WO2020175333A1 - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
WO2020175333A1
WO2020175333A1 PCT/JP2020/006903 JP2020006903W WO2020175333A1 WO 2020175333 A1 WO2020175333 A1 WO 2020175333A1 JP 2020006903 W JP2020006903 W JP 2020006903W WO 2020175333 A1 WO2020175333 A1 WO 2020175333A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
stator
rotor
bearing
conductor
Prior art date
Application number
PCT/JP2020/006903
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 土屋
高橋 裕樹
勇生 馬渡
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080016370.8A priority Critical patent/CN113474976B/en
Publication of WO2020175333A1 publication Critical patent/WO2020175333A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/225Detecting coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos

Definitions

  • the disclosure in this specification relates to a rotating electric machine.
  • the rotating electric machine includes a rotation sensor unit.
  • This unit consists of a detector that is fixed to the side of the wheel support that is opposite to the side where the bearing is fixed in the axial direction, and a gear that is fixed to a position on the axle that faces the detector in the radial direction. And have.
  • the detector detects the positions of the teeth of the gears facing each other in the radial direction, and outputs the rotation angle signal of the rotor based on the position information of the teeth.
  • Patent Document 1 Japanese Patent Laid-Open No. 20 1 3 _ 1 8 2 3 1 7
  • the fixing portion of the detecting portion of the wheel supporting portion is provided on the side of the wheel supporting portion opposite to the fixing portion of the bearing in the axial direction.
  • the axial distance between the bearing support portion of the axle and the gear fixing portion becomes long.
  • the runout of the axle becomes large, and the accuracy of detection of the rotational position by the rotation sensor unit may deteriorate.
  • the main purpose is to provide a rotating electric machine capable of improving output accuracy.
  • Means 1 includes a rotor
  • a housing having a bearing holding portion to which the bearing is fixed
  • the axial end portion of the bearing holding portion is a diametrical expansion side fixing portion having a bored hole formed in an opening of the axial end portion,
  • a portion of the bearing holding portion that is axially adjacent to the expansion-side fixing portion is a reduction-side fixing portion in which a hole smaller than the hole diameter of the expansion-side fixing portion is formed.
  • the rotary shaft is threaded through the respective holes of the diameter-increasing side fixing portion and the diameter-decreasing side fixing portion,
  • the bearing is fixed to one of the expanded diameter side fixed portion and the reduced diameter side fixed portion
  • the resolver stator is fixed to one of the expanded diameter side fixed portion and the reduced diameter side fixed portion where the bearing is not fixed.
  • the diameter expansion side fixing portion and the diameter reduction side fixing portion are adjacent to each other in the axial direction.
  • the coaxiality between the resolver rotor and the resolver stator can be increased, and the runout of the resolver rotor with respect to the resolver stator can be reduced. As a result, the effect of improving the detection accuracy of the rotational position can be further enhanced.
  • Means 2 is the same as in the means 1, wherein the bearing is a reduced diameter side bearing,
  • the diameter reducing side bearing is fixed to the diameter reducing side fixing portion
  • the resolver stator is fixed to the expansion side fixing portion
  • a portion of the bearing holding portion opposite to the diameter-expansion-side fixing portion in the axial direction with the diameter-decrease-side fixing portion sandwiched therebetween is a base-end-side fixing portion having a hole formed therein. Part, the diameter reducing side fixing part and the base end side fixing part, the rotary shaft is passed through the respective holes,
  • the rotor is fixed to the base end side bearing side in the axial direction of the rotating shaft
  • the diameter reducing side bearing and the base end side bearing are radial ball bearings having an outer ring, an inner ring, and a plurality of balls arranged between the outer ring and the inner ring,
  • An outer diameter dimension of the base end side bearing is larger than an outer diameter dimension of the contraction side bearing.
  • the rotor is fixed to the base end side bearing side in the axial direction of the rotating shaft. Therefore, the base-end bearing is more susceptible to rotor vibration and eccentric load than the diameter-reducing bearing.
  • the outer diameter dimension of the base end side bearing is larger than the outer diameter dimension of the reduced diameter side bearing. The larger the outer diameter of the bearing, the outer and inner rings ⁇ 2020/175333 4 ⁇ (:171? 2020 /006903
  • the gap between the ball and the ball becomes larger. Therefore, according to the means 2, the effect of absorbing the load of the rotor can be enhanced, and the load acting on the base end side fixed part side of the bearing holding part can be reduced. As a result, it is possible to reduce the runout of the support portion of the rotary shaft due to the reduced diameter side bearing, and to reduce the runout of the resolver rotor with respect to the resolver stator. As a result, the accuracy of detecting the rotational position of the rotor can be improved.
  • Means 4 is the annular cover member according to any one of Means 1 to 3, which is fixed to the opening side of the resolver stator and the bearing in the axial direction of the radially enlarged fixing portion. Equipped with.
  • the resolver and the bearing can be protected from foreign matter.
  • Means 5 is the device according to any one of Means 1 to 4, which includes a stator facing the rotor in a radial direction,
  • the rotor is
  • a carrier having a disk-shaped end plate portion fixed to the rotation shaft, and a carrier arranged coaxially with the rotation shaft;
  • a cylindrical magnet holder whose one end in the axial direction is fixed to the end plate portion
  • the magnet holder is made of a non-magnetic material
  • the direction of the easy axis of magnetization is offset from the direction parallel to the axis.
  • the magnet holder is made of a non-magnetic material. Therefore, the weight of the rotor can be reduced, and the runout of the rotating shaft can be reduced. As a result, the shake of the resolver rotor with respect to the resolver stator can be reduced, and the accuracy of detecting the rotational position of the rotor can be improved. ⁇ 2020/175333 ⁇ (: 171? 2020 /006903
  • Means 6 is the means 5, wherein in the magnet, a circle having a center point at the intersection of the 9-axis and the magnetic flux exchange surface between the 9-axis and a radial thickness dimension of the magnet is a radius,
  • the orientation circle defines the easy axis of magnetization of the magnet
  • the magnet is configured to include a quarter circle of the orientation circle.
  • an arc-shaped easy axis of magnetization is provided so as to cross the nine axes.
  • the strongest magnetic flux is generated by the easy magnetization axis passing through the intersection of the 9th axis and the circumferential surface on the side opposite to the magnetic flux transfer surface in the radial direction, that is, the easy magnetization axis passing through the orientation circle X.
  • the strongest magnetic flux magnetic flux path can be prevented from being formed on the magnet holder side, and the effect of suppressing magnetic flux leakage from the magnet to the magnet holder can be enhanced.
  • Fig. 1 is a longitudinal sectional perspective view of a rotating electric machine.
  • Fig. 2 is a vertical cross-sectional view of a rotating electrical machine.
  • Fig. 3 is a sectional view taken along line 111-111 in Fig. 2.
  • FIG. 4 is an enlarged cross-sectional view showing a part of FIG.
  • Fig. 5 is an exploded view of the rotating electrical machine.
  • Fig. 6 is an exploded view of the inverter unit.
  • Fig. 7 is a torque diagram showing the relationship between the ampere-turn of the stator winding and the torque density.
  • Fig. 8 is a cross-sectional view of the rotor and the stator. 20/175333 6 ⁇ (: 171? 2020 /006903
  • FIG. 9 is an enlarged view of a part of FIG.
  • Fig. 10 is a cross-sectional view of the stator.
  • Fig. 11 is a longitudinal sectional view of the stator.
  • Fig. 12 is a perspective view of the stator winding line.
  • FIG. 13 is a perspective view showing the structure of a conductor.
  • Fig. 14 is a schematic diagram showing the structure of a wire.
  • FIG. 15 is a view showing the form of each conductor in the n-th layer
  • Fig. 16 is a side view showing the conductors of the nth layer and the n + 1st layer.
  • FIG. 17 is a diagram showing the relationship between the electrical angle and the magnetic flux density of the magnet of the embodiment.
  • Fig. 18 is a graph showing the relationship between the electrical angle and the magnetic flux density for the magnet of the comparative example.
  • Fig. 19 is an electric circuit diagram of the control system for the rotating electric machine.
  • FIG. 20 is a functional block diagram showing a current feedback control process by the control device.
  • Fig. 21 is a functional block diagram showing torque feedback control processing by the control device.
  • FIG. 22 is a cross-sectional view of a rotor and a stator according to the second embodiment.
  • Fig. 23 is an enlarged view of a part of Fig. 22.
  • Fig. 24 is a diagram specifically showing the flow of magnetic flux in the magnet unit.
  • Fig. 25 is a cross-sectional view of a stator in Modification 1,
  • Fig. 26 is a cross-sectional view of a stator in Modification Example 1,
  • Fig. 27 is a cross-sectional view of a stator according to Modification 2.
  • Fig. 28 is a cross-sectional view of a stator according to Modification 3.
  • Fig. 29 is a cross-sectional view of a stator in Modification 4,
  • FIG. 30 is a cross-sectional view of a rotor and a stator in Modification 7. ⁇ 2020/175333 7 ⁇ (: 171-1? 2020/006903
  • FIG. 31 is a functional block diagram showing a part of the processing of the operation signal generation unit in Modification 8.
  • Fig. 32 is a flow chart showing the procedure for changing the carrier frequency.
  • FIG. 33 is a diagram showing a connection form of each conductor wire which constitutes the conductor wire group in Modification 9,
  • FIG. 34 is a diagram showing a configuration in which four pairs of conductor wires are arranged in a laminated manner in Modification Example 9.
  • FIG. 35 is a cross-sectional view of an inner rotor type rotor and a stator in Modification 10.
  • Fig. 36 is an enlarged view of a part of Fig. 35.
  • Fig. 37 is a vertical cross-sectional view of an inner rotor type electric rotating machine.
  • Fig. 38 is a vertical cross-sectional view showing a schematic configuration of an inner rotor type rotating electric machine.
  • FIG. 39 is a diagram showing a configuration of a rotating electric machine having an inner rotor structure in Modification 11;
  • FIG. 40 is a diagram showing a configuration of a rotating electric machine having an inner rotor structure in Modification Example 11.
  • FIG. 41 is a diagram showing a configuration of a rotary armature-type rotary electric machine in Modification 12;
  • Fig. 42 is a cross-sectional view showing the structure of the conductor wire in Modification 14
  • Fig. 43 is a diagram showing the relationship between reluctance torque, magnet torque, and port 1 ⁇ /1. Yes,
  • Fig.44 is a diagram showing teeth.
  • Fig. 45 is a perspective view showing the wheel of the in-wheel motor structure and its peripheral structure.
  • Fig. 46 is a longitudinal sectional view of the wheel and its peripheral structure.
  • Fig. 47 is an exploded perspective view of the wheel. 20/175333 8 ⁇ (: 171? 2020 /006903
  • Fig. 48 is a side view of the rotary electric machine as seen from the protruding side of the rotary shaft.
  • Fig. 49 is a cross-sectional view taken along line 4 9-4 9 of Fig. 48.
  • Fig. 50 is a sectional view taken along line 50--50 of Fig. 49.
  • Fig. 51 is an exploded cross-sectional view of a rotating electric machine.
  • Fig. 52 is a partial sectional view of the rotor.
  • Fig. 53 is a perspective view of a stator winding and a stator core.
  • Fig. 54 is a front view showing the stator windings in a flat state.
  • Fig.55 shows the skew of conductors.
  • Fig. 56 is an exploded sectional view of the inverter unit.
  • Fig. 57 is an exploded sectional view of the inverter unit.
  • Fig. 58 shows how the electric modules are arranged in the inverter housing.
  • FIG. 59 is a circuit diagram showing an electrical configuration of the power converter
  • Fig. 60 is a diagram showing an example of a cooling structure of a switch module.
  • Fig. 61 is a diagram showing an example of a cooling structure of a switch module.
  • Fig. 62 is a diagram showing an example of the cooling structure of the switch module.
  • Fig. 63 is a diagram showing an example of the cooling structure of the switch module.
  • Fig. 64 is a diagram showing an example of the cooling structure of the switch module.
  • Fig. 65 is a diagram showing the arrangement order of the electric modules with respect to the cooling water passage.
  • Fig. 66 is a sectional view taken along line 6 6--6 6 of Fig. 49.
  • Fig. 67 is a sectional view taken along the line 6 7--6 7 of Fig. 49.
  • Fig. 68 is a perspective view showing the bus bar module as a single unit.
  • Fig. 69 is a diagram showing an electrical connection state between each electric module and the bus bar module.
  • Fig. 70 is a diagram showing an electrical connection state between each electric module and the bus bar module.
  • Fig. 71 shows the electrical connection between each electrical module and the busbar module. ⁇ 2020/175333 9 (:171? 2020/006903
  • Fig. 72 is a configuration diagram for explaining a modification 1 of the in-wheel motor.
  • Fig. 73 is a configuration diagram for explaining a second modification of the in-wheel motor.
  • Fig. 74 is a configuration diagram for explaining Modification 3 of the in-wheel motor.
  • Fig. 75 is a configuration diagram for explaining a modification 4 of the in-wheel motor.
  • FIG. 76 is a perspective view showing the entire rotating electric machine in Modification Example 15, [FIG. 77] FIG. 77 is a vertical sectional view of the rotating electric machine,
  • Fig. 78 is an exploded cross-sectional view of the components of the rotating electric machine
  • Fig. 79 is a longitudinal sectional view of the rotor.
  • Fig. 80 is a partial cross-sectional view showing an enlarged cross-sectional structure of the magnet unit.
  • Fig. 81 is a diagram showing a method for orienting a magnet.
  • Fig. 82 is a vertical sectional view of the inner unit.
  • Fig. 83 is a vertical cross-sectional view of the inner unit with the bearings assembled.
  • FIG. 84 is a vertical cross-sectional view of a rotor according to Modification 16.
  • the rotary electric machine according to the present embodiment is used, for example, as a vehicle power source.
  • rotating electrical machinery is for industrial use, vehicle use, home appliances use, and 08 equipment use. ⁇ 2020/175333 10 ⁇ (:171? 2020 /006903
  • the rotary electric machine 100 is a synchronous multi-phase AC motor and has an outer port structure (outer rotation structure).
  • An outline of the rotating electric machine 10 is shown in Figs. 1 is a vertical cross-sectional perspective view of the rotary electric machine 10
  • FIG. 2 is a vertical cross-sectional view of the rotary electric machine 10 in a direction along the rotary shaft 11
  • FIG. Fig. 4 is a cross-sectional view (cross-sectional view taken along the line 111-111 in Fig. 2) of the rotating electric machine 10 in the direction of rotation
  • Fig. 4 is a cross-sectional view showing an enlarged part of Fig. 3
  • Fig. 5 is It is an exploded view of the electric machine 10. Note that, in FIG.
  • the hatching showing the cut surface is omitted except for the rotating shaft 11.
  • the direction in which the rotary shaft 11 extends is the axial direction
  • the direction that extends radially from the center of the rotary shaft 11 is the radial direction
  • the direction that extends circumferentially around the rotary shaft 11 is the circumferential direction. I am trying.
  • the rotary electric machine 10 is roughly provided with a bearing unit 20, a housing 30, a rotor 40, a stator 50, and an inverter unit 60. Each of these members is arranged coaxially with the rotating shaft 11 and is assembled in the axial direction in a predetermined order to form the rotating electric machine 10.
  • the rotating electric machine 10 of the present embodiment is configured to have a rotor 40 as a “field element” and a stator 50 as an “armature”, and is a rotating field type rotating electric machine. Is embodied as
  • the bearing unit 20 has two bearings 21 and 22 arranged axially away from each other, and a holding member 23 that holds the bearings 21 and 22. ..
  • the bearings 2 1, 2 2 are, for example, radial ball bearings, each having an outer ring 25, an inner ring 26, and a plurality of balls 27 arranged between the outer ring 25 and the inner ring 26.
  • the holding member 23 has a cylindrical shape, and the bearings 21 and 22 are assembled inside the holding member 23.
  • the rotating shaft 11 and the rotor 40 are rotatably supported inside the bearings 21 and 22 in the radial direction.
  • a pair of bearings that rotatably support the rotating shaft 11 is configured.
  • each of the bearings 21 and 22 a ball 27 is held by a retainer (not shown), and the pitch between the balls is maintained in that state.
  • Each of the bearings 21 and 22 has a sealing member at the upper and lower portions in the axial direction of the retainer, and the inside thereof is filled with a non-conductive grease (for example, a non-conductive urea-based grease).
  • a non-conductive grease for example, a non-conductive urea-based grease.
  • the position of the inner ring 26 is mechanically held by a spacer, and a constant pressure preload is applied so that it projects from the inside in the vertical direction.
  • the housing 30 has a peripheral wall 3 1 having a cylindrical shape.
  • the peripheral wall 31 has a first end and a second end that face each other in the axial direction.
  • the peripheral wall 31 has an end face 32 at a first end and an opening 33 at a second end.
  • the opening 33 is opened at the entire second end.
  • a circular hole 34 is formed in the center of the end face 32, and the bearing unit 20 is fixed with a fixing tool such as a screw or rivet in a state where the circular hole 34 is made to pass through the hole 34.
  • a hollow cylindrical rotor 40 and a hollow cylindrical stator 50 are housed in the housing 30, that is, in the internal space defined by the peripheral wall 31 and the end face 32.
  • the rotating electric machine 10 is an outer rotor type, and the stator 50 is arranged inside the housing 30 in the radial direction of the cylindrical rotor 40.
  • the rotor 40 is cantilevered on the rotating shaft 1 1 on the end face 3 2 side in the axial direction.
  • the rotor 40 has a hollow cylindrical magnet holder 41 and an annular magnet unit 42 provided inside the magnet holder 41 in the radial direction.
  • the magnet holder 41 has a substantially cup shape and functions as a magnet holding member.
  • the magnet holder 4 1 includes a cylindrical portion 4 3 having a cylindrical shape, a fixing portion (3 3 1116 ⁇ ) 4 4 having the same cylindrical shape and a smaller diameter than the cylindrical portion 4 3, and the cylindrical portion 4 3 and the fixing portion. It has an intermediate part 4 5 which serves as a part for connecting the part 4 4.
  • the magnet unit 4 2 is attached to the inner peripheral surface of the cylindrical portion 4 3.
  • the magnet holder 41 is a cold-rolled steel plate with sufficient mechanical strength. , Forging steel, carbon fiber reinforced plastic Etc. ⁇ 2020/175333 12 boxes (:171? 2020 /006903
  • the rotary shaft 11 is passed through the through hole 443 of the fixed portion 44.
  • the fixed portion 4 4 is fixed to the rotating shaft 1 1 arranged in the through hole 4 4 3. That is, the magnet holder 41 is fixed to the rotating shaft 11 by the fixing portion 44.
  • the fixed portion 44 is preferably fixed to the rotary shaft 11 by spline connection using unevenness, key connection, welding, caulking, or the like. As a result, the rotor 40 rotates together with the rotary shaft 1 1.
  • the bearings 21 and 22 of the bearing unit 20 are assembled on the outer side in the radial direction of the fixed portion 44. Since the bearing unit 20 is fixed to the end surface 32 of the housing 30 as described above, the rotating shaft 11 and the rotor 40 are rotatably supported by the housing 30. As a result, the rotor 40 is rotatable within the housing 30.
  • the rotor 40 is provided with the fixed portion 44 only at one of the two end portions opposed to each other in the axial direction, whereby the rotor 40 is cantilevered on the rotation shaft 1 1. It is being touched.
  • the fixed portion 44 of the rotor 40 is rotatably supported at two different axial positions by the bearings 21 and 22 of the bearing unit 20. That is, the rotor 40 is rotatably supported by the two bearings 21 and 22 spaced apart from each other in one of the two axially opposite ends of the magnet holder 41. Is supported. Therefore, even if the rotor 40 is cantilevered by the rotating shaft 11, stable rotation of the rotor 40 is realized. In this case, the rotor 40 is supported by the bearings 21 and 22 at a position displaced to one side with respect to the axial center position of the rotor 40.
  • the bearing 22 located near the center of the rotor 40 (lower side in the figure) and the bearing 2 1 on the opposite side (upper side in the figure) are the outer ring 25 and
  • the clearance between the inner ring 26 and the ball 27 is different, for example, the bearing 2 2 near the center of the rotor 40 has a larger clearance than the bearing 2 1 on the opposite side. Has become.
  • the vibration and the effect of vibration will not occur. Absorbed well.
  • the rotor 40 ⁇ 2020/175333 13 ⁇ (:171? 2020/006903
  • the preload may be a fixed position preload or a constant preload.
  • both the bearing 21 and the outer ring 25 of the bearing 22 are joined to the holding member 23 by a method such as press fitting or adhesion.
  • both the bearing 21 and the inner ring 26 of the bearing 22 are joined to the rotary shaft 11 by a method such as press fitting or adhesion.
  • Pre-load can be generated by arranging the outer ring 25 of the bearing 21 at a position different from the inner ring 26 of the bearing 21 in the axial direction.
  • Preloading can also be generated by disposing the outer ring 25 of the bearing 22 at a position axially different from the inner ring 26 of the bearing 22.
  • the preload panel is used so that the preload is generated from the region sandwiched between the bearing 22 and the bearing 21 toward the outer ring 25 of the bearing 2 2 in the axial direction.
  • the preload panel is used so that the preload is generated from the region sandwiched between the bearing 22 and the bearing 21 toward the outer ring 25 of the bearing 2 2 in the axial direction.
  • both the bearing 21 and the inner ring 26 of the bearing 22 are joined to the rotating shaft 11 by a method such as press fitting or adhesion.
  • the bearing 21 or the outer ring 25 of the bearing 22 is arranged with a predetermined clearance with respect to the holding member 23. With such a configuration, the paner of the preload panel acts on the outer ring 25 of the bearing 22 in a direction away from the bearing 21.
  • the intermediate portion 4 5 have the outer shoulder 4 9 spoon annular inner shoulder 4 9 3 and the annular.
  • the outer shoulder portion 4913 is located outside the inner shoulder portion 493 in the radial direction of the intermediate portion 45.
  • Inner shoulder 4 9 3 and the outer shoulder 4 9 spoon are spaced apart from each other in the axial Direction of the intermediate portion 4 5.
  • the cylindrical portion 4 3 and the fixed portion 4 4 partially overlap each other in the radial direction of the intermediate portion 45.
  • the cylindrical portion 4 3 projects outward in the axial direction with respect to the base end of the fixed portion 4 4 (bottom end on the lower side of the figure).
  • the rotor 40 is supported on the rotating shaft 11 at a position near the center of gravity of the rotor 40. It is possible to achieve stable operation of the rotor 40.
  • the rotor 40 has a bearing unit 2 0 at a position that surrounds the fixed portion 4 4 in the radial direction and is inward of the intermediate portion 45.
  • a bearing accommodating recess 46 for accommodating a part of it is formed in an annular shape, and at a position that surrounds the bearing accommodating recess 46 in the radial direction and is on the outer side of the intermediate part 45, a stator 5 described later is formed.
  • a coil housing concave portion 47 for housing the coil end 54 of the stator winding 51 of 0 is formed.
  • the accommodation recesses 46, 47 are arranged so as to be adjacent to each other inside and outside in the radial direction. That is, a part of the bearing unit 20 and the coil end 5 4 of the stator winding 5 1 overlap radially inward and outward. ⁇ 2020/175333 15 ⁇ (: 171-1? 2020 /006903
  • the intermediate portion 45 is provided so as to project radially outward from the rotary shaft 11 side. Further, a contact avoidance portion that extends in the axial direction and that avoids contact with the coil end 5 4 of the stator winding 51 of the stator 50 is provided in the intermediate portion 45. The intermediate portion 45 corresponds to the projecting portion.
  • the coil end 5 4 can be bent inward or outward in the radial direction to reduce the axial dimension of the coil end 5 4 and reduce the axial length of the stator 50. Is.
  • the bending direction of the coil end 54 should be taken into consideration the assembling with the rotor 40. Assuming that the stator 50 is assembled on the inner side of the rotor 40 in the radial direction, it is preferable that the coil end 5 4 be bent inward in the radial direction on the side of the insertion end with respect to the rotor 40.
  • the coil end on the side opposite to the coil end 54 may be bent in any direction, but a shape bent outward with a spatial allowance is preferable for manufacturing.
  • the magnet unit 42 as a magnet portion is composed of a plurality of permanent magnets arranged radially inside the cylindrical portion 43 so that the polarities of the permanent magnets alternate along the circumferential direction. ing. As a result, the magnet unit 42 has a plurality of magnetic poles in the circumferential direction. However, details of the magnet unit 42 will be described later.
  • the stator 50 is provided inside the rotor 40 in the radial direction.
  • the stator 5 0 has a stator winding 5 1 formed in a substantially cylindrical (annular) winding shape, and a stator core 5 2 as a base member arranged radially inside thereof.
  • the stator winding 51 is arranged so as to face the annular magnet unit 42 with a predetermined air gap in between.
  • the stator winding 51 consists of multiple phase windings. Each of the phase windings is composed of a plurality of conductor wires arranged in the circumferential direction and connected to each other at a predetermined pitch. In the present embodiment, a three-phase winding wire of re-phase, V-phase and phase and a three-phase winding wire of X-phase, negative phase and phase are used.
  • the child winding 51 is configured as a 6-phase winding.
  • the stator core 52 is made of laminated steel plates that are laminated with electromagnetic steel plates that are soft magnetic materials. ⁇ 2020/175333 16 ⁇ (: 171-1? 2020/006903
  • the electromagnetic steel sheet is, for example, a silicon steel sheet obtained by adding about several percent (for example, 3%) of silicon to iron.
  • the stator winding 5 1 corresponds to the armature winding
  • the stator core 5 2 corresponds to the armature core.
  • the stator winding 5 1 is a portion that overlaps the stator core 5 2 in the radial direction, and is also a coil side portion 5 3 that is the radial outside of the stator core 5 2 and the axial direction.
  • the stator core 52 has coil ends 5 4 and 5 5 projecting from one end side and the other end side, respectively.
  • the coil side portion 5 3 faces the stator core 52 and the magnet unit 42 of the rotor 40 in the radial direction.
  • stator 50 placed inside 40, coil ends on both axial sides
  • the coil end 54 which is the bearing unit 20 side (upper side in the figure) of 5 4 and 5 5, is housed in the coil housing recess 4 7 formed by the magnet holder 41 of the rotor 40. ..
  • the stator 50 will be described later.
  • the inverter unit 60 is composed of a unit base 61 which is fixed to the housing 30 by fasteners such as bolts, and a plurality of electric components which are assembled to the unit base 61. 6 2 and.
  • Unit base 61 is, for example, carbon fiber reinforced plastic. It is composed by.
  • the unit base 61 includes an end plate 63 fixed to the edge of the opening 33 of the housing 30 and a casing 64 integrally formed with the end plate 63 and extending in the axial direction.
  • the end plate 63 has a circular opening 65 at the center thereof, and a casing 64 is formed so as to stand upright from the peripheral edge of the opening 65.
  • a stator 50 is attached to the outer peripheral surface of the casing 64. That is, the outer diameter of the casing 64 is the same as the inner diameter of the stator core 52 or slightly smaller than the inner diameter of the stator core 52. casing
  • stator core 52 By mounting the stator core 52 on the outer side of the stator 64, the stator 50 and the unit base 61 are integrated. Also, since the unit base 61 is fixed to the housing 30, the stator core 52 is assembled to the casing 64. ⁇ 2020/175333 17 ⁇ (: 171-1? 2020/006903
  • stator 50 is integrated with the / ⁇ housing 30.
  • the stator core 52 is preferably attached to the unit base 61 by adhesion, shrink fitting, press fitting, or the like. As a result, the positional deviation of the stator core 52 from the unit base 61 side in the circumferential direction or the axial direction is suppressed.
  • the inside of the casing 6 4 in the radial direction is a housing space for housing the electric component 6 2.
  • the electric component 6 2 is arranged so as to surround the rotating shaft 1 1.
  • the casing 64 has a role as a storage space forming unit.
  • the electrical component 62 is configured to include a semiconductor module 66 that constitutes an inverter circuit, a control board 67, and a capacitor module 68.
  • the unit base 61 is provided inside the stator 50 in the radial direction, and corresponds to a stator holder (armature holder) that holds the stator 50.
  • the housing 30 and the unit base 61 constitute a motor housing of the rotating electric machine 10.
  • the holding member 23 is fixed to the housing 30 on one side in the axial direction across the rotor 40, and the housing 30 and the unit base 61 are on the other side.
  • the rotating electric machine 10 is mounted on the vehicle or the like by mounting the motor housing on the vehicle or the like side.
  • FIG. 6 is an exploded view of the inverter unit 60.
  • the casing 64 includes an end face 7 provided on one side of the tubular portion 71 and one end thereof opposite to each other in the axial direction (end portion on the bearing unit 20 side). Has 2 and. The opposite side of the end face 7 2 among the both axial ends of the tubular portion 7 1 is entirely opened through the opening 65 of the end plate 63.
  • a circular hole 7 3 is formed in the center of the end face 72, and the rotating shaft 11 can be passed through the hole 73.
  • the hole 7 3 has a space between it and the outer peripheral surface of the rotating shaft 11. ⁇ 2020/175 333 18 ⁇ (: 171? 2020 /006903
  • a sealing material 1 71 for closing the voids is provided.
  • the seal material 1 71 is preferably a sliding seal made of, for example, a resin material.
  • the tubular portion 71 of the casing 6 4 partitions between the rotor 40 and the stator 50 arranged radially outside thereof and the electric component 62 arranged radially inside thereof. It is a partition part, and the rotor 40, the stator 50, and the electrical component 62 are arranged side by side inside and outside in the radial direction with the tubular part 71 sandwiched therebetween.
  • the electric component 62 is an electric component that constitutes an inverter circuit, and is a power running device that causes a current to flow in each of the phase windings of the stator winding 5 1 in a predetermined order to rotate the rotor 40. It has a function and a power generation function that inputs the three-phase AC current flowing in the stator windings 5 1 as the rotating shaft 11 rotates and outputs it as generated power to the outside.
  • the electric component 62 may have only one of the power running function and the power generating function.
  • the power generation function is a regenerative function that outputs the regenerated electric power to the outside when the rotating electric machine 10 is used as a power source for a vehicle, for example.
  • a hollow cylindrical capacitor module 68 is provided around the rotary shaft 11 and the capacitor module 68 is provided.
  • a plurality of semiconductor modules 66 are arranged side by side in the circumferential direction on the outer peripheral surface of the.
  • the capacitor module 68 includes a plurality of smoothing capacitors 68 3 connected in parallel with each other.
  • the capacitor 683 is a laminated film capacitor in which a plurality of film capacitors are laminated, and the cross section has a trapezoidal shape.
  • the capacitor module 68 is configured by arranging 12 capacitors 6 8 3 arranged side by side in a ring shape.
  • a long film having a predetermined width formed by laminating a plurality of films is used, and the film width direction is the trapezoidal height direction, and A capacitor element is made by cutting a long film into an isosceles trapezoidal shape so that the bottom and the bottom are alternated.
  • ⁇ 2020/175333 19 ⁇ (: 171-1? 2020/006903
  • Capacitor 6 8 3 is manufactured by attaching electrodes etc. to the capacitor element
  • the semiconductor module 66 has a semiconductor switching element such as 1 ⁇ /1/3 and I_0, and is formed in a substantially plate shape.
  • the rotating electric machine 10 is provided with two sets of three-phase windings, and since an inverter circuit is provided for each of the three-phase windings, a total of 12 semiconductor modules 6 6 are looped.
  • the semiconductor module group 6 68 which is formed by arranging in parallel with each other, is provided in the electrical component 6 2.
  • the semiconductor module 66 is arranged so as to be sandwiched between the cylindrical portion 71 of the casing 64 and the capacitor module 68.
  • the outer peripheral surface of the semiconductor module group 68 is in contact with the inner peripheral surface of the cylindrical portion 71, and the inner peripheral surface of the semiconductor module group 66 is in contact with the outer peripheral surface of the capacitor module 68.
  • the heat generated in the semiconductor module 66 is transferred to the end plate 63 via the casing 64 and is released from the end plate 63.
  • the semiconductor module group 6 68 preferably has a spacer 6 9 between the semiconductor module 6 6 and the cylindrical portion 7 1 on the outer peripheral surface side, that is, in the radial direction.
  • the cross-sectional shape of the cross section orthogonal to the axial direction is a regular 12-sided polygon, while the cross-sectional shape of the inner peripheral surface of the tubular portion 71 is circular, so the space is small.
  • the inner surface of the support 69 is flat and the outer surface is curved.
  • the spacer 69 may be integrally provided so as to be continuous in an annular shape on the radially outer side of the semiconductor module group 668.
  • the spacer 69 is a good heat conductor, and is preferably a metal such as aluminum or a heat dissipation gel sheet.
  • the cross-sectional shape of the inner peripheral surface of the tubular portion 71 may be the same 12-sided polygon as the capacitor module 68. In this case, both the inner peripheral surface and the outer peripheral surface of the spacer 69 are preferably flat surfaces.
  • the tubular portion 7 1 of the casing 6 4 is provided with the cooling water passage 7 4 for circulating the cooling water, and the heat generated in the semiconductor module 6 6 is It is also discharged to the cooling water flowing through the passage 74. That is, Kashin ⁇ 2020/175 333 20 (:171? 2020/006903
  • the Gu 6 4 is equipped with a water cooling mechanism. As shown in FIGS. 3 and 4, the cooling water passage 74 is formed in an annular shape so as to surround the electric components 62 (semiconductor module 66 and capacitor module 68). The semiconductor module 66 is arranged along the inner peripheral surface of the cylindrical portion 71, and the cooling water passage 74 is provided at a position overlapping the semiconductor module 66 inside and outside in the radial direction.
  • the stator 50 Since the stator 50 is arranged on the outer side of the tubular portion 71 and the electric component 62 is arranged on the inner side thereof, the tubular portion 71 is fixed from the outside thereof. As the heat of the determinant 50 is transferred, the heat of the electrical component 6 2 (for example, the heat of the semiconductor module 6 6) is transferred from the inside. In this case, the stator 50 and the semiconductor module 66 can be cooled at the same time, and the heat of the heat generating member in the rotary electric machine 10 can be efficiently released.
  • the semiconductor modules 6 6 that form part or all of the inverter circuit that operates the rotating electric machine by energizing the stator windings 51 is installed in the casing 6 4. It is arranged in a region surrounded by a stator core 52 arranged radially outside the tubular portion 71. Desirably, one semiconductor module 66 is wholly arranged in the region surrounded by the stator core 52. Furthermore, preferably, all the semiconductor modules 66 are entirely arranged in a region surrounded by the stator core 52.
  • the semiconductor module 66 is arranged in a region surrounded by the cooling water passages 74. Desirably, all the semiconductor modules 6 6 are entirely arranged in a region surrounded by the yoke 1 4 1.
  • the electrical component 62 includes an insulating sheet 75 provided on one end face of the capacitor module 68 and a wiring module 76 provided on the other end face in the axial direction. ..
  • the capacitor module 68 has two end faces that face each other in the axial direction, that is, the first end face and the second end face.
  • the first end face of the capacitor module 68 close to the bearing unit 20 faces the end face 72 of the casing 64, and is superposed on the end face 72 with the insulating sheet 75 sandwiched. Also, open the capacitor module 68. ⁇ 2020/175333 21 ⁇ (:171? 2020/006903
  • the wiring module 7 6 is mounted on the second end face close to 6 5.
  • the wiring module 7 6 is composed of a circular plate-shaped main body 7 6 3 made of a synthetic resin material and a plurality of bus bars 7 6
  • the busbars 76 and 760 make electrical connection with the semiconductor module 66 and the capacitor module 68.
  • the semiconductor module 66 has a connecting pin 663 extending from the end face in the axial direction, and the connecting pin 663 is located outside the main body 763 in the radial direction. It is connected to the swamp.
  • the bus bar 760 extends to the side opposite to the capacitor module 68 on the outside in the radial direction of the main body portion 763, and is connected to the wiring member 79 at its tip. (See Figure 2).
  • the insulating sheet 75 is provided on the first end surface of the capacitor module 68 facing in the axial direction
  • the wiring module 76 is provided on the second end surface of the capacitor module 68.
  • a path is formed from the first end surface and the second end surface of the capacitor module 68 to the end surface 72 and the tubular portion 71. That is, a path from the first end surface to the end surface 72 and a path from the second end surface to the tubular portion 71 are formed.
  • heat can be dissipated from the end surface portion other than the outer peripheral surface where the semiconductor module 66 is provided. In other words, it is possible to dissipate heat not only in the radial direction but also in the axial direction.
  • the condenser module 68 has a hollow cylindrical shape, and the rotary shaft 11 is arranged in the inner peripheral portion thereof with a predetermined clearance, the heat of the condenser module 68 is It can also be released from the hollow part. In this case, the rotation of the rotating shaft 11 causes a flow of air to enhance the cooling effect.
  • a disk-shaped control board 67 is attached to the wiring module 76.
  • the control board 6 7 has a printed circuit board ( ⁇ ) on which a predetermined wiring pattern is formed. On the board, various control circuits and a control device corresponding to a control unit composed of a microcomputer 7 are provided. 7 has been implemented.
  • the control board 67 is ⁇ 2020/175333 22 ⁇ (:171? 2020 /006903
  • Control board 6 7 at its center, and a ⁇ hole 6 7 3 for ⁇ the rotary shaft 1 1.
  • the wiring module 76 has a first surface and a second surface that face each other in the axial direction, that is, face each other in the thickness direction.
  • the first side faces the capacitor module 68.
  • the wiring module 76 is provided with a control board 67 on its second surface.
  • the bus bar 760 of the wiring module 76 extends from one side of both sides of the control board 67 to the other side.
  • the control board 67 may be provided with a notch for avoiding interference with the bus bar 760. For example, a part of the outer edge portion of the circular control board 67 may be cut out.
  • the housing 30, the rotor 40, and the stator 50 are provided in a layered form on the outer side of the housing 2, so that the electromagnetic noise generated in the inverter circuit can be suitably shielded.
  • switching control is performed in each semiconductor module 66 using ⁇ /1 ⁇ /1 control with a predetermined carrier frequency, and electromagnetic noise may occur due to the switching control.
  • the electromagnetic noise can be suitably shielded by the housing 30 on the radial outside of the electric component 62, the rotor 40, the stator 50, and the like.
  • the semiconductor module 6 6 by disposing at least a part of the semiconductor module 6 6 in the region surrounded by the stator core 52 arranged radially outside the tubular portion 71 of the casing 6 4, Compared with the configuration in which the semiconductor module 6 6 and the stator winding 5 1 are arranged without the stator core 5 2 interposed, even if magnetic flux is generated from the semiconductor module 6 6, the stator winding 5 1 Hard to affect. Further, even if the magnetic flux is generated from the stator winding 51, the semiconductor module 66 is not easily affected. It is more effective if the entire semiconductor module 6 6 is arranged in the area surrounded by the stator core 52 arranged radially outside the tubular portion 71 of the casing 6 4. .. Moreover, at least a part of the semiconductor module 66 is connected to the cooling water passage. ⁇ 2020/175333 23 ⁇ (:171? 2020 /006903
  • stator 5 on the outer side is provided.
  • a through hole 7 8 is formed to allow a wiring member 7 9 (see FIG. 2) to electrically connect 0 and the inner electric component 62 to each other.
  • the wiring member 79 is connected to the end of the stator winding 51 and the bus bar 760 of the wiring module 7 6 by crimping, welding, or the like.
  • the wiring member 79 is, for example, / ⁇ sub bar, and its joint surface is preferably flat and crushed.
  • the through holes 78 are preferably provided at one power point or at a plurality of points, and in the present embodiment, the through holes 78 are provided at two power points.
  • the rotor 40 and the stator 50 are provided in order from the outside in the radial direction, and the rotor unit 0 and the stator unit 50 are arranged in the inside in the radial direction. 60 is provided.
  • the rotor 40 and the stator 50 are arranged radially outward from the distance X 0 .705 from the center of rotation of the rotor 40. Are arranged.
  • the region that is radially inward from the inner peripheral surface of the stator 50 on the radially inner side of the rotor 40 and the stator 50 (that is, the inner peripheral surface of the stator core 52) is the first region X.
  • the area between the inner peripheral surface of the stator 50 and the housing 30 in the radial direction is the second area X 2
  • the cross-sectional area of the first area X 1 is the cross section of the second area X 2.
  • the structure is larger than the surface area.
  • the volume of the first region X 1 is larger than the volume of the second region X 2 when viewed in the range where the magnet unit 42 of the rotor 40 and the stator winding 51 overlap. Has become.
  • the first region X1 inside the housing 30 that is radially inward from the inner peripheral surface of the magnetic circuit component assembly. Is magnetic in the radial direction
  • the volume is larger than the second region X 2 between the inner peripheral surface of the circuit component assembly and the housing 30.
  • a plurality of slots are provided in a circumferential direction on a stator core made of laminated steel plates and having an annular shape, and the stator winding is wound in the slot.
  • the stator core has a plurality of teeth extending from the yoke in the radial direction at predetermined intervals, and a slot is formed between the teeth that are adjacent to each other in the circumferential direction.
  • the slot for example, a plurality of layers of conductor wires are accommodated in the radial direction, and the conductor wires form a stator winding.
  • a permanent magnet is arranged on the d axis in the d _ q coordinate system, and a rotor core is arranged on the q axis. It has been known. In this case, the stator winding near the d-axis is excited, and the exciting magnetic flux flows from the stator to the q-axis of the rotor according to Fleming's law. It is considered that this causes a wide range of magnetic saturation in the q-axis core of the rotor.
  • Fig. 7 shows the amperage [AT] and torque density showing the magnetomotive force of the stator winding.
  • FIG. 7 It is a torque diagram which shows the relationship with [N m /L ].
  • the broken line shows the characteristics of a general PM-type overnight rotating electrical machine.
  • increasing the magnetomotive force in the stator causes magnetic saturation at two force points, the tooth portion between the slots and the q-axis core portion. This limits the increase in torque.
  • the ampere-turn design value is limited by A 1. Therefore, in the present embodiment, in order to eliminate the limitation caused by magnetic saturation, the rotating electric machine 10 is provided with the following configuration.
  • a slotless structure is adopted in the stator 50 to eliminate magnetic saturation that occurs in the teeth of the stator core in the stator, and it is generated in the q-axis core part of the PM mouth.
  • the SPM (Surface Permanent Magnet) rotor is used to eliminate magnetic saturation. According to the first device, the above two force points where magnetic saturation occurs can be eliminated, but the torque may be reduced in the low current region (see the chain line in Fig. 7). Therefore, as the second device,
  • a flat conductor structure in which the radial thickness of the stator 5 0 of the conductor is reduced in the coil side portion 5 3 of the stator winding 5 1 is adopted to recover the torque reduction.
  • a larger eddy current will be generated in the stator winding 5 1 facing the magnet unit 4 2 due to the above-mentioned polar anisotropic structure with increased magnetic force.
  • the flat conductor structure is thin in the radial direction, it is possible to suppress the generation of radial eddy currents in the stator winding 51.
  • a magnet with a high magnetic force is used. Concerns about the generation of large eddy currents that can occur can be alleviated.
  • a magnet unit having a magnetic flux density distribution close to a sine wave is used by utilizing a polar anisotropic structure.
  • the sine wave matching rate can be increased by the pulse control described later to increase the torque, and eddy current loss (copper loss due to eddy current: eddy cur rent loss) can be further suppressed.
  • the sine wave matching rate is the measured waveform and period of the surface magnetic flux density distribution measured by tracing the surface of the magnet with a magnetic flux probe. ⁇ 2020/175 333 26 ⁇ (: 171? 2020 /006903
  • the sine wave matching rate is the ratio of the amplitude of the primary waveform, which is the fundamental wave of the rotating electrical machine, to the amplitude of the measured waveform, that is, the amplitude of the fundamental wave plus other harmonic components.
  • Sine wave As the matching rate increases, the surface magnetic flux density distribution waveform approaches a sine wave shape.
  • a primary sinusoidal current is supplied from an inverter to a rotating electrical machine equipped with a magnet with an improved sinusoidal matching factor, the waveform of the surface magnetic flux density distribution of the magnet should be close to the sinusoidal shape. Combined with, a large torque can be generated.
  • the surface magnetic flux density distribution may be estimated by a method other than actual measurement, for example, electromagnetic field analysis using Maxwell's equation.
  • the stator winding 51 has a strand conductor structure in which a plurality of strands are gathered together and bundled. According to this, since the wires are connected in parallel, a large current can flow and the generation of eddy currents generated by the wires spread in the circumferential direction of the stator 50 in the flat wire structure is prevented from occurring. Since the area is reduced, it can be more effectively suppressed than the reduction in the radial direction by the third measure. By constructing a plurality of strands twisted together, it is possible to cancel the eddy current with respect to the magnetic flux generated from the conductor by the right-handed screw law in the direction of current flow. ..
  • FIG. 8 is a cross-sectional view of the rotor 40 and the stator 50
  • FIG. 9 is an enlarged view of a part of the rotor 40 and the stator 50 shown in FIG.
  • FIG. 10 is a sectional view showing a cross section of the stator 50 along the line X--X in FIG. 11, and
  • FIG. 11 is a sectional view showing a longitudinal section of the stator 50.
  • FIG. 12 is a perspective view of the stator winding line 51.
  • FIG. 8 and FIG. The magnetization direction of the magnet in the magnet unit 42 is indicated by the arrow.
  • the stator core 52 has a cylindrical shape in which a plurality of electromagnetic steel plates are laminated in the axial direction and has a predetermined thickness in the radial direction.
  • the stator winding 5 1 is mounted on the radially outer side of the rotor 40 side.
  • the outer peripheral surface on the rotor 40 side is a conductor wire installation portion (conductor area).
  • the outer peripheral surface of the stator core 52 has a curved surface without unevenness, and a plurality of conductor wire groups 81 are arranged at predetermined intervals in the circumferential direction on the outer peripheral surface.
  • the stator core 52 functions as a back yoke which is a part of a magnetic circuit for rotating the rotor 40.
  • a tooth that is, an iron core
  • a soft magnetic material is not provided between each two adjacent conductor groups 81 in the circumferential direction (that is, a slotless structure).
  • the resin material of the sealing member 57 is inserted into the gap 56 of each of the conductor wire groups 81. That is, in the stator 50, the inter-conductor member provided between each conductor group 81 in the circumferential direction is configured as the sealing member 57 which is a non-magnetic material.
  • each conductor group 8 1 is composed of two conductors 8 2 as described later, and only non-magnetic material is provided between each two conductor groups 8 1 adjacent to each other in the circumferential direction of the stator 50. Are occupied by.
  • the non-magnetic material includes a non-magnetic gas such as air and a non-magnetic liquid in addition to the sealing member 57.
  • the sealing member 57 is also referred to as a conductor-to-conductor member.
  • the configuration in which teeth are provided between the conductor wire groups 81 arranged in the circumferential direction means that the teeth have a predetermined thickness in the radial direction and a predetermined width in the circumferential direction.
  • a part of the magnetic circuit, that is, the magnet magnetic path is formed between the conductor wire groups 81.
  • the configuration in which the teeth are not provided between the conductor wire groups 81 means that the above magnetic circuit is not formed.
  • the stator winding (that is, armature winding) 5 1 has a predetermined thickness 2 (hereinafter also referred to as the first dimension) and a width ⁇ /2 (hereinafter, the first dimension). (Also referred to as two dimensions).
  • the thickness 2 is the shortest distance between the outer surface and the inner surface that face each other in the radial direction of the stator winding 51.
  • the width 2 is a stator that functions as one of the polyphases of the stator winding line 51 (three phases in the embodiment: three phases II phase, V phase and three phases or X phase, three phases of negative phase and phase). This is the circumferential length of the stator winding 5 1 that is a part of the winding 51.
  • the two conductor groups 8 1 adjacent to each other in the circumferential direction function as one of the three phases, for example, II phase
  • the two conductor groups 8 1 in the circumferential direction are
  • the width is 2 from end to end.
  • the thickness 2 is smaller than the width ⁇ 2.
  • the thickness D2 is preferably smaller than the total width dimension of the two conductor wire groups 8 1 existing within the width 2. If the cross-sectional shape of the stator winding 5 1 (more specifically, the conductor 8 2) is a perfect circle, an ellipse, or a polygon, the conductor 8 2 along the radial direction of the stator 50 is Of the cross-sections, the maximum radial length of the stator 50 in the cross-section may be 12 and the maximum circumferential length of the stator 50 in the cross-section may be 11.
  • the stator winding 51 is sealed with a sealing member 57 made of a synthetic resin material as a sealing material (molding material). That is, the stator winding 51 and the stator core 52 are molded by the molding material.
  • the sealing member 57 is provided between the conductor wire groups 81, that is, the gaps 56 are filled with the synthetic resin material. As a result, an insulating member is interposed between each conductor wire group 81. That is, the sealing member 57 functions as an insulating member in the gap 56.
  • the sealing member 5 7 is located outside the stator core 52 in a range including all the conductor wire groups 81, that is, the radial thickness dimension is smaller than the radial thickness dimension of each conductor wire group 81. Range of increase ⁇ 2020/175 333 29 ⁇ (: 171? 2020 /006903
  • the sealing member 57 is provided in a range including the evening portion 84 of the stator winding 51.
  • a sealing member 57 is provided in a range including at least a part of the axially opposed end faces of the stator core 52.
  • the stator winding 51 is resin-sealed at the end of the phase winding of each phase, that is, almost the entire terminal except the connection terminal with the inverter circuit.
  • the sealing member 5 7 is provided in a range including the end surface of the stator core 52
  • the laminated steel plate of the stator core 52 is pressed axially inward by the sealing member 5 7. You can thus, the sealing member 57 can be used to maintain the stacked state of the steel plates.
  • the inner peripheral surface of the stator core 52 is not resin-sealed, but instead of this, the entire stator core 52 including the inner peripheral surface of the stator core 52 is made of resin. The structure may be sealed.
  • the sealing member 57 is made of highly heat-resistant fluororesin, epoxy resin, Resin, Minami Resin,! _ ⁇ It is preferable to be composed of a resin, a silicone resin, a resin, an I resin, or the like. Considering the coefficient of linear expansion from the viewpoint of suppressing cracking due to the difference in expansion, it is desirable that the material is the same as the outer coating of the conductor wire of the stator winding 51. That is, silicone resins having a coefficient of linear expansion that is generally at least twice that of other resins are desirably excluded.
  • the torque of the rotating electric machine 10 is proportional to the magnitude of the magnetic flux.
  • the maximum amount of magnetic flux at the stator is limited depending on the saturation magnetic flux density at the teeth, but the stator core does not have teeth. In this case, the maximum amount of magnetic flux at the stator is not limited. Therefore, it is advantageous in increasing the current passing through the stator winding 51 to increase the torque of the rotating electric machine 100. It is composed.
  • the stator 50 has a structure without the teeth (slotless structure), so that the inductance of the stator 50 is reduced.
  • the stator of the present embodiment has an inductance of, for example, about 1 mH in a stator of a general rotating electric machine in which a conductor is housed in each slot partitioned by a plurality of teeth.
  • the inductance is reduced to about 5 to 60 MH.
  • the mechanical time constant T m can be reduced by reducing the inductance of the stator 50 even in the rotating electric machine 10 having the outer rotor structure. In other words, it is possible to reduce the mechanical time constant T m while increasing the torque.
  • the mechanical time constant T m is calculated by the following equation.
  • Each conductor wire group 8 1 on the outer side in the radial direction of the stator core 5 2 is configured by arranging a plurality of conductor wires 8 2 having a flat rectangular cross-section in the radial direction of the stator core 5 2. There is.
  • the conductors 82 are arranged in a direction of “diameter dimension ⁇ circumferential dimension” in the cross section. As a result, each conductor wire group 81 is thinned in the radial direction. In addition to reducing the wall thickness in the radial direction, the conductor area extends flat to the area where the teeth were previously, resulting in a flat conductor wire area structure.
  • each of the conductive wire groups 81 and each of the conductive wires 82 are also referred to as a conductive member.
  • stator winding 51 in the present embodiment has ⁇ 2020/175333 31 ⁇ (: 171? 2020 /006903
  • the conductor area occupied by the stator winding 51 in one round in the circumferential direction can be designed to be larger than the conductor unoccupied area where the stator winding 51 does not exist. It should be noted that in the conventional vehicular rotating electrical machine, the conductor region/conductor non-occupying region in one circumferential direction of the stator winding was naturally 1 or less. On the other hand, in the present embodiment, each conductor wire group 81 is provided such that the conductor area is equal to the conductor non-occupancy area or the conductor area is larger than the conductor non-occupancy area.
  • the conductor region in which the conductor 8 2 (that is, the straight line portion 8 3 described later) is arranged in the circumferential direction is defined as the conductor region between the adjacent conductors 8 2. Then, the conductor area is larger than the inter-conductor area in the circumferential direction.
  • the radial thickness dimension of the conductor wire group 81 is smaller than the circumferential width dimension for one phase in one magnetic pole. It has become. That is, in a configuration in which the conductor group 8 1 is composed of two layers of conductors 8 2 in the radial direction and two conductor groups 8 1 are provided in the circumferential direction for each phase in one magnetic pole, the radial direction of each conductor 8 2 When the thickness of the wire is 0, and the width of each conductor 82 in the circumferential direction is, it is configured to be "0 2 ⁇ 0 2".
  • ⁇ N c _i The conductor wire portions (conductor wire group 8 1) arranged at a predetermined interval in the circumferential direction in the stator winding 5 1 have a thickness in the radial direction. The dimension is smaller than the circumferential width dimension of one phase in one magnetic pole.
  • the radial thickness dimension is exactly the circumferential width dimension. It should be smaller than. Furthermore, the radial thickness dimension of the conductor wire group 81 consisting of two layers of conductor wires 8 2 in the radial direction (2 x 0), that is, the radial thickness dimension of the conductor wire group 8 1 (2 x 0) is Circumferential width dimension It should be smaller than.
  • the torque of the rotating electric machine 10 is approximately inversely proportional to the radial thickness of the stator core 52 of the conductor wire group 81. At this point, the outer side of the stator core 5 2 in the radial direction of the conductor group 8 1 ⁇ 2020/175333 32 ⁇ (:171? 2020 /006903
  • the reduced thickness makes it an advantageous structure for increasing the torque of the rotating electrical machine 10.
  • the reason is that the magnetic resistance can be lowered by reducing the distance from the magnet unit 42 of the rotor 40 to the stator core 52 (that is, the distance of the part without iron). According to this, the interlinkage magnetic flux of the stator core 52 by the permanent magnet can be increased, and the torque can be increased.
  • the insulating coating 82 is composed of a wire 8 6 which will be described later if the wire 8 6 is a self-bonding coated wire, or an insulating member stacked separately from the coating of the wire 8 6. It should be noted that, except for the exposed portion for connection, each phase wire composed of the conducting wire 8 2 is kept insulating by the insulating coating 8 2.
  • the exposed part is, for example, the input/output terminal part or the neutral point part in the case of star connection.
  • the resin wires and the self-bonding covered wire are used to mutually bond the conductor wires 82 adjacent to each other in the radial direction. This suppresses the dielectric breakdown, vibration, and sound caused by the rubbing between the conductors 82.
  • the conductor 8 2 3 is configured as a plurality of wires 1 1 ⁇ ) 8 6 aggregates. Specifically, as shown in FIG. 1 3, the conductor 8 2 3 is formed in twisted shape by twisting a plurality of wires 8 6. Further, as shown in FIG. 14, the filaments 8 6 are configured as a composite body in which thin fibrous conductive materials 87 are bundled.
  • the strand 86 is a composite of 0 1 ⁇ 1 (strength carbon nanotube) fiber,
  • Fibers including fine fibers are used.
  • the carbon-based fine fiber vapor grown carbon fiber ( ⁇ ) or the like can be used in addition to the 0 ⁇ 1 ⁇ fiber, but it is preferable to use the ⁇ 0 fiber.
  • the surface of the wire 86 is covered with a polymer insulating layer such as enamel. Further, it is preferable that the surface of the wire 86 is covered with a so-called enamel coating, which is composed of a polyimide coating or an amidimide coating.
  • Conductor 82 forms an n-phase winding in stator winding 5 1. And conductor
  • each wire 86 of each are adjacent to each other in contact with each other.
  • the conducting wire 82 has a part where the winding conductor is formed by twisting a plurality of strands 8 6 at one or more positions in the phase, and the resistance value between the twisted strands 8 6 is It is a wire aggregate that is larger than the resistance value of the wire 8 6 itself.
  • each two adjacent strands 8 6 have a first electrical resistivity in their adjacent direction
  • each strand 8 6 has a second electrical resistivity in its longitudinal direction
  • the 1st electrical resistivity is larger than the 2nd electrical resistivity.
  • the conductor wire 8 2 may be formed of a plurality of wire wires 8 6 and may be a wire wire assembly that covers the plurality of wire wires 8 6 with an insulating member having an extremely high first electrical resistivity. ..
  • the conductor 8 2 3 conductors 8 2 is constituted by a plurality of wires 8 6 twisted.
  • a plurality of wires 8 6 are configured with twisted, generation of eddy current in the wires 8 6 is suppressed, the eddy currents in the conductor 8 2 3 It can be reduced. Further, since each of the strands 86 is twisted, a part where the magnetic field application directions are opposite to each other is generated in one strand 86, and the counter electromotive voltage is offset. Therefore, it is possible to reduce the eddy current. In particular, by constructing the wires 8 6 from the fibrous conductive material 87, it is possible to make the wires thinner and to significantly increase the number of twists, and it is possible to more appropriately reduce the eddy current. it can.
  • the method of insulating the wires 8 6 from each other here is not limited to the polymer insulating film described above, and a method of making it difficult for a current to flow between the twisted wires 8 6 by utilizing contact resistance. ⁇ 2020/175333 34 ⁇ (: 171? 2020 /006903
  • the conductive wire 82 has a flat rectangular cross section and is arranged in a line in the radial direction.
  • the self-bonding coating including the fusion layer and the insulating layer is provided.
  • the shape is maintained by fusing a plurality of wires covered with wires 86 in a burning state and fusing the fusing layers together.
  • the thickness of the insulating coating 82 in the conductor 8 2 is set to, for example, 80 to 100, and the thickness is thicker than the film thickness (5 to 40) of the commonly used conductor, it is fixed to the conductor 8 2. Even if no insulating paper or the like is interposed between the child core 52 and the child core 52, the insulation between them can be ensured.
  • the insulating coating 82 has a higher insulating performance than the insulating layer of the wire 86 and is configured to be able to insulate between the phases.
  • the thickness of the polymer insulating layer of the wire 8 6 is set to about 5, for example, the thickness of the insulating coating 8 2 of the conductor 8 2 is It is desirable to be able to suitably perform the insulation between the phases.
  • the conductor wire 82 may have a structure in which a plurality of element wires 86 are bundled without being twisted.
  • the conducting wire 8 2 has a configuration in which a plurality of strands 8 6 are twisted in its entire length, a configuration in which a plurality of strands 8 6 are twisted in a part of its entire length, and a plurality of strands 8 6 in its entire length. It may be either of the configurations in which the bunches are bundled without being twisted.
  • each conductor wire 8 2 constituting the conductor wire portion is composed of a plurality of wires 8 6 bundled together, and the resistance value between the bundled wires is larger than the resistance value of the wire wire 8 6 itself. It is an aggregate.
  • the conductors 8 2 are arranged in a predetermined arrangement pattern in the circumferential direction of the stator winding 5 1. ⁇ 2020/175333 35 (:171? 2020/006903
  • the phase windings of each phase are formed as the stator windings 51.
  • the coil side portion 5 3 is formed by the straight portion 8 3 of each conductor 8 2 that extends linearly in the axial direction, and the coil side portion 5 3 is formed in the axial direction.
  • Coil ends 5 4 and 5 5 are formed by the evening portion 8 4 projecting outward from both sides.
  • Each of the conductors 8 2 is configured as a series of corrugated conductors by alternately repeating straight portions 8 3 and turn portions 8 4.
  • the straight line portion 8 3 is arranged at a position that faces the magnet unit 4 2 in the radial direction, and is a straight line of the same phase that is arranged at a predetermined interval at a position on the outer side in the axial direction of the magnet unit 4 2. Sections 8 3 are connected to each other by evening sections 8 4. The straight part 83 corresponds to the "magnet facing part".
  • the stator winding 51 is formed by distributed winding in an annular shape.
  • straight sections 8 3 are arranged in the circumferential direction at an interval corresponding to one pole pair of the magnet unit 4 2 for each phase, and in the coil ends 5 4, 5 5 each phase is arranged for each phase.
