WO2020175463A1 - Flying vehicle - Google Patents

Flying vehicle Download PDF

Info

Publication number
WO2020175463A1
WO2020175463A1 PCT/JP2020/007434 JP2020007434W WO2020175463A1 WO 2020175463 A1 WO2020175463 A1 WO 2020175463A1 JP 2020007434 W JP2020007434 W JP 2020007434W WO 2020175463 A1 WO2020175463 A1 WO 2020175463A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
closed container
airship
heat source
present
Prior art date
Application number
PCT/JP2020/007434
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 中村
Original Assignee
浩平 中村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浩平 中村 filed Critical 浩平 中村
Publication of WO2020175463A1 publication Critical patent/WO2020175463A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/58Arrangements or construction of gas-bags; Filling arrangements
    • B64B1/62Controlling gas pressure, heating, cooling, or discharging gas
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B3/00Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the present invention relates to an aircraft.
  • Air vehicles such as hot air balloons and airships that fly by generating buoyancy by a gas (heated air, helium, etc.) having a smaller specific gravity than the outside air are known.
  • a conventional hot air balloon In a conventional hot air balloon, the lower end of the envelope is opened in order to heat the air in the envelope (bulb) by the heat of the burner.
  • the air temperature can be raised only up to about 100 ° even in the upper part of the envelope, so that large buoyancy cannot be obtained. For this reason, conventional hot air balloons cannot carry a large amount of burner fuel, and can only fly for about one hour.
  • a conventional airship uses a levitation gas such as helium that produces buoyancy even at room temperature, it can fly for a relatively long time.
  • a conventional airship has a space for enclosing a levitation gas and a space for accommodating air, as described in Patent Document 1, for example, so that these two spaces can be complementarily changeable in volume. It is divided by a flexible diaphragm.
  • Such airships increase or decrease the volume of levitation gas by adjusting the pressure of the space containing air to adjust the buoyancy.
  • Gas with a low molecular weight such as helium is used as the levitation gas for airships.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 1 1-9 3 4 2 2 ⁇ 0 2020/175463 2 ((17 2020/007434)
  • An object of the present invention is to provide a flying body that can fly for a long time without using expensive levitation gas.
  • An aircraft includes: a closed container that stores air; a heat source that is stored inside the closed container; And a pressure reducing valve for An air vehicle with such a configuration heats the air in the closed container to thermally expand it, and releases excess air from the pressure reducing valve to reduce the weight of the air in the closed container and generate buoyancy. Can be made. Since the heat loss is small because the heat source is placed in the closed container, it can fly for a long time.
  • the flight vehicle according to an aspect of the present invention may further include a ventilation valve that is provided in the closed container and introduces outside air into the closed container.
  • a ventilation valve that is provided in the closed container and introduces outside air into the closed container.
  • the flying object according to an aspect of the present invention may further include an opening mechanism for forcibly opening the pressure reducing valve. This allows the air vehicle to forcibly open the pressure reducing valve and release the air in the closed container, thereby promoting the introduction of the outside air and quickly descending.
  • the average temperature of the air in the closed container during flight is 600°C or more.
  • the air vehicle can obtain a relatively large buoyancy.
  • An aircraft according to an aspect of the present invention may further include a support member that is provided in the closed container and that supports the heat source away from an inner wall of the closed container.
  • the body can improve heat efficiency by suppressing heat conduction from the heat source to the closed container.
  • the heat source is a cold fusion heating device. ⁇ 0 2020/175463 3 ⁇ (: 171? 2020 /007434
  • FIG. 1 is a schematic view showing a hot air balloon of a first embodiment of an aircraft according to the present invention.
  • FIG. 2 is a schematic diagram showing an airship of a second embodiment of an air vehicle according to the present invention.
  • FIG. 3 is a perspective view of the airship of FIG.
  • FIG. 4 is a front view of the airship of FIG.
  • FIG. 5 is a schematic diagram showing an airship of a third embodiment of an air vehicle according to the present invention.
  • FIG. 6 is a schematic diagram showing an airship of a fourth embodiment of an air vehicle according to the present invention. MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic diagram showing a hot air balloon 1 which is a first embodiment of an aircraft according to the present invention.
  • the hot-air balloon 1 includes an airtight container 2 that contains air, a heat source 3 that is housed inside the airtight container 2, a support member 4 that supports the heat source 3 away from the inner wall of the airtight container 2, and an airtight container.
  • the container 2 is provided with a pressure reducing valve 5 for discharging the air in the closed container 2 and a basket 6 hung below the closed container 2.
  • the closed container 2 is formed of a material having heat resistance and flexibility.
  • This closed container 2 is a soft envelope (air sac) that retains its shape by internal pressure.
  • the heat resistant temperature of the closed container 2 is preferably 180°C or higher.
  • the closed container 2 preferably has an insulating property. Since the closed container 2 has insulating properties, it is possible to avoid lightning strikes and prevent damage to the heat source 3 and the like. Further, the closed container 2 is preferably made of a material having a low thermal conductivity. Heat in a closed container ⁇ 0 2020/175463 4 (:171? 2020/007434
  • the conductivity is low, the heat loss can be reduced, the output of the heat source 3 can be reduced, and the flight can be continued for a longer time.
  • the closed container 2 is preferably filled with dry air. This reduces the heat capacity of the air in the closed container 2 and improves energy efficiency, and in the unlikely event that hot air leaks from the closed container 2, damage to external people and things is caused by heat. Can be hard to give.
  • the heat source 3 is a heat generating device that does not consume oxygen and does not discharge exhaust gas.
  • a heating device that does not consume oxygen and does not discharge exhaust gas as the heat source 3, the heat source 3 can continue to generate heat in the closed container 2 for a long time.
  • the heat generating device that does not consume oxygen and is used as the heat source 3 for example, a cold fusion heat generating device, a quantum heat generating device and the like are particularly preferably used.
  • the hot air balloon 1 of the present embodiment can continue to fly for a longer period, for example, several months.
  • the support member 4 can be formed of, for example, a wire rope or the like. By supporting the heat source 3 away from the inner wall of the closed container 2 by the support member 4, it is possible to suppress heat conduction from the heat source 3 to the closed container 2 and improve thermal efficiency.
  • the heat source 3 is preferably arranged at the center of the closed container 2 or slightly below the center. As a result, the air in the closed container 2 can be efficiently heated by the convection of the heated air.
  • the pressure reducing valve 5 discharges a part of the air in the closed container 2 which is heated and expanded by the heat source 3 to the outside to keep the internal pressure of the closed container 2 at a constant pressure (typically equivalent to atmospheric pressure). Or slightly higher pressure). As a result, the air density in the closed container 2 is reduced, and buoyancy can be generated in the closed container 2.
  • the pressure reducing valve 5 is preferably arranged above the closed container 2. In the closed container 2, the temperature of the upper air tends to be higher. Therefore, by disposing the pressure reducing valve 5 above the tightly closed container 2, it is possible to efficiently release excess heat energy to the outside. ⁇ 0 2020/175463 5 (:171? 2020 /007434
  • the basketball 6 can be configured so that a person can ride on it, similar to a conventional hot air balloon.
  • the basket 6 is equipped with a control device that controls the output (heat generation amount) of the heat source 3.
  • the average temperature of the air in the closed container 2 during flight is preferably 100 or more, and more preferably 400 or more.
  • As the average temperature of the air in the closed container 2 during flight preferably 1 0 0 0 ° ⁇ less, more preferably 8 0 0 ° ⁇ below.
  • the average temperature of the air in the closed container 2 during flight can be about 600°.
  • Sufficient buoyancy can be generated by setting the average temperature of the air in the closed container 2 during flight to the above-mentioned lower limit or more. By setting the average temperature of the air in the closed container 2 during flight to the upper limit or less, it becomes relatively easy to secure the heat resistance of the closed container 2, the heat source 3, and the like.
  • the buoyancy is about three times that of a conventional hot air balloon with an air temperature of 100 ° °C or less. Obtainable. If the average temperature of the air in the closed container 2 during flight is 600°, the thermal conductivity of the air will be about twice that of the air in the conventional hot air balloon. The temperature of the air can be adjusted efficiently. In addition, by increasing the temperature of the air in the closed container 2 in this way, the difference in buoyancy due to the temperature of the outside air is reduced. Therefore, the hot air balloon 1 of the present embodiment can easily fly with sufficient buoyancy even in a warm region.
  • the hot air balloon 1 of the present embodiment heats the air in the closed container 2 by the heat source 3 to increase the molecular motion and thermally expand the air. Then, the hot air balloon 1 of the present embodiment can release the excess air from the pressure reducing valve 5 to the outside, thereby reducing the density of the air in the closed container 2 and generating buoyancy.
  • the hot air balloon 1 of the present embodiment obtains buoyancy due to the closed system in which the air and heat source 3 are enclosed in the closed container 2, so heat does not easily escape to the outside, so it has excellent energy efficiency and should fly for a long time. You can
  • Hot Air Balloon 1 to drop.
