラカルボン酸二無水物、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物が挙げられる。
In formula [A], R 1 represents a tetravalent organic group. R 2 represents a divalent organic group. A 1 and A 2 each represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. A 3 and A 4 each represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acetyl group. n represents a positive integer.
The diamine component is a diamine having two primary or secondary amino groups in the molecule, and the tetracarboxylic acid component is a tetracarboxylic acid compound, tetracarboxylic acid dianhydride, tetracarboxylic acid dihalide compound, tetra Examples thereof include carboxylic acid dialkyl ester compounds and tetracarboxylic acid dialkyl ester dihalide compounds.
 ポリイミド系重合体は、下記式[B]のテトラカルボン酸二無水物と下記式[C]のジアミンとを原料とすることで、比較的簡便に得られるという理由から、下記式[D]の繰り返し単位の構造式から成るポリアミド酸又は該ポリアミド酸をイミド化させたポリイミドが好ましい。
Figure JPOXMLDOC01-appb-C000014
(R及びRは、式[A]で定義したものと同じである。)
A polyimide-based polymer can be obtained relatively easily by using a tetracarboxylic acid dianhydride of the following formula [B] and a diamine of the following formula [C] as a raw material, so that the following formula [D] A polyamic acid having a structural formula of a repeating unit or a polyimide obtained by imidizing the polyamic acid is preferable.
Figure JPOXMLDOC01-appb-C000014
(R 1 and R 2 are the same as defined in the formula [A].)
Figure JPOXMLDOC01-appb-C000015
(R及びRは、式[A]で定義したものと同じである。)
Figure JPOXMLDOC01-appb-C000015
(R 1 and R 2 are the same as defined in the formula [A].)
 また、通常の合成手法で、前記で得られた式[D]の重合体に、式[A]中のA及びAの炭素数1~8のアルキル基、及び式[A]中のA及びAの炭素数1~5のアルキル基又はアセチル基を導入することもできる。
 特定構造をポリイミド系重合体に導入する方法としては、特定構造を有するジアミンを原料の一部に用いることが好ましい。特に下記式[1a]のジアミン(特定ジアミンともいう。)を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000016
Further, in a conventional synthetic procedures, the polymer of the formula [D] obtained by the above formula [A] alkyl group of A 1 and A 2 having 1 to 8 carbon atoms in, and in the formula [A] It is also possible to introduce an alkyl group having 1 to 5 carbon atoms or an acetyl group of A 3 and A 4 .
As a method of introducing the specific structure into the polyimide polymer, it is preferable to use a diamine having the specific structure as a part of the raw material. In particular, it is preferable to use a diamine of the following formula [1a] (also referred to as a specific diamine).
Figure JPOXMLDOC01-appb-C000016
 Yは前記式[1]を示し、X~Xの定義及び好ましい組み合わせは、前記式[1]の通りである。
 nは1~4の整数を示す。なかでも、1の整数が好ましい。
Y represents the above formula [1], and the definition and preferable combinations of X 1 to X 4 are as in the above formula [1].
n represents an integer of 1 to 4. Among them, an integer of 1 is preferable.
 特定ジアミンの好ましい具体例としては、下記式[1a-1]~式[1a-9]のジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000017
Preferred specific examples of the specific diamine include diamines represented by the following formulas [1a-1] to [1a-9].
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
(nは、それぞれ独立して、2~12の整数を示す。)
Figure JPOXMLDOC01-appb-C000018
(N independently represents an integer of 2 to 12.)
 なかでも、液晶表示素子の液晶配向膜とシール剤との密着性の点から、式[1a-1]、式[1a-2]、式[1a-5]、式[1a-6]又は式[1a-9]のジアミンが好ましい。その際、式中のnは、それぞれ独立して、2~10の整数であることが好ましい。 Among them, the formula [1a-1], formula [1a-2], formula [1a-5], formula [1a-6], or formula [1a-1], formula [1a-5], or formula The diamine [1a-9] is preferred. In that case, n in the formula is preferably each independently an integer of 2 to 10.
 特定ジアミンの使用割合は、液晶表示素子の液晶配向膜とシール剤との密着性の点から、ジアミン成分全体に対して1~50モル%が好ましい。より好ましいのは、1~40モル%である。特に好ましいのは、5~40モル%である。また、特定ジアミンは、各特性に応じて、1種類又は2種類以上を混合して使用することもできる。 From the viewpoint of the adhesiveness between the liquid crystal alignment film of the liquid crystal display element and the sealant, the use ratio of the specific diamine is preferably 1 to 50 mol% with respect to the entire diamine component. More preferred is 1 to 40 mol %. Particularly preferred is 5 to 40 mol %. In addition, the specific diamine may be used alone or in combination of two or more depending on each characteristic.
 特定重合体を作製するためのジアミン成分としては、特定ジアミン以外のジアミン(その他ジアミンともいう。)を含むこともできる。具体的には、国際公開公報WO2016/076412の34頁~38頁に記載される式[3a-1]~式[3a-5]のジアミン化合物、同公報の39頁~42頁に記載されるその他ジアミン化合物、及び同公報の42頁~44頁に記載される式[DA1]~[DA15]のジアミン化合物が挙げられる。これらジアミン成分は、各特性に応じて、1種又は2種以上を混合して使用できる。 The diamine component for producing the specific polymer may include a diamine other than the specific diamine (also referred to as other diamine). Specifically, the diamine compounds of the formulas [3a-1] to [3a-5] described on pages 34 to 38 of WO 2016/076412 and pages 39 to 42 of the publication. Other examples include diamine compounds and the diamine compounds of the formulas [DA1] to [DA15] described on pages 42 to 44 of the publication. These diamine components may be used either individually or in combination of two or more, depending on the characteristics.
 特定重合体を作製するためのテトラカルボン酸成分としては、特に限定されないが、具体的には、国際公開公報WO2016/076412の44頁~45頁に記載される式[4]のテトラカルボン酸二無水物、及び45頁~46頁に記載されるその他のテトラカルボン酸成分が挙げられる。これらテトラカルボン酸成分は、各特性に応じて、1種又は2種以上を混合して使用できる。 The tetracarboxylic acid component for producing the specific polymer is not particularly limited, but specifically, the tetracarboxylic acid dicarboxylic acid of the formula [4] described in International Publication WO2016/076412, pages 44 to 45, can be used. Examples include anhydrides and other tetracarboxylic acid components described on pages 45-46. These tetracarboxylic acid components may be used either individually or in combination of two or more, depending on the characteristics.
 特定重合体を合成する方法は、特に限定されない。通常、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。具体的には、国際公開公報WO2016/076412の46頁~50頁に記載される方法が挙げられる。
 ジアミン成分とテトラカルボン酸成分との反応は、通常、ジアミン成分とテトラカルボン酸成分とを含む溶媒中で行う。その際に用いる溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。
The method for synthesizing the specific polymer is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. Specific examples thereof include the methods described on pages 46 to 50 of International Publication WO2016/076412.
The reaction between the diamine component and the tetracarboxylic acid component is usually performed in a solvent containing the diamine component and the tetracarboxylic acid component. The solvent used at that time is not particularly limited as long as it can dissolve the generated polyimide precursor.
 具体的には、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-イミダゾリジノンなどが挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又は下記式[D1]~式[D3]の溶媒を用いることができる。 Specifically, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinium Non is included. When the polyimide precursor has high solvent solubility, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone or a solvent represented by the following formula [D1] to [D3] is used. it can.
Figure JPOXMLDOC01-appb-C000019
(D及びDは炭素数1~3のアルキル基を示す。Dは炭素数1~4のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000019
(D 1 and D 2 represent an alkyl group having 1 to 3 carbon atoms. D 3 represents an alkyl group having 1 to 4 carbon atoms.)
 また、これらは単独で使用しても、混合して使用してもよい。更に、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記の溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、更には、生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。
 ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数を1.0にした際のテトラカルボン酸成分の合計モル数は、0.8~1.2が好ましい。
Moreover, these may be used individually or may be mixed and used. Further, even a solvent that does not dissolve the polyimide precursor may be used by mixing with the above-mentioned solvent as long as the generated polyimide precursor does not precipitate. Further, since water in the organic solvent inhibits the polymerization reaction and causes hydrolysis of the generated polyimide precursor, it is preferable to use dehydrated and dried organic solvent.
In the polymerization reaction of the polyimide precursor, the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2 when the total number of moles of the diamine component is 1.0.
 ポリイミドはポリイミド前駆体を閉環させて得られる。ポリイミドは、アミド酸基の閉環率(イミド化率ともいう。)は必ずしも100%である必要はなく、用途や目的に応じて任意に調製できる。なかでも、ポリイミド系重合体の溶媒への溶解性の点から、30~80%が好ましい。より好ましいのは、40~70%である。
 特定重合体の分子量は、そこから得られる液晶配向膜の強度、液晶配向膜形成時の作業性及び塗膜性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましいのは、10,000~150,000である。
Polyimide is obtained by ring-closing a polyimide precursor. The polyimide does not necessarily have a ring closure rate (also referred to as an imidization rate) of an amic acid group of 100%, and can be arbitrarily prepared according to the application or purpose. Among them, 30 to 80% is preferable from the viewpoint of the solubility of the polyimide polymer in the solvent. More preferably, it is 40 to 70%.
The molecular weight of the specific polymer is 5, as a weight average molecular weight measured by GPC (Gel Permeation Chromatography) method, in consideration of the strength of the liquid crystal alignment film obtained therefrom, workability at the time of forming the liquid crystal alignment film, and coating property. It is preferably from 000 to 1,000,000, and more preferably from 10,000 to 150,000.