  • the respective straight line portions 8 3 are connected to each other by a turn portion 8 4 formed in a substantially V shape.
  • the respective straight line portions 83 corresponding to one pole pair have current directions opposite to each other.
  • one coil end 5 4 and the other coil end 55 have different combinations of the pair of straight line portions 8 3 connected by the evening portion 8 4, and the coil ends 5 4 and 5 5
  • the stator winding 51 is formed in a substantially cylindrical shape.
  • stator winding 5 1 constitutes a winding for each phase using two pairs of conductors 8 2 for each phase, and one of the stator windings 5 1 3 phase line (II phase,
  • the V phase and phase) and the other three-phase winding are provided in two layers inside and outside in the radial direction.
  • the number of phases of the stator winding 5 1 is 3 (6 in the practical example) and the number per phase of the conductor 8 2 is 2, Individual conductors 8 2 will be formed.
  • the number of phases is 6, the number is 4, and the rotating electrical machine has 8 pole pairs (16 poles). ⁇ 2020/175 333 36 ⁇ (: 171? 2020 /006903
  • the linear portions 83 are overlapped in two layers adjacent to each other in the radial direction, and at the coil ends 5 4 and 55, the diameter is reduced. From each straight line portion 83 that overlaps in the direction, a dun portion 84 extends in the circumferential direction in the directions opposite to each other in the circumferential direction. That is, in the conductor wires 82 adjacent to each other in the radial direction, the directions of the turn portions 84 are opposite to each other except for the end portion of the stator winding 51.
  • FIG. 15 ( 3 ) and Figure 15 (deposit) show the form of each conductor 82 in the n-th layer
  • Figure 15 (a) shows the side view of the stator winding 51.
  • the shape of the conducting wire 82 is shown in Fig. 15(b), and the shape of the conducting wire 82 as seen from one side in the axial direction of the stator winding 51 is shown.
  • the positions where the conductor wire group 81 is arranged are shown as ports 1, 02, 03, respectively. Further, for convenience of explanation, only three conductors 82 are shown, which are referred to as a first conductor 82_8, a second conductor 82_mi, and a third conductor 82_ ⁇ .
  • each of the conductors 82_8 to 82_ ⁇ the straight line portions 83 are arranged at the position of the nth layer, that is, at the same position in the radial direction, and are separated by 6 positions (3X01 pairs) in the circumferential direction.
  • the straight portions 83 are connected to each other by the evening portion 84.
  • each of the conductors 82_8 to 82_ ⁇ has seven straight lines that are arranged adjacent to each other in the circumferential direction of the stator winding 5 1 on the same circle centered on the axis of the rotor 40.
  • the two ends of section 83 are connected to each other by one turn section 84.
  • a pair of straight line portions 83 are arranged at 01 and 07, respectively, and the pair of straight line portions 83 are connected by the inverted V-shaped turn portion 84.
  • the other conductors 82_M and 82_ ⁇ are arranged in the same n-th layer by shifting the position in the circumferential direction one by one. in this case, ⁇ 2020/175333 37 ⁇ (:171? 2020 /006903
  • an interference avoiding portion which is offset in the radial direction, is formed in the evening portion 84 of each of the conducting wires 828 to 82_O.
  • each conducting wire 82_8 ⁇ 82_ ⁇ has the same circle (
  • One inclined portion 843 that is a portion that extends in the circumferential direction on the upper side and one side that shifts from the inclined portion 843 radially inward of the same circle (upper side in Fig. 15 (b)) and separates.
  • the apex 84, the inclined part 84 and the return part 84 correspond to the interference avoidance part.
  • the inclined portion 840 may be configured to shift radially outward with respect to the inclined portion 843.
  • each lead 82_ eight-82_ ⁇ are on both sides of the top portion 84 is a central position in the circumferential direction, whereas the inclined portion 84 3 of the side and the other side of the inclined slope portion 84 ⁇ and each of these slopes 84 84 ⁇ radial position
  • the evening part 84 of the first conductor 82_8 extends along the circumferential direction starting from the 01 position of the layer and extends radially (for example, radially inward) at the top part 84, which is the center position in the circumferential direction. After bending, it bends again in the circumferential direction to extend in the circumferential direction again, and then bends again in the radial direction (for example, the radial outer side) at the return portion 84, so that the end position of the 1! It is configured to reach 07 position.
  • the conductors 82_8 to 82_ ⁇ are swapped up and down at the top 84, and the other slanted portion 84 ⁇ is the third conductor 82_ ⁇ ® second conductor 82
  • the structure is such that 1 conductor 828 is lined up and down. Therefore, each of the conductors 828 to 82 can be arranged in the circumferential direction without interfering with each other. ⁇ 2020/175333 38 ⁇ (:171? 2020 /006903
  • a turn portion connected to a radially inner straight portion 8 3 of the plurality of straight portions 8 3 8 4 and the turn portion 8 4 connected to the linear portion 8 3 on the outer side in the radial direction are preferably arranged at a distance from each other in the radial direction.
  • the conductors 8 2 of multiple layers are bent to the same side in the radial direction at the end of the evening portion 8 4, that is, near the boundary with the straight portion 8 3, the conductors 8 2 of the adjacent layers are It is advisable not to damage the insulation due to interference between them.
  • the radial overlapping conductors 8 2 are bent in the radial direction at the return section 8 4 of the turn section 8 4 respectively.
  • the radius of curvature of the bent portion be different between the conductor wire 8 2 of the first layer and the conductor wire 8 2 of the +1st layer.
  • the radius of curvature 1 of the conductor wire 8 2 on the radially inner side (the 0th layer) is made smaller than the radius of curvature 2 of the conductor wire 8 2 on the radially outer side (n + 1st layer).
  • the conducting wire 82 of the first layer and the conducting wire 82 of the +1st layer have different radial shift amounts. Specifically, the shift amount 3 1 of the conductor wire 8 2 on the radially inner side (11th layer) is made larger than the shift amount 3 2 of the conductor wire 8 2 on the radially outer side (n + 1st layer).
  • the permanent magnet used in the present embodiment is a sintered magnet obtained by sintering a granular magnetic material and molding and solidifying it, and the “individual coercive force 1 to 10 on the 1 to 1 curve” is 400 [1 ⁇ 8/ ⁇ 1] or more and the residual magnetic flux density "" is 1.0 [c] or more. 5 0 0 0 to 1 0 0 0 0 [8 c] is applied by interphase excitation, 1 Pole pair ⁇ 2020/175 333 39 ⁇ (: 171? 2020 /006903
  • Magnet unit 42 (magnet) is 2. 15 [Ding] 2 [Ding] is a feature.
  • the magnets used in the magnet unit 42 include do 611 _
  • compounds of the same type, such as 2d6148 and 2d6148 typically use the heavy rare earth dsprosium to increase the neodymium content.
  • a rotating electric machine that is operated at a temperature outside the range of human activity, for example, 60 ° ⁇ or more, which exceeds the temperature of the desert, for example, for vehicles where the temperature inside the vehicle approaches 80 ° ⁇ in summer.
  • the temperature dependence coefficient is small, 61 ⁇
  • the magnet unit 42 is characterized in that, by using the above-mentioned magnet mixture, the particle size of the fine powder state before orientation is 10 Mm or less and the single domain particle size or more.
  • the particle size of the fine powder state before orientation is 10 Mm or less and the single domain particle size or more.
  • coercive force is increased by reducing the size of powder particles to the order of several hundred nm, so in recent years powders that have been made as small as possible have been used.
  • the B H product of the magnet will drop due to oxidation and the like, so a single domain particle size or more is preferable.
  • coercive force increases with size reduction if the particle size is up to a single domain particle size.
  • the particle size described here is the particle size in the fine powder state during the orientation process, which is the manufacturing process of the magnet.
  • each of the first magnet 91 and the second magnet 92 of the magnet unit 42 is a sintered magnet formed by so-called sintering, in which magnetic powder is baked and solidified at a high temperature.
  • the saturation magnetization J s of the magnet unit 42 is 1.2 T or more
  • the crystal grain size of the first magnet 91 and the second magnet 92 is 10 Mm or less
  • the orientation ratio is Is defined as a
  • J s X a is performed so as to satisfy the condition of 1.
  • OT (Tesla) or more is performed so as to satisfy the condition of 1.
  • each of the first magnet 91 and the second magnet 92 is sintered so as to satisfy the following conditions.
  • the orientation ratio (or i entat i on rat io) is different from the definition of the magnetic force direction in the magnetization process of the isotropic magnet.
  • the saturation magnetization J s of the magnet unit 42 of this embodiment is 1.2 T or more
  • the orientation ratio a of the first magnet 9 1 and the second magnet 9 2 is J r 3 J s X a 3 1.
  • the high orientation rate is set so that it becomes 0 [T].
  • the first magnet 91 and the second magnet 92 are formed by sintering, but if the above conditions are satisfied, the first magnet 91 and the second magnet 92 can be formed by another method. It may be molded. For example, a method of forming a 1 ⁇ /103 magnet or the like can be adopted.
  • the magnetic circuit length inside the magnet is conventionally set to be 1.0 [c] or more linearly oriented magnet. It can be made longer than the magnetic circuit length of. That is, the magnetic circuit length per pole pair can be achieved with a small amount of magnets, and even when exposed to harsh high heat conditions, its irreversible demagnetization can be achieved compared to the conventional design using linearly oriented magnets. You can keep the range. Further, the present inventor has found a configuration that can obtain characteristics close to those of a polar anisotropic magnet even when using a conventional magnet.
  • the easy axis refers to a crystal orientation that is easily magnetized in the magnet.
  • the direction of the easy axis of magnetization in the magnet is the direction in which the orientation rate, which indicates the degree of alignment of the easy axis of magnetization, is 50% or more, or the direction in which the orientation of the magnet is averaged.
  • the magnet unit 42 has an annular shape and is provided inside the magnet holder 41 (specifically, inside the cylindrical portion 43 in the radial direction). ..
  • the magnet unit 42 has a first magnet 91 and a second magnet 92 which are polar anisotropic magnets and have polarities different from each other.
  • the first magnet 91 and the second magnet 92 are arranged alternately in the circumferential direction.
  • the first magnet 91 is a magnet that forms ! ⁇ ! poles in the portion close to the stator winding 5 1
  • the second magnet 9 2 forms 3 poles in the portion close to the stator winding 5 1. It is a magnet.
  • the first magnet 91 and the second magnet 92 are permanent magnets made of a rare earth magnet such as a neodymium magnet.
  • the magnetizing direction extends in an arc shape between the axis (9113 0 1"31; 11"6-3_13).
  • Each magnet 9 1, 9 2 In each of these, the magnetization direction is the radial direction of the annular magnet unit 42 on the axis side, and the magnetization direction of the annular magnet unit 42 is the circumferential direction on the 9-axis side.
  • Each of the magnets 9 1 and 9 2 is located on both sides of the first portion 2 50 and the first portion 2 50 in the circumferential direction of the magnet unit 4 2 as shown in FIG.
  • the magnet unit 4 2 is constructed, in other words, the angle 0 1 1 formed by the easy magnetization axis 300 of the first portion 250 and the axis is the easy axis 3 1 0 of the second portion 2 60.
  • the magnet unit 42 is configured so that the angle formed by the axis is smaller than 0 12.
  • the angle 0 1 1 is such that when the direction from the stator 5 0 (armature) to the magnet unit 4 2 is positive in the axis, the axis and the easy axis of magnetization 300 are It is an angle. This is the angle formed by the 9 axis and the easy axis of magnetization 3 10 when the direction from the stator 50 (armature) to the magnet unit 4 2 in the 9 axis is positive. Both the angle 0 1 1 and the angle 0 1 2 are 90° or less in this embodiment.
  • each of the easy magnetization axes 300 and 310 is defined as follows.
  • each part of the magnets 9 1 and 9 2 if one easy axis is oriented in the direction 8 11 and the other easy axis is oriented in the direction 11 1, the direction 1 1 and the direction 9 1
  • ) is defined as the easy axis of magnetization 300 or the easy axis of magnetization 3 10.
  • each of the magnets 9 1 and 9 2 is connected to the shaft side (portion near the axis)
  • the direction of the easy magnetization axis differs from that on the 9-axis side (the portion near the 9-axis).
  • the easy-axis direction on the axis side is close to the direction parallel to the ⁇ 1 axis, and the easy-axis direction on the axis side
  • the direction of the axis is close to the direction orthogonal to the 9th axis. And this ⁇ 2020/175333 43 ⁇ (:171? 2020 /006903
  • An arc-shaped magnet magnetic path is formed according to the direction of the easy axis of magnetization.
  • the easy axis may be oriented parallel to the axis on the axis side, and the easy axis may be oriented orthogonal to the axis on the 9 axis side.
  • the outer surface of the stator which is the stator 50 side (lower side in Fig. 9) of the peripheral surface of each of the magnets 9 1 and 9 2, and the 9 axes in the circumferential direction.
  • Side end surface is the magnetic flux acting surface that is the inflow and outflow surface of the magnetic flux, and the magnet magnetic path is formed so as to connect these magnetic flux acting surfaces (the outer surface of the stator side and the end surface of the shaft side).
  • the magnet unit 42 since the magnetic flux flows in an arc shape between the adjacent 1 ⁇ 1 and 3 poles by the magnets 9 1 and 9 2, the magnet magnetic path is smaller than that of a radial anisotropic magnet, for example. It's getting longer. Therefore, the magnetic flux density distribution is close to a sine wave, as shown in Fig. 17. As a result, unlike the magnetic flux density distribution of the radial anisotropic magnet shown in FIG. 18 as a comparative example, the magnetic flux can be concentrated on the center side of the magnetic pole, and the torque of the rotating electric machine 10 can be increased. Further, it can be confirmed that the magnet unit 42 of the present embodiment has a difference in the magnetic flux density distribution as compared with the conventional Halbach array magnet. In FIGS.
  • the horizontal axis represents the electrical angle and the vertical axis represents the magnetic flux density. Further, in FIGS. 17 and 18, 90° on the horizontal axis indicates the axis (that is, the magnetic pole center), and 0° and 180° on the horizontal axis indicate the 9 axis.
  • the sine wave matching rate of the magnetic flux density distribution may be set to, for example, a value of 40% or more. By doing so, it is possible to surely improve the magnetic flux amount in the central portion of the waveform, as compared with the case of using a radial oriented magnet or a parallel oriented magnet having a sine wave matching rate of about 30%. Also, if the sine wave matching rate is set to 60% or more, the amount of magnetic flux in the central portion of the waveform can be reliably improved compared to the magnetic flux concentration array such as the Halbach array. ⁇ 2020/175 333 44 ⁇ (: 171? 2020 /006903
  • the magnetic flux density changes sharply near the axis.
  • the steeper the change in magnetic flux density the greater the eddy current generated in the stator winding 51.
  • the change in magnetic flux on the stator winding 51 side becomes steep.
  • the magnetic flux density distribution has a magnetic flux waveform close to a sine wave. Therefore, the change in the magnetic flux density near the axis is smaller than the change in the magnetic flux density of the radial anisotropic magnet. This can suppress the generation of eddy currents.
  • the stator 5 0 has a cylindrical stator core 5 2 radially inward of the stator winding 5 1, that is, on the opposite side of the rotor 40 with the stator winding 5 1 interposed therebetween. It is provided. Therefore, the magnetic flux extending from the magnetic flux acting surface of each magnet 91, 92 is attracted to the stator core 52, and circulates while using the stator core 52 as a part of the magnetic path. In this case, the direction and path of the magnetic flux of the magnet can be optimized.
  • the third step of manufacturing the second unit by inserting the fixed portion 44 of the rotor 40 into the bearing unit 20 assembled in the housing 30 and
  • the fifth step of fastening and fixing the housing 30 and the unit base 6 1 is included.
  • the order of performing these steps is 1st step 2nd step 3rd step 4th step 5th step.
  • the bearing unit 20, the housing 30 and the rotor 4 are
  • stator 50 and inverter unit 60 After assembling 0, stator 50 and inverter unit 60 as multiple assemblies (sub-assemblies) and then assembling these assemblies, easy handling and inspection completion for each unit are achieved. It is possible to construct a rational assembly line. Therefore, it is possible to easily cope with multi-product production.
  • a good thermal conductor with good thermal conductivity is attached to at least one of the radial outer sides of 62 by applying a cloth or adhesive, and in that state, the electrical component 6 is attached to the unit base 61. You should wear 2. This makes it possible to effectively transfer the heat generated by the semiconductor module 6 6 to the unit base 6 1.
  • the rotor 40 may be inserted while maintaining the housing 30 and the rotor 40 coaxial with each other. Specifically, for example, with the inner peripheral surface of the housing 30 as a reference, the outer peripheral surface of the rotor 40 (outer peripheral surface of the magnet holder 41) or the inner peripheral surface of the rotor 40 (inner peripheral surface of the magnet unit 42). Surface), and slide either the housing 30 or rotor 40 along the jig. ⁇ 2020/175333 46 ⁇ (: 171? 2020 /006903
  • the fourth step it is advisable to assemble the first unit and the second unit while maintaining the same axis.
  • a jig that determines the position of the inner peripheral surface of the unit base 61 with reference to the inner peripheral surface of the fixed portion 44 of the rotor 40 is used, and the first Assemble each of these units while sliding either the unit or the second unit.
  • the order of each of the above steps may be set as the second step, the third step, the fourth step, the fifth step, the first step.
  • the delicate electrical component 62 is assembled last, and the stress on the electrical component 62 during the assembly process can be minimized.
  • Reference numeral 19 is an electric circuit diagram of a control system of the rotary electric machine 10
  • FIG. 20 is a functional block diagram showing control processing by the control device 110.
  • FIG. 19 two sets of 3-phase windings 5 1 3 and 5 1 are shown as the stator winding 51, and the 3-phase winding 5 1 3 is the II-phase winding and the V-phase winding. It consists of a winding wire and a phase winding, and the three-phase winding wire 5 1 13 consists of an X-phase winding, a normal winding wire and a phase winding.
  • a first inverter 10 1 and a second inverter 10 2 corresponding to a power converter are provided for each of the three-phase windings 5 1 3 and 5 1 13.
  • the inverters 10 1 and 10 2 are composed of a full bridge circuit that has the same number of upper and lower arms as the number of phases of the phase winding, and is fixed by turning on and off the switch (semiconductor switching element) provided in each arm. The energizing current is adjusted in each phase winding of the child winding 51.
  • Each inverter 1 0 1 and 1 0 2 has a DC power supply 1 0 3 and a smoothing capacitor.
  • the DC power supply 103 is, for example, a plurality of single batteries. ⁇ 2020/175 333 47 ⁇ (: 171-1? 2020 /006903
  • Each switch of the inverters 10 1 and 10 2 corresponds to the semiconductor module 66 shown in FIG. 1 etc.
  • the capacitor 10 4 corresponds to the capacitor module 68 shown in FIG. 1 etc.
  • the control device 110 is equipped with a microcomputer consisting of ⁇ II and various memories, and based on various detection information of the rotating electric machine10 and requests for power running drive and power generation, the inverter 1101,1 The energization is controlled by turning on/off each switch in 02.
  • the control device 110 corresponds to the control device 77 shown in FIG.
  • the detection information of the rotating electric machine 10 includes, for example, the rotation angle (electrical angle information) of the rotor 40 detected by an angle detector such as a resolver or the power supply voltage (inverter input voltage) detected by a voltage sensor. , Includes the energizing current of each phase detected by the current sensor.
  • the control device 110 generates and outputs an operation signal for operating each switch of the inverters 10 1 and 10 2.
  • the request for power generation is a request for regenerative driving when, for example, the revolving electric machine 10 is used as a power source for vehicles.
  • the first inverter 101 is provided with a series connection body of the upper arm switch 3 and the lower arm switch 3 in each of the three phases of II phase, V phase and phase.
  • the high potential side terminal of the upper arm switch 3 of each phase is connected to the positive terminal of the DC power supply 103, and the low potential side terminal of the lower arm switch 3 of each phase is connected to the negative terminal (ground) of the DC power supply 103. It is connected.
  • the _ ends of the II phase winding, the V phase winding, and the phase winding are connected.
  • Each of these phase lines is connected in a star shape (cable connection), and the other ends of each phase line are connected to each other at a neutral point.
  • the second inverter 1002 has the same configuration as that of the first inverter 101, and the upper arm switch 3 and the lower arm switch 3 are provided in the three phases of the X phase, the negative phase, and the phase. And a series connection body with each.
  • the high potential side terminal of the upper arm switch 3 of each phase is connected to the positive terminal of the DC power supply 103, and the low potential side terminal of the lower arm switch 3 n of each phase is the negative terminal (ground) of the DC power supply 103. ) It is connected to the.
  • the X-phase winding, the zero-phase winding, and one end of the phase winding Are connected.
  • Each of these phase windings is star-connected (Y-connected), and the other ends of each phase winding are connected to each other at a neutral point.
  • Fig. 20 shows a current feedback control process for controlling the U, V, W phase currents and a current feedback control process for controlling the X, Y, z phase currents. .. First, the control processing on the U, V, and W phase side will be described.
  • the current command value setting unit 1 1 1 uses the torque-dq map to obtain the power running torque command value or the power generation torque command value for the rotating electric machine 10 or the electrical angle 0 obtained by time differentiation. Set the d-axis current command value and the q-axis current command value based on the angular velocity of £. In addition, the current command value setting unit 1 1 1
  • the power generation torque command value is, for example, a regenerative torque command value when the rotary electric machine 10 is used as a vehicle power source.
  • the d q converter 1 1 2 has a current detection value (
  • D phase current which is a component of an orthogonal two-dimensional rotational coordinate system whose d axis is the magnetic field direction (di rect i on of an axis of a magnetic field, .r field di rect i on). And q-axis current.
  • the d-axis current feedback control unit 113 calculates a d-axis command voltage as an operation amount for feedback controlling the d-axis current to the d-axis current command value.
  • the q-axis current feedback control unit 1 1 1 1 4 calculates the q-axis command voltage as an operation amount for feedback controlling the q-axis current to the q-axis current command value.
  • the command voltage is calculated using the P feedback method based on the deviation of the d-axis current and the q-axis current from the current command value.
  • the three-phase conversion unit 115 converts the d-axis and q-axis command voltages into U-phase, V-phase, and W-phase command voltages.
  • each of the above sections 1 1 1 1 to 1 1 1 5 is a feedback control section that performs feedback control of the fundamental current based on the dq conversion theory, and the command voltage of the U phase, V phase, and W phase is the feedback control value. Is. ⁇ 2020/175 333 49 ⁇ (:171? 2020 /006903
  • the operation signal generation unit 1 16 uses the well-known triangular wave carrier comparison method to generate the operation signal of the first inverter 1 0 1 based on the command voltages of the three phases. Specifically, the operation signal generator 1116 controls ⁇ /1 ⁇ /1 based on the magnitude comparison between the signal obtained by normalizing the three-phase command voltage with the power supply voltage and the carrier signal such as the triangular wave signal. Generates a switch operation signal (duty signal) for the upper and lower arms in each phase.
  • 2 2 is the component of the orthogonal two-dimensional rotational coordinate system with the field direction as the ⁇ 1 axis, which is the detected current value (three phase currents) by the current sensor provided for each phase ⁇ 1 Axis current and Axis current And convert to.
  • the 1-axis current feedback control section 1 2 3 calculates the 1-axis command voltage
  • the 1-axis current feedback control section 1 2 4 calculates the 9-axis command voltage.
  • the 3-phase converter 1 2 5 converts the command voltages for the axes 9 and 9 into command voltages for the X phase, the negative phase, and the phase.
  • the operation signal generation unit 1 26 generates the operation signal of the second inverter 1 0 2 based on the three-phase command voltage.
  • the operation signal generator 1 2 6 controls ⁇ /1 ⁇ /1 based on the magnitude comparison between the signal obtained by normalizing the three-phase command voltage with the power supply voltage and the carrier signal such as the triangular wave signal. Generates a switch operation signal (duty signal) for the upper and lower arms in each phase.
  • the driver 1 1 7 switches the 3-phase switches in each inverter 1 0 1 and 1 0 2. Turn 3, 3 on and off.
  • the control device 110 selects and executes one of the torque feedback control process and the current feedback control process based on the operating conditions of the rotary electric machine 100.
  • Fig. 21 shows the torque feedback control process corresponding to the II, V, and phases. ⁇ 0 2020/175333 50 (: 17 2020 /006903
  • Torque feedback control processing corresponding to X, H, and phase is shown. Note that, in FIG. 21, the same components as those in FIG. 20 are given the same reference numerals and the description thereof will be omitted. Here, first, the control processing on the II, V, ⁇ / ⁇ / phase side will be explained.
  • the voltage amplitude calculation unit 1 2 7 determines the voltage based on the power running torque command value or the power generation torque command value for the rotary electric machine 10 and the electrical angular velocity 0) obtained by time differentiating the electrical angle 0.
  • a voltage amplitude command which is a command value of the vector size, is calculated.
  • the torque estimator 1 283 may calculate the voltage amplitude command based on the map information in which the shaft current, the shaft current and the voltage amplitude command are associated.
  • the torque feedback control unit 1 2 9 3 is a voltage phase which is a command value of the phase of the voltage vector as an operation amount for feedback controlling the estimated torque value to the power running torque command value or the power generation torque command value. Calculate the command.
  • the voltage phase command is calculated using the feedback method based on the deviation of the estimated torque value with respect to the power running torque command value or the power generation torque command value.
  • Operation signal generation unit 1 3 0 the voltage amplitude command, based on the voltage phase command and the electrical angle 0, and generates a first operation signal of the inverter 1 0 1.
  • the operation signal generating unit 1 3 0 standard voltage amplitude command, and calculates a command voltage of 3-phase based on the voltage phase command and the electrical angle 0, the power supply voltage command voltage calculated 3-phase
  • the switch operation signals of the upper and lower arms in each phase are generated by ⁇ /1 ⁇ /1 control based on the magnitude comparison of the converted signal and the carrier signal such as the triangular wave signal.
  • the operation signal generation unit 133 is a pulse amplitude information, a voltage amplitude command, a voltage amplitude command, a voltage phase command, a voltage phase command, a voltage angle command, and a voltage amplitude command, which are map information associated with the switch operation signal.
  • the switch operation signal may be generated based on the phase command and the electrical angle 0.
  • the 1 2 8 13 calculates the estimated torque value corresponding to the X, phase, and phase based on the 1-axis current and the 1-axis current converted by the 1-converting section 1 2 2.
  • the torque feedback control unit 129 calculates the voltage phase command as an operation amount for feedback controlling the estimated torque value to the power running torque command value or the power generation torque command value.
  • the voltage phase command is calculated using the I feedback method based on the deviation of the estimated torque value from the power running torque command value or the power generation torque command value.
  • the operation signal generation unit 1300 generates an operation signal for the second inverter 1O 2 based on the voltage amplitude command, the voltage phase command, and the electrical angle 0. Specifically, the operation signal generator 1300 calculates the three-phase command voltage based on the voltage amplitude command, the voltage phase command, and the electrical angle 0, and the calculated three-phase command voltage is specified as the power supply voltage.
  • the switch operation signals of the upper and lower arms in each phase are generated by ⁇ /1 ⁇ /1 control based on the magnitude comparison of the converted signal and the carrier signal such as the triangular wave signal.
  • the driver 1177 determines the three-phase switches 3 and 3 in each inverter 1101 and 102. Turn on and off.
  • the operation signal generation unit 1300 is configured to include the voltage amplitude command, the voltage phase command, the pulse angle information which is the map information in which the electric angle 0 and the switch operation signal are related, the voltage amplitude command, and the voltage phase.
  • the switch operation signal may be generated based on the command and the electrical angle 0.
  • the present embodiment takes the following three countermeasures as countermeasures against electrolytic corrosion.
  • the first countermeasure against electrolytic corrosion is to reduce the inductance as the stator 50 is made coreless and to reduce the magnetic flux of the magnet unit 42 so as to suppress electrolytic corrosion.
  • the second countermeasure against electrolytic corrosion is a countermeasure against electrolytic corrosion by using a cantilever structure with bearings 2 1 and 2 2 for the rotating shaft.
  • the third countermeasure against electrolytic corrosion is a countermeasure against electrolytic corrosion by molding the annular stator winding 5 1 together with the stator core 52 with a molding material. The details of each of these measures are explained below.
  • the space between the 81's is made toothless, and a sealing member 57 made of a non-magnetic material is provided between the conductor groups 81 in place of the teeth (iron core) (see Fig. 10).
  • the inductance of the 1st axis is equal to or less than the inductance of the 1st axis.
  • the magnets 9 1 and 9 2 were oriented so that the easy axis of magnetization on the axis side was parallel to the axis as compared to the 9 axis side (see Fig. 9).
  • the magnetic flux in the axis is strengthened, and the change in the surface magnetic flux (increase/decrease in magnetic flux) from axis to axis becomes gentle at each magnetic pole. Therefore, abrupt voltage changes due to switching imbalance are suppressed, which in turn contributes to suppression of electrolytic corrosion.
  • the bearings 2 1 and 2 2 are arranged so as to be deviated to one side in the axial direction with respect to the axial center of the rotor 40. (See Figure 2).
  • the influence of electrolytic corrosion can be reduced compared to a configuration in which a plurality of bearings are provided on both sides of the rotor in the axial direction with the rotor interposed therebetween.
  • high frequency magnetic flux is generated.
  • a closed circuit is formed that passes through the rotor, the stator, and the bearings (that is, the bearings on both sides in the axial direction with the rotor sandwiched between them), and there is concern about electrolytic corrosion of the bearing due to the axial current.
  • the closed circuit is not formed, and the electrolytic corrosion of the bearing is suppressed.
  • the rotary electric machine 10 has the following configuration in relation to the configuration in which the bearings 21 and 22 are arranged on one side.
  • a contact avoidance portion that extends in the axial direction and avoids contact with the stator 50 is provided in the intermediate portion 45 that projects in the radial direction of the rotor 40 (see Fig. 2).
  • a closed circuit of the axial current is formed via the magnet holder 41, it is possible to lengthen the closed circuit and increase its circuit resistance. As a result, the electrolytic corrosion of the bearings 21 and 22 can be suppressed.
  • the holding member 23 of the bearing unit 20 is fixed to the housing 30 on one side in the axial direction, and the housing 30 and the unit base are fixed on the other side.
  • the screws 6 1 are connected to each other (see Fig. 2).
  • the unit base 6 1 is connected to the rotary shaft 11 via the housing 30 so that the unit base 6 1 is electrically separated from the rotary shaft 11. Can be placed in different positions. If an insulating member such as resin is interposed between the unit base 61 and the housing 30, the unit base 61 and the rotating shaft 11 will be electrically separated from each other. Becomes As a result, the bearing 2 1,
  • the shaft voltage acting on the bearings 21 and 22 is reduced by the one-sided arrangement of the bearings 21 and 22 and the like. Further, the potential difference between the rotor 40 and the stator 50 is reduced. Therefore, the potential difference acting on the bearings 21 and 22 can be reduced without using conductive grease in the bearings 21 and 22. Since conductive grease generally contains fine particles such as carbon, noise may occur. In this respect, in the present embodiment, ⁇ 2020/175 333 54 ⁇ (: 171? 2020 /006903
  • the bearings 21 and 22 are configured to use non-conductive grease. Therefore, it is possible to suppress the inconvenience that noise is generated in the bearings 21 and 22. For example, when applied to an electric vehicle such as an electric vehicle, it is considered necessary to take noise countermeasures for the rotating electric machine 10. However, it is possible to appropriately implement the noise countermeasures.
  • the stator winding 5 1 and the stator core 5 2 are molded with a molding material to suppress the positional deviation of the stator winding 5 1 in the stator 50. (See Figure 11).
  • the stator winding 5 1 since there is no inter-conductor member (teeth) between each conductor group 8 1 in the circumferential direction of the stator winding 5 1, the stator winding 5 1 Although there is a concern that misalignment may occur, by molding the stator winding 5 1 together with the stator core 52, the displacement of the conductor wire of the stator winding 5 1 is suppressed. Therefore, it is possible to suppress the distortion of the magnetic flux due to the positional deviation of the stator winding 51 and the occurrence of electrolytic corrosion of the bearings 21 and 22 caused by the distortion.
  • a unit base as a housing member for fixing the stator core 52 is provided.
  • At least one of the outer ring 25 and the inner ring 26 is made of a ceramic material, or an insulating sleeve is provided outside the outer ring 25, etc. It is also possible to use the above configuration.
  • the polar anisotropic structure of the magnet unit 42 in the rotor 40 is changed, which will be described in detail below.
  • the magnet unit 42 is configured using a magnet arrangement called a Halbach arrangement. That is, the magnet unit 4 2 is composed of a first magnet 1 3 1 whose radial direction is the magnetization direction (direction of the magnetization vector), and ⁇ 2020/175333 55 ⁇ (: 171? 2020 /006903
  • the second magnet 1 3 2 has a direction (direction of the magnetization vector) as a circumferential direction, and the first magnets 1 3 1 are arranged at a predetermined interval in the circumferential direction, and the first magnets 1 3 1 are arranged adjacent to each other in the circumferential direction.
  • the second magnet 1 3 2 is located at a position between the 1 magnet 1 3 1.
  • the first magnet 1 3 1 and the second magnet 1 3 2 are permanent magnets made of rare earth magnets such as neodymium magnets.
  • the first magnet 1 3 1 has alternating poles on the side facing the stator 50 (inward in the radial direction).
  • the second magnets 1 3 2 are arranged next to the first magnets 1 3 1 so that the polarities alternate in the circumferential direction.
  • the cylindrical portion 43 provided so as to surround each of these magnets 1 3 1, 1 3 2 is preferably a soft magnetic core made of a soft magnetic material and functions as a back core.
  • the magnet unit 42 of the second embodiment also has the same relationship as the axis or the easy axis of magnetization with respect to the 9-axis in the 19-coordinate system as in the first embodiment.
  • the first magnet 1 31 is radially outside, that is, the cylindrical portion 4 of the magnet holder 41.
  • a magnetic body 1 3 3 made of a soft magnetic material is arranged on the 3 side.
  • the magnetic body 133 may be made of electromagnetic steel plate, soft iron, or powdered iron core material.
  • the circumferential length of the magnetic body 1 3 3 is the same as the circumferential length of the first magnet 1 3 1 (in particular, the circumferential length of the outer peripheral portion of the first magnet 1 3 1 ).
  • the radial thickness of the first magnet 1 3 1 and the magnetic body 1 3 3 in the integrated state is the same as the radial thickness of the second magnet 1 3 2.
  • the first magnet 1 3 1 is thinner than the second magnet 1 3 2 in the radial direction by the amount of the magnetic body 1 3 3.
  • the magnets 1 3 1, 1 3 2 and the magnetic body 1 3 3 are fixed to each other by, for example, an adhesive.
  • the outer side in the radial direction of the first magnet 1 3 1 in the magnet unit 4 2 is the side opposite to the stator 50, and the magnetic body 1 3 3 is one of the two sides of the first magnet 1 3 1 in the radial direction. It is provided on the opposite side of the stator 50 (opposite side of the stator).
  • a key 1 3 4 is formed on the outer peripheral portion of the magnetic body 1 3 3 as a convex portion that projects radially outward, that is, to the side of the cylindrical portion 4 3 of the magnet holder 4 1. Also, yen ⁇ 2020/175 333 56 ⁇ (: 171? 2020 /006903
  • a keyway 1 3 5 is formed on the inner peripheral surface of the cylindrical portion 4 3 as a recess for accommodating the key 1 3 4 of the magnetic body 1 3 3.
  • the protruding shape of the keys 1 3 4 and the groove shape of the key grooves 1 3 5 are the same, and the same number of keys as the keys 1 3 4 correspond to the keys 1 3 4 formed on each magnetic substance 1 3 3.
  • Grooves 1 3 5 are formed. Due to the engagement of the keys 1 3 4 and the key grooves 1 3 5, the positional deviation of the first magnet 1 3 1 and the second magnet 1 3 2 and the magnet holder 4 1 in the circumferential direction (rotational direction) is suppressed.
  • the key 1 3 4 and the key groove 1 3 5 may be provided on either the cylindrical portion 4 3 of the magnet holder 4 1 or the magnetic body 1 3 3 as desired.
  • the magnetic flux density in the first magnet 1 3 1 is increased by alternately arranging the first magnet 1 3 1 and the second magnet 1 3 2. Is possible. Therefore, in the magnet unit 42, the magnetic flux can be concentrated on one side, and the magnetic flux can be strengthened on the side closer to the stator 50.
  • the magnetic body 1 3 3 is arranged on the outer side in the radial direction of the first magnet 1 3 1, that is, on the side opposite to the stator, partial magnetic saturation on the outer side in the radial direction of the first magnet 1 3 1 is achieved. Can be suppressed, and by extension, demagnetization of the first magnet 1 3 1 caused by magnetic saturation can be suppressed. As a result, it is possible to increase the magnetic force of the magnet unit 42.
  • the magnet unit 42 of the present embodiment is, so to speak, configured such that the portion of the first magnet 1 3 1 where demagnetization is likely to occur is replaced with a magnetic body 1 3 3.
  • FIG. 24(3) and Fig. 24( ⁇ ) are diagrams specifically showing the flow of magnetic flux in the magnet unit 4 2.
  • Fig. 24(3) shows that in the magnet unit 4 2.
  • FIG. 24 (distance) shows the configuration of the present embodiment having the magnetic body 1 3 3 in the magnet unit 4 2.
  • the case is shown.
  • the cylindrical part 4 3 and the magnet unit 4 2 of the magnet holder 4 1 are shown in a linear form, and the lower side of the figure shows the stator side.
  • the upper side is the side opposite the stator. ⁇ 2020/175333 57 ⁇ (: 171-1? 2020/006903
  • the magnetic flux acting surface of the first magnet 1 31 and the side surface of the second magnet 1 3 2 are in contact with the inner peripheral surface of the cylindrical portion 4 3, respectively.
  • the magnetic flux acting surface of the second magnet 1 3 2 is in contact with the side surface of the first magnet 1 3 1.
  • the magnetic flux 1 entering the contact surface with the first magnet 1 3 1 through the outer path of the second magnet 1 3 2 in the cylindrical portion 4 3 is substantially parallel to the cylindrical portion 4 3 and 2
  • a combined magnetic flux with the magnetic flux that attracts the magnetic flux 2 of the magnet 1 3 2 is generated. Therefore, there is a concern that a magnetic saturation may partially occur in the cylindrical portion 4 3 near the contact surface between the first magnet 1 3 1 and the second magnet 1 3 2.
  • the configuration of Fig. 24 (distance) can eliminate 2 which promotes magnetic saturation. As a result, the permeance of the entire magnetic circuit can be effectively improved. With this configuration, the magnetic circuit characteristics can be maintained even under severe high heat conditions.
  • the magnetic path of the magnet passing through the inside of the magnet becomes longer than that of the radial magnet in the conventional 3 1 ⁇ /1 rotor. Therefore, the magnet permeance can be increased, the magnetic force can be increased, and the torque can be increased. Furthermore, since the magnetic flux concentrates at the center of the 1st axis, the sine wave matching rate can be increased. In particular, if the current waveform is a sine wave or a trapezoidal wave by the control of ⁇ /1 ⁇ /1, or the switching I 0 of 120° conduction is used, the torque can be more effectively enhanced.
  • the radial thickness of the stator core 52 is 1/2 of the radial thickness of the magnet unit 42, or 1/. Greater than 2 is good.
  • the radial thickness of the stator core 52 is preferably 1/2 or more of the radial thickness of the first magnet 1 31 provided at the magnetic pole center in the magnet unit 4 2.
  • the radial thickness of the stator core 52 depends on the magnet unit. ⁇ 2020/175 333 58 ⁇ (: 171-1? 2020 /006903
  • the magnetic flux of the magnet is about 1 [D]
  • the saturation magnetic flux density of the stator core 5 2 is 2 [D]
  • the radial thickness of the stator core 5 2 is equal to that of the magnet unit 4 2.
  • the magnetic flux can be increased in proportion to the thickness of the magnet that handles the magnetic flux in the circumferential direction.
  • magnetic saturation will not occur if the thickness of the stator core 52 is more than half the magnet thickness. It is possible to provide a small and lightweight rotating electric machine.
  • the demagnetizing field from the stator 50 acts on the magnetic flux of the magnet
  • the magnetic flux of the magnet is generally below 0.9 [C]. Therefore, if the stator core has a thickness half that of the magnet, its magnetic permeability can be suitably kept high.
  • the outer peripheral surface of the stator core 52 is formed into a curved surface without unevenness, and a plurality of conductor wire groups 8 1 are arranged side by side on the outer peripheral surface at predetermined intervals, but this may be changed.
  • the stator core 52 has an annular shape provided on the radial opposite sides of the stator winding 51 on the side opposite to the rotor 40 (lower side in the figure). It has a yoke 1 4 1 and a protrusion 1 4 2 extending from the yoke 1 4 1 so as to protrude between the linear portions 8 3 adjacent to each other in the circumferential direction.
  • the protrusions 1 4 2 are provided on the outer side in the radial direction of the yoke 1 4 1, that is, on the side of the rotor 40, at predetermined intervals.
  • Each conductor wire group 8 1 of the stator winding 5 1 is engaged with the protrusion 1 4 2 in the circumferential direction, and the protrusions 1 4 2 are arranged side by side in the circumferential direction while being used as the positioning portion of the conductor wire group 8 1.
  • the protrusions 14 2 correspond to “inter-conductor members”.
  • the protrusion 1 4 2 is a radial thickness dimension from the yoke 1 4 1, that is, ⁇ 2020/175333 59 (:171? 2020/006903 As shown in Fig. 25, in the radial direction of the yoke 1 41, the protrusion from the inner surface 3 2 0 adjacent to the yoke 1 4 1 of the straight portion 8 3 The distance to the apex of 1 4 2 is 1/2 of the radial thickness dimension of the straight line portion 8 3 that is radially adjacent to the yoke 1 4 1 among the multiple straight layer portions 8 3 inside and outside the radial direction. (1 to 11 in the figure).
  • the size of the conductor wire group 8 1 (conductive member) in the radial direction of the stator winding 5 1 (stator core 5 2) ( Thickness) 1 (twice the thickness of the conductor 8 2; in other words, the face of the conductor group 8 1 that contacts the stator core 5 2 3 20 and the face of the conductor group 8 1 that faces the rotor 40.
  • the non-magnetic part (sealing member 57) should occupy a three-quarter range of (the shortest distance from 3 30) The circumferential direction is limited by the thickness limitation of these protrusions 1 4 2.
  • the protrusions 1 4 2 do not function as teeth between the conductor groups 8 1 (that is, the straight portions 8 3) adjacent to each other so that the magnetic path is not formed by the teeth. Do not have to be provided all between the conductor groups 8 1 arranged in the circumferential direction, and may be provided between at least one set of conductor groups 8 1 that are adjacent in the circumferential direction. It is preferable that the portions 1 4 2 are provided at equal intervals in the circumferential direction at a predetermined number between the conductor wire groups 8 1.
  • the shape of the protrusions 1 4 2 can be an arbitrary shape such as a rectangular shape or an arc shape. Good.
  • the outer peripheral surface of the stator core 52 may be provided with a single linear portion 83. Therefore, in a broad sense, the radial thickness of the protrusion 1 4 2 from the yoke 1 4 1 may be smaller than 1/2 of the radial thickness of the straight portion 8 3.
  • the protrusion 1 4 has a shape that projects from the yoke 1 41 within the range of the virtual circle, in other words, a shape that does not project radially outward (that is, the rotor 40 side) from the virtual circle.
  • the protrusions 1 4 2 are limited in the radial thickness dimension and do not function as teeth between the linear portions 8 3 adjacent in the circumferential direction. Compared to the case where teeth are provided between the straight line parts 8 3 ⁇ 2020/175333 60 ⁇ (:171? 2020 /006903
  • the evening section 8 4 is shifted in the radial direction and has an interference avoiding section for avoiding interference with other evening sections 8 4, so that the different evening It is possible to dispose the inner portions 84 apart from each other in the radial direction. As a result, the heat dissipation can be improved even in the evening section 84. From the above, it is possible to optimize the heat dissipation performance of the stator 50.
  • the protrusion 1 If the yoke 1 41 of the stator core 5 2 and the magnet unit 4 2 of the rotor 40 (that is, the magnets 9 1 and 9 2) are separated by a predetermined distance or more, the protrusion 1
  • the radial thickness dimension of 42 is not restricted to ! ⁇ I 1 in Figure 25. Specifically, the yoke 1 4 1 and the magnet unit 4 2 If it is more than the distance, the protrusion
  • the radial thickness dimension of 1 4 2 may be greater than or equal to ! ⁇ I 1 in FIG.
  • the straight part And the conductor wire group 8 1 is composed of two layers of conductor wires 8 2 inside and outside in the radial direction, the straight part 8 3 that is not adjacent to the yoke 1 4 1, that is, from the yoke 1 4 1
  • the projecting portion 1 4 2 may be provided within the range up to the half position of the conducting wire 8 2 in the second layer. In this case, if the radial thickness of the projection 1 4 2 is up to "1 to 1 1 3 /2", increasing the conductor cross-sectional area of the conductor wire group 8 1 will not significantly reduce the above effect. You can get it.
  • stator core 52 may have the configuration shown in FIG. Figure 2
  • the sealing member 57 is omitted, but the sealing member 57 may be provided.
  • the magnet unit 42 and the stator core 52 are shown in a linear form.
  • the stator 50 has a circumferentially adjacent conductor 8 2 (ie ⁇ 2020/175333 61 ⁇ (: 171-1? 2020 /006903
  • the stator 50 magnetically functions together with one of the magnetic poles of the magnet unit 4 2 (1 ⁇ 1 pole or 3 poles), and the stator 50 It has a portion 350 that extends circumferentially.
  • the length in the circumferential direction of the stator 50 of this part 350 is! Then, this length range! Is the total width of the protrusions 1 4 2 existing in (i.e., the total dimension of the stator 50 in the circumferential direction), and the saturated magnetic flux density of the protrusions 1 4 2 is defined as 5, the magnet unit. If the width of one pole of the rotor 4 2 in the circumferential direction is ⁇ / ⁇ / 01 and the residual magnetic flux density of the magnet unit 4 2 is
  • the range W n is a plurality of conductors group 8 1 adjacent in the circumferential direction
  • the excitation time period is set to include a plurality of conductors group 8 1 overlap.
  • the fourth to the fourth conductor wire group 8 1 corresponds to the plurality of conductor wire groups 8 1 in order from the shortest distance from the magnetic pole center of the pole in the circumferential direction. ..
  • the range w n is set so as to include the four conductor groups 81.
  • the ends (starting point and ending point) of the range W n are the centers of the gaps 56.
  • the range W n includes a total of 4 protrusions 1 4 2. ing. Therefore, if the width of the protrusion 1 4 2 (that is, the dimension of the protrusion 1 4 2 in the circumferential direction of the stator 5 0, in other words, the interval between the adjacent conductor wire groups 8 1) is set to 8, the range W n is The total width of the protrusions 1 4 2 included is
  • the three-phase winding of the stator winding 5 1 is distributed winding, and the stator winding 5 1 has a protrusion with respect to one pole of the magnet unit 4 2.
  • the number of parts 1 4 2, that is, the number of gaps 5 6 between the conductor wire groups 8 1 is “phase number ⁇ ”.
  • is the number of one-phase conductors 8 2 that come into contact with the stator core 5 2.
  • the conductor wire 82 is the conductor wire group 81 laminated in the radial direction of the rotor 40, it can be said that it is the number of the conductor wires 82 on the inner peripheral side of the one-phase conductor wire group 81.
  • the two-phase protrusions 142 in one pole are excited. Therefore, the total width Wt in the circumferential direction of the protrusion 142 that is excited by the energization of the stator winding 51 in the range of one pole of the magnet unit 42 is the protrusion 142 (that is, the gap 56).
  • the circumferential width is A
  • the protrusions 142 are formed as a magnetic material that satisfies the relationship of (1) above.
  • the total width dimension W t is also the circumferential dimension of the part where the relative magnetic permeability can be greater than 1 within one pole. Further, in consideration of the margin, the total width dimension W t may be the circumferential width dimension of the protrusion 142 in one magnetic pole.
  • the distributed winding mentioned here is one pole pair period (N pole and S pole) of the magnetic pole, and has one pole pair of the stator winding 51.
  • the one pole pair of the stator winding 51 mentioned here is composed of two straight portions 83 and a turn portion 84 in which currents flow in opposite directions and are electrically connected by the turn portion 84. As long as the above conditions are met, even short rolls (Short Pitch Winding) are considered to be equivalent to the distribution rolls of all rolls (Fu 11 Pitch Winding).
  • concentrated winding means that the width of one pole pair of magnetic poles is different from the width of one pole pair of the stator winding 51.
  • concentrated winding there are three conductor groups 81 for one pole pair, three conductor groups 81 for two pole pairs, and nine conductor groups 81 for four pole pairs. One of them is a group of conductors 81 having five relationships with five pairs of magnetic poles.
  • the circumferential width dimension 1: of the protrusion 1 4 2 excited by the energization of the stator winding 5 1 is “8 2 ”.
  • the width dimension is defined in this way, and the protrusions 1 42 are configured as a magnetic material that satisfies the relationship of (1) above.
  • the total width of the protrusions 1 4 2 in the circumferential direction of the stator 50 is set to 8 in the area surrounded by the same-phase wire group 8 1.
  • ⁇ ZV rn is equivalent to "the entire circumference of the surface of the magnet unit 4 2 facing the air gap" X "the number of phases” ⁇ "the dispersion number of the conductor group 8 1 ".
  • the 1 to 1 product of neodymium magnets, samarium-cobalt magnets, and ferrite magnets is 2 0 [1 ⁇ /1 ⁇ 6 ]
  • the above magnets have a force of 1.0 strong, and the iron has a force of 2.0. Therefore, as a high output motor, the stator core 5 2 has a protrusion 1 4 2
  • Any magnetic material that satisfies the relationship may be used.
  • the conductor wire 8 2 may be arranged in the circumferential direction of the stator core 5 2 so that the outer layer coatings 18 2 of 8 2 are in contact with each other.
  • the outer layer coatings 18 2 of 8 2 can be regarded as 0 or the thickness of the outer coating 18 2 of both conducting wires 8 2 in contact with each other.
  • the inter-conductor members protrusions 1 4 2 that are disproportionately small with respect to the magnet magnetic flux on the rotor 40 side are configured.
  • the rotor 40 is a flat surface magnet type rotor having a low inductance and a flat surface, and does not have salient poles magnetically. With this configuration, the inductance of the stator 50 can be reduced, the generation of magnetic flux distortion due to the deviation of the switching timing of the stator winding 51 can be suppressed, and eventually the bearings 2 1 and 2 2 2 Electrolytic corrosion is suppressed.
  • tooth-like portions 1 4 3 are provided as inter-conductor members on the outer peripheral surface side (upper surface side in the figure) of the stator core 52.
  • the tooth portions 1 4 3 are provided at predetermined intervals in the circumferential direction so as to project from the yoke 1 4 1, and have the same thickness dimension as the conductor wire group 8 1 in the radial direction.
  • the side surface of the toothed portion 1 4 3 is in contact with each conductor wire 8 2 of the conductor wire group 8 1. However, there may be a gap between the tooth-like portion 14 3 and each conducting wire 8 2.
  • the tooth-shaped portions 1 43 are limited in width in the circumferential direction, and are provided with pole teeth (stator teeth) that are disproportionately thin with respect to the magnet amount. With such a configuration, the tooth-shaped portions 1 43 are reliably saturated by the magnetic flux of the magnet in the number of 1.8 or more, and the inductance can be reduced by lowering the permeance.
  • the magnetic flux on the stator side is, for example, "3 I 2 X Sumi 3”. in this case,
  • the inductance is reduced by limiting the dimensions of the toothed portions 1 4 3 so that
  • the width dimension 31 of the toothed portion 1 43 is made smaller than 1/8 of the width dimension of one pole of the magnet unit 4 2 to reduce the inductance. If the number is 1, the width dimension 3 I of the toothed portion 1 4 3 should be smaller than 1/4 of the width dimension ⁇ ZV rn of one pole of the magnet unit 4 2.
  • ⁇ / 3 I 2 is a toothed portion 1 excited by energization of the stator winding 5 1 within the range of one pole of the magnet unit 4 2. Corresponds to the circumferential width of 4 3.
  • the sealing member 57 covering the stator winding 51 is in a range including all the conductor wire groups 81 on the outer side in the radial direction of the stator core 52, that is, the radial thickness dimension is equal to that of each conductor wire.
  • the sealing member 57 is provided so that a part of the conducting wire 82 protrudes. More specifically, the sealing member 57 is provided in such a manner that a part of the conductor wire 8 2 which is the outermost radial direction in the conductor wire group 8 1 is exposed radially outward, that is, the stator 50 side.
  • the radial thickness of the sealing member 57 is preferably the same as or smaller than the radial thickness of each conductor group 81.
  • each conductor wire group 81 may not be sealed by the sealing member 57. That is, the sealing member 5 7 covering the stator winding 5 1 is not used. In this case, an inter-conductor member is not provided between the conductor groups 81 arranged in the circumferential direction, and a gap is formed. In short, line up in the circumferential direction ⁇ 2020/175 333 66 ⁇ (:171? 2020 /006903
  • the inter-conductor member of the stator 50 is made of a non-magnetic material
  • a material other than resin for example, a metallic non-magnetic material may be used, such as the use of austenitic stainless steel 3 II 3 304.
  • the stator 50 may not have the stator core 52.
  • the stator 50 is composed of the stator winding 5 1 shown in Fig. 12.
  • the stator winding 5 1 may be sealed with a sealing material.
  • the stator 50 may include an annular winding holding portion made of a non-magnetic material such as synthetic resin, instead of the stator core 52 made of a soft magnetic material.
  • annular magnet which is an annular permanent magnet
  • an annular magnet 95 is fixed inside the cylindrical portion 43 of the magnet holder 41 in the radial direction.
  • the annular magnet 95 is provided with a plurality of magnetic poles whose polarities alternate in the circumferential direction, and the magnets are integrally formed on both the axis and the nine axes.
  • the annular magnet 95 is formed with an arc-shaped magnet magnetic path in which the orientation direction is radial in the axis of each magnetic pole and the orientation is circumferential in the axis between the magnetic poles.
  • the easy magnetization axis is oriented in a direction parallel to the axis or parallel to the axis in the portion closer to the axis, and the easy magnetization axis is orthogonal to the axis or orthogonal to the axis in the portion closer to the axis.
  • the operation signal generation unit 1 16 includes a carrier generation unit 1 16 a and U, V, W phase comparators 1 16 bU, 1 16 bV, 1 16 bW. ..
  • the carrier generation unit 1 16 a generates and outputs a triangular wave signal as the carrier signal S i g C.
  • U, V, W phase comparators 1 1 6 b U, 1 1 6 b V, 1 1 6 bW have a carrier signal S ig C generated by the carrier generator 1 1 6 a and a 3-phase
  • the U, V, and W phase command voltages calculated by the converter 1 15 are input.
  • the U, V, and W phase command voltages are, for example, sinusoidal waveforms, and their phases are shifted by 120 ° in terms of electrical angle.
  • U, V, W phase comparator 1 1 6 b U, 1 1 6 b V, 1 16 bW is a PWM based on the magnitude comparison of U, V, W phase command voltage and carrier signal S ig C.
  • PWM pulse width modulation
  • the operation signal of each switch S p, S n of the upper arm and lower arm of the U, V, W phases in the first inverter 101 is generated.
  • the operation signal generation unit 1 16 uses U, V, and W by performing PWM control based on the magnitude comparison between the signal in which the U, V, and W phase command voltages are normalized by the power supply voltage and the carrier signal. , Generates operation signals for the W-phase switches S p and S n.
  • the driver 1 17 turns on and off the U, V, and W-phase switches S p and S n in the first inverter 101 on the basis of the operation signal generated by the operation signal generation unit 1 16. ⁇ 2020/175 333 68 ⁇ (: 171? 2020 /006903
  • the control device 110 performs a process of changing the carrier signal 3, the carrier frequency, that is, the switching frequency of each switch 3, 3 n.
  • the carrier frequency is set high in the low torque region or high rotation region of the rotary electric machine 10 and set low in the high torque region of the rotary electric machine 10. This setting is made in order to suppress the deterioration of the controllability of the current flowing through each winding.
  • the inductance of the stator 50 can be reduced.
  • the inductance becomes low, the electrical time constant of the rotating electric machine 10 becomes small.
  • the ripple of the current flowing in each phase winding increases, the controllability of the current flowing in the winding deteriorates, and there is concern that current control may diverge.
  • the influence of this decrease in controllability can be more pronounced when the current flowing in the winding (for example, the effective value of the current) is included in the low current region than in the high current region.
  • the control device 110 changes the carrier frequency.
  • This processing is repeatedly executed by the control device 110, for example, at a predetermined control cycle as the processing of the operation signal generation unit 116.
  • step 310 it is determined whether or not the current flowing through the winding 5 13 of each phase is included in the low current region.
  • This process is a process for determining that the current torque of the rotary electric machine 10 is in the low torque region.
  • the following first and second methods can be given as examples of methods for determining whether or not the current is included in the low current region.
  • ⁇ 1 Calculate the estimated torque value of the rotating electric machine 10 based on the axis current and 9-axis current converted by the converter 1 1 2. Then, when it is determined that the calculated estimated torque value is less than the torque threshold value, it is determined that the current flowing through the winding 5 13 is included in the low current region, and the estimated torque value is equal to or greater than the torque threshold value. If it is determined, it is determined to be included in the high current region.
  • the torque threshold is ⁇ 2020/175 333 69 ⁇ (: 171-1? 2020 /006903
  • it may be set to 1/2 of the starting torque (also called the restraint torque) of the rotating electric machine 10.
  • the speed threshold may be set to, for example, the rotation speed when the maximum torque of the rotary electric machine 10 becomes the torque threshold.
  • step 3110 When a negative determination is made in step 3110, it is determined to be in the high current region, and the process proceeds to step 311.
  • step 3 1 the carrier frequency is changed to the first frequency! Set to _.
  • Step 310 When the affirmative judgment is made in Step 310, the process proceeds to Step 312, and the carrier frequency is set to the first frequency! Set to the second frequency higher than _!
  • the carrier frequency T is set higher when the current flowing in each phase winding is included in the low current region than in the high current region. Therefore, the switching frequency of switches 3 and 3 can be increased in the low current region, and the increase of current ripple can be suppressed. As a result, a decrease in current controllability can be suppressed.
  • the carrier frequency is set to be lower than when it is included in the low current region.
  • the amplitude of the current flowing through the winding is larger than in the low current region, so the increase in the current ripple due to the lower inductance has less effect on the current controllability. .. Therefore, in the high current region, the carrier frequency can be set lower than in the low current region, and the switching loss of each of the inverters 10 1 and 10 2 can be reduced.
  • Carrier frequency is the first frequency! When set to _, When the affirmative determination is made in step S10 of FIG. 32, the carrier frequency fc may be gradually changed from the first frequency fL toward the second frequency fH.
  • the carrier frequency fc is set to the second frequency fH and the negative determination is made in step S10, the carrier frequency fc is changed from the second frequency fH to the first frequency fL. May be gradually changed toward.
  • the operation signal of the switch may be generated by space vector modulation (SVM: space vector modulation) control. Even in this case, the change of the switching frequency described above can be applied.
  • SVM space vector modulation
  • FIG. 33(a) is a diagram showing the electrical connection between the first and second conductors 88a and 88b, which are two pairs of conductors.
  • the first and second conducting wires 88a, 88b may be connected in series as shown in FIG. 33(b).
  • Figure 34 shows a configuration in which four pairs of conductors, first to fourth conductors 88a to 88d, are stacked.
  • the 1st to 4th conductors 88a to 88d are arranged in the radial direction in the order of the 1st, 2nd, 3rd and 4th conductors 88a, 88b, 88c, 88d from the side closer to the stator core 52.
  • the third and fourth conductors 88c and 88d are connected in parallel, and the first conductor 88a is connected to one end of the parallel connection body.
  • the second conducting wire 88 b may be connected to the other end.
  • the first and second conductors 88a, 88b that are not connected in parallel are The third and fourth conductors 88 c, 88 d, which are arranged on the side of the stator core 52 that abuts on the unit base 61 and connected in parallel, are arranged on the side of the non-stator core.
  • the radial thickness dimension of the conductor wire group 8 1 composed of the first to fourth conductor wires 8 8 3 to 8 8 is smaller than the circumferential width dimension of one phase in one magnetic pole. It should have been done.