  • the hot air balloon 1 of the present embodiment is relatively low in cost because buoyancy is generated by air without using an expensive levitation gas such as expensive helium. Further, since the hot air balloon 1 of the present embodiment uses air having a larger molecular weight than levitation gas such as helium, it is easy to secure the sealing property of the closed container 2 and the weight of the closed container 2 is reduced. It is easy to obtain more buoyancy.
  • FIG. 2 is a schematic diagram schematically showing the configuration of an airship 13 that is a second embodiment of an air vehicle according to the present invention.
  • FIG. 3 is a perspective view showing a relatively realistic shape of the airship 13 of FIG.
  • FIG. 4 is a front view showing the airship 13 of FIG.
  • a fan 8 a plurality of stabilizing vanes (main wing 9, back wing 10 and tail 11) provided outside the closed container 23, and a main propulsion prober 12 provided at the front of the main wing 9,
  • An auxiliary propulsion propeller 13 provided at the rear of the main wing 9 and a plurality of attitude control propellers 14 provided in the main wing 9 are provided.
  • the heat source 3, the support member 4, and the pressure reducing valve 5 in the airship 13 in FIG. 2 can be the same as the heat source 3, the support member 4, and the pressure reducing valve 5 in the hot air balloon 1 in FIG. Therefore, in the following description, the same components as the components described above are designated by the same reference numerals, and redundant description will be omitted.
  • the sealed container 2 3 is formed of a material having heat resistance. Sealed container 2 3 is preferably formed in a long streamline shape in the horizontal direction (front-rear). Also, the closed vessel 2 3, as shown in FIGS. 3 and 4 has a groove 1 5 extending back and forth in the bottom and top. The groove 15 improves the stability of the airship 13 due to the relative air flow during flight. ⁇ 0 2020/175463 7 ⁇ (: 171-1? 2020 /007434
  • the sealed container 2 3 is preferably a rigid ene base mouth-loop capable of holding the shape regardless of the internal pressure. Therefore, the closed vessel 2 3, for example keel to hold the shape, configuration and including a skeleton like, may include a configuration as to form a wall that blocks air. Since the closed container 23 is a hard envelope, the air resistance of the airship 13 is kept constant during high-speed flight. Further, it is preferable that the closed container 23 of the airship 13 in FIG. 2 also has an insulating property and a small thermal conductivity, like the closed container 2 of the hot air balloon 1 in FIG.
  • airship 1 3 also the bottom of the sealed container 2 3 landing so as to be in contact with the ground, may be the bottom of the sealed container 2 3 impinges so that sinks under the water surface.
  • airship 1 3 may be provided with a basket or the like to the outside of the closed container 2. 3, in order to reduce the air resistance during flight, spatial accommodating air into the closed vessel 2 3 It is preferable that, for example, a control device, a person, luggage, etc. can be mounted in the space formed separately from the above.
  • the ventilation valve 7 is opened as needed to release the heated air in the closed container 23, and introduce cold outside air into the closed container 23 to remove the air inside the closed container 23. Increases the density of air. As a result, the airship 13 of the present embodiment can descend quickly.
  • Ventilation valve 7, so to be exchanged efficiently air in the closed casing 2 3, may be provided plurality of sealed containers 2 3.
  • the fan 8 rapidly diffuses the heat of the heat source 3 to the entire air in the closed container 23 by stirring the air in the closed container 23.
  • the airtight container 23 of the airship 13 has a large effect of providing the fan 8 because it is difficult to efficiently convect the internal air due to its shape.
  • wing 9 is provided so that projecting horizontally over the entire circumference in plan view the outer edge of the sealed container 2 3.
  • the wing 9 suppresses the mouth and pitch of the airship 13.
  • the main wing 9, the main propulsion propeller 1 2 holds the auxiliary propeller 1 3 and attitude control propeller 1 4, the closed vessel 2 3 reinforcement (particularly in an enclosed container 2 3 bent in front-rear direction central portion It also functions as a structure. ⁇ 0 2020/175463 8 ⁇ (: 171? 2020 /007434
  • wing 9 in symmetrical positions of the sides on both sides of the closed container 2 3, partly with a pivotable flap 1 6.
  • the airship 13 can be raised and lowered quickly by adjusting the angle of the flaps 16.
  • Setsubasa 1 0 is projected so as to extend back and forth on top of the closed container 2 3.
  • the back wings 10 improve the straight running performance of the airship 13.
  • tail 1 1 is provided on the rear upper side of the closed container 2 3. Tail 1 1 is an airship
  • the main propulsion propellers 12 are provided in left and right pairs at the front end of the airship 13 and generate thrust in a direction to move the airship 13 forward. In this way, by driving the main propulsion propeller 12 in the front part to pull the closed container 23, etc. in the rear, the orientation of the closed container 23 is stabilized.
  • the auxiliary propulsion propellers 13 are provided in a pair at the rear end of the airship 13 so as to generate a thrust in a direction of pushing the flying ship 13 forward.
  • the thrust of the auxiliary propulsion propeller 13 is preferably smaller than the thrust of the main propulsion propeller 12.
  • the airship 13 can change the traveling direction of the airship 13 by making the thrusts of the left and right main propulsion propellers 12 and the auxiliary propulsion propellers 13 different.
  • the plurality of attitude control propellers 14 are arranged symmetrically and distributed in the front-rear direction, and are configured so that the thrust can be adjusted individually.
  • the thrust of these attitude control propellers 14 adjusts the balance of the buoyancy of the closed container 23, and the closed container 23 can be tilted in any direction. That is, the plurality of attitude control propellers 14 can impart an external ballast effect to the closed container 23.
  • it is preferable that at least a part of the attitude control propeller 14 is provided so that the direction of the rotation axis can be changed. In particular, by changing the direction of the rotation axis so that it can extend in the left-right direction, the airship 13 can be turned in the horizontal direction without changing its position while the airship 13 is stationary in the air. Can be translated laterally. ⁇ 0 2020/175463 9 ⁇ (: 171-1? 2020 /007434
  • the airship 13 of the present embodiment also heats the air in the closed container 2 by the heat source 3 to increase the molecular motion and thermally expand. Then, the hot air balloon 1 of the present embodiment can reduce the density of the air in the closed container 2 and generate buoyancy by discharging excess air from the pressure reducing valve 5 to the outside. Since the hot air balloon 1 of the present embodiment has buoyancy due to the air in the closed container 2, it is difficult for heat to escape to the outside, so that it is excellent in energy efficiency and can fly for a long time.
  • FIG. 5 is a schematic diagram showing an airship 1 sack which is a third embodiment of an air vehicle according to the present invention.
  • the heat source 3, the support member 4, and the pressure reducing valve 5 in the airship 1 in Fig. 5 may be the same as the heat source 3, the support member 4, and the pressure reducing valve 5 in the hot air balloon 1 in Fig. 1.
  • the opening mechanism 17 forcibly opens the pressure reducing valve 5 to take in outside air at the same time as heat dissipation and increase the density of air in the closed container 2 3 to close the closed container 2 3 Buoyancy can be reduced. As a result, the flying boat of the present embodiment can quickly descend.
  • airship 1 1_Rei Chi of the present embodiment similarly to the airship 1 3 in FIG. 2, it is possible to fly in any direction over a long period of time.
  • FIG. 6 is a schematic diagram showing an airship 10 that is a second embodiment of an air vehicle according to the present invention.
  • An air supply mechanism 18 that introduces outside air into the air-containing space of the closed container 23, a main propulsion propeller 12 and a auxiliary propulsion propeller 13 that generate thrust, and a plurality of postures that determine the attitude of the closed container 2 3.
  • the heat source 3, the support member 4 and the pressure reducing valve 5 in the airship 10 in FIG. 6 can be the same as the heat source 3, the support member 4 and the pressure reducing valve 5 in the hot air balloon 1 in FIG.
  • the cabin 60 is a space that is formed separately from the space that stores air in the closed container 23.
  • the cabin 60 accommodates the air supply mechanism 18.
  • air supply mechanism 1 8 has a blow follower 1 1 9 pushed to suck outside air pressurizes the sealed container 2 in 3.
  • the air supply mechanism 18 can be configured to have an air filter 20, an air dryer 21 and a stop valve 22.
  • air supply mechanism 1 8 the internal pressure of the closed vessel 2 3 while retained at a higher pressure than the ambient atmospheric pressure, it is possible to introduce outside air into the sealed container 2 in 3. The result was, because the density temperature is lowered in the air in the closed container 2 3 rises, the airship 1 ⁇ buoyancy beat low is lowered.
  • the airship 1 ⁇ of the present embodiment can be simplify the configuration of the closed container 2 3.
  • the hot-air balloon closed container according to the embodiment of the present invention may be a hard envelope. Further, the airtight container of the airship according to the embodiment of the present invention may be a soft envelope.
  • the hot air balloon according to the embodiment of the present invention may also include a fan for stirring the air in the closed container.
  • the fan of the airship according to the embodiment of the present invention may be omitted.
  • the hot-air balloon according to the embodiment of the present invention may include at least one of a ventilation valve, a release mechanism, and an air supply mechanism.
  • the airship according to the embodiment of the present invention may include two or more of a ventilation valve, a release mechanism, and an air supply mechanism.
  • the heat source may be directly held on the inner wall of the closed container.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toys (AREA)

Abstract

The present invention addresses the problem of providing a flying vehicle that makes it possible to fly for a long period of time by means of heated air without using any expensive lifting gases. A flying vehicle 1 according to one embodiment of the present invention is provided with an airtight container 2 for accommodating air, a heat source 3 accommodated in the interior of the airtight container, and a pressure-reducing valve 5 that is provided to the airtight container 2 and that releases air from within the airtight container 2.