<液晶配向処理剤>
 液晶配向処理剤は、液晶配向膜を形成するための溶液であり、特定化合物、特定重合体及び溶媒を含有する溶液である。その際、特定化合物及び特定重合体には、それぞれ、2種類以上のものを用いることができる。
 液晶配向処理剤中の溶媒の含有量は、液晶配向処理剤の塗布方法や目的とする膜厚を得るという観点から、適宜選択できる。なかでも、塗布により均一な液晶配向膜を形成するとい観点から、液晶配向処理剤中の溶媒の含有量は50~99.9質量%が好ましい。なかでも、60~99質量%が好ましい。より好ましいのは、65~99質量%である。
<Liquid crystal orientation treatment agent>
The liquid crystal alignment treatment agent is a solution for forming a liquid crystal alignment film, and is a solution containing a specific compound, a specific polymer and a solvent. In that case, two or more types can be used for a specific compound and a specific polymer, respectively.
The content of the solvent in the liquid crystal alignment treatment agent can be appropriately selected from the viewpoint of applying the liquid crystal alignment treatment agent and obtaining a target film thickness. Among them, the content of the solvent in the liquid crystal alignment treatment agent is preferably 50 to 99.9 mass% from the viewpoint of forming a uniform liquid crystal alignment film by coating. Among them, 60 to 99 mass% is preferable. More preferably, it is 65 to 99% by mass.
 液晶配向処理剤に用いる溶媒は、特定化合物及び特定重合体を溶解させる溶媒であれば特に限定されない。なかでも、下記の溶媒(溶媒A類ともいう。)を用いることが好ましい。
 例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノンなどである。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトンが好ましい。また、これらは単独で使用しても、混合して使用してもよい。
The solvent used for the liquid crystal alignment treatment agent is not particularly limited as long as it is a solvent that dissolves the specific compound and the specific polymer. Above all, it is preferable to use the following solvents (also referred to as solvent A).
For example, N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone , Cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone and the like. Among them, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone is preferable. Moreover, these may be used individually or may be mixed and used.
 特定重合体の溶媒への溶解性が高い場合は、下記の溶媒(溶媒B類ともいう。)を用いることができる。
 溶媒B類の具体例は、国際公開公報WO2014/171493の58頁~60頁に記載される溶媒B類が挙げられる。なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル、シクロヘキサノン、シクロペンタノン又は前記式[D1]~式[D3]が好ましい。
When the solubility of the specific polymer in the solvent is high, the following solvent (also referred to as solvent B) can be used.
Specific examples of the solvent Bs include the solvent Bs described on pages 58 to 60 of International Publication WO2014/171493. Among them, 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, dipropylene glycol dimethyl ether, cyclohexanone, cyclopentanone or the above formula [D1] To Formula [D3] are preferred.
 また、これら溶媒B類を用いる際、液晶配向処理剤の塗布性を改善する目的に、前記溶媒A類のN-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトンを併用して用いることが好ましい。
 これら溶媒B類は、液晶配向処理剤を塗布する際の液晶配向膜の塗膜性や表面平滑性を高めることができるため、重合体にポリイミド前駆体、ポリイミド、ポリアミド又はポリエステルを用いた場合、前記溶媒A類と併用して用いることが好ましい。その際、溶媒B類は、液晶配向処理剤に含まれる溶媒全体の1~99質量%が好ましい。なかでも、10~99質量%が好ましく、より好ましくは、20~95質量%である。
Further, when these solvent Bs are used, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone of the above-mentioned solvent A is used in combination for the purpose of improving the coating property of the liquid crystal alignment treatment agent. It is preferable to use.
Since these solvents B can enhance the coating property and surface smoothness of the liquid crystal alignment film when applying the liquid crystal alignment treatment agent, when a polyimide precursor, polyimide, polyamide or polyester is used as the polymer, It is preferable to use it in combination with the above solvents A. At that time, the amount of the solvent B is preferably 1 to 99% by mass of the whole solvent contained in the liquid crystal alignment treatment agent. Among them, 10 to 99 mass% is preferable, and 20 to 95 mass% is more preferable.
 液晶配向処理剤には、液晶配向膜の膜強度を高めるために、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、ヒドロキシ基、ヒドロキシアルキル基又は低級アルコキシアルキル基を有する化合物(総称して架橋性化合物ともいう。)を導入することが好ましい。その際、上記の基は、化合物中に2個以上有する必要がある。
 すなわち、液晶配向処理剤は、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、ヒドロキシル基、ヒドロキシアルキル基、炭素数1~3のアルコキシアルキル基、又は重合性不飽和結合基から選ばれる基を2つ以上有する化合物からなる少なくとも1種の架橋性化合物を含むことが好ましい。
 エポキシ基又はイソシアネート基を有する架橋性化合物の具体例は、国際公開公報WO2014/171493の63頁~64頁に記載されるエポキシ基又はイソシアネート基を有する架橋性化合物が挙げられる。
The liquid crystal alignment treatment agent includes a compound having an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a hydroxy group, a hydroxyalkyl group or a lower alkoxyalkyl group (collectively, a crosslinker in order to enhance the film strength of the liquid crystal alignment film It is also preferable to introduce a compound). In that case, it is necessary to have two or more groups in the compound.
That is, the liquid crystal alignment treatment agent is a group selected from an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group, an alkoxyalkyl group having 1 to 3 carbon atoms, or a polymerizable unsaturated bond group. It is preferable to include at least one crosslinkable compound composed of a compound having two or more.
Specific examples of the crosslinkable compound having an epoxy group or an isocyanate group include the crosslinkable compounds having an epoxy group or an isocyanate group described on pages 63 to 64 of WO 2014/171493.
 オキセタン基を有する架橋性化合物の具体例は、国際公開公報WO2011/132751の58頁~59頁に掲載される式[4a]~式[4k]の架橋性化合物が挙げられる。
 シクロカーボネート基を有する架橋性化合物の具体例は、国際公開公報WO2012/014898の76頁~82頁に掲載される式[5-1]~式[5-42]の架橋性化合物が挙げられる。
Specific examples of the crosslinkable compound having an oxetane group include crosslinkable compounds of the formulas [4a] to [4k] described on pages 58 to 59 of International Publication WO2011/132751.
Specific examples of the crosslinkable compound having a cyclocarbonate group include crosslinkable compounds of the formulas [5-1] to [5-42] described on pages 76 to 82 of WO 2012/014898.
 ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基を有する架橋性化合物の具体例は、国際公開公報2014/171493の65頁~66頁に記載されるメラミン誘導体又はベンゾグアナミン誘導体、及び国際公開公報WO2011/132751の62頁~66頁に掲載される、式[6-1]~式[6-48]の架橋性化合物が挙げられる。 Specific examples of the crosslinkable compound having a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group include melamine derivatives or benzoguanamine derivatives described on pages 65 to 66 of WO2014/171349, and WO2011/132751. And the crosslinkable compounds of the formulas [6-1] to [6-48] listed on pages 62 to 66.
 液晶配向処理剤における架橋性化合物の含有量は、すべての重合体成分100質量部に対して、0.1~100質量部が好ましい。架橋反応が進行し、目的の効果を発現させるためには、すべての重合体成分100質量部に対して0.1~50質量部がより好ましく、最も好ましいのは、1~30質量部である。
 液晶配向処理剤には、液晶配向処理剤を塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を用いることができる。更に、液晶配向膜と電極基板との密着性を向上させる化合物などを用いることもできる。
The content of the crosslinkable compound in the liquid crystal alignment treatment agent is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of all polymer components. In order to allow the crosslinking reaction to proceed and to produce the desired effect, 0.1 to 50 parts by mass is more preferable, and 1 to 30 parts by mass is most preferable, relative to 100 parts by mass of all polymer components. ..
As the liquid crystal alignment treatment agent, a compound that improves the film thickness uniformity and the surface smoothness of the liquid crystal alignment film when the liquid crystal alignment treatment agent is applied can be used. Further, a compound or the like that improves the adhesiveness between the liquid crystal alignment film and the electrode substrate can be used.
 液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、又はノ二オン系界面活性剤などが挙げられる。具体的には、国際公開公報WO2014/171493の67頁に記載される界面活性剤が挙げられる。また、その使用割合は、液晶配向処理剤に含有されるすべての重合体成分100質量部に対して、0.01~2質量部が好ましい。より好ましいのは、0.01~1質量部である。 Compounds that improve the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonion-based surfactants. Specific examples thereof include the surfactants described on page 67 of International Publication WO2014/171493. Further, the use ratio thereof is preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of all polymer components contained in the liquid crystal alignment treatment agent. More preferably, it is 0.01 to 1 part by mass.
 液晶配向膜と電極基板との密着性を向上させる化合物の具体例は、国際公開公報WO2014/171493の67頁~69頁に記載される化合物が挙げられる。また、その使用割合は、液晶配向処理剤に含有されるすべての重合体成分100質量部に対して、0.1~30質量部が好ましい。より好ましいのは、1~20質量部である。
 液晶配向処理剤には、前記以外の化合物の他に、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
Specific examples of the compound that improves the adhesiveness between the liquid crystal alignment film and the electrode substrate include the compounds described on pages 67 to 69 of International Publication WO2014/171493. Further, the use ratio thereof is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of all polymer components contained in the liquid crystal alignment treatment agent. More preferably, it is 1 to 20 parts by mass.
In addition to the compounds other than the above, a liquid crystal alignment treatment agent may be added with a dielectric or a conductive substance for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film.
<液晶配向膜・液晶表示素子>
 液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、液晶配向膜として用いることができる。また、垂直配向用途などの場合では配向処理なしでも液晶配向膜として用いることができる。
 この際に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板、ポリカーボネート基板、PET(ポリエチレンテレフタレート)基板などのプラスチック基板、更には、それらのフィルムを用いることができる。また、プロセスの簡素化の観点からは、液晶駆動のためのITO電極、IZO(Indium Zinc Oxide)電極及びIGZO(Indium Gallium Zinc Oxide)電極などの金属電極、及び有機導電膜などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子とする場合には、片側の基板のみにならば、シリコンウエハやアルミニウムなどの金属や誘電体多層膜が形成された基板を使用できる。
<Liquid crystal alignment film/liquid crystal display element>
The liquid crystal alignment treatment agent can be used as a liquid crystal alignment film by applying alignment treatment by rubbing treatment or light irradiation after coating and baking on the substrate. Further, in the case of vertical alignment applications, it can be used as a liquid crystal alignment film without alignment treatment.