  • the rotating electric machine 10 may have an inner rotor structure (inner rotation structure).
  • inner rotation structure inner rotation structure
  • the stator 50 is provided on the outer side in the radial direction and the rotor 40 is provided on the inner side in the radial direction.
  • the inverter unit 60 may be provided on one side or both sides of both axial ends of the stator 50 and the rotor 40.
  • FIG. 35 is a cross-sectional view of the rotor 40 and the stator 50
  • FIG. 36 is an enlarged view of a part of the rotor 40 and the stator 50 shown in FIG. is there.
  • the stator 50 has a stator winding 5 1 having a flat conductor structure and a stator core 5 2 having no teeth.
  • the stator winding 51 is assembled inside the stator core 52 in the radial direction.
  • the stator core 52 has one of the following configurations, as in the case of the outer rotor structure.
  • stator 50 On the stator 50, provide inter-conductor members between each conductor in the circumferential direction, and as the inter-conductor members, set the circumferential width dimension of the inter-conductor member for one magnetic pole to 1, If the saturation magnetic flux density of the member is 3, and the circumferential width of the magnet unit in one magnetic pole is ⁇ !, and the residual magnetic flux density of the magnet unit is ‘ "A magnetic material having a relationship of "is used.
  • an inter-conductor member is provided between the conductor portions in the circumferential direction, and a non-magnetic material is used as the inter-conductor member.
  • the magnet unit 42 is oriented so that the direction of the easy axis of magnetization is parallel to the axis on the Axis 1 side, which is the center of the magnetic pole, compared to the axis 9 side, which is the magnetic pole boundary.
  • the magnets 9 1 and 9 2 are used.
  • the details of the magnetization direction of each magnet 9 1, 9 2 are as described above. It is also possible to use an annular magnet 95 (see Fig. 30) in the magnet unit 42.
  • Fig. 37 is a vertical cross-sectional view of the rotating electric machine 10 in the case of the inner rotor type, which corresponds to Fig. 2 described above. Differences from the configuration of FIG. 2 will be briefly described.
  • an annular stator 50 is fixed inside the housing 30, and a rotor 40 is rotatably provided inside the stator 50 with a predetermined air gap in between. ing.
  • the bearings 21 and 22 are arranged so as to be offset to either side in the axial direction with respect to the center of the rotor 40 in the axial direction.
  • the inverter unit 60 is provided inside the magnet holder 41 of the rotor 40.
  • Fig. 38 shows another configuration of the rotary electric machine 10 having an inner rotor structure.
  • the rotating shaft 11 is rotatably supported by the bearings 21 and 22 in the housing 30 and the rotor 40 is fixed to the rotating shaft 11.
  • the bearings 21 and 22 are arranged so as to be biased to one side in the axial direction with respect to the axial center of the rotor 40.
  • the rotor 40 has a magnet holder 41 and a magnet unit 42.
  • the rotating electric machine 10 of Fig. 38 differs from the rotating electric machine 10 of Fig. 37 in that the rotor unit 40 is not provided with the inverter unit 60 inside the radial direction. ing.
  • the magnet holder 41 is connected to the rotary shaft 11 at a position radially inward of the magnet unit 42.
  • the stator 50 has a stator winding 5 1 and a stator core 52, and is attached to the housing 30.
  • FIG. 39 is an exploded perspective view of the rotary electric machine 200
  • FIG. 40 is a side sectional view of the rotary electric machine 200.
  • the vertical direction is shown based on the states of FIGS. 39 and 40.
  • the rotary electric machine 200 has an annular stator core 2
  • stator 20 3 having a multi-phase stator winding 20 2, and a rotor 20 4 rotatably arranged inside the stator core 20 1.
  • the stator 203 corresponds to an armature
  • the rotor 2044 corresponds to a field element.
  • the stator core 20 1 is configured by laminating a large number of silicon steel plates, and the stator windings 20 2 are attached to the stator core 20 1.
  • the rotor 204 has a rotor core and a plurality of permanent magnets as a magnet unit.
  • the rotor core is provided with a plurality of magnet insertion holes at equal intervals in the circumferential direction.
  • a permanent magnet magnetized so that the magnetizing direction is alternately changed for each adjacent magnetic pole is attached to each of the magnet insertion holes.
  • the permanent magnet of the magnet unit may have the Halbach array as described in Fig. 23 or a similar structure.
  • the orientation direction extends in an arc shape between the axis that is the magnetic pole center and the axis that is the magnetic pole boundary as described in FIGS. 9 and 30. It is preferable to have polar anisotropy characteristics.
  • stator 203 may have any of the following configurations.
  • an inter-conductor member is provided between each conductor portion in the circumferential direction, and as the inter-conductor member, the circumferential width dimension of the inter-conductor member in one magnetic pole is 1, and the inter-conductor member is Where the saturation magnetic flux density of the magnet unit is 3, and the width of the magnet unit in the circumferential direction in one magnetic pole is defined as, and the residual magnetic flux density of the magnet unit is defined as "A magnetic material having a relationship of "is used.
  • an inter-conductor member is provided between the conductor portions in the circumferential direction, and a non-magnetic material is used as the inter-conductor member.
  • the magnet unit is oriented so that the direction of the easy magnetization axis is parallel to the axis on the side of the axis that is the center of the magnetic pole, compared to the side of the axis that is the magnetic pole boundary. It is composed of a plurality of magnets.
  • An annular inverter case 211 is provided on one end side of the rotary electric machine 200 in the axial direction.
  • the inverter case 2 11 is arranged such that the lower surface of the case is in contact with the upper surface of the stator core 2 0 1.
  • Inside the inverter case 2 11 are a plurality of power modules 2 12 that make up the inverter circuit, and a smoothing capacitor 2 1 3 that suppresses the ripples of voltage and current generated by the switching operation of the semiconductor switching elements.
  • a control board 2 14 having a control unit, a current sensor 2 15 for detecting a phase current, and a resolver stator 2 16 which is a rotation speed sensor of the rotor 20 4 are provided.
  • the power module 2 1 2 has a semi-conducting switching element, such as a knife and a diode.
  • a power connector 2 17 connected to the DC circuit of the battery mounted on the vehicle and the rotary electric machine 200 0 side and the vehicle side control device are provided on the periphery of the inverter case 2 11.
  • a signal connector 2 18 used to transfer various signals is provided.
  • the inverter case 2 1 1 1 is covered with a top cover 2 1 9. DC power from the on-vehicle battery is input via the power connector 2 17 and is converted to AC by the switching of the power module 2 1 2 and sent to the stator winding 20 2 of each phase.
  • a bearing unit 2221 for rotatably holding the rotating shaft of the rotor 204 and its An annular rear case 2 2 2 which houses the bearing unit 2 2 1 is provided.
  • the bearing unit 2 21 has, for example, a pair of bearings, and is arranged so as to be deviated to either one side in the axial direction with respect to the axial center of the rotor 204.
  • a plurality of bearings in the bearing unit 2 21 may be provided dispersedly on both sides in the axial direction of the stator core 2 0 1, and the bearing may support both ends of the rotary shaft.
  • the rear case 2 2 2 is used to mount the gear case and transmission of the vehicle. ⁇ 2020/175333 75 ⁇ (: 171-1? 2020/006903
  • the rotary electric machine 200 can be mounted on the vehicle side by being bolted and fixed to the attachment part.
  • a cooling channel 211 for flowing a refrigerant is formed inside the inverter case 211.
  • the cooling flow path 2 1 1 1 3 is formed by closing a space that is annularly recessed from the lower surface of the inverter case 2 1 1 with the upper surface of the stator core 2 0 1.
  • the cooling channel 2 11 3 is formed so as to surround the coil end of the stator winding 2 0 2.
  • the module case 2 1 2 3 of the power module 2 1 2 is put into the cooling passage 2 1 1 3.
  • a cooling flow path 2 2 2 3 is formed so as to surround the coil end of the stator winding 2 0 2.
  • the cooling channel 2 2 2 3 is formed by closing a space, which is annularly recessed from the upper surface of the rear case 2 2 2, with the lower surface of the stator core 2 0 1.
  • Figure 4 1 shows the structure of a rotating armature-type rotating electric machine 230.
  • the housing A bearing 2 3 2 is fixed to each of the 2 3 1 bearings, and the rotating shaft 2 3 3 is rotatably supported by the bearing 2 3 2.
  • the bearing 23 2 is, for example, an oil-impregnated bearing made of porous metal containing oil.
  • the rotor 2 3 4 as an armature is fixed to the rotary shaft 2 3 3.
  • the rotor 2 3 4 has a rotor core 2 3 5 and a multiphase rotor winding line 2 3 6 fixed to the outer periphery of the rotor core 2 3 5.
  • the rotor core 2 3 5 has a slotless structure
  • the rotor winding wire 2 3 6 has a flat conductor structure.
  • the rotor winding line 2 36 has a flat structure in which the region for each phase is longer in the circumferential direction than in the radial direction.
  • a stator 237 serving as a field element is provided on the outer side in the radial direction of the rotor 234.
  • the stator 2 3 7 has a stator core 2 3 8 fixed to the housing 2 3 1 3 and a magnet unit 2 3 9 fixed to the inner peripheral side of the stator core 2 3 8. ing.
  • Magnet unit 2 3 9 has multiple magnets with alternating polarity in the circumferential direction. ⁇ 2020/175 333 76 ⁇ (:171? 2020 /006903
  • the direction of the easy axis of magnetization is closer to the axis that is the magnetic pole boundary than the side of the axis that is the magnetic pole boundary. It is configured so that it is oriented parallel to.
  • the magnet unit 2339 has an oriented sintered neodymium magnet, and its intrinsic coercive force is more than 400 [1 ⁇ / ⁇ !] and the residual magnetic flux density is 1.0 [ It's over.
  • the rotary electric machine 230 of this example is a 2-pole 3-coil brushless coreless motor, the rotor winding 2 36 is divided into 3 parts, and the magnet unit 2 3 9 is 2-pole. ..
  • the number of poles and the number of coils of the brushed motor varies depending on the application, such as 2:3, 4:1 0, and 4:1.
  • a commutator 2 4 1 is fixed to the rotating shaft 2 3 3, and a plurality of brushes 2 4 2 are arranged on the radially outer side of the commutator 2 4 1.
  • the commutator 2 4 1 is electrically connected to the rotor winding 2 3 6 via a conductor 2 4 3 embedded in the rotating shaft 2 3 3.
  • a direct current flows in and out of the rotor winding 2 3 6 through these commutator 2 4 1, brush 2 4 2, and conductor 2 4 3.
  • the commutator 2 4 1 is appropriately divided in the circumferential direction according to the number of phases of the rotor winding line 2 3 6.
  • the brush 2 42 may be directly connected to a DC power source such as a storage battery via electric wiring, or may be connected to a DC power source via a terminal block or the like.
  • the rotating shaft 2 3 3 is provided with a resin washer 2 4 4 as a seal material between the bearing 2 3 2 and the commutator 2 4 1.
  • the resin washer 2 4 4 prevents the oil exuding from the oil-impregnated bearing 2 3 2 from flowing out to the commutator 2 4 1 side.
  • each conductor wire 82 may have a plurality of insulating coatings inside and outside. For example, it is advisable to bundle a plurality of conductive wires (elementary wires) with an insulating coating and to cover them with an outer coating to form the conductive wire 82.
  • the insulation coating of the wires constitutes the inner insulation coating
  • the outer coating is the outer insulation coating.
  • the insulating ability of the outer insulating coating of the plurality of insulating coatings of the conductor 82 is higher than that of the inner insulating coating.
  • the thickness of the outer insulating coating is made thicker than the thickness of the inner insulating coating.
  • the thickness of the outer insulating coating is 100, and the thickness of the inner insulating coating is 40.
  • a material having a lower dielectric constant than the inner insulating film may be used as the outer insulating film. At least one of these may be applied.
  • the strands of wire may be configured as an aggregate of a plurality of conductive materials.
  • At least one of the linear expansion coefficient (coefficient of linear expansion) and the adhesive strength may be different between the outer insulating coating and the inner insulating coating.
  • Figure 4 2 shows the structure of the conducting wire 82 in this modification.
  • a conductor wire 8 2 is composed of a plurality of (four in the figure) element wires 1 81 and an outer layer film 1 82 2 made of, for example, resin surrounding the plurality of element wires 1 8 1 (outer insulation Coating) and an intermediate layer 183 (intermediate insulating coating) filled around each element wire 1 81 in the outer coating 182.
  • the element wire 1 81 has a conductive portion 181 3 made of a copper material and a conductor film 181 (inner insulating film) made of an insulating material.
  • the outer layer coating 182 insulates the phases.
  • the wire 181 is configured as an aggregate of a plurality of conductive materials.
  • the intermediate layer 183 has a linear expansion coefficient higher than that of the conductor coating 181 of the element wire 181 and lower than that of the outer coating 182.
  • the conductor 82 has a higher linear expansion coefficient toward the outer side.
  • the outer coating 1 82 has a higher linear expansion coefficient than the conductor coating 1 81, but by providing an intermediate layer 1 8 3 having a linear expansion coefficient between them, Layer 1 8 3 ⁇ 2020/175 333 78 ⁇ (: 171? 2020 /006903
  • It functions as a cushion material and can prevent simultaneous cracks on the outer and inner layers.
  • the adhesive strength of the conductive part 181 3 and the conductor film 181 is the adhesive strength of the conductor film 181 and the intermediate layer 183, and the adhesive strength of the intermediate layer 183 and the outer layer 182. It is getting weaker than that. Also, comparing the adhesive strength of the conductor coating 1 81 and the intermediate layer 1 83 with the adhesive strength of the intermediate layer 1 8 3 and the outer coating 1 82, the latter (outer) is weaker? Or it is good to be equivalent.
  • the magnitude of the adhesive strength between the coatings can be grasped, for example, from the tensile strength required to peel off the two coating layers.
  • the heat generation and temperature change of the rotating electric machine mainly occur as copper loss generated from the conductive portion 181 3 of the wire 181 and iron loss generated from the inside of the iron core.
  • the type of loss is Alternatively, the heat is transmitted from the outside of the conducting wire 82, and the intermediate layer 183 does not have a heat source.
  • the intermediate layer 183 has an adhesive force capable of acting as a cushion for both, so that the simultaneous cracking can be prevented. Therefore, it can be suitably used even in the field of high withstand voltage or large temperature change such as vehicle application.
  • the strand 1 8 1 may be, for example, an enameled wire, and in such a case, it has a resin coating layer of I, I, etc. (conductor coating 18 1 ⁇ ). Further, it is desirable that the outer layer coating 1 82 outside the element wire 1 81 be made of the same material, such as ⁇ and ⁇ , and be thick. As a result, the destruction of the coating film due to the difference in linear expansion coefficient is suppressed. In addition, as the outer layer coating 1 82, apart from those corresponding to the above materials such as 8, I, and 8 I by thickening them, ⁇ 2020/175333 79 ⁇ (: 171-1?2020/006903
  • the adhesive strength between the two kinds of coatings (intermediate insulation coating and outer insulation coating) on the outside of the strand 1 81 and the enamel coating of the strand 1 8 1 is the copper strength of the strand 1 8 1. It is desirable that it be weaker than the bond strength between the and enamel coating. This suppresses the phenomenon that the enamel coating and the above two types of coatings are destroyed at once.
  • thermal stress or impact stress is applied first from the outer layer coating 182.
  • the thermal stress and impact stress can be reduced by providing a part that does not bond the coatings. it can. That is, a gap is formed between the element wire (enamel wire) and fluorine, polycarbonate, silicon, epoxy, polyethylene naphthalate,! By disposing _ ⁇ , the insulating structure is formed.
  • a resin having good moldability such as Mimi 1_ ⁇ and having properties such as dielectric constant and linear expansion coefficient similar to those of an enamel coating.
  • the distance port 1 ⁇ /1 in the radial direction between the surface of the magnet unit 4 2 on the armature side in the radial direction and the rotor shaft center is 50
  • the above may be mentioned.
  • the inner surface in the radial direction of the magnet unit 4 2 (specifically, the first and second magnets 9 1 and 9 2) shown in FIG. 4 and the axial center of the rotor 40. In the radial direction of and The above may be mentioned.
  • the magnetic field generated in the stator winding on the primary side is received by the iron core of the rotor on the secondary side, and the induced current is concentrated in the cage-type conductor to form a reaction magnetic field.
  • This is the principle of generating torque. For this reason, it is not necessarily a good idea to eliminate the iron cores on both the stator side and rotor side from the viewpoint of the small size and high efficiency of the equipment.
  • Reluctance motors are motors that utilize reluctance changes in the iron core, and it is not desirable to eliminate the iron core in principle.
  • I 1 ⁇ /1 that is, embedded magnet type rotor
  • I 1 ⁇ /1 has a characteristic that it has both magnet torque and reluctance torque, and is operated by the inverter control while the ratio of those torques is adjusted in a timely manner. For this reason, the ⁇ IV! is a small motor with excellent controllability.
  • the torque of the rotor surface that generates the magnet torque and the reluctance torque is measured in the radial direction of the surface of the magnet unit on the armature side in the radial direction and the axial center of the rotor.
  • Distance IV! that is, the radius of the stator core of a typical Innaro-Yu is plotted along the horizontal axis as shown in Fig. 43.
  • the magnet torque is determined by the magnetic field strength generated by the permanent magnet as shown in the following equation (6 9 1), while the reluctance torque is shown in the following equation (6 2).
  • the magnitude of the inductance especially the axial inductance, determines its potential.
  • I compared the magnetic field strength of the permanent magnet and the magnitude of the inductance of the winding with mouth IV!.
  • the magnetic field strength generated by the permanent magnet that is, the amount of magnetic flux is proportional to the total area of the permanent magnet on the surface facing the stator. If a cylindrical rotor, ⁇ 2020/175333 82 ⁇ (: 171-1? 2020/006903
  • the surface area of a cylinder is proportional to the radius of the cylinder and the length of the cylinder. That is, if the cylinder length is constant, it is proportional to the radius of the cylinder.
  • the inductance 1_9 of the winding depends on the shape of the iron core, but the sensitivity is low. Rather, it is proportional to the square of the number of turns of the stator winding, and thus the number of turns is highly dependent.
  • Inductance 1_ 1 ⁇ 1 2 ⁇ 3/5, where is the number of turns, 3 is the cross-sectional area of the magnetic circuit, and 3 is the effective length of the magnetic circuit.
  • the number of turns of the winding depends on the size of the winding space, in the case of a cylindrical motor, it depends on the winding space of the stator, that is, the slot area. As shown in Fig. 44, the slot area is proportional to the product of the circumferential length dimension 3 and the radial length dimension 3 3 x 3 because the slot shape is approximately square. ..
  • the length of the slot in the circumferential direction increases as the diameter of the cylinder increases, and is proportional to the diameter of the cylinder.
  • the radial dimension of the slot is in proportion to the diameter of the cylinder. So the slot area is proportional to the square of the diameter of the cylinder.
  • the reluctance torque is proportional to the square of the stator current, so the performance of the rotating electrical machine is determined by how large the current can flow, and the performance is determined by the stator slot. It depends on the area. From the above, if the length of the cylinder is constant, the reluctance torque is proportional to the square of the diameter of the cylinder.
  • Fig. 43 shows a plot of the relationship between magnet torque and reluctance torque and mouth IV!.
  • mouth 1 ⁇ /1 is 5
  • the magnetic resistance of the magnetic circuit in the rotor and the stator increases, and the torque of the rotating electric machine decreases.
  • the reason for the increase in magnetic resistance is, for example, that the air gap between the rotor and the stator becomes large. Therefore, the above-mentioned mouth 1 ⁇ /1 is 5 In the above-mentioned slotless rotating electrical machine
  • the linear portion 8 3 of the conducting wire 8 2 may be provided in a single layer in the radial direction. Further, when the straight line portion 83 is arranged in a plurality of layers inside and outside in the radial direction, the number of layers may be arbitrary, and may be three layers, four layers, five layers, six layers or the like.
  • the rotary shaft 11 is provided so as to project in both the one end side and the other end side of the rotary electric machine 10 in the axial direction. However, this is changed to only one end side. It may be configured to project. In this case, the rotary shaft 11 may be provided so as to extend outward in the axial direction with the end portion being a portion that is cantilevered by the bearing unit 20. In this configuration, since the rotary shaft 11 does not project inside the inverter unit 60, the internal space of the inverter unit 60, more specifically, the internal space of the tubular portion 71 can be used more widely. Becomes
  • the bearings 2 1 and 2 2 use the non-conductive grease, but this is changed, and the bearings 2 1 and 2 2 use the conductive grease. It may be configured.
  • the conductive grease containing metal particles and carbon particles is used.
  • bearings may be provided at two power points on the axially one end side and the other end side of the rotor 40.
  • bearings may be provided at two power points on one end side and the other end side with the inverter unit 60 interposed therebetween.
  • a conductor is provided in the conductor wire 8 2 of the stator winding 5 1.
  • the imper unit 60 is provided inside the stator 50 in the radial direction.
  • an inverter unit is provided inside the stator 50 in the radial direction.
  • a configuration without 60 may be adopted. In this case, it is possible to set a space inside the inner region of the stator 50 in the radial direction. In addition, it is possible to place components different from the inverter unit 60 in the internal area.
  • the rotary electric machine 10 having the above configuration may not have the housing 30.
  • rotating rotor 4 0 it may be configured such that the stator 5 0 and the like are retained.
  • FIG. 45 is a perspective view showing a wheel 400 of the in-wheel motor structure and its peripheral structure
  • FIG. 46 is a longitudinal sectional view of the wheel 400 and its peripheral structure
  • FIG. 4 is an exploded perspective view of a wheel 400.
  • FIG. Each of these figures is a perspective view of the wheel 400 as viewed from the inside of the vehicle.
  • the in-wheel motor structure of this embodiment can be applied to various types of vehicles.For example, in the case of a vehicle having two wheels on the front and rear sides of the vehicle, the two wheels on the front side of the vehicle It is possible to apply the in-wheel motor structure of the present embodiment to the two rear wheels or the four front and rear wheels of the vehicle. However, it can be applied to a vehicle in which at least one of the front and rear of the vehicle has one wheel.
  • the in-wheel motor is an example of application as a vehicle drive unit.
  • the wheels 400 include, for example, a tire 4001 that is a well-known pneumatic tire, and a wheel 4 that is fixed to the inner circumferential side of the tire 4101. 0 2 and a rotating electric machine 5 00 fixed to the inner peripheral side of the wheel 4 02.
  • the rotating electric machine 500 has a fixed portion that is a portion that includes a stator (stator) and a rotating portion that is a portion that includes a rotor (rotor).
  • the fixed portion is fixed to the vehicle body side and The part is fixed to the wheel 4 02, and the tire 4 01 and the wheel 4 02 rotate due to the rotation of the rotating part.
  • the rotary electric machine 500 ⁇ 2020/175 333 86 ⁇ (:171? 2020 /006903
  • the wheel 400 includes, as peripheral devices, a suspension device that holds the wheel 400 with respect to a vehicle body (not shown), a steering device that can change the direction of the wheel 400, and a wheel.
  • a brake device for braking 400 is installed.
  • the suspension device is an independent suspension type suspension, and any type such as a trailing arm type, a strut type, a wishbone type, or a multi-link type can be applied.
  • the suspension device the lower arm 4 11 is provided so as to extend toward the center side of the vehicle body, and the suspension arm 4 1 2 and the spring 4 1 3 are provided so as to extend upward and downward.
  • the suspension arm 4 1 2 may be configured as a shock absorber, for example. However, its detailed illustration is omitted.
  • the lower arm 4 11 and the suspension arm 4 12 are both connected to the vehicle body side and also connected to a disk-shaped base plate 4 05 fixed to a fixed portion of the rotating electric machine 500. As shown in Fig. 46, on the rotary electric machine 500 side (base plate 450 side), the lower arm 4 11 and the suspension arm 4 1 2 are coaxial with each other by the support shafts 4 1 4 and 4 1 5. Supported by.
  • a rack and pinion structure, a ball and nut structure, a hydraulic power steering system, or an electric power steering system can be applied.
  • a rack device 4 2 1 and a tie rod 4 2 2 are provided as steering devices, and the rack device 4 21 is mounted on the rotary electric machine 5 00 side via the tie rod 4 2 2.
  • the tie rod 4 2 2 Connected to plate 405.
  • the wheel 400 rotates about the support shafts 4 1 4 and 4 15 of the lower arm 4 11 and the suspension arm 4 12 and the wheel direction is changed.
  • a disc brake or a drum brake As the braking device, it is preferable to apply a disc brake or a drum brake. ⁇ 2020/175 333 87 ⁇ (: 171? 2020 /006903
  • a disk rotor 431 fixed to a rotary shaft 5001 of a rotating electric machine 500 and a brake carriage fixed to a base plate 405 on the rotating electric machine 500 side. 4 3 2 is provided.
  • the brake pad of the brake bar 4 32 is actuated by hydraulic pressure, etc., and the brake pad is pressed against the disc rotor 4 31 to generate a braking force due to friction, and the wheel 4 0 0 rotation is stopped.
  • the wheel 400 is provided with a housing duct 440 for housing the electric wiring !I 1 and the cooling pipe !2 extending from the rotary electric machine 500.
  • the accommodating duct 440 extends along the end surface of the rotating electric machine 500 from the end of the rotating electric machine 500 on the fixed side, and is provided so as to avoid the suspension arm 412, and in that state, the suspension duct It is fixed to arm 4 1 2.
  • the connection position of the accommodating duct 440 in the suspension arm 412 is fixed relative to the base plate 405. Therefore, it is possible to suppress the stress caused by the vibration of the vehicle in the electric wiring !I 1 and the cooling pipe !2.
  • the electric wiring! I 1 is connected to an on-vehicle power supply unit and an on-vehicle MII II which are not shown, and the cooling pipe! I 2 is connected to a radiator which is not shown.
  • the rotary electric machine 500 has excellent operating efficiency and output as compared with a motor of a vehicle drive unit having a speed reducer as in the related art.
  • the rotary electric machine 500 may be used as a motor for applications other than vehicle drive units. Even in such a case, the same excellent performance as when applied to the in-wheel mode is exhibited.
  • the operating efficiency refers to the index used during the test in the driving mode that derives the fuel consumption of the vehicle.
  • FIG. 48 shows the rotary electric machine 50
  • Fig. 4 is a side view of 0 viewed from the protruding side (inside of the vehicle) of the rotating shaft 501
  • Fig. 49 is a vertical cross-sectional view of the rotating electric machine 550 (cross-sectional view taken along line 4 9-4 9 in Fig. 48).
  • Figure 50 ⁇ 2020/175 333 88 ⁇ (:171? 2020 /006903
  • FIG. 5 is a cross-sectional view of the rotary electric machine 500 (a cross-sectional view taken along the line 50-500 in FIG. 49), and FIG. 51 is an exploded cross-sectional view of the components of the rotary electric machine 500.
  • the direction of the rotary shaft 50 1 extending in the outer direction of the vehicle body is the axial direction in FIG. 51, and the direction extending radially from the rotary shaft 50 1 is the radial direction.
  • the center of the axis of rotation 5 0 1, in other words, the center of rotation of the rotating part, is drawn on the center line drawn to make the cross-section 4 9 passing through, and from any point other than the center of rotation of the rotating part
  • Each of the two extending directions is the circumferential direction.
  • the circumferential direction may be either a clockwise direction starting from an arbitrary point on the cross section 49 or a counterclockwise direction.
  • the right side is the vehicle outside and the left side is the vehicle inside in FIG.
  • the rotor 510 described later is arranged more to the outside of the vehicle body than the rotor force bar_670.
  • the rotary electric machine 500 is an outer rotor type surface magnet type rotary electric machine.
  • the rotating electric machine 500 is roughly divided into a rotor 510, a stator 520, an inverter unit 5300, a bearing 560, and a rotor cover 670.
  • Each of these members is coaxially arranged with respect to a rotating shaft 501, which is integrally provided in the rotor 5100, and is assembled in a predetermined order in the axial direction to form the rotating electric machine 500. There is.
  • the rotor 510 and the stator 520 each have a cylindrical shape, and are arranged to face each other across an air gap.
  • the rotor 5 10 rotates integrally with the rotating shaft 5 0 1, so that the rotor 5 10 rotates on the radially outer side of the stator 5 20.
  • the rotor 5 1 0 corresponds to the "field element” and the stator 5 2 0 corresponds to the "armature”.
  • the rotor 5110 has a substantially cylindrical rotor carrier 511 and an annular magnet unit 512 fixed to the rotor carrier 511.
  • the rotating shaft 5 0 1 is fixed to the rotor carrier 5 1 1.
  • the rotor carrier 5 11 has a cylindrical portion 5 13.
  • a magnet unit 5 12 is fixed to the inner peripheral surface of the cylindrical portion 5 13.
  • the rotor carrier 5 11 is, for example, a cold-rolled steel plate with sufficient mechanical strength (thickness 3 1 to 10 thicker than 3 0 0 or 3 0 0 0, forging steel, carbon fiber reinforced plastic). It is formed by.
  • the axial length of the rotary shaft 5 01 is longer than the axial dimension of the rotor carrier 5 11.
  • the rotary shaft 50 1 projects toward the open end side (inward direction of the vehicle) of the rotor carrier 5 11 and the above-mentioned brake device etc. can be attached to the projecting end. There is.
  • a through hole 5 1 4 3 is formed in the center of the end plate 5 1 4 of the rotor carrier 5 1 1.
  • the rotating shaft 5 01 is fixed to the rotor carrier 5 1 1 in a state of being passed through the through hole 5 1 4 3 of the end plate 5 1 4.
  • the rotating shaft 5 01 has a flange 5 0 2 extending in a direction intersecting (orthogonal to) the axial direction at a portion where the rotor carrier 5 11 is fixed, and the flange and the end plate 5 1 4
  • the rotary shaft 5 0 1 is fixed to the rotor carrier 5 1 1 in a state where the outer surface of the vehicle is surface-joined.
  • the wheel 400 is fixed by using a fastener such as a bolt erected from the flange 502 of the rotary shaft 501 in the vehicle outer direction.
  • the magnet unit 5 12 is composed of a plurality of permanent magnets arranged so that the polarities thereof alternate along the circumferential direction of the rotor 5 10. As a result, the magnet unit 5 12 has a plurality of magnetic poles in the circumferential direction.
  • the permanent magnet is fixed to the rotor carrier 5 1 1, for example by gluing.
  • the magnet unit 5 12 has the configuration described as the magnet unit 4 2 in FIGS. 8 and 9 of the first embodiment, and as a permanent magnet, its intrinsic coercive force is 40 0 [1 ⁇ 8/ ] that's all ⁇ 2020/175333 90 ⁇ (: 171-1? 2020 /006903
  • the magnet unit 5 1 2 is a polar anisotropic magnet and has a first magnet 9 1 and a second magnet 9 2 having different polarities, as in the magnet unit 4 2 of FIG. doing.
  • the magnets 9 1 and 9 2 each have an easy magnetization axis on the ⁇ 1 axis side (the part near the 0 axis) and the 9 axis side (the part near the axis).
  • the direction of the easy axis of magnetization is close to the direction parallel to the axis
  • the direction of the easy axis of magnetization is close to the direction orthogonal to the axis.
  • An arc-shaped magnet magnetic path is formed with an orientation corresponding to the direction of this easy axis of magnetization.
  • the easy axis may be oriented parallel to the axis on the axis side, and the easy axis may be oriented directly on the 9 axis side.
  • the magnet unit 5 12 is configured such that the direction of the easy magnetization axis is parallel to the axis, which is the magnetic pole center, compared to the axis, which is the magnetic pole boundary. Has been done.
  • each of the magnets 9 1 and 9 2 the magnetic flux of the magnet on the axis is strengthened, and the change of the magnetic flux near the axis is suppressed.
  • the magnets 9 1 and 9 2 in which the surface magnetic flux changes gently from axis to axis in each magnetic pole can be suitably realized.
  • the magnet unit 5 12 it is also possible to use the structure of the magnet unit 4 2 shown in FIGS. 22 and 23 or the structure of the magnet unit 4 2 shown in FIG.
  • the magnet unit 5 12 is a rotation unit formed by axially laminating a plurality of magnetic steel sheets on the side of the cylindrical portion 5 13 of the rotor carrier 5 11 that is, on the outer peripheral surface side. It may have a child core (back yoke). That is, the rotor core is provided on the radially inner side of the cylindrical portion 5 13 of the rotor carrier 5 11 and the permanent magnets (magnets 9 1 and 9 2) are provided on the radially inner side of the rotor core. It is also possible.
  • the cylindrical portion 5 13 of the rotor carrier 5 11 is provided with recesses 5 1 3 3 at predetermined intervals in the circumferential direction and extending in the axial direction. .. This ⁇ 2020/175333 91 ⁇ (: 171-1? 2020/006903
  • the concave portion 5 1 3 3 of the concave portion 5 1 3 3 is formed by, for example, press working, and as shown in FIG. 5 1 3 Sinks are formed.
  • a concave portion 5 1 2 3 is formed on the outer peripheral surface side of the magnet unit 5 1 2 so as to match the convex portion 5 1 3 of the cylindrical portion 5 1 3 and is formed in the concave portion 5 1 2 3.
  • the convex portion 5 13 of the cylindrical portion 5 13 enters, the positional displacement of the magnet unit 5 12 in the circumferential direction is suppressed.
  • the convex portion 5 13 on the rotator carrier 5 11 side functions as a detent portion for the magnet unit 5 1 2.
  • the method for forming the convex portion 5 13 sack may be any method other than press working.
  • the directions of the magnet magnetic paths in the magnet unit 5 12 are indicated by arrows.
  • the magnet magnetic path extends in an arc shape so as to straddle the axis that is the magnetic pole boundary, and the 0 axis, which is the center of the magnetic pole, is oriented parallel or nearly parallel to the axis.
  • the magnet unit 5 12 is provided with recesses 5 12 on its inner peripheral surface side at each position corresponding to the axis. In this case, in the magnet unit 5 1 2, the length of the magnetic path differs between the side closer to the stator 5 20 (lower side in the figure) and the side farther (upper side in the figure).
  • the magnet magnetic path length is shorter on the closer side, and a concave portion 5 1 2 is formed at a position where the magnet magnetic path length is the shortest.
  • the magnet unit 5 1 2 considering that it is difficult for the magnet unit 5 1 2 to generate a sufficient magnetic flux in the place where the magnetic path length is short, the magnet should be deleted in the place where the magnetic flux is weak. There is.
  • the effective magnetic flux density value of the magnet increases as the length of the magnetic circuit passing through the interior of the magnet increases.
  • the permeance coefficient ⁇ and the effective magnetic flux density of the magnet are in a relationship that when one of them becomes higher, the other becomes higher.
  • the permeance coefficient ⁇ which is an index of the height of the effective magnetic flux density of the magnet.
  • the operating point is the intersection of the demagnetization curve and the permeance line corresponding to the shape of the magnet, and the magnetic flux density at that operating point is the effective magnetic flux density of the magnet.
  • the rotating electrical machine 500 of this embodiment has a structure in which the amount of iron in the stator 520 is reduced. ⁇ 2020/175 333 92 ⁇ (: 171? 2020 /006903
  • the concave portion 5 12 of the magnet unit 5 12 can be used as an air passage extending in the axial direction. Therefore, it is possible to improve the air cooling performance.
  • the stator 5 2 0 is the stator winding 5 2
  • FIG. 53 is an exploded perspective view of the stator winding 5 21 and the stator core 5 22.
  • the stator winding 5 2 1 is composed of a plurality of phase windings that are wound in a substantially tubular shape (annular shape), and is fixed inside the stator winding 5 2 1 as a base member in the radial direction. Child core 5 2 2 is assembled.
  • the stator winding 5 21 is configured as a three-phase phase winding by using phase windings of II phase, V phase, and phase.
  • Each winding wire is composed of inner and outer two-layer conductors 5 2 3 in the radial direction.
  • the stator 52 0 is characterized by having a slotless structure and a flat conductor structure of the stator winding 5 21 as in the case of the above-mentioned stator 50, and is shown in Figs. 8 to 16.
  • the stator 50 has the same or similar structure as the stator 50.
  • the stator core 52 2 has a cylindrical shape in which a plurality of magnetic steel sheets are laminated in the axial direction and has a predetermined thickness in the radial direction, like the stator core 52 described above.
  • the stator winding 5 21 is assembled on the outer side of the core 5 22 on the rotor 5 10 side in the radial direction.
  • the outer peripheral surface of the stator core 5 2 2 has a curved surface without unevenness, and when the stator winding 5 2 1 is assembled, the outer surface of the stator core 5 2 2 is Conductive wires 5 2 3 forming 2 1 are arranged side by side in the circumferential direction.
  • the stator core 5 22 functions as a back core.
  • the stator 520 may use any one of the following (8) to ( ⁇ ).
  • an inter-conductor wire member is provided between each conductor 523 in the circumferential direction, and as the inter-conductor member, the circumferential width dimension of the inter-conductor member in one magnetic pole is I,
  • the saturation magnetic flux density of the inter-conductor member is calculated by ⁇ 2020/175333 93 ⁇ (: 171? 2020 /006903
  • an inter-conductor wire member is provided between each conductor 523 in the circumferential direction, and a non-magnetic material is used as the inter-conductor member.
  • a rotary electric machine having a general tooth structure in which teeth (iron core) for establishing a magnetic path are provided between the conductor wire portions as the stator windings. Inductance is reduced compared to. Specifically, it is possible to reduce the inductance to 1/10 or less. In this case, since the impedance decreases as the inductance decreases, it is possible to increase the output power with respect to the input power in the rotary electric machine 500 and thus contribute to the torque increase. Further, it is possible to provide a rotating electric machine with a large output as compared with a rotating electric machine using an embedded magnet type rotor that outputs torque using the voltage of the impedance component (in other words, uses reluctance torque). Has become.
  • the stator winding 5 2 1, resin or Ranaru molding material with the stator core 5 2 2 are molded _ body by (insulating member), each conductor arranged in the circumferential direction A molding material is interposed between the 5 2 3 and the 5 3 2 3
  • the stator 520 of this embodiment corresponds to the configurations of (8) to ( ⁇ ) (Mitsumi) described above.
  • the end faces in the circumferential direction are in contact with each other, or are arranged close to each other with a minute gap therebetween, and in view of this configuration, the configuration of (0) above may be adopted.
  • the outer circumference of the stator core 5 2 2 is adjusted according to the direction of the conductor wire 5 2 3 in the axial direction, that is, according to the skew angle in the case of the stator winding 5 2 1 having a skew structure, for example.
  • the surface may be provided with a protrusion.
  • Figure 54 shows ⁇ 2020/175 333 94 ⁇ (: 171-1? 2020 /006903
  • FIG. 5 is a front view showing the stator winding 5 2 1 in a flattened state.
  • Fig. 5 4 (a) shows the conductors 5 2 3 located on the outer layer in the radial direction
  • Fig. 5 4 (b) shows Indicates the conductors 52 3 located in the inner layer in the radial direction.
  • the stator windings 5 2 1 are formed by distributed winding in an annular shape.
  • the conductive wire material is wound in two layers inside and outside in the radial direction, and the inner and outer conductors 5 2 3 are skewed in different directions (Fig. 5 4 ( 3 ), see Figure 54 (b)).
  • the conductors 5 2 3 are insulated from each other.
  • the conducting wire 5 23 is preferably configured as an assembly of a plurality of element wires 8 6 (see Fig. 13).
  • two conducting wires 523 having the same phase and the same energizing direction are arranged side by side in the circumferential direction.
  • stator winding 5 2 two conductors in the radial direction and 2 conductors in the circumferential direction (that is, a total of 4 conductors) constitute one conductor part of the same phase, and each conductor part has one magnetic pole. There is one inside each.
  • the radial thickness dimension is set to be smaller than the circumferential width dimension for one phase in one magnetic pole, whereby the stator winding 5 2 1 is formed into a flat conductor structure. It is desirable to do. Specifically, for example, in the stator winding 5 2 1, if two conductors in the radial direction and 4 conductors in the circumferential direction (that is, 8 conductors in total) 5 2 3 constitute one conductor part of the same phase. Good.
  • the width dimension in the circumferential direction may be larger than the thickness dimension in the radial direction. It is also possible to use the stator winding 5 1 shown in Fig. 12 as the stator winding 5 21. However, in this case, it is necessary to secure a space for housing the coil end of the stator winding in the rotor carrier 5 11.
  • the conductors 5 2 3 are arranged side by side in the circumferential direction by inclining at a predetermined angle in the coil side 5 2 5 that overlaps with the stator core 5 2 2 in the radial direction.
  • the coil ends 526 on both sides which are axially outside of the stator core 52, are turned inward (folded back) inward in the axial direction to form a continuous wire connection.
  • Figure 5 4 (a) shows the range of coil side 5 25 and the range of coil end 5 26, respectively.
  • stator winding 5 21 has a structure in which the inner and outer layers are switched in accordance with the reversal of the direction of the current in each of the conducting wires 5 23 that are continuous in the circumferential direction.
  • the stator winding 5 21 is provided with two types of skews having different skew angles in the end regions at both ends in the axial direction and the central region sandwiched by the end regions. .. That is, as shown in Fig. 55, in the conductive wire 5 23, the skew angle 0 3 1 in the central region is different from the skew angle 0 3 2 in the end region, and the skew angle 0 3 1 is the skew angle 0 3 1. It is smaller than 2. In the axial direction, the end region is defined in the range including the coil side 5 25.
  • the skew angle 0 3 1 and the skew angle 0 3 2 are the tilt angles at which the conductors 5 23 are tilted with respect to the axial direction.
  • the skew angle 0 3 1 in the central region is preferably set within an appropriate angle range for reducing the harmonic components of the magnetic flux generated by the energization of the stator winding 5 21.
  • the skew angle of each conductor 5 2 3 in the stator winding 5 2 1 is made different between the central region and the end region, and the skew angle 0 3 1 in the central region is set to the skew angle 0 3 2 in the end region.
  • the skew angle 03 1 within the angle range of "360° / 1 3 to 360° / 1 1" To set. That is, the skew angle 031 should be set within the range of 27.7° to 32.7°.
  • the skew angle 032 in the end area is equal to the skew angle 03 in the center area described above.
  • the angle is greater than 1.
  • the angle range of the skew angle 032 is “03 1 ⁇ 032 ⁇ 90° ”.
  • the 23 is preferably welded or bonded between the end portions of the respective conductive wires 523 or is preferably bent by bending.
  • one end of each coil end 526 on both sides in the axial direction (that is, one end in the axial direction) has the end of each winding wire connected to a power converter (imperter) via a bus bar or the like. It is configured to be electrically connected. Therefore, here, a configuration will be described in which the conductors are connected to each other in the coil end 526 while distinguishing between the coil end 526 on the bus bar connection side and the coil end 526 on the opposite side.
  • each wire 523 is welded at the coil end 526 on the bus bar connection side, and each wire 523 is connected to other means at the coil end 526 on the opposite side by welding. It will be constructed in a conducive manner. Means other than welding ⁇ 2020/175333 97 ⁇ (: 171-1? 2020/006903
  • each weld can be performed in a series of steps, improving work efficiency.
  • each conductor 5 2 3 is connected by a means other than welding, and at the coil end 5 2 6 on the opposite side, each conductor is connected.
  • 5 2 3 is constructed by welding.
  • the bus bar and coil end 5 2 6 should be prevented in order to avoid contact between the weld and the bus bar.
  • the coil ends 5 2 6 on both sides in the axial direction have the conductors 5
  • the conductor wire prepared before welding may have a short wire length, and the work efficiency can be improved by reducing the bending process.
  • the portion of the stator winding 5 21 where welding is performed can be reduced as much as possible, and it is possible to reduce the concern that insulation separation will occur in the welding process.
  • stator winding 5 21 can be changed as follows.
  • the skew angles of the central region and the end region may be the same.
  • the number of layers of the stator winding 5 2 1, 2 c n layer may be any, the stator ⁇ 5 2 1, 4-layer in addition to two layers, to 6 layers, etc. It is also possible.
  • FIGS. 56 and 57 are exploded cross-sectional views of the inverter unit 5300.
  • FIG. 57 each member shown in FIG. 56 is shown as two subassemblies.
  • the inverter unit 530 electrically connects the inverter housing 531, a plurality of electrical modules 532 assembled in the inverter housing 531, and each of the electrical modules 532. It has a busbar module 5 3 3.
  • the inverter housing 531 has a cylindrical outer wall member 541, and a cylindrical shape having an outer peripheral diameter smaller than that of the outer wall member 541, and is arranged radially inward of the outer wall member 541.
  • Inner wall member 5 42 and a boss forming member 5 4 3 fixed to one axial end of the inner wall member 5 4 2.
  • Each of these members 5 41 to 5 4 3 is preferably made of a conductive material, for example, carbon fiber reinforced plastic (.
  • the inverter housing 5 3 1 and the outer wall member 5 4 1 The inner wall member 5 4 2 and the inner wall member 5 4 2 are overlapped with each other in the radial direction, and the boss forming member 5 4 3 is attached to one end side of the inner wall member 5 4 2 in the axial direction. The state is shown in FIG.
  • a stator coil is placed on the outer side of the outer wall member 541 of the inverter housing 531. ⁇ 2020/175 333 99 ⁇ (: 171? 2020 /006903
  • stator 520 and the inverter unit 520 are fixed. As a result, the stator 520 and the inverter unit 520 are
  • the outer wall member 541 has a plurality of recesses 541 on its inner peripheral surface.
  • the inner wall member 5 4 2 has a plurality of recesses 5 4 2 on its outer peripheral surface. 5 4 2 13 and 5 4 2 0 are formed.
  • the outer wall member 5 4 1 and the inner wall member 5 4 2 are assembled to each other so that there is a space between them. 5 4 4 13 and 5 4 4 0 are formed (see Fig. 5 7).
  • the central hollow portion 5454 is used as a cooling water passage 5445 through which cooling water as a refrigerant flows.
  • the hollow part on both sides of the hollow part (cooling water passage 5445) is sandwiched. Sealing material 5 46 is contained in 544. This sealing material 5 4 6 allows the hollow part 5
  • the spillway (cooling water passage 5 445) is sealed.
  • the cooling water passage 5 4 5 will be described in detail later.
  • the boss forming member 543 includes a disc ring-shaped end plate 547 and the end plate 547.
  • Bosses 5 48 protruding from 5 47 toward the inside of the housing are provided.
  • the bosses 548 are provided in the shape of a hollow cylinder.
  • the boss forming member 543 is arranged such that the first end of the inner wall member 542 in the axial direction and the second end on the protruding side (that is, the vehicle inner side) of the rotating shaft 5011 facing it. It is fixed at the second end of the ends.
  • the base plate 450 is fixed to the inverter housing 531 (more specifically, the end plate 547 of the boss forming member 543). It is like this.
  • the inverter housing 5 3 1 is configured to have a double peripheral wall in the radial direction around the axis, and the outer peripheral wall of the double peripheral wall is the outer wall member 5 41 and the inner wall member 5 3. 42, and the inner peripheral wall is formed by the boss portion 5 48.
  • the outer peripheral wall formed by the outer wall member 5 4 1 and the inner wall member 5 4 2 is referred to as “outer peripheral wall ⁇ ZV A 1 ”
  • the inner peripheral wall formed by the boss portion 5 4 8 is referred to as “ Inner peripheral wall ⁇ ZV A 2”.
  • the inverter housing 5 3 1 has an outer peripheral wall 8 1 and an inner peripheral wall 8 2 ⁇ 2020/175333 100 units (:171? 2020 /006903
  • the electric module 5 3 2 is fixed to the inner peripheral surface of the inner wall member 5 4 2 by gluing, screwing or the like.
  • the inverter housing 5 3 1 corresponds to the “housing member” and the electric module 5 3 2 corresponds to the “electric component”.
  • a bearing 560 is housed inside the inner peripheral wall ⁇ ZV A 2 (boss 548), and the bearing 560 rotatably supports the rotary shaft 501.
  • the bearing 560 is a hub bearing that rotatably supports the wheel 400 at the center of the wheel.
  • the bearing 560 is composed of a rotor 520, a stator 520, and an inverter unit.
  • the rotating electric machine 500 of this embodiment it is possible to reduce the thickness of the magnet unit 5 12 in the rotor 5 10 according to the orientation, and the stator 5 20 has a slotless structure or a flat conductor structure. By adopting this, it is possible to reduce the radial thickness of the magnetic circuit part and expand the hollow space inside the magnetic circuit part in the radial direction. This makes it possible to arrange the magnetic circuit part, the inserter unit 530, and the bearing 560 in a laminated state in the radial direction.
  • the boss portion 548 is a bearing holding portion that holds the bearing 560 inside thereof.
  • the bearing 5600 is, for example, a radial ball bearing, and has a cylindrical inner ring 561 and a cylindrical shape having a diameter larger than that of the inner ring 561, and is arranged radially outside the inner ring 561.
  • the outer ring 5 62 is provided with a plurality of balls 5 63 arranged between the inner ring 5 61 and the outer ring 5 62.
  • the bearing 5 6 0 is fixed to the inverter housing 5 3 1 by assembling the outer ring 5 6 2 to the boss forming member 5 4 3 and the inner ring 5 6 1 is fixed to the rotating shaft 5 0 1.
  • Both 6 2 and balls 5 6 3 are made of a metal material such as carbon steel.
  • the inner ring 561 of the bearing 5600 has an axial portion that intersects with the tubular portion 561-3 that houses the rotary shaft 501 and one axial end of the tubular portion 561. It has a flange 5 6 1 swath extending in the (orthogonal) direction.
  • the flange 5 61 is the part that comes into contact with the end plate 5 14 of the rotor carrier 5 11 from the inside. ⁇ 2020/175333 101 ⁇ (:171? 2020/006903
  • the rotor carrier 5111 When the bearing 5600 is assembled, the rotor carrier 5111 is held while being sandwiched between the flange 5202 of the rotating shaft 501 and the flange 5611 of the inner ring 561. It has become so.
  • the flanges 50 2 of the rotating shaft 50 1 and the flanges 5 61 of the inner ring 5 61 have the same angle of intersection with the axial direction (both are right angles in this embodiment), The rotor carrier 5 11 is held in a state of being sandwiched between these flanges 50 2 and 5 61.
  • the angle of the rotor carrier 5 1 1 with respect to the rotating shaft 5 0 1 can be maintained at an appropriate angle, As a result, the parallelism of the magnet unit 5 1 2 with respect to the rotation axis 5 0 1 can be kept good. As a result, even in the configuration in which the rotor carrier 5 11 is expanded in the radial direction, it is possible to enhance resistance to vibration and the like.
  • the plurality of electric modules 5 3 2 is a module in which electric components such as a semiconductor switching element and a smoothing capacitor that compose the power converter are divided into a plurality of modules and the modules are individually modularized.
  • 532 includes a switch module 532 having a semiconductor switching element which is a power element and a capacitor module 532 having a smoothing capacitor.
  • the inner peripheral surface of the inner wall member 5 42 is provided with a plurality of spacers 5 49 having a flat surface for mounting the electric module 5 32. Fixed and the electrical module 5 3 2 is attached to its spacer 5 4 9.
  • the inner peripheral surface of the inner wall member 5 4 2 is a curved surface, while the mounting surface of the electric module 5 32 is a flat surface. A flat surface is formed on the surface side, and the electric module 5 32 is fixed on the flat surface.
  • the electric module 5 3 2 can be directly attached to the inner wall member 5 4 2 by making the mounting surface of the electric module 5 3 2 a curved surface. It is also possible to fix the electric module 5 3 2 to the inverter housing 5 3 1 without contacting the inner peripheral surface of the inner wall member 5 4 2.
  • the electric module 5 32 is fixed to the end plate 5 47 of the boss forming member 5 43.
  • the switch module 5 3 2 8 is fixed to the inner peripheral surface of the inner wall member 5 4 2 in contact with it, and the capacitor module 5 3 2 is fixed to the inner peripheral surface of the inner wall member 5 4 2 in a non-contact state. It is also possible to do so.
  • the outer peripheral wall 81 and the spacer 549 correspond to the "cylindrical portion".
  • the outer peripheral wall 1 corresponds to the "cylindrical portion”.
  • the outer peripheral wall 8 1 of the inverter housing 5 3 1 is formed with the cooling water passage 5 45 for circulating the cooling water as the refrigerant, and the cooling water passage 5 4 5 flowing through the cooling water passage 5 4 5 is formed.
  • the cooling water passages 5 4 5 are annularly installed along the outer peripheral wall 1, and the cooling water flowing in the cooling water passages 5 4 5 flows from the upstream side to the downstream side while passing through each electric module 5 3 2. Distribute to.
  • the cooling water passages 5 45 are provided in an annular shape so as to overlap the electric modules 5 32 in the radial direction and to surround the electric modules 5 32.
  • the inner wall member 5 42 has an inlet passage 5 for allowing cooling water to flow into the cooling water passage 5 45.
  • Fig. 58 shows the arrangement of the electric modules 532 in the inverter housing 531. Note that FIG. 58 is the same vertical cross-sectional view as FIG.
  • each electric module 5 32 is arranged in the circumferential direction such that the intervals between the electric modules in the circumferential direction are the first interval NT1 or the second interval NT2.
  • the second interval NT 2 is wider than the first interval NT 1.
  • the intervals NT 1 and NT 2 are, for example, the distances between the center positions of two electric modules 5 32 adjacent to each other in the circumferential direction.
  • the interval between the electric modules adjacent to each other in the circumferential direction without sandwiching the protrusion 573 is the first interval INT 1
  • the interval between the electric modules adjacent to each other in the circumferential direction with the protrusion 573 interposed therebetween is
  • the second interval is NT 2. That is, the interval between the electric modules adjacent to each other in the circumferential direction is expanded by the part _ , and the projecting part 5 73 is provided at the central part of the expanded interval (second interval INT 2 ), for example. ..
  • the intervals NT 1 and NT 2 are the arcs between the center positions of two electric modules 5 3 2 that are adjacent to each other in the circumferential direction on the same circle centered on the rotation axis 50 1. It may be a distance. Alternatively, the intervals between the electric modules in the circumferential direction may be defined by the angular intervals 0 i 1 and 0 i 2 about the rotation axis 5 0 1 (0 i 1 ⁇ 0 i 2) 0
  • the electric modules 5 3 2 are arranged so as to be separated from each other in the circumferential direction (non-contact state), but instead of this configuration, the electric modules 5 3 2 are arranged so as to be in contact with each other in the circumferential direction. Good.
  • a circulation path 5 75 for circulating cooling water is connected to the inlet path 5 71 and the outlet path 5 72.
  • the circulation route 5 7 5 consists of cooling water piping.
  • the circulation path 5 7 5 is provided with a pump 5 7 6 and a heat dissipation device 5 7 7, and the cooling water circulates through the cooling water passage 5 4 5 and the circulation path 5 7 5 as the pump 5 7 6 is driven.
  • Pump 5 7 6 is an electric pump.
  • the heat dissipation device 5 7 7 ⁇ 2020/175333 104 ⁇ (:171? 2020/006903
  • it is a radiator that releases heat of cooling water to the atmosphere.
  • the stator winding 5 21 is composed of a II-phase winding, a V-phase winding and a phase winding, and the inverter 600 is connected to the stator winding 5 21.
  • the inverter 600 is composed of a full bridge circuit having the same number of upper and lower arms as the number of phases, and a series connection body consisting of an upper arm switch 60 1 and a lower arm switch 60 2 is provided for each phase. There is. Each of these switches 60 1 and 60 2 is turned on/off by the drive circuit 60 3, and the winding of each phase is energized by the on/off.
  • Each of the switches 60 1 and 60 2 is composed of a semiconductor switching element such as a 1//1 0 3 den or a den.
  • the upper and lower arms of each phase are connected to a series connection of switches 60 1 and 60 2 in parallel, and a capacitor 6 for supplying charge that supplies the charges required for switching to each switch 60 1 and 60 2. 0 4 is connected.
  • the control device 600 is equipped with a microcomputer consisting of ⁇ II and various memories, and based on various detection information in the rotating electric machine 500 and requests for power running drive and power generation, each switch 60 Energization control is performed by turning on and off 1,600.
  • the control device 60 7 performs on/off control of each switch 60 1 and 60 2 by, for example, ⁇ /1 ⁇ /1 control at a predetermined switching frequency (carrier frequency) or rectangular wave control.
  • the control device 600 may be a built-in control device built in the rotary electric machine 500, or an external control device provided outside the rotary electric machine 500. ⁇ 2020/175333 105 ⁇ (: 171-1? 2020/006903
  • the electrical time constant is small because the inductance of the stator 520 is reduced, and the electrical time constant is small.
  • the capacitor for charge supply 60 4 is connected in parallel to the series connection body of the switches 60 1 and 60 2 of each phase to reduce the wiring inductance and increase the switching speed. Even with the configuration, appropriate surge countermeasures can be taken.
  • the high potential side terminal of the inverter 600 is connected to the positive terminal of the DC power source 600, and the low potential side terminal is connected to the negative terminal (ground) of the DC power source 600.
  • a smoothing capacitor 606 is connected in parallel with the DC power supply 605 to the high potential side terminal and the low potential side terminal of the inverter 600.
  • the switch module 5 3 2 8 is a heat generating component for each switch 6 0 1, 6 0.
  • FIG. 6 shows a concrete example of the configuration of the switch module 5 3 2 8.
  • the switch module 5 3 2 8 has a module case 6 1 1 as a housing case, and the switch 6 0 for one phase housed in the module case 6 1 1. It has 1, 6 02, a drive circuit 6 03, and a capacitor 6 04 for supplying a charge.
  • the drive circuit 60 3 is provided in the switch module 5 32 8 as a dedicated circuit or a circuit board.
  • the module case 6 11 is made of, for example, an insulating material such as resin, and its side surface is in contact with the inner peripheral surface of the inner wall member 5 4 2 of the inverter unit 5 30 while the outer peripheral wall 8 1 is formed. It is fixed. Molding material such as resin is filled in the module case 6 11.
  • the switches 6 0 1 and 6 0 2 and the drive circuit 6 0 3 the switches 6 0 1 and 6 0 2 and the capacitor ⁇ 2020/175333 106 ⁇ (:171? 2020/006903
  • the switch module 5 3 2 8 is attached to the outer peripheral wall 8 1 via a spacer 5 49, but the spacer 5 49 is not shown.
  • the order of arrangement of the switches 60 1, 60 2, the drive circuit 60 3 and the capacitor 60 4 is determined according to the cooling performance. Specifically, when comparing the amount of heat generation, the order is the switch 601, 602, the capacitor 604, and the drive circuit 603 in descending order, so according to the order of the amount of heat generation, The switches 60 1, 60 2, capacitors 60 4, and drive circuit 60 3 are arranged in this order from the side close to the outer peripheral wall 1.
  • the contact surface of the switch module 532 is preferably smaller than the contactable surface of the inner peripheral surface of the inner wall member 542.
  • the capacitor 6 0 is placed in a module case of the same shape and size as the switch module 5 3 2 8 Six are housed and configured.
  • the capacitor module 5 3 2 has an outer peripheral wall with the side surface of the module case 6 1 1 abutting on the inner peripheral surface of the inner wall member 5 4 2 of the inverter housing 5 3 1. It is fixed at 1.
  • the switch module 532 and capacitor module 532 do not necessarily have to be arranged concentrically inside the outer peripheral wall 81 of the inverter housing 531 in the radial direction.
  • the switch module 532 may be arranged radially inward of the capacitor module 532 or vice versa.
  • Each electric module 532 may have a configuration in which cooling water is drawn into the inside thereof and cooling is performed by the cooling water inside the module.
  • the water cooling structure of the switch module 5328 is described with reference to FIGS. 61 (a) and (b).
  • Fig. 6 1 (3) is a vertical cross-sectional view showing the cross-sectional structure of the switch module 5328 in the direction crossing the outer peripheral wall 81, and Fig. 61 ( ⁇ ) is shown in Fig. 61 (a).
  • -6 1 It is a cross-sectional view of the line.
  • the module case 61 Similar to 60, it has a module case 61 1, switches 601 and 602 for one phase, a drive circuit 603, and a capacitor 604, as well as a pair of pipe parts 62 1 and 622 and a cooler 623.
  • It has a cooling device.
  • the pair of piping parts 62 1 and 622 are the piping part 62 1 on the inflow side that allows the cooling water to flow from the cooling water passage 545 of the outer peripheral wall 1 to the cooler 623, and the cooling water passage 545 from the cooler 623. It consists of the piping part 6 22 on the outflow side that allows the cooling water to flow out.