Description

\¥0 2020/175463 1 卩(:17 2020 /007434 明 細 書 \¥0 2020/175463 1 卩 (: 17 2020 /007434 Clarification
発明の名称 : 飛行体 Title of invention: Aircraft
技術分野 Technical field
[0001 ] 本発明は、 飛行体に関する。 [0001] The present invention relates to an aircraft.
背景技術 Background technology
[0002] 熱気球や飛行船等、 外気よりも比重が小さいガス (加熱した空気やへリウ ム等) によって浮力を発生させることで飛行する飛行体が知られている。 [0002] Air vehicles such as hot air balloons and airships that fly by generating buoyancy by a gas (heated air, helium, etc.) having a smaller specific gravity than the outside air are known.
[0003] 従来の熱気球は、 バーナーの熱によってエンベロープ (球皮) 内の空気を 加熱するために、 エンベロープの下端が開放されている。 従来の熱気球では 、 エンべ口ープ内の上部でも空気の温度を 1 0 0 °〇程度までしか上げること ができないため、 大きな浮力が得られない。 このため、 従来の熱気球は、 バ —ナーの燃料を多量に搭載することもできないので、 1時間程度しか飛行す ることができない。 [0003] In a conventional hot air balloon, the lower end of the envelope is opened in order to heat the air in the envelope (bulb) by the heat of the burner. With a conventional hot-air balloon, the air temperature can be raised only up to about 100 ° even in the upper part of the envelope, so that large buoyancy cannot be obtained. For this reason, conventional hot air balloons cannot carry a large amount of burner fuel, and can only fly for about one hour.
[0004] 従来の飛行船は、 常温でも浮力を生じるヘリウム等の浮揚ガスを用いるた め、 比較的長時間飛行することができる。 一般に、 従来の飛行船は、 例えば 特許文献 1 に記載されるように、 浮揚ガスを封入する空間と空気を収容する 空間とを有し、 この 2つの空間が相補的に容積変化可能となるよう可撓性の 隔膜によって区分される。 このような飛行船は、 空気を収容する空間の圧力 を調整することによって浮揚ガスの体積を増減させて浮力を調節する。 飛行 船の浮揚ガスとしては、 ヘリウム等の分子量が小さいガスが用いられる。 こ のため、 浮揚ガスを封入するエンべ口ープに完全なシール性を付与すること は難しく、 浮揚ガスの補給が必要となる。 分子量が小さい浮揚ガスは、 比較 的高価である。 また、 浮揚ガスのボンベは比較的重くなるため、 飛行船に補 給用浮揚ガスのボンベを搭載すると荷物等の積載量が制限される。 [0004] Since a conventional airship uses a levitation gas such as helium that produces buoyancy even at room temperature, it can fly for a relatively long time. Generally, a conventional airship has a space for enclosing a levitation gas and a space for accommodating air, as described in Patent Document 1, for example, so that these two spaces can be complementarily changeable in volume. It is divided by a flexible diaphragm. Such airships increase or decrease the volume of levitation gas by adjusting the pressure of the space containing air to adjust the buoyancy. Gas with a low molecular weight such as helium is used as the levitation gas for airships. For this reason, it is difficult to give a perfect sealing property to the enclosure loop that encloses the levitation gas, and it is necessary to replenish the levitation gas. Floating gases with low molecular weight are relatively expensive. Moreover, since the levitation gas cylinder becomes relatively heavy, the loading capacity of cargo etc. is limited if the levitation gas cylinder for supplementation is mounted on the airship.
先行技術文献 Prior art documents
特許文献 Patent literature
[0005] 特許文献 1 :特開 2 0 1 1 - 9 3 4 2 2号公報 \¥0 2020/175463 2 卩(:17 2020 /007434 発明の概要 [0005] Patent Document 1: Japanese Patent Laid-Open No. 2 0 1 1-9 3 4 2 2 \¥0 2020/175463 2 ((17 2020/007434)
発明が解決しようとする課題 Problems to be Solved by the Invention
[0006] 本発明は、 高価な浮揚ガスを用いず長時間飛行できる飛行体を提供するこ とを課題とする。 An object of the present invention is to provide a flying body that can fly for a long time without using expensive levitation gas.
課題を解決するための手段 Means for solving the problem
[0007] 本発明の一態様に係る飛行体は、 空気を収容する密閉容器と、 前記密閉容 器の内部に収容される熱源と、 前記密閉容器に設けられ、 前記密閉容器内の 空気を放出する減圧弁と、 を備える。 このような構成を有する飛行体は、 密 閉容器内の空気を加熱して熱膨張させ、 減圧弁から余剰の空気を放出するこ とで密閉容器内の空気の重量を小さく して浮力を生じさせることができる。 ここで、 熱源を密閉容器の中に配置したことによって熱損失が小さいので、 長時間飛行することができる。 [0007] An aircraft according to an aspect of the present invention includes: a closed container that stores air; a heat source that is stored inside the closed container; And a pressure reducing valve for An air vehicle with such a configuration heats the air in the closed container to thermally expand it, and releases excess air from the pressure reducing valve to reduce the weight of the air in the closed container and generate buoyancy. Can be made. Since the heat loss is small because the heat source is placed in the closed container, it can fly for a long time.
[0008] 本発明の一態様に係る飛行体は、 前記密閉容器に設けられ、 前記密閉容器 内に外気を導入する換気弁をさらに備えてもよい。 これによって、 飛行体は 、 換気弁から外気を導入することにより密閉容器内の空気の比重を大きく し て迅速に下降することができる。 [0008] The flight vehicle according to an aspect of the present invention may further include a ventilation valve that is provided in the closed container and introduces outside air into the closed container. As a result, the air vehicle can quickly descend by increasing the specific gravity of the air in the closed container by introducing the outside air from the ventilation valve.
[0009] 本発明の一態様に係る飛行体は、 前記減圧弁を強制的に開放する開放機構 をさらに備えてもよい。 これによって、 飛行体は、 減圧弁を強制的に開放し て密閉容器内の空気を放出することで、 外気の導入を促して迅速に下降する ことができる。 [0009] The flying object according to an aspect of the present invention may further include an opening mechanism for forcibly opening the pressure reducing valve. This allows the air vehicle to forcibly open the pressure reducing valve and release the air in the closed container, thereby promoting the introduction of the outside air and quickly descending.
[0010] 本発明の一態様に係る飛行体において、 飛行時の前記密閉容器内の空気の 平均温度が 6 0 0 °〇以上であることが好ましい。 これによって、 飛行体は、 比較的大きな浮力を得ることができる。 [0010] In the aircraft according to one aspect of the present invention, it is preferable that the average temperature of the air in the closed container during flight is 600°C or more. As a result, the air vehicle can obtain a relatively large buoyancy.
[001 1 ] 本発明の一態様に係る飛行体は、 前記密閉容器内に設けられ、 前記熱源を 前記密閉容器の内壁から離間して支持する支持部材をさらに備えてもよい、 これによって、 飛行体は、 熱源から密閉容器への熱伝導を抑制して熱効率を 向上することができる。 [001 1] An aircraft according to an aspect of the present invention may further include a support member that is provided in the closed container and that supports the heat source away from an inner wall of the closed container. The body can improve heat efficiency by suppressing heat conduction from the heat source to the closed container.
[0012] 本発明の一態様に係る飛行体において、 前記熱源は常温核融合発熱装置で \¥0 2020/175463 3 卩(:171? 2020 /007434 [0012] In the aircraft according to one aspect of the present invention, the heat source is a cold fusion heating device. \¥0 2020/175463 3 卩 (: 171? 2020 /007434
あってもよい。 これによって、 飛行体はさらに長時間の飛行が可能となる。 発明の効果 It may be. This will allow the aircraft to fly longer. Effect of the invention
[0013] 本発明によれば、 高価な浮揚ガスを用いず、 加熱空気によって長時間飛行 できる飛行体を提供することができる。 [0013] According to the present invention, it is possible to provide a flying body that can fly for a long time by heated air without using expensive levitation gas.
図面の簡単な説明 Brief description of the drawings
[0014] [図 1]本発明に係る飛行体の第 1実施形態の熱気球を示す模式図である。 [0014] [Fig. 1] Fig. 1 is a schematic view showing a hot air balloon of a first embodiment of an aircraft according to the present invention.
[図 2]本発明に係る飛行体の第 2実施形態の飛行船を示す模式図である。 FIG. 2 is a schematic diagram showing an airship of a second embodiment of an air vehicle according to the present invention.
[図 3]図 2の飛行船の斜視図である。 FIG. 3 is a perspective view of the airship of FIG.
[図 4]図 2の飛行船の正面図である。 FIG. 4 is a front view of the airship of FIG.
[図 5]本発明に係る飛行体の第 3実施形態の飛行船を示す模式図である。 FIG. 5 is a schematic diagram showing an airship of a third embodiment of an air vehicle according to the present invention.
[図 6]本発明に係る飛行体の第 4実施形態の飛行船を示す模式図である。 発明を実施するための形態 FIG. 6 is a schematic diagram showing an airship of a fourth embodiment of an air vehicle according to the present invention. MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、 本発明に係る飛行体の各実施形態について、 それぞれ図面を参照し ながら説明する。 [0015] Hereinafter, each embodiment of the aircraft according to the present invention will be described with reference to the drawings.