The substrate used in this case is not particularly limited as long as it is a highly transparent substrate, and in addition to glass substrates, acrylic substrates, polycarbonate substrates, plastic substrates such as PET (polyethylene terephthalate) substrates, and further films thereof. Can be used. From the viewpoint of simplifying the process, a substrate on which an ITO electrode for driving liquid crystal, a metal electrode such as an IZO (Indium Zinc Oxide) electrode and an IGZO (Indium Gallium Zinc Oxide) electrode, and an organic conductive film are formed. Is preferably used. Further, in the case of a reflective liquid crystal display element, if only one substrate is used, a substrate such as a silicon wafer or a metal such as aluminum or a substrate on which a dielectric multilayer film is formed can be used.
 液晶配向処理剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷又はインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法又はスプレー法などがあり、目的に応じてこれらを用いてもよい。
 液晶配向処理剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、液晶配向処理剤に用いる溶媒に応じて、30~300℃、好ましくは30~250℃の温度で溶媒を蒸発させて液晶配向膜とすることができる。
The method for applying the liquid crystal alignment treatment agent is not particularly limited, but industrially, a method such as screen printing, offset printing, flexographic printing or an inkjet method is generally used. Other coating methods include a dip method, a roll coater method, a slit coater method, a spinner method or a spray method, and these may be used depending on the purpose.
After applying the liquid crystal alignment treatment agent on the substrate, it is preferably heated at 30 to 300° C., depending on the solvent used for the liquid crystal alignment treatment agent, by a heating means such as a hot plate, a heat circulation type oven or an IR (infrared) type oven. Can be used as a liquid crystal alignment film by evaporating the solvent at a temperature of 30 to 250° C.
 焼成後の液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~200nmである。
 液晶を水平配向や傾斜配向させる場合は、焼成後の液晶配向膜をラビング又は偏光紫外線照射などで処理する。
 液晶表示素子に用いる液晶は、特に限定されないが、例えば、ネマチック液晶、スメクチック液晶又はコレステリック液晶を用いることができる。その際、液晶表示素子の方式に応じて、正又は負の誘電異方性を有する液晶を選択できる。また、液晶中に二色性染料を溶解させてゲストホスト型の液晶表示素子とすることもできる。
If the thickness of the liquid crystal alignment film after firing is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display device, and if it is too thin, the reliability of the liquid crystal display device may be deteriorated. Is 10 to 200 nm.
When the liquid crystal is horizontally or tilted, the liquid crystal alignment film after firing is treated by rubbing or irradiation with polarized ultraviolet light.
The liquid crystal used for the liquid crystal display element is not particularly limited, but for example, nematic liquid crystal, smectic liquid crystal or cholesteric liquid crystal can be used. At that time, a liquid crystal having a positive or negative dielectric anisotropy can be selected according to the method of the liquid crystal display element. Alternatively, a dichroic dye may be dissolved in the liquid crystal to form a guest-host type liquid crystal display device.
 液晶の注入方法は、特に限定されないが、例えば、次の方法が挙げられる。即ち、液晶配向膜が形成された一対の基板を用意し、片側の基板の4片を、一部分を除いてシール剤を塗布し、その後、液晶配向膜面が内側になるようにして、もう片側の基板を貼り合わせた空セルを作製する。そして、シール剤が塗布されていない場所から液晶を減圧注入して、液晶注入セルを得る方法が挙げられる。更に、液晶配向膜が形成された一対の基板を用意し、片側の基板の上にODF(One Drop Filling)法やインクジェット法などで、液晶を滴下し、その後、もう片側の基板を貼り合わせて、液晶注入セルを得る方法も挙げられる。 The method of injecting the liquid crystal is not particularly limited, but for example, the following method may be mentioned. That is, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and a sealant is applied to all four of the substrates on one side except for a part thereof, and then the liquid crystal alignment film surface is placed inside and the other side is applied. An empty cell in which the above substrates are bonded together is produced. Then, a method of injecting liquid crystal under reduced pressure from a place where the sealant is not applied to obtain a liquid crystal injection cell can be mentioned. Furthermore, prepare a pair of substrates on which a liquid crystal alignment film is formed, drop the liquid crystal on one substrate by ODF (One Drop Filling) method or inkjet method, and then bond the other substrate. Another method is to obtain a liquid crystal injection cell.
 液晶表示素子のギャップ制御の方法は、特に限定されないが、例えば、液晶中に目的とする大きさのスペーサーを導入する方法、目的とする大きさのカラムスペーサーを有する基板上に塗布する方法、目的とする大きさのカラムスペーサーを含む液晶を用いる方法などが挙げられる。
 液晶表示素子のギャップの大きさは、1~100μmが好ましい。より好ましいのは、1~50μmである。特に好ましいのは、2~30μmである。ギャップが小さすぎると、液晶表示素子のコントラストが低下し、大きすぎると、素子の駆動電圧が高くなる。
The method of controlling the gap of the liquid crystal display device is not particularly limited, for example, a method of introducing a spacer of a desired size in the liquid crystal, a method of coating on a substrate having a column spacer of the desired size, the purpose A method using a liquid crystal containing a column spacer having a size of
The size of the gap of the liquid crystal display element is preferably 1 to 100 μm. More preferably, it is 1 to 50 μm. Particularly preferred is 2 to 30 μm. If the gap is too small, the contrast of the liquid crystal display device will be lowered, and if it is too large, the driving voltage of the device will be high.
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、これらに限定されるものではない。以下で用いる略語は下記の通りである。
「特定化合物」
 A1:カレンズMTPE1(昭和電工社製)/ペンタエリスリトールテトラキス(3-メルカプトブチレート)
 A2:DPMP(SC有機化学社製)/ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)
Hereinafter, the present invention will be described in more detail by way of examples, but the invention is not limited thereto. The abbreviations used below are as follows.
"Specific compound"
A1: Karenz MTPE1 (manufactured by Showa Denko KK)/pentaerythritol tetrakis (3-mercaptobutyrate)
A2: DPMP (SC Organic Chemical Co., Ltd.)/dipentaerythritol hexakis (3-mercaptopropionate)
「チオール基含有化合物」
 a1:カレンズMTBD1(昭和電工社製)/1,4-ビス(3-メルカプトブチリルオキシ)ブタン
"Compound containing thiol group"
a1: Karenz MTBD1 (Showa Denko KK)/1,4-bis(3-mercaptobutyryloxy)butane
<特定ジアミン>
Figure JPOXMLDOC01-appb-C000020
<Specific diamine>
Figure JPOXMLDOC01-appb-C000020
<その他ジアミン>
Figure JPOXMLDOC01-appb-C000021
<Other diamines>
Figure JPOXMLDOC01-appb-C000021
<テトラカルボン酸成分>
Figure JPOXMLDOC01-appb-C000022
<Tetracarboxylic acid component>
Figure JPOXMLDOC01-appb-C000022
「架橋性化合物」
Figure JPOXMLDOC01-appb-C000023
"Crosslinkable compound"
Figure JPOXMLDOC01-appb-C000023
「溶媒」
 NMP:N-メチル-2-ピロリドン、 NEP:N-エチル-2-ピロリドン
 BCS:エチレングリコールモノブチルエーテル
 PB:プロピレングリコールモノブチルエーテル
"solvent"
NMP: N-methyl-2-pyrrolidone, NEP: N-ethyl-2-pyrrolidone BCS: ethylene glycol monobutyl ether PB: propylene glycol monobutyl ether
「ポリイミド系重合体の分子量測定」
 常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803,KD-805)(Shodex社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
"Measurement of molecular weight of polyimide polymer"
The measurement was performed as follows using a room temperature gel permeation chromatography (GPC) device (GPC-101) (manufactured by Showa Denko KK) and a column (KD-803, KD-805) (manufactured by Shodex).
Column temperature: 50°C
Eluent: N,N'-dimethylformamide (additional lithium bromide hydrate (LiBr.H 2 O) 30 mmol/L (liter), phosphoric acid/anhydrous crystal (o-phosphoric acid) 30 mmol) /L, tetrahydrofuran (THF) 10ml/L)
Flow rate: 1.0 ml/min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000 and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight; about) 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratory).
「イミド化率の測定」
 ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
(xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。)
"Measurement of imidization ratio"
20 mg of polyimide powder was put in an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, φ5 (Kusano Scientific Co., Ltd.)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane) was added. (Mixture) (0.53 ml) was added and ultrasonic waves were applied to completely dissolve. This solution was measured for proton NMR at 500 MHz with an NMR measuring device (JNW-ECA500) (manufactured by JEOL Datum). The imidization ratio is determined by using a proton derived from a structure that does not change before and after imidization as a reference proton, and the peak integrated value of this proton and the proton peak derived from the NH group of amic acid that appears near 9.5 ppm to 10.0 ppm. It was calculated by the following formula using the integrated value.
Imidization rate (%)=(1-α·x/y)×100
(X is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is a reference proton for one NH group proton of amic acid in the case of polyamic acid (imidization rate is 0%) Is the proportion of the number of.)
「ポリイミド系重合体の合成」
<合成例1>
 D1(2.20g,11.2mmol)、B1(0.61g,2.31mmol)、C1(0.25g,2.31mmol)及びC2(1.99g,6.95mmol)をNMP(15.1g)中で混合し、25℃で8時間反応させ、樹脂固形分濃度25質量%のポリアミド酸溶液(1)を得た。このポリアミド酸の数平均分子量(Mnともいう。)は26,300、重量平均分子量(Mwともいう。)は80,800であった。
"Synthesis of polyimide polymers"
<Synthesis example 1>
NMP (15.1 g) was added to D1 (2.20 g, 11.2 mmol), B1 (0.61 g, 2.31 mmol), C1 (0.25 g, 2.31 mmol) and C2 (1.99 g, 6.95 mmol). The mixture was mixed in and reacted at 25° C. for 8 hours to obtain a polyamic acid solution (1) having a resin solid content concentration of 25% by mass. The number average molecular weight (also referred to as Mn) of this polyamic acid was 26,300, and the weight average molecular weight (also referred to as Mw) was 80,800.