  • the cooler 623 is provided according to the object to be cooled, and the cooling device uses one or a plurality of stages of coolers 623.
  • a two-stage cooler 623 is installed in the direction away from the cooling water passage 545, that is, in the radial direction of the inverter unit 53 ⁇ , in a state of being separated from each other. Cooling water is supplied to each of the coolers 623 through the pair of piping portions 62 1 and 622.
  • the cooler 623 has, for example, a hollow inside. However, inner fins may be provided inside the cooler 623.
  • the capacitor 604 is (1) arranged on the outer peripheral wall 81 side of the first-stage cooler 623, and the drive circuit 603 is (3) arranged on the side opposite to the outer peripheral wall of the second stage cooler 623.
  • the drive circuit 603 and the capacitor 604 may be arranged in reverse.
  • the switches 601 and 602 are located between the drive circuit 603 and the capacitor 604, the wiring 6 1 2 extending from the switches 601 and 602 toward the drive circuit 603 and the wiring 612 extending from the switches 601 and 602 toward the capacitor 604.
  • the wirings 6 1 2 have a relationship of extending in mutually opposite directions.
  • the pair of piping parts 62 1 and 622 are arranged side by side in the circumferential direction, that is, on the upstream side and the downstream side of the cooling water passage 545, and on the upstream side. Cooling water flows into the cooler 623 from the inflow side piping portion 621 located therein, and thereafter, cooling water flows out from the outflow side piping portion 622 located downstream.
  • the cooling water passage 545 is located at a position between the inflow side pipe portion 62 1 and the outflow side pipe portion 62 1 when viewed in the circumferential direction. It is preferable that a regulation unit 624 that regulates the flow of cooling water is provided.
  • the restriction unit 624 may be a blocking unit that blocks the cooling water passage 545, or a throttle unit that reduces the passage area of the cooling water passage 545.
  • FIG. 62 shows another cooling structure of the switch module 5328. Fig. 62
  • FIG. (3) is a vertical cross-sectional view showing the cross-sectional structure of the switch module 53,28 in the direction crossing the outer peripheral wall 81, and FIG. Is.
  • Figs. 62 ( 3 ) and (b) differs from the configuration of Figs. 61 (a) and (b) described above in that the arrangement of the pair of piping parts 62 1 and 622 in the cooling device is different. ⁇ 2020/175333 109 ⁇ (:171? 2020 /006903
  • a pair of piping parts 6 2 1 and 6 2 2 are arranged side by side in the axial direction.
  • the cooling water passages 5 45 are connected to the inflow side pipe section 6 21 and the outflow side pipe section 6 2 2. And the passages are separated from each other in the axial direction.
  • the location with the highest cooling performance in the module case 6 11 is different from that in Fig. 6 1 (a), and the outer peripheral wall
  • the cooling performance is highest in the area on the side, followed by the cooling performance in the order of the location on the side opposite to the outer peripheral wall of the cooler 6 2 3 and the location away from the cooler 6 23 3.
  • the switches 60 1 and 60 2 are located on the outer peripheral wall 1 side of both sides of the cooler 6 23 in the radial direction (both sides in the horizontal direction in the figure).
  • the condenser 60 4 is arranged at a position on the side opposite to the outer peripheral wall of the cooler 6 23, and the drive circuit 60 3 is arranged at a place apart from the cooler 6 23 3.
  • the switch module 532 a configuration in which the switches 6011 and 602 for one phase, the drive circuit 603, and the capacitor 604 are housed in the module case 611. It is also possible to change.
  • the configuration may be such that the switches 60 1 and 60 2 for one phase and one of the drive circuit 60 3 and the capacitor 60 4 are housed in the module case 6 11.
  • the drive circuit 60 3 is arranged on the outer peripheral wall 1 side of the first-stage cooler 6 23 3.
  • the switches 60 1 and 60 2 and the drive circuit 60 3 are integrated into a semiconductor module, and the semiconductor module and the capacitor 60 4 are combined. ⁇ 2020/175 333 1 10 ⁇ (:171? 2020 /006903
  • Fig. 63 ( ⁇ ) in the switch module 5328, at least one of the coolers 623 arranged on both sides of the switch 601, 602 is sandwiched. It is advisable to place a capacitor on the side opposite to the switches 60 1 and 60 2 in the device 6 23. That is, the condenser 60 4 is arranged on only one of the outer peripheral wall 81 side of the first-stage cooler 6 23 and the opposite peripheral wall side of the second-stage cooler 6 23, or both. A configuration in which the capacitor 604 is arranged is possible.
  • Only the switch module 5 3 2 8 out of 3 2 m is configured to draw cooling water into the module from the cooling water passage 5 4 5. However, the configuration may be changed so that the cooling water is drawn into the both modules 532, 532 from the cooling water passage 5445.
  • each electric module 5 3 2 it is also possible to cool each electric module 5 3 2 by directly applying cooling water to the outer surface of each electric module 5 32.
  • a cooling water is applied to the outer surface of the electric module 5 3 2 by embedding the electric module 5 32 in the outer peripheral wall 81.
  • a configuration in which a part of the electric module 5 32 is sunk into the cooling water passage 5 45, or the cooling water passage 5 45 is expanded in the radial direction compared to the configuration of FIG. It is conceivable that all of 3 2 are immersed in the cooling water passage 5 4 5.
  • providing cooling fins on the module case 6 1 1 (the immersed part of the module case 6 1 1) further improves the cooling performance. be able to.
  • the electric module 532 includes a switch module 532 and a capacitor module 532, and there is a difference in the amount of heat generated when the two are compared. Considering this point, it is possible to devise the arrangement of each electric module 5 3 2 in the inverter housing 5 3 1.
  • a pair of pipe parts 6 2 1 and 6 2 2 are arranged side by side in the axial direction as shown in Fig. 6 2 ( 3 ) and (b) above.
  • a pair of piping parts 6 2 1 and 6 2 2 may be arranged side by side in the circumferential direction.
  • FIG. 66 is a sectional view taken along line 6 6-66 of FIG. 49
  • FIG. 67 is a sectional view taken along line 6 7-6 7 of FIG.
  • FIG. 68 is a perspective view showing the bus bar module 5 33 as a single unit.
  • the configuration relating to the electrical connection of each electric module 5 3 2 and bus bar module 5 3 3 will be described by using these drawings together.
  • the inverter housing 5 3 1 has a protrusion 5 7 3 provided on the inner wall member 5 4 2 (that is, an inlet passage 5 7 1 leading to the cooling water passage 5 4 5 and Three switch modules 5 3 2 8 are arranged side by side in the circumferential direction at a position adjacent to the projecting portion 5 7 3) provided with the outlet passage 5 7 2 in the circumferential direction, and further adjacent to that, 6 Two capacitor modules 5 3 2 are arranged side by side in the circumferential direction.
  • the inside of the outer peripheral wall 8 1 is divided into 10 areas (that is, the number of modules + 1) in the circumferential direction, and the electric module 5 3 2 are arranged one by one, and a protrusion 5 73 is provided in the remaining one area.
  • Three switch modules _ le 5 3 2 eight is re-phase module _ Le, V-phase module, a ⁇ / ⁇ / phase module.
  • each electric module 5 3 2 (switch module 5 3 2 8 and capacitor module 5 3 2 M) has a module case 6 1 It has a plurality of module terminals 6 15 extending from 1.
  • the module terminals 6 1 5 are the electrical contacts for each electrical module 5 3 2. ⁇ 2020/175 333 1 12 ⁇ (: 171? 2020 /006903
  • the module terminals 6 15 are provided so as to extend in the axial direction, and more specifically, the module terminals 6 15 are arranged so as to extend from the module case 6 11 toward the inner side of the rotor carrier 5 11 (outside the vehicle). It is provided (see Figure 51).
  • the module terminals 6 15 of each electrical module 5 3 2 are connected to the busbar module 5 3 3, respectively.
  • the number of module terminals 6 1 5 is different between the switch module 5 3 2 8 and the capacitor module 5 3 2 8 and the switch module 5 3 2 8 is provided with 4 module terminals 6 1 5 and is a capacitor.
  • the module 5 3 2 is provided with two module terminals 6 1 5.
  • the bus bar module 533 is an annular portion 631 having an annular shape, and extends from the annular portion 631, and is connected to a power supply device or a semiconductor device 11 (electronic control device). ), etc., and three external connection terminals 6 3 2 that enable connection with external devices, and a winding wire connection terminal 6 3 3 connected to the end of the winding wire of each phase in the stator winding wire 5 2 1.
  • Busbar module 5 3 3 corresponds to "terminal module"
  • the annular portion 631 is arranged radially inside the outer peripheral wall 81 in the inverter housing 531 and on one side in the axial direction of each electric module 532.
  • the annular portion 631 has, for example, an annular main body formed of an insulating member such as resin, and a plurality of bus bars embedded therein.
  • the plurality of bus bars are connected to the module terminals 6 15 of each electric module 5 3 2, each external connection terminal 6 3 2, and each winding of the stator winding 5 21. The details will be described later.
  • the external connection terminals 6 3 2 are the high-potential-side power terminal 6 3 2 8 and the low-potential-side power terminal 6 3 2 which are connected to the power supply device, and the external potential (3 II 1
  • Each of these external connection terminals 6 3 2 (6 3 2 8 to 6 3 2 0) is arranged in a row in the circumferential direction and is radially inward of the annular portion 6 3 1. It is installed so as to extend in the axial direction at the bus bar module as shown in Fig. 51. ⁇ 2020/175 333 1 13 ⁇ (: 171? 2020 /006903
  • the end plate 5 47 of the boss forming member 54 3 is provided with a shed hole 5 47 3 and the shed hole 5 47.
  • a cylindrical grommet 6 3 5 is attached to 4 7 3 and an external connection terminal 6 3 2 is provided with the grommet 6 3 5 being put in a knot.
  • Grommet 6 35 also functions as a sealed connector.
  • the winding connection terminal 6 3 3 is a terminal connected to the winding end of each phase of the stator winding 5 21 and is provided so as to extend radially outward from the annular portion 6 3 1. ing.
  • Winding connection terminal 6 3 3 is a winding wire connection terminal 6 3 3 II, which is connected to the end of the II phase winding in the stator winding 5 2 1, and a winding wire that is connected to the end of the V phase winding. It has a connection terminal 6 3 3 V, and a winding wire connection terminal 6 3 3 ⁇ / that is connected to the connection at each end of the phase winding. It is said that each of these winding wire connection terminals 6 3 3 and a current sensor 6 3 4 for detecting the current (II phase current, V phase current, phase current) flowing in each phase winding wire are provided (Fig. 7 0 See).
  • the current sensor 6 34 may be arranged outside the electric module 5 32 and around each wire connecting terminal 6 33, or inside the electric module 5 32. It may be arranged.
  • FIG. 69 is a diagram showing each electric module 5 32 in a plan view, and schematically showing the electrical connection state between each electric module 5 32 and the bus bar module 5 33. ..
  • FIG. 70 is a diagram schematically showing the connection between the electric modules 5 3 2 and the bus bar module 5 3 3 when the electric modules 5 32 are arranged in an annular shape.
  • FIG. 6 9 shows a path for power transmission by the solid line indicates the path of a signal transmission system in _ point chain line.
  • Fig. 70 only the path for power transmission is shown.
  • the busbar module 5 3 3 is used as a busbar for power transmission, and is the first busbar module. ⁇ 2020/175 333 1 14 ⁇ (: 171? 2020 /006903
  • the first bus bar 6 4 1 is connected to the power terminal 6 3 2 8 on the high potential side
  • the second bus bar 6 4 2 is connected to the power terminal 6 3 2 on the low potential side
  • the three third busbars 6 4 3 are connected to the II phase winding connection terminal 6 3 3 II, the V phase winding connection terminal 6 3 3 V, and the phase winding connection terminal 6 3 3 ⁇ / Respectively connected to.
  • the winding connection terminal 6 33 and the third bus bar 6 43 are portions that easily generate heat due to the operation of the rotating electric machine 10. For this reason, a terminal block (not shown) is interposed between the winding connection terminal 6 33 and the third bus bar 6 43, and this terminal block is installed in the inverter housing 5 3 1 having the cooling water passages 5 45. You may make it abut.
  • the winding connection terminal 6 3 3 and the third bus bar 6 4 3 are bent in a crank shape so that the winding connection terminal 6 3 3 and the third bus bar 6 4 3 are connected to the inverter housing having the cooling water passages 5 4 5. It may be brought into contact with 5 31.
  • first busbar 6 4 1 and the second busbar 6 4 2 are shown as annular busbars, but these busbars 6 4 1 and 6 4 2 are always circles. It may be ring-shaped and unbroken, or may have a substantially ⁇ 3 character shape with a partial interruption in the circumferential direction. Also, each wire connection terminal 6 3 3 II, 6 3 3 V, 6 3 3 ⁇ / need only be individually connected to the switch module 5 3 2 corresponding to each phase, so the busbar module 5 3 3 It may be configured such that it is directly connected to each switch module 5 3 2 8 (actually module terminal 6 15) without going through.
  • each switch module 532 has four module terminals 615 consisting of a positive electrode side terminal, a negative electrode side terminal, a winding terminal and a signal terminal.
  • the positive terminal is connected to the first bus bar 641
  • the negative terminal is connected to the second bus bar 642
  • the winding wire terminal is connected to the third bus bar 643.
  • bus bar module 5 33 is used as a bus bar for the signal transmission system, and the fourth bar. ⁇ 2020/175 333 1 15 ⁇ (: 171? 2020/006903
  • each switch module 5 3 2 8 has a sub bar 644.
  • the signal terminal of each switch module 5 3 2 8 is connected to the fourth bus bar 6 4 4, and the 4 th bus bar 6 4 4 is connected to the signal terminal 6 3 20.
  • the control signal for each switch module 5 3 2 is configured to be input from the external node 11 via the signal terminal 6 320. That is, the switches 60 1 and 60 2 in each of the switch modules 5 3 2 8 are turned on/off by the control signal input via the signal terminal 6 3 2 0. Therefore, each switch module 5328 is connected to the signal terminal 6320 without passing through the control unit with a built-in rotary electric machine on the way. However, it is also possible to change this configuration so that a control device is built in the rotating electric machine and the control signal from the control device is input to each switch module 5328. Such a configuration is shown in Fig. 71.
  • the configuration of Fig. 71 includes a control board 651 on which a control device 652 is mounted, and the control device 652 is connected to each switch module 532.
  • the signal terminal 6 3 2 (3 is connected to the control device 6 52.
  • the control device 6 52 is, for example, an external control unit (3 II for power running or power generation from the upper control device).
  • a command signal relating to this is input, and the switches 601, 602 of each switch module 532 are turned on/off as appropriate based on the command signal.
  • the control board 651 may be arranged on the outer side of the vehicle (the inner side of the rotor carrier 511) than the busbar module 533. Alternatively, the control board 6 51 may be arranged between each electric module 5 32 and the end plate 5 47 of the boss forming member 5 43. The control board 6 51 may be arranged such that at least a part thereof overlaps with each electric module 5 32 in the axial direction.
  • each capacitor module 5 3 2 has two module terminals 6 1 5 consisting of a positive side terminal and a negative side terminal, and the positive side terminal is connected to the first bus bar 6 4 1.
  • the negative terminal is connected to the second bus bar 6 42.
  • the inverter housing 531 has a ⁇ 2020/175 333 1 16 ⁇ (: 171? 2020 /006903
  • a projection 573 having a cooling water inlet passage 571 and an outlet passage 572 is provided at a position juxtaposed with each electric module 532 in the direction, and a radial direction with respect to the projection 573 is provided.
  • the external connection terminal 6 3 2 is provided adjacent to.
  • the protruding portion 5 73 and the external connection terminal 6 32 are provided at the same angular position in the circumferential direction.
  • the external connection terminal 6 32 is provided at a position on the radially inner side of the protrusion 5 73.
  • the end plate 547 of the boss forming member 543 is provided with the waterway port 574 and the external connection terminal 632 arranged side by side in the radial direction. (See Figure 48).
  • the plurality of electric modules 5 3 2 and the protrusions 5 7 3 and the external connection terminals 6 3 2 are arranged side by side in the circumferential direction, thereby reducing the size of the inverter unit 5 30 and eventually the rotating electric machine. It is possible to reduce the size as 500.
  • Cooling piping is connected to the waterway port 574! I 2 is connected and the external connection terminal 6 3 2 is electrically connected. ! ⁇ I 1 is connected, and in that state, electric wiring! ⁇ I 1 and piping for cooling! ⁇ I 2 is stored in the storage duct 440.
  • the configuration is such that the three capacitor modules 5 32 are arranged side by side in the circumferential direction, this may be changed.
  • the configuration may be such that the three switch modules 5 32 8 are arranged side by side at the position farthest from the external connection terminal 6 32, that is, at the position on the opposite side of the rotary shaft 50 1. It is also possible to disperse each switch module 5 3 2 8 so that the capacitor modules 5 3 2 8 are arranged on both sides of each switch module 5 3 2 8.
  • each switch module 5 3 2 is arranged at the position farthest from the external connection terminal 6 3 2, that is, at the position on the opposite side of the rotary shaft 5 0 1. ⁇ 2020/175 333 1 17 ⁇ (:171? 2020 /006903
  • the inverter housing 531 is provided with a resolver 660 that detects an electrical angle 0 of the rotary electric machine 500.
  • the resolver 660 is an electromagnetic induction type sensor, and includes a resolver fixed on the rotating shaft 5 01 and a resolver stator 6 6 arranged opposite to the resolver rotor 6 61 in the radial direction. It has 2 and.
  • the resolver rotor 6 61 has a disk ring shape, and is provided coaxially with the rotary shaft 5 01 with the rotary shaft 5 01 being passed through.
  • the resolver stator 6 62 includes an annular stator core 6 63 and a stator coil 6 64 wound around a plurality of teeth formed on the stator core 6 63.
  • the stator coil 6 64 includes a 1-phase excitation coil and a 2-phase output coil.
  • the excitation coil of the stator coil 6 64 is excited by the sinusoidal excitation signal, and the magnetic flux generated in the excitation coil by the excitation signal interlinks the _ pairs of output coils.
  • the relative positional relationship between the exciting coil and the pair of output coils changes cyclically according to the rotation angle of the resolver rotor 6 61 (that is, the rotation angle of the rotation shaft 50 1 ).
  • the number of magnetic fluxes that link the output coil changes periodically.
  • the pair of output coils and the excitation coil are arranged so that the phases of the voltages generated in the pair of output coils are shifted from each other by /2.
  • the output voltage of each of the pair of output coils becomes a modulated wave in which the excitation signal is modulated by each of the modulation waves 311 and 030. More specifically, assuming that the excitation signal is “3 1 1 0 1 :”, the modulated waves are “3 I 11 0 X 3 I ⁇ 1:” and “0 0 3 0 X 3 1 ⁇ ⁇ ”, respectively. 1:”.
  • the resolver 660 has a resolver digital converter.
  • the resolver digital converter calculates the electrical angle 0 by detection based on the generated modulated wave and excitation signal. For example, resolver 660 is connected to signal terminal 6320. ⁇ 2020/175 333 1 18 ⁇ (: 171? 2020 /006903
  • the calculation result of the resolver digital converter is output to the external device via the signal terminal 6320. Further, when the rotating electric machine 500 has a built-in control device, the calculation result of the resolver digital converter is input to the control device.
  • the boss portion 5 4 8 of the boss forming member 5 4 3 forming the inverter housing 5 3 1 has a hollow cylindrical shape, and the boss portion 5 4 8 On the inner peripheral side, a protrusion 5 4 8 3 extending in a direction orthogonal to the axial direction is formed.
  • the resolver stator 6 62 is fixed by a screw or the like in a state where the resolver stator 6 62 is in axial contact with the projecting portion 5 48 3.
  • a bearing 5600 is provided on one side in the axial direction with the protruding portion 5448 being sandwiched, and a resolver 6600 is provided coaxially on the other side.
  • the hollow portion of the boss portion 548 is provided with a projecting portion 5448 on one side of the resolver 660 in the axial direction, and accommodates the resolver 660 on the other side.
  • a disc ring-shaped housing cover 6 6 6 is attached to close the space.
  • the housing cover 6666 is made of a conductive material such as carbon fiber reinforced plastic ( ⁇ [3 ⁇ 49)).
  • a hole 6 6 6 3 is formed in the center of the housing cover 6 6 6 6 to allow the rotary shaft 50 1 to pass through it.
  • a seal member 667 is provided in the hole 6663 to seal the gap between the hole 6166 and the outer peripheral surface of the rotary shaft 501.
  • the resolver accommodating space is sealed by the sealing material 667.
  • the sealing material 667 is preferably a sliding seal made of a resin material, for example.
  • the space in which the resolver 660 is housed is surrounded by the boss portion 548 having an annular shape in the boss forming member 543, and the axial direction is defined by the bearing 560 and the housing cover 666. It is a sandwiched space, and the circumference of the resolver 660 is surrounded by a conductive material. As a result, the influence of electromagnetic noise on the resolver 660 can be suppressed.
  • the inverter housing 5 3 1 has a double outer periphery. ⁇ 2020/175 333 1 19 ⁇ (:171? 2020 /006903
  • stator 5 20 is arranged on the outer side of the double peripheral wall (outer side of the outer peripheral wall 81).
  • the electric module 5 32 is arranged between the two (8 1, ⁇ ZV A 2) and the resolver 6 60 is arranged inside the double peripheral wall (inside the inner peripheral wall 8 2 ). Since the inverter housing 5 3 1 is a conductive member, the stator 5 20 and the resolver 6 60 are arranged with a conductive partition wall (particularly a double conductive partition wall in this embodiment) separated from each other. Thus, the occurrence of magnetic interference between the stator 520 side (magnetic circuit side) and the resolver 660 can be appropriately suppressed.
  • the rotor carrier 511 is open on one side in the axial direction, and the open end portion thereof has a substantially disc-shaped rotor cover 6 7. 0 is installed.
  • the rotor cover 670 may be fixed to the rotor carrier 511 by any joining method such as welding, adhesion, and screw fixing. It is even more desirable if the rotor cover 670 has a position that is dimensioned to be smaller than the inner circumference of the rotor carrier 511 so as to prevent axial movement of the magnet unit 512. Good.
  • the outer diameter of the rotor cover 6 70 matches that of the rotor carrier 5 11 and the inner diameter is slightly larger than that of the inverter housing 5 31. ing.
  • the outer diameter of the inverter housing 5 3 1 and the inner diameter of the stator 5 20 are the same.
  • stator 5 2 is located radially outside the inverter housing 5 3 1.
  • a rotor cover 670 is attached so as to surround the protruding portion of the inverter housing 531.
  • seal material 671 is installed between the inner peripheral end surface of the rotor cover 670 and the outer peripheral surface of the inverter housing 531 to seal the gap between them.
  • the seal member 671 seals the housing space for the magnet unit 512 and the stator 520.
  • the sealing material 6 71 may be a sliding seal made of, for example, a resin material.
  • the outer peripheral wall 8 1 of the inverter housing 5 3 1 is arranged radially inside the magnetic circuit portion consisting of the magnet unit 5 1 2 and the stator winding 5 2 1. Cooling water passages 5 45 were formed in the outer peripheral wall 1. Further, a plurality of electric modules 5 32 are arranged radially inside the outer peripheral wall 1 along the outer peripheral wall 1 in the circumferential direction. As a result, the magnetic circuit section, cooling water passage 5445, and power converter can be arranged so as to be stacked in the radial direction of the rotary electric machine 500, and the efficiency can be reduced while reducing the size in the axial direction. Good parts placement is possible. In addition, it is possible to efficiently cool the plurality of electric modules 5 32 forming the power converter. As a result, in the rotary electric machine 500, high efficiency and downsizing can be realized.
  • coolers 623 are arranged on both sides of the switches 6011 and 6022, respectively, and coolers 62 on both sides of the switches 6011 and 60202 are arranged.
  • the condenser 60 4 is arranged on the opposite side of the switches 60 1 and 60 2.
  • the coolers 623 are arranged on both sides of the switches 601 and 602, respectively, and the coolers 62 on both sides of the switches 601 and 6022 are arranged.
  • the drive circuit 60 3 is arranged on the side opposite to the above, and the condenser 60 4 is arranged on the opposite side to the switches 60 1 and 60 2 in the other cooler 6 23.
  • the cooling performance for the switches 60 1, 60 2 can be improved, and at the same time, the cooling performance for the drive circuit 60 3 and the capacitor 60 4 can also be improved.
  • cooling water is introduced from the cooling water passage 5445 into the module, and the cooling water is used to cool the semiconductor switching elements and the like.
  • the switch module 5328 is cooled by heat exchange by the cooling water inside the module in addition to the heat exchange by the cooling water at the outer peripheral wall 81.
  • the cooling effect of the switch module 5 3 2 8 can be enhanced.
  • the switch module 5 3 2 8 is close to the inlet passage 5 7 1 of the cooling water passage 5 4 5.
  • the capacitor module 532 is arranged on the downstream side of the switch module 5328. In this case, assuming that the cooling water flowing through the cooling water passage 5 445 has a lower temperature on the upstream side, it is possible to realize a configuration in which the switch module 5 32 8 is preferentially cooled.
  • the distance between the electric modules adjacent to each other in the circumferential direction is partially expanded, and the inlet passages 5 7 1 and the outlet passages 5 7 are provided at the expanded gaps (the second gap 1 ⁇ 1 2).
  • the structure is such that the protruding portion 5 73 having 2 is provided.
  • the inlet passage 5 7 1 and the outlet passage 5 72 of the cooling water passage 5 45 can be preferably formed in the radially inner portion of the outer peripheral wall 81. That is, in order to improve the cooling performance, it is necessary to secure the flow rate of the refrigerant, and for that purpose, it is conceivable to increase the opening area of the inlet passage 5 71 and the outlet passage 5 72.
  • the inlet passage 5 7 1 and the outlet passage 5 7 2 having a desired size are preferably formed. be able to. ⁇ 2020/175333 122 ⁇ (: 171-1? 2020 /006903
  • the external connection terminals 6 3 2 of the bus bar module 5 3 3 are arranged at positions radially aligned with the protruding portion 5 7 3 on the radially inner side of the outer peripheral wall 1.
  • the external connection terminals 6 32 are placed together with the protrusions 5 7 3 at the portion where the gap between the electric modules adjacent to each other in the circumferential direction is widened (the portion corresponding to the second interval I! ⁇ ! I decided to do it.
  • the external connection terminals 6 32 can be preferably arranged while avoiding interference with the electric modules 5 32.
  • the stator 520 is fixed to the outer side of the outer peripheral wall 81 in the radial direction, and the plurality of electric modules 532 are arranged on the inner side in the radial direction.
  • the heat of the stator 5 20 is transferred from the outer side in the radial direction to the outer peripheral wall ⁇ ZV A 1, and the heat of the electric module 5 3 2 is transferred from the inner side in the radial direction.
  • the stator 520 and the electric module 532 can be cooled at the same time by the cooling water flowing through the cooling water passage 545, and the heat of the heat generating member in the rotating electric machine 550 can be efficiently released. can do.
  • the radially inner electric module 5 3 2 and the radially outer stator winding 5 2 1 with the outer peripheral wall 1 sandwiched therebetween are electrically connected to each other by the winding wire connection terminal 6 3 3 of the bus bar module 5 3 3. It is configured to connect. Further, in this case, the winding connection terminal 6 33 is provided at a position axially separated from the cooling water passage 5 45. As a result, even if the cooling water passages 5 45 are formed in an annular shape on the outer peripheral wall 1, that is, the inside and outside of the outer peripheral wall 81 are divided by the cooling water passages 5 45, the electric module 5 3 2 and the stator winding 5 2 1 can be suitably connected.
  • the conductors 5 2 3 are made flat and thin to suppress the torque decrease. In this case, even if the outer diameter of the rotary electric machine 500 is the same, it is possible to expand the radially inner region of the magnetic circuit unit by thinning the stator 520. ⁇ 2020/175333 123 ⁇ (:171? 2020 /006903
  • the outer peripheral wall 1 having the cooling water passages 5 45 and the plurality of electric modules 5 32 provided on the radially inner side of the outer peripheral wall 1 can be suitably arranged.
  • the magnet magnetic flux gathers on the shaft side in the magnet unit 5 12 to strengthen the magnet magnetic flux in the shaft, and the torque can be increased accordingly. ..
  • the radial thickness of the magnet unit 5 1 2 can be reduced (thinned), and the radial inner area of the magnetic circuit can be expanded.
  • the outer peripheral wall 1 having the cooling water passages 5 45 and the plurality of electric modules 5 32 provided on the radially inner side of the outer peripheral wall 1 can be suitably arranged.
  • the magnetic circuit portion, the outer peripheral wall 81, and the plurality of electric modules 532, but also the bearing 5600 and the resolver 660 can be similarly preferably arranged in the radial direction.
  • a wheel 400 that uses the rotary electric machine 500 as an in-wheel motor is
  • the electric module 532 and the busbar module 533 are arranged radially inward of the outer peripheral wall 81 of the inverter unit 5300, and the outer peripheral wall 1 is separated in the radial direction.
  • An electric module 532, a bus bar module 5333, and a stator 52O are arranged inside and outside the electric motor, respectively.
  • the position of the bus bar module 533 with respect to the electric module 532 can be set arbitrarily.
  • the position to guide the winding connection wire (for example, the winding connection terminal 633) used for the connection. Can be set arbitrarily.
  • the ⁇ (X 2) busbar module 533 is located inside the electric module 532 in the axial direction, that is, on the front side of the rotor carrier 5 11 side.
  • ⁇ ( ⁇ 0 is a vertical cross-sectional view showing a simplified structure of the rotary electric machine 500, and the same reference numerals are given to the structures already described in the figure.
  • the winding connecting wire 637 is a stator winding. It is electrical wiring that connects each winding wire of the wire 521 and the bus bar module 533, and for example, the winding connection terminal 633 described above corresponds to this.
  • All of the modules 5 3 3 are connected outside the vehicle (the inner side of the rotor carrier 5 11 ). Note that this corresponds to the configuration shown in FIG.
  • the cooling water passage 5445 can be provided in the outer peripheral wall 81 without fear of interference with the winding connection wire 637. Further, the winding wire connecting wire 6 3 7 connecting the stator winding 5 21 and the bus bar module 5 3 3 can be easily realized.
  • the cooling water passages 5 45 can be provided in the outer peripheral wall 1 without fear of interference with the winding connection line 6 37.
  • the bus bar module 5 3 3 is arranged inside the vehicle (front side of the rotor carrier 5 1 1), so that a fan motor or the like is temporarily placed. It is conceivable that the wiring will be easier if an electric component of the busbar module 5 3 3 is placed closer to the resolver 6 6 0 arranged inside the vehicle than the bearing. It will be possible, and wiring to the resolver 660 will be easier.
  • a modified example of the mounting structure of the resolver rotor 6 61 will be described below. That is, the rotating shaft 501, the rotor carrier 511 and the inner ring 561 of the bearing 5600 are rotating bodies that rotate integrally, and the deformation of the mounting structure of the resolver rotor 661 with respect to the rotating body. An example will be described below.
  • Figs. 73 (3) to ( ⁇ ) are configuration diagrams showing an example of the mounting structure of the resolver rotor 6 61 to the rotating body.
  • the resolver 660 is surrounded by the rotor carrier 5 11 and the inverter housing 5 3 1 and is provided in a closed space protected from water and mud from the outside.
  • the bearing 560 has the same configuration as that of Fig. 49.
  • the bearing 5 60 has a different configuration from that of Fig. 49 and is located at a position away from the end plate 5 1 4 of the rotor carrier 5 11. It is arranged.
  • resolver stator 6 62 two force stations are illustrated as the mounting locations of the resolver rotor 6 61.
  • the resolver stator 6 62 is not shown, for example, the boss portion 5 48 of the boss forming member 5 4 3 is extended to the outer peripheral side of the resolver rotor 6 61 or its vicinity, and the boss portion 5 4 8 is formed. It suffices that the resolver stator 6 62 be fixed to the.
  • the resolver rotor 6 61 is provided on the axial end surface of the flange 5 6 1 13 of the inner ring 5 61, or on the axial end surface of the tubular portion 5 6 1 3 of the inner ring 5 61. Has been.
  • the resolver rotor 6 61 is provided on the inner surface of the end plate 5 14 in the rotor carrier 5 11.
  • the resolver rotor 6 1 includes the rotor carrier 6 1 1. It is provided on the outer peripheral surface of the cylindrical portion 5 1 5 1. In the latter case, the resolver rotor 6 61 is arranged between the end plate 5 14 of the rotor carrier 5 11 and the bearing 5 6 0.
  • the resolver rotor 6 61 is attached to the rotating shaft 50 1. Specifically, the resolver rotor 6 61 is provided between the end plate 5 1 4 of the rotor carrier 5 1 1 and the bearing 5 6 0 in the rotary shaft 5 0 1, or the rotary shaft 5 6 1. It is arranged on the opposite side of the rotor carrier 5 1 1 with the bearing 5 6 0 sandwiched in 0 1.
  • FIG. Fig. 7 4 ( 3 ) and Fig. 7 4 ( ⁇ ) are vertical cross-sectional views showing a simplified structure of the rotating electric machine 500, in which the same reference numerals are assigned to the structures already described. There is. Note that the structure described in FIG. 4 (a) substantially corresponds to the configuration described in FIG. 4 9 such that the configuration shown in FIG. 4 (spoon) is 7 4 Configuring (3) _ This corresponds to the configuration in which the parts are changed.
  • the rotor cover 6 70 fixed to the open end of the rotor carrier 5 11 surrounds the outer peripheral wall 8 1 of the inverter housing 5 3 1. It is provided in. That is, the end surface on the inner diameter side of the rotor cover 670 is opposed to the outer peripheral surface of the outer peripheral wall 81, and the seal material 671 is provided between them.
  • a housing cover 666 is attached to the hollow part of the boss 548 of the inverter housing 531, and a sealing material 667 is provided between the housing cover 666 and the rotary shaft 501.
  • the external connection terminals 6 3 2 that compose the bus bar module 5 3 3 penetrate the inverter housing 5 3 1 and extend to the inside of the vehicle (lower side in the figure). ⁇ 0 2020/175 333 128 (: 17 2020 /006903
  • the inverter housing 5 3 1 is formed with an inlet passage 5 7 1 and an outlet passage 5 7 2 which communicate with the cooling water passage 5 45, and the inlet passage 5 7 1 and the outlet passage 5 7 A waterway port 5 74 including the passage end of 7 2 is formed.
  • the boss forming member 54 3 is formed with an annular convex portion 6 81 extending to the protruding side (inside the vehicle) of the rotating shaft 5 01, and the rotor cover 6 7 0 It is provided so as to surround the convex portion 681 of the housing 531. That is, the end surface on the inner diameter side of the rotor cover 670 is opposed to the outer peripheral surface of the convex portion 681, and the seal material 671 is provided between them.
  • the external connection terminals 6 3 2 that compose the bus bar module 5 3 3 penetrate the boss portion 5 4 8 of the inverter housing 5 3 1 and extend into the hollow area of the boss portion 5 4 8 and the housing cover 6 6 2. It passes through 6 and extends to the inside of the vehicle (lower side in the figure).
  • the inverter housing 531 is formed with an inlet passage 571 and an outlet passage 572 communicating with the cooling water passage 5445, and these inlet passage 571 and the outlet passage 571 are formed.
  • 7 2 extends in the hollow region of the boss portion 5 48 and extends to the inside of the vehicle (lower side in the figure) with respect to the housing cover 6 6 6 via the relay pipe 6 82.
  • the pipe portion extending from the housing cover 6 66 to the inside of the vehicle is the waterway port 5 74.
  • the rotor carrier 5 1 1 and the rotor cover 6 7 0 can be rotated while maintaining the internal space tightness.
  • the child carrier 5 11 and the rotor cover 6 70 can be suitably rotated with respect to the inverter housing 5 3 1.
  • the inner diameter of the rotor cover 670 is smaller than that of the configuration of Fig. 74 (a). Therefore, the inverter housing 5 3 1 and the rotor cover 6 70 are doubly provided in the axial direction at a position on the vehicle inner side of the electric module 5 32, which is a concern in the electric module 5 32. The inconvenience caused by the generated electromagnetic noise can be suppressed. Also ⁇ 0 2020/175 333 129 ⁇ (: 17 2020 /006903
  • Figure 75 shows a modification of the stator winding 5 21.
  • the stator winding 5 21 uses a conductor wire having a rectangular cross section, and is wound by wave winding with the long side of the conductor wire extending in the circumferential direction. It has been turned.
  • the conductors 5 23 of each phase which are coil sides in the stator winding 5 21, are arranged at a predetermined pitch interval for each phase and are connected to each other at the coil ends.
  • the conductor wires 52 3 which are adjacent to each other in the circumferential direction, have their end faces in the circumferential direction abut each other, or are arranged in close proximity to each other with a minute gap.
  • the conductor wire is bent in the radial direction for each phase at the coil end. More specifically, the stator winding 5 2 1 (conductor wire) is bent inward in the radial direction at different positions for each phase in the axial direction, which results in winding of each phase of II phase, V phase, and phase. Mutual interference in the lines is avoided.
  • the conductor wires are bent inward at a right angle in the radial direction for each phase, with each phase wire differing by the thickness of the conductor wire. It is preferable that the length dimension between both ends in the axial direction of the conductors 5 2 3 arranged in the circumferential direction be the same for each conductor 5 2 3.
  • stator core 5 2 2 When assembling the stator core 5 2 2 to the stator winding 5 2 1 to manufacture the stator 5 2 0, part of the annular shape of the stator winding 5 2 1 is not connected.
  • the stator windings 5 2 1 in the shape of a circle, and after assembling the stator core 5 2 2 on the inner circumference side of the stator winding 5 2 1, disconnect it. It is advisable to connect the parts to each other and form the stator winding 5 2 1 in an annular shape.
  • stator core 5 22 is divided into a plurality (for example, three or more) in the circumferential direction, and the stator core 5 , Split into multiple ⁇ 2020/175333 130 ⁇ (: 171-1? 2020 /006903
  • FIG. 76 is a perspective view showing the entire rotating electric machine 700
  • FIG. 77 is a vertical cross-sectional view of the rotating electric machine 700
  • FIG. 78 shows the components of the rotating electric machine 700. It is a disassembled disassembled sectional view.
  • the rotary electric machine 700 is an outer rotor type surface magnet type rotary electric machine.
  • the rotating electric machine 700 is roughly classified into a rotating electric machine main body having a rotor 710, a stator 730, an inner unit 770 and a bus bar module 810, and a rotating electric machine main body surrounding the rotating electric machine main body. It is provided with a housing 831 and a cover 832 provided. All of these members are coaxially arranged with respect to a rotary shaft 7 01 provided integrally with the rotor 7 100, and the rotary electric machine 70 0 is configured by being assembled in the axial direction in a predetermined order. Has been done.
  • the rotor 7 10 is cantilevered by a pair of bearings 7 9 1 and 7 9 2 provided inside the inner unit 7 70 in the radial direction, and is rotatable in that state.
  • the rotating shaft 7 01 is integrally provided with a connecting shaft 7 05 which is fixed to an axle or a wheel of a vehicle.
  • the rotor 710 and the stator 7300 each have a cylindrical shape, and are arranged to face each other in the radial direction with an air gap therebetween.
  • the rotor 7 1 0 rotates integrally with the rotating shaft 7 0 1, so that the rotor 7 1 0 rotates radially outside the stator 7 3 0.
  • the rotor 710 is composed of a substantially cylindrical rotor carrier 711 and an annular magnet unit 711 fixed to the rotor carrier 711. And have.
  • the rotor carrier 7 11 has an end plate portion 7 13 and a tubular portion 7 14 extending axially from the outer peripheral portion of the end plate portion 7 13.
  • a through hole 7 1 3 3 is formed in the end plate portion 7 1 3, and the end plate portion 7 1 3 3 is tightened with bolts and other fasteners 7 1 5 in a state where the through hole 7 1 3 3 is kneaded.
  • the rotary shaft 701 is fixed to.
  • the axis of rotation 7 01 is axially aligned with the part where the rotor carrier 7 11 is fixed. ⁇ 2020/175333 131 ⁇ (: 171-1? 2020/006903
  • the magnet unit 7 1 2 includes a cylindrical magnet holder 7 2 1 and the magnet holder 7 2 1.
  • the magnet holder 7 2 1 has the same length dimension as the magnet 7 2 2 in the axial direction.
  • the magnet 7 22 is provided in the magnet holder 7 21 so as to be surrounded from the outside in the radial direction.
  • the magnet holder 7 21 and the magnet 7 22 are fixed with one end of the axial ends contacting the rotor carrier 7 11 and the other end contacting the end plate 7 23. It is fixed at.
  • the rotor carrier 7 1 1, the magnet holder 7 2 1 and the end plate 7 2 3 are all made of aluminum or a non-magnetic stainless steel (for example, 3 11 3 3 0 4) which is a non-magnetic material having a smaller specific gravity than iron. ).
  • Each of these members is preferably made of a light metal such as aluminum, but instead of this, it may be made of a synthetic resin.
  • Each of these members may be joined by adhesion or welding.
  • the magnet holder 721 may be configured by stacking a plurality of non-magnetic core sheets in the axial direction. The core sheet is formed by punching, for example, in the shape of an annular plate.
  • the magnet holder 7 21 may have a helical core structure.
  • the magnet holder 7 21 with a helical core structure uses a strip-shaped core sheet, and the core sheet is formed into an annular wrap and is laminated in the axial direction. Is configured.
  • the end plate 7 23 is made of a non-magnetic material having a larger specific gravity than the magnet holder 7 21. As a result, when the end plate 7 23 is cut in the manufacturing process of the rotary electric machine 700, the end plate 7 is balanced when the rotor 7 10 is balanced around the axis of the rotary shaft 7 01. The amount of shaving can be reduced by 23. Therefore, the balancing work can be facilitated. ⁇ 2020/175333 132 ⁇ (:171? 2020 /006903
  • Fig. 80 is a partial cross-sectional view showing an enlarged cross-sectional structure of the magnet unit 7 1 2.
  • the easy axis of magnetization of the magnet 72 2 is indicated by an arrow.
  • the magnets 7 22 are arranged side by side so that the polarities thereof alternate along the circumferential direction of the rotor 7 10.
  • the magnet 72 2 has a plurality of magnetic poles in the circumferential direction.
  • the magnet 72 2 is a polar-anisotropic permanent magnet, has an intrinsic coercive force of at least 400 [1 ⁇ 8/ ⁇ 1] and a residual magnetic flux density of at least 1.0 [D]. It is composed of a sintered neodymium magnet
  • the magnet 7 22 2 is fixed to the inner peripheral surface of the magnet holder 7 21 by, for example, bonding.
  • the magnets 72 are provided with two magnetic poles adjacent to each other in the circumferential direction, with one axis being the center of each magnetic pole.
  • the magnet 722 has one magnetic pole as one magnet, and the center in the circumferential direction is the axis.
  • the radially inner peripheral surface of the magnet 7 22 is a magnetic flux transfer surface 7 2 4 on which magnetic flux is transferred.
  • the direction of the easy axis of magnetization is different on the axis side (portion closer to the 1st axis) and on the 9th axis side (portion closer to the axis).
  • the orientations are parallel, and on the axis side, the direction of the easy magnetization axis is orthogonal to the axis.
  • an arc-shaped magnet magnetic path is formed along the direction of the easy axis of magnetization.
  • the magnet 72 is oriented so that the easy axis of magnetization is closer to the axis, which is the center of the magnetic pole, than the axis, which is the magnetic pole boundary.
  • the magnets 7 22 arranged in the circumferential direction enhance the magnetic flux of the magnets in the axis.
  • the magnet 72 2 may have a structure having the center in the circumferential direction as the axis, instead of the structure having the center in the circumferential direction as the axis. Further, as the magnets 72, instead of using the same number of magnets as the number of magnetic poles, a magnet having an annular shape may be used.
  • the magnet 7 2 2 preferably has the following configuration. Magnet 7 2 2 ⁇ 2020/175333 133 ⁇ (: 171-1? 2020 /006903
  • the thickness in the direction is less than or equal to the arc length of the magnetic flux transfer surface 7 24 between the shafts, and specifically, is smaller than the above arc length. As a result, the thickness of the magnet 72 2 can be reduced, and the amount of the magnet 7 22 used can be reduced.
  • the intersection of the 9 axis and the magnetic flux transfer surface 7 2 4 is the center point ⁇ , and the radial thickness of the magnet 7 2 2 is the radius.
  • the circle is the orientation circle X that defines the easy axis of magnetization of the magnet 7 22, the magnet 7 22 is configured to include a quarter circle of the orientation circle X.
  • the magnet 7 22 is provided with an arc-shaped easy axis of magnetization so as to cross the axis, and of the easy axis of magnetization, the circumferential surface on the side opposite to the magnetic flux transfer surface 7 24 is located in the radial direction.
  • the strongest magnetic flux is generated by the easy magnetization axis passing through the intersection with the axis, that is, the easy magnetization axis passing through the orientation circle X.
  • the magnet 7 22 is configured to include a quarter circle of the orientation circle X, the length of the magnet magnetic path passing through the axis must be secured as the length specified by the orientation circle X. It is possible to generate magnet magnetic flux
  • the thickness dimension in the radial direction of the magnet 7 22 is smaller than the arc length of the magnetic flux transfer surface 7 2 4 between the 19 axes, it is radially outside the magnet 7 22. That is, there is a fear of magnetic flux leakage to the side opposite to the stator.
  • the magnet holder 7 21 is made of a non-magnetic material, the influence of magnetic flux leakage can be reduced.
  • the magnet 7 22 has a recess 7 25 formed on the outer peripheral surface on the radial outer side within a predetermined range including the shaft, and the inner peripheral surface on the radial inner side includes the shaft. Recesses 7 26 are formed within a certain range.
  • the magnet magnetic path becomes shorter near the axis on the outer peripheral surface of the magnet 7 22 and near the 9 axis on the inner peripheral surface of the magnet 7 22.
  • the magnet magnetic path becomes shorter. Therefore, considering that it is difficult to generate a sufficient magnetic flux in the magnet 72 2 where the magnetic path length is short, the magnet is deleted in the place where the magnetic flux is weak.
  • the magnet holder 7 2 1 is provided on the outer side in the radial direction of each magnet 7 2 2 arranged in the circumferential direction. ⁇ 2020/175333 134 ⁇ (: 171? 2020 /006903
  • the magnet holder 7 21 may be provided in a range including a space between the magnets 7 22 in the circumferential direction and a radially inner side of the magnets 7 22. That is, the magnet holder 7 21 may be provided so as to surround the magnet 7 22.
  • the magnet holder 7 2 1 has a radially outer portion and a radially inner portion of each magnet 7 2 2, the radially outer portion has higher strength than the radially inner portion. Good.
  • the magnet holder 7 2 1 has a convex portion 7 2 7 that enters the concave portion 7 2 5 of the magnet 7 2 2.
  • the position shift of the magnet 7 22 in the circumferential direction is suppressed by the engagement of the concave portion 7 25 of the magnet 7 22 and the convex portion 7 27 of the magnet holder 7 21. That is, the convex portion 7 27 of the magnet holder 7 21 functions as a rotation stopping portion for the magnet 7 22 2.
  • the concave portion 7 of the magnet 7 2 2 should be located in that portion. There may be provided a convex portion that enters into the inside of 26.
  • the magnet holder 7 2 is provided between the magnets 7 22 adjacent to each other in the circumferential direction.
  • the present invention is not limited to this, and the magnet holder 7 21 may not be provided.
  • the magnets 72 2 adjacent to each other in the circumferential direction come into contact with each other.
  • the stator 730 has a stator winding 731 and a stator core 732.
  • the stator core 7 32 has a cylindrical shape in which a plurality of core sheets made of magnetic steel sheets, which are magnetic materials, are laminated in the axial direction and has a predetermined thickness in the radial direction. In, the stator winding 7 31 is assembled on the radially outer side of the rotor 7 10 side. The outer peripheral surface of the stator core 7 32 has a curved surface without unevenness. The stator core 7 32 functions as a back yoke. Stator core ⁇ 2020/175333 135 ⁇ (: 171-1? 2020/006903
  • stator core 7 32 is configured by stacking a plurality of core sheets, which are punched and formed, for example, in an annular plate shape, in the axial direction. However, it may have a helical core structure.
  • a strip-shaped core sheet is used, and this core sheet is wound in a ring shape and laminated in the axial direction, so that the overall stator core 7 has a cylindrical shape. 3 2 are configured.
  • the stator 7 30 has a portion corresponding to a coil side radially opposed to the magnet 7 2 2 of the rotor 7 10 in the axial direction and a coil end that is an axial outer side of the coil side. And a corresponding portion.
  • the stator core 7 32 is provided in the range corresponding to the coil side in the axial direction.
  • the stator winding 7 31 has a plurality of phase windings, and the phase windings of each phase are arranged in the circumferential direction in a predetermined order to form a cylindrical shape (annular shape).
  • the stator core 7 3 2 is assembled on the radially inner side of the stator winding 7 3 1.
  • the stator winding 7 3 1 has a configuration having a 3-phase winding.
  • Figs. 82 and 83 are vertical cross-sectional views of the inner unit 770. Note that the figure
  • the bearing 7 91 is the first bearing 7 91 (corresponding to the “base end bearing”) and the bearing 7 92 is the second bearing 7 92 (corresponding to the “reduction side bearing”) Also called.
  • the first bearing 7 91 is a bearing provided on the base end side in the axial direction of the rotating shaft 7 01, that is, on the connecting shaft 7 05 side, and the second bearing 7 92 is the bearing of the rotating shaft 7 0 1 It is a bearing provided on the tip side.
  • the inner unit 770 has an inner housing 771.
  • the inner housing 7 71 has a cylindrical outer cylinder member 7 72 and a cylindrical shape having an outer peripheral diameter smaller than that of the outer cylinder member 7 72, and is arranged inside the outer cylinder member 7 72 in the radial direction. It has an inner cylinder member 773, and a substantially disc-shaped end plate 774 fixed to one end side of the outer cylinder member 772 and the inner cylinder member 773 in the axial direction.
  • Each of these members 7 7 2 ⁇ 2020/175333 136 ⁇ (: 171-1?2020/006903
  • ⁇ 7 74 should be made of conductive material, such as carbon fiber reinforced plastic It is composed by.
  • the outer cylinder member 7 72 and the end plate 7 74 have the same outer dimensions, and the inner cylinder member 7 7 3 is placed in the space formed by the outer cylinder member 7 72 and the end plate 7 74. Is provided.
  • the inner tubular member 773 is fixed to the outer tubular member 772 and the end plate 774 by fasteners 775 such as bolts.
  • the outer core member 7 7 1 of the inner housing 7 7 1 has a stator core 7 on the outside in the radial direction.
  • stator 7 30 and the inner unit 7 70 are integrated.
  • a refrigerant passage 777 through which a refrigerant such as cooling water flows is formed between the outer cylinder member 772 and the inner cylinder member 773.
  • Refrigerant passage 7 7 7 is the inner housing
  • a refrigerant pipe is connected to the refrigerant passage 777 so that the refrigerant flowing from the refrigerant pipe exchanges heat in the refrigerant passage 777 and then flows out to the refrigerant pipe again. Has become.
  • An annular space is formed inside the inner tubular member 773 in the radial direction, and electrical components forming an inverter as a power converter may be disposed in the annular space.
  • the electric component is, for example, an electric module in which a semiconductor switching element and a capacitor are packaged. By disposing the electric module in a state of being in contact with the inner cylinder member 773, the electric module is cooled by the refrigerant flowing through the refrigerant passage 777.
  • the outer cylinder member 7 7 2 has a cylindrical boss portion 7 radially inward of the inner cylinder member 7 7 3.
  • the boss portion 780 is provided in the shape of a hollow cylinder, and the rotary shaft 701 is passed through the hollow portion.
  • the boss portion 780 serves as a bearing holding portion for holding the bearings 791 and 792, and the bearings 791 and 792 are fixed in the hollow portion thereof.
  • the bearings 79 1 and 7 92 include a cylindrical inner ring, a cylindrical outer ring arranged radially outside the inner ring, and a plurality of balls arranged between the inner ring and the outer ring. It is a radial ball bearing with and the outer ring is fixed to the boss 780 so that it can be assembled to the inner unit 770. ⁇ 2020/175 333 137 ⁇ (: 171? 2020 /006903
  • the first fixed portion 781 (corresponding to the "base end side fixed portion") for fixing the first bearing 791 and the second bearing 792 are provided.
  • the second fixing part 7 82 (corresponding to the "reduction side fixing part") for fixing is provided.
  • the first bearing 7 91 and the second bearing 7 92 have different physiques depending on the supporting position on the rotary shaft 7 01, considering the vibration and centrifugal load of the rotor 7 10 and the rotary shaft 7 9 1.
  • the first bearing 7 91 supporting the base end side of 0 1 has a larger size, that is, a bearing with a larger supporting load. Therefore, the first fixing portion 7 81 has a larger diameter than the second fixing portion 7 82.
  • the first bearing 7 91 has a larger radial inner clearance, that is, the radial clearance than the second bearing 7 92. It is big.
  • the radial clearance is the amount of axial play between the inner ring, outer ring, and balls of the bearing.
  • the first bearing 7 91 is a bearing that is more susceptible to the vibration and centrifugal load of the rotor 7 10 than the second bearing 7 92, and the radial clearance of the first bearing 7 91 is increased. This enhances the effect of load absorption. As a result, the load acting on the boss portion 780 on the base end side of the rotating shaft 701 is reduced, and the runout on the tip side of the rotating shaft 701 is suppressed.
  • the first fixed portion 7 81 is a parallel surface 7 8 1 parallel to the axial direction in the boss portion 7 80.
  • the second fixing portion 7 82 is formed by a parallel surface 7 8 2 3 parallel to the axial direction in the boss portion 7 8 0 and an orthogonal surface 7 82 2 orthogonal to the axial direction.
  • the second bearing 7 92 is fixed in the state of abutting against the surface.
  • a panel (not shown) that applies a preload to the second bearing 7 92 is provided between the step between the second fixed portion 7 82 and the third fixed portion 783 and the second bearing 7 92. It may be.
  • a resolver as a rotation sensor is provided on the side of the second fixed portion 782 of the first fixed portion 781 and the second fixed portion 782. 8 00 fixed ⁇ 2020/175333 138 ⁇ (: 171-1?2020/006903
  • a fixed third fixed part 783 (corresponding to the "expansion side fixed part") is provided.
  • the third fixing portion 783 is formed by expanding the diameter of the second fixing portion 782 in a stepped shape.
  • the resolver 800 includes a resolver rotor 8O1 fixed to a rotary shaft 7O1 and a resolver 8A arranged radially outside the resolver rotor 8O1. And a stator 800.
  • the resolver rotor 801 has a disc ring shape and is provided coaxially with the rotating shaft 701 with the rotating shaft 701 being passed through.
  • the resolver stator 802 has a stator core and a stator coil (not shown), and is fixed to the third fixing portion 783 of the boss portion 780.
  • the hollow portion of the boss portion 780 is located at a position between the first fixed portion 781 and the second fixed portion 782 in the axial direction.
  • Reduced diameter portions 7 84, 7 8 5 having a diameter smaller than that of each fixed portion 7 81, 7 82 are provided.
  • the reduced diameter portion 7 84 is a hole having a smaller diameter than the first fixed portion 7 81
  • the reduced diameter portion 7 85 is a hole having a smaller diameter than the second fixed portion 7 8 2.
  • the third fixing portion 783 for fixing the resolver 800 is located axially outside the second fixing portion 782, in other words, is located at the tip end side of the rotary shaft 7101. It is provided as a portion having a diameter larger than that of the second fixed portion 7 82.
  • the second fixed portion 7 82 and the third fixed portion 7 83 are provided at positions adjacent to each other in the axial direction.
  • Bus bar module 810 will be described.
  • Reference numeral 810 is a winding wire connecting member for electrically connecting the stator winding 731 of each phase.
  • the bus bar module 810 has an annular shape.
  • the third fixed portion 783 and the second fixed portion 782 are adjacent to each other in the axial direction. According to this structure, the axial distance between the supporting portion of the second bearing 7 92 and the fixed portion of the resolver rotor 8 01 can be shortened in the rotating shaft 7 01, and the rotating shaft 7 01 can be shortened. The shake of 1 can be reduced. As a result, the shake of the resolver rotor 8 01 with respect to the resolver stator 8 02 can be reduced, and the detection accuracy of the rotation position of the rotor 7 10 can be improved.
  • the configuration in which the second fixing portion 7 82 and the third fixing portion 7 8 3 are adjacent to each other in the axial direction is such that the boss portion 7 80 faces the end plate 7 7 4 in the axial direction.
  • the second fixing portion 7 82 and the third fixing portion 7 8 3 can be continuously machined coaxially from the same direction when the hole is machined by boring from the side. Therefore, it is possible to increase the coaxiality between the second bearing 7 92 and the resolver stator 8 02. As a result, the coaxiality between the resolver rotor 8 01 and the resolver stator 8 02 can be increased, and the shake of the resolver rotor 8 01 with respect to the resolver stator 8 02 can be reduced. As a result, the effect of improving the detection accuracy of the rotational position can be further enhanced.
  • the first bearing 7 91 is more susceptible to rotor vibration and centrifugal load than the second bearing 7 92.
  • radial ball bearings are used as the first bearing 7 91 and the second bearing 7 92, and the radial gap of the first bearing 7 9 1 is larger than that of the second bearing 7 9 2.
  • the effect of load absorption of the rotor 710 can be enhanced, and the load acting on the first bearing 791 side of the boss portion 780 can be reduced.
  • the runout of the support portion of the rotary shaft 7101 due to the second bearing 792 can be reduced, and the runout of the resolver rotor 8O1 with respect to the resolver stator 8O2 can be reduced.
  • the effect of improving the detection accuracy of the rotational position can be further enhanced. ⁇ 2020/175333 140 (:171? 2020/006903
  • the magnet holder 7 21 is made of a non-magnetic material. For this reason, rotor 7
  • the center of the magnet 7 22 is the intersection of the 9-axis and the magnetic flux transfer surface 7 24, and the circle whose radius is the radial thickness of the magnet 7 22 is the orientation circle X. ..
  • the magnet 72 2 is configured to include a quarter circle of the orientation circle X.
  • the strongest magnet magnetic flux is generated due to the easy axis of magnetization passing through the orientation circle X. It is possible to prevent the magnetic path of the strongest magnetic flux of the magnet from being formed on the side of the magnetic holder 7 2 1, and to enhance the effect of suppressing magnetic flux leakage from the magnet 7 22 to the magnet holder 7 21.
  • an annular cover member 803 is fixed to the inner peripheral surface of the third fixing portion 783 on the opening side in the axial direction with respect to the resolver stub 802 in the axial direction. ing. According to this structure, one resolver 803 can protect the resolver 800 and the second bearing 79 2 from foreign matter.
  • the resolver stator 8 0 2 may be fixed to the second fixed portion 7 82 and the second bearing 7 9 2 may be fixed to the third fixed portion 7 8 3.
  • the magnets in Modifications 15 and 16 are not limited to those shown in Figs. 80 and 81, and Halbach array magnets may be used, for example.
  • Modifications 15 and 16 may be applied to an inner rotor type rotating electric machine instead of the outer rotor type rotating electric machine.
  • the inlet passage 5 7 1 and the outlet passage 5 7 2 are provided in one place, but this configuration has been modified so that the inlet passage 5 7 1 and the outlet passage 5 7 2 are located at different positions in the circumferential direction. May be provided in each.
  • the inlet passage 5 71 and the outlet passage 5 72 may be provided at positions different by 180 degrees in the circumferential direction, or at least one of the inlet passage 5 71 and the outlet passage 5 72 may be provided in plural. May be.
  • the rotating shaft 5O1 is configured to project to one side in the axial direction of the rotating electric machine 500.
  • this is modified so that the rotating shaft 5 It may be configured such that 0 1 is projected.
  • a suitable configuration can be realized in a vehicle in which at least one of the front and rear of the vehicle has one wheel.
  • rotary electric machine 500 used for the wheel 400 an inner rotor type rotary electric machine can be used.
  • the rotary electric machine is not limited to the star connection, but may be the ⁇ connection.
  • the disclosure herein is not limited to the illustrated embodiments.
  • the disclosure includes the illustrated embodiments and variations thereof by one of ordinary skill in the art based on them.