[0016] [第 1実施形態] [0016] [First Embodiment]
先ず、 本発明に係る飛行体の第 1実施形態の熱気球 1 について説明する。 図 1は、 本発明に係る飛行体の第 1実施形態である熱気球 1 を示す模式図で ある。 First, the hot air balloon 1 of the first embodiment of the flying object according to the present invention will be described. FIG. 1 is a schematic diagram showing a hot air balloon 1 which is a first embodiment of an aircraft according to the present invention.
[0017] 熱気球 1は、 空気を収容する密閉容器 2と、 密閉容器 2の内部に収容され る熱源 3と、 熱源 3を密閉容器 2の内壁から離間して支持する支持部材 4と 、 密閉容器 2に設けられ、 密閉容器 2内の空気を放出する減圧弁 5と、 密閉 容器 2の下方に吊り下げられるバスケッ ト 6と、 を備える。 [0017] The hot-air balloon 1 includes an airtight container 2 that contains air, a heat source 3 that is housed inside the airtight container 2, a support member 4 that supports the heat source 3 away from the inner wall of the airtight container 2, and an airtight container. The container 2 is provided with a pressure reducing valve 5 for discharging the air in the closed container 2 and a basket 6 hung below the closed container 2.
[0018] 密閉容器 2は、 耐熱性及び可撓性を有する材料から形成される。 この密閉 容器 2は、 内圧により形状を保持する軟質エンベロープ (気嚢) である。 密 閉容器 2の耐熱温度としては 1 8 0 0 °〇以上が好ましい。 また、 密閉容器 2 は、 絶縁性を有することが好ましい。 密閉容器 2が絶縁性を有することによ り、 落雷を避け、 熱源 3等の損傷を防止することができる。 また、 密閉容器 2は、 熱伝導率が小さい材料から形成されることが好ましい。 密閉容器の熱 \¥0 2020/175463 4 卩(:171? 2020 /007434 [0018] The closed container 2 is formed of a material having heat resistance and flexibility. This closed container 2 is a soft envelope (air sac) that retains its shape by internal pressure. The heat resistant temperature of the closed container 2 is preferably 180°C or higher. Further, the closed container 2 preferably has an insulating property. Since the closed container 2 has insulating properties, it is possible to avoid lightning strikes and prevent damage to the heat source 3 and the like. Further, the closed container 2 is preferably made of a material having a low thermal conductivity. Heat in a closed container \\0 2020/175463 4 (:171? 2020/007434
伝導率が小さいことにより、 熱損失を小さくすることができ、 熱源 3の出力 を小さくすることや、 より長時間飛行することが可能となる。 Since the conductivity is low, the heat loss can be reduced, the output of the heat source 3 can be reduced, and the flight can be continued for a longer time.
[0019] 密閉容器 2には、 乾燥空気を封入することが好ましい。 これにより、 密閉 容器 2内の空気の熱容量が小さくなり、 エネルギー効率の向上することがで きると共に、 万が一にも密閉容器 2から高温の空気が漏出した場合に外部の 人や物に熱によるダメージを与えにくくすることができる。 [0019] The closed container 2 is preferably filled with dry air. This reduces the heat capacity of the air in the closed container 2 and improves energy efficiency, and in the unlikely event that hot air leaks from the closed container 2, damage to external people and things is caused by heat. Can be hard to give.
[0020] 熱源 3は、 酸素を消費せず、 排ガスを排出しない発熱装置である。 熱源 3 として酸素を消費せず、 排ガスを排出しない発熱装置を用いることにより、 密閉容器 2の中で熱源 3が長時間発熱し続けることができる。 熱源 3として 用いられる酸素を消費しない発熱装置としては、 例えば常温核融合発熱装置 、 量子熱発生装置等が特に好適に用いられる。 熱源 3として常温核融合発熱 装置を用いる場合、 本実施形態の熱気球 1は、 より長期間、 例えば数ヶ月単 位で飛行し続けることが可能となる。 [0020] The heat source 3 is a heat generating device that does not consume oxygen and does not discharge exhaust gas. By using a heating device that does not consume oxygen and does not discharge exhaust gas as the heat source 3, the heat source 3 can continue to generate heat in the closed container 2 for a long time. As the heat generating device that does not consume oxygen and is used as the heat source 3, for example, a cold fusion heat generating device, a quantum heat generating device and the like are particularly preferably used. When the cold fusion heating device is used as the heat source 3, the hot air balloon 1 of the present embodiment can continue to fly for a longer period, for example, several months.
[0021 ] 支持部材 4は、 例えばワイヤロープ等から形成することができる。 支持部 材 4によって熱源 3を密閉容器 2の内壁から離間して支持することにより、 熱源 3から密閉容器 2への熱伝導を抑制して熱効率を向上することができる 。 熱源 3は、 密閉容器 2の中心部又は中心部より少し下方に配置することが 好ましい。 これによって、 加熱した空気の対流によって、 密閉容器 2の空気 を効率よく加熱することができる。 [0021] The support member 4 can be formed of, for example, a wire rope or the like. By supporting the heat source 3 away from the inner wall of the closed container 2 by the support member 4, it is possible to suppress heat conduction from the heat source 3 to the closed container 2 and improve thermal efficiency. The heat source 3 is preferably arranged at the center of the closed container 2 or slightly below the center. As a result, the air in the closed container 2 can be efficiently heated by the convection of the heated air.
[0022] 減圧弁 5は、 熱源 3によって加熱されて膨張した密閉容器 2内の空気の一 部を外部に放出することにより密閉容器 2の内圧を一定の圧力 (典型的には 大気圧と同等又はわずかに高い圧力) に保持する。 これによって、 密閉容器 2内の空気の密度が小さくなり、 密閉容器 2に浮力を生じさせることができ る。 [0022] The pressure reducing valve 5 discharges a part of the air in the closed container 2 which is heated and expanded by the heat source 3 to the outside to keep the internal pressure of the closed container 2 at a constant pressure (typically equivalent to atmospheric pressure). Or slightly higher pressure). As a result, the air density in the closed container 2 is reduced, and buoyancy can be generated in the closed container 2.
[0023] 減圧弁 5は、 密閉容器 2の上部に配置することが好ましい。 密閉容器 2の 中では、 上側の空気の方が温度が高くなりやすい。 このため、 減圧弁 5を密 閉容器 2の上部に配置することで、 過剰な熱エネルギーを外部に効率よく放 出することができる。 \¥0 2020/175463 5 卩(:171? 2020 /007434 The pressure reducing valve 5 is preferably arranged above the closed container 2. In the closed container 2, the temperature of the upper air tends to be higher. Therefore, by disposing the pressure reducing valve 5 above the tightly closed container 2, it is possible to efficiently release excess heat energy to the outside. \¥0 2020/175463 5 (:171? 2020 /007434
[0024] バスケッ ト 6は、 従来の熱気球と同様に、 人が乗ることができるよう構成 することができる。 バスケッ ト 6には、 熱源 3の出力 (発熱量) を制御する 制御装置が配置される。 [0024] The basketball 6 can be configured so that a person can ride on it, similar to a conventional hot air balloon. The basket 6 is equipped with a control device that controls the output (heat generation amount) of the heat source 3.
[0025] 飛行時の密閉容器 2内の空気の平均温度としては、 1 0 0 °〇以上が好まし く、 4 0 0 °〇以上がより好ましい。 また、 飛行時の密閉容器 2内の空気の平 均温度としては、 1 0 0 0 °〇以下が好ましく、 8 0 0 °〇以下がより好ましい 。 典型例として、 飛行時の密閉容器 2内の空気の平均温度としては、 約 6 0 0 °〇とすることができる。 飛行時の密閉容器 2内の空気の平均温度を前記下 限以上とすることによって、 十分な浮力を生じさせることができる。 また、 飛行時の密閉容器 2内の空気の平均温度を前記上限以下とすることによって 、 密閉容器 2、 熱源 3等の耐熱性を確保することが比較的容易となる。 例と して、 飛行時の密閉容器 2内の空気の平均温度が 6 0 0 °〇であれば、 空気温 度が 1 0 0 °〇以下である従来の熱気球の約 3倍の浮力を得ることができる。 また、 飛行時の密閉容器 2内の空気の平均温度が 6 0 0 °〇であれば、 空気の 熱伝導率が従来の熱気球内の空気の約 2倍となるため、 密閉容器 2内の空気 の温度を効率よく調節することができる。 また、 このように密閉容器 2内の 空気の温度を高くすることによって、 外気の温度による浮力の差が小さくな る。 このため、 本実施形態の熱気球 1は、 温暖な地域においても十分な浮力 を得て容易に飛行することができる。 [0025] The average temperature of the air in the closed container 2 during flight is preferably 100 or more, and more preferably 400 or more. As the average temperature of the air in the closed container 2 during flight, preferably 1 0 0 0 ° 〇 less, more preferably 8 0 0 ° 〇 below. As a typical example, the average temperature of the air in the closed container 2 during flight can be about 600°. Sufficient buoyancy can be generated by setting the average temperature of the air in the closed container 2 during flight to the above-mentioned lower limit or more. By setting the average temperature of the air in the closed container 2 during flight to the upper limit or less, it becomes relatively easy to secure the heat resistance of the closed container 2, the heat source 3, and the like. As an example, if the average temperature of the air in the closed container 2 during flight is 600 ° 〇, the buoyancy is about three times that of a conventional hot air balloon with an air temperature of 100 ° ℃ or less. Obtainable. If the average temperature of the air in the closed container 2 during flight is 600°, the thermal conductivity of the air will be about twice that of the air in the conventional hot air balloon. The temperature of the air can be adjusted efficiently. In addition, by increasing the temperature of the air in the closed container 2 in this way, the difference in buoyancy due to the temperature of the outside air is reduced. Therefore, the hot air balloon 1 of the present embodiment can easily fly with sufficient buoyancy even in a warm region.