<合成例2>
 D2(1.05g,4.20mmol)、B1(0.57g,2.16mmol)、C1(0.23g,2.13mmol)及びC2(4.96g,17.3mmol)をNMP(20.3g)中で混合し、60℃で4時間反応させた後、D1(3.30g,16.8mmol)とNMP(10.1g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(2)を得た。このポリアミド酸のMnは25,900、Mwは79,300であった。
<Synthesis example 2>
NMP (20.3 g) of D2 (1.05 g, 4.20 mmol), B1 (0.57 g, 2.16 mmol), C1 (0.23 g, 2.13 mmol) and C2 (4.96 g, 17.3 mmol). After mixing in the mixture and reacting at 60° C. for 4 hours, D1 (3.30 g, 16.8 mmol) and NMP (10.1 g) were added, and the mixture was reacted at 40° C. for 6 hours to give a resin solid content concentration of 25 mass. % Polyamic acid solution (2) was obtained. This polyamic acid had Mn of 25,900 and Mw of 79,300.
<合成例3>
 合成例2で得られたポリアミド酸溶液(2)(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.40g)及びピリジン(1.85g)を加え、60℃で4時間反応させた。この反応溶液をメタノール(500ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド粉末(3)を得た。このポリイミドのイミド化率は58%であり、Mnは24,100、Mwは62,100であった。
<Synthesis example 3>
NMP was added to the polyamic acid solution (2) (20.0 g) obtained in Synthesis Example 2 to dilute it to 6% by mass, and then acetic anhydride (2.40 g) and pyridine (1.85 g) were added as imidization catalysts. The reaction was carried out at 60°C for 4 hours. The deposit obtained by throwing in this reaction solution in methanol (500 ml) was separated by filtration. Methanol wash|cleaned this deposit, it dried under reduced pressure at 100 degreeC, and the polyimide powder (3) was obtained. The imidation ratio of this polyimide was 58%, Mn was 24,100, and Mw was 62,100.
<合成例4>
 D2(0.30g,1.20mmol)、B2(0.43g,1.21mmol)、C1(0.53g,4.90mmol)及びC2(1.75g,6.11mmol)をNMP(10.2g)中で混合し、60℃で4時間反応させた後、D1(2.10g,10.7mmol)とNMP(5.12g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(4)を得た。このポリアミド酸のMnは23,200、Mwは73,700であった。
<Synthesis example 4>
D2 (0.30 g, 1.20 mmol), B2 (0.43 g, 1.21 mmol), C1 (0.53 g, 4.90 mmol) and C2 (1.75 g, 6.11 mmol) were NMP (10.2 g). After mixing in, reacting at 60° C. for 4 hours, D1 (2.10 g, 10.7 mmol) and NMP (5.12 g) were added, and the mixture was reacted at 40° C. for 6 hours to give a resin solid content concentration of 25 mass % Polyamic acid solution (4) was obtained. The Mn of this polyamic acid was 23,200 and the Mw was 73,700.
<合成例5>
 D2(1.96g,7.83mmol)、B1(1.60g,6.05mmol)、C1(0.44g,4.07mmol)及びC3(3.83g,10.1mmol)をNMP(20.2g)中で混合し、80℃で4時間反応させた後、D1(2.30g,11.7mmol)とNMP(10.1g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(5)を得た。このポリアミド酸のMnは21,800、Mwは66,400であった。
<Synthesis example 5>
NMP (20.2 g) of D2 (1.96 g, 7.83 mmol), B1 (1.60 g, 6.05 mmol), C1 (0.44 g, 4.07 mmol) and C3 (3.83 g, 10.1 mmol). After mixing in and reacting at 80° C. for 4 hours, D1 (2.30 g, 11.7 mmol) and NMP (10.1 g) were added and reacted at 40° C. for 6 hours to give a resin solid content concentration of 25 mass. % Polyamic acid solution (5) was obtained. The Mn of this polyamic acid was 21,800 and the Mw was 66,400.
<合成例6>
 合成例5で得られたポリアミド酸溶液(5)(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.50g)及びピリジン(1.90g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(500ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド粉末(6)を得た。このポリイミドのイミド化率は55%であり、Mnは19,100、Mwは46,300であった。
<Synthesis example 6>
NMP was added to the polyamic acid solution (5) (20.0 g) obtained in Synthesis Example 5 to dilute it to 6% by mass, and then acetic anhydride (2.50 g) and pyridine (1.90 g) were added as imidization catalysts. The mixture was reacted at 80°C for 4 hours. The deposit obtained by throwing in this reaction solution in methanol (500 ml) was separated by filtration. Methanol wash|cleaned this deposit, it dried under reduced pressure at 100 degreeC, and the polyimide powder (6) was obtained. The imidation ratio of this polyimide was 55%, Mn was 19,100 and Mw was 46,300.
<合成例7>
 D2(1.11g,4.44mmol)、B2(1.61g,4.54mmol)、C1(0.62g,5.73mmol)及びC4(0.56g,1.14mmol)をNMP(10.4g)中で混合し、80℃で6時間反応させた後、D1(1.30g,6.63mmol)とNMP(5.20g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(7)を得た。このポリアミド酸のMnは20,900、Mwは64,800であった。
<Synthesis example 7>
NMP (10.4 g) of D2 (1.11 g, 4.44 mmol), B2 (1.61 g, 4.54 mmol), C1 (0.62 g, 5.73 mmol) and C4 (0.56 g, 1.14 mmol) After mixing in and reacting at 80° C. for 6 hours, D1 (1.30 g, 6.63 mmol) and NMP (5.20 g) were added and reacted at 40° C. for 6 hours to give a resin solid content concentration of 25 mass. % Polyamic acid solution (7) was obtained. This polyamic acid had Mn of 20,900 and Mw of 64,800.
<合成例8>
 D3(2.10g,9.37mmol)、B1(0.77g,2.91mmol)、B2(0.34g,0.96mmol)、C1(0.10g,0.92mmol)及びC3(1.84g,4.83mmol)をNMP(15.4g)中で混合し、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(8)を得た。このポリアミド酸のMnは19,100、Mwは61,900であった。
<Synthesis example 8>
D3 (2.10 g, 9.37 mmol), B1 (0.77 g, 2.91 mmol), B2 (0.34 g, 0.96 mmol), C1 (0.10 g, 0.92 mmol) and C3 (1.84 g, (4.83 mmol) was mixed in NMP (15.4 g) and reacted at 40° C. for 6 hours to obtain a polyamic acid solution (8) having a resin solid content concentration of 25 mass %. The Mn of this polyamic acid was 19,100 and the Mw was 61,900.
<合成例9>
 D3(2.50g,11.2mmol)、B1(0.91g,3.44mmol)、C1(0.62g,5.73mmol)及びC4(1.13g,2.29mmol)をNMP(15.5g)中で混合し、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(9)を得た。このポリアミド酸のMnは19,800、Mwは63,900であった。
<Synthesis example 9>
NMP (15.5 g) of D3 (2.50 g, 11.2 mmol), B1 (0.91 g, 3.44 mmol), C1 (0.62 g, 5.73 mmol) and C4 (1.13 g, 2.29 mmol). The mixture was mixed in and reacted at 40° C. for 6 hours to obtain a polyamic acid solution (9) having a resin solid content concentration of 25 mass %. This polyamic acid had Mn of 19,800 and Mw of 63,900.
<合成例10>
 窒素雰囲気下、B1(0.51g,1.93mmol)、C1(0.31g,2.87mmol)、C2(1.39g,4.85mmol)、ピリジン(1.88g)及びNMP(15.1g)を加え、撹拌して溶解させ、D4(2.80g,9.43mmol)を加え、15℃で15時間反応させた。その後、アクリロイルクロリド(0.04g)を加え、15℃で4時間反応させた。この反応溶液を水(500g)中に投入し、得られた沈殿物を濾別した。この沈殿物をイソプロピルアルコールで洗浄し、100℃で減圧乾燥してポリアミド酸アルキルエステル粉末(10)を得た。このポリアミド酸アルキルエステルのMnは18,500、Mwは40,100であった。
<Synthesis example 10>
Under a nitrogen atmosphere, B1 (0.51 g, 1.93 mmol), C1 (0.31 g, 2.87 mmol), C2 (1.39 g, 4.85 mmol), pyridine (1.88 g) and NMP (15.1 g). Was added, stirred and dissolved, D4 (2.80 g, 9.43 mmol) was added, and the mixture was reacted at 15° C. for 15 hours. Then, acryloyl chloride (0.04 g) was added, and the mixture was reacted at 15°C for 4 hours. The deposit obtained by throwing in this reaction solution in water (500g) was separated by filtration. The precipitate was washed with isopropyl alcohol and dried under reduced pressure at 100°C to obtain a polyamic acid alkyl ester powder (10). Mn of this polyamic acid alkyl ester was 18,500 and Mw was 40,100.
<合成例11>
 D1(2.40g,12.2mmol)、C1(0.55g,5.09mmol)及びC2(2.17g,7.58mmol)をNMP(15.3g)中で混合し、25℃で8時間反応させ、樹脂固形分濃度25質量%のポリアミド酸溶液(11)を得た。このポリアミド酸のMnは28,200、Mwは84,200であった。
<Synthesis example 11>
D1 (2.40 g, 12.2 mmol), C1 (0.55 g, 5.09 mmol) and C2 (2.17 g, 7.58 mmol) were mixed in NMP (15.3 g) and reacted at 25° C. for 8 hours. Thus, a polyamic acid solution (11) having a resin solid content concentration of 25 mass% was obtained. This polyamic acid had Mn of 28,200 and Mw of 84,200.
<合成例12>
 D2(2.13g,8.51mmol)、C1(1.18g,10.9mmol)及びC3(4.16g,10.9mmol)をNMP(20.0g)中で混合し、80℃で4時間反応させた後、D1(2.50g,12.7mmol)とNMP(9.97g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(12)を得た。このポリアミド酸のMnは23,100、Mwは70,100であった。
<Synthesis example 12>
D2 (2.13g, 8.51mmol), C1 (1.18g, 10.9mmol) and C3 (4.16g, 10.9mmol) were mixed in NMP (20.0g) and reacted at 80°C for 4 hours. After that, D1 (2.50 g, 12.7 mmol) and NMP (9.97 g) were added and reacted at 40° C. for 6 hours to obtain a polyamic acid solution (12) having a resin solid content concentration of 25 mass %. .. The Mn of this polyamic acid was 23,100 and the Mw was 70,100.