  • the disclosure is not limited to the combination of parts and/or elements shown in the embodiments.
  • the disclosure can be implemented in various combinations.
  • the disclosure may have additional parts that may be added to the embodiments.
  • the disclosure includes omissions of parts and/or elements of the embodiments.
  • the disclosure encompasses replacements or combinations of parts and/or elements between one embodiment and another.
  • the technical scope disclosed is not limited to the description of the embodiments. It is to be understood that some technical scopes disclosed are shown by the description of the claims, and further include meanings equivalent to the description of the claims and all modifications within the scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Frames (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

This rotating electric machine (700) is provided with: a bearing (792) for rotatably supporting the rotational axis (701) of a rotor (710); a housing (771) having a bearing holding portion (780) to which the bearing is fixed; and a resolver (800) for outputting a rotation angle signal. An end of the bearing holding portion in the axial direction constitutes an expanded-diameter side fixing portion (783) in which a hole connected to the opening of the end in the axial direction is formed. A portion of the bearing holding portion adjacent to the expanded-diameter side fixing portion in the axial direction constitutes a reduced-diameter side fixing portion (782) in which a hole having a smaller hole diameter than that of the expanded-diameter side fixing portion is formed. The rotational axis is inserted into the respective holes of the expanded-diameter side fixing portion and the reduced-diameter side fixing portion. The bearing is fixed to one of the expanded-diameter side fixing portion and the reduced-diameter side fixing portion. The resolver stator (802) of the resolver is fixed to one of the expanded-diameter side fixing portion and the reduced-diameter side fixing portion to which the bearing is not fixed.

Description

\¥0 2020/175333 1 ?01/^2020/006903 \\0 2020/175333 1 ?01/^2020/006903
明 細 書 Specification
発明の名称 : 回転電機 Title of invention: Rotating electric machine
関連出願の相互参照 Cross-reference of related applications
[0001 ] 本出願は、 2 0 1 9年2月 2 5日に出願された日本出願番号 2 0 1 9— 0 [0001] This application was filed on February 25, 2010 in Japanese application number 2 0 1 9-0
3 2 1 8 4号に基づくもので、 ここにその記載内容を援用する。 Based on No. 3 2 1 84, the contents of which are incorporated herein by reference.
技術分野 Technical field
[0002] この明細書における開示は、 回転電機に関する。 The disclosure in this specification relates to a rotating electric machine.
背景技術 Background technology
[0003] 従来、 特許文献 1 に記載されているように、 回転子に固定された車軸 (回 転軸) と、 中空筒状の車輪支持部と、 車輪支持部に対して車軸を回転自在に 支持するベアリングとを備える回転電機が知られている。 ベアリングは、 車 輪支持部のうち軸方向一端側の内周面に固定されている。 [0003] Conventionally, as described in Patent Document 1, an axle (rotating shaft) fixed to a rotor, a hollow cylindrical wheel support portion, and an axle rotatable relative to the wheel support portion. A rotating electric machine including a bearing that supports the rotating electric machine is known. The bearing is fixed to the inner peripheral surface of the wheel support portion on the one end side in the axial direction.
[0004] 回転電機は、 回転センサユニッ トを備えている。 このユニッ トは、 車輪支 持部のうち軸方向においてべアリングが固定された側とは反対側に固定され た検出器と、 車軸のうち径方向において検出器と対向する位置に固定された 歯車とを有している。 検出器は、 径方向に対向する歯車の歯の位置を検出し 、 その歯の位置情報に基づいて回転子の回転角信号を出力する。 [0004] The rotating electric machine includes a rotation sensor unit. This unit consists of a detector that is fixed to the side of the wheel support that is opposite to the side where the bearing is fixed in the axial direction, and a gear that is fixed to a position on the axle that faces the detector in the radial direction. And have. The detector detects the positions of the teeth of the gears facing each other in the radial direction, and outputs the rotation angle signal of the rotor based on the position information of the teeth.
先行技術文献 Prior art documents
特許文献 Patent literature
[0005] 特許文献 1 :特開 2 0 1 3 _ 1 8 2 3 1 7号公報 Patent Document 1: Japanese Patent Laid-Open No. 20 1 3 _ 1 8 2 3 1 7
発明の概要 Summary of the invention
[0006] 特許文献 1 に記載の回転電機では、 車輪支持部における検出部の固定部が 、 車輪支持部のうち軸方向においてべアリングの固定部とは反対側に設けら れている。 このため、 車軸のうち、 ベアリングによる支持部と、 歯車の固定 部との軸方向距離が長くなってしまう。 この場合、 車軸の振れが大きくなり 、 回転センサユニッ トによる回転位置の検出精度が悪化する懸念がある。 In the rotary electric machine described in Patent Document 1, the fixing portion of the detecting portion of the wheel supporting portion is provided on the side of the wheel supporting portion opposite to the fixing portion of the bearing in the axial direction. As a result, the axial distance between the bearing support portion of the axle and the gear fixing portion becomes long. In this case, the runout of the axle becomes large, and the accuracy of detection of the rotational position by the rotation sensor unit may deteriorate.
[0007] 本開示は、 上記事情に鑑みてなされたものであり、 回転子の回転位置の検 \¥0 2020/175333 2 卩(:17 2020 /006903 [0007] The present disclosure has been made in view of the above circumstances, and detects the rotational position of a rotor. \¥0 2020/175333 2 卩 (: 17 2020 /006903
出精度を向上させることができる回転電機を提供することを主たる目的とす る。 The main purpose is to provide a rotating electric machine capable of improving output accuracy.
[0008] この明細書における開示された複数の態様は、 それぞれの目的を達成する ために、 互いに異なる技術的手段を採用する。 この明細書に開示される目的 、 特徴、 および効果は、 後続の詳細な説明、 および添付の図面を参照するこ とによってより明確になる。 [0008] The plurality of aspects disclosed in this specification adopt different technical means from each other in order to achieve the respective objects. The objects, features, and effects disclosed in this specification will become clearer with reference to the following detailed description and the accompanying drawings.
[0009] 手段 1は、 回転子と、 [0009] Means 1 includes a rotor,
前記回転子の回転軸を回転自在に支持する軸受と、 A bearing that rotatably supports the rotating shaft of the rotor,
前記軸受が固定された軸受保持部を有するハウジングと、 A housing having a bearing holding portion to which the bearing is fixed,
前記軸受保持部に固定されたレゾルバステータ、 及び前記回転軸のうち径 方向において前記レゾルバステータと対向する位置に固定されたレゾルバロ —夕を有し、 前記回転子の回転角信号を出力するレゾルバと、 を備える回転 電機において、 A resolver stator fixed to the bearing holder, and a resolver fixed to a position of the rotary shaft facing the resolver stator in the radial direction, and a resolver outputting a rotation angle signal of the rotor. In a rotating electric machine including,
前記軸受保持部のうち軸方向端部は、 その軸方向端部の開口に繫がる孔が 形成された拡径側固定部とされており、 The axial end portion of the bearing holding portion is a diametrical expansion side fixing portion having a bored hole formed in an opening of the axial end portion,
前記軸受保持部のうち前記拡径側固定部と軸方向に隣り合う部分は、 前記 拡径側固定部の孔径よりも小さい孔が形成された縮径側固定部とされており \ A portion of the bearing holding portion that is axially adjacent to the expansion-side fixing portion is a reduction-side fixing portion in which a hole smaller than the hole diameter of the expansion-side fixing portion is formed.
前記拡径側固定部及び前記縮径側固定部それぞれの孔に前記回転軸が揷通 されており、 The rotary shaft is threaded through the respective holes of the diameter-increasing side fixing portion and the diameter-decreasing side fixing portion,
前記拡径側固定部及び前記縮径側固定部のうち一方に前記軸受が固定され ており、 The bearing is fixed to one of the expanded diameter side fixed portion and the reduced diameter side fixed portion,
前記拡径側固定部及び前記縮径側固定部のうち前記軸受が固定されていな い方に前記レゾルバステータが固定されている。 The resolver stator is fixed to one of the expanded diameter side fixed portion and the reduced diameter side fixed portion where the bearing is not fixed.
[0010] 手段 1では、 拡径側固定部と縮径側固定部とが軸方向において隣り合って いる。 この構成によれば、 回転軸のうち、 軸受による支持部と、 レゾルバロ —夕の固定部との軸方向距離を短くすることができ、 回転軸の振れを低減で きる。 その結果、 レゾルバステータに対するレゾルバロータの振れを低減で 〇 2020/175333 3 卩(:171? 2020 /006903 [0010] In the means 1, the diameter expansion side fixing portion and the diameter reduction side fixing portion are adjacent to each other in the axial direction. With this configuration, it is possible to shorten the axial distance between the support portion of the rotary shaft, which is supported by the bearing, and the fixed portion of the resolver ball, and it is possible to reduce runout of the rotary shaft. As a result, runout of the resolver rotor with respect to the resolver stator can be reduced. 〇 2020/175333 3 (:171? 2020/006903
き、 回転子の回転位置の検出精度を向上させることができる。 Therefore, the accuracy of detecting the rotational position of the rotor can be improved.
[001 1 ] また、 拡径側固定部と、 拡径側固定部より孔径の小さい孔が形成された縮 径側固定部とが軸方向において隣り合っている構成は、 軸受保持部において 中ぐり加工等により孔加工を行う際に、 拡径側固定部と縮径側固定部とを同 —方向から同軸で連続加工することができる。 このため、 拡径側固定部及び 縮径側固定部のうち、 一方に固定された軸受と、 他方に固定されたレゾルバ ステータとの同軸度を高めることができる。 これにより、 レゾルバロータと レゾルバステータとの同軸度を高めることができ、 レゾルバステータに対す るレゾルバロータの振れを低減できる。 その結果、 回転位置の検出精度の向 上効果をより高めることができる。 [001 1] In addition, the structure in which the expanding-side fixing portion and the reducing-side fixing portion in which a hole having a smaller hole diameter is formed than the expanding-side fixing portion are axially adjacent to each other are bored in the bearing holding portion. When performing hole drilling by machining or the like, it is possible to continuously machine the expanding-side fixing portion and the reducing-side fixing portion coaxially from the same direction. Therefore, it is possible to increase the concentricity between the bearing fixed to one of the expanded diameter side fixed portion and the reduced diameter side fixed portion and the resolver stator fixed to the other side. As a result, the coaxiality between the resolver rotor and the resolver stator can be increased, and the runout of the resolver rotor with respect to the resolver stator can be reduced. As a result, the effect of improving the detection accuracy of the rotational position can be further enhanced.
[0012] 手段 2は、 手段 1 において、 前記軸受を縮径側軸受とし、 [0012] Means 2 is the same as in the means 1, wherein the bearing is a reduced diameter side bearing,
前記縮径側軸受が前記縮径側固定部に固定されており、 The diameter reducing side bearing is fixed to the diameter reducing side fixing portion,
前記レゾルバステータが拡径側固定部に固定されており、 The resolver stator is fixed to the expansion side fixing portion,
前記軸受保持部のうち軸方向において前記縮径側固定部を挟んで前記拡径 側固定部とは反対側は、 孔が形成された基端側固定部とされており、 前記拡径側固定部、 前記縮径側固定部及び前記基端側固定部それぞれの孔 に前記回転軸が揷通されており、 A portion of the bearing holding portion opposite to the diameter-expansion-side fixing portion in the axial direction with the diameter-decrease-side fixing portion sandwiched therebetween is a base-end-side fixing portion having a hole formed therein. Part, the diameter reducing side fixing part and the base end side fixing part, the rotary shaft is passed through the respective holes,
前記基端側固定部に固定され、 前記回転軸を回転自在に支持する基端側軸 受を備え、 A base end bearing fixed to the base end side fixing portion and rotatably supporting the rotary shaft;
前記回転軸のうち軸方向において前記基端側軸受側に前記回転子が固定さ れており、 The rotor is fixed to the base end side bearing side in the axial direction of the rotating shaft,
前記縮径側軸受及び前記基端側軸受は、 外輪と、 内輪と、 それら外輪及び 内輪の間に配置された複数の玉とを有するラジアル玉軸受であり、 The diameter reducing side bearing and the base end side bearing are radial ball bearings having an outer ring, an inner ring, and a plurality of balls arranged between the outer ring and the inner ring,
前記基端側軸受の外径寸法が前記縮径側軸受の外径寸法よりも大きい。 An outer diameter dimension of the base end side bearing is larger than an outer diameter dimension of the contraction side bearing.
[0013] 手段 2では、 回転軸のうち軸方向において基端側軸受側に回転子が固定さ れている。 このため、 基端側軸受は、 縮径側軸受に比べて回転子の振動や遠 心荷重を受けやすい。 ここで、 手段 2では、 基端側軸受の外径寸法が縮径側 軸受の外径寸法よりも大きい。 軸受の外径寸法が大きいほど、 外輪及び内輪 〇 2020/175333 4 卩(:171? 2020 /006903 In the means 2, the rotor is fixed to the base end side bearing side in the axial direction of the rotating shaft. Therefore, the base-end bearing is more susceptible to rotor vibration and eccentric load than the diameter-reducing bearing. Here, in the means 2, the outer diameter dimension of the base end side bearing is larger than the outer diameter dimension of the reduced diameter side bearing. The larger the outer diameter of the bearing, the outer and inner rings 〇 2020/175333 4 卩 (:171? 2020 /006903
と玉との間の隙間寸法が大きくなる。 このため、 手段 2によれば、 回転子の 荷重吸収の効果が高めることができ、 軸受保持部のうち、 基端側固定部の側 に作用する荷重を低減できる。 これにより、 回転軸のうち縮径側軸受による 支持部の振れを低減でき、 レゾルバステータに対するレゾルバロータの振れ を低減できる。 その結果、 回転子の回転位置の検出精度を向上させることが できる。 The gap between the ball and the ball becomes larger. Therefore, according to the means 2, the effect of absorbing the load of the rotor can be enhanced, and the load acting on the base end side fixed part side of the bearing holding part can be reduced. As a result, it is possible to reduce the runout of the support portion of the rotary shaft due to the reduced diameter side bearing, and to reduce the runout of the resolver rotor with respect to the resolver stator. As a result, the accuracy of detecting the rotational position of the rotor can be improved.
[0014] 手段 4は、 手段 1〜 3のいずれか 1つにおいて、 前記拡径側固定部のうち 、 軸方向において前記レゾルバステータ及び前記軸受よりも開口側に固定さ れた円環状のカバー部材を備える。 [0014] Means 4 is the annular cover member according to any one of Means 1 to 3, which is fixed to the opening side of the resolver stator and the bearing in the axial direction of the radially enlarged fixing portion. Equipped with.
[0015] 手段 4によれば、 レゾルバ及び軸受を異物から保護することができる。 [0015] According to the means 4, the resolver and the bearing can be protected from foreign matter.
[0016] 手段 5は、 手段 1〜 4のいずれか 1つにおいて、 径方向において前記回転 子と対向する固定子を備え、 [0016] Means 5 is the device according to any one of Means 1 to 4, which includes a stator facing the rotor in a radial direction,
前記回転子は、 The rotor is
前記回転軸に対して固定された円板状の端板部を有し、 前記回転軸と同軸 に配置されたキヤリアと、 A carrier having a disk-shaped end plate portion fixed to the rotation shaft, and a carrier arranged coaxially with the rotation shaft;
前記回転軸と同軸に配置された円環状の磁石ユニッ トと、 を有し、 前記磁石ユニッ トは、 An annular magnet unit arranged coaxially with the rotating shaft, wherein the magnet unit is
軸方向における一端が前記端板部に対して固定された円筒状の磁石ホルダ と、 A cylindrical magnet holder whose one end in the axial direction is fixed to the end plate portion,
前記磁石ホルダのうち径方向において前記固定子側の周面に固定され、 周 方向に極性が交互となる磁石と、 を有し、 A magnet that is fixed to the circumferential surface of the magnet holder on the side of the stator in the radial direction and has alternating polarities in the circumferential direction;
前記磁石ホルダが非磁性材料にて構成されており、 The magnet holder is made of a non-magnetic material,
前記磁石において、 軸における磁化容易軸の向きが、 軸に平行な向き からずらされている。 In the magnet, the direction of the easy axis of magnetization is offset from the direction parallel to the axis.
[0017] 手段 5では、 磁石ホルダが非磁性材料にて構成されている。 このため、 回 転子の軽量化を図ることができ、 回転軸の振れを低減できる。 これにより、 レゾルバステータに対するレゾルバロータの振れを低減でき、 回転子の回転 位置の検出精度を向上させることができる。 〇 2020/175333 卩(:171? 2020 /006903 [0017] In the means 5, the magnet holder is made of a non-magnetic material. Therefore, the weight of the rotor can be reduced, and the runout of the rotating shaft can be reduced. As a result, the shake of the resolver rotor with respect to the resolver stator can be reduced, and the accuracy of detecting the rotational position of the rotor can be improved. 〇 2020/175333 卩 (: 171? 2020 /006903
[0018] ここで、 手段 5では、 磁石において、 9軸における磁化容易軸の向きが、 [0018] Here, in the means 5, in the magnet, the direction of the easy axis of magnetization in the 9-axis is
9軸に平行な向きからずらされている。 この構成によれば、 ラジアル配向さ れた磁石を備える構成と比較して、 磁石から磁石ホルダへの磁束漏れを抑制 することができ、 回転電機のトルクの低下を抑制することができる。 このよ うに、 手段 5によれば、 回転電機のトルクの低下を抑制しつつ、 回転子の回 転位置の検出精度を向上させることができる。 It is offset from the direction parallel to the 9-axis. According to this configuration, magnetic flux leakage from the magnet to the magnet holder can be suppressed, and a reduction in torque of the rotating electric machine can be suppressed, as compared with a configuration including a magnet having a radial orientation. As described above, according to the means 5, the detection accuracy of the rotating position of the rotor can be improved while suppressing the decrease in the torque of the rotating electric machine.
[0019] 手段 6は、 手段 5において、 前記磁石において 9軸と 9軸間の磁束授 受面との交点を中心点とし、 かつ前記磁石の径方向の厚み寸法を半径とする 円を、 前記磁石の磁化容易軸を定める配向円とする場合、 前記磁石が前記配 向円の四半円分を包括する構成となっている。 [0019] Means 6 is the means 5, wherein in the magnet, a circle having a center point at the intersection of the 9-axis and the magnetic flux exchange surface between the 9-axis and a radial thickness dimension of the magnet is a radius, When the orientation circle defines the easy axis of magnetization of the magnet, the magnet is configured to include a quarter circle of the orientation circle.
[0020] 手段 6では、 磁石において、 9軸を横切るように円弧状の磁化容易軸が設 けられることとなる。 その磁化容易軸のうち、 径方向において磁束授受面と は反対側の周面と 9軸との交点を通る磁化容易軸、 すなわち配向円 Xを通る 磁化容易軸により最も強い磁石磁束が生じる。 手段 6によれば、 この最も強 い磁石磁束の磁路が磁石ホルダ側に形成されることを回避でき、 磁石から磁 石ホルダへの磁束漏れの抑制効果を高めることができる。 [0020] In the means 6, in the magnet, an arc-shaped easy axis of magnetization is provided so as to cross the nine axes. Among the easy magnetization axes, the strongest magnetic flux is generated by the easy magnetization axis passing through the intersection of the 9th axis and the circumferential surface on the side opposite to the magnetic flux transfer surface in the radial direction, that is, the easy magnetization axis passing through the orientation circle X. According to the means 6, the strongest magnetic flux magnetic flux path can be prevented from being formed on the magnet holder side, and the effect of suppressing magnetic flux leakage from the magnet to the magnet holder can be enhanced.
図面の簡単な説明 Brief description of the drawings
[0021] 本開示についての上記目的およびその他の目的、 特徴や利点は、 添付の図 面を参照しながら下記の詳細な記述により、 より明確になる。 その図面は、 [図 1]図 1は、 回転電機の縦断面斜視図であり、 [0021] The above and other objects, features and advantages of the present disclosure will be made clearer by the following detailed description with reference to the accompanying drawings. The drawing is [Fig. 1] Fig. 1 is a longitudinal sectional perspective view of a rotating electric machine.
[図 2]図 2は、 回転電機の縦断面図であり、 [Fig. 2] Fig. 2 is a vertical cross-sectional view of a rotating electrical machine.
[図 3]図 3は、 図 2の 111— 111線断面図であり、 [Fig. 3] Fig. 3 is a sectional view taken along line 111-111 in Fig. 2.
[図 4]図 4は、 図 3の一部を拡大して示す断面図であり、 [FIG. 4] FIG. 4 is an enlarged cross-sectional view showing a part of FIG.
[図 5]図 5は、 回転電機の分解図であり、 [Fig. 5] Fig. 5 is an exploded view of the rotating electrical machine.
[図 6]図 6は、 インバータユニッ トの分解図であり、 [Fig. 6] Fig. 6 is an exploded view of the inverter unit.
[図 7]図 7は、 固定子巻線のアンペアターンとトルク密度との関係を示すトル ク線図であり、 [Fig. 7] Fig. 7 is a torque diagram showing the relationship between the ampere-turn of the stator winding and the torque density.
[図 8]図 8は、 回転子及び固定子の横断面図であり、 20/175333 6 卩(:171? 2020 /006903 [Fig. 8] Fig. 8 is a cross-sectional view of the rotor and the stator. 20/175333 6 卩 (: 171? 2020 /006903
[図 9]図 9は、 図 8の一部を拡大して示す図であり、 [FIG. 9] FIG. 9 is an enlarged view of a part of FIG.
[図 10]図 1 0は、 固定子の横断面図であり、 [Fig. 10] Fig. 10 is a cross-sectional view of the stator.
[図 1 1]図 1 1は、 固定子の縦断面図であり、 [Fig. 11] Fig. 11 is a longitudinal sectional view of the stator.
[図 12]図 1 2は、 固定子卷線の斜視図であり、 [Fig. 12] Fig. 12 is a perspective view of the stator winding line.
[図 13]図 1 3は、 導線の構成を示す斜視図であり、 [FIG. 13] FIG. 13 is a perspective view showing the structure of a conductor.
[図 14]図 1 4は、 素線の構成を示す模式図であり、 [Fig. 14] Fig. 14 is a schematic diagram showing the structure of a wire.
[図 15]図 1 5は、 n層目における各導線の形態を示す図であり、 [FIG. 15] FIG. 15 is a view showing the form of each conductor in the n-th layer,
[図 16]図 1 6は、 n層目と n + 1層目の各導線を示す側面図であり、[Fig. 16] Fig. 16 is a side view showing the conductors of the nth layer and the n + 1st layer.
[図 17]図 1 7は、 実施形態の磁石について電気角と磁束密度との関係を示す 図であり、 [FIG. 17] FIG. 17 is a diagram showing the relationship between the electrical angle and the magnetic flux density of the magnet of the embodiment.
[図 18]図 1 8は、 比較例の磁石について電気角と磁束密度との関係を示す図 であり、 [Fig. 18] Fig. 18 is a graph showing the relationship between the electrical angle and the magnetic flux density for the magnet of the comparative example.
[図 19]図 1 9は、 回転電機の制御システムの電気回路図であり、 [Fig. 19] Fig. 19 is an electric circuit diagram of the control system for the rotating electric machine.
[図 20]図 2 0は、 制御装置による電流フィードバック制御処理を示す機能ブ ロック図であり、 [FIG. 20] FIG. 20 is a functional block diagram showing a current feedback control process by the control device.
[図 21]図 2 1は、 制御装置によるトルクフィードバック制御処理を示す機能 ブロック図であり、 [Fig. 21] Fig. 21 is a functional block diagram showing torque feedback control processing by the control device.
[図 22]図 2 2は、 第 2実施形態における回転子及び固定子の横断面図であり [FIG. 22] FIG. 22 is a cross-sectional view of a rotor and a stator according to the second embodiment.
[図 23]図 2 3は、 図 2 2の一部を拡大して示す図であり、 [Fig. 23] Fig. 23 is an enlarged view of a part of Fig. 22.
[図 24]図 2 4は、 磁石ユニッ トにおける磁束の流れを具体的に示す図であり [Fig. 24] Fig. 24 is a diagram specifically showing the flow of magnetic flux in the magnet unit.
[図 25]図 2 5は、 変形例 1 における固定子の断面図であり、 [Fig. 25] Fig. 25 is a cross-sectional view of a stator in Modification 1,
[図 26]図 2 6は、 変形例 1 における固定子の断面図であり、 [Fig. 26] Fig. 26 is a cross-sectional view of a stator in Modification Example 1,
[図 27]図 2 7は、 変形例 2における固定子の断面図であり、 [Fig. 27] Fig. 27 is a cross-sectional view of a stator according to Modification 2.
[図 28]図 2 8は、 変形例 3における固定子の断面図であり、 [Fig. 28] Fig. 28 is a cross-sectional view of a stator according to Modification 3.
[図 29]図 2 9は、 変形例 4における固定子の断面図であり、 [Fig. 29] Fig. 29 is a cross-sectional view of a stator in Modification 4,
[図 30]図 3 0は、 変形例 7における回転子及び固定子の横断面図であり、 〇 2020/175333 7 卩(:171? 2020 /006903 [FIG. 30] FIG. 30 is a cross-sectional view of a rotor and a stator in Modification 7. 〇 2020/175333 7 卩(: 171-1? 2020/006903
[図 31]図 3 1は、 変形例 8において操作信号生成部の処理の一部を示す機能 ブロック図であり、 [FIG. 31] FIG. 31 is a functional block diagram showing a part of the processing of the operation signal generation unit in Modification 8.
[図 32]図 3 2は、 キヤリア周波数変更処理の手順を示すフローチヤートであ り、 [Fig. 32] Fig. 32 is a flow chart showing the procedure for changing the carrier frequency.
[図 33]図 3 3は、 変形例 9において導線群を構成する各導線の接続形態を示 す図であり、 [FIG. 33] FIG. 33 is a diagram showing a connection form of each conductor wire which constitutes the conductor wire group in Modification 9,
[図 34]図 3 4は、 変形例 9において 4対の導線が積層配置されている構成を 示す図であり、 [FIG. 34] FIG. 34 is a diagram showing a configuration in which four pairs of conductor wires are arranged in a laminated manner in Modification Example 9.
[図 35]図 3 5は、 変形例 1 0においてインナロータ型の回転子及び固定子の 横断面図であり、 [FIG. 35] FIG. 35 is a cross-sectional view of an inner rotor type rotor and a stator in Modification 10.
[図 36]図 3 6は、 図 3 5の一部を拡大して示す図であり、 [Fig. 36] Fig. 36 is an enlarged view of a part of Fig. 35.
[図 37]図 3 7は、 インナロータ型の回転電機の縦断面図であり、 [Fig. 37] Fig. 37 is a vertical cross-sectional view of an inner rotor type electric rotating machine.
[図 38]図 3 8は、 インナロータ型の回転電機の概略構成を示す縦断面図であ り、 [Fig. 38] Fig. 38 is a vertical cross-sectional view showing a schematic configuration of an inner rotor type rotating electric machine.
[図 39]図 3 9は、 変形例 1 1 においてインナロータ構造の回転電機の構成を 示す図であり、 [FIG. 39] FIG. 39 is a diagram showing a configuration of a rotating electric machine having an inner rotor structure in Modification 11;
[図 40]図 4 0は、 変形例 1 1 においてインナロータ構造の回転電機の構成を 示す図であり、 [FIG. 40] FIG. 40 is a diagram showing a configuration of a rotating electric machine having an inner rotor structure in Modification Example 11.
[図 41]図 4 1は、 変形例 1 2において回転電機子形の回転電機の構成を示す 図であり、 [FIG. 41] FIG. 41 is a diagram showing a configuration of a rotary armature-type rotary electric machine in Modification 12;
[図 42]図 4 2は、 変形例 1 4における導線の構成を示す断面図であり、 [図 43]図 4 3は、 リラクタンストルク、 磁石トルク及び口1\/1の関係を示す図 であり、 [Fig. 42] Fig. 42 is a cross-sectional view showing the structure of the conductor wire in Modification 14, [Fig. 43] Fig. 43 is a diagram showing the relationship between reluctance torque, magnet torque, and port 1\/1. Yes,
[図 44]図 4 4は、 テイースを示す図であり、 [Fig.44] Fig.44 is a diagram showing teeth.
[図 45]図 4 5は、 インホイールモータ構造の車輪及びその周辺構造を示す斜 視図であり、 [Fig. 45] Fig. 45 is a perspective view showing the wheel of the in-wheel motor structure and its peripheral structure.
[図 46]図 4 6は、 車輪及びその周辺構造の縦断面図であり、 [Fig. 46] Fig. 46 is a longitudinal sectional view of the wheel and its peripheral structure.
[図 47]図 4 7は、 車輪の分解斜視図であり、 20/175333 8 卩(:171? 2020 /006903 [Fig. 47] Fig. 47 is an exploded perspective view of the wheel. 20/175333 8 卩 (: 171? 2020 /006903
[図 48]図 4 8は、 回転電機を回転軸の突出側から見た側面図であり、[Fig. 48] Fig. 48 is a side view of the rotary electric machine as seen from the protruding side of the rotary shaft.
[図 49]図 4 9は、 図 4 8の 4 9 - 4 9線断面図であり、 [Fig. 49] Fig. 49 is a cross-sectional view taken along line 4 9-4 9 of Fig. 48.
[図 50]図 5 0は、 図 4 9の 5 0— 5 0線断面図であり、 [Fig. 50] Fig. 50 is a sectional view taken along line 50--50 of Fig. 49.
[図 51]図 5 1は、 回転電機の分解断面図であり、 [Fig. 51] Fig. 51 is an exploded cross-sectional view of a rotating electric machine.
[図 52]図 5 2は、 回転子の部分断面図であり、 [Fig. 52] Fig. 52 is a partial sectional view of the rotor.
[図 53]図 5 3は、 固定子巻線及び固定子コアの斜視図であり、 [Fig. 53] Fig. 53 is a perspective view of a stator winding and a stator core.
[図 54]図 5 4は、 固定子巻線を平面状に展開して示す正面図であり、 [Fig. 54] Fig. 54 is a front view showing the stator windings in a flat state.
[図 55]図 5 5は、 導線のスキューを示す図であり、 [Fig.55] Fig.55 shows the skew of conductors.
[図 56]図 5 6は、 インバータユニットの分解断面図であり、 [Fig. 56] Fig. 56 is an exploded sectional view of the inverter unit.
[図 57]図 5 7は、 インバータユニットの分解断面図であり、 [Fig. 57] Fig. 57 is an exploded sectional view of the inverter unit.
[図 58]図 5 8は、 インバータハウジングでの各電気モジュールの配置の状態 を示す図であり、 [Fig. 58] Fig. 58 shows how the electric modules are arranged in the inverter housing.
[図 59]図 5 9は、 電力変換器の電気的構成を示す回路図であり、 [FIG. 59] FIG. 59 is a circuit diagram showing an electrical configuration of the power converter,
[図 60]図 6 0は、 スイッチモジュールの冷却構造例を示す図であり、 [Fig. 60] Fig. 60 is a diagram showing an example of a cooling structure of a switch module.
[図 61]図 6 1は、 スイッチモジュールの冷却構造例を示す図であり、[Fig. 61] Fig. 61 is a diagram showing an example of a cooling structure of a switch module.
[図 62]図 6 2は、 スイッチモジュールの冷却構造例を示す図であり、[Fig. 62] Fig. 62 is a diagram showing an example of the cooling structure of the switch module.
[図 63]図 6 3は、 スイッチモジュールの冷却構造例を示す図であり、[Fig. 63] Fig. 63 is a diagram showing an example of the cooling structure of the switch module.
[図 64]図 6 4は、 スイッチモジュールの冷却構造例を示す図であり、[Fig. 64] Fig. 64 is a diagram showing an example of the cooling structure of the switch module.
[図 65]図 6 5は、 冷却水通路に対する各電気モジュールの配列順序を示す図 であり、 [Fig. 65] Fig. 65 is a diagram showing the arrangement order of the electric modules with respect to the cooling water passage.
[図 66]図 6 6は、 図 4 9の 6 6— 6 6線断面図であり、 [Fig. 66] Fig. 66 is a sectional view taken along line 6 6--6 6 of Fig. 49.
[図 67]図 6 7は、 図 4 9の 6 7— 6 7線断面図であり、 [Fig. 67] Fig. 67 is a sectional view taken along the line 6 7--6 7 of Fig. 49.
[図 68]図 6 8は、 バスバーモジュールを単体で示す斜視図であり、 [Fig. 68] Fig. 68 is a perspective view showing the bus bar module as a single unit.
[図 69]図 6 9は、 各電気モジュールとバスバーモジュールとの電気的な接続 状態を示す図であり、 [Fig. 69] Fig. 69 is a diagram showing an electrical connection state between each electric module and the bus bar module.
[図 70]図 7 0は、 各電気モジュールとバスバーモジュールとの電気的な接続 状態を示す図であり、 [Fig. 70] Fig. 70 is a diagram showing an electrical connection state between each electric module and the bus bar module.
[図 71]図 7 1は、 各電気モジュールとバスバーモジュールとの電気的な接続 〇 2020/175333 9 卩(:171? 2020 /006903 [Fig. 71] Fig. 71 shows the electrical connection between each electrical module and the busbar module. 〇 2020/175333 9 (:171? 2020/006903
状態を示す図であり、 It is a figure showing a state,
[図 72]図 7 2は、 インホイールモータにおける変形例 1 を説明するための構 成図であり、 [Fig. 72] Fig. 72 is a configuration diagram for explaining a modification 1 of the in-wheel motor.
[図 73]図 7 3は、 インホイールモータにおける変形例 2を説明するための構 成図であり、 [Fig. 73] Fig. 73 is a configuration diagram for explaining a second modification of the in-wheel motor.
[図 74]図 7 4は、 インホイールモータにおける変形例 3を説明するための構 成図であり、 [Fig. 74] Fig. 74 is a configuration diagram for explaining Modification 3 of the in-wheel motor.
[図 75]図 7 5は、 インホイールモータにおける変形例 4を説明するための構 成図であり、 [Fig. 75] Fig. 75 is a configuration diagram for explaining a modification 4 of the in-wheel motor.
[図 76]図 7 6は、 変形例 1 5における回転電機の全体を示す斜視図であり、 [図 77]図 7 7は、 回転電機の縦断面図であり、 [FIG. 76] FIG. 76 is a perspective view showing the entire rotating electric machine in Modification Example 15, [FIG. 77] FIG. 77 is a vertical sectional view of the rotating electric machine,
[図 78]図 7 8は、 回転電機の構成要素を分解した分解断面図であり、 [Fig. 78] Fig. 78 is an exploded cross-sectional view of the components of the rotating electric machine,
[図 79]図 7 9は、 回転子の縦断面図であり、 [Fig. 79] Fig. 79 is a longitudinal sectional view of the rotor.
[図 80]図 8 0は、 磁石ユニッ トの断面構造を拡大して示す部分断面図であり [Fig. 80] Fig. 80 is a partial cross-sectional view showing an enlarged cross-sectional structure of the magnet unit.
[図 81]図 8 1は、 磁石の配向方法を示す図であり、 [Fig. 81] Fig. 81 is a diagram showing a method for orienting a magnet.
[図 82]図 8 2は、 インナユニッ トの縦断面図であり、 [Fig.82] Fig. 82 is a vertical sectional view of the inner unit.
[図 83]図 8 3は、 軸受が組み付けられた状態のインナユニッ トの縦断面図で あり、 [Fig. 83] Fig. 83 is a vertical cross-sectional view of the inner unit with the bearings assembled.
[図 84]図 8 4は、 変形例 1 6における回転子の縦断面図である。 [FIG. 84] FIG. 84 is a vertical cross-sectional view of a rotor according to Modification 16.
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0022] 図面を参照しながら、 複数の実施形態を説明する。 複数の実施形態におい て、 機能的におよび/または構造的に対応する部分および/または関連付け られる部分には同一の参照符号、 または百以上の位が異なる参照符号が付さ れる場合がある。 対応する部分および/又は関連付けられる部分については 、 他の実施形態の説明を参照することができる。 [0022] A plurality of embodiments will be described with reference to the drawings. In some embodiments, functionally and/or structurally corresponding parts and/or associated parts may be given the same reference signs, or hundreds or more different reference signs. For the corresponding part and/or the related part, the description of the other embodiments can be referred to.
[0023] 本実施形態における回転電機は、 例えば車両動力源として用いられるもの となっている。 ただし、 回転電機は、 産業用、 車両用、 家電用、 〇八機器用 〇 2020/175333 10 卩(:171? 2020 /006903 [0023] The rotary electric machine according to the present embodiment is used, for example, as a vehicle power source. However, rotating electrical machinery is for industrial use, vehicle use, home appliances use, and 08 equipment use. 〇 2020/175333 10 卩 (:171? 2020 /006903
、 遊技機用などとして広く用いられることが可能となっている。 なお、 以下 の各実施形態相互において、 互いに同 _又は均等である部分には、 図中、 同 _符号を付しており、 同 _符号の部分についてはその説明を援用する。 , Can be widely used for amusement machines. Note that in the following embodiments, the portions that are the same _ or equivalent to each other, in the drawing, are designated by the same _ code, portions of the _ sign of which is incorporated by reference in its description.
[0024] (第 1実施形態) [0024] (First Embodiment)
本実施形態に係る回転電機 1 〇は、 同期式多相交流モータであり、 アウタ 口ータ構造 (外転構造) のものとなっている。 回転電機 1 0の概要を図 1乃 至図 5に示す。 図 1は、 回転電機 1 0の縦断面斜視図であり、 図 2は、 回転 電機 1 0の回転軸 1 1 に沿う方向での縦断面図であり、 図 3は、 回転軸 1 1 に直交する方向での回転電機 1 〇の横断面図 (図 2の 111 - 111線断面図) で あり、 図 4は、 図 3の一部を拡大して示す断面図であり、 図 5は、 回転電機 1 〇の分解図である。 なお、 図 3では、 図示の都合上、 回転軸 1 1 を除き、 切断面を示すハッチングを省略している。 以下の記載では、 回転軸 1 1が延 びる方向を軸方向とし、 回転軸 1 1の中心から放射状に延びる方向を径方向 とし、 回転軸 1 1 を中心として円周状に延びる方向を周方向としている。 The rotary electric machine 100 according to the present embodiment is a synchronous multi-phase AC motor and has an outer port structure (outer rotation structure). An outline of the rotating electric machine 10 is shown in Figs. 1 is a vertical cross-sectional perspective view of the rotary electric machine 10, FIG. 2 is a vertical cross-sectional view of the rotary electric machine 10 in a direction along the rotary shaft 11 and FIG. Fig. 4 is a cross-sectional view (cross-sectional view taken along the line 111-111 in Fig. 2) of the rotating electric machine 10 in the direction of rotation, Fig. 4 is a cross-sectional view showing an enlarged part of Fig. 3, and Fig. 5 is It is an exploded view of the electric machine 10. Note that, in FIG. 3, for convenience of illustration, the hatching showing the cut surface is omitted except for the rotating shaft 11. In the following description, the direction in which the rotary shaft 11 extends is the axial direction, the direction that extends radially from the center of the rotary shaft 11 is the radial direction, and the direction that extends circumferentially around the rotary shaft 11 is the circumferential direction. I am trying.
[0025] 回転電機 1 0は、 大別して、 軸受ユニッ ト 2 0と、 ハウジング 3 0と、 回 転子 4 0と、 固定子 5 0と、 インバータユニッ ト 6 0とを備えている。 これ ら各部材は、 いずれも回転軸 1 1 と共に同軸上に配置され、 所定順序で軸方 向に組み付けられることで回転電機 1 0が構成されている。 本実施形態の回 転電機 1 0は、 「界磁子」 としての回転子 4 0と、 「電機子」 としての固定 子 5 0とを有する構成となっており、 回転界磁形の回転電機として具体化さ れるものとなっている。 The rotary electric machine 10 is roughly provided with a bearing unit 20, a housing 30, a rotor 40, a stator 50, and an inverter unit 60. Each of these members is arranged coaxially with the rotating shaft 11 and is assembled in the axial direction in a predetermined order to form the rotating electric machine 10. The rotating electric machine 10 of the present embodiment is configured to have a rotor 40 as a “field element” and a stator 50 as an “armature”, and is a rotating field type rotating electric machine. Is embodied as
[0026] 軸受ユニッ ト 2 0は、 軸方向に互いに離間して配置される 2つの軸受 2 1 , 2 2と、 その軸受 2 1 , 2 2を保持する保持部材 2 3とを有している。 軸 受 2 1 , 2 2は、 例えばラジアル玉軸受であり、 それぞれ外輪 2 5と、 内輪 2 6と、 それら外輪 2 5及び内輪 2 6の間に配置された複数の玉 2 7とを有 している。 保持部材 2 3は円筒状をなしており、 その径方向内側に軸受 2 1 , 2 2が組み付けられている。 そして、 軸受 2 1 , 2 2の径方向内側に、 回 転軸 1 1及び回転子 4 0が回転自在に支持されている。 軸受 2 1 , 2 2によ 〇 2020/175333 1 1 卩(:171? 2020 /006903 [0026] The bearing unit 20 has two bearings 21 and 22 arranged axially away from each other, and a holding member 23 that holds the bearings 21 and 22. .. The bearings 2 1, 2 2 are, for example, radial ball bearings, each having an outer ring 25, an inner ring 26, and a plurality of balls 27 arranged between the outer ring 25 and the inner ring 26. ing. The holding member 23 has a cylindrical shape, and the bearings 21 and 22 are assembled inside the holding member 23. The rotating shaft 11 and the rotor 40 are rotatably supported inside the bearings 21 and 22 in the radial direction. Bearings 2 1, 2 2 〇 2020/175333 1 1 卩(: 171-1? 2020/006903
り、 回転軸 1 1 を回転可能に支持する一組の軸受が構成されている。 Therefore, a pair of bearings that rotatably support the rotating shaft 11 is configured.
[0027] 各軸受 2 1 , 2 2では、 不図示のリテーナにより玉 2 7が保持され、 その 状態で各玉同士のピッチが保たれている。 軸受 2 1 , 2 2は、 リテーナの軸 方向上下部に封止部材を有し、 その内部に非導電性グリース (例えば非導電 性のウレア系グリース) が充填されている。 また、 内輪 2 6の位置がスぺ一 サにより機械的に保持され、 内側から上下方向に凸となる定圧予圧が施され ている。 [0027] In each of the bearings 21 and 22, a ball 27 is held by a retainer (not shown), and the pitch between the balls is maintained in that state. Each of the bearings 21 and 22 has a sealing member at the upper and lower portions in the axial direction of the retainer, and the inside thereof is filled with a non-conductive grease (for example, a non-conductive urea-based grease). In addition, the position of the inner ring 26 is mechanically held by a spacer, and a constant pressure preload is applied so that it projects from the inside in the vertical direction.
[0028] ハウジング 3 0は、 円筒状をなす周壁 3 1 を有する。 周壁 3 1は、 その軸 方向に対向する第 1端と第 2端を有する。 周壁 3 1は、 第 1端に端面 3 2と 有するとともに、 第 2端に開口 3 3を有する。 開口 3 3は、 第 2端の全体に おいて開放されている。 端面 3 2には、 その中央に円形の孔 3 4が形成され ており、 その孔 3 4に揷通させた状態で、 ネジやリベッ ト等の固定具により 軸受ユニッ ト 2 0が固定されている。 また、 ハウジング 3 0内、 すなわち周 壁 3 1及び端面 3 2により区画された内部スペースには、 中空円筒状の回転 子 4 0と中空円筒状の固定子 5 0とが収容されている。 本実施形態では回転 電機 1 〇がアウタロータ式であり、 ハウジング 3 0内には、 筒状をなす回転 子 4 0の径方向内側に固定子 5 0が配置されている。 回転子 4 0は、 軸方向 において端面 3 2の側で回転軸 1 1 に片持ち支持されている。 [0028] The housing 30 has a peripheral wall 3 1 having a cylindrical shape. The peripheral wall 31 has a first end and a second end that face each other in the axial direction. The peripheral wall 31 has an end face 32 at a first end and an opening 33 at a second end. The opening 33 is opened at the entire second end. A circular hole 34 is formed in the center of the end face 32, and the bearing unit 20 is fixed with a fixing tool such as a screw or rivet in a state where the circular hole 34 is made to pass through the hole 34. There is. A hollow cylindrical rotor 40 and a hollow cylindrical stator 50 are housed in the housing 30, that is, in the internal space defined by the peripheral wall 31 and the end face 32. In this embodiment, the rotating electric machine 10 is an outer rotor type, and the stator 50 is arranged inside the housing 30 in the radial direction of the cylindrical rotor 40. The rotor 40 is cantilevered on the rotating shaft 1 1 on the end face 3 2 side in the axial direction.
[0029] 回転子 4 0は、 中空筒状に形成された磁石ホルダ 4 1 と、 その磁石ホルダ 4 1の径方向内側に設けられた環状の磁石ユニッ ト 4 2とを有している。 磁 石ホルダ 4 1は、 略カップ状をなし、 磁石保持部材としての機能を有する。 磁石ホルダ 4 1は、 円筒状をなす円筒部 4 3と、 同じく円筒状をなしかつ円 筒部 4 3よりも小径の固定部 (3 3 1116^) 4 4と、 それら円筒部 4 3及び 固定部 4 4を繫ぐ部位となる中間部 4 5とを有している。 円筒部 4 3の内周 面に磁石ユニッ ト 4 2が取り付けられている。 The rotor 40 has a hollow cylindrical magnet holder 41 and an annular magnet unit 42 provided inside the magnet holder 41 in the radial direction. The magnet holder 41 has a substantially cup shape and functions as a magnet holding member. The magnet holder 4 1 includes a cylindrical portion 4 3 having a cylindrical shape, a fixing portion (3 3 1116^) 4 4 having the same cylindrical shape and a smaller diameter than the cylindrical portion 4 3, and the cylindrical portion 4 3 and the fixing portion. It has an intermediate part 4 5 which serves as a part for connecting the part 4 4. The magnet unit 4 2 is attached to the inner peripheral surface of the cylindrical portion 4 3.
[0030] なお、 磁石ホルダ 4 1は、 機械強度が充分な冷間圧延鋼板
Figure imgf000013_0001
や 、 鍛造用鋼、 炭素繊維強化プラスチック
Figure imgf000013_0002
等により構成されてい る。 〇 2020/175333 12 卩(:171? 2020 /006903
[0030] The magnet holder 41 is a cold-rolled steel plate with sufficient mechanical strength.
Figure imgf000013_0001
, Forging steel, carbon fiber reinforced plastic
Figure imgf000013_0002
Etc. 〇 2020/175333 12 boxes (:171? 2020 /006903
[0031 ] 固定部 4 4の貫通孔 4 4 3には回転軸 1 1が揷通される。 貫通孔 4 4 3内 に配置された回転軸 1 1 に対して固定部 4 4が固定されている。 つまり、 固 定部 4 4により、 回転軸 1 1 に対して磁石ホルダ 4 1が固定されている。 な お、 固定部 4 4は、 凹凸を利用したスプライン結合やキー結合、 溶接、 又は かしめ等により回転軸 1 1 に対して固定されているとよい。 これにより、 回 転子 4 0が回転軸 1 1 と一体に回転する。 The rotary shaft 11 is passed through the through hole 443 of the fixed portion 44. The fixed portion 4 4 is fixed to the rotating shaft 1 1 arranged in the through hole 4 4 3. That is, the magnet holder 41 is fixed to the rotating shaft 11 by the fixing portion 44. The fixed portion 44 is preferably fixed to the rotary shaft 11 by spline connection using unevenness, key connection, welding, caulking, or the like. As a result, the rotor 40 rotates together with the rotary shaft 1 1.
[0032] また、 固定部 4 4の径方向外側には、 軸受ユニッ ト 2 0の軸受 2 1 , 2 2 が組み付けられている。 上述のとおり軸受ユニッ ト 2 0はハウジング 3 0の 端面 3 2に固定されているため、 回転軸 1 1及び回転子 4 0は、 ハウジング 3 0に回転可能に支持されるものとなっている。 これにより、 ハウジング 3 0内において回転子 4 0が回転自在となっている。 Further, the bearings 21 and 22 of the bearing unit 20 are assembled on the outer side in the radial direction of the fixed portion 44. Since the bearing unit 20 is fixed to the end surface 32 of the housing 30 as described above, the rotating shaft 11 and the rotor 40 are rotatably supported by the housing 30. As a result, the rotor 40 is rotatable within the housing 30.
[0033] 回転子 4 0には、 その軸方向に対向する二つの端部の一方にのみ固定部 4 4が設けられており、 これにより、 回転子 4 0が回転軸 1 1 に片持ち支持さ れている。 ここで、 回転子 4 0の固定部 4 4は、 軸受ユニッ ト 2 0の軸受 2 1 , 2 2により、 軸方向に異なる 2位置で回転可能に支持されている。 すな わち、 回転子 4 0は、 磁石ホルダ 4 1の、 その軸方向に対向する二つの端部 の一方において、 その軸方向に離間する二つの軸受 2 1 , 2 2により回転可 能に支持されている。 そのため、 回転子 4 0が回転軸 1 1 に片持ち支持され る構造であっても、 回転子 4 0の安定回転が実現されるようになっている。 この場合、 回転子 4 0の軸方向中心位置に対して片側にずれた位置で、 回転 子 4 0が軸受 2 1 , 2 2により支持されている。 [0033] The rotor 40 is provided with the fixed portion 44 only at one of the two end portions opposed to each other in the axial direction, whereby the rotor 40 is cantilevered on the rotation shaft 1 1. It is being touched. Here, the fixed portion 44 of the rotor 40 is rotatably supported at two different axial positions by the bearings 21 and 22 of the bearing unit 20. That is, the rotor 40 is rotatably supported by the two bearings 21 and 22 spaced apart from each other in one of the two axially opposite ends of the magnet holder 41. Is supported. Therefore, even if the rotor 40 is cantilevered by the rotating shaft 11, stable rotation of the rotor 40 is realized. In this case, the rotor 40 is supported by the bearings 21 and 22 at a position displaced to one side with respect to the axial center position of the rotor 40.
[0034] また、 軸受ユニッ ト 2 0において回転子 4 0の中心寄り (図の下側) の軸 受 2 2と、 その逆側 (図の上側) の軸受 2 1 とは、 外輪 2 5及び内輪 2 6と 玉 2 7との間の隙間寸法が相違しており、 例えば回転子 4 0の中心寄りの軸 受 2 2の方が、 その逆側の軸受 2 1 よりも隙間寸法が大きいものとなってい る。 この場合、 回転子 4 0の中心寄りの側において、 回転子 4 0の振れや、 部品公差に起因するインバランスによる振動が軸受ユニッ ト 2 0に作用して も、 その振れや振動の影響が良好に吸収される。 具体的には、 回転子 4 0の 〇 2020/175333 13 卩(:171? 2020 /006903 [0034] In the bearing unit 20, the bearing 22 located near the center of the rotor 40 (lower side in the figure) and the bearing 2 1 on the opposite side (upper side in the figure) are the outer ring 25 and The clearance between the inner ring 26 and the ball 27 is different, for example, the bearing 2 2 near the center of the rotor 40 has a larger clearance than the bearing 2 1 on the opposite side. Has become. In this case, on the side closer to the center of the rotor 40, even if vibration of the rotor 40 or vibration due to imbalance due to component tolerance acts on the bearing unit 20, the vibration and the effect of vibration will not occur. Absorbed well. Specifically, the rotor 40 〇 2020/175333 13 卩(:171? 2020/006903
中心寄り (図の下側) の軸受 2 2において予圧により遊び寸法 (隙間寸法) を大きく していることで、 片持ち構造において生じる振動がその遊び部分に より吸収される。 前記予圧は、 定位置予圧、 又は定圧予圧のいずれであって も良い。 定位置予圧の場合、 軸受 2 1 と軸受 2 2の外輪 2 5はいずれも保持 部材 2 3に対して、 圧入、 又は接着等の方法を用いて接合されている。 また 、 軸受 2 1 と軸受 2 2の内輪 2 6はいずれも回転軸 1 1 に対して、 圧入、 又 は接着等の方法を用いて接合されている。 ここで軸受 2 1の外輪 2 5を軸受 2 1の内輪 2 6に対して軸方向に異なる位置に配置する事で予圧を発生させ ることができる。 軸受 2 2の外輪 2 5を軸受 2 2の内輪 2 6に対して軸方向 に異なる位置に配置する事でも予圧を発生させることができる。 By increasing the play size (gap size) in the bearing 22 located closer to the center (lower side in the figure) by preload, the vibration generated in the cantilever structure is absorbed by the play part. The preload may be a fixed position preload or a constant preload. In the case of fixed position preload, both the bearing 21 and the outer ring 25 of the bearing 22 are joined to the holding member 23 by a method such as press fitting or adhesion. Further, both the bearing 21 and the inner ring 26 of the bearing 22 are joined to the rotary shaft 11 by a method such as press fitting or adhesion. Pre-load can be generated by arranging the outer ring 25 of the bearing 21 at a position different from the inner ring 26 of the bearing 21 in the axial direction. Preloading can also be generated by disposing the outer ring 25 of the bearing 22 at a position axially different from the inner ring 26 of the bearing 22.
[0035] また定圧予圧を採用する場合には、 軸方向において、 軸受 2 2と軸受 2 1 に挟まれた領域から軸受 2 2の外輪 2 5に向けて予圧が発生する様に予圧用 パネ、 例えばゥェーブワッシャ 2 4等を軸受 2 2と軸受 2 1 に挟まれた同領 域に配置する。 この場合も、 軸受 2 1 と軸受 2 2の内輪 2 6はいずれも回転 軸 1 1 に対して、 圧入、 又は接着等の方法を用いて接合されている。 軸受 2 1、 又は軸受 2 2の外輪 2 5は、 保持部材 2 3に対して所定のクリアランス を介して配置される。 このような構成とすることで、 軸受 2 2の外輪 2 5に は軸受 2 1から離れる方向に予圧用パネのパネカが作用する。 そして、 この 力が回転軸 1 1 を伝わることで、 軸受 2 1の内輪 2 6を軸受 2 2の方向に押 し付ける力が作用する。 これにより、 軸受 2 1 , 2 2ともに、 外輪 2 5と内 輪 2 6の軸方向の位置がずれ、 前述した定位置予圧と同様に 2つのべアリン グに予圧を掛けることができる。 [0035] Further, when the constant pressure preload is adopted, the preload panel is used so that the preload is generated from the region sandwiched between the bearing 22 and the bearing 21 toward the outer ring 25 of the bearing 2 2 in the axial direction. For example, place a wave washer 2 4 etc. in the same area between bearing 2 2 and bearing 2 1. Also in this case, both the bearing 21 and the inner ring 26 of the bearing 22 are joined to the rotating shaft 11 by a method such as press fitting or adhesion. The bearing 21 or the outer ring 25 of the bearing 22 is arranged with a predetermined clearance with respect to the holding member 23. With such a configuration, the paner of the preload panel acts on the outer ring 25 of the bearing 22 in a direction away from the bearing 21. Then, this force is transmitted to the rotary shaft 11 to exert a force that pushes the inner ring 26 of the bearing 21 toward the bearing 22. As a result, the axial positions of the outer ring 25 and the inner ring 26 of both the bearings 21 and 22 are displaced, and the two bearings can be preloaded in the same manner as the fixed position preload described above.
[0036] なお、 定圧予圧を発生させる際には、 必ずしも図 2に示す様に軸受 2 2の 外輪 2 5にパネカを印加する必要は無い。 例えば、 軸受 2 1の外輪 2 5にバ ネカを印加しても良い。 また軸受 2 1 , 2 2のいずれかの内輪 2 6を回転軸 1 1 に対して所定のクリアランスを介して配置し、 軸受 2 1 , 2 2の外輪 2 5を保持部材 2 3に対して圧入、 又は接着等の方法を用いて接合することで 、 2つのベアリングに予圧を掛けても良い。 〇 2020/175333 14 卩(:171? 2020 /006903 When generating the constant pressure preload, it is not always necessary to apply a paneler to the outer ring 25 of the bearing 22 as shown in FIG. For example, a Baneka may be applied to the outer ring 25 of the bearing 21. Also, place the inner ring 26 of either of the bearings 21 and 22 on the rotating shaft 11 with a predetermined clearance, and press the outer ring 25 of the bearings 21 and 22 into the holding member 23. Alternatively, the two bearings may be preloaded by joining them using a method such as bonding. 〇 2020/175333 14 卩 (:171? 2020 /006903
[0037] 更には、 軸受 2 1の内輪 2 6が軸受 2 2に対して離れるように力を作用さ せる場合には、 軸受 2 2の内輪 2 6も軸受 2 1 に対して離れるように力を作 用させる方が良い。 逆に、 軸受 2 1の内輪 2 6が軸受 2 2に対して近づくよ うに力を作用させる場合には、 軸受 2 2の内輪 2 6も軸受 2 1 に対して近づ くように力を作用させる方が良い。 [0037] Further, when the inner ring 26 of the bearing 21 exerts a force so as to separate from the bearing 22, the inner ring 26 of the bearing 22 also separates from the bearing 21. Is better to use. On the contrary, when the inner ring 26 of the bearing 21 exerts a force so as to approach the bearing 22, the inner race 26 of the bearing 22 also exerts a force so as to approach the bearing 21. Better to let.
[0038] なお、 本回転電機 1 0を車両動力源等の目的で車両に適用する場合には、 予圧を発生させる機構に対して予圧の発生方向の成分を持つ振動が加わる可 能性や、 予圧を印加する対象物に掛る重力の方向が変動してしまう可能性が ある。 その為、 本回転電機 1 0を車両に適用する場合には、 定位置予圧を採 用することが望ましい。 [0038] When the present rotating electrical machine 10 is applied to a vehicle for the purpose of a vehicle power source or the like, there is a possibility that vibration having a component in the direction of preload generation may be applied to the mechanism for generating preload, There is a possibility that the direction of gravity applied to the object to which the preload is applied may change. Therefore, when the present rotary electric machine 10 is applied to a vehicle, it is desirable to adopt a fixed position preload.
[0039] また、 中間部 4 5は、 環状の内側肩部 4 9 3と環状の外側肩部 4 9匕を有 する。 外側肩部 4 9 13は、 中間部 4 5の径方向において内側肩部 4 9 3の外 側に位置している。 内側肩部 4 9 3と外側肩部 4 9匕は、 中間部 4 5の軸方 向において互いに離間している。 これにより、 中間部 4 5の径方向において 、 円筒部 4 3と固定部 4 4とは部分的に重複している。 つまり、 固定部 4 4 の基端部 (図の下側の奧側端部) よりも軸方向外側に、 円筒部 4 3が突出す るものとなっている。 本構成では、 中間部 4 5が段差無しで平板状に設けら れる場合に比べて、 回転子 4 0の重心近くの位置で、 回転軸 1 1 に対して回 転子 4 0を支持させることが可能となり、 回転子 4 0の安定動作が実現でき るものとなっている。 [0039] The intermediate portion 4 5 have the outer shoulder 4 9 spoon annular inner shoulder 4 9 3 and the annular. The outer shoulder portion 4913 is located outside the inner shoulder portion 493 in the radial direction of the intermediate portion 45. Inner shoulder 4 9 3 and the outer shoulder 4 9 spoon are spaced apart from each other in the axial Direction of the intermediate portion 4 5. As a result, the cylindrical portion 4 3 and the fixed portion 4 4 partially overlap each other in the radial direction of the intermediate portion 45. In other words, the cylindrical portion 4 3 projects outward in the axial direction with respect to the base end of the fixed portion 4 4 (bottom end on the lower side of the figure). In this configuration, as compared with the case where the intermediate portion 45 is provided in the shape of a flat plate without a step, the rotor 40 is supported on the rotating shaft 11 at a position near the center of gravity of the rotor 40. It is possible to achieve stable operation of the rotor 40.