[0026] 以上のように、 本実施形態の熱気球 1は、 熱源 3によって密閉容器 2内の 空気を加熱して分子運動を増大させて熱膨張させる。 そして、 本実施形態の 熱気球 1は、 余剰となる空気を減圧弁 5から外部に放出することで、 密閉容 器 2内の空気の密度を減少させて浮力を生じさせることができる。 本実施形 態の熱気球 1は、 密閉容器 2内に空気及び熱源を 3封入した閉鎖系により浮 力を得るため、 熱が外部に逃げにくいので、 エネルギー効率に優れ、 長期間 にわたって飛行することができる。 As described above, the hot air balloon 1 of the present embodiment heats the air in the closed container 2 by the heat source 3 to increase the molecular motion and thermally expand the air. Then, the hot air balloon 1 of the present embodiment can release the excess air from the pressure reducing valve 5 to the outside, thereby reducing the density of the air in the closed container 2 and generating buoyancy. The hot air balloon 1 of the present embodiment obtains buoyancy due to the closed system in which the air and heat source 3 are enclosed in the closed container 2, so heat does not easily escape to the outside, so it has excellent energy efficiency and should fly for a long time. You can
[0027] 熱気球 1の飛行中に熱源 3の出力を抑制すると、 密閉容器 2内の空気の温 度が低下する。 これにより、 密閉容器 2内の空気の体積が減少し、 密閉容器 \¥0 2020/175463 6 卩(:171? 2020 /007434 [0027] If the output of the heat source 3 is suppressed during the flight of the hot air balloon 1, the temperature of the air in the closed container 2 will decrease. This reduces the volume of air in the closed container 2 \¥0 2020/175463 6 卩 (: 171-1? 2020 /007434
2が萎んで浮力が低下することで熱気球 1 を降下させられる。 2 shrinks and buoyancy decreases, causing Hot Air Balloon 1 to drop.
[0028] 本実施形態の熱気球 1は、 高価なヘリウム等の高価な浮揚ガスを用いずに 空気により浮力を生じさせるので、 比較的低コストである。 また、 本実施形 態の熱気球 1は、 ヘリウム等の浮揚ガスと比べて分子量が大きい空気を用い るので、 密閉容器 2のシール性を確保することが容易であり、 密閉容器 2の 軽量化が容易であり、 より大きな浮力を得ることができる。 [0028] The hot air balloon 1 of the present embodiment is relatively low in cost because buoyancy is generated by air without using an expensive levitation gas such as expensive helium. Further, since the hot air balloon 1 of the present embodiment uses air having a larger molecular weight than levitation gas such as helium, it is easy to secure the sealing property of the closed container 2 and the weight of the closed container 2 is reduced. It is easy to obtain more buoyancy.
[0029] [第 2実施形態] [0029] [Second Embodiment]
次に、 本発明に係る飛行体の第 2実施形態の飛行船 1 3について説明する 。 図 2は、 本発明に係る飛行体の第 2実施形態である飛行船 1 3の構成を概 略的に示す模式図である。 図 3は、 図 2の飛行船 1 3の比較的現実的な形状 を示す斜視図である。 図 4は、 図 2の飛行船 1 3を示す正面図である。 Next, an airship 13 of a second embodiment of an air vehicle according to the present invention will be described. FIG. 2 is a schematic diagram schematically showing the configuration of an airship 13 that is a second embodiment of an air vehicle according to the present invention. FIG. 3 is a perspective view showing a relatively realistic shape of the airship 13 of FIG. FIG. 4 is a front view showing the airship 13 of FIG.
[0030] 飛行船 1 3は、 空気を収容する密閉容器 2 3と、 密閉容器 2 3の内部に収 容される熱源 3と、 熱源 3を密閉容器 2 3の内壁から離間して支持する支持 部材 4と、 密閉容器 2 3に設けられ、 密閉容器 2 3内の空気を放出する減圧 弁 5と密閉容器 2 3内に外気を導入する換気弁 7と、 密閉容器 2 3内の空気 を攪拌するファン 8と、 密閉容器 2 3の外部に設けられる複数の安定翼 (主 翼 9 , 背翼 1 0及び尾翼 1 1) と、 主翼 9の前部に設けられる主推進プロべ ラ 1 2と、 主翼 9の後部に設けられる補助推進プロペラ 1 3と、 主翼 9内に 設けられる複数の姿勢制御プロペラ 1 4と、 を備える。 [0030] airship 1 3, the support member and the closed vessel 2 3, a heat source 3 to be yield capacity into the closed vessel 2 3, supports spaced apart the heat source 3 from the inner wall of the closed container 2 3 housing the air 4, provided in the closed vessel 2 3, and the ventilation valve 7 for introducing the outside air into the pressure reducing valve 5 and the sealed container 2 in 3 to release the air in the closed container 2 3, to stir the air in the closed container 2 3 A fan 8, a plurality of stabilizing vanes (main wing 9, back wing 10 and tail 11) provided outside the closed container 23, and a main propulsion prober 12 provided at the front of the main wing 9, An auxiliary propulsion propeller 13 provided at the rear of the main wing 9 and a plurality of attitude control propellers 14 provided in the main wing 9 are provided.
[0031 ] 図 2の飛行船 1 3における熱源 3、 支持部材 4及び減圧弁 5は、 図 1の熱 気球 1 における熱源 3、 支持部材 4及び減圧弁 5と同様とすることができる 。 このため、 以降の説明において、 先に説明した構成要素と同じ構成要素に は同じ符号を付して重複する説明を省略する。 The heat source 3, the support member 4, and the pressure reducing valve 5 in the airship 13 in FIG. 2 can be the same as the heat source 3, the support member 4, and the pressure reducing valve 5 in the hot air balloon 1 in FIG. Therefore, in the following description, the same components as the components described above are designated by the same reference numerals, and redundant description will be omitted.
[0032] 密閉容器 2 3は、 耐熱性を有する材料から形成される。 密閉容器 2 3は、 水平方向 (前後) に長い流線形状に形成されることが好ましい。 また、 密閉 容器 2 3は、 図 3及び図 4に示すように、 底部及び頂部に前後に延びる溝 1 5を有する。 この溝 1 5は、 飛行時に相対的な空気の流れによって飛行船 1 3の安定性を向上する。 \¥0 2020/175463 7 卩(:171? 2020 /007434 [0032] the sealed container 2 3 is formed of a material having heat resistance. Sealed container 2 3 is preferably formed in a long streamline shape in the horizontal direction (front-rear). Also, the closed vessel 2 3, as shown in FIGS. 3 and 4 has a groove 1 5 extending back and forth in the bottom and top. The groove 15 improves the stability of the airship 13 due to the relative air flow during flight. \\0 2020/175463 7 卩 (: 171-1? 2020 /007434
[0033] このような形状もあって、 密閉容器 2 3は、 内圧によらず形状を保持する ことができる硬質エンべ口ープとすることが好ましい。 このため、 密閉容器 2 3は、 形状を保持する例えばキール、 骨組み等を含む構成と、 空気を遮断 する壁を形成する構成とを含んでもよい。 密閉容器 2 3が硬質エンベロープ であることによって、 飛行船 1 3は高速飛行時の空気抵抗が一定に保たれる 。 また、 図 2の飛行船 1 3の密閉容器 2 3も、 図 1の熱気球 1の密閉容器 2 と同様に、 絶縁性を有し、 熱伝導率が小さいことが好ましい。 [0033] There is also such a shape, the sealed container 2 3 is preferably a rigid ene base mouth-loop capable of holding the shape regardless of the internal pressure. Therefore, the closed vessel 2 3, for example keel to hold the shape, configuration and including a skeleton like, may include a configuration as to form a wall that blocks air. Since the closed container 23 is a hard envelope, the air resistance of the airship 13 is kept constant during high-speed flight. Further, it is preferable that the closed container 23 of the airship 13 in FIG. 2 also has an insulating property and a small thermal conductivity, like the closed container 2 of the hot air balloon 1 in FIG.
[0034] 飛行船 1 3は、 密閉容器 2 3の底部が地面に接するよう着陸することも、 密閉容器 2 3の底部が水面下に沈むよう着水することもできる。 [0034] airship 1 3, also the bottom of the sealed container 2 3 landing so as to be in contact with the ground, may be the bottom of the sealed container 2 3 impinges so that sinks under the water surface.
[0035] 飛行船 1 3は、 バスケッ ト等を密閉容器 2 3の外部に備えてもよいが、 飛 行時の空気抵抗を小さくするために、 密閉容器 2 3の中に空気を収容する空 間とは隔離されて形成された空間内に、 例えば制御装置、 人、 荷物等を搭載 できるようにすることが好ましい。 [0035] airship 1 3 may be provided with a basket or the like to the outside of the closed container 2. 3, in order to reduce the air resistance during flight, spatial accommodating air into the closed vessel 2 3 It is preferable that, for example, a control device, a person, luggage, etc. can be mounted in the space formed separately from the above.