 合成例1~11で得られたポリイミド系重合体を表4に示す。
Figure JPOXMLDOC01-appb-T000024
*1:ポリアミド酸。   *2:ポリアミド酸アルキルエステル。
Table 4 shows the polyimide-based polymers obtained in Synthesis Examples 1 to 11.
Figure JPOXMLDOC01-appb-T000024
*1: Polyamic acid. *2: Polyamic acid alkyl ester.
「液晶配向処理剤の製造」
 下記する実施例1~14及び比較例1~8では、液晶配向処理剤の製造例を記載する。また、この液晶配向処理剤は、評価のためにも使用される。
 得られた液晶配向処理剤を表5~表7に示す。
"Manufacture of liquid crystal alignment treatment agents"
In Examples 1 to 14 and Comparative Examples 1 to 8 described below, production examples of liquid crystal alignment treatment agents will be described. The liquid crystal alignment treatment agent is also used for evaluation.
The obtained liquid crystal alignment treatment agents are shown in Tables 5 to 7.
「液晶配向処理剤の保存安定性試験」
 実施例及び比較例で得られた液晶配向処理剤を用いて、保存安定性試験を行った。具体的には、液晶配向処理剤を細孔径1μmのメンブランフィルタで加圧濾過し、-15℃で72時間保管した。その後、目視観察にて、液晶配向処理剤中の濁りや析出物の発生を確認した。その結果、実施例及び比較例のすべての液晶配向処理剤は、濁りや析出物が見られず、均一な溶液であった。
"Storage stability test for liquid crystal alignment agents"
A storage stability test was conducted using the liquid crystal alignment treatment agents obtained in Examples and Comparative Examples. Specifically, the liquid crystal alignment treatment agent was pressure-filtered with a membrane filter having a pore size of 1 μm and stored at −15° C. for 72 hours. Then, by visual observation, it was confirmed that turbidity and precipitates were generated in the liquid crystal alignment treatment agent. As a result, all the liquid crystal alignment treatment agents of Examples and Comparative Examples were uniform solutions without turbidity or precipitates.
「密着性の評価」
 実施例及び比較例で得られた液晶配向処理剤を、純水で洗浄した100mm×100mmのITO電極付きPET基板(縦:100mm、横:100mm、厚さ:0.1mm)のITO面上にスピンコートにて塗布をし、ホットプレート上にて120℃で2分間加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。この液晶配向膜付きのITO基板を2枚用意し、それぞれ、100×20mm(縦×横)の大きさに切り取った。
"Adhesion evaluation"
The liquid crystal alignment treatment agents obtained in Examples and Comparative Examples were applied on the ITO surface of a 100 mm×100 mm PET electrode-attached PET substrate (length: 100 mm, width: 100 mm, thickness: 0.1 mm) washed with pure water. Application was performed by spin coating, and heat treatment was performed on a hot plate at 120° C. for 2 minutes to obtain an ITO substrate with a liquid crystal alignment film having a thickness of 100 nm. Two ITO substrates with the liquid crystal alignment film were prepared and cut into a size of 100×20 mm (length×width).
 次に、一方の基板の液晶配向膜面に6μmのスペーサを塗布し、もう一方の基板の液晶配向膜面上には、シール剤(723K1)(協立化学産業社製)を塗布し、これらの基板の液晶配向膜面が向き合うように貼り合わせを行った。その際、シール剤の塗布量は、貼り合わせ後のシール剤の面積が5×50mm(縦×横)になるように調整した。その後、貼り合わせ後の基板に、照度20mW/cmのメタルハライドランプを用いて、365nmの波長換算で3J/cmの紫外線を照射し、その後、熱循環型クリーンオーブンにて120℃で60分間加熱処理をして、密着性の評価用のセルを作製した。 Next, a 6 μm spacer is applied to the liquid crystal alignment film surface of one substrate, and a sealant (723K1) (manufactured by Kyoritsu Chemical Industry Co., Ltd.) is applied to the liquid crystal alignment film surface of the other substrate. The substrates were laminated so that the liquid crystal alignment film surfaces of the substrates face each other. At that time, the application amount of the sealing agent was adjusted so that the area of the sealing agent after the bonding was 5×50 mm (length×width). Then, the bonded substrates are irradiated with 3 J/cm 2 of ultraviolet rays at a wavelength conversion of 365 nm by using a metal halide lamp with an illuminance of 20 mW/cm 2 , and then in a heat cycle type clean oven at 120° C. for 60 minutes. A heat treatment was performed to produce a cell for evaluation of adhesion.
 密着性の評価は、卓上型精密万能試験機(AGS-X 500N)(島津製作所社製)を用いて行った。具体的には、得られたセルの上下の端の部分を固定した後、上下方向に引っ張った際の破断強度(N)を測定した。評価は、破断強度の値が大きいものほど密着性に優れる、即ち、本評価に優れるとした。
 表8~表10中に、結果を示す。
The evaluation of the adhesiveness was carried out using a tabletop precision universal testing machine (AGS-X 500N) (manufactured by Shimadzu Corporation). Specifically, after fixing the upper and lower ends of the obtained cell, the breaking strength (N) when pulled in the vertical direction was measured. In the evaluation, the larger the value of the breaking strength, the more excellent the adhesion is, that is, the more excellent this evaluation is.
The results are shown in Tables 8 to 10.
「液晶表示素子の作製及び恒温恒湿耐性の評価」
 実施例及び比較例で得られた液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過し、純水及びIPAにて洗浄を行ったITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)のITO面にスピンコートし、ホットプレート上にて120℃で2分間、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。次に、この基板の液晶配向膜面をロール径が120mmのラビング装置で、レーヨン布を用いて、ロール回転数が500rpm、ロール進行速度が30mm/sec、押し込み量が0.3mmの条件でラビング処理した。
"Production of liquid crystal display element and evaluation of constant temperature and humidity resistance"
The liquid crystal alignment treatment agents obtained in Examples and Comparative Examples were pressure-filtered with a membrane filter having a pore size of 1 μm, and washed with pure water and IPA. A substrate with ITO electrodes (length 40 mm×width 30 mm, thickness) (0.7 mm) ITO surface is spin-coated, and heat-treated at 120° C. for 2 minutes on a hot plate and at 230° C. for 30 minutes in a heat circulation type clean oven to have a liquid crystal alignment film with a thickness of 100 nm. The ITO substrate of was obtained. Next, the liquid crystal alignment film surface of this substrate was rubbed with a rubbing device having a roll diameter of 120 mm under the conditions of a roll rotation speed of 500 rpm, a roll advancing speed of 30 mm/sec, and a pushing amount of 0.3 mm. Processed.
 その後、ラビング処理後の基板を2枚用意し、一方の基板の液晶配向膜面に4μmのスペーサを塗布し、もう一方の基板の4辺の液晶配向膜面上には、シール剤(XN-1500T)(協立化学産業社製)を塗布し、これらの基板の液晶配向膜面が向き合うように貼り合わせを行った。その際、それぞれの基板のラビング方向が逆方向になるように貼り合わせた。次に、熱循環型クリーンオーブンにて120℃で90分間加熱処理をして、空セルを作製した。この空セルに減圧注入法によって液晶を注入し、注入口を封止して液晶セルを得た。なお、実施例1~5、13、14、比較例1、3、5、7では、液晶にポジ型液晶(MLC-2003)(メルク社製)を用い、実施例6~12、比較例2、4、6、8では、液晶にネガ型液晶(MLC-6608)(メルク社製)を用いた。 Then, two substrates after the rubbing treatment are prepared, a spacer of 4 μm is applied to the liquid crystal alignment film surface of one substrate, and a sealant (XN- 1500T) (manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.) was applied, and the substrates were laminated so that the liquid crystal alignment film surfaces of these substrates face each other. At that time, the substrates were laminated so that the rubbing directions of the substrates were opposite to each other. Next, heat treatment was performed at 120° C. for 90 minutes in a heat circulation type clean oven to prepare an empty cell. Liquid crystal was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal cell. In Examples 1 to 5, 13, and 14 and Comparative Examples 1, 3, 5, and 7, positive type liquid crystal (MLC-2003) (manufactured by Merck) was used as the liquid crystal, and Examples 6 to 12 and Comparative example 2 were used. In Examples 4, 6, and 8, a negative liquid crystal (MLC-6608) (manufactured by Merck) was used as the liquid crystal.
 偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)による観察より、実施例及び比較例で得られたすべての液晶セルとも、均一な液晶配向性を示していることを確認した。
 その後、液晶セルを温度80℃、湿度90%RHの恒温恒湿槽内に48時間保管し、液晶セルの剥離と気泡の有無を確認した。具体的には、液晶セルの剥離(液晶配向膜とシール剤との間、及び液晶配向膜とITO電極との間で剥がれている状態)が起こっていないもの、及び液晶セル内に気泡が発生していないものを、本評価に優れるとした(表中の良好表示)。その際、実施例2、3、7、8、11、12においては、前記の標準試験に加え、強調試験として、温度80℃、湿度90%RHの恒温恒湿槽内に144時間保管した後の確認も行った。なお、評価方法は前記と同様である。
 表8~表10中に、結果を示す。
From observation with a polarization microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation), it was confirmed that all the liquid crystal cells obtained in Examples and Comparative Examples exhibited uniform liquid crystal alignment.
Then, the liquid crystal cell was stored in a constant temperature and constant humidity chamber at a temperature of 80° C. and a humidity of 90% RH for 48 hours, and peeling of the liquid crystal cell and the presence or absence of bubbles were confirmed. Specifically, the liquid crystal cell is not peeled (a state where it is peeled between the liquid crystal alignment film and the sealant and between the liquid crystal alignment film and the ITO electrode), and bubbles are generated in the liquid crystal cell. Those which were not evaluated were considered to be excellent in this evaluation (good display in the table). At that time, in Examples 2, 3, 7, 8, 11, and 12, after being stored in a constant temperature and humidity chamber at a temperature of 80° C. and a humidity of 90% RH for 144 hours, in addition to the standard test described above, I also checked. The evaluation method is the same as above.