[0040] 上述した中間部 4 5の構成によれば、 回転子 4 0には、 径方向において固 定部 4 4を囲みかつ中間部 4 5の内寄りとなる位置に、 軸受ュニッ ト 2 0の 一部を収容する軸受収容凹部 4 6が環状に形成されるとともに、 径方向にお いて軸受収容凹部 4 6を囲みかつ中間部 4 5の外寄りとなる位置に、 後述す る固定子 5 0の固定子巻線 5 1のコイルエンド 5 4を収容するコイル収容凹 部 4 7が形成されている。 そして、 これら各収容凹部 4 6 , 4 7が、 径方向 の内外で隣り合うように配置されるようになっている。 つまり、 軸受ユニッ 卜 2 0の一部と、 固定子卷線 5 1のコイルエンド 5 4とが径方向内外に重複 〇 2020/175333 15 卩(:171? 2020 /006903 [0040] According to the configuration of the intermediate portion 45 described above, the rotor 40 has a bearing unit 2 0 at a position that surrounds the fixed portion 4 4 in the radial direction and is inward of the intermediate portion 45. A bearing accommodating recess 46 for accommodating a part of it is formed in an annular shape, and at a position that surrounds the bearing accommodating recess 46 in the radial direction and is on the outer side of the intermediate part 45, a stator 5 described later is formed. A coil housing concave portion 47 for housing the coil end 54 of the stator winding 51 of 0 is formed. The accommodation recesses 46, 47 are arranged so as to be adjacent to each other inside and outside in the radial direction. That is, a part of the bearing unit 20 and the coil end 5 4 of the stator winding 5 1 overlap radially inward and outward. 〇 2020/175333 15 卩 (: 171-1? 2020 /006903
するように配置されている。 これにより、 回転電機 1 0において軸方向の長 さ寸法の短縮が可能となっている。 It is arranged to. As a result, the axial length of the rotary electric machine 10 can be shortened.
[0041 ] 中間部 4 5は、 回転軸 1 1側から径方向外側に張り出すように設けられて いる。 そして、 その中間部 4 5に、 軸方向に延び、 固定子 5 0の固定子巻線 5 1のコイルエンド 5 4に対する接触を回避する接触回避部が設けられてい る。 中間部 4 5が張出部に相当する。 [0041] The intermediate portion 45 is provided so as to project radially outward from the rotary shaft 11 side. Further, a contact avoidance portion that extends in the axial direction and that avoids contact with the coil end 5 4 of the stator winding 51 of the stator 50 is provided in the intermediate portion 45. The intermediate portion 45 corresponds to the projecting portion.
[0042] コイルエンド 5 4は、 径方向の内側又は外側に曲げられることで、 そのコ イルエンド 5 4の軸方向寸法を小さくすることができ、 固定子 5 0の軸長を 短縮することが可能である。 コイルエンド 5 4の曲げ方向は、 回転子 4 0と の組み付けを考慮したものであるとよい。 回転子 4〇の径方向内側に固定子 5 0を組み付けることを想定すると、 その回転子 4 0に対する揷入先端側で は、 コイルエンド 5 4が径方向内側に曲げられるとよい。 コイルエンド 5 4 の反対側のコイルエンドの曲げ方向は任意でよいが、 空間的に余裕のある外 側に曲げた形状が製造上好ましい。 [0042] The coil end 5 4 can be bent inward or outward in the radial direction to reduce the axial dimension of the coil end 5 4 and reduce the axial length of the stator 50. Is. The bending direction of the coil end 54 should be taken into consideration the assembling with the rotor 40. Assuming that the stator 50 is assembled on the inner side of the rotor 40 in the radial direction, it is preferable that the coil end 5 4 be bent inward in the radial direction on the side of the insertion end with respect to the rotor 40. The coil end on the side opposite to the coil end 54 may be bent in any direction, but a shape bent outward with a spatial allowance is preferable for manufacturing.
[0043] また、 磁石部としての磁石ユニッ ト 4 2は、 円筒部 4 3の径方向内側にお いて、 周方向に沿って極性が交互に変わるように配置された複数の永久磁石 により構成されている。 これにより、 磁石ユニッ ト 4 2は、 周方向に複数の 磁極を有する。 ただし、 磁石ユニッ ト 4 2の詳細については後述する。 [0043] Further, the magnet unit 42 as a magnet portion is composed of a plurality of permanent magnets arranged radially inside the cylindrical portion 43 so that the polarities of the permanent magnets alternate along the circumferential direction. ing. As a result, the magnet unit 42 has a plurality of magnetic poles in the circumferential direction. However, details of the magnet unit 42 will be described later.
[0044] 固定子 5 0は、 回転子 4 0の径方向内側に設けられている。 固定子 5 0は 、 略筒状 (環状) に卷回形成された固定子巻線 5 1 と、 その径方向内側に配 置されたべース部材としての固定子コア 5 2とを有しており、 固定子巻線 5 1が、 所定のエアギャップを挟んで円環状の磁石ユニッ ト 4 2に対向するよ うに配置されている。 固定子巻線 5 1は複数の相巻線よりなる。 それら各相 巻線は、 周方向に配列された複数の導線が所定ピッチで互いに接続されるこ とで構成されている。 本実施形態では、 リ相、 V相及び 相の 3相卷線と、 X相、 丫相及び 相の 3相卷線とを用い、 それら 3相の巻線を 2つ用いるこ とで、 固定子巻線 5 1が 6相の相巻線として構成されている。 [0044] The stator 50 is provided inside the rotor 40 in the radial direction. The stator 5 0 has a stator winding 5 1 formed in a substantially cylindrical (annular) winding shape, and a stator core 5 2 as a base member arranged radially inside thereof. The stator winding 51 is arranged so as to face the annular magnet unit 42 with a predetermined air gap in between. The stator winding 51 consists of multiple phase windings. Each of the phase windings is composed of a plurality of conductor wires arranged in the circumferential direction and connected to each other at a predetermined pitch. In the present embodiment, a three-phase winding wire of re-phase, V-phase and phase and a three-phase winding wire of X-phase, negative phase and phase are used. The child winding 51 is configured as a 6-phase winding.
[0045] 固定子コア 5 2は、 軟磁性材である電磁鋼板が積層された積層鋼板により 〇 2020/175333 16 卩(:171? 2020 /006903 [0045] The stator core 52 is made of laminated steel plates that are laminated with electromagnetic steel plates that are soft magnetic materials. 〇 2020/175333 16 卩(: 171-1? 2020/006903
円環状に形成されており、 固定子巻線 5 1の径方向内側に組み付けられてい る。 電磁鋼板は、 例えば鉄に数%程度 (例えば 3 %) の珪素を添加した珪素 鋼板である。 固定子巻線 5 1が電機子巻線に相当し、 固定子コア 5 2が電機 子コアに相当する。 It is formed in an annular shape and is assembled inside the stator winding 51 in the radial direction. The electromagnetic steel sheet is, for example, a silicon steel sheet obtained by adding about several percent (for example, 3%) of silicon to iron. The stator winding 5 1 corresponds to the armature winding, and the stator core 5 2 corresponds to the armature core.
[0046] 固定子巻線 5 1は、 径方向において固定子コア 5 2に重複する部分であり 、 かつ固定子コア 5 2の径方向外側となるコイルサイ ド部 5 3と、 軸方向に おいて固定子コア 5 2の一端側及び他端側にそれぞれ張り出すコイルエンド 5 4 , 5 5とを有している。 コイルサイ ド部 5 3は、 径方向において固定子 コア 5 2と回転子 4 0の磁石ユニッ ト 4 2にそれぞれ対向している。 回転子 [0046] The stator winding 5 1 is a portion that overlaps the stator core 5 2 in the radial direction, and is also a coil side portion 5 3 that is the radial outside of the stator core 5 2 and the axial direction. The stator core 52 has coil ends 5 4 and 5 5 projecting from one end side and the other end side, respectively. The coil side portion 5 3 faces the stator core 52 and the magnet unit 42 of the rotor 40 in the radial direction. Rotor
4 0の内側に固定子 5 0が配置された状態では、 軸方向両側のコイルエンドWith stator 50 placed inside 40, coil ends on both axial sides
5 4 , 5 5のうち軸受ユニッ ト 2 0の側 (図の上側) となるコイルエンド 5 4が、 回転子 4 0の磁石ホルダ 4 1 により形成されたコイル収容凹部 4 7に 収容されている。 ただし、 固定子 5 0の詳細については後述する。 The coil end 54, which is the bearing unit 20 side (upper side in the figure) of 5 4 and 5 5, is housed in the coil housing recess 4 7 formed by the magnet holder 41 of the rotor 40. .. However, details of the stator 50 will be described later.
[0047] インバータユニッ ト 6 0は、 ハウジング 3 0に対してボルト等の締結具に より固定されるユニッ トべース 6 1 と、 そのユニッ トべース 6 1 に組み付け られる複数の電気コンポーネント 6 2とを有している。 ユニッ トべース 6 1 は、 例えば炭素繊維強化プラスチック
Figure imgf000018_0001
により構成されている。 ユニッ トべース 6 1は、 ハウジング 3 0の開口 3 3の縁に対して固定される エンドプレート 6 3と、 そのエンドプレート 6 3に一体に設けられ、 軸方向 に延びるケーシング 6 4とを有している。 エンドブレート 6 3は、 その中心 部に円形の開口 6 5を有しており、 開口 6 5の周縁部から起立するようにし てケーシング 6 4が形成されている。
[0047] The inverter unit 60 is composed of a unit base 61 which is fixed to the housing 30 by fasteners such as bolts, and a plurality of electric components which are assembled to the unit base 61. 6 2 and. Unit base 61 is, for example, carbon fiber reinforced plastic.
Figure imgf000018_0001
It is composed by. The unit base 61 includes an end plate 63 fixed to the edge of the opening 33 of the housing 30 and a casing 64 integrally formed with the end plate 63 and extending in the axial direction. Have The end plate 63 has a circular opening 65 at the center thereof, and a casing 64 is formed so as to stand upright from the peripheral edge of the opening 65.
[0048] ケーシング 6 4の外周面には固定子 5 0が組み付けられている。 つまり、 ケーシング 6 4の外径寸法は、 固定子コア 5 2の内径寸法と同じか、 又は固 定子コア 5 2の内径寸法よりも僅かに小さい寸法になっている。 ケーシング A stator 50 is attached to the outer peripheral surface of the casing 64. That is, the outer diameter of the casing 64 is the same as the inner diameter of the stator core 52 or slightly smaller than the inner diameter of the stator core 52. casing
6 4の外側に固定子コア 5 2が組み付けられることで、 固定子 5 0とユニッ 卜べース 6 1 とが一体化されている。 また、 ユニッ トべース 6 1がハウジン グ 3 0に固定されることからすると、 ケーシング 6 4に固定子コア 5 2が組 〇 2020/175333 17 卩(:171? 2020 /006903 By mounting the stator core 52 on the outer side of the stator 64, the stator 50 and the unit base 61 are integrated. Also, since the unit base 61 is fixed to the housing 30, the stator core 52 is assembled to the casing 64. 〇 2020/175333 17 卩(: 171-1? 2020/006903
み付けられた状態では、 固定子 5 0が/ \ウジング 3 0に対して一体化された 状態となっている。 In the installed state, the stator 50 is integrated with the / \ housing 30.
[0049] なお、 固定子コア 5 2は、 ユニッ トべース 6 1 に対して接着、 焼きばめ、 圧入等により組み付けられているとよい。 これにより、 ユニッ トべース 6 1 側に対する固定子コア 5 2の周方向又は軸方向の位置ずれが抑制される。 The stator core 52 is preferably attached to the unit base 61 by adhesion, shrink fitting, press fitting, or the like. As a result, the positional deviation of the stator core 52 from the unit base 61 side in the circumferential direction or the axial direction is suppressed.
[0050] また、 ケーシング 6 4の径方向内側は、 電気コンポーネント 6 2を収容す る収容空間となっており、 その収容空間には、 回転軸 1 1 を囲むようにして 電気コンポーネント 6 2が配置されている。 ケーシング 6 4は、 収容空間形 成部としての役目を有している。 電気コンポーネント 6 2は、 インバータ回 路を構成する半導体モジュール 6 6や、 制御基板 6 7、 コンデンサモジュー ル 6 8を具備する構成となっている。 [0050] Further, the inside of the casing 6 4 in the radial direction is a housing space for housing the electric component 6 2. In the housing space, the electric component 6 2 is arranged so as to surround the rotating shaft 1 1. There is. The casing 64 has a role as a storage space forming unit. The electrical component 62 is configured to include a semiconductor module 66 that constitutes an inverter circuit, a control board 67, and a capacitor module 68.
[0051 ] なお、 ユニッ トべース 6 1が、 固定子 5 0の径方向内側に設けられ、 固定 子 5 0を保持する固定子ホルダ (電機子ホルダ) に相当する。 ハウジング 3 0及びユニッ トべース 6 1 により、 回転電機 1 0のモータハウジングが構成 されている。 このモータハウジングでは、 回転子 4 0を挟んで軸方向の一方 側においてハウジング 3 0に対して保持部材 2 3が固定されるとともに、 他 方側においてハウジング 3 0及びユニッ トべース 6 1が互いに結合されてい る。 例えば電気自動車である電動車両等においては、 その車両等の側にモー タハウジングが取り付けられることで、 回転電機 1 0が車両等に装着される The unit base 61 is provided inside the stator 50 in the radial direction, and corresponds to a stator holder (armature holder) that holds the stator 50. The housing 30 and the unit base 61 constitute a motor housing of the rotating electric machine 10. In this motor housing, the holding member 23 is fixed to the housing 30 on one side in the axial direction across the rotor 40, and the housing 30 and the unit base 61 are on the other side. Are connected to each other. For example, in an electric vehicle or the like which is an electric vehicle, the rotating electric machine 10 is mounted on the vehicle or the like by mounting the motor housing on the vehicle or the like side.
[0052] ここで、 上記図 1〜図 5に加え、 インバータユニッ ト 6 0の分解図である 図 6を用いて、 インバータユニッ ト 6 0の構成をさらに説明する。 Here, in addition to FIGS. 1 to 5 described above, the configuration of the inverter unit 60 will be further described using FIG. 6 which is an exploded view of the inverter unit 60.
[0053] ユニッ トべース 6 1 において、 ケーシング 6 4は、 筒状部 7 1 と、 その軸 方向において対向する両端の一方 (軸受ユニッ ト 2 0側の端部) に設けられ た端面 7 2とを有している。 筒状部 7 1の軸方向両端部のうち端面 7 2の反 対側は、 エンドブレート 6 3の開口 6 5を通じて全面的に開放されている。 端面 7 2には、 その中央に円形の孔 7 3が形成されており、 その孔 7 3に回 転軸 1 1が揷通可能となっている。 孔 7 3には、 回転軸 1 1の外周面との間 〇 2020/175333 18 卩(:171? 2020 /006903 [0053] In the unit base 61, the casing 64 includes an end face 7 provided on one side of the tubular portion 71 and one end thereof opposite to each other in the axial direction (end portion on the bearing unit 20 side). Has 2 and. The opposite side of the end face 7 2 among the both axial ends of the tubular portion 7 1 is entirely opened through the opening 65 of the end plate 63. A circular hole 7 3 is formed in the center of the end face 72, and the rotating shaft 11 can be passed through the hole 73. The hole 7 3 has a space between it and the outer peripheral surface of the rotating shaft 11. 〇 2020/175 333 18 卩 (: 171? 2020 /006903
の空隙を封鎖するシール材 1 7 1が設けられている。 シール材 1 7 1は、 例 えば樹脂材料よりなる摺動シールであるとよい。 A sealing material 1 71 for closing the voids is provided. The seal material 1 71 is preferably a sliding seal made of, for example, a resin material.
[0054] ケーシング 6 4の筒状部 7 1は、 その径方向外側に配置される回転子 4 0 及び固定子 5 0と、 その径方向内側に配置される電気コンポーネント 6 2と の間を仕切る仕切り部となっており、 筒状部 7 1 を挟んで径方向内外に、 回 転子 4 0及び固定子 5 0と電気コンポーネント 6 2とが並ぶようにそれぞれ 配置されている。 [0054] The tubular portion 71 of the casing 6 4 partitions between the rotor 40 and the stator 50 arranged radially outside thereof and the electric component 62 arranged radially inside thereof. It is a partition part, and the rotor 40, the stator 50, and the electrical component 62 are arranged side by side inside and outside in the radial direction with the tubular part 71 sandwiched therebetween.
[0055] また、 電気コンポーネント 6 2は、 インバータ回路を構成する電気部品で あり、 固定子巻線 5 1の各相卷線に対して所定順序で電流を流して回転子 4 0を回転させる力行機能と、 回転軸 1 1の回転に伴い固定子巻線 5 1 に流れ る 3相交流電流を入力し、 発電電力として外部に出力する発電機能とを有し ている。 なお、 電気コンポーネント 6 2は、 力行機能と発電機能とのうちい ずれか一方のみを有するものであってもよい。 発電機能は、 例えば回転電機 1 〇が車両用動力源として用いられる場合、 回生電力として外部に出力する 回生機能である。 [0055] Further, the electric component 62 is an electric component that constitutes an inverter circuit, and is a power running device that causes a current to flow in each of the phase windings of the stator winding 5 1 in a predetermined order to rotate the rotor 40. It has a function and a power generation function that inputs the three-phase AC current flowing in the stator windings 5 1 as the rotating shaft 11 rotates and outputs it as generated power to the outside. The electric component 62 may have only one of the power running function and the power generating function. The power generation function is a regenerative function that outputs the regenerated electric power to the outside when the rotating electric machine 10 is used as a power source for a vehicle, for example.
[0056] 電気コンポーネント 6 2の具体的な構成として、 図 4に示すように、 回転 軸 1 1の周りには、 中空円筒状をなすコンデンサモジュール 6 8が設けられ ており、 そのコンデンサモジュール 6 8の外周面上に、 複数の半導体モジュ —ル 6 6が周方向に並べて配置されている。 コンデンサモジュール 6 8は、 互いに並列接続された平滑用のコンデンサ 6 8 3を複数備えている。 具体的 には、 コンデンサ 6 8 3は、 複数枚のフィルムコンデンサが積層されてなる 積層型フィルムコンデンサであり、 横断面が台形状をなしている。 コンデン サモジュール 6 8は、 1 2個のコンデンサ 6 8 3が環状に並べて配置される ことで構成されている。 As a concrete configuration of the electric component 62, as shown in FIG. 4, a hollow cylindrical capacitor module 68 is provided around the rotary shaft 11 and the capacitor module 68 is provided. A plurality of semiconductor modules 66 are arranged side by side in the circumferential direction on the outer peripheral surface of the. The capacitor module 68 includes a plurality of smoothing capacitors 68 3 connected in parallel with each other. Specifically, the capacitor 683 is a laminated film capacitor in which a plurality of film capacitors are laminated, and the cross section has a trapezoidal shape. The capacitor module 68 is configured by arranging 12 capacitors 6 8 3 arranged side by side in a ring shape.
[0057] なお、 コンデンサ 6 8 3の製造過程においては、 例えば、 複数のフィルム が積層されてなる所定幅の長尺フィルムを用い、 フィルム幅方向を台形高さ 方向とし、 かつ台形の上底と下底とが交互になるように長尺フィルムが等脚 台形状に切断されることにより、 コンデンサ素子が作られる。 そして、 その 〇 2020/175333 19 卩(:171? 2020 /006903 [0057] In the manufacturing process of the capacitor 683, for example, a long film having a predetermined width formed by laminating a plurality of films is used, and the film width direction is the trapezoidal height direction, and A capacitor element is made by cutting a long film into an isosceles trapezoidal shape so that the bottom and the bottom are alternated. And that 〇 2020/175333 19 卩(: 171-1? 2020/006903
コンデンサ素子に電極等を取り付けることでコンデンサ 6 8 3が作製される Capacitor 6 8 3 is manufactured by attaching electrodes etc. to the capacitor element
[0058] 半導体モジュール 6 6は、 例えば 1\/1〇3 巳丁や I 〇巳丁等の半導体スイ ツチング素子を有し、 略板状に形成されている。 本実施形態では、 回転電機 1 〇が 2組の 3相巻線を備えており、 その 3相卷線ごとにインバータ回路が 設けられていることから、 計 1 2個の半導体モジュール 6 6を環状に並べて 形成された半導体モジュール群 6 6八が電気コンポーネント 6 2に設けられ ている。 [0058] The semiconductor module 66 has a semiconductor switching element such as 1\/1/3 and I_0, and is formed in a substantially plate shape. In the present embodiment, the rotating electric machine 10 is provided with two sets of three-phase windings, and since an inverter circuit is provided for each of the three-phase windings, a total of 12 semiconductor modules 6 6 are looped. The semiconductor module group 6 68, which is formed by arranging in parallel with each other, is provided in the electrical component 6 2.
[0059] 半導体モジュール 6 6は、 ケーシング 6 4の筒状部 7 1 とコンデンサモジ ュール 6 8との間に挟まれた状態で配置されている。 半導体モジュール群 6 6八の外周面は筒状部 7 1の内周面に当接し、 半導体モジュール群 6 6八の 内周面はコンデンサモジュール 6 8の外周面に当接している。 この場合、 半 導体モジュール 6 6で生じた熱は、 ケーシング 6 4を介してエンドブレート 6 3に伝わり、 エンドブレート 6 3から放出される。 The semiconductor module 66 is arranged so as to be sandwiched between the cylindrical portion 71 of the casing 64 and the capacitor module 68. The outer peripheral surface of the semiconductor module group 68 is in contact with the inner peripheral surface of the cylindrical portion 71, and the inner peripheral surface of the semiconductor module group 66 is in contact with the outer peripheral surface of the capacitor module 68. In this case, the heat generated in the semiconductor module 66 is transferred to the end plate 63 via the casing 64 and is released from the end plate 63.
[0060] 半導体モジュール群 6 6八は、 外周面側、 すなわち径方向において半導体 モジュール 6 6と筒状部 7 1 との間にスぺーサ 6 9を有しているとよい。 こ の場合、 コンデンサモジュール 6 8では軸方向に直交する横断面の断面形状 が正 1 2角形である一方、 筒状部 7 1の内周面の横断面形状が円形であるた め、 スぺーサ 6 9は、 内周面が平坦面、 外周面が曲面となっている。 スぺ一 サ 6 9は、 半導体モジュール群 6 6八の径方向外側において円環状に連なる ように一体に設けられていてもよい。 スぺーサ 6 9は、 良熱伝導体であり、 例えばアルミニウム等の金属、 又は放熱ゲルシート等であるとよい。 なお、 筒状部 7 1の内周面の横断面形状をコンデンサモジュール 6 8と同じ 1 2角 形にすることも可能である。 この場合、 スぺーサ 6 9の内周面及び外周面が いずれも平坦面であるとよい。 The semiconductor module group 6 68 preferably has a spacer 6 9 between the semiconductor module 6 6 and the cylindrical portion 7 1 on the outer peripheral surface side, that is, in the radial direction. In this case, in the capacitor module 68, the cross-sectional shape of the cross section orthogonal to the axial direction is a regular 12-sided polygon, while the cross-sectional shape of the inner peripheral surface of the tubular portion 71 is circular, so the space is small. The inner surface of the support 69 is flat and the outer surface is curved. The spacer 69 may be integrally provided so as to be continuous in an annular shape on the radially outer side of the semiconductor module group 668. The spacer 69 is a good heat conductor, and is preferably a metal such as aluminum or a heat dissipation gel sheet. The cross-sectional shape of the inner peripheral surface of the tubular portion 71 may be the same 12-sided polygon as the capacitor module 68. In this case, both the inner peripheral surface and the outer peripheral surface of the spacer 69 are preferably flat surfaces.
[0061 ] また、 本実施形態では、 ケーシング 6 4の筒状部 7 1 に、 冷却水を流通さ せる冷却水通路 7 4が形成されており、 半導体モジュール 6 6で生じた熱は 、 冷却水通路 7 4を流れる冷却水に対しても放出される。 つまり、 ケーシン 〇 2020/175333 20 卩(:171? 2020 /006903 [0061] Further, in the present embodiment, the tubular portion 7 1 of the casing 6 4 is provided with the cooling water passage 7 4 for circulating the cooling water, and the heat generated in the semiconductor module 6 6 is It is also discharged to the cooling water flowing through the passage 74. That is, Kashin 〇 2020/175 333 20 (:171? 2020/006903
グ 6 4は水冷機構を備えている。 図 3や図 4に示すように、 冷却水通路 7 4 は、 電気コンポーネント 6 2 (半導体モジュール 6 6及びコンデンサモジュ —ル 6 8) を囲むように環状に形成されている。 半導体モジュール 6 6は筒 状部 7 1の内周面に沿って配置されており、 その半導体モジュール 6 6に対 して径方向内外に重なる位置に冷却水通路 7 4が設けられている。 The Gu 6 4 is equipped with a water cooling mechanism. As shown in FIGS. 3 and 4, the cooling water passage 74 is formed in an annular shape so as to surround the electric components 62 (semiconductor module 66 and capacitor module 68). The semiconductor module 66 is arranged along the inner peripheral surface of the cylindrical portion 71, and the cooling water passage 74 is provided at a position overlapping the semiconductor module 66 inside and outside in the radial direction.
[0062] 筒状部 7 1の外側には固定子 5 0が配置され、 内側には電気コンポーネン 卜 6 2が配置されていることから、 筒状部 7 1 に対しては、 その外側から固 定子 5 0の熱が伝わるとともに、 内側から電気コンポーネント 6 2の熱 (例 えば半導体モジュール 6 6の熱) が伝わることになる。 この場合、 固定子 5 0と半導体モジュール 6 6とを同時に冷やすことが可能となっており、 回転 電機 1 0における発熱部材の熱を効率良く放出することができる。 [0062] Since the stator 50 is arranged on the outer side of the tubular portion 71 and the electric component 62 is arranged on the inner side thereof, the tubular portion 71 is fixed from the outside thereof. As the heat of the determinant 50 is transferred, the heat of the electrical component 6 2 (for example, the heat of the semiconductor module 6 6) is transferred from the inside. In this case, the stator 50 and the semiconductor module 66 can be cooled at the same time, and the heat of the heat generating member in the rotary electric machine 10 can be efficiently released.
[0063] 更に、 固定子巻線 5 1への通電を行うことで回転電機を動作させるインバ —夕回路の一部、 又は全部を構成する半導体モジュール 6 6の少なくとも一 部が、 ケーシング 6 4の筒状部 7 1の径方向外側に配置された固定子コア 5 2に囲まれた領域内に配置されている。 望ましくは、 1つの半導体モジュー ル 6 6の全体が固定子コア 5 2に囲まれた領域内に配置されている。 更に、 望ましくは、 全ての半導体モジュール 6 6の全体が固定子コア 5 2に囲まれ た領域内に配置されている。 [0063] Furthermore, at least a part of the semiconductor modules 6 6 that form part or all of the inverter circuit that operates the rotating electric machine by energizing the stator windings 51 is installed in the casing 6 4. It is arranged in a region surrounded by a stator core 52 arranged radially outside the tubular portion 71. Desirably, one semiconductor module 66 is wholly arranged in the region surrounded by the stator core 52. Furthermore, preferably, all the semiconductor modules 66 are entirely arranged in a region surrounded by the stator core 52.
[0064] また、 半導体モジュール 6 6の少なくとも一部が、 冷却水通路 7 4により 囲まれた領域内に配置されている。 望ましくは、 全ての半導体モジュール 6 6の全体がヨーク 1 4 1 に囲まれた領域内に配置されている。 Further, at least a part of the semiconductor module 66 is arranged in a region surrounded by the cooling water passages 74. Desirably, all the semiconductor modules 6 6 are entirely arranged in a region surrounded by the yoke 1 4 1.
[0065] また、 電気コンポーネント 6 2は、 軸方向において、 コンデンサモジュー ル 6 8の一方の端面に設けられた絶縁シート 7 5と、 他方の端面に設けられ た配線モジュール 7 6とを備えている。 この場合、 コンデンサモジュール 6 8は、 その軸方向に対向した二つの端面、 すなわち第 1端面と第 2端面を有 している。 コンデンサモジュール 6 8の軸受ユニッ ト 2 0に近い第 1端面は 、 ケーシング 6 4の端面 7 2に対向しており、 絶縁シート 7 5を挟んだ状態 で端面 7 2に重ね合わされている。 また、 コンデンサモジュール 6 8の開口 〇 2020/175333 21 卩(:171? 2020 /006903 [0065] Further, the electrical component 62 includes an insulating sheet 75 provided on one end face of the capacitor module 68 and a wiring module 76 provided on the other end face in the axial direction. .. In this case, the capacitor module 68 has two end faces that face each other in the axial direction, that is, the first end face and the second end face. The first end face of the capacitor module 68 close to the bearing unit 20 faces the end face 72 of the casing 64, and is superposed on the end face 72 with the insulating sheet 75 sandwiched. Also, open the capacitor module 68. 〇 2020/175333 21 卩(:171? 2020/006903
6 5に近い第 2端面には、 配線モジュール 7 6が組み付けられている。 The wiring module 7 6 is mounted on the second end face close to 6 5.
[0066] 配線モジュール 7 6は、 合成樹脂材よりなり円形板状をなす本体部 7 6 3 と、 その内部に埋設された複数のバスバー 7 6匕, 7
Figure imgf000023_0001
を有しており、 そ のバスバー 7 6匕, 7 6〇により、 半導体モジュール 6 6やコンデンサモジ ュール 6 8と電気的接続がなされている。 具体的には、 半導体モジュール 6 6は、 その軸方向端面から延びる接続ピン 6 6 3を有しており、 その接続ピ ン 6 6 3が、 本体部 7 6 3の径方向外側においてバスバー 7 6匕に接続され ている。 また、 バスバー 7 6〇は、 本体部 7 6 3の径方向外側においてコン デンサモジュール 6 8とは反対側に延びており、 その先端部にて配線部材 7 9に接続されるようになっている (図 2参照) 。
The wiring module 7 6 is composed of a circular plate-shaped main body 7 6 3 made of a synthetic resin material and a plurality of bus bars 7 6
Figure imgf000023_0001
The busbars 76 and 760 make electrical connection with the semiconductor module 66 and the capacitor module 68. Specifically, the semiconductor module 66 has a connecting pin 663 extending from the end face in the axial direction, and the connecting pin 663 is located outside the main body 763 in the radial direction. It is connected to the swamp. Further, the bus bar 760 extends to the side opposite to the capacitor module 68 on the outside in the radial direction of the main body portion 763, and is connected to the wiring member 79 at its tip. (See Figure 2).
[0067] 上記のとおりコンデンサモジュール 6 8の軸方向に対向する第 1端面に絶 縁シート 7 5が設けられ、 かつコンデンサモジュール 6 8の第 2端面に配線 モジュール 7 6が設けられた構成によれば、 コンデンサモジュール 6 8の放 熱経路として、 コンデンサモジュール 6 8の第 1端面および第 2端面から端 面 7 2及び筒状部 7 1 に至る経路が形成される。 すなわち、 第 1端面から端 面 7 2への経路と、 第 2端面から筒状部 7 1へ至る経路が形成される。 これ により、 コンデンサモジュール 6 8において半導体モジュール 6 6が設けら れた外周面以外の端面部からの放熱が可能になっている。 つまり、 径方向へ の放熱だけでなく、 軸方向への放熱も可能となっている。 As described above, the insulating sheet 75 is provided on the first end surface of the capacitor module 68 facing in the axial direction, and the wiring module 76 is provided on the second end surface of the capacitor module 68. For example, as a heat dissipation path of the capacitor module 68, a path is formed from the first end surface and the second end surface of the capacitor module 68 to the end surface 72 and the tubular portion 71. That is, a path from the first end surface to the end surface 72 and a path from the second end surface to the tubular portion 71 are formed. As a result, in the capacitor module 68, heat can be dissipated from the end surface portion other than the outer peripheral surface where the semiconductor module 66 is provided. In other words, it is possible to dissipate heat not only in the radial direction but also in the axial direction.
[0068] また、 コンデンサモジュール 6 8は中空円筒状をなし、 その内周部には所 定の隙間を介在させて回転軸 1 1が配置されることから、 コンデンサモジュ —ル 6 8の熱はその中空部からも放出可能となっている。 この場合、 回転軸 1 1の回転により空気の流れが生じることにより、 その冷却効果が高められ るようになっている。 [0068] Further, since the condenser module 68 has a hollow cylindrical shape, and the rotary shaft 11 is arranged in the inner peripheral portion thereof with a predetermined clearance, the heat of the condenser module 68 is It can also be released from the hollow part. In this case, the rotation of the rotating shaft 11 causes a flow of air to enhance the cooling effect.
[0069] 配線モジュール 7 6には、 円板状の制御基板 6 7が取り付けられている。 A disk-shaped control board 67 is attached to the wiring module 76.
制御基板 6 7は、 所定の配線パターンが形成されたプリントサーキッ トボー ド ( 〇巳) を有しており、 そのボード上には各種丨 〇や、 マイコン等から なる制御部に相当する制御装置 7 7が実装されている。 制御基板 6 7は、 ネ 〇 2020/175333 22 卩(:171? 2020 /006903 The control board 6 7 has a printed circuit board (∘) on which a predetermined wiring pattern is formed. On the board, various control circuits and a control device corresponding to a control unit composed of a microcomputer 7 are provided. 7 has been implemented. The control board 67 is 〇 2020/175333 22 卩 (:171? 2020 /006903
ジ等の固定具により配線モジュール 7 6に固定されている。 制御基板 6 7は 、 その中央部に、 回転軸 1 1 を揷通させる揷通孔 6 7 3を有している。 It is fixed to the wiring module 7 6 by a fixing tool such as a connector. Control board 6 7 at its center, and a揷通hole 6 7 3 for揷通the rotary shaft 1 1.
[0070] なお、 配線モジュール 7 6は、 軸方向に互いに対向する、 すなわち、 その 厚み方向において互いに対向する第 1面と第 2面を有する。 第 1面は、 コン デンサモジュール 6 8に面する。 配線モジュール 7 6は、 その第 2面に、 制 御基板 6 7を設けている。 制御基板 6 7の両面の一方側から他方側に配線モ ジュール 7 6のバスバー 7 6〇が延びる構成となっている。 かかる構成にお いて、 制御基板 6 7には、 バスバー 7 6〇との干渉を回避する切欠が設けら れているとよい。 例えば、 円形状をなす制御基板 6 7の外縁部の一部が切り 欠かれているとよい。 The wiring module 76 has a first surface and a second surface that face each other in the axial direction, that is, face each other in the thickness direction. The first side faces the capacitor module 68. The wiring module 76 is provided with a control board 67 on its second surface. The bus bar 760 of the wiring module 76 extends from one side of both sides of the control board 67 to the other side. In such a configuration, the control board 67 may be provided with a notch for avoiding interference with the bus bar 760. For example, a part of the outer edge portion of the circular control board 67 may be cut out.
[0071 ] 上述のとおり、 ケーシング 6 4に囲まれた空間内に電気コンポーネント 6 [0071] As mentioned above, the electrical components 6
2が収容され、 その外側に、 ハウジング 3 0、 回転子 4 0及び固定子 5 0が 層状に設けられている構成によれば、 インバータ回路で生じる電磁ノイズが 好適にシールドされるようになっている。 すなわち、 インバータ回路では、 所定のキャリア周波数による \^/1\/1制御を利用して各半導体モジュール 6 6 でのスイッチング制御が行われ、 そのスイッチング制御により電磁ノイズが 生じることが考えられるが、 その電磁ノイズを、 電気コンポーネント 6 2の 径方向外側のハウジング 3 0、 回転子 4 0、 固定子 5 0等により好適にシー ルドできる。 2 is housed, and the housing 30, the rotor 40, and the stator 50 are provided in a layered form on the outer side of the housing 2, so that the electromagnetic noise generated in the inverter circuit can be suitably shielded. There is. That is, in the inverter circuit, switching control is performed in each semiconductor module 66 using \^/1\/1 control with a predetermined carrier frequency, and electromagnetic noise may occur due to the switching control. The electromagnetic noise can be suitably shielded by the housing 30 on the radial outside of the electric component 62, the rotor 40, the stator 50, and the like.
[0072] 更に、 半導体モジュール 6 6の少なくとも一部が、 ケーシング 6 4の筒状 部 7 1の径方向外側に配置された固定子コア 5 2に囲まれた領域内に配置す ることで、 半導体モジュール 6 6と固定子巻線 5 1 とが固定子コア 5 2を介 さずに配置されている構成に比べて、 半導体モジュール 6 6から磁束が発生 したとしても、 固定子巻線 5 1 に影響を与えにくい。 また、 固定子巻線 5 1 から磁束が発生したとしても、 半導体モジュール 6 6に影響を与えにくい。 なお、 半導体モジュール 6 6の全体が、 ケーシング 6 4の筒状部 7 1の径方 向外側に配置された固定子コア 5 2に囲まれた領域内に配置されると更に効 果的である。 また、 半導体モジュール 6 6の少なくとも一部が、 冷却水通路 〇 2020/175333 23 卩(:171? 2020 /006903 Further, by disposing at least a part of the semiconductor module 6 6 in the region surrounded by the stator core 52 arranged radially outside the tubular portion 71 of the casing 6 4, Compared with the configuration in which the semiconductor module 6 6 and the stator winding 5 1 are arranged without the stator core 5 2 interposed, even if magnetic flux is generated from the semiconductor module 6 6, the stator winding 5 1 Hard to affect. Further, even if the magnetic flux is generated from the stator winding 51, the semiconductor module 66 is not easily affected. It is more effective if the entire semiconductor module 6 6 is arranged in the area surrounded by the stator core 52 arranged radially outside the tubular portion 71 of the casing 6 4. .. Moreover, at least a part of the semiconductor module 66 is connected to the cooling water passage. 〇 2020/175333 23 卩 (:171? 2020 /006903
7 4により囲まれている場合、 固定子巻線 5 1や磁石ユニッ ト 4 2からの発 熱が半導体モジュール 6 6に届きにくいという効果を得ることができる。 In the case of being surrounded by 7 4, it is possible to obtain the effect that heat generated from the stator winding 5 1 and the magnet unit 4 2 does not easily reach the semiconductor module 6 6.
[0073] 筒状部 7 1 においてエンドブレート 6 3の付近には、 その外側の固定子 5 [0073] In the vicinity of the end plate 63 in the tubular portion 71, the stator 5 on the outer side is provided.
0と内側の電気コンポーネント 6 2とを電気的に接続する配線部材 7 9 (図 2参照) を揷通させる貫通孔 7 8が形成されている。 図 2に示すように、 配 線部材 7 9は、 圧着、 溶接などにより、 固定子巻線 5 1の端部と配線モジュ —ル 7 6のバスバー 7 6〇とにそれぞれ接続されている。 配線部材 7 9は、 例えば/《スバーであり、 その接合面は平たく潰されていることが望ましい。 貫通孔 7 8は、 1力所又は複数箇所に設けられているとよく、 本実施形態で は 2力所に貫通孔 7 8が設けられている。 2力所に貫通孔 7 8が設けられる 構成では、 2組の 3相巻線から延びる巻線端子を、 それぞれ配線部材 7 9に より容易に結線することが可能となり、 多相結線を行う上で好適なものとな っている。 A through hole 7 8 is formed to allow a wiring member 7 9 (see FIG. 2) to electrically connect 0 and the inner electric component 62 to each other. As shown in Fig. 2, the wiring member 79 is connected to the end of the stator winding 51 and the bus bar 760 of the wiring module 7 6 by crimping, welding, or the like. The wiring member 79 is, for example, /<sub bar, and its joint surface is preferably flat and crushed. The through holes 78 are preferably provided at one power point or at a plurality of points, and in the present embodiment, the through holes 78 are provided at two power points. In the configuration in which the through holes 78 are provided at the two power points, it is possible to easily connect the winding terminals extending from the two sets of three-phase windings to the wiring members 79, respectively, and it is possible to perform multi-phase wiring. It is suitable.
[0074] 上述のとおりハウジング 3 0内には、 図 4に示すように径方向外側から順 に回転子 4 0、 固定子 5 0が設けられ、 固定子 5 0の径方向内側にインパー タユニッ ト 6 0が設けられている。 ここで、 ハウジング 3 0の内周面の半径 を とした場合に、 回転子 4 0の回転中心から X〇. 7 0 5の距離よりも 径方向外側に回転子 4 0と固定子 5 0とが配置されている。 この場合、 回転 子 4 0及び固定子 5 0のうち径方向内側の固定子 5 0の内周面 (すなわち固 定子コア 5 2の内周面) から径方向内側となる領域を第 1領域 X 1、 径方向 において固定子 5 0の内周面からハウジング 3 0までの間の領域を第 2領域 X 2とすると、 第 1領域 X 1の横断面の面積は、 第 2領域 X 2の横断面の面 積よりも大きい構成となっている。 また、 径方向において回転子 4 0の磁石 ユニッ ト 4 2及び固定子巻線 5 1が重複する範囲で見て、 第 1領域 X 1の容 積が第 2領域 X 2の容積よりも大きい構成となっている。 As described above, in the housing 30 as shown in FIG. 4, the rotor 40 and the stator 50 are provided in order from the outside in the radial direction, and the rotor unit 0 and the stator unit 50 are arranged in the inside in the radial direction. 60 is provided. Here, when the radius of the inner peripheral surface of the housing 30 is defined as, the rotor 40 and the stator 50 are arranged radially outward from the distance X 0 .705 from the center of rotation of the rotor 40. Are arranged. In this case, the region that is radially inward from the inner peripheral surface of the stator 50 on the radially inner side of the rotor 40 and the stator 50 (that is, the inner peripheral surface of the stator core 52) is the first region X. 1, the area between the inner peripheral surface of the stator 50 and the housing 30 in the radial direction is the second area X 2, and the cross-sectional area of the first area X 1 is the cross section of the second area X 2. The structure is larger than the surface area. In the radial direction, the volume of the first region X 1 is larger than the volume of the second region X 2 when viewed in the range where the magnet unit 42 of the rotor 40 and the stator winding 51 overlap. Has become.
[0075] なお、 回転子 4 0及び固定子 5 0を磁気回路コンポーネントアッセンプリ とすると、 ハウジング 3 0内において、 その磁気回路コンポーネントアッセ ンプリの内周面から径方向内側となる第 1領域 X 1が、 径方向において磁気 回路コンポーネントアッセンプリの内周面からハウジング 3 0までの間の第 2領域 X 2よりも容積が大きい構成となっている。 [0075] If the rotor 40 and the stator 50 are magnetic circuit component assemblies, the first region X1 inside the housing 30 that is radially inward from the inner peripheral surface of the magnetic circuit component assembly. Is magnetic in the radial direction The volume is larger than the second region X 2 between the inner peripheral surface of the circuit component assembly and the housing 30.
[0076] 次いで、 回転子 4 0及び固定子 5 0の構成をより詳しく説明する。 Next, the configurations of the rotor 40 and the stator 50 will be described in more detail.
[0077] 一般に、 回転電機における固定子の構成として、 積層鋼板よりなりかつ円 環状をなす固定子コアに周方向に複数のスロッ トを設け、 そのスロッ ト内に 固定子巻線を巻装するものが知られている。 具体的には、 固定子コアは、 ヨ —クから所定間隔で径方向に延びる複数のティースを有しており、 周方向に 隣り合うティース間にスロッ トが形成されている。 そして、 スロッ ト内に、 例えば径方向に複数層の導線が収容され、 その導線により固定子巻線が構成 されている。 [0077] Generally, as a structure of a stator in a rotary electric machine, a plurality of slots are provided in a circumferential direction on a stator core made of laminated steel plates and having an annular shape, and the stator winding is wound in the slot. Things are known. Specifically, the stator core has a plurality of teeth extending from the yoke in the radial direction at predetermined intervals, and a slot is formed between the teeth that are adjacent to each other in the circumferential direction. In the slot, for example, a plurality of layers of conductor wires are accommodated in the radial direction, and the conductor wires form a stator winding.
[0078] ただし、 上述した固定子構造では、 固定子巻線の通電時において、 固定子 巻線の起磁力が増加するのに伴い固定子コアのティース部分で磁気飽和が生 じ、 それに起因して回転電機のトルク密度が制限されることが考えられる。 つまり、 固定子コアにおいて、 固定子巻線の通電により生じた回転磁束がテ ィースに集中することで、 磁気飽和が生じると考えられる。 [0078] However, in the above-described stator structure, when the stator winding is energized, as the magnetomotive force of the stator winding increases, magnetic saturation occurs in the teeth portion of the stator core, which causes As a result, the torque density of the rotating electric machine may be limited. In other words, in the stator core, it is considered that magnetic saturation occurs because the rotating magnetic flux generated by the energization of the stator windings concentrates on the teeth.
[0079] また、 一般的に、 回転電機における 丨 P M (Inter i or Permanent Magnet) ロータの構成として、 永久磁石が d _ q座標系における d軸に配置され、 q 軸にロータコアが配置されたものが知られている。 このような場合、 d軸近 傍の固定子巻線が励磁されることで、 フレミングの法則により固定子から回 転子の q軸に励磁磁束が流入される。 そしてこれにより、 回転子の q軸コア 部分に、 広範囲の磁気飽和が生じると考えられる。 [0079] In general, as a configuration of a PM (Interior Permanent Magnet) rotor in a rotating electric machine, a permanent magnet is arranged on the d axis in the d _ q coordinate system, and a rotor core is arranged on the q axis. It has been known. In this case, the stator winding near the d-axis is excited, and the exciting magnetic flux flows from the stator to the q-axis of the rotor according to Fleming's law. It is considered that this causes a wide range of magnetic saturation in the q-axis core of the rotor.
[0080] 図 7は、 固定子巻線の起磁力を示すアンペアターン [ A T ] とトルク密度 [0080] Fig. 7 shows the amperage [AT] and torque density showing the magnetomotive force of the stator winding.
[ N m / L ] との関係を示すトルク線図である。 破線が一般的な丨 P M口一 夕型の回転電機における特性を示す。 図 7に示すように、 一般的な回転電機 では、 固定子において起磁力を増加させていくことにより、 スロッ ト間のテ ィース部分及び q軸コア部分の 2力所で磁気飽和が生じ、 それが原因でトル クの増加が制限されてしまう。 このように、 当該一般的な回転電機では、 ア ンペアターン設計値が A 1で制限されることになる。 [0081 ] そこで本実施形態では、 磁気飽和に起因する制限を解消すべく、 回転電機 1 0において、 以下に示す構成を付与するものとしている。 すなわち、 第 1 の工夫として、 固定子において固定子コアのティースで生じる磁気飽和をな くすべく、 固定子 5 0においてスロッ トレス構造を採用し、 かつ 丨 P M口一 夕の q軸コア部分で生じる磁気飽和をなくすべく、 S P M (Surface Permane nt Magnet) ロータを採用している。 第 1の工夫によれば、 磁気飽和が生じる 上記 2力所の部分をなくすことができるが、 低電流域でのトルクが減少する ことが考えられる (図 7の一点鎖線参照) 。 そのため、 第 2の工夫として、It is a torque diagram which shows the relationship with [N m /L ]. The broken line shows the characteristics of a general PM-type overnight rotating electrical machine. As shown in Fig. 7, in a general rotating electrical machine, increasing the magnetomotive force in the stator causes magnetic saturation at two force points, the tooth portion between the slots and the q-axis core portion. This limits the increase in torque. As described above, in the general electric rotating machine, the ampere-turn design value is limited by A 1. Therefore, in the present embodiment, in order to eliminate the limitation caused by magnetic saturation, the rotating electric machine 10 is provided with the following configuration. In other words, as the first measure, a slotless structure is adopted in the stator 50 to eliminate magnetic saturation that occurs in the teeth of the stator core in the stator, and it is generated in the q-axis core part of the PM mouth. The SPM (Surface Permanent Magnet) rotor is used to eliminate magnetic saturation. According to the first device, the above two force points where magnetic saturation occurs can be eliminated, but the torque may be reduced in the low current region (see the chain line in Fig. 7). Therefore, as the second device,
S P M口一夕の磁束増強を図ることでトルク減少を挽回すべく、 回転子 4 0 の磁石ユニッ ト 4 2において磁石磁路を長く して磁力を高めた極異方構造を 探用している。 In order to recover the torque reduction by increasing the magnetic flux of the SPM mouth overnight, we are searching for a polar anisotropic structure in which the magnet magnetic path is lengthened in the magnet unit 42 of the rotor 40 to increase the magnetic force. ..
[0082] また、 第 3の工夫として、 固定子巻線 5 1のコイルサイ ド部 5 3において 導線の固定子 5 0における径方向厚さを小さく した扁平導線構造を採用して トルク減少の挽回を図っている。 ここで、 上述の磁力を高めた極異方構造に よって、 磁石ユニッ ト 4 2に対向する固定子巻線 5 1 には、 より大きな渦電 流が発生することが考えられる。 しかしながら、 第 3の工夫によれば、 径方 向に薄い扁平導線構造のため、 固定子巻線 5 1 における径方向の渦電流の発 生を抑制することができる。 このように、 これら第 1〜第 3の各構成によれ ば、 図 7に実線で示すように、 磁力の高い磁石を採用してトルク特性の大幅 な改善を見込みつつも、 磁力の高い磁石ゆえに生じ得る大きい渦電流発生の 懸念も改善できるものとなっている。 [0082] As a third device, a flat conductor structure in which the radial thickness of the stator 5 0 of the conductor is reduced in the coil side portion 5 3 of the stator winding 5 1 is adopted to recover the torque reduction. I am trying. Here, it is conceivable that a larger eddy current will be generated in the stator winding 5 1 facing the magnet unit 4 2 due to the above-mentioned polar anisotropic structure with increased magnetic force. However, according to the third device, since the flat conductor structure is thin in the radial direction, it is possible to suppress the generation of radial eddy currents in the stator winding 51. Thus, according to each of the first to third configurations, as shown by the solid line in FIG. 7, while a magnet with a high magnetic force is adopted and a significant improvement in torque characteristics is expected, a magnet with a high magnetic force is used. Concerns about the generation of large eddy currents that can occur can be alleviated.
[0083] さらに、 第 4の工夫として、 極異方構造を利用し正弦波に近い磁束密度分 布を有する磁石ユニッ トを採用している。 これによれば、 後述するパルス制 御等によって正弦波整合率を高めてトルク増強を図ることができるとともに 、 ラジアル磁石と比べ緩やかな磁束変化のため渦電流損 (渦電流による銅損 : eddy cur rent loss) もまた更に抑制することができるのである。 Furthermore, as a fourth measure, a magnet unit having a magnetic flux density distribution close to a sine wave is used by utilizing a polar anisotropic structure. According to this, the sine wave matching rate can be increased by the pulse control described later to increase the torque, and eddy current loss (copper loss due to eddy current: eddy cur rent loss) can be further suppressed.
[0084] 以下、 正弦波整合率について説明する。 正弦波整合率は、 磁石の表面を磁 束プローブでなぞる等して計測した表面磁束密度分布の実測波形と周期及び 〇 2020/175333 26 卩(:171? 2020 /006903 The sine wave matching rate will be described below. The sine wave matching rate is the measured waveform and period of the surface magnetic flux density distribution measured by tracing the surface of the magnet with a magnetic flux probe. 〇 2020/175 333 26 卩 (: 171? 2020 /006903
ピーク値が同じ正弦波との比較から求める事ができる。 そして、 回転電機の 基本波である 1次波形の振幅が、 実測波形の振幅、 即ち基本波に他の高調波 成分を加えた振幅に対して、 占める割合が正弦波整合率に相当する。 正弦波 整合率が高くなると、 表面磁束密度分布の波形が正弦波形状に近づいていく 。 そして、 正弦波整合率を向上させた磁石を備えた回転電機に対して、 イン バータから 1次の正弦波の電流を供給すると、 磁石の表面磁束密度分布の波 形が正弦波形状に近い事と相まって、 大きなトルクを発生させることができ る。 なお、 表面磁束密度分布は実測以外の方法、 例えばマクスウヱルの方程 式を用いた電磁界解析によって推定しても良い。 It can be obtained by comparison with a sine wave with the same peak value. The sine wave matching rate is the ratio of the amplitude of the primary waveform, which is the fundamental wave of the rotating electrical machine, to the amplitude of the measured waveform, that is, the amplitude of the fundamental wave plus other harmonic components. Sine wave As the matching rate increases, the surface magnetic flux density distribution waveform approaches a sine wave shape. When a primary sinusoidal current is supplied from an inverter to a rotating electrical machine equipped with a magnet with an improved sinusoidal matching factor, the waveform of the surface magnetic flux density distribution of the magnet should be close to the sinusoidal shape. Combined with, a large torque can be generated. The surface magnetic flux density distribution may be estimated by a method other than actual measurement, for example, electromagnetic field analysis using Maxwell's equation.
[0085] また、 第 5の工夫として、 固定子巻線 5 1 を複数の素線を寄せ集めて束ね た素線導体構造としている。 これによれば、 素線が並列結線されているため 、 大電流が流せるとともに、 扁平導線構造で固定子 5 0の周方向に広がった 導線で発生する渦電流の発生を、 素線それぞれの断面積が小さくなるため、 第 3の工夫による径方向に薄くする以上に効果的に抑制することができる。 そして、 複数の素線を撚り合わせた構成にすることで、 導体からの起磁力に 対しては、 電流通電方向に対して右ネジの法則で発生する磁束に対する渦電 流を相殺することができる。 [0085] As a fifth device, the stator winding 51 has a strand conductor structure in which a plurality of strands are gathered together and bundled. According to this, since the wires are connected in parallel, a large current can flow and the generation of eddy currents generated by the wires spread in the circumferential direction of the stator 50 in the flat wire structure is prevented from occurring. Since the area is reduced, it can be more effectively suppressed than the reduction in the radial direction by the third measure. By constructing a plurality of strands twisted together, it is possible to cancel the eddy current with respect to the magnetic flux generated from the conductor by the right-handed screw law in the direction of current flow. ..
[0086] このように、 第 4の工夫、 第 5の工夫をさらに加えると、 第 2の工夫であ る磁力の高い磁石を採用しながら、 さらにその高い磁力に起因する渦電流損 を抑制しながらトルク増強を図ることができる。 [0086] As described above, by further adding the fourth device and the fifth device, the eddy current loss due to the high magnetic force is suppressed while the magnet with high magnetic force, which is the second device, is adopted. However, torque can be increased.
[0087] 以下に、 上述した固定子 5 0のスロッ トレス構造、 固定子巻線 5 1の扁平 導線構造、 及び磁石ユニッ ト 4 2の極異方構造について個別に説明を加える 。 ここではまずは、 固定子 5 0におけるスロッ トレス構造と固定子巻線 5 1 の扁平導線構造とを説明する。 図 8は、 回転子 4 0及び固定子 5 0の横断面 図であり、 図 9は、 図 8に示す回転子 4 0及び固定子 5 0の一部を拡大して 示す図である。 図 1 0は、 図 1 1の X - X線に沿った固定子 5 0の横断面を 示す断面図であり、 図 1 1は、 固定子 5 0の縦断面を示す断面図である。 ま た、 図 1 2は、 固定子卷線 5 1の斜視図である。 なお、 図 8及び図 9には、 磁石ユニッ ト 4 2における磁石の磁化方向を矢印にて示している。 The slotless structure of the stator 50, the flat conductor structure of the stator winding 51, and the polar anisotropic structure of the magnet unit 42 described above will be individually described below. Here, first, the slotless structure in the stator 50 and the flat conductor structure in the stator winding 5 1 will be described. 8 is a cross-sectional view of the rotor 40 and the stator 50, and FIG. 9 is an enlarged view of a part of the rotor 40 and the stator 50 shown in FIG. FIG. 10 is a sectional view showing a cross section of the stator 50 along the line X--X in FIG. 11, and FIG. 11 is a sectional view showing a longitudinal section of the stator 50. Further, FIG. 12 is a perspective view of the stator winding line 51. In addition, in FIG. 8 and FIG. The magnetization direction of the magnet in the magnet unit 42 is indicated by the arrow.
[0088] 図 8乃至図 1 1 に示すように、 固定子コア 5 2は、 軸方向に複数の電磁鋼 板が積層され、 かつ径方向に所定の厚さを有する円筒状をなしており、 回転 子 4 0側となる径方向外側に固定子巻線 5 1が組み付けられるものとなって いる。 固定子コア 5 2において、 回転子 4 0側の外周面が導線設置部 (導体 エリア) となっている。 固定子コア 5 2の外周面は凹凸のない曲面状をなし ており、 その外周面において周方向に所定間隔で複数の導線群 8 1が配置さ れている。 固定子コア 5 2は、 回転子 4 0を回転させるための磁気回路の一 部となるバックヨークとして機能する。 この場合、 周方向に隣り合う各 2つ の導線群 8 1の間には軟磁性材からなるティース (つまり、 鉄心) が設けら れていない構成 (つまり、 スロッ トレス構造) となっている。 本実施形態に おいて、 それら各導線群 8 1の間隙 5 6には、 封止部材 5 7の樹脂材料が入 り込む構造となっている。 つまり、 固定子 5 0において、 周方向における各 導線群 8 1の間に設けられる導線間部材が、 非磁性材料である封止部材 5 7 として構成されている。 封止部材 5 7の封止前の状態で言えば、 固定子コア 5 2の径方向外側には、 それぞれ導線間領域である間隙 5 6を隔てて周方向 に所定間隔で導線群 8 1が配置されており、 これによりスロッ トレス構造の 固定子 5 0が構築されている。 言い換えれば、 各導線群 8 1は、 後述するよ うに二つの導線 (conductor) 8 2からなり、 固定子 5 0の周方向に隣り合う 各二つの導線群 8 1の間は、 非磁性材のみが占有している。 この非磁性材と は、 封止部材 5 7以外に空気などの非磁性気体や非磁性液体などをも含む。 なお、 以下において、 封止部材 5 7は導線間部材 (conductor-to- conductor member; ともいう。 As shown in FIGS. 8 to 11, the stator core 52 has a cylindrical shape in which a plurality of electromagnetic steel plates are laminated in the axial direction and has a predetermined thickness in the radial direction. The stator winding 5 1 is mounted on the radially outer side of the rotor 40 side. In the stator core 52, the outer peripheral surface on the rotor 40 side is a conductor wire installation portion (conductor area). The outer peripheral surface of the stator core 52 has a curved surface without unevenness, and a plurality of conductor wire groups 81 are arranged at predetermined intervals in the circumferential direction on the outer peripheral surface. The stator core 52 functions as a back yoke which is a part of a magnetic circuit for rotating the rotor 40. In this case, a tooth (that is, an iron core) made of a soft magnetic material is not provided between each two adjacent conductor groups 81 in the circumferential direction (that is, a slotless structure). In the present embodiment, the resin material of the sealing member 57 is inserted into the gap 56 of each of the conductor wire groups 81. That is, in the stator 50, the inter-conductor member provided between each conductor group 81 in the circumferential direction is configured as the sealing member 57 which is a non-magnetic material. Speaking of the state before the sealing of the sealing member 5 7, the conductor wire groups 8 1 are arranged at predetermined intervals in the circumferential direction on the outer side in the radial direction of the stator core 5 2 with a gap 5 6 which is a region between the conductors. The slotted stator 50 is constructed. In other words, each conductor group 8 1 is composed of two conductors 8 2 as described later, and only non-magnetic material is provided between each two conductor groups 8 1 adjacent to each other in the circumferential direction of the stator 50. Are occupied by. The non-magnetic material includes a non-magnetic gas such as air and a non-magnetic liquid in addition to the sealing member 57. In the following, the sealing member 57 is also referred to as a conductor-to-conductor member.
[0089] なお、 周方向に並ぶ各導線群 8 1の間においてティースが設けられている 構成とは、 ティースが、 径方向に所定厚さを有し、 かつ周方向に所定幅を有 することで、 各導線群 8 1の間に磁気回路の一部、 すなわち磁石磁路を形成 する構成であると言える。 この点において、 各導線群 8 1の間にティースが 設けられていない構成とは、 上記の磁気回路の形成がなされていない構成で 〇 2020/175333 28 卩(:171? 2020 /006903 [0089] The configuration in which teeth are provided between the conductor wire groups 81 arranged in the circumferential direction means that the teeth have a predetermined thickness in the radial direction and a predetermined width in the circumferential direction. Thus, it can be said that a part of the magnetic circuit, that is, the magnet magnetic path is formed between the conductor wire groups 81. In this respect, the configuration in which the teeth are not provided between the conductor wire groups 81 means that the above magnetic circuit is not formed. 〇 2020/175333 28 卩 (:171? 2020 /006903
あると言ス ·る。 It is said that there is.