[0036] 換気弁 7は、 必要に応じて、 開放され、 密閉容器 2 3内の熱せられた空気 を放出すると共に、 冷たい外気を密閉容器 2 3内に導入して、 密閉容器 2 3 内の空気の密度を増大させる。 これにより、 本実施形態の飛行船 1 3は、 迅 速に下降することができる。 [0036] The ventilation valve 7 is opened as needed to release the heated air in the closed container 23, and introduce cold outside air into the closed container 23 to remove the air inside the closed container 23. Increases the density of air. As a result, the airship 13 of the present embodiment can descend quickly.
[0037] 換気弁 7は、 密閉容器 2 3内の空気を効率よく入れ換えられるよう、 密閉 容器 2 3に複数設けられてもよい。 [0037] Ventilation valve 7, so to be exchanged efficiently air in the closed casing 2 3, may be provided plurality of sealed containers 2 3.
[0038] ファン 8は、 密閉容器 2 3内の空気を攪拌することで、 熱源 3の熱を密閉 容器 2 3内の空気全体に迅速に拡散させる。 特に、 飛行船 1 3の密閉容器 2 3は、 その形状に起因して内部の空気を効率よく対流させることが難しいた め、 ファン 8を設ける効果が大きい。 The fan 8 rapidly diffuses the heat of the heat source 3 to the entire air in the closed container 23 by stirring the air in the closed container 23. In particular, the airtight container 23 of the airship 13 has a large effect of providing the fan 8 because it is difficult to efficiently convect the internal air due to its shape.
[0039] 主翼 9は、 密閉容器 2 3の平面視外縁部に全周に亙って水平方向に突出す るよう設けられる。 主翼 9は飛行船 1 3の口ール及びピッチを抑制する。 ま た、 主翼 9は、 主推進プロペラ 1 2、 補助推進プロペラ 1 3及び姿勢制御プ ロペラ 1 4を保持すると共に、 密閉容器 2 3を補強 (特に密閉容器 2 3が前 後方向中央部で折れ曲がることを防止する) する構造体としても機能する。 \¥0 2020/175463 8 卩(:171? 2020 /007434 [0039] wing 9 is provided so that projecting horizontally over the entire circumference in plan view the outer edge of the sealed container 2 3. The wing 9 suppresses the mouth and pitch of the airship 13. Also, the main wing 9, the main propulsion propeller 1 2 holds the auxiliary propeller 1 3 and attitude control propeller 1 4, the closed vessel 2 3 reinforcement (particularly in an enclosed container 2 3 bent in front-rear direction central portion It also functions as a structure. \\0 2020/175463 8 卩 (: 171? 2020 /007434
[0040] 主翼 9は、 密閉容器 2 3の側部両側の対称な位置に、 部分的に揺動可能な フラップ 1 6を有する。 飛行船 1 3は、 フラップ 1 6の角度を調節すること により、 昇降を迅速に行うことができる。 [0040] wing 9, in symmetrical positions of the sides on both sides of the closed container 2 3, partly with a pivotable flap 1 6. The airship 13 can be raised and lowered quickly by adjusting the angle of the flaps 16.
[0041 ] 背翼 1 0は、 密閉容器 2 3の上部に前後に延びるよう突設される。 背翼 1 〇は、 飛行船 1 3の直進性能を上げる。 [0041] Setsubasa 1 0 is projected so as to extend back and forth on top of the closed container 2 3. The back wings 10 improve the straight running performance of the airship 13.
[0042] 尾翼 1 1は、 密閉容器 2 3の後部上側に設けられる。 尾翼 1 1は、 飛行船 [0042] tail 1 1 is provided on the rear upper side of the closed container 2 3. Tail 1 1 is an airship
1 3の飛行時の方向安定性を向上する。 1 Improves directional stability during flight.
[0043] 主推進プロペラ 1 2は、 飛行船 1 3の前端部に左右一対に設けられ、 飛行 船 1 3を前進させる方向の推力を発生する。 このように、 前部の主推進プロ ペラ 1 2により後方の密閉容器 2 3等を引っ張るように駆動することによっ て、 密閉容器 2 3の向きが安定する。 [0043] The main propulsion propellers 12 are provided in left and right pairs at the front end of the airship 13 and generate thrust in a direction to move the airship 13 forward. In this way, by driving the main propulsion propeller 12 in the front part to pull the closed container 23, etc. in the rear, the orientation of the closed container 23 is stabilized.
[0044] 補助推進プロペラ 1 3は、 飛行船 1 3の後端部に左右一対に設けられ、 飛 行船 1 3を前方に押し出す方向の推力を発生する。 飛行船 1 3向きを安定さ せるために、 補助推進プロペラ 1 3の推力は、 主推進プロペラ 1 2の推力よ りも小さいことが好ましい。 [0044] The auxiliary propulsion propellers 13 are provided in a pair at the rear end of the airship 13 so as to generate a thrust in a direction of pushing the flying ship 13 forward. In order to stabilize the direction of the airship 13, the thrust of the auxiliary propulsion propeller 13 is preferably smaller than the thrust of the main propulsion propeller 12.
[0045] 飛行船 1 3は、 左右の主推進プロペラ 1 2及び補助推進プロペラ 1 3の推 力を異ならせることによって、 飛行船 1 3の進行方向を変えることができる [0045] The airship 13 can change the traveling direction of the airship 13 by making the thrusts of the left and right main propulsion propellers 12 and the auxiliary propulsion propellers 13 different.
[0046] 複数の姿勢制御プロペラ 1 4は、 左右対称且つ前後に分散して配置され、 個別に推力を調節することができるよう構成される。 これらの姿勢制御プロ ペラ 1 4の推力によって密閉容器 2 3の浮力のバランスを調整し、 密閉容器 2 3を任意の方向に傾けることができる。 つまり、 複数の姿勢制御プロペラ 1 4は、 密閉容器 2 3に外付けのバラスト効果を付与することができる。 ま た、 少なくとも一部の姿勢制御プロペラ 1 4は、 回転軸の向きを変更可能に 設けられることが好ましい。 特に、 回転軸の向きを左右方向に延びるように 変更可能とすることによって、 飛行船 1 3が空中に静止している状態で、 位 置を変えずに水平方向の向きを変えたり、 飛行船 1 3を側方に平行移動させ たりすることが可能となる。 \¥0 2020/175463 9 卩(:171? 2020 /007434 [0046] The plurality of attitude control propellers 14 are arranged symmetrically and distributed in the front-rear direction, and are configured so that the thrust can be adjusted individually. The thrust of these attitude control propellers 14 adjusts the balance of the buoyancy of the closed container 23, and the closed container 23 can be tilted in any direction. That is, the plurality of attitude control propellers 14 can impart an external ballast effect to the closed container 23. Further, it is preferable that at least a part of the attitude control propeller 14 is provided so that the direction of the rotation axis can be changed. In particular, by changing the direction of the rotation axis so that it can extend in the left-right direction, the airship 13 can be turned in the horizontal direction without changing its position while the airship 13 is stationary in the air. Can be translated laterally. \¥0 2020/175463 9 卩 (: 171-1? 2020 /007434
[0047] 本実施形態の飛行船 1 3も、 図 1の熱気球 1 と同様に、 熱源 3によって密 閉容器 2内の空気を加熱して分子運動を増大させて熱膨張させる。 そして、 本実施形態の熱気球 1は、 余剰となる空気を減圧弁 5から外部に放出するこ とで、 密閉容器 2内の空気の密度を減少させて浮力を生じさせることができ る。 本実施形態の熱気球 1は、 密閉容器 2内の空気により浮力をえるため、 熱が外部に逃げにくいので、 エネルギー効率に優れ、 長期間にわたって飛行 することができる。 Similarly to the hot air balloon 1 of FIG. 1, the airship 13 of the present embodiment also heats the air in the closed container 2 by the heat source 3 to increase the molecular motion and thermally expand. Then, the hot air balloon 1 of the present embodiment can reduce the density of the air in the closed container 2 and generate buoyancy by discharging excess air from the pressure reducing valve 5 to the outside. Since the hot air balloon 1 of the present embodiment has buoyancy due to the air in the closed container 2, it is difficult for heat to escape to the outside, so that it is excellent in energy efficiency and can fly for a long time.
[0048] [第 3実施形態] [0048] [Third Embodiment]
続いて、 本発明に係る飛行体の第 3実施形態の飛行船 1 匕について説明す る。 図 5は、 本発明に係る飛行体の第 3実施形態である飛行船 1 匕を示す模 式図である。 Next, a description will be given of one airship of the air vehicle according to the third embodiment of the present invention. FIG. 5 is a schematic diagram showing an airship 1 sack which is a third embodiment of an air vehicle according to the present invention.
[0049] 本実施形態の飛行船 1 匕は、 空気を収容する密閉容器 2 3と、 密閉容器 2 [0049] airship 1 spoon of this embodiment, the compressor housing 2 3 housing the air, closed container 2
3の内部に収容される熱源 3と、 熱源 3を密閉容器 2 3の内壁から離間して 支持する支持部材 4と、 密閉容器 2 3に設けられ、 密閉容器 2 3内の空気を 放出する減圧弁 5と、 減圧弁 5を強制的に開放する開放機構 1 7と、 推力を 発生する主推進プロペラ 1 2及び補助推進プロペラ 1 3と、 密閉容器 2 3の 姿勢を定める複数の姿勢制御プロペラ 1 4と、 を備える。 The heat source 3 housed inside 3, the support member 4 for supporting the heat source 3 away from the inner wall of the closed container 23, and the decompression for releasing the air in the closed container 23 provided in the closed container 23. a valve 5, pressure reducing valve 5 and the opening mechanism 1 7 for forcibly opening the, main propeller 1 2 and the auxiliary propeller 1 3 for generating a thrust, a plurality of determining the orientation of the closed container 2 3 posture control propeller 1 4 and