The results are shown in Tables 8 to 10.
<実施例1>
 合成例1で得られたポリアミド酸溶液(1)(10.0g)に、A1(0.20g)、NMP(23.8g)及びBCS(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(1)を得た。
<実施例2>
 合成例2で得られたポリアミド酸溶液(2)(10.0g)に、A1(0.30g)、NMP(23.8g)及びBCS(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(2)を得た。
<Example 1>
A1 (0.20 g), NMP (23.8 g) and BCS (7.83 g) were added to the polyamic acid solution (1) (10.0 g) obtained in Synthesis Example 1, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (1) was obtained.
<Example 2>
A1 (0.30 g), NMP (23.8 g) and BCS (7.83 g) were added to the polyamic acid solution (2) (10.0 g) obtained in Synthesis Example 2, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (2) was obtained.
<実施例3>
 合成例2で得られたポリアミド酸溶液(2)(10.0g)に、A1(0.30g)、K1(0.18g)、NMP(23.8g)及びBCS(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(3)を得た。
<実施例4>
 合成例3で得られたポリイミド粉末(3)(2.50g)に、NEP(31.3g)を加え、60℃で24時間攪拌して溶解させた。この溶液に、A2(0.15g)及びBCS(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(4)を得た。
<Example 3>
A1 (0.30 g), K1 (0.18 g), NMP (23.8 g) and BCS (7.83 g) were added to the polyamic acid solution (2) (10.0 g) obtained in Synthesis Example 2, The mixture was stirred at 25°C for 15 hours to obtain a liquid crystal alignment treatment agent (3).
<Example 4>
NEP (31.3 g) was added to the polyimide powder (3) (2.50 g) obtained in Synthesis Example 3 and stirred at 60° C. for 24 hours to be dissolved. A2 (0.15 g) and BCS (7.83 g) were added to this solution and stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (4).
<実施例5>
 合成例4で得られたポリアミド酸溶液(4)(10.0g)に、A1(0.13g)、A2(0.075g)、NMP(19.9g)、BCS(7.83g)及びPB(3.92g)を加え、25℃で15時間撹拌して、液晶配向処理剤(5)を得た。
<実施例6>
 合成例5で得られたポリアミド酸溶液(5)(10.0g)に、A1(0.15g)、NMP(16.0g)及びBCS(15.7g)を加え、25℃で15時間撹拌して、液晶配向処理剤(6)を得た。
<Example 5>
In the polyamic acid solution (4) (10.0 g) obtained in Synthesis Example 4, A1 (0.13 g), A2 (0.075 g), NMP (19.9 g), BCS (7.83 g) and PB ( 3.92 g) was added and stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (5).
<Example 6>
A1 (0.15 g), NMP (16.0 g) and BCS (15.7 g) were added to the polyamic acid solution (5) (10.0 g) obtained in Synthesis Example 5, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (6) was obtained.
<実施例7>
 合成例6で得られたポリイミド粉末(6)(2.50g)に、NEP(23.5g)を加え、60℃で24時間攪拌して溶解させた。この溶液に、A2(0.20g)及びPB(15.7g)を加え、25℃で15時間撹拌して、液晶配向処理剤(7)を得た。
<実施例8>
 合成例6で得られたポリイミド粉末(6)(2.50g)に、NEP(23.5g)を加え、60℃で24時間攪拌して溶解させた。この溶液に、A2(0.20g)、K1(0.18g)及びPB(15.7g)を加え、25℃で15時間撹拌して、液晶配向処理剤(8)を得た。
<Example 7>
NEP (23.5 g) was added to the polyimide powder (6) (2.50 g) obtained in Synthesis Example 6 and stirred at 60° C. for 24 hours to be dissolved. A2 (0.20 g) and PB (15.7 g) were added to this solution, and the mixture was stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (7).
<Example 8>
NEP (23.5 g) was added to the polyimide powder (6) (2.50 g) obtained in Synthesis Example 6 and stirred at 60° C. for 24 hours to be dissolved. A2 (0.20 g), K1 (0.18 g) and PB (15.7 g) were added to this solution, and the mixture was stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (8).
<実施例9>
 合成例7で得られたポリアミド酸溶液(7)(10.0g)に、A1(0.10g)、K2(0.08g)、NMP(19.9g)、BCS(7.83g)及びPB(3.92g)を加え、25℃で15時間撹拌して、液晶配向処理剤(9)を得た。
<実施例10>
 合成例8で得られたポリアミド酸溶液(8)(10.0g)に、A2(0.15g)、K2(0.18g)、NMP(19.9g)及びBCS(11.8g)を加え、25℃で15時間撹拌して、液晶配向処理剤(10)を得た。
<Example 9>
To the polyamic acid solution (7) (10.0 g) obtained in Synthesis Example 7, A1 (0.10 g), K2 (0.08 g), NMP (19.9 g), BCS (7.83 g) and PB( 3.92 g) was added and stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (9).
<Example 10>
To the polyamic acid solution (8) (10.0 g) obtained in Synthesis Example 8, A2 (0.15 g), K2 (0.18 g), NMP (19.9 g) and BCS (11.8 g) were added, The mixture was stirred at 25°C for 15 hours to obtain a liquid crystal alignment treatment agent (10).
<実施例11>
 合成例9で得られたポリアミド酸溶液(9)(10.0g)に、A1(0.23g)、NMP(19.9g)及びBCS(11.8g)を加え、25℃で15時間撹拌して、液晶配向処理剤(11)を得た。
<実施例12>
 合成例9で得られたポリアミド酸溶液(9)(10.0g)に、A1(0.23g)、K1(0.13g)、NMP(19.9g)及びBCS(11.8g)を加え、25℃で15時間撹拌して、液晶配向処理剤(12)を得た。
<Example 11>
A1 (0.23 g), NMP (19.9 g) and BCS (11.8 g) were added to the polyamic acid solution (9) (10.0 g) obtained in Synthesis Example 9, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (11) was obtained.
<Example 12>
To the polyamic acid solution (9) (10.0 g) obtained in Synthesis Example 9, A1 (0.23 g), K1 (0.13 g), NMP (19.9 g) and BCS (11.8 g) were added, The mixture was stirred at 25°C for 15 hours to obtain a liquid crystal alignment treatment agent (12).
<実施例13>
 合成例10で得られたポリアミド酸アルキルエステル粉末(10)(2.50g)に、NMP(31.3g)を加え、40℃で24時間攪拌して溶解させた。この溶液に、A1(0.30g)及びBCS(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(13)を得た。
<実施例14>
 合成例10で得られたポリアミド酸アルキルエステル粉末(10)(2.50g)に、NEP(31.3g)を加え、40℃で24時間攪拌して溶解させた。この溶液に、A2(0.20g)、K2(0.13g)及びBCS(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(14)を得た。
<Example 13>
NMP (31.3 g) was added to the polyamic acid alkyl ester powder (10) (2.50 g) obtained in Synthesis Example 10, and the mixture was stirred at 40° C. for 24 hours to be dissolved. A1 (0.30 g) and BCS (7.83 g) were added to this solution, and the mixture was stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (13).
<Example 14>
NEP (31.3 g) was added to the polyamic acid alkyl ester powder (10) (2.50 g) obtained in Synthesis Example 10, and the mixture was stirred at 40° C. for 24 hours to be dissolved. A2 (0.20 g), K2 (0.13 g) and BCS (7.83 g) were added to this solution, and the mixture was stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (14).
<比較例1>
 合成例11で得られたポリアミド酸溶液(11)(10.0g)に、NMP(23.8g)及びBCS(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(15)を得た。
<比較例2>
 合成例12で得られたポリアミド酸溶液(12)(10.0g)に、NMP(16.0g)及びBCS(15.7g)を加え、25℃で15時間撹拌して、液晶配向処理剤(16)を得た。
<Comparative Example 1>
NMP (23.8 g) and BCS (7.83 g) were added to the polyamic acid solution (11) (10.0 g) obtained in Synthesis Example 11, and the mixture was stirred at 25°C for 15 hours to prepare a liquid crystal alignment treatment agent ( 15) was obtained.
<Comparative example 2>
NMP (16.0 g) and BCS (15.7 g) were added to the polyamic acid solution (12) (10.0 g) obtained in Synthesis Example 12, and the mixture was stirred at 25° C. for 15 hours to prepare a liquid crystal alignment treatment agent ( 16) was obtained.
<比較例3>
 合成例11で得られたポリアミド酸溶液(11)(10.0g)に、A1(0.20g)、NMP(23.8g)及びBCS(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(17)を得た。
<比較例4>
 合成例12で得られたポリアミド酸溶液(12)(10.0g)に、A1(0.15g)、NMP(16.0g)及びBCS(15.7g)を加え、25℃で15時間撹拌して、液晶配向処理剤(18)を得た。
<Comparative example 3>
A1 (0.20 g), NMP (23.8 g) and BCS (7.83 g) were added to the polyamic acid solution (11) (10.0 g) obtained in Synthesis Example 11, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (17) was obtained.
<Comparative example 4>
A1 (0.15 g), NMP (16.0 g) and BCS (15.7 g) were added to the polyamic acid solution (12) (10.0 g) obtained in Synthesis Example 12, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (18) was obtained.
<比較例5>
 合成例1で得られたポリアミド酸溶液(1)(10.0g)に、NMP(23.8g)及びBCS(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(19)を得た。
<比較例6>
 合成例5で得られたポリアミド酸溶液(5)(10.0g)に、NMP(16.0g)及びBCS(15.7g)を加え、25℃で15時間撹拌して、液晶配向処理剤(20)を得た。
<Comparative Example 5>
NMP (23.8 g) and BCS (7.83 g) were added to the polyamic acid solution (1) (10.0 g) obtained in Synthesis Example 1, and the mixture was stirred at 25° C. for 15 hours to prepare a liquid crystal alignment treatment agent ( 19) was obtained.