[0090] 図 1 0に示すように、 固定子巻線 (すなわち電機子巻線) 5 1は、 所定の 厚み丁 2 (以下、 第 1寸法とも言う) と幅 \^/ 2 (以下、 第 2寸法とも言う) を有するように形成されている。 厚み丁 2は、 固定子卷線 5 1の径方向にお いて互いに対向する外側面と内側面との間の最短距離である。 幅 2は、 固 定子卷線 5 1の多相 (実施例では 3相: II相、 V相及び 相の 3相あるいは X相、 丫相及び 相の 3相) の一つとして機能する固定子巻線 5 1の一部分 の固定子卷線 5 1の周方向の長さである。 具体的には、 図 1 0において、 周 方向に隣り合う 2つの導線群 8 1が 3相の内の一つである例えば II相として 機能する場合、 周方向において当該 2つの導線群 8 1の端から端までの幅 2である。 そして、 厚み丁 2は幅 \^ 2より小さくなっている。 [0090] As shown in Fig. 10, the stator winding (that is, armature winding) 5 1 has a predetermined thickness 2 (hereinafter also referred to as the first dimension) and a width \^/2 (hereinafter, the first dimension). (Also referred to as two dimensions). The thickness 2 is the shortest distance between the outer surface and the inner surface that face each other in the radial direction of the stator winding 51. The width 2 is a stator that functions as one of the polyphases of the stator winding line 51 (three phases in the embodiment: three phases II phase, V phase and three phases or X phase, three phases of negative phase and phase). This is the circumferential length of the stator winding 5 1 that is a part of the winding 51. Specifically, in FIG. 10, when two conductor groups 8 1 adjacent to each other in the circumferential direction function as one of the three phases, for example, II phase, the two conductor groups 8 1 in the circumferential direction are The width is 2 from end to end. And the thickness 2 is smaller than the width \^ 2.
[0091 ] なお、 厚み丁 2は、 幅 2内に存在する 2つの導線群 8 1の合計幅寸法よ り小さいことが好ましい。 また、 仮に固定子巻線 5 1 (より詳しくは導線 8 2) の断面形状が真円形状や楕円形状、 又は多角形形状である場合、 固定子 5〇の径方向に沿った導線 8 2の断面のうち、 その断面において固定子 5 0 の径方向の最大の長さを 1 2、 同断面のうち固定子 5 0の周方向の最大の 長さを 1 1 としても良い。 [0091] The thickness D2 is preferably smaller than the total width dimension of the two conductor wire groups 8 1 existing within the width 2. If the cross-sectional shape of the stator winding 5 1 (more specifically, the conductor 8 2) is a perfect circle, an ellipse, or a polygon, the conductor 8 2 along the radial direction of the stator 50 is Of the cross-sections, the maximum radial length of the stator 50 in the cross-section may be 12 and the maximum circumferential length of the stator 50 in the cross-section may be 11.
[0092] 図 1 0及び図 1 1 に示すように、 固定子巻線 5 1は、 封止材 (モールド材 ) としての合成樹脂材からなる封止部材 5 7により封止されている。 つまり 、 固定子巻線 5 1は、 固定子コア 5 2と共にモールド材によりモールドされ ている。 なお樹脂は、 非磁性体、 又は非磁性体の均等物として巳 3 = 0と看 做すことができる。 As shown in FIGS. 10 and 11, the stator winding 51 is sealed with a sealing member 57 made of a synthetic resin material as a sealing material (molding material). That is, the stator winding 51 and the stator core 52 are molded by the molding material. The resin can be regarded as a non-magnetic material or an equivalent material of the non-magnetic material as 3=0.
[0093] 図 1 0の横断面で見れば、 封止部材 5 7は、 各導線群 8 1の間、 すなわち 間隙 5 6に合成樹脂材が充填されて設けられており、 封止部材 5 7により、 各導線群 8 1の間に絶縁部材が介在する構成となっている。 つまり、 間隙 5 6において封止部材 5 7が絶縁部材として機能する。 封止部材 5 7は、 固定 子コア 5 2の径方向外側において、 各導線群 8 1 を全て含む範囲、 すなわち 径方向の厚さ寸法が各導線群 8 1の径方向の厚さ寸法よりも大きくなる範囲 〇 2020/175333 29 卩(:171? 2020 /006903 As seen in the cross section of FIG. 10, the sealing member 57 is provided between the conductor wire groups 81, that is, the gaps 56 are filled with the synthetic resin material. As a result, an insulating member is interposed between each conductor wire group 81. That is, the sealing member 57 functions as an insulating member in the gap 56. The sealing member 5 7 is located outside the stator core 52 in a range including all the conductor wire groups 81, that is, the radial thickness dimension is smaller than the radial thickness dimension of each conductor wire group 81. Range of increase 〇 2020/175 333 29 卩 (: 171? 2020 /006903
で設けられている。 It is provided in.
[0094] また、 図 1 1の縦断面で見れば、 封止部材 5 7は、 固定子巻線 5 1の夕一 ン部 8 4を含む範囲で設けられている。 固定子巻線 5 1の径方向内側では、 固定子コア 5 2の軸方向に対向する端面の少なくとも一部を含む範囲で封止 部材 5 7が設けられている。 この場合、 固定子巻線 5 1は、 各相の相巻線の 端部、 すなわちインバータ回路との接続端子を除く略全体で樹脂封止されて いる。 [0094] Also, when viewed in the vertical cross section in FIG. 11, the sealing member 57 is provided in a range including the evening portion 84 of the stator winding 51. Inside the stator winding 51, in the radial direction, a sealing member 57 is provided in a range including at least a part of the axially opposed end faces of the stator core 52. In this case, the stator winding 51 is resin-sealed at the end of the phase winding of each phase, that is, almost the entire terminal except the connection terminal with the inverter circuit.
[0095] 封止部材 5 7が固定子コア 5 2の端面を含む範囲で設けられた構成では、 封止部材 5 7により、 固定子コア 5 2の積層鋼板を軸方向内側に押さえ付け ることができる。 これにより、 封止部材 5 7を用いて、 各鋼板の積層状態を 保持することができる。 なお、 本実施形態では、 固定子コア 5 2の内周面を 樹脂封止していないが、 これに代えて、 固定子コア 5 2の内周面を含む固定 子コア 5 2の全体を樹脂封止する構成であってもよい。 [0095] In the configuration in which the sealing member 5 7 is provided in a range including the end surface of the stator core 52, the laminated steel plate of the stator core 52 is pressed axially inward by the sealing member 5 7. You can Thus, the sealing member 57 can be used to maintain the stacked state of the steel plates. In this embodiment, the inner peripheral surface of the stator core 52 is not resin-sealed, but instead of this, the entire stator core 52 including the inner peripheral surface of the stator core 52 is made of resin. The structure may be sealed.
[0096] 回転電機 1 0が車両動力源として使用される場合には、 封止部材 5 7が、 高耐熱のフッ素樹脂や、 エポキシ樹脂、
Figure imgf000031_0001
樹脂、 巳巳 樹脂、 !_〇 樹脂、 シリコン樹脂、 丨樹脂、 I樹脂等により構成されていることが 好ましい。 また、 膨張差による割れ抑制の観点から線膨張係数を考えると、 固定子巻線 5 1の導線の外被膜と同じ材質であることが望ましい。 すなわち 、 線膨張係数が、 一般的に他樹脂の倍以上であるシリコン樹脂は望ましくは 除外される。 なお、 電気車両の如く、 燃焼を利用した機関を持たない電気製 品においては、 1 8 0 °〇程度の耐熱性を持つ 〇樹脂やフエノール樹脂、 [¾ 樹脂も候補となる。 回転電機の周囲温度が 1 〇〇°〇未満と見做せる分 野においては、 この限りではない。
[0096] When the rotary electric machine 10 is used as a vehicle power source, the sealing member 57 is made of highly heat-resistant fluororesin, epoxy resin,
Figure imgf000031_0001
Resin, Minami Resin,! _○ It is preferable to be composed of a resin, a silicone resin, a resin, an I resin, or the like. Considering the coefficient of linear expansion from the viewpoint of suppressing cracking due to the difference in expansion, it is desirable that the material is the same as the outer coating of the conductor wire of the stator winding 51. That is, silicone resins having a coefficient of linear expansion that is generally at least twice that of other resins are desirably excluded. For electric products that do not have an engine that uses combustion, such as electric vehicles, 〇 resin, phenol resin, and ¾ resin that have a heat resistance of approximately 180° 〇 are also candidates. This does not apply to areas where the ambient temperature of the rotating electrical machine can be considered to be less than 100 ° C.
[0097] 回転電機 1 0のトルクは磁束の大きさに比例する。 ここで、 固定子コアが ティースを有している場合には、 固定子での最大磁束量がティースでの飽和 磁束密度に依存して制限されるが、 固定子コアがティースを有していない場 合には、 固定子での最大磁束量が制限されない。 そのため、 固定子巻線 5 1 に対する通電電流を増加して回転電機 1 〇のトルク増加を図る上で、 有利な 構成となっている。 [0097] The torque of the rotating electric machine 10 is proportional to the magnitude of the magnetic flux. Here, when the stator core has teeth, the maximum amount of magnetic flux at the stator is limited depending on the saturation magnetic flux density at the teeth, but the stator core does not have teeth. In this case, the maximum amount of magnetic flux at the stator is not limited. Therefore, it is advantageous in increasing the current passing through the stator winding 51 to increase the torque of the rotating electric machine 100. It is composed.
[0098] 本実施形態では、 固定子 5 0においてティースを無く した構造 (スロッ ト レス構造) を用いたことにより、 固定子 5 0のインダクタンスが低減される 。 具体的には、 複数のティースにより仕切られた各スロッ トに導線が収容さ れる一般的な回転電機の固定子ではインダクタンスが例えば 1 m H前後であ るのに対し、 本実施形態の固定子 5 0ではインダクタンスが 5〜 6 0 M H程 度に低減される。 本実施形態では、 アウタロータ構造の回転電機 1 〇としつ つも、 固定子 5 0のインダクタンス低減により機械的時定数 T mを下げるこ とが可能となっている。 つまり、 高トルク化を図りつつ、 機械的時定数 T m の低減が可能となっている。 なお、 イナーシャを J、 インダクタンスを L、 トルク定数を K t、 逆起電力定数を K eとすると、 機械的時定数 T mは、 次 式により算出される。 In the present embodiment, the stator 50 has a structure without the teeth (slotless structure), so that the inductance of the stator 50 is reduced. Specifically, the stator of the present embodiment has an inductance of, for example, about 1 mH in a stator of a general rotating electric machine in which a conductor is housed in each slot partitioned by a plurality of teeth. At 50, the inductance is reduced to about 5 to 60 MH. In this embodiment, the mechanical time constant T m can be reduced by reducing the inductance of the stator 50 even in the rotating electric machine 10 having the outer rotor structure. In other words, it is possible to reduce the mechanical time constant T m while increasing the torque. When the inertia is J, the inductance is L, the torque constant is K t, and the back electromotive force constant is K e, the mechanical time constant T m is calculated by the following equation.
T m = ( J X L ) / ( K t X K e ) T m = (J X L )/( K t X K e)
この場合、 インダクタンス Lの低減により機械的時定数 T mが低減されるこ とが確認できる。 In this case, it can be confirmed that the mechanical time constant T m is reduced by reducing the inductance L.
[0099] 固定子コア 5 2の径方向外側における各導線群 8 1は、 断面が扁平矩形状 をなす複数の導線 8 2が固定子コア 5 2の径方向に並べて配置されて構成さ れている。 各導線 8 2は、 横断面において 「径方向寸法<周方向寸法」 とな る向きで配置されている。 これにより、 各導線群 8 1 において径方向の薄肉 化が図られている。 また、 径方向の薄肉化を図るとともに、 導体領域が、 テ ィースが従来あった領域まで平らに延び、 扁平導線領域構造となっている。 これにより、 薄肉化により断面積が小さくなることで懸念される導線の発熱 量の増加を、 周方向に扁平化して導体の断面積を稼ぐことで抑えている。 な お、 複数の導線を周方向に並べ、 かつそれらを並列結線とする構成であって も、 導体被膜分の導体断面積低下は起こるものの、 同じ理屈に依る効果が得 られる。 なお、 以下において、 導線群 8 1のそれぞれ、 および導線 8 2のそ れぞれを、 伝導部材 (conduct i ve member) とも言う。 [0099] Each conductor wire group 8 1 on the outer side in the radial direction of the stator core 5 2 is configured by arranging a plurality of conductor wires 8 2 having a flat rectangular cross-section in the radial direction of the stator core 5 2. There is. The conductors 82 are arranged in a direction of “diameter dimension<circumferential dimension” in the cross section. As a result, each conductor wire group 81 is thinned in the radial direction. In addition to reducing the wall thickness in the radial direction, the conductor area extends flat to the area where the teeth were previously, resulting in a flat conductor wire area structure. As a result, the increase in the amount of heat generated by the conductor, which is concerned that the cross-sectional area becomes smaller due to the thinner wall, is suppressed by flattening in the circumferential direction to increase the conductor cross-sectional area. Even with a configuration in which multiple conductors are arranged in the circumferential direction and are connected in parallel, the conductor cross-sectional area is reduced by the amount of the conductor coating, but the same effect can be obtained. In the following, each of the conductive wire groups 81 and each of the conductive wires 82 are also referred to as a conductive member.
[0100] スロッ トがないことから、 本実施形態における固定子巻線 5 1では、 その 〇 2020/175333 31 卩(:171? 2020 /006903 [0100] Since there is no slot, the stator winding 51 in the present embodiment has 〇 2020/175333 31 卩 (: 171? 2020 /006903
周方向の一周における固定子巻線 5 1が占める導体領域を、 固定子巻線 5 1 が存在しない導体非占有領域より大きく設計することができる。 なお、 従来 の車両用回転電機は、 固定子巻線の周方向の一周における導体領域/導体非 占有領域は 1以下であるのが当然であった。 一方、 本実施形態では、 導体領 域が導体非占有領域と同等又は導体領域が導体非占有領域よりも大きくなる ようにして、 各導線群 8 1が設けられている。 ここで、 図 1 0に示すように 、 周方向において導線 8 2 (つまり、 後述する直線部 8 3) が配置された導 線領域を 、 隣り合う導線 8 2の間となる導線間領域を 巳とすると、 導 線領域 は、 導線間領域 巳より周方向において大きいものとなっている The conductor area occupied by the stator winding 51 in one round in the circumferential direction can be designed to be larger than the conductor unoccupied area where the stator winding 51 does not exist. It should be noted that in the conventional vehicular rotating electrical machine, the conductor region/conductor non-occupying region in one circumferential direction of the stator winding was naturally 1 or less. On the other hand, in the present embodiment, each conductor wire group 81 is provided such that the conductor area is equal to the conductor non-occupancy area or the conductor area is larger than the conductor non-occupancy area. Here, as shown in FIG. 10, the conductor region in which the conductor 8 2 (that is, the straight line portion 8 3 described later) is arranged in the circumferential direction is defined as the conductor region between the adjacent conductors 8 2. Then, the conductor area is larger than the inter-conductor area in the circumferential direction.
[0101 ] 固定子巻線 5 1 における導線群 8 1の構成として、 その導線群 8 1の径方 向の厚さ寸法は、 1磁極内における 1相分の周方向の幅寸法よりも小さいも のとなっている。 すなわち、 導線群 8 1が径方向に 2層の導線 8 2よりなり 、 かつ 1磁極内に 1相につき周方向に 2つの導線群 8 1が設けられる構成で は、 各導線 8 2の径方向の厚さ寸法を丁〇、 各導線 8 2の周方向の幅寸法を とした場合に、 「丁〇 2 <\^〇 2」 となるように構成されている。 なお、 他の構成として、 導線群 8 1が 2層の導線 8 2よりなり、 かつ 1磁極 内に 1相につき周方向に 1つの導線群 8 1が設けられる構成では、 「丁〇 X 2く \N c _i の関係となるように構成されるとよい。 要するに、 固定子巻線 5 1 において周方向に所定間隔で配置される導線部 (導線群 8 1) は、 その径 方向の厚さ寸法が、 1磁極内における 1相分の周方向の幅寸法よりも小さい ものとなっている。 [0101] As a configuration of the conductor wire group 81 in the stator winding 51, the radial thickness dimension of the conductor wire group 81 is smaller than the circumferential width dimension for one phase in one magnetic pole. It has become. That is, in a configuration in which the conductor group 8 1 is composed of two layers of conductors 8 2 in the radial direction and two conductor groups 8 1 are provided in the circumferential direction for each phase in one magnetic pole, the radial direction of each conductor 8 2 When the thickness of the wire is 0, and the width of each conductor 82 in the circumferential direction is, it is configured to be "0 2 <\^0 2". As another configuration, in a configuration in which the conductor group 8 1 is composed of two layers of conductors 8 2 and one conductor group 8 1 is provided in one magnetic pole in the circumferential direction for each phase, \N c _i The conductor wire portions (conductor wire group 8 1) arranged at a predetermined interval in the circumferential direction in the stator winding 5 1 have a thickness in the radial direction. The dimension is smaller than the circumferential width dimension of one phase in one magnetic pole.
[0102] 言い換えると、 1本 1本の各導線 8 2は、 径方向の厚さ寸法丁〇が周方向 の幅寸法
Figure imgf000033_0001
よりも小さいとよい。 またさらに、 径方向に 2層の導線 8 2よ りなる導線群 8 1の径方向の厚さ寸法 (2丁〇) 、 すなわち導線群 8 1の径 方向の厚さ寸法 (2丁〇) が周方向の幅寸法
Figure imgf000033_0002
よりも小さいとよい。
[0102] In other words, for each conductor 8 2 one by one, the radial thickness dimension is exactly the circumferential width dimension.
Figure imgf000033_0001
It should be smaller than. Furthermore, the radial thickness dimension of the conductor wire group 81 consisting of two layers of conductor wires 8 2 in the radial direction (2 x 0), that is, the radial thickness dimension of the conductor wire group 8 1 (2 x 0) is Circumferential width dimension
Figure imgf000033_0002
It should be smaller than.
[0103] 回転電機 1 0のトルクは、 導線群 8 1の固定子コア 5 2の径方向の厚さに 略反比例する。 この点、 固定子コア 5 2の径方向外側において導線群 8 1の 〇 2020/175333 32 卩(:171? 2020 /006903 [0103] The torque of the rotating electric machine 10 is approximately inversely proportional to the radial thickness of the stator core 52 of the conductor wire group 81. At this point, the outer side of the stator core 5 2 in the radial direction of the conductor group 8 1 〇 2020/175333 32 卩 (:171? 2020 /006903
厚さを薄く したことにより、 回転電機 1 〇のトルク増加を図る上で有利な構 成となっている。 その理由としては、 回転子 4 0の磁石ユニッ ト 4 2から固 定子コア 5 2までの距離 (つまり鉄の無い部分の距離) を小さく して磁気抵 抗を下げることができるためである。 これによれば、 永久磁石による固定子 コア 5 2の鎖交磁束を大きくすることができ、 トルクを増強することができ る。 The reduced thickness makes it an advantageous structure for increasing the torque of the rotating electrical machine 10. The reason is that the magnetic resistance can be lowered by reducing the distance from the magnet unit 42 of the rotor 40 to the stator core 52 (that is, the distance of the part without iron). According to this, the interlinkage magnetic flux of the stator core 52 by the permanent magnet can be increased, and the torque can be increased.
[0104] また、 導線群 8 1の厚さを薄く したことにより、 導線群 8 1から磁束が漏 れても固定子コア 5 2に回収されやすくなり、 磁束がトルク向上のために有 効に利用されずに外部に漏れることを抑制することができる。 つまり、 磁束 漏れにより磁力が低下することを抑制でき、 永久磁石による固定子コア 5 2 の鎖交磁束を大きく して、 トルクを増強することができる。 [0104] Further, by reducing the thickness of the conductor wire group 81, even if the magnetic flux leaks from the conductor wire group 81, it is easy to be collected by the stator core 52, and the magnetic flux is effectively used for improving the torque. It is possible to suppress leakage to the outside without being used. That is, it is possible to suppress a decrease in magnetic force due to magnetic flux leakage, increase the interlinkage magnetic flux of the stator core 52 by the permanent magnet, and increase the torque.
Figure imgf000034_0001
Figure imgf000034_0001
2匕により被覆された被覆導線よりなり、 径方向に互いに重なる導線 8 2同 士の間、 及び導線 8 2と固定子コア 5 2との間においてそれぞれ絶縁性が確 保されている。 この絶縁被膜 8 2匕は、 後述する素線 8 6が自己融着被覆線 であるならその被膜、 又は、 素線 8 6の被膜とは別に重ねられた絶縁部材で 構成されている。 なお、 導線 8 2により構成される各相卷線は、 接続のため の露出部分を除き、 絶縁被膜 8 2 による絶縁性が保持されるものとなって いる。 露出部分としては、 例えば、 入出力端子部や、 星形結線とする場合の 中性点部分である。 導線群 8 1では、 樹脂固着や自己融着被覆線を用いて、 径方向に隣り合う各導線 8 2が相互に固着されている。 これにより、 導線 8 2同士が擦れ合うことによる絶縁破壊や、 振動、 音が抑制される。 Insulation is ensured between the conductors 8 2 that overlap each other in the radial direction, and between the conductors 8 2 and the stator core 52, which are composed of covered conductors that are covered by two swirls. The insulating coating 82 is composed of a wire 8 6 which will be described later if the wire 8 6 is a self-bonding coated wire, or an insulating member stacked separately from the coating of the wire 8 6. It should be noted that, except for the exposed portion for connection, each phase wire composed of the conducting wire 8 2 is kept insulating by the insulating coating 8 2. The exposed part is, for example, the input/output terminal part or the neutral point part in the case of star connection. In the conductor wire group 81, the resin wires and the self-bonding covered wire are used to mutually bond the conductor wires 82 adjacent to each other in the radial direction. This suppresses the dielectric breakdown, vibration, and sound caused by the rubbing between the conductors 82.
[0106] 本実施形態では、 導体 8 2 3が複数の素線 1 1^) 8 6の集合体として構成 されている。 具体的には、 図 1 3に示すように、 導体 8 2 3は、 複数の素線 8 6を撚ることで撚糸状に形成されている。 また、 図 1 4に示すように、 素 線 8 6は、 細い繊維状の導電材 8 7を束ねた複合体として構成されている。 例えば、 素線 8 6は〇1\1丁 (力ーボンナノチューブ) 繊維の複合体であり、[0106] In this embodiment, the conductor 8 2 3 is configured as a plurality of wires 1 1 ^) 8 6 aggregates. Specifically, as shown in FIG. 1 3, the conductor 8 2 3 is formed in twisted shape by twisting a plurality of wires 8 6. Further, as shown in FIG. 14, the filaments 8 6 are configured as a composite body in which thin fibrous conductive materials 87 are bundled. For example, the strand 86 is a composite of 0 1 \ 1 (strength carbon nanotube) fiber,
〇 !\1丁繊維として、 炭素の少なくとも一部をホウ素で置換したホウ素含有微 〇 2020/175333 33 卩(:171? 2020 /006903 〇 !\1 As a fiber, boron-containing fine particles in which at least part of carbon is replaced with boron 〇 2020/175333 33 卩 (:171? 2020 /006903
細繊維を含む繊維が用いられている。 炭素系微細繊維としては、 〇1\1丁繊維 以外に、 気相成長法炭素繊維 ( 〇〇 ) 等を用いることができるが、 〇 丁繊維を用いることが好ましい。 なお、 素線 8 6の表面は、 エナメルなどの 高分子絶縁層で覆われている。 また、 素線 8 6の表面は、 ポリイミ ドの被膜 やアミ ドイミ ドの被膜からなる、 いわゆるエナメル被膜で覆われていること が好ましい。 Fibers including fine fibers are used. As the carbon-based fine fiber, vapor grown carbon fiber (○○) or the like can be used in addition to the 0\1 \fiber, but it is preferable to use the \0 fiber. The surface of the wire 86 is covered with a polymer insulating layer such as enamel. Further, it is preferable that the surface of the wire 86 is covered with a so-called enamel coating, which is composed of a polyimide coating or an amidimide coating.
[0107] 導線 8 2は、 固定子巻線 5 1 において n相の巻線を構成する。 そして導線 [0107] Conductor 82 forms an n-phase winding in stator winding 5 1. And conductor
8 2 (すなわち、 導体 8 2
Figure imgf000035_0001
の各々の素線 8 6は、 互いに接触状態で隣接 している。 導線 8 2は、 巻線導体が、 複数の素線 8 6が撚られて形成される 部位を、 相内の 1か所以上に持つとともに、 撚られた素線 8 6間の抵抗値が 素線 8 6そのものの抵抗値よりも大きい素線集合体となっている。 言い換え ると、 隣接する各 2つの素線 8 6はその隣接する方向において第 1電気抵抗 率を有し、 素線 8 6の各々はその長さ方向において第 2電気抵抗率を有する 場合、 第 1電気抵抗率は第 2電気抵抗率より大きい値になっている。 なお、 導線 8 2が複数の素線 8 6により形成されるとともに、 第 1電気抵抗率が極 めて高い絶縁部材により複数の素線 8 6を覆う素線集合体となっていても良 い。 また、 導線 8 2の導体 8 2 3は、 撚り合わされた複数の素線 8 6により 構成されている。
8 2 (ie conductor 8 2
Figure imgf000035_0001
The individual wires 86 of each are adjacent to each other in contact with each other. The conducting wire 82 has a part where the winding conductor is formed by twisting a plurality of strands 8 6 at one or more positions in the phase, and the resistance value between the twisted strands 8 6 is It is a wire aggregate that is larger than the resistance value of the wire 8 6 itself. In other words, each two adjacent strands 8 6 have a first electrical resistivity in their adjacent direction, and each strand 8 6 has a second electrical resistivity in its longitudinal direction, The 1st electrical resistivity is larger than the 2nd electrical resistivity. Note that the conductor wire 8 2 may be formed of a plurality of wire wires 8 6 and may be a wire wire assembly that covers the plurality of wire wires 8 6 with an insulating member having an extremely high first electrical resistivity. .. The conductor 8 2 3 conductors 8 2 is constituted by a plurality of wires 8 6 twisted.
[0108] 上記の導体 8 2 3では、 複数の素線 8 6が撚り合わされて構成されている ため、 各素線 8 6での渦電流の発生が抑えられ、 導体 8 2 3における渦電流 の低減を図ることができる。 また、 各素線 8 6が捻られていることで、 1本 の素線 8 6において磁界の印加方向が互いに逆になる部位が生じて逆起電圧 が相殺される。 そのため、 やはり渦電流の低減を図ることができる。 特に、 素線 8 6を繊維状の導電材 8 7により構成することで、 細線化することと捻 り回数を格段に増やすこととが可能になり、 渦電流をより好適に低減するこ とができる。 [0108] In the above conductor 8 2 3, a plurality of wires 8 6 are configured with twisted, generation of eddy current in the wires 8 6 is suppressed, the eddy currents in the conductor 8 2 3 It can be reduced. Further, since each of the strands 86 is twisted, a part where the magnetic field application directions are opposite to each other is generated in one strand 86, and the counter electromotive voltage is offset. Therefore, it is possible to reduce the eddy current. In particular, by constructing the wires 8 6 from the fibrous conductive material 87, it is possible to make the wires thinner and to significantly increase the number of twists, and it is possible to more appropriately reduce the eddy current. it can.
[0109] なお、 ここでいう素線 8 6同士の絶縁方法は、 前述の高分子絶縁膜に限定 されず、 接触抵抗を利用し撚られた素線 8 6間で電流を流れにくくする方法 〇 2020/175333 34 卩(:171? 2020 /006903 [0109] Note that the method of insulating the wires 8 6 from each other here is not limited to the polymer insulating film described above, and a method of making it difficult for a current to flow between the twisted wires 8 6 by utilizing contact resistance. 〇 2020/175333 34 卩 (: 171? 2020 /006903
であってもよい。 すなわち撚られた素線 8 6間の抵抗値が、 素線 8 6そのも のの抵抗値よりも大きい関係になっていれば、 抵抗値の差に起因して発生す る電位差により、 上記効果を得ることができる。 たとえば、 素線 8 6を作成 する製造設備と、 回転電機 1 0の固定子 5 0 (電機子) を作成する製造設備 とを別の非連続の設備として用いることで、 移動時間や作業間隔などから素 線 8 6が酸化し、 接触抵抗を増やすことができ、 好適である。 May be That is, if the resistance value between the twisted wires 8 6 is larger than the resistance value of the wires 8 6 themselves, the above-mentioned effect will be caused by the potential difference caused by the difference in resistance value. Can be obtained. For example, by using the manufacturing equipment that creates the wires 86 and the manufacturing equipment that creates the stators 50 (armatures) of the rotating electric machine 10 as separate non-continuous equipment, the movement time, work interval, etc. This is preferable since the wire 86 is oxidized and the contact resistance can be increased.
[01 10] 上述のとおり導線 8 2は、 断面が扁平矩形状をなし、 径方向に複数並べて 配置されるものとなっており、 例えば融着層と絶縁層とを備えた自己融着被 覆線で被覆された複数の素線 8 6を燃った状態で集合させ、 その融着層同士 を融着させることで形状を維持している。 なお、 融着層を備えない素線や自 己融着被覆線の素線を撚った状態で合成樹脂等により所望の形状に固めて成 形してもよい。 導線 8 2における絶縁被膜 8 2 匕の厚さを例えば 8 0 〜 1 0 0 とし、 一般に使用される導線の被膜厚さ (5〜 4 0 ) よりも 厚肉とした場合、 導線 8 2と固定子コア 5 2との間に絶縁紙等を介在させる ことをしなくても、 これら両者の間の絶縁性が確保することができる。 [0110] As described above, the conductive wire 82 has a flat rectangular cross section and is arranged in a line in the radial direction. For example, the self-bonding coating including the fusion layer and the insulating layer is provided. The shape is maintained by fusing a plurality of wires covered with wires 86 in a burning state and fusing the fusing layers together. In addition, it is also possible to form a wire having no fusion layer or a self-fusion-bonded wire in a twisted state and fixing it to a desired shape with a synthetic resin or the like. If the thickness of the insulating coating 82 in the conductor 8 2 is set to, for example, 80 to 100, and the thickness is thicker than the film thickness (5 to 40) of the commonly used conductor, it is fixed to the conductor 8 2. Even if no insulating paper or the like is interposed between the child core 52 and the child core 52, the insulation between them can be ensured.
[01 1 1 ] また、 絶縁被膜 8 2匕は、 素線 8 6の絶縁層よりも高い絶縁性能を有し、 相間を絶縁することができるように構成されていることが望ましい。 例えば 、 素線 8 6の高分子絶縁層の厚さを例えば 5 程度にした場合、 導線 8 2 の絶縁被膜 8 2 の厚さを
Figure imgf000036_0001
相間の絶縁を 好適に実施できるようにすることが望ましい。
[0111] Further, it is desirable that the insulating coating 82 has a higher insulating performance than the insulating layer of the wire 86 and is configured to be able to insulate between the phases. For example, when the thickness of the polymer insulating layer of the wire 8 6 is set to about 5, for example, the thickness of the insulating coating 8 2 of the conductor 8 2 is
Figure imgf000036_0001
It is desirable to be able to suitably perform the insulation between the phases.
[01 12] また、 導線 8 2は、 複数の素線 8 6が撚られることなく束ねられている構 成であってもよい。 つまり、 導線 8 2は、 その全長において複数の素線 8 6 が撚られている構成、 全長のうち一部で複数の素線 8 6が撚られている構成 、 全長において複数の素線 8 6が撚られることなく束ねられている構成のい ずれかであればよい。 まとめると、 導線部を構成する各導線 8 2は、 複数の 素線 8 6が束ねられているとともに、 束ねられた素線間の抵抗値が素線 8 6 そのものの抵抗値よりも大きい素線集合体となっている。 [0112] Further, the conductor wire 82 may have a structure in which a plurality of element wires 86 are bundled without being twisted. In other words, the conducting wire 8 2 has a configuration in which a plurality of strands 8 6 are twisted in its entire length, a configuration in which a plurality of strands 8 6 are twisted in a part of its entire length, and a plurality of strands 8 6 in its entire length. It may be either of the configurations in which the bunches are bundled without being twisted. In summary, each conductor wire 8 2 constituting the conductor wire portion is composed of a plurality of wires 8 6 bundled together, and the resistance value between the bundled wires is larger than the resistance value of the wire wire 8 6 itself. It is an aggregate.
[01 13] 各導線 8 2は、 固定子巻線 5 1の周方向に所定の配置パターンで配置され 〇 2020/175333 35 卩(:171? 2020 /006903 [01 13] The conductors 8 2 are arranged in a predetermined arrangement pattern in the circumferential direction of the stator winding 5 1. 〇 2020/175333 35 (:171? 2020/006903
るように折り曲げ形成されており、 これにより、 固定子巻線 5 1 として相ご との相巻線が形成されている。 図 1 2に示すように、 固定子巻線 5 1では、 各導線 8 2のうち軸方向に直線状に延びる直線部 8 3によりコイルサイ ド部 5 3が形成され、 軸方向においてコイルサイ ド部 5 3よりも両外側に突出す る夕ーン部 8 4によりコイルエンド 5 4 , 5 5が形成されている。 各導線 8 2は、 直線部 8 3とターン部 8 4とが交互に繰り返されることにより、 波巻 状の一連の導線として構成されている。 直線部 8 3は、 磁石ユニッ ト 4 2に 対して径方向に対向する位置に配置されており、 磁石ユニッ ト 4 2の軸方向 外側となる位置において所定間隔を隔てて配置される同相の直線部 8 3同士 が、 夕ーン部 8 4により互いに接続されている。 なお、 直線部 8 3が 「磁石 対向部」 に相当する。 Thus, the phase windings of each phase are formed as the stator windings 51. As shown in Fig. 12, in the stator winding 51, the coil side portion 5 3 is formed by the straight portion 8 3 of each conductor 8 2 that extends linearly in the axial direction, and the coil side portion 5 3 is formed in the axial direction. Coil ends 5 4 and 5 5 are formed by the evening portion 8 4 projecting outward from both sides. Each of the conductors 8 2 is configured as a series of corrugated conductors by alternately repeating straight portions 8 3 and turn portions 8 4. The straight line portion 8 3 is arranged at a position that faces the magnet unit 4 2 in the radial direction, and is a straight line of the same phase that is arranged at a predetermined interval at a position on the outer side in the axial direction of the magnet unit 4 2. Sections 8 3 are connected to each other by evening sections 8 4. The straight part 83 corresponds to the "magnet facing part".
[01 14] 本実施形態では、 固定子巻線 5 1が分布巻きにより円環状に巻回形成され ている。 この場合、 コイルサイ ド部 5 3では、 相ごとに、 磁石ユニッ ト 4 2 の 1極対に対応する間隔で周方向に直線部 8 3が配置され、 コイルエンド 5 4 , 5 5では、 相ごとの各直線部 8 3が、 略 V字状に形成されたターン部 8 4により互いに接続されている。 1極対に対応して対となる各直線部 8 3は 、 それぞれ電流の向きが互いに逆になるものとなっている。 また、 一方のコ イルエンド 5 4と他方のコイルエンド 5 5とでは、 夕ーン部 8 4により接続 される一対の直線部 8 3の組み合わせがそれぞれ相違しており、 そのコイル エンド 5 4 , 5 5での接続が周方向に繰り返されることにより、 固定子巻線 5 1が略円筒状に形成されている。 [0114] In the present embodiment, the stator winding 51 is formed by distributed winding in an annular shape. In this case, in the coil side section 53, straight sections 8 3 are arranged in the circumferential direction at an interval corresponding to one pole pair of the magnet unit 4 2 for each phase, and in the coil ends 5 4, 5 5 each phase is arranged for each phase. The respective straight line portions 8 3 are connected to each other by a turn portion 8 4 formed in a substantially V shape. The respective straight line portions 83 corresponding to one pole pair have current directions opposite to each other. In addition, one coil end 5 4 and the other coil end 55 have different combinations of the pair of straight line portions 8 3 connected by the evening portion 8 4, and the coil ends 5 4 and 5 5 By repeating the connection at 5 in the circumferential direction, the stator winding 51 is formed in a substantially cylindrical shape.
[01 15] より具体的には、 固定子巻線 5 1は、 各相 2対ずつの導線 8 2を用いて相 ごとの巻線を構成しており、 固定子巻線 5 1のうち一方の 3相卷線 (II相、 [0115] More specifically, the stator winding 5 1 constitutes a winding for each phase using two pairs of conductors 8 2 for each phase, and one of the stator windings 5 1 3 phase line (II phase,
V相、 相) と他方の 3相卷線 (X相、 丫相、 相) とが径方向内外の 2層 に設けられるものとなっている。 この場合、 固定子巻線 5 1の相数を 3 (実 施例の場合は 6) 、 導線 8 2の一相あたりの数を とすれば、 極対ごとに 2
Figure imgf000037_0001
個の導線 8 2が形成されることになる。 本実施形態では、 相数 3が 6、 数 が 4であり、 8極対 (1 6極) の回転電機であることから 〇 2020/175333 36 卩(:171? 2020 /006903
The V phase and phase) and the other three-phase winding (X phase, negative phase, phase) are provided in two layers inside and outside in the radial direction. In this case, if the number of phases of the stator winding 5 1 is 3 (6 in the practical example) and the number per phase of the conductor 8 2 is 2,
Figure imgf000037_0001
Individual conductors 8 2 will be formed. In this embodiment, the number of phases is 6, the number is 4, and the rotating electrical machine has 8 pole pairs (16 poles). 〇 2020/175 333 36 卩 (: 171? 2020 /006903
、 6X4X8= 1 92の導線 82が固定子コア 52の周方向に配置されてい る。 , 6X4X8= 1 92 conductors 82 are arranged circumferentially around the stator core 52.
[0116] 図 1 2に示す固定子巻線 5 1では、 コイルサイ ド部 53において、 径方向 に隣接する 2層で直線部 83が重ねて配置されるとともに、 コイルエンド 5 4, 55において、 径方向に重なる各直線部 83から、 互いに周方向逆とな る向きで夕ーン部 84が周方向に延びる構成となっている。 つまり、 径方向 に隣り合う各導線 82では、 固定子巻線 5 1の端部を除き、 ターン部 84の 向きが互いに逆となっている。 [0116] In the stator winding 51 shown in Fig. 12, in the coil side portion 53, the linear portions 83 are overlapped in two layers adjacent to each other in the radial direction, and at the coil ends 5 4 and 55, the diameter is reduced. From each straight line portion 83 that overlaps in the direction, a dun portion 84 extends in the circumferential direction in the directions opposite to each other in the circumferential direction. That is, in the conductor wires 82 adjacent to each other in the radial direction, the directions of the turn portions 84 are opposite to each other except for the end portion of the stator winding 51.
[0117] ここで、 固定子巻線 5 1 における導線 82の卷回構造を具体的に説明する 。 本実施形態では、 波巻にて形成された複数の導線 82を、 径方向に隣接す る複数層 (例えば 2層) に重ねて設ける構成としている。 図 1 5 (3) 、 図 1 5 (匕) は、 n層目における各導線 82の形態を示す図であり、 図 1 5 ( a) には、 固定子巻線 5 1の側方から見た導線 82の形状を示し、 図 1 5 ( b) には、 固定子巻線 5 1の軸方向一側から見た導線 82の形状を示してい る。 なお、 図 1 5 (3) 、 図 1 5 (匕) では、 導線群 81が配置される位置 をそれぞれ口 1 , 02, 03, と示している。 また、 説明の便宜上、 3本 の導線 82のみを示しており、 それを第 1導線 82_八、 第 2導線 82_巳 、 第 3導線 82_〇としている。 [0117] Here, the winding structure of the conductor wire 82 in the stator winding 51 will be specifically described. In the present embodiment, a plurality of conducting wires 82 formed by corrugation are provided in a plurality of layers (for example, two layers) that are radially adjacent to each other. Figure 15 ( 3 ) and Figure 15 (deposit) show the form of each conductor 82 in the n-th layer, and Figure 15 (a) shows the side view of the stator winding 51. The shape of the conducting wire 82 is shown in Fig. 15(b), and the shape of the conducting wire 82 as seen from one side in the axial direction of the stator winding 51 is shown. In addition, in FIG. 15 (3) and FIG. 15 (匕), the positions where the conductor wire group 81 is arranged are shown as ports 1, 02, 03, respectively. Further, for convenience of explanation, only three conductors 82 are shown, which are referred to as a first conductor 82_8, a second conductor 82_mi, and a third conductor 82_○.
[0118] 各導線 82_八~82_〇では、 直線部 83が、 いずれも n層目の位置、 すなわち径方向において同じ位置に配置され、 周方向に 6位置 (3X01対分 ) ずつ離れた直線部 83同士が夕ーン部 84により互いに接続されている。 換言すると、 各導線 82_八~82_〇では、 いずれも回転子 40の軸心を 中心とする同一の円上において、 固定子卷線 5 1の周方向に隣接して並ぶ 7 個の直線部 83の両端の二つが一つのターン部 84により互いに接続されて いる。 例えば第 1導線 82 八では、 一対の直線部 83が 01 , 07にそれ それ配置され、 その一対の直線部 83同士が、 逆 V字状のターン部 84によ り接続されている。 また、 他の導線 82_巳, 82_〇は、 同じ n層目にお いて周方向の位置を 1つずつずらしてそれぞれ配置されている。 この場合、 〇 2020/175333 37 卩(:171? 2020 /006903 [0118] In each of the conductors 82_8 to 82_○, the straight line portions 83 are arranged at the position of the nth layer, that is, at the same position in the radial direction, and are separated by 6 positions (3X01 pairs) in the circumferential direction. The straight portions 83 are connected to each other by the evening portion 84. In other words, each of the conductors 82_8 to 82_〇 has seven straight lines that are arranged adjacent to each other in the circumferential direction of the stator winding 5 1 on the same circle centered on the axis of the rotor 40. The two ends of section 83 are connected to each other by one turn section 84. For example, in the first conducting wire 828, a pair of straight line portions 83 are arranged at 01 and 07, respectively, and the pair of straight line portions 83 are connected by the inverted V-shaped turn portion 84. In addition, the other conductors 82_M and 82_○ are arranged in the same n-th layer by shifting the position in the circumferential direction one by one. in this case, 〇 2020/175333 37 卩 (:171? 2020 /006903
各導線 82_八~82_〇は、 いずれも同じ層に配置されるため、 ターン部 84が互いに干渉することが考えられる。 そのため本実施形態では、 各導線 82 八~82_〇の夕ーン部 84に、 その一部を径方向にオフセッ トした 干渉回避部を形成することとしている。 Since all the conductors 82_8 to 82_○ are arranged in the same layer, it is considered that the turn portions 84 interfere with each other. Therefore, in the present embodiment, an interference avoiding portion, which is offset in the radial direction, is formed in the evening portion 84 of each of the conducting wires 828 to 82_O.
[0119] 具体的には、 各導線 82_八~82_〇の夕ーン部 84は、 同一の円 (第 [0119] Specifically, the evening part 84 of each conducting wire 82_8~82_〇 has the same circle (
1の円) 上で周方向に延びる部分である 1つの傾斜部 843と、 傾斜部 84 3からその同一の円よりも径方向内側 (図 1 5 (b) において上側) にシフ 卜し、 別の円 (第 2の円) に達する頂部 84匕、 第 2の円上で周方向に延び る傾斜部 84〇及び第 1の円から第 2の円に戻る戻り部 84 とを有してい る。 頂部 84匕、 傾斜部 84〇及び戻り部 84 が干渉回避部に相当する。 なお、 傾斜部 84〇は、 傾斜部 843に対して径方向外側にシフトする構成 であつてもよい。 (One circle) One inclined portion 843 that is a portion that extends in the circumferential direction on the upper side and one side that shifts from the inclined portion 843 radially inward of the same circle (upper side in Fig. 15 (b)) and separates. Has a crest 84 that reaches the circle (second circle), an inclined portion 84 that extends in the circumferential direction on the second circle, and a return portion 84 that returns from the first circle to the second circle. .. The apex 84, the inclined part 84 and the return part 84 correspond to the interference avoidance part. The inclined portion 840 may be configured to shift radially outward with respect to the inclined portion 843.
[0120] つまり、 各導線 82_八~82_〇のターン部 84は、 周方向の中央位置 である頂部 84 を挟んでその両側に、 一方側の傾斜部 843と他方側の傾 斜部 84〇とを有しており、 それら各傾斜部 84
Figure imgf000039_0001
84〇の径方向の位置
[0120] That is, the turn portions 84 of each lead 82_ eight-82_〇 are on both sides of the top portion 84 is a central position in the circumferential direction, whereas the inclined portion 84 3 of the side and the other side of the inclined slope portion 84 〇 and each of these slopes 84
Figure imgf000039_0001
84 〇 radial position
(図 1 5 (3) では紙面前後方向の位置、 図 1 5 (13) では上下方向の位置 ) が互いに相違するものとなっている。 例えば第 1導線 82_八の夕ーン部 84は、 層の 01位置を始点位置として周方向に沿って延び、 周方向の中 央位置である頂部 84 で径方向 (例えば径方向内側) に曲がった後、 周方 向に再度曲がることで、 再び周方向に沿って延び、 さらに戻り部 84 で再 び径方向 (例えば径方向外側) に曲がることで、 終点位置である 1·!層の 07 位置に達する構成となっている。 (The position in the front-back direction of the paper in Fig. 15 (3) and the position in the vertical direction in Fig. 15 (13)) are different from each other. For example, the evening part 84 of the first conductor 82_8 extends along the circumferential direction starting from the 01 position of the layer and extends radially (for example, radially inward) at the top part 84, which is the center position in the circumferential direction. After bending, it bends again in the circumferential direction to extend in the circumferential direction again, and then bends again in the radial direction (for example, the radial outer side) at the return portion 84, so that the end position of the 1! It is configured to reach 07 position.
[0121] 上記構成によれば、 導線 82_八~82_〇では、 一方の各傾斜部 843 が、 上から第 1導線 82 _八 ®第 2導線 82 _巳 ®第 3導線 82 0の順に 上下に並ぶとともに、 頂部 84匕で各導線 82_八〜82_〇の上下が入れ 替わり、 他方の各傾斜部 84〇が、 上から第 3導線 82 _〇®第 2導線 82 巳®第 1導線 82 八の順に上下に並ぶ構成となっている。 そのため、 各 導線 82 八〜82 〇が互いに干渉することなく周方向に配置できるよう 〇 2020/175333 38 卩(:171? 2020 /006903 [0121] According to the above configuration, the conductive wires 82_ eight-82_〇, one of each inclined portion 84 3, from the top of the first conductor 82 _ eight ® second conductor 82 _ Snake ® third conductor 82 0 The conductors 82_8 to 82_〇 are swapped up and down at the top 84, and the other slanted portion 84〇 is the third conductor 82_〇® second conductor 82 The structure is such that 1 conductor 828 is lined up and down. Therefore, each of the conductors 828 to 82 can be arranged in the circumferential direction without interfering with each other. 〇 2020/175333 38 卩 (:171? 2020 /006903
になっている。 It has become.
[0122] ここで、 複数の導線 8 2を径方向に重ねて導線群 8 1 とする構成において 、 複数層の各直線部 8 3のうち径方向内側の直線部 8 3に接続されたターン 部 8 4と、 径方向外側の直線部 8 3に接続されたターン部 8 4とが、 それら 各直線部 8 3同士よりも径方向に離して配置されているとよい。 また、 夕一 ン部 8 4の端部、 すなわち直線部 8 3との境界部付近で、 複数層の導線 8 2 が径方向の同じ側に曲げられる場合に、 その隣り合う層の導線 8 2同士の干 渉により絶縁性が損なわれることが生じないようにするとよい。 [0122] Here, in a configuration in which a plurality of conductors 8 2 are radially overlapped to form a conductor group 8 1, a turn portion connected to a radially inner straight portion 8 3 of the plurality of straight portions 8 3 8 4 and the turn portion 8 4 connected to the linear portion 8 3 on the outer side in the radial direction are preferably arranged at a distance from each other in the radial direction. In addition, when the conductors 8 2 of multiple layers are bent to the same side in the radial direction at the end of the evening portion 8 4, that is, near the boundary with the straight portion 8 3, the conductors 8 2 of the adjacent layers are It is advisable not to damage the insulation due to interference between them.
[0123] 例えば図 1 5 (3) 、 図 1 5 (匕) の 0 7〜0 9では、 径方向に重なる各 導線 8 2が、 ターン部 8 4の戻り部 8 4 でそれぞれ径方向に曲げられる。 この場合、 図 1 6に示すように、 層目の導線 8 2と + 1層目の導線 8 2 とで、 曲がり部の曲率半径を相違させるとよい。 具体的には、 径方向内側 ( 〇層目) の導線 8 2の曲率半径 1 を、 径方向外側 (n + 1層目) の導線 8 2の曲率半径 2よりも小さくする。 [0123] For example, in Fig. 15 (3) and Fig. 15 (slung), 07 to 09, the radial overlapping conductors 8 2 are bent in the radial direction at the return section 8 4 of the turn section 8 4 respectively. To be In this case, as shown in FIG. 16, it is preferable that the radius of curvature of the bent portion be different between the conductor wire 8 2 of the first layer and the conductor wire 8 2 of the +1st layer. Specifically, the radius of curvature 1 of the conductor wire 8 2 on the radially inner side (the 0th layer) is made smaller than the radius of curvature 2 of the conductor wire 8 2 on the radially outer side (n + 1st layer).
[0124] また、 層目の導線 8 2と + 1層目の導線 8 2とで、 径方向のシフト量 を相違させるとよい。 具体的には、 径方向内側 (11層目) の導線 8 2のシフ 卜量 3 1 を、 径方向外側 (n + 1層目) の導線 8 2のシフト量 3 2よりも大 きくする。 [0124] Further, it is preferable that the conducting wire 82 of the first layer and the conducting wire 82 of the +1st layer have different radial shift amounts. Specifically, the shift amount 3 1 of the conductor wire 8 2 on the radially inner side (11th layer) is made larger than the shift amount 3 2 of the conductor wire 8 2 on the radially outer side (n + 1st layer).
[0125] 上記構成により、 径方向に重なる各導線 8 2が同じ向きに曲げられる場合 であっても、 各導線 8 2の相互干渉を好適に回避することができる。 これに より、 良好な絶縁性が得られることとなる。 [0125] With the above configuration, mutual interference between the conductors 8 2 can be preferably avoided even when the conductors 8 2 overlapping in the radial direction are bent in the same direction. As a result, good insulation can be obtained.
[0126] 次に、 回転子 4 0における磁石ユニッ ト 4 2の構造について説明する。 本 実施形態では、 磁石ユニッ ト 4 2が永久磁石からなり、 残留磁束密度巳 「= 1 . 0 [丁] 、 固有保磁力 1~1〇 」 = 4 0 0 [1<八/〇1] 以上のものを想定し ている。 要は、 本実施形態で用いる永久磁石は、 粒状の磁性材料を焼結して 成型固化した焼結磁石であり、 」一1~1曲線上の固有保磁力 1~1〇 」は 4 0 0 [ 1<八/〇1] 以上であり、 かつ残留磁束密度巳 「は 1 . 0 [丁] 以上である。 5 0 0 0〜 1 0 0 0 0 [八丁] が相間励磁により掛かる場合、 1極対、 すな 〇 2020/175333 39 卩(:171? 2020 /006903 [0126] Next, the structure of the magnet unit 42 in the rotor 40 will be described. In the present embodiment, the magnet unit 42 is made of a permanent magnet, and the residual magnetic flux density is “=1.0 [c], intrinsic coercive force 1 to 10 ”=400 [1<8/〇1] or more. It is assumed that In short, the permanent magnet used in the present embodiment is a sintered magnet obtained by sintering a granular magnetic material and molding and solidifying it, and the “individual coercive force 1 to 10 on the 1 to 1 curve” is 400 [1<8/○1] or more and the residual magnetic flux density "" is 1.0 [c] or more. 5 0 0 0 to 1 0 0 0 0 [8 c] is applied by interphase excitation, 1 Pole pair 〇 2020/175 333 39 卩 (: 171? 2020 /006903
わち 1\1極と 3極の磁気的長さ、 言い換えれば、 1\1極と 3極間の磁束が流れる 経路のうち、 磁石内を通る長さが 25 [ ] の永久磁石を使えば、
Figure imgf000041_0001
In other words, if you use a permanent magnet with a magnetic length of 1\1 pole and 3 poles, in other words, in the path of the magnetic flux between the 1\1 pole and 3 poles, the length passing through the magnet is 25 [] ,
Figure imgf000041_0001
"
= 1 0000 [八] となり、 減磁をしないことが伺える。 = 10000 [eight], which indicates that demagnetization is not performed.
[0127] また換言すれば、 磁石ユニッ ト 42は、 飽和磁束密度」 3が 1. 2 [丁] 以上で、 かつ結晶粒径が 1 0 [ ] 以下であり、 配向率を《とした場合に
Figure imgf000041_0002
0 [丁] 以上であるものとなっている。
[0127] In other words, in the magnet unit 42, when the saturation magnetic flux density "3 is 1.2 [c] or more and the crystal grain size is 10 [] or less and the orientation ratio is <<,
Figure imgf000041_0002
0 [D] It is above.
[0128] 以下に磁石ユニッ ト 42について補足する。 磁石ユニッ ト 42 (磁石) は 、 2. 1 5 [丁]
Figure imgf000041_0003
2 [丁] であることが特徴である。 言い換え れば、 磁石ユニッ ト 42に用いられる磁石として、 ド611丁_||\1、 2ド6148、 〇! 2ド617 、 1_10型結晶を有する 61^磁石などが挙げられる。 なお、 通例サマコ バと言われる 31^〇5や、
Figure imgf000041_0004
どの構成は使うことができな い。 注意としては、 同型の化合物、 例えば 2ド6148と 2ド6148のように、 一 般的に、 重希土類であるデイスプロシウムを利用して、 ネオジウムの高い」
[0128] The following supplements the magnet unit 42. Magnet unit 42 (magnet) is 2. 15 [Ding]
Figure imgf000041_0003
2 [Ding] is a feature. In other words, the magnets used in the magnet unit 42 include do 611 _||\1, 2 do 6148, ◯! 2 do 617, and 61^ magnet having a 1_10 type crystal. In addition, 31^0-5, which is usually called Samakoba,
Figure imgf000041_0004
Which configuration cannot be used. Note that compounds of the same type, such as 2d6148 and 2d6148, typically use the heavy rare earth dsprosium to increase the neodymium content.
3特性を少しだけ失いながらも、 〇 の持つ高い保磁力を持たせた磁石でも 2 . 1 5 [丁]
Figure imgf000041_0005
2 [丁] を満たす場合があり、 この場合も採用可 能である。 このような場合は、 例えば([ 11〇 乂]2ド6148)と呼ぶこととする 。 更に、 異なる組成の 2種類以上の磁石、 例えば、 ド61\1丨プラス 31112ド617 とい うように 2種類以上の材料からなる磁石でも、 達成が可能であるし、 例えば 、 」 3 = 1. 6 [丁] と、 」 3に余裕のある 2ド6148の磁石に、 」 3<1 [ 丁] の、 例えば 0 2卩6148を少量混ぜ、 保磁力を増加させた混合磁石などでも 達成が可能である。
3 Even if the magnet with the high coercive force of 〇 is lost while slightly losing its characteristics, 2 .15
Figure imgf000041_0005
2 [Cho] may be met, and this case can also be adopted. In such a case, for example, it will be called ([1 10 乂] 2d 6148). Furthermore, it is possible to achieve two or more types of magnets having different compositions, for example, a magnet made of two or more types of materials, such as Do 61\1丨plus 31112 and Do 617, for example, `` 3 = 1. Achieved even with a mixed magnet with an increased coercive force, such as 6 magnets, and 2 magnets 6148, which has a large margin of 3, and a small amount of, for example, 0 2 magnet 6 148, of 3”1”. It is possible.
[0129] また、 人間の活動範囲外の温度、 例えば砂漠の温度を超える 60°〇以上で 動作されるような回転電機、 例えば、 夏においておけば車中温度が 80°〇近 くなる車両用モータ用途などにおいては、 特に温度依存係数の小さい、 61^[0129] In addition, a rotating electric machine that is operated at a temperature outside the range of human activity, for example, 60 ° 〇 or more, which exceeds the temperature of the desert, for example, for vehicles where the temperature inside the vehicle approaches 80 ° 〇 in summer. Especially for motor applications, the temperature dependence coefficient is small, 61^
、 31112ド617 の成分を含むことが望ましい。 これは、 人間の活動範囲内である 北欧の一 40°〇近い温度状態から、 先述の砂漠温度を超える 60 °〇以上、 又 はコイルエナメル被膜の耐熱温度 1 80〜 240°〇程度までのモータ動作に おいて温度依存係数によって大きくモータ特性を異ならせるため、 同一のモ —タドライバでの最適制御などが困難となるためである。 前記 L10型結晶を有 する FeN i、 又は Sm2Fe17N3などを用いれば、 Nd2Fe14Bと比べ、 半分以下の温度 依存係数を所持しているその特性から、 モータドライ/ の負担を好適に減ら すことができる。 , 31112 and 617 are desirable. This is a motor from the temperature range of 40° 〇 in Northern Europe, which is within the range of human activity, to 60° 〇 or more, which exceeds the desert temperature mentioned above, or the heat-resistant temperature of the coil enamel coating is about 180 to 240° 〇. Since the motor characteristics differ greatly depending on the temperature dependence coefficient during operation, the same model — This is because it becomes difficult for the driver to perform optimal control. When FeN i having the L10 type crystal, Sm2Fe17N3, or the like is used, the motor dry/load can be suitably reduced due to its characteristic of possessing a temperature dependence coefficient of less than half that of Nd2Fe14B.
[0130] 加えて、 磁石ユニッ ト 4 2は、 前記磁石配合を用いて、 配向以前の微粉体 状態の粒子径の大きさが 1 〇 M m以下、 単磁区粒子径以上としていることを 特徴としている。 磁石では、 粉体の粒子を数百 n mオーダまで微細化するこ とにより保磁力が大きくなるため、 近年では、 できるだけ微細化された粉体 が使用されている。 ただし、 細かく しすぎると、 酸化などにより磁石の B H 積が落ちてしまうため、 単磁区粒子径以上が好ましい。 単磁区粒子径までの 粒子径であれば、 微細化により保磁力が上昇することが知られている。 なお 、 ここで述べてきた粒子径の大きさは、 磁石の製造工程でいうところの配向 工程の際の微粉体状態の粒子径の大きさである。 [0130] In addition, the magnet unit 42 is characterized in that, by using the above-mentioned magnet mixture, the particle size of the fine powder state before orientation is 10 Mm or less and the single domain particle size or more. There is. In magnets, coercive force is increased by reducing the size of powder particles to the order of several hundred nm, so in recent years powders that have been made as small as possible have been used. However, if it is made too fine, the B H product of the magnet will drop due to oxidation and the like, so a single domain particle size or more is preferable. It is known that coercive force increases with size reduction if the particle size is up to a single domain particle size. The particle size described here is the particle size in the fine powder state during the orientation process, which is the manufacturing process of the magnet.