[0050] 図 5の飛行船 1 における熱源 3、 支持部材 4及び減圧弁 5は、 図 1の熱 気球 1 における熱源 3、 支持部材 4及び減圧弁 5と同様とすることができる [0050] The heat source 3, the support member 4, and the pressure reducing valve 5 in the airship 1 in Fig. 5 may be the same as the heat source 3, the support member 4, and the pressure reducing valve 5 in the hot air balloon 1 in Fig. 1.
[0051 ] 開放機構 1 7は、 減圧弁 5を強制的に開放することによって、 放熱と同時 に外気を取り込み、 密閉容器 2 3の内の空気の密度を増大させることで、 密 閉容器 2 3の浮力を減少させることができる。 これにより、 本実施形態の飛 行船 1 匕は、 迅速に下降することができる。 [0051] The opening mechanism 17 forcibly opens the pressure reducing valve 5 to take in outside air at the same time as heat dissipation and increase the density of air in the closed container 2 3 to close the closed container 2 3 Buoyancy can be reduced. As a result, the flying boat of the present embodiment can quickly descend.
[0052] 本実施形態の飛行船 1 1〇ち、 図 2の飛行船 1 3と同様に、 長期間にわたっ て任意の方向に飛行することができる。 [0052] airship 1 1_Rei Chi of the present embodiment, similarly to the airship 1 3 in FIG. 2, it is possible to fly in any direction over a long period of time.
[0053] [第 4実施形態] [0053] [Fourth Embodiment]
次に、 本発明に係る飛行体の第 4実施形態の飛行船 1 〇について説明する \¥0 2020/175463 10 卩(:171? 2020 /007434 Next, an airship 10 of a fourth embodiment of an air vehicle according to the present invention will be described. \¥0 2020/175463 10 卩 (: 171? 2020 /007434
。 図 6は、 本発明に係る飛行体の第 2実施形態である飛行船 1 〇を示す模式 図である。 .. FIG. 6 is a schematic diagram showing an airship 10 that is a second embodiment of an air vehicle according to the present invention.
[0054] 飛行船 1 〇は、 空気を収容する密閉容器 2 3と、 密閉容器 2 3の内部に収 容される熱源 3と、 熱源 3を密閉容器 2 3の内壁から離間して支持する支持 部材 4と、 密閉容器 2 3に設けられ、 密閉容器 2 3内の空気を放出する減圧 弁 5と、 密閉容器 2 3に設けられ、 密閉容器 2 3の内部に形成されるキャビ ン 6〇と、 密閉容器 2 3の空気を収容する空間内に外気を導入する給気機構 1 8と、 推力を発生する主推進プロペラ 1 2及び補助推進プロペラ 1 3と、 密閉容器 2 3の姿勢を定める複数の姿勢制御プロペラ 1 4と、 を備える。 [0054] airship 1 〇, the support member and the closed vessel 2 3, a heat source 3 to be yield capacity into the closed vessel 2 3, supports spaced apart the heat source 3 from the inner wall of the closed container 2 3 housing the air 4, provided in the closed vessel 2 3, a pressure reducing valve 5 releasing the air in the closed container 2 3 is provided in the closed vessel 2 3, and the cavity down 6_Rei formed within the closed vessel 2 3, An air supply mechanism 18 that introduces outside air into the air-containing space of the closed container 23, a main propulsion propeller 12 and a auxiliary propulsion propeller 13 that generate thrust, and a plurality of postures that determine the attitude of the closed container 2 3. Attitude control propeller 14 and.
[0055] 図 6の飛行船 1 〇における熱源 3、 支持部材 4及び減圧弁 5は、 図 1の熱 気球 1 における熱源 3、 支持部材 4及び減圧弁 5と同様とすることができる The heat source 3, the support member 4 and the pressure reducing valve 5 in the airship 10 in FIG. 6 can be the same as the heat source 3, the support member 4 and the pressure reducing valve 5 in the hot air balloon 1 in FIG.
[0056] キャビン 6〇は、 密閉容器 2 3の中に空気を収容する空間とは隔離されて 形成された空間である。 キャビン 6〇は、 給気機構 1 8を収容する。 [0056] The cabin 60 is a space that is formed separately from the space that stores air in the closed container 23. The cabin 60 accommodates the air supply mechanism 18.
[0057] 給気機構 1 8は、 外気を吸引して加圧し、 密閉容器 2 3内に押し込むブロ ワ 1 1 9を有する。 また、 給気機構 1 8は、 エアフィルタ 2 0、 エアドライ ヤ 2 1、 及びストップ弁 2 2を有する構成とすることができる。 [0057] air supply mechanism 1 8 has a blow follower 1 1 9 pushed to suck outside air pressurizes the sealed container 2 in 3. In addition, the air supply mechanism 18 can be configured to have an air filter 20, an air dryer 21 and a stop valve 22.
[0058] 給気機構 1 8は、 密閉容器 2 3の内圧を周囲の大気圧よりも高い圧力に保 持したまま、 密閉容器 2 3内に外気を導入することができる。 この結果とし て、 密閉容器 2 3内の空気の温度が低下して密度が上昇するため、 浮力が低 下して飛行船 1 〇が下降する。 [0058] air supply mechanism 1 8, the internal pressure of the closed vessel 2 3 while retained at a higher pressure than the ambient atmospheric pressure, it is possible to introduce outside air into the sealed container 2 in 3. The result was, because the density temperature is lowered in the air in the closed container 2 3 rises, the airship 1 〇 buoyancy beat low is lowered.
[0059] 給気機構 1 8を用いることで密閉容器 2 3の内圧が周囲の大気圧よりも高 い圧力に保持されるので、 密閉容器 2 3の形状を内圧によって保持すること ができる。 このため、 本実施形態の飛行船 1 〇は、 密閉容器 2 3の構成を簡 素化することができる。 [0059] Since the internal pressure of the closed vessel 2 3 by using the air supply mechanism 1 8 is held high have pressure than the surrounding atmospheric pressure, the shape of the closed container 2 3 can be held by the internal pressure. Thus, the airship 1 〇 of the present embodiment can be simplify the configuration of the closed container 2 3.
[0060] また、 エアフィルタ 2 0及びエアドライヤ 2 1 を有する給気機構 1 8を用 いることで、 密閉容器 2 3に清浄且つ乾燥した空気を供給することができる 。 また、 ストップ弁 2 2を有する給気機構 1 8を用いることで、 ブロワ 1 9 \¥0 2020/175463 1 1 卩(:171? 2020 /007434 Further, by using the air supply mechanism 18 having the air filter 20 and the air dryer 21, clean and dry air can be supplied to the closed container 23. In addition, by using the air supply mechanism 18 having the stop valve 22, the blower 19 \\0 2020/175463 1 1 卩 (: 171? 2020 /007434
を停止したときに密閉容器 2 3内の空気が給気機構 1 8から外部に漏出する ことを防止できる。 It is possible to prevent the air in the closed container 23 from leaking to the outside from the air supply mechanism 18 when the power supply is stopped.
[0061 ] 本実施形態の飛行船 1 。ち、 図 2の飛行船 1 3及び図 5の飛行船 1 匕と同 様に、 長期間にわたって飛行することができる。 [0061] The airship 1 of the present embodiment. Then, like the airship 13 in Figure 2 and the airship 1 in Figure 5, it can fly for a long period of time.
[0062] 以上、 本発明の電子装置の好ましい各実施形態につき説明したが、 本発明 は、 上述の実施形態に制限されるものではなく、 適宜変更が可能である。 Although the preferred embodiments of the electronic device of the present invention have been described above, the present invention is not limited to the above-described embodiments and can be modified as appropriate.
[0063] 本発明の実施形態に係る熱気球の密閉容器を硬質エンベロープとしてもよ い。 また、 本発明の実施形態に係る飛行船の密閉容器を軟質エンベロープと してもよい。 [0063] The hot-air balloon closed container according to the embodiment of the present invention may be a hard envelope. Further, the airtight container of the airship according to the embodiment of the present invention may be a soft envelope.
[0064] また、 本発明の実施形態に係る熱気球も密閉容器内の空気を攪拌するファ ンを備えてもよい。 逆に、 本発明の実施形態に係る飛行船のファンを省略し てもよい。 [0064] Further, the hot air balloon according to the embodiment of the present invention may also include a fan for stirring the air in the closed container. On the contrary, the fan of the airship according to the embodiment of the present invention may be omitted.
[0065] 本発明の実施形態に係る熱気球は、 換気弁、 解放機構及び給気機構の少な くともいずれかを備えてもよい。 本発明の実施形態に係る飛行船は、 換気弁 、 解放機構及び給気機構の 2以上を備えてもよい。 The hot-air balloon according to the embodiment of the present invention may include at least one of a ventilation valve, a release mechanism, and an air supply mechanism. The airship according to the embodiment of the present invention may include two or more of a ventilation valve, a release mechanism, and an air supply mechanism.
[0066] 本発明に係る飛行体において、 熱源は密閉容器の内壁に直接保持されてい てもよい。 In the aircraft according to the present invention, the heat source may be directly held on the inner wall of the closed container.
符号の説明 Explanation of symbols
[0067] 1 熱気球 (飛行体) [0067] 1 Hot air balloon (aircraft)
1 3 , 1 6 , 1 〇 飛行船 (飛行体) 1 3 ,1 6 ,1 ○ Airship (aircraft)
2 , 2 3 密閉容器 2, 2 3 closed container
3 熱源 3 heat source
4 支持部材 4 Support member
5 減圧弁 5 Pressure reducing valve
6 バスケッ ト 6 basket
6〇 キヤビン 60 〇 Cabin
7 換気弁 7 Ventilation valve
8 フアン \¥02020/175463 12 卩(:17 2020 /007434 8 Juan \¥02020/175463 12 ((17 2020/007434
1 7 開放機構 1 7 Release mechanism
1 8 給気機構 1 8 Air supply mechanism