<Comparative example 6>
NMP (16.0 g) and BCS (15.7 g) were added to the polyamic acid solution (5) (10.0 g) obtained in Synthesis Example 5, and the mixture was stirred at 25° C. for 15 hours to prepare a liquid crystal alignment treatment agent ( 20) was obtained.
<比較例7>
 合成例1で得られたポリアミド酸溶液(1)(10.0g)に、a1(0.20g)、NMP(23.8g)及びBCS(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(21)を得た。
<比較例8>
 合成例5で得られたポリアミド酸溶液(5)(10.0g)に、a1(0.15g)、NMP(16.0g)及びBCS(15.7g)を加え、25℃で15時間撹拌して、液晶配向処理剤(22)を得た。
<Comparative Example 7>
A1 (0.20 g), NMP (23.8 g) and BCS (7.83 g) were added to the polyamic acid solution (1) (10.0 g) obtained in Synthesis Example 1, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (21) was obtained.
<Comparative Example 8>
A1 (0.15 g), NMP (16.0 g) and BCS (15.7 g) were added to the polyamic acid solution (5) (10.0 g) obtained in Synthesis Example 5, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (22) was obtained.
<実施例1~14及び比較例1~8>
 上記で得られた液晶配向処理剤(1)~(22)を用いて、上述の条件で、「密着性の評価」及び「液晶表示素子の作製及び恒温恒湿耐性の評価」を行った。
 なお、これらの液晶配向処理剤(1)~(22)のいずれにも、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Examples 1 to 14 and Comparative Examples 1 to 8>
Using the liquid crystal alignment treatment agents (1) to (22) obtained above, "adhesion evaluation" and "production of liquid crystal display element and evaluation of constant temperature and humidity resistance" were performed under the above conditions.
No abnormalities such as turbidity or precipitation were observed in any of these liquid crystal alignment treatment agents (1) to (22), and it was confirmed that the solution was uniform.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
*3:重合体100質量部に対する特定化合物の含有量(質量部)を示す。
*4:重合体100質量部に対する架橋性化合物の含有量(質量部)を示す。
Figure JPOXMLDOC01-appb-T000027
*3: Indicates the content (parts by mass) of the specific compound with respect to 100 parts by mass of the polymer.
*4: Indicates the content (parts by mass) of the crosslinkable compound with respect to 100 parts by mass of the polymer.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
*5:素子内に極少量の気泡が見られた。
*6:素子内に少量の気泡が見られた(*5よりも多い)。
*7:素子内に気泡が見られた(*6よりも多い)。
*8:素子内に多くの気泡が見られた(*7よりも多い)。
Figure JPOXMLDOC01-appb-T000030
*5: A very small amount of bubbles were found in the device.
*6: A small amount of bubbles were found in the element (more than *5).
*7: Bubbles were found in the element (more than *6).
*8: Many bubbles were found in the element (more than *7).
 上記の結果からわかるように、特定化合物及び特定重合体を含む液晶配向処理剤を用いた実施例は、それらを含まない、或いはどちらか一方のみを含む液晶配向処理剤の比較例に比べて、密着性に優れ、かつ、液晶セルを、高温高湿下で長期間保管しても、液晶セルの剥離が起こらなかった。具体的には、同一の条件での比較において、実施例1と比較例1、比較例3及び比較例5との比較、及び実施例6と比較例2、比較例4及び比較例6との比較である。 As can be seen from the above results, Examples using a liquid crystal alignment treatment agent containing a specific compound and a specific polymer, not containing them, or compared to a comparative example of a liquid crystal alignment treatment agent containing only one, The adhesiveness was excellent, and even when the liquid crystal cell was stored at high temperature and high humidity for a long time, the liquid crystal cell did not peel off. Specifically, in comparison under the same conditions, comparison between Example 1 and Comparative Example 1, Comparative Example 3 and Comparative Example 5, and Example 6 and Comparative Example 2, Comparative Example 4 and Comparative Example 6 It is a comparison.
 また、分子内にチオール基を3個以上有する特定化合物を含む液晶配向処理剤を用いた実施例は、チオール基が2個の化合物を含む液晶配向処理剤の比較例に比べて、前記特性に優れていた。具体的には、同一の条件での比較において、実施例1と比較例7との比較、及び実施例6と比較例8との比較である。
 加えて、液晶配向処理剤中に架橋性化合物を導入した場合、強調試験において、液晶セル内に気泡は発生しなかった。具体的には、同一の条件での比較において、実施例2と実施例3との比較、実施例7と実施例8との比較、及び実施例11と実施例12との比較である。
In addition, the example using the liquid crystal alignment treatment agent containing a specific compound having three or more thiol groups in the molecule has the above characteristics in comparison with the comparative example of the liquid crystal alignment treatment agent containing a compound having two thiol groups. Was excellent. Specifically, in comparison under the same conditions, there are comparison between Example 1 and Comparative Example 7, and comparison between Example 6 and Comparative Example 8.
In addition, when the crosslinkable compound was introduced into the liquid crystal alignment treatment agent, no bubbles were generated in the liquid crystal cell in the emphasis test. Specifically, in comparison under the same conditions, there are a comparison between Example 2 and Example 3, a comparison between Example 7 and Example 8, and a comparison between Example 11 and Example 12.
 本発明の液晶配向処理剤は、ら得られる液晶配向膜を用いることで、液晶表示素子の基板間の接着性が高く、更には、長時間、高温高湿に曝される過酷な環境においても、液晶表示素子内の気泡の発生や素子の剥がれを抑制することができる液晶表示素子が得られる。そのため、スマートフォンや携帯電話などの液晶表示素子に、好適に用いることができる。
 なお、2018年12月27日に出願された日本特許出願2018-246262号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The liquid crystal alignment treatment agent of the present invention has high adhesiveness between substrates of a liquid crystal display element by using the obtained liquid crystal alignment film, and further, even in a harsh environment exposed to high temperature and high humidity for a long time. It is possible to obtain a liquid crystal display element capable of suppressing the generation of bubbles in the liquid crystal display element and the peeling of the element. Therefore, it can be suitably used for liquid crystal display devices such as smartphones and mobile phones.
The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-246262 filed on Dec. 27, 2018 are cited herein as disclosure of the specification of the present invention. , Take in.

Claims (14)

  1.  下記の(A)成分及び(B)成分を含有する液晶配向処理剤。
     (A)成分:分子内にチオール基を3個以上有する化合物。
     (B)成分:下記式[1]で表される構造を有するジアミンを含有するジアミン成分とテトラカルボン酸成分との反応で得られるポリイミド前駆体、及び該ポリイミド前駆体をイミド化したポリイミドからなる群から選ばれる少なくとも1種の重合体。
    Figure JPOXMLDOC01-appb-C000001
    (X、Xは、それぞれ独立して、単結合、-O-、-NH-、-N(CH)-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-、及び-OCO-からなる群から選ばれる少なくとも1種を示す。Xは炭素数1~18のアルキレン基、又はベンゼン環、シクロシクロヘキサン環及び複素環から選ばれる少なくとも1種の環状基を有する炭素数6~24の有機基を示し、これら環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。Xは下記式[1-a]~式[1-g]からなる群から選ばれる少なくとも1種を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (Xは、水素原子又はベンゼン環を示す。Xは単結合、ベンゼン環、シクロへキサン環、及び複素環からなる群から選ばれる少なくとも1種を示す。Xは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基、又は炭素数1~18のフッ素含有アルコキシル基を示す。)
    A liquid crystal alignment treatment agent containing the following component (A) and component (B).
    Component (A): A compound having three or more thiol groups in the molecule.
    Component (B): a polyimide precursor obtained by reacting a diamine component containing a diamine having a structure represented by the following formula [1] with a tetracarboxylic acid component, and a polyimide obtained by imidizing the polyimide precursor. At least one polymer selected from the group.
    Figure JPOXMLDOC01-appb-C000001
    (X 1 and X 3 are each independently a single bond, —O—, —NH—, —N(CH 3 )—, —CH 2 O—, —CONH—, —NHCO—, —CON(CH 3 )-, —N(CH 3 )CO—, —COO—, and —OCO—, wherein X 2 represents an alkylene group having 1 to 18 carbon atoms, a benzene ring, or cyclo. An organic group having 6 to 24 carbon atoms having at least one cyclic group selected from a cyclohexane ring and a heterocycle is shown, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms or 1 carbon atom. May be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom, X 4 is represented by the following formulas [1-a] to At least one selected from the group consisting of [1-g] is shown.)
    Figure JPOXMLDOC01-appb-C000002
    (X a represents a hydrogen atom or a benzene ring. X b represents at least one selected from the group consisting of a single bond, a benzene ring, a cyclohexane ring, and a heterocycle. X c represents 1 to 18 carbon atoms. Represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.)
  2.  前記(A)成分が、1,2,3-プロパントリチオール、1,2,4-ブタントリチオール、ペンタエリスリトールトリス(3-メルカプトプロピオネート)、1,3,5-ベンゼントリチオール、2,4,6-メシチレントリチオール、ネオペンタンテトラチオール、2,4,6-トルエントリチオール、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、ジペンタエリストールヘキサキス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールエタントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6-(1H.3H.5H)-トリオン、ネオペンタンテトラチオール、2,2’-ビス(メルカプトメチル)-1,3-プロパンジチオール、ペンタエリトリトールテトラキス(3-メルカプトプロピオネート)、又はジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)からなる群から選ばれる少なくとも1種である請求項1に記載の液晶配向処理剤。 The component (A) is 1,2,3-propanetrithiol, 1,2,4-butanetrithiol, pentaerythritol tris(3-mercaptopropionate), 1,3,5-benzenetrithiol, 2 ,4,6-Mesitylenetrithiol, neopentanetetrathiol, 2,4,6-toluenthithiol, trimethylolpropane tris(3-mercaptopropionate), tris-[(3-mercaptopropionyloxy)-ethyl] -Isocyanurate, pentaerythritol tetrakis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate), trimethylolpropane tris (3 -Mercaptobutyrate), trimethylolethane tris(3-mercaptobutyrate), pentaerythritol tetrakis(3-mercaptobutyrate), 1,3,5-tris(3-mercaptobutyryloxyethyl)-1,3,3 5-triazine-2,4,6-(1H.3H.5H)-trione, neopentanetetrathiol, 2,2'-bis(mercaptomethyl)-1,3-propanedithiol, pentaerythritoltetrakis(3-mercapto) The liquid crystal alignment treatment agent according to claim 1, which is at least one selected from the group consisting of propionate) and dipentaerythritol hexakis(3-mercaptopropionate).