Claims

\¥0 2020/175463 13 卩(:171? 2020 /007434 請求の範囲 \¥0 2020/175463 13 卩(:171? 2020/007434 Claims
[請求項 1 ] 空気を収容する密閉容器と、 [Claim 1] A closed container for containing air,
前記密閉容器の内部に収容される熱源と、 A heat source housed inside the closed container;
前記密閉容器に設けられ、 前記密閉容器内の空気を放出する減圧弁 と、 A pressure reducing valve provided in the closed container for discharging air in the closed container;
を備える飛行体。 Aircraft equipped with.
[請求項 2] 前記密閉容器に設けられ、 前記密閉容器内に外気を導入する換気弁 をさらに備える請求項 1 に記載の飛行体。 [Claim 2] The air vehicle according to claim 1, further comprising a ventilation valve provided in the closed container and for introducing outside air into the closed container.
[請求項 3] 前記減圧弁を強制的に開放する開放機構をさらに備える請求項 1又 は 2に記載の飛行体。 [Claim 3] The aircraft according to claim 1 or 2, further comprising an opening mechanism for forcibly opening the pressure reducing valve.
[請求項 4] 飛行時の前記密閉容器内の空気の平均温度が 1 〇〇°〇以上である請 求項 1から 3のいずれかに記載の飛行体。 [Claim 4] The flight vehicle according to any one of claims 1 to 3, wherein the average temperature of the air in the closed container during flight is 100 ° C or higher.
[請求項 5] 前記密閉容器内に設けられ、 前記熱源を前記密閉容器の内壁から離 間して支持する支持部材をさらに備える請求項 1から請求項 4のいず れかに記載の飛行体。 [Claim 5] The aircraft according to any one of claims 1 to 4, further comprising a support member that is provided in the closed container and supports the heat source away from an inner wall of the closed container. ..
[請求項 6] 前記熱源は常温核融合発熱装置である請求項 1から 5のいずれかに 記載の飛行体。 [Claim 6] The aircraft according to any one of claims 1 to 5, wherein the heat source is a cold fusion heating device.
PCT/JP2020/007434 2019-02-25 2020-02-25 Flying vehicle WO2020175463A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019031963A JP2020132087A (en) 2019-02-25 2019-02-25 Flying body
JP2019-031963 2019-02-25

Publications (1)

Publication Number Publication Date
WO2020175463A1 true WO2020175463A1 (en) 2020-09-03

Family

ID=72238377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007434 WO2020175463A1 (en) 2019-02-25 2020-02-25 Flying vehicle

Country Status (2)

Country Link
JP (1) JP2020132087A (en)
WO (1) WO2020175463A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306193A (en) * 1989-05-19 1990-12-19 Seiko Epson Corp Low temperature nuclear fusion
JPH0634776A (en) * 1992-07-15 1994-02-10 Tokyo Electric Power Co Inc:The Room temperature nuclear fusion heat generating device seam generating device and power plant
CN103661914A (en) * 2012-09-25 2014-03-26 唐辉 Novel closed high-temperature hot-air airship
CN105235885A (en) * 2015-11-14 2016-01-13 唐哲敏 Hot and light balloon
CN106646676A (en) * 2017-01-06 2017-05-10 兰州大学 Sounding balloon and aerological detection system
CN108639306A (en) * 2018-07-05 2018-10-12 田金 electronic heating suspension balloon

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306193A (en) * 1989-05-19 1990-12-19 Seiko Epson Corp Low temperature nuclear fusion
JPH0634776A (en) * 1992-07-15 1994-02-10 Tokyo Electric Power Co Inc:The Room temperature nuclear fusion heat generating device seam generating device and power plant
CN103661914A (en) * 2012-09-25 2014-03-26 唐辉 Novel closed high-temperature hot-air airship
CN105235885A (en) * 2015-11-14 2016-01-13 唐哲敏 Hot and light balloon
CN106646676A (en) * 2017-01-06 2017-05-10 兰州大学 Sounding balloon and aerological detection system
CN108639306A (en) * 2018-07-05 2018-10-12 田金 electronic heating suspension balloon

Also Published As

Publication number Publication date
JP2020132087A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
US6305641B1 (en) Super-pressured high-altitude airship
US4366936A (en) Aircraft having buoyant gas balloon
JP3522711B2 (en) airship
US4326681A (en) Non-rigid airship
US6270036B1 (en) Blown air lift generating rotating airfoil aircraft
CN201280224Y (en) Hot gas airship of helium gas
JP6426165B2 (en) Hybrid VTOL machine
US3443776A (en) Ringplane
CA2204196C (en) Aircraft
JP2009179321A (en) Liquid hydrogen stratospheric aircraft
US5967459A (en) Balloon with controlled parachute
US8033497B2 (en) Hybrid thermal airship
US20080035787A1 (en) Lighter-than-air gas handling system and method
JP3903202B2 (en) Stratospheric airship
WO2020175463A1 (en) Flying vehicle
GB2470289A (en) Airship system
JP2000016394A (en) Altitude control device for aerial floating body
RU2114027C1 (en) Semirigid controllable aerostatic flying vehicle
CN106167091A (en) Inflation rotor wing unmanned aerial vehicle
JP3952255B2 (en) Airship intake and exhaust method and apparatus
JP2014080938A (en) Space propulsion and endurance space (stratospheric endurance flight) system
JPH11278393A (en) Airship
JP2003231499A (en) Air jetting aircraft
JP4677142B2 (en) Hot air balloon rising by solar heat
TWI764494B (en) soft spaceship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763074

Country of ref document: EP

Kind code of ref document: A1