  3.  前記(A)成分が、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、ジペンタエリストールヘキサキス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールエタントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6-(1H.3H.5H)-トリオン又はネオペンタンテトラチオール、ペンタエリトリトールテトラキス(3-メルカプトプロピオネート)、又はジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)である請求項1に記載の液晶配向処理剤。 The component (A) is trimethylolpropane tris(3-mercaptopropionate), tris-[(3-mercaptopropionyloxy)-ethyl]-isocyanurate, pentaerythritol tetrakis(3-mercaptopropionate), tetra Ethylene glycol bis(3-mercaptopropionate), dipentaerythritol hexakis(3-mercaptopropionate), trimethylolpropane tris(3-mercaptobutyrate), trimethylolethanetris(3-mercaptobutyrate) , Pentaerythritol tetrakis(3-mercaptobutyrate), 1,3,5-tris(3-mercaptobutyryloxyethyl)-1,3,5-triazine-2,4,6-(1H.3H.5H) -The liquid crystal alignment treatment agent according to claim 1, which is trione or neopentanetetrathiol, pentaerythritoltetrakis(3-mercaptopropionate), or dipentaerythritolhexakis(3-mercaptopropionate).
  4.  前記(A)成分を、前記重合体100質量部に対して、0.1~30質量部含有する請求項1~3のいずれか一項に記載の液晶配向処理剤。 The liquid crystal alignment treatment agent according to any one of claims 1 to 3, wherein the component (A) is contained in an amount of 0.1 to 30 parts by mass based on 100 parts by mass of the polymer.
  5.  前記式[1]で表される構造を有するジアミンが、下記式[1a]で表されるジアミンである請求項1~4のいずれか一項に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000003
    (Xは前記式[1]で表される構造を示す。nは1~4の整数を示す。)
    The liquid crystal alignment treatment agent according to any one of claims 1 to 4, wherein the diamine having a structure represented by the formula [1] is a diamine represented by the following formula [1a].
    Figure JPOXMLDOC01-appb-C000003
    (X represents the structure represented by the above formula [1]. n represents an integer of 1 to 4.)
  6.  前記式[1a]で表されるジアミンが、下記式[1a-1]~式[1a-9]のいずれかのジアミンである請求項5に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    (nは、2~12の整数を示す。)
    The liquid crystal alignment treatment agent according to claim 5, wherein the diamine represented by the formula [1a] is any one of the following formulas [1a-1] to [1a-9].
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    (N represents an integer of 2 to 12.)
  7.  前記式[1a]で表されるジアミンが、下記式B1又は式B2のジアミンである請求項5に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000006
    The liquid crystal alignment treatment agent according to claim 5, wherein the diamine represented by the formula [1a] is a diamine represented by the following formula B1 or formula B2.
    Figure JPOXMLDOC01-appb-C000006
  8.  前記前記式[1]で表される構造を有するジアミンを、前記ジアミン成分全体に対して1~50モル%含有する請求項1~7のいずれか一項に記載の液晶配向処理剤。 8. The liquid crystal alignment treatment agent according to claim 1, wherein the diamine having a structure represented by the formula [1] is contained in an amount of 1 to 50 mol% based on the entire diamine component.
  9.  エポキシ基、イソシアネート基、オキセタン基及びシクロカーボネート基から選ばれる架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基及び炭素数1~3のアルコキシアルキル基から選ばれる架橋性化合物、又は重合性不飽和結合基を有する架橋性化合物から選ばれる少なくとも1種を含む請求項1~8のいずれか一項に記載の液晶配向処理剤。 A crosslinkable compound selected from an epoxy group, an isocyanate group, an oxetane group and a cyclocarbonate group, a crosslinkable compound selected from a hydroxyl group, a hydroxyalkyl group and an alkoxyalkyl group having 1 to 3 carbon atoms, or a polymerizable unsaturated bond group. 9. The liquid crystal alignment treatment agent according to claim 1, containing at least one selected from the crosslinkable compounds having.
  10.  前記架橋性化合物が、下式K1又はK2で表される化合物である請求項9に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000007
    The liquid crystal alignment treatment agent according to claim 9, wherein the crosslinkable compound is a compound represented by the following formula K1 or K2.
    Figure JPOXMLDOC01-appb-C000007
  11.  前記架橋性化合物を、前記重合体100質量部に対して、0.1~100質量部含有する請求項9又は10に記載の液晶配向処理剤。 The liquid crystal alignment treatment agent according to claim 9 or 10, wherein the crosslinkable compound is contained in an amount of 0.1 to 100 parts by mass based on 100 parts by mass of the polymer.
  12.  請求項1~11のいずれか一項に記載の液晶配向処理剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment treatment agent according to any one of claims 1 to 11.
  13.  請求項12に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display device having the liquid crystal alignment film according to claim 12.
  14.  モバイル機器である請求項13に記載の液晶表示素子。 The liquid crystal display device according to claim 13, which is a mobile device.
PCT/JP2019/050692 2018-12-27 2019-12-24 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element WO2020138112A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217019558A KR20210108963A (en) 2018-12-27 2019-12-24 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JP2020563324A JP7424315B2 (en) 2018-12-27 2019-12-24 Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
CN201980086389.7A CN113260909A (en) 2018-12-27 2019-12-24 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018246262 2018-12-27
JP2018-246262 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020138112A1 true WO2020138112A1 (en) 2020-07-02

Family

ID=71129397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050692 WO2020138112A1 (en) 2018-12-27 2019-12-24 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP7424315B2 (en)
KR (1) KR20210108963A (en)
CN (1) CN113260909A (en)
TW (1) TWI824090B (en)
WO (1) WO2020138112A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112192A (en) * 2012-10-31 2014-06-19 Jsr Corp Liquid crystal orienting agent for psa mode liquid crystal display element, liquid crystal orientation film for psa mode liquid crystal display element, psa mode liquid crystal display element, and method for producing the same
JP2014186301A (en) * 2013-02-25 2014-10-02 Jsr Corp Composition for liquid crystal display element, and liquid crystal display element and method for manufacturing the same
JP2014527555A (en) * 2011-08-02 2014-10-16 ロリク アーゲーRolic Ag Photo-alignment material
JP2016118573A (en) * 2014-12-18 2016-06-30 Jsr株式会社 Liquid crystal alignment agent, manufacturing method of liquid crystal display device, liquid crystal alignment film, liquid crystal display device, polymer, and compound

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171762A (en) 1985-01-28 1986-08-02 Japan Synthetic Rubber Co Ltd Soluble polyimide resin composition
JP2980080B2 (en) 1997-10-09 1999-11-22 ジェイエスアール株式会社 Liquid crystal alignment agent
TW201510186A (en) * 2013-05-29 2015-03-16 Dainippon Ink & Chemicals Polymerisable liquid crystal composition, phase difference film, phase difference patterning film, and homogeneously aligned liquid crystal film
TWI634105B (en) * 2013-05-29 2018-09-01 迪愛生股份有限公司 Polymerizable composition solution and optical isomer using the same
CN105637410B (en) * 2013-08-14 2019-08-02 日产化学工业株式会社 Liquid crystal indicates element
CN107077024B (en) * 2014-11-07 2020-11-17 日产化学工业株式会社 Liquid crystal display element
CN107250899B (en) * 2014-12-25 2020-10-09 日产化学工业株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527555A (en) * 2011-08-02 2014-10-16 ロリク アーゲーRolic Ag Photo-alignment material
JP2014112192A (en) * 2012-10-31 2014-06-19 Jsr Corp Liquid crystal orienting agent for psa mode liquid crystal display element, liquid crystal orientation film for psa mode liquid crystal display element, psa mode liquid crystal display element, and method for producing the same
JP2014186301A (en) * 2013-02-25 2014-10-02 Jsr Corp Composition for liquid crystal display element, and liquid crystal display element and method for manufacturing the same
JP2016118573A (en) * 2014-12-18 2016-06-30 Jsr株式会社 Liquid crystal alignment agent, manufacturing method of liquid crystal display device, liquid crystal alignment film, liquid crystal display device, polymer, and compound

Also Published As

Publication number Publication date
TW202037638A (en) 2020-10-16
JPWO2020138112A1 (en) 2021-11-11
KR20210108963A (en) 2021-09-03
CN113260909A (en) 2021-08-13
JP7424315B2 (en) 2024-01-30
TWI824090B (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP6372009B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP4605016B2 (en) Liquid crystal aligning agent for vertical alignment and liquid crystal display element
KR102596591B1 (en) Compounds, liquid crystal compositions, and liquid crystal display devices
US20060024452A1 (en) Aligning agent for liquid crystal and liquid-crystal display element
JPWO2008010528A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
WO2019022202A1 (en) Resin composition, resin film, and liquid crystal display element
JP7424364B2 (en) Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
TWI681986B (en) Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
JP7424315B2 (en) Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
JP7392663B2 (en) Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
JP7424366B2 (en) Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
TW202045586A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element using this
WO2021065933A1 (en) Liquid crystal light control element
TWI852973B (en) Liquid crystal alignment treating agent, liquid crystal alignment film and liquid crystal display element
JP4092558B2 (en) New liquid crystal alignment treatment agent
JP7494836B2 (en) Liquid crystal display element and its manufacturing method
JP7424363B2 (en) Resin compositions, resin films and liquid crystal display elements
CN111868616B (en) Liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563324

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901816

Country of ref document: EP

Kind code of ref document: A1