[0131 ] 更に、 磁石ユニッ ト 4 2の第 1磁石 9 1 と第 2磁石 9 2の各々は、 磁性粉 末を高温で焼き固めた、 いわゆる焼結により形成された焼結磁石である。 こ の焼結は、 磁石ユニッ ト 4 2の飽和磁化 J sが 1 . 2 T以上で、 第 1磁石 9 1および第 2磁石 9 2の結晶粒径が 1 0 M m以下であり、 配向率を aとした 場合、 J s X aが 1 . O T (テスラ) 以上の条件を満足するよう行われる。 また、 第 1磁石 9 1 と第 2磁石 9 2の各々は、 以下の条件を満足するように 焼結されている。 そして、 その製造過程において配向工程にて配向が行われ ることにより、 等方性磁石の着磁工程による磁力方向の定義とは異なり、 配 向率 (or i entat i on rat i o) を持つ。 本実施形態の磁石ユニッ ト 4 2の飽和磁 化 J sが 1 . 2 T以上で、 第 1磁石 9 1 と第 2磁石 9 2の配向率 aが、 J r ³ J s X a ³ 1 . 0 [ T ] となるように高い配向率を設定されている。 なお 、 ここで言う配向率 aとは、 第 1磁石 9 1又は第 2磁石 9 2の各々において 、 例えば、 磁化容易軸が 6つあり、 そのうちの 5つが同じ方向である方向 A 1 0を向き、 残りの一つが方向 A 1 0に対して 9 0度傾いた方向 B 1 0を向 いている場合、 a = 5 / 6であり、 残りの一つが方向 A 1 0に対して 4 5度 〇 2020/175333 41 卩(:171? 2020 /006903 [0131] Furthermore, each of the first magnet 91 and the second magnet 92 of the magnet unit 42 is a sintered magnet formed by so-called sintering, in which magnetic powder is baked and solidified at a high temperature. In this sintering, the saturation magnetization J s of the magnet unit 42 is 1.2 T or more, the crystal grain size of the first magnet 91 and the second magnet 92 is 10 Mm or less, and the orientation ratio is Is defined as a, J s X a is performed so as to satisfy the condition of 1. OT (Tesla) or more. Further, each of the first magnet 91 and the second magnet 92 is sintered so as to satisfy the following conditions. Since the orientation is performed in the orientation process in the manufacturing process, the orientation ratio (or i entat i on rat io) is different from the definition of the magnetic force direction in the magnetization process of the isotropic magnet. The saturation magnetization J s of the magnet unit 42 of this embodiment is 1.2 T or more, and the orientation ratio a of the first magnet 9 1 and the second magnet 9 2 is J r ³ J s X a ³ 1. The high orientation rate is set so that it becomes 0 [T]. Note that the orientation ratio a referred to here is, for example, in each of the first magnet 91 and the second magnet 92, for example, there are six easy axes of magnetization, and five of them are oriented in the same direction A10. , If the other one faces the direction B 1 0 which is tilted 90 degrees to the direction A 10 then a = 5/6 and the other one is 45 degrees to the direction A 10 〇 2020/175333 41 卩 (:171? 2020 /006903
傾いた方向巳 1 0を向いている場合には、 残りの一つの方向八 1 0を向く成 分は 0 0 3 4 5 ° = 0 . 7 0 7であるため、 《= (5 + 0 . 7 0 7) / 6と なる。 本実施例では焼結により第 1磁石 9 1 と第 2磁石 9 2を形成している が、 上記条件が満足されれば、 第 1磁石 9 1 と第 2磁石 9 2は他の方法によ り成形してもよい。 例えば、 1\/1〇3磁石などを形成する方法を採用すること ができる。 In the case where the direction is tilted to the direction 10, the remaining component facing the direction 8 10 is 0 0 3 4 5 ° = 0.77 7, so 《= (5 + 0. 7 0 7)/6. In this example, the first magnet 91 and the second magnet 92 are formed by sintering, but if the above conditions are satisfied, the first magnet 91 and the second magnet 92 can be formed by another method. It may be molded. For example, a method of forming a 1\/103 magnet or the like can be adopted.
[0132] 本実施形態においては、 配向により磁化容易軸をコントロールした永久磁 石を利用しているから、 その磁石内部の磁気回路長を、 従来 1 . 0 [丁] 以 上を出す直線配向磁石の磁気回路長と比べて、 長くすることができる。 すな わち、 1極対あたりの磁気回路長を、 少ない磁石量で達成できる他、 従来の 直線配向磁石を利用した設計と比べ、 過酷な高熱条件に曝されても、 その可 逆減磁範囲を保つことができる。 また、 本願開示者は、 従来技術の磁石を用 いても、 極異方性磁石と近しい特性を得られる構成を見いだした。 [0132] In the present embodiment, since a permanent magnet in which the easy axis of magnetization is controlled by orientation is used, the magnetic circuit length inside the magnet is conventionally set to be 1.0 [c] or more linearly oriented magnet. It can be made longer than the magnetic circuit length of. That is, the magnetic circuit length per pole pair can be achieved with a small amount of magnets, and even when exposed to harsh high heat conditions, its irreversible demagnetization can be achieved compared to the conventional design using linearly oriented magnets. You can keep the range. Further, the present inventor has found a configuration that can obtain characteristics close to those of a polar anisotropic magnet even when using a conventional magnet.
[0133] なお、 磁化容易軸は、 磁石において磁化されやすい結晶方位のことをいう 。 磁石における磁化容易軸の向きとは、 磁化容易軸の方向が揃っている程度 を示す配向率が 5 0 %以上となる方向、 又は、 その磁石の配向の平均となる 方向である。 [0133] The easy axis refers to a crystal orientation that is easily magnetized in the magnet. The direction of the easy axis of magnetization in the magnet is the direction in which the orientation rate, which indicates the degree of alignment of the easy axis of magnetization, is 50% or more, or the direction in which the orientation of the magnet is averaged.
[0134] 図 8及び図 9に示すように、 磁石ユニッ ト 4 2は、 円環状をなしており、 磁石ホルダ 4 1の内側 (詳しくは円筒部 4 3の径方向内側) に設けられてい る。 磁石ユニッ ト 4 2は、 それぞれ極異方性磁石でありかつ極性が互いに異 なる第 1磁石 9 1及び第 2磁石 9 2を有している。 第 1磁石 9 1及び第 2磁 石 9 2は周方向に交互に配置されている。 第 1磁石 9 1は、 固定子巻線 5 1 に近い部分において !\!極を形成する磁石であり、 第 2磁石 9 2は、 固定子巻 線 5 1 に近い部分において 3極を形成する磁石である。 第 1磁石 9 1及び第 2磁石 9 2は、 例えばネオジム磁石等の希土類磁石からなる永久磁石である [0134] As shown in FIGS. 8 and 9, the magnet unit 42 has an annular shape and is provided inside the magnet holder 41 (specifically, inside the cylindrical portion 43 in the radial direction). .. The magnet unit 42 has a first magnet 91 and a second magnet 92 which are polar anisotropic magnets and have polarities different from each other. The first magnet 91 and the second magnet 92 are arranged alternately in the circumferential direction. The first magnet 91 is a magnet that forms !\! poles in the portion close to the stator winding 5 1, and the second magnet 9 2 forms 3 poles in the portion close to the stator winding 5 1. It is a magnet. The first magnet 91 and the second magnet 92 are permanent magnets made of a rare earth magnet such as a neodymium magnet.
[0135] 各磁石 9 1 , 9 2では、 図 9に示すように、 公知の ¢1 - 座標系において 磁極中心である〇!軸( 「6〇1;-3乂_13)と !\1極と 3極の磁極境界である (言い換え 〇 2020/175333 42 卩(:171? 2020 /006903 [0135] As shown in Fig. 9, in each magnet 9 1 and 9 2, the ◯! axis (“60 1; −3_13”) which is the magnetic pole center in the known ¢1-coordinate system and !\1 It is the magnetic pole boundary between the pole and the three poles (in other words 〇 2020/175333 42 卩 (:171? 2020 /006903
れば、 磁束密度が〇テスラである) 軸(9113〇1「31;11「6-3乂_13)との間において磁 化方向が円弧状に延びている。 各磁石 9 1 , 9 2それぞれにおいて、 軸側 では磁化方向が円環状の磁石ユニッ ト 4 2の径方向とされ、 9軸側では円環 状の磁石ユニッ ト 4 2の磁化方向が周方向とされている。 以下、 更に詳細に 説明する。 磁石 9 1 , 9 2のそれぞれは、 図 9に示すように、 第 1部分 2 5 0と、 磁石ユニッ ト 4 2の周方向において第 1部分 2 5 0の両側に位置する 二つの第 2部分 2 6 0とを有する。 言い換えれば、 第 1部分 2 5 0は、 第 2 部分 2 6 0より 軸に近く、 第 2部分 2 6 0は、 第 1部分 2 5 0より 9軸に 近い。 そして、 第 1部分 2 5 0の磁化容易軸 3 0 0の方向は、 第 2部分 2 6 0の磁化容易軸 3 1 0の方向よりも 軸に対してより平行となるように磁石 ユニッ ト 4 2が構成されている。 言い換えれば、 第 1部分 2 5 0の磁化容易 軸 3 0 0が 軸となす角度 0 1 1が、 第 2部分 2 6 0の磁化容易軸 3 1 0が 軸となす角度 0 1 2よりも小さくなるように磁石ユニッ ト 4 2が構成され ている。 If so, the magnetic flux density is 0 Tesla.) The magnetizing direction extends in an arc shape between the axis (9113 0 1"31; 11"6-3_13). Each magnet 9 1, 9 2 In each of these, the magnetization direction is the radial direction of the annular magnet unit 42 on the axis side, and the magnetization direction of the annular magnet unit 42 is the circumferential direction on the 9-axis side. Each of the magnets 9 1 and 9 2 is located on both sides of the first portion 2 50 and the first portion 2 50 in the circumferential direction of the magnet unit 4 2 as shown in FIG. It has two second parts 2 60 and, in other words, the first part 2 50 is closer to the axis than the second part 2 60 and the second part 2 6 0 is closer to the axis than the 1st part 2 50. It is close to the axis, and the direction of the easy axis 300 of the first part 250 is more parallel to the axis than the direction of the easy axis 3100 of the second part 260. The magnet unit 4 2 is constructed, in other words, the angle 0 1 1 formed by the easy magnetization axis 300 of the first portion 250 and the axis is the easy axis 3 1 0 of the second portion 2 60. The magnet unit 42 is configured so that the angle formed by the axis is smaller than 0 12.
[0136] より詳細には、 角度 0 1 1は、 軸において固定子 5 0 (電機子) から磁 石ユニッ ト 4 2に向かう方向を正とした時に、 軸と磁化容易軸 3 0 0とが なす角度である。
Figure imgf000044_0001
9軸において固定子 5 0 (電機子) から磁 石ユニッ ト 4 2に向かう方向を正とした時に、 9軸と磁化容易軸 3 1 0とが なす角度である。 なお角度 0 1 1及び角度 0 1 2共に、 本実施形態では 9 0 ° 以下である。 ここでいう、 磁化容易軸 3 0 0 , 3 1 0のそれぞれは、 以下 の定義による。 磁石 9 1 , 9 2のそれぞれの部分において、 一つの磁化容易 軸が方向八 1 1 を向き、 もう一つの磁化容易軸が方向巳 1 1 を向いていると した場合、 方向 1 1 と方向巳 1 1の成す角度 0のコサインの絶対値 ( | 〇 〇 3 0 |) を磁化容易軸 3 0 0或いは磁化容易軸 3 1 0とする。
[0136] More specifically, the angle 0 1 1 is such that when the direction from the stator 5 0 (armature) to the magnet unit 4 2 is positive in the axis, the axis and the easy axis of magnetization 300 are It is an angle.
Figure imgf000044_0001
This is the angle formed by the 9 axis and the easy axis of magnetization 3 10 when the direction from the stator 50 (armature) to the magnet unit 4 2 in the 9 axis is positive. Both the angle 0 1 1 and the angle 0 1 2 are 90° or less in this embodiment. Here, each of the easy magnetization axes 300 and 310 is defined as follows. In each part of the magnets 9 1 and 9 2, if one easy axis is oriented in the direction 8 11 and the other easy axis is oriented in the direction 11 1, the direction 1 1 and the direction 9 1 The absolute value of the cosine of the angle 0 formed by 1 1 (| 〇 〇 3 0 |) is defined as the easy axis of magnetization 300 or the easy axis of magnetization 3 10.
[0137] すなわち、 各磁石 9 1 , 9 2のそれぞれは、 軸側 ( 軸寄りの部分) と [0137] That is, each of the magnets 9 1 and 9 2 is connected to the shaft side (portion near the axis)
9軸側 (9軸寄りの部分) とで磁化容易軸の向きが相違しており、 軸側で は磁化容易軸の向きが ¢1軸に平行な方向に近い向きとなり、 軸側では磁化 容易軸の向きが 9軸に直交する方向に近い向きとなっている。 そして、 この 〇 2020/175333 43 卩(:171? 2020 /006903 The direction of the easy magnetization axis differs from that on the 9-axis side (the portion near the 9-axis). The easy-axis direction on the axis side is close to the direction parallel to the ¢1 axis, and the easy-axis direction on the axis side The direction of the axis is close to the direction orthogonal to the 9th axis. And this 〇 2020/175333 43 卩 (:171? 2020 /006903
磁化容易軸の向きに応じて円弧状の磁石磁路が形成されている。 なお、 各磁 石 9 1 , 9 2において、 軸側では磁化容易軸を 軸に平行な向きとし、 9 軸側では磁化容易軸を 軸に直交する向きとしてもよい。 An arc-shaped magnet magnetic path is formed according to the direction of the easy axis of magnetization. In each of the magnets 91 and 92, the easy axis may be oriented parallel to the axis on the axis side, and the easy axis may be oriented orthogonal to the axis on the 9 axis side.
[0138] また、 磁石 9 1 , 9 2では、 各磁石 9 1 , 9 2の周面のうち固定子 5 0側 (図 9の下側) となる固定子側外面と、 周方向において 9軸側の端面とが、 磁束の流入流出面である磁束作用面となっており、 それらの磁束作用面 (固 定子側外面及び 軸側の端面) を繫ぐように磁石磁路が形成されている。 [0138] In addition, in the magnets 9 1 and 9 2, the outer surface of the stator, which is the stator 50 side (lower side in Fig. 9) of the peripheral surface of each of the magnets 9 1 and 9 2, and the 9 axes in the circumferential direction. Side end surface is the magnetic flux acting surface that is the inflow and outflow surface of the magnetic flux, and the magnet magnetic path is formed so as to connect these magnetic flux acting surfaces (the outer surface of the stator side and the end surface of the shaft side). ..
[0139] 磁石ユニッ ト 4 2では、 各磁石 9 1 , 9 2により、 隣接する 1\1 , 3極間を 円弧状に磁束が流れるため、 例えばラジアル異方性磁石に比べて磁石磁路が 長くなっている。 このため、 図 1 7に示すように、 磁束密度分布が正弦波に 近いものとなる。 その結果、 図 1 8に比較例として示すラジアル異方性磁石 の磁束密度分布とは異なり、 磁極の中心側に磁束を集中させることができ、 回転電機 1 0のトルクを高めることができる。 また、 本実施形態の磁石ユニ ッ ト 4 2では、 従来のハルバッハ配列の磁石と比べても、 磁束密度分布の差 異があることが確認できる。 なお、 図 1 7及び図 1 8において、 横軸は電気 角を示し、 縦軸は磁束密度を示す。 また、 図 1 7及び図 1 8において、 横軸 の 9 0 ° は 軸 (すなわち磁極中心) を示し、 横軸の 0 ° , 1 8 0 ° は 9軸 を示す。 [0139] In the magnet unit 42, since the magnetic flux flows in an arc shape between the adjacent 1\1 and 3 poles by the magnets 9 1 and 9 2, the magnet magnetic path is smaller than that of a radial anisotropic magnet, for example. It's getting longer. Therefore, the magnetic flux density distribution is close to a sine wave, as shown in Fig. 17. As a result, unlike the magnetic flux density distribution of the radial anisotropic magnet shown in FIG. 18 as a comparative example, the magnetic flux can be concentrated on the center side of the magnetic pole, and the torque of the rotating electric machine 10 can be increased. Further, it can be confirmed that the magnet unit 42 of the present embodiment has a difference in the magnetic flux density distribution as compared with the conventional Halbach array magnet. In FIGS. 17 and 18, the horizontal axis represents the electrical angle and the vertical axis represents the magnetic flux density. Further, in FIGS. 17 and 18, 90° on the horizontal axis indicates the axis (that is, the magnetic pole center), and 0° and 180° on the horizontal axis indicate the 9 axis.
[0140] つまり、 上記構成の各磁石 9 1 , 9 2によれば、 軸での磁石磁束が強化 され、 かつ 軸付近での磁束変化が抑えられる。 これにより、 各磁極におい て 軸から 軸にかけての表面磁束変化がなだらかになる磁石 9 1 , 9 2を 好適に実現することができる。 [0140] That is, according to each of the magnets 9 1 and 9 2 having the above-mentioned configuration, the magnetic flux of the magnet on the axis is strengthened and the change of the magnetic flux near the axis is suppressed. As a result, it is possible to preferably realize the magnets 9 1 and 9 2 in which the surface magnetic flux changes gently from axis to axis at each magnetic pole.
[0141 ] 磁束密度分布の正弦波整合率は、 例えば 4 0 %以上の値とされていればよ い。 このようにすれば、 正弦波整合率が 3 0 %程度であるラジアル配向磁石 、 パラレル配向磁石を用いる場合に比べ、 確実に波形中央部分の磁束量を向 上させることができる。 また、 正弦波整合率を 6 0 %以上とすれば、 ハルバ ッハ配列のような磁束集中配列と比べ、 確実に波形中央部分の磁束量を向上 させることができる。 〇 2020/175333 44 卩(:171? 2020 /006903 [0141] The sine wave matching rate of the magnetic flux density distribution may be set to, for example, a value of 40% or more. By doing so, it is possible to surely improve the magnetic flux amount in the central portion of the waveform, as compared with the case of using a radial oriented magnet or a parallel oriented magnet having a sine wave matching rate of about 30%. Also, if the sine wave matching rate is set to 60% or more, the amount of magnetic flux in the central portion of the waveform can be reliably improved compared to the magnetic flux concentration array such as the Halbach array. 〇 2020/175 333 44 卩 (: 171? 2020 /006903
[0142] 図 1 8に示すラジアル異方性磁石では、 軸付近において磁束密度が急峻 に変化する。 磁束密度の変化が急峻なほど、 固定子巻線 5 1 に発生する渦電 流が増加してしまう。 また、 固定子巻線 5 1側での磁束変化も急峻となる。 これに対し、 本実施形態では、 磁束密度分布が正弦波に近い磁束波形となる 。 このため、 軸付近において、 磁束密度の変化が、 ラジアル異方性磁石の 磁束密度の変化よりも小さい。 これにより、 渦電流の発生を抑制することが できる。 [0142] In the radial anisotropic magnet shown in Fig. 18, the magnetic flux density changes sharply near the axis. The steeper the change in magnetic flux density, the greater the eddy current generated in the stator winding 51. Also, the change in magnetic flux on the stator winding 51 side becomes steep. On the other hand, in the present embodiment, the magnetic flux density distribution has a magnetic flux waveform close to a sine wave. Therefore, the change in the magnetic flux density near the axis is smaller than the change in the magnetic flux density of the radial anisotropic magnet. This can suppress the generation of eddy currents.
[0143] 磁石ユニッ ト 4 2では、 各磁石 9 1 , 9 2の 軸付近 (すなわち磁極中心 ) において、 固定子 5 0側の磁束作用面 2 8 0に直交する向きで磁束が生じ 、 その磁束は、 固定子 5 0側の磁束作用面 2 8 0から離れるほど、 軸から 離れるような円弧状をなす。 また、 磁束作用面に直交する磁束であるほど、 強い磁束となる。 この点において、 本実施形態の回転電機 1 0では、 上述の とおり各導線群 8 1 を径方向に薄く したため、 導線群 8 1の径方向の中心位 置が磁石ユニッ ト 4 2の磁束作用面に近づくことになり、 固定子 5 0におい て回転子 4 0から強い磁石磁束を受けることができる。 [0143] In the magnet unit 42, in the vicinity of the axis of each magnet 9 1, 9 2 (that is, the magnetic pole center), a magnetic flux is generated in a direction orthogonal to the magnetic flux acting surface 2 80 on the stator 50 side, and the magnetic flux is generated. Has an arc shape that is farther from the axis as it is farther from the magnetic flux acting surface 280 on the side of the stator 50. Also, the more perpendicular to the magnetic flux acting surface, the stronger the magnetic flux. In this respect, in the rotary electric machine 10 of the present embodiment, since the conductor wire groups 8 1 are thinned in the radial direction as described above, the radial center position of the conductor wire groups 8 1 is the magnetic flux acting surface of the magnet unit 4 2. Therefore, the stator 50 can receive a strong magnetic flux from the rotor 40.
[0144] また、 固定子 5 0には、 固定子巻線 5 1の径方向内側、 すなわち固定子巻 線 5 1 を挟んで回転子 4 0の逆側に円筒状の固定子コア 5 2が設けられてい る。 そのため、 各磁石 9 1 , 9 2の磁束作用面から延びる磁束は、 固定子コ ア 5 2に引きつけられ、 固定子コア 5 2を磁路の一部として用いつつ周回す る。 この場合、 磁石磁束の向き及び経路を適正化することができる。 [0144] Further, the stator 5 0 has a cylindrical stator core 5 2 radially inward of the stator winding 5 1, that is, on the opposite side of the rotor 40 with the stator winding 5 1 interposed therebetween. It is provided. Therefore, the magnetic flux extending from the magnetic flux acting surface of each magnet 91, 92 is attracted to the stator core 52, and circulates while using the stator core 52 as a part of the magnetic path. In this case, the direction and path of the magnetic flux of the magnet can be optimized.
[0145] 以下に、 回転電機 1 0の製造方法として、 図 5に示す軸受ユニッ ト 2 0、 ハウジング 3 0、 回転子 4 0、 固定子 5 0及びインバータユニッ ト 6 0につ いての組み付け手順について説明する。 なお、 インバータユニッ ト 6 0は、 図 6に示すようにユニッ トべース 6 1 と電気コンポーネント 6 2とを有して おり、 それらユニッ トべース 6 1及び電気コンポーネント 6 2の組み付けエ 程を含む各作業工程を説明する。 以下の説明では、 固定子 5 0及びインパー タユニッ ト 6 0よりなる組立品を第 1ユニッ ト、 軸受ユニッ ト 2 0、 ハウジ ング 3 0及び回転子 4 0よりなる組立品を第 2ユニッ トとしている。 〇 2020/175333 45 卩(:171? 2020 /006903 [0145] In the following, as a method of manufacturing the rotating electric machine 10, an assembly procedure for the bearing unit 20 shown in Fig. 5, the housing 30, the rotor 40, the stator 50 and the inverter unit 60 is shown. Will be described. The inverter unit 60 has a unit base 61 and an electric component 62 as shown in Fig. 6, and the unit base 61 and the electric component 62 are assembled together. Each work process including steps will be described. In the following description, the assembly consisting of the stator 50 and the inserter unit 60 is the first unit, and the assembly consisting of the bearing unit 20 and the housing 30 and the rotor 40 is the second unit. There is. 〇 2020/175 333 45 卩 (: 171-1? 2020 /006903
[0146] 本製造工程は、 [0146] The manufacturing process is
-ユニッ トべース 6 1の径方向内側に電気コンポーネント 6 2を装着する第 1工程と、 -The first step of mounting the electrical component 62 on the inner side of the unit base 61,
-固定子 5〇の径方向内側にユニッ トべース 6 1 を装着して第 1ユニッ トを 製作する第 2工程と、 -The second step of manufacturing the first unit by mounting the unit base 61 on the inner side of the stator 50 in the radial direction,
ハウジング 3 0に組み付けられた軸受ユニッ ト 2 0に、 回転子 4 0の固定 部 4 4を挿入して第 2ユニッ トを製作する第 3工程と、 The third step of manufacturing the second unit by inserting the fixed portion 44 of the rotor 40 into the bearing unit 20 assembled in the housing 30 and
-第 2ユニッ トの径方向内側に第 1ユニッ トを装着する第 4工程と、 -The fourth step of mounting the first unit inside the second unit in the radial direction,
-ハウジング 3 0とユニッ トべース 6 1 とを締結固定する第 5工程と、 を有している。 これら各工程の実施順序は、 第 1工程 ®第 2工程 ®第 3工程 ®第 4工程 ®第 5工程である。 -The fifth step of fastening and fixing the housing 30 and the unit base 6 1 is included. The order of performing these steps is 1st step 2nd step 3rd step 4th step 5th step.
[0147] 上記の製造方法によれば、 軸受ユニッ ト 2 0、 ハウジング 3 0、 回転子 4 [0147] According to the above manufacturing method, the bearing unit 20, the housing 30 and the rotor 4 are
0、 固定子 5 0及びインバータユニッ ト 6 0を複数の組立品 (サブアセンブ リ) として組み立てた後に、 それら組立品同士を組み付けるようにしたため 、 ハンドリングのし易さやユニッ ト毎の検査完結などを実現でき、 合理的な 組み立てラインの構築が可能となる。 したがって、 多品種生産にも容易に対 応が可能となる。 After assembling 0, stator 50 and inverter unit 60 as multiple assemblies (sub-assemblies) and then assembling these assemblies, easy handling and inspection completion for each unit are achieved. It is possible to construct a rational assembly line. Therefore, it is possible to easily cope with multi-product production.
[0148] 第 1工程では、 ユニッ トべース 6 1の径方向内側及び電気コンポーネント [0148] In the first step, the radial inside of the unit base 61 and electrical components
6 2の径方向外部の少なくともいずれかに、 熱伝導が良好な良熱伝導体を塗 布や接着等により付着させておき、 その状態で、 ユニッ トべース 6 1 に対し て電気コンポーネント 6 2を装着するとよい。 これにより、 半導体モジユー ル 6 6の発熱をユニッ トべース 6 1 に対して効果的に伝達させることが可能 となる。 A good thermal conductor with good thermal conductivity is attached to at least one of the radial outer sides of 62 by applying a cloth or adhesive, and in that state, the electrical component 6 is attached to the unit base 61. You should wear 2. This makes it possible to effectively transfer the heat generated by the semiconductor module 6 6 to the unit base 6 1.
[0149] 第 3工程では、 ハウジング 3 0と回転子 4 0との同軸を維持しながら、 回 転子 4 0の挿入作業を実施するとよい。 具体的には、 例えばハウジング 3 0 の内周面を基準として回転子 4 0の外周面 (磁石ホルダ 4 1の外周面) 又は 回転子 4 0の内周面 (磁石ユニッ ト 4 2の内周面) の位置を定める治具を用 い、 その治具に沿ってハウジング 3 0及び回転子 4 0のいずれかをスライ ド 〇 2020/175333 46 卩(:171? 2020 /006903 [0149] In the third step, the rotor 40 may be inserted while maintaining the housing 30 and the rotor 40 coaxial with each other. Specifically, for example, with the inner peripheral surface of the housing 30 as a reference, the outer peripheral surface of the rotor 40 (outer peripheral surface of the magnet holder 41) or the inner peripheral surface of the rotor 40 (inner peripheral surface of the magnet unit 42). Surface), and slide either the housing 30 or rotor 40 along the jig. 〇 2020/175333 46 卩 (: 171? 2020 /006903
させながら、 ハウジング 3 0と回転子 4 0との組み付けを実施する。 これに より、 軸受ユニッ ト 2 0に偏荷重を掛けることなく重量部品を組み付けるこ とが可能となり、 軸受ユニッ ト 2 0の信頼性が向上する。 While doing so, the assembly of the housing 30 and the rotor 40 is carried out. This makes it possible to assemble heavy parts without imposing an unbalanced load on the bearing unit 20 and improve the reliability of the bearing unit 20.
[0150] 第 4工程では、 第 1ユニッ トと第 2ユニッ トとの同軸を維持しながら、 そ れら両ユニッ トの組み付けを実施するとよい。 具体的には、 例えば回転子 4 0の固定部 4 4の内周面を基準としてユニッ トべース 6 1の内周面の位置を 定める治具を用い、 その治具に沿って第 1ユニッ ト及び第 2ユニッ トのいず れかをスライ ドさせながら、 これら各ユニッ トの組み付けを実施する。 これ により、 回転子 4 0と固定子 5 0との極少隙間間での互いの干渉を防止しな がら組み付けることが可能となるため、 固定子巻線 5 1へのダメージや永久 磁石の欠け等、 組み付け起因の不良品の撲滅が可能となる。 [0150] In the fourth step, it is advisable to assemble the first unit and the second unit while maintaining the same axis. Specifically, for example, a jig that determines the position of the inner peripheral surface of the unit base 61 with reference to the inner peripheral surface of the fixed portion 44 of the rotor 40 is used, and the first Assemble each of these units while sliding either the unit or the second unit. This makes it possible to assemble the rotor 40 and stator 50 while preventing them from interfering with each other in the minimal gap, resulting in damage to the stator winding 5 1 and lack of permanent magnets. It is possible to eliminate defective products due to assembly.
[0151 ] 上記各工程の順序を、 第 2工程 ®第 3工程 ®第 4工程 ®第 5工程 ®第 1エ 程とすることも可能である。 この場合、 デリケートな電気コンポーネント 6 2を最後に組み付けることになり、 組み付け工程内での電気コンポーネント 6 2へのストレスを最小限にとどめることができる。 [0151] The order of each of the above steps may be set as the second step, the third step, the fourth step, the fifth step, the first step. In this case, the delicate electrical component 62 is assembled last, and the stress on the electrical component 62 during the assembly process can be minimized.
[0152] 次に、 回転電機 1 0を制御する制御システムの構成について説明する。 図 [0152] Next, the configuration of the control system for controlling the rotary electric machine 10 will be described. Figure
1 9は、 回転電機 1 0の制御システムの電気回路図であり、 図 2 0は、 制御 装置 1 1 0による制御処理を示す機能ブロック図である。 Reference numeral 19 is an electric circuit diagram of a control system of the rotary electric machine 10, and FIG. 20 is a functional block diagram showing control processing by the control device 110.
[0153] 図 1 9では、 固定子巻線 5 1 として 2組の 3相卷線 5 1 3 , 5 1 匕が示さ れており、 3相卷線 5 1 3は II相巻線、 V相卷線及び 相巻線よりなり、 3 相卷線 5 1 13は X相巻線、 丫相卷線及び 相巻線よりなる。 3相卷線 5 1 3 , 5 1 13ごとに、 電力変換器に相当する第 1インバータ 1 0 1 と第 2インバ —夕 1 0 2とがそれぞれ設けられている。 インバータ 1 0 1 , 1 0 2は、 相 巻線の相数と同数の上下アームを有するフルブリッジ回路により構成されて おり、 各アームに設けられたスイッチ (半導体スイッチング素子) のオンオ フにより、 固定子巻線 5 1の各相卷線において通電電流が調整される。 [0153] In Fig. 19, two sets of 3-phase windings 5 1 3 and 5 1 are shown as the stator winding 51, and the 3-phase winding 5 1 3 is the II-phase winding and the V-phase winding. It consists of a winding wire and a phase winding, and the three-phase winding wire 5 1 13 consists of an X-phase winding, a normal winding wire and a phase winding. A first inverter 10 1 and a second inverter 10 2 corresponding to a power converter are provided for each of the three-phase windings 5 1 3 and 5 1 13. The inverters 10 1 and 10 2 are composed of a full bridge circuit that has the same number of upper and lower arms as the number of phases of the phase winding, and is fixed by turning on and off the switch (semiconductor switching element) provided in each arm. The energizing current is adjusted in each phase winding of the child winding 51.
[0154] 各インバータ 1 0 1 , 1 0 2には、 直流電源 1 0 3と平滑用のコンデンサ [0154] Each inverter 1 0 1 and 1 0 2 has a DC power supply 1 0 3 and a smoothing capacitor.
1 0 4とが並列に接続されている。 直流電源 1 0 3は、 例えば複数の単電池 〇 2020/175333 47 卩(:171? 2020 /006903 10 4 and 10 are connected in parallel. The DC power supply 103 is, for example, a plurality of single batteries. 〇 2020/175 333 47 卩 (: 171-1? 2020 /006903
が直列接続された組電池により構成されている。 なお、 インバータ 1 0 1 , 1 0 2の各スイッチが、 図 1等に示す半導体モジュール 6 6に相当し、 コン デンサ 1 0 4が、 図 1等に示すコンデンサモジュール 6 8に相当する。 Are composed of assembled batteries connected in series. Each switch of the inverters 10 1 and 10 2 corresponds to the semiconductor module 66 shown in FIG. 1 etc., and the capacitor 10 4 corresponds to the capacitor module 68 shown in FIG. 1 etc.
[0155] 制御装置 1 1 0は、 〇 IIや各種メモリからなるマイコンを備えており、 回転電機 1 〇における各種の検出情報や、 力行駆動及び発電の要求に基づい て、 インバータ 1 0 1 , 1 0 2における各スイッチのオンオフにより通電制 御を実施する。 制御装置 1 1 〇が、 図 6に示す制御装置 7 7に相当する。 回 転電機 1 〇の検出情報には、 例えば、 レゾルバ等の角度検出器により検出さ れる回転子 4 0の回転角度 (電気角情報) や、 電圧センサにより検出される 電源電圧 (インバータ入力電圧) 、 電流センサにより検出される各相の通電 電流が含まれる。 制御装置 1 1 〇は、 インバータ 1 0 1 , 1 0 2の各スイッ チを操作する操作信号を生成して出力する。 なお、 発電の要求は、 例えば回 転電機 1 〇が車両用動力源として用いられる場合、 回生駆動の要求である。 [0155] The control device 110 is equipped with a microcomputer consisting of 〇II and various memories, and based on various detection information of the rotating electric machine10 and requests for power running drive and power generation, the inverter 1101,1 The energization is controlled by turning on/off each switch in 02. The control device 110 corresponds to the control device 77 shown in FIG. The detection information of the rotating electric machine 10 includes, for example, the rotation angle (electrical angle information) of the rotor 40 detected by an angle detector such as a resolver or the power supply voltage (inverter input voltage) detected by a voltage sensor. , Includes the energizing current of each phase detected by the current sensor. The control device 110 generates and outputs an operation signal for operating each switch of the inverters 10 1 and 10 2. The request for power generation is a request for regenerative driving when, for example, the revolving electric machine 10 is used as a power source for vehicles.
[0156] 第 1インバータ 1 0 1は、 II相、 V相及び 相からなる 3相において上ア —ムスイッチ 3 と下アームスイッチ 3 との直列接続体をそれぞれ備えて いる。 各相の上アームスイッチ 3 の高電位側端子は直流電源 1 0 3の正極 端子に接続され、 各相の下アームスイッチ 3 の低電位側端子は直流電源 1 0 3の負極端子 (グランド) に接続されている。 各相の上アームスイッチ 3 と下アームスイッチ 3 nとの間の中間接続点には、 それぞれ II相巻線、 V 相巻線、 相巻線の _端が接続されている。 これら各相卷線は星形結線 (丫 結線) されており、 各相卷線の他端は中性点にて互いに接続されている。 [0156] The first inverter 101 is provided with a series connection body of the upper arm switch 3 and the lower arm switch 3 in each of the three phases of II phase, V phase and phase. The high potential side terminal of the upper arm switch 3 of each phase is connected to the positive terminal of the DC power supply 103, and the low potential side terminal of the lower arm switch 3 of each phase is connected to the negative terminal (ground) of the DC power supply 103. It is connected. At the intermediate connection points between the upper arm switch 3 and the lower arm switch 3 n of each phase, the _ ends of the II phase winding, the V phase winding, and the phase winding are connected. Each of these phase lines is connected in a star shape (cable connection), and the other ends of each phase line are connected to each other at a neutral point.
[0157] 第 2インバータ 1 0 2は、 第 1インバータ 1 0 1 と同様の構成を有してお り、 X相、 丫相及び 相からなる 3相において上アームスイッチ 3 と下ア —ムスイッチ 3 との直列接続体をそれぞれ備えている。 各相の上アームス イッチ 3 の高電位側端子は直流電源 1 0 3の正極端子に接続され、 各相の 下アームスイッチ 3 nの低電位側端子は直流電源 1 0 3の負極端子 (グラン ド) に接続されている。 各相の上アームスイッチ 3 と下アームスイッチ 3 nとの間の中間接続点には、 それぞれ X相巻線、 丫相巻線、 相巻線の一端 が接続されている。 これら各相卷線は星形結線 (Y結線) されており、 各相 巻線の他端は中性点で互いに接続されている。 [0157] The second inverter 1002 has the same configuration as that of the first inverter 101, and the upper arm switch 3 and the lower arm switch 3 are provided in the three phases of the X phase, the negative phase, and the phase. And a series connection body with each. The high potential side terminal of the upper arm switch 3 of each phase is connected to the positive terminal of the DC power supply 103, and the low potential side terminal of the lower arm switch 3 n of each phase is the negative terminal (ground) of the DC power supply 103. ) It is connected to the. At the intermediate connection point between the upper arm switch 3 and the lower arm switch 3 n of each phase, the X-phase winding, the zero-phase winding, and one end of the phase winding Are connected. Each of these phase windings is star-connected (Y-connected), and the other ends of each phase winding are connected to each other at a neutral point.
[0158] 図 20には、 U, V, W相の各相電流を制御する電流フィードバック制御 処理と、 X, Y, z相の各相電流を制御する電流フィードバック制御処理と が示されている。 ここではまず、 U, V, W相側の制御処理について説明す る。 [0158] Fig. 20 shows a current feedback control process for controlling the U, V, W phase currents and a current feedback control process for controlling the X, Y, z phase currents. .. First, the control processing on the U, V, and W phase side will be described.
[0159] 図 20において、 電流指令値設定部 1 1 1は、 トルクー d qマップを用い 、 回転電機 1 〇に対する力行トルク指令値又は発電トルク指令値や、 電気角 0を時間微分して得られる電気角速度 £〇に基づいて、 d軸の電流指令値と q 軸の電流指令値とを設定する。 なお、 電流指令値設定部 1 1 1は、 U, V, [0159] In Fig. 20, the current command value setting unit 1 1 1 uses the torque-dq map to obtain the power running torque command value or the power generation torque command value for the rotating electric machine 10 or the electrical angle 0 obtained by time differentiation. Set the d-axis current command value and the q-axis current command value based on the angular velocity of £. In addition, the current command value setting unit 1 1 1
W相側及び X, Y, Z相側において共通に設けられている。 なお、 発電トル ク指令値は、 例えば回転電機 1 0が車両用動力源として用いられる場合、 回 生トルク指令値である。 Commonly provided on the W-phase side and the X-, Y-, and Z-phase sides. The power generation torque command value is, for example, a regenerative torque command value when the rotary electric machine 10 is used as a vehicle power source.
[0160] d q変換部 1 1 2は、 相ごとに設けられた電流センサによる電流検出値 ( [0160] The d q converter 1 1 2 has a current detection value (
3つの相電流) を、 界磁方向(d i rect i on of an axis of a magnetic field,。 r field d i rect i on)を d軸とする直交 2次元回転座標系の成分である d軸電 流と q軸電流とに変換する。 D phase current, which is a component of an orthogonal two-dimensional rotational coordinate system whose d axis is the magnetic field direction (di rect i on of an axis of a magnetic field, .r field di rect i on). And q-axis current.
[0161] d軸電流フィードバック制御部 1 1 3は、 d軸電流を d軸の電流指令値に フィードバック制御するための操作量として d軸の指令電圧を算出する。 ま た、 q軸電流フィードバック制御部 1 1 4は、 q軸電流を q軸の電流指令値 にフィードバック制御するための操作量として q軸の指令電圧を算出する。 これら各フィードバック制御部 1 1 3, 1 1 4では、 d軸電流及び q軸電流 の電流指令値に対する偏差に基づき、 P 丨 フィードバック手法を用いて指令 電圧が算出される。 [0161] The d-axis current feedback control unit 113 calculates a d-axis command voltage as an operation amount for feedback controlling the d-axis current to the d-axis current command value. In addition, the q-axis current feedback control unit 1 1 1 1 4 calculates the q-axis command voltage as an operation amount for feedback controlling the q-axis current to the q-axis current command value. In each of these feedback control units 113, 114, the command voltage is calculated using the P feedback method based on the deviation of the d-axis current and the q-axis current from the current command value.
[0162] 3相変換部 1 1 5は、 d軸及び q軸の指令電圧を、 U相、 V相及び W相の 指令電圧に変換する。 なお、 上記の各部 1 1 1〜 1 1 5が、 d q変換理論に よる基本波電流のフィードバック制御を実施するフィードバック制御部であ り、 U相、 V相及び W相の指令電圧がフィードバック制御値である。 〇 2020/175333 49 卩(:171? 2020 /006903 [0162] The three-phase conversion unit 115 converts the d-axis and q-axis command voltages into U-phase, V-phase, and W-phase command voltages. Note that each of the above sections 1 1 1 to 1 1 1 5 is a feedback control section that performs feedback control of the fundamental current based on the dq conversion theory, and the command voltage of the U phase, V phase, and W phase is the feedback control value. Is. 〇 2020/175 333 49 卩 (:171? 2020 /006903
[0163] そして、 操作信号生成部 1 1 6は、 周知の三角波キャリア比較方式を用い 、 3相の指令電圧に基づいて、 第 1インバータ 1 0 1の操作信号を生成する 。 具体的には、 操作信号生成部 1 1 6は、 3相の指令電圧を電源電圧で規格 化した信号と、 三角波信号等のキャリア信号との大小比較に基づく \^/1\/1制 御により、 各相における上下アームのスイッチ操作信号 (デューティ信号) を生成する。 [0163] Then, the operation signal generation unit 1 16 uses the well-known triangular wave carrier comparison method to generate the operation signal of the first inverter 1 0 1 based on the command voltages of the three phases. Specifically, the operation signal generator 1116 controls \^/1\/1 based on the magnitude comparison between the signal obtained by normalizing the three-phase command voltage with the power supply voltage and the carrier signal such as the triangular wave signal. Generates a switch operation signal (duty signal) for the upper and lower arms in each phase.
[0164] また、 X , 丫, 相側においても同様の構成を有しており、
Figure imgf000051_0001
変換部 1
[0164] Further, the X side, the side, and the phase side have the same configuration,
Figure imgf000051_0001
Converter 1
2 2は、 相ごとに設けられた電流センサによる電流検出値 (3つの相電流) を、 界磁方向を ¢1軸とする直交 2次元回転座標系の成分である ¢1軸電流と 軸電流とに変換する。 2 2 is the component of the orthogonal two-dimensional rotational coordinate system with the field direction as the ¢1 axis, which is the detected current value (three phase currents) by the current sensor provided for each phase ¢1 Axis current and Axis current And convert to.
[0165] ¢1軸電流フィードバック制御部 1 2 3は ¢1軸の指令電圧を算出し、 軸電 流フィードバック制御部 1 2 4は 9軸の指令電圧を算出する。 3相変換部 1 2 5は、 軸及び 9軸の指令電圧を、 X相、 丫相及び 相の指令電圧に変換 する。 そして、 操作信号生成部 1 2 6は、 3相の指令電圧に基づいて、 第 2 インバータ 1 0 2の操作信号を生成する。 具体的には、 操作信号生成部 1 2 6は、 3相の指令電圧を電源電圧で規格化した信号と、 三角波信号等のキャ リア信号との大小比較に基づく \^/1\/1制御により、 各相における上下アーム のスイッチ操作信号 (デューティ信号) を生成する。 [0165] The 1-axis current feedback control section 1 2 3 calculates the 1-axis command voltage, and the 1-axis current feedback control section 1 2 4 calculates the 9-axis command voltage. The 3-phase converter 1 2 5 converts the command voltages for the axes 9 and 9 into command voltages for the X phase, the negative phase, and the phase. Then, the operation signal generation unit 1 26 generates the operation signal of the second inverter 1 0 2 based on the three-phase command voltage. Specifically, the operation signal generator 1 2 6 controls \^/1\/1 based on the magnitude comparison between the signal obtained by normalizing the three-phase command voltage with the power supply voltage and the carrier signal such as the triangular wave signal. Generates a switch operation signal (duty signal) for the upper and lower arms in each phase.
[0166] ドライバ 1 1 7は、 操作信号生成部 1 1 6 , 1 2 6にて生成されたスイッ チ操作信号に基づいて、 各インバータ 1 0 1 , 1 0 2における各 3相のスイ ッチ 3 , 3 をオンオフさせる。 [0166] Based on the switch operation signals generated by the operation signal generators 1 1 6 and 1 2 6, the driver 1 1 7 switches the 3-phase switches in each inverter 1 0 1 and 1 0 2. Turn 3, 3 on and off.
[0167] 続いて、 トルクフィードバック制御処理について説明する。 この処理は、 例えば高回転領域及び高出力領域等、 各インバータ 1 0 1 , 1 0 2の出力電 圧が大きくなる運転条件において、 主に回転電機 1 〇の高出力化や損失低減 の目的で用いられる。 制御装置 1 1 〇は、 回転電機 1 〇の運転条件に基づい て、 トルクフィードバック制御処理及び電流フィードバック制御処理のいず れか一方の処理を選択して実行する。 [0167] Next, the torque feedback control process will be described. This process is mainly for the purpose of increasing the output of the rotating electric machine 10 and reducing the loss under operating conditions where the output voltage of each inverter 10 1, 10 2 is large, such as in the high rotation area and high output area. Used. The control device 110 selects and executes one of the torque feedback control process and the current feedback control process based on the operating conditions of the rotary electric machine 100.
[0168] 図 2 1 には、 II , V , 相に対応するトルクフィードバック制御処理と、 \¥0 2020/175333 50 卩(:17 2020 /006903 [0168] Fig. 21 shows the torque feedback control process corresponding to the II, V, and phases. \¥0 2020/175333 50 (: 17 2020 /006903
X, 丫, 相に対応するトルクフィードバック制御処理とが示されている。 なお、 図 2 1 において、 図 2〇と同じ構成については、 同じ符号を付して説 明を省略する。 ここではまず、 II, V, \/\/相側の制御処理について説明する Torque feedback control processing corresponding to X, H, and phase is shown. Note that, in FIG. 21, the same components as those in FIG. 20 are given the same reference numerals and the description thereof will be omitted. Here, first, the control processing on the II, V, \/\/ phase side will be explained.
[0169] 電圧振幅算出部 1 2 7は、 回転電機 1 0に対する力行トルク指令値又は発 電トルク指令値と、 電気角 0を時間微分して得られる電気角速度〇)とに基づ いて、 電圧べクトルの大きさの指令値である電圧振幅指令を算出する。 [0169] The voltage amplitude calculation unit 1 2 7 determines the voltage based on the power running torque command value or the power generation torque command value for the rotary electric machine 10 and the electrical angular velocity 0) obtained by time differentiating the electrical angle 0. A voltage amplitude command, which is a command value of the vector size, is calculated.
[0170] トルク推定部 1 2 8 3は、 ¢1 変換部 1 1 2により変換された ¢1軸電流と [0170] The torque estimation unit 1 2 8 3 and the ¢1 axis current converted by the ¢1 conversion unit 1 1 2
9軸電流とに基づいて、 リ, V , 相に対応するトルク推定値を算出する。 なお、 トルク推定部 1 2 8 3は、 軸電流、 軸電流及び電圧振幅指令が関 係付けられたマップ情報に基づいて、 電圧振幅指令を算出すればよい。 Based on the 9-axis current, the estimated torque value corresponding to the R, V, and phase is calculated. It should be noted that the torque estimator 1 283 may calculate the voltage amplitude command based on the map information in which the shaft current, the shaft current and the voltage amplitude command are associated.
[0171 ] トルクフィードバック制御部 1 2 9 3は、 力行トルク指令値又は発電トル ク指令値にトルク推定値をフィードバック制御するための操作量として、 電 圧べクトルの位相の指令値である電圧位相指令を算出する。 トルクフィード バック制御部 1 2 9 3では、 力行トルク指令値又は発電トルク指令値に対す るトルク推定値の偏差に基づき、 丨 フィードバック手法を用いて電圧位相 指令が算出される。 [0171] The torque feedback control unit 1 2 9 3 is a voltage phase which is a command value of the phase of the voltage vector as an operation amount for feedback controlling the estimated torque value to the power running torque command value or the power generation torque command value. Calculate the command. In the torque feedback controller 1293, the voltage phase command is calculated using the feedback method based on the deviation of the estimated torque value with respect to the power running torque command value or the power generation torque command value.
[0172] 操作信号生成部 1 3 0 3は、 電圧振幅指令、 電圧位相指令及び電気角 0に 基づいて、 第 1インバータ 1 0 1の操作信号を生成する。 具体的には、 操作 信号生成部 1 3 0 3は、 電圧振幅指令、 電圧位相指令及び電気角 0に基づい て 3相の指令電圧を算出し、 算出した 3相の指令電圧を電源電圧で規格化し た信号と、 三角波信号等のキャリア信号との大小比較に基づく \^/1\/1制御に より、 各相における上下アームのスイッチ操作信号を生成する。 [0172] Operation signal generation unit 1 3 0 3, the voltage amplitude command, based on the voltage phase command and the electrical angle 0, and generates a first operation signal of the inverter 1 0 1. Specifically, the operation signal generating unit 1 3 0 3, standard voltage amplitude command, and calculates a command voltage of 3-phase based on the voltage phase command and the electrical angle 0, the power supply voltage command voltage calculated 3-phase The switch operation signals of the upper and lower arms in each phase are generated by \^/1\/1 control based on the magnitude comparison of the converted signal and the carrier signal such as the triangular wave signal.
[0173] ちなみに、 操作信号生成部 1 3 0 3は、 電圧振幅指令、 電圧位相指令、 電 気角 0及びスイッチ操作信号が関係付けられたマップ情報であるパルスバタ —ン情報、 電圧振幅指令、 電圧位相指令並びに電気角 0に基づいて、 スイッ チ操作信号を生成してもよい。 [0173] By the way, the operation signal generation unit 133 is a pulse amplitude information, a voltage amplitude command, a voltage amplitude command, a voltage phase command, a voltage phase command, a voltage angle command, and a voltage amplitude command, which are map information associated with the switch operation signal. The switch operation signal may be generated based on the phase command and the electrical angle 0.
[0174] また、 X , 丫, 相側においても同様の構成を有しており、 トルク推定部 〇 2020/175333 51 卩(:171? 2020 /006903 [0174] In addition, the X, 丫, and phase side have the same configuration, and the torque estimation unit 〇 2020/175333 51 卩 (: 171? 2020 /006903
1 2 8 13は、 ¢1 変換部 1 2 2により変換された ¢1軸電流と 軸電流とに基 づいて、 X , 丫, 相に対応するトルク推定値を算出する。 The 1 2 8 13 calculates the estimated torque value corresponding to the X, phase, and phase based on the 1-axis current and the 1-axis current converted by the 1-converting section 1 2 2.
[0175] トルクフィードバック制御部 1 2 9匕は、 力行トルク指令値又は発電トル ク指令値にトルク推定値をフィードバック制御するための操作量として、 電 圧位相指令を算出する。 トルクフィードバック制御部 1 2 9匕では、 力行卜 ルク指令値又は発電トルク指令値に対するトルク推定値の偏差に基づき、 I フィードバック手法を用いて電圧位相指令が算出される。 [0175] The torque feedback control unit 129 calculates the voltage phase command as an operation amount for feedback controlling the estimated torque value to the power running torque command value or the power generation torque command value. In the torque feedback control unit 129, the voltage phase command is calculated using the I feedback method based on the deviation of the estimated torque value from the power running torque command value or the power generation torque command value.
[0176] 操作信号生成部 1 3 0 は、 電圧振幅指令、 電圧位相指令及び電気角 0に 基づいて、 第 2インバータ 1 0 2の操作信号を生成する。 具体的には、 操作 信号生成部 1 3 0匕は、 電圧振幅指令、 電圧位相指令及び電気角 0に基づい て 3相の指令電圧を算出し、 算出した 3相の指令電圧を電源電圧で規格化し た信号と、 三角波信号等のキャリア信号との大小比較に基づく \^/1\/1制御に より、 各相における上下アームのスイッチ操作信号を生成する。 ドライバ 1 1 7は、 操作信号生成部 1 3 0 3 , 1 3 0匕にて生成されたスイッチ操作信 号に基づいて、 各インバータ 1 0 1 , 1 0 2における各 3相のスイッチ 3 , 3 をオンオフさせる。 [0176] The operation signal generation unit 1300 generates an operation signal for the second inverter 1O 2 based on the voltage amplitude command, the voltage phase command, and the electrical angle 0. Specifically, the operation signal generator 1300 calculates the three-phase command voltage based on the voltage amplitude command, the voltage phase command, and the electrical angle 0, and the calculated three-phase command voltage is specified as the power supply voltage. The switch operation signals of the upper and lower arms in each phase are generated by \^/1\/1 control based on the magnitude comparison of the converted signal and the carrier signal such as the triangular wave signal. Based on the switch operation signal generated by the operation signal generation unit 1330, 1330, the driver 1177 determines the three-phase switches 3 and 3 in each inverter 1101 and 102. Turn on and off.
[0177] ちなみに、 操作信号生成部 1 3 0 は、 電圧振幅指令、 電圧位相指令、 電 気角 0及びスイッチ操作信号が関係付けられたマップ情報であるパルスバタ —ン情報、 電圧振幅指令、 電圧位相指令並びに電気角 0に基づいて、 スイッ チ操作信号を生成してもよい。 [0177] By the way, the operation signal generation unit 1300 is configured to include the voltage amplitude command, the voltage phase command, the pulse angle information which is the map information in which the electric angle 0 and the switch operation signal are related, the voltage amplitude command, and the voltage phase. The switch operation signal may be generated based on the command and the electrical angle 0.
[0178] ところで、 回転電機 1 0においては、 軸電流の発生に伴い軸受 2 1 , 2 2 の電食が生じることが懸念されている。 例えば固定子巻線 5 1の通電がスイ ッチングにより切り替えられる際に、 スイッチングタイミングの微小なずれ (スイッチングの不均衡) により磁束の歪みが生じ、 それに起因して、 回転 軸 1 1 を支持する軸受 2 1 , 2 2において電食が生じることが懸念される。 磁束の歪みは固定子 5〇のインダクタンスに応じて生じ、 その磁束の歪みに より生じる軸方向の起電圧によって、 軸受 2 1 , 2 2内での絶縁破壊が起こ り電食が進行する。 〇 2020/175333 52 卩(:171? 2020 /006903 [0178] By the way, in the rotary electric machine 10, it is feared that the electrolytic corrosion of the bearings 2 1 and 2 2 may occur due to the generation of the axial current. For example, when the energization of the stator winding 5 1 is switched by switching, the magnetic flux is distorted due to a minute shift in switching timing (switching imbalance), which causes the bearing that supports the rotating shaft 1 1. There is concern that electrolytic corrosion may occur in 2 1 and 2 2. The distortion of the magnetic flux occurs according to the inductance of the stator 50, and the electromotive force in the axial direction caused by the distortion of the magnetic flux causes dielectric breakdown in the bearings 21 and 22 to promote electrolytic corrosion. 〇 2020/175333 52 卩 (: 171-1? 2020 /006903
[0179] この点本実施形態では、 電食対策として、 以下に示す 3つの対策を講じて いる。 第 1の電食対策は、 固定子 5 0のコアレス化に伴いインダクタンスを 低減したこと、 及び磁石ユニツ ト 4 2の磁石磁束をなだらかにしたことによ る電食抑制対策である。 第 2の電食対策は、 回転軸を軸受 2 1 , 2 2による 片持ち構造としたことによる電食抑制対策である。 第 3の電食対策は、 円環 状の固定子巻線 5 1 を固定子コア 5 2と共にモールド材によりモールドした ことによる電食抑制対策である。 以下には、 これら各対策の詳細を個々に説 明する。 [0179] In this regard, the present embodiment takes the following three countermeasures as countermeasures against electrolytic corrosion. The first countermeasure against electrolytic corrosion is to reduce the inductance as the stator 50 is made coreless and to reduce the magnetic flux of the magnet unit 42 so as to suppress electrolytic corrosion. The second countermeasure against electrolytic corrosion is a countermeasure against electrolytic corrosion by using a cantilever structure with bearings 2 1 and 2 2 for the rotating shaft. The third countermeasure against electrolytic corrosion is a countermeasure against electrolytic corrosion by molding the annular stator winding 5 1 together with the stator core 52 with a molding material. The details of each of these measures are explained below.
[0180] まず第 1の電食対策では、 固定子 5 0において、 周方向における各導線群 [0180] First, in the first countermeasure against electrolytic corrosion, in the stator 50, each conductor wire group in the circumferential direction
8 1の間をテイースレスとし、 各導線群 8 1の間に、 テイース (鉄心) の代 わりに非磁性材料よりなる封止部材 5 7を設ける構成としている (図 1 0参 照) 。 これにより、 固定子 5 0のインダクタンス低減が可能となっている。 固定子 5 0におけるインダクタンス低減を図ることで、 仮に固定子巻線 5 1 の通電時にスイツチングタイミングのずれが生じても、 そのスイツチングタ イミングのずれに起因する磁束歪みの発生を抑制し、 ひいては軸受 2 1 , 2 2の電食抑制が可能になっている。 なお、 ¢1軸のインダクタンスが 軸のイ ンダクタンス以下になっているとよい。 The space between the 81's is made toothless, and a sealing member 57 made of a non-magnetic material is provided between the conductor groups 81 in place of the teeth (iron core) (see Fig. 10). This makes it possible to reduce the inductance of the stator 50. By reducing the inductance of the stator 50, even if there is a deviation in the switching timing when the stator winding 5 1 is energized, the magnetic flux distortion due to the deviation in the switching timing is suppressed, and the bearing It is possible to suppress the electrolytic corrosion of 2 1 and 2 2. It is preferable that the inductance of the 1st axis is equal to or less than the inductance of the 1st axis.
[0181 ] また、 磁石 9 1 , 9 2において、 軸側において 9軸側に比べて磁化容易 軸の向きが 軸に平行となるように配向がなされた構成とした (図 9参照) [0181] In addition, the magnets 9 1 and 9 2 were oriented so that the easy axis of magnetization on the axis side was parallel to the axis as compared to the 9 axis side (see Fig. 9).
。 これにより、 軸での磁石磁束が強化され、 各磁極において 軸から 軸 にかけての表面磁束変化 (磁束の増減) がなだらかになる。 そのため、 スイ ツチング不均衡に起因する急激な電圧変化が抑制され、 ひいては電食抑制に 寄与できる構成となっている。 .. As a result, the magnetic flux in the axis is strengthened, and the change in the surface magnetic flux (increase/decrease in magnetic flux) from axis to axis becomes gentle at each magnetic pole. Therefore, abrupt voltage changes due to switching imbalance are suppressed, which in turn contributes to suppression of electrolytic corrosion.
[0182] 第 2の電食対策では、 回転電機 1 0において、 各軸受 2 1 , 2 2を、 回転 子 4 0の軸方向中央に対して軸方向のいずれか一方側に偏って配置している (図 2参照) 。 これにより、 複数の軸受が軸方向において回転子を挟んで両 側にそれぞれ設けられる構成と比べて、 電食の影響を軽減できる。 つまり、 回転子を複数の軸受により両持ち支持する構成では、 高周波磁束の発生に伴 〇 2020/175333 53 卩(:171? 2020 /006903 [0182] In the second countermeasure against electrolytic corrosion, in the rotating electric machine 10, the bearings 2 1 and 2 2 are arranged so as to be deviated to one side in the axial direction with respect to the axial center of the rotor 40. (See Figure 2). As a result, the influence of electrolytic corrosion can be reduced compared to a configuration in which a plurality of bearings are provided on both sides of the rotor in the axial direction with the rotor interposed therebetween. In other words, in a configuration in which the rotor is supported by multiple bearings on both sides, high frequency magnetic flux is generated. 〇 2020/175 333 53 卩 (: 171? 2020 /006903
い回転子、 固定子及び各軸受 (すなわち、 回転子を挟んで軸方向両側の各軸 受) を通る閉回路が形成され、 軸電流により軸受の電食が懸念される。 これ に対し、 回転子 4 0を複数の軸受 2 1 , 2 2により片持ち支持する構成では 上記閉回路が形成されず、 軸受の電食が抑制される。 A closed circuit is formed that passes through the rotor, the stator, and the bearings (that is, the bearings on both sides in the axial direction with the rotor sandwiched between them), and there is concern about electrolytic corrosion of the bearing due to the axial current. On the other hand, in the configuration in which the rotor 40 is cantilevered by the plurality of bearings 21 and 22, the closed circuit is not formed, and the electrolytic corrosion of the bearing is suppressed.
[0183] また、 回転電機 1 0は、 軸受 2 1 , 2 2の片側配置のための構成に絡み、 以下の構成を有する。 磁石ホルダ 4 1 において、 回転子 4 0の径方向に張り 出す中間部 4 5に、 軸方向に延びて固定子 5 0に対する接触を回避する接触 回避部が設けられている (図 2参照) 。 この場合、 磁石ホルダ 4 1 を経由し て軸電流の閉回路が形成される場合にあっては、 閉回路長を長く してその回 路抵抗を大きくすることが可能となる。 これにより、 軸受 2 1 , 2 2の電食 の抑制を図ることができる。 [0183] Further, the rotary electric machine 10 has the following configuration in relation to the configuration in which the bearings 21 and 22 are arranged on one side. In the magnet holder 41, a contact avoidance portion that extends in the axial direction and avoids contact with the stator 50 is provided in the intermediate portion 45 that projects in the radial direction of the rotor 40 (see Fig. 2). In this case, when a closed circuit of the axial current is formed via the magnet holder 41, it is possible to lengthen the closed circuit and increase its circuit resistance. As a result, the electrolytic corrosion of the bearings 21 and 22 can be suppressed.
[0184] 回転子 4 0を挟んで軸方向の一方側においてハウジング 3 0に対して軸受 ユニッ ト 2 0の保持部材 2 3が固定されるとともに、 他方側においてハウジ ング 3 0及びユニッ トべース 6 1 (固定子ホルダ) が互いに結合されている (図 2参照) 。 本構成によれば、 回転軸 1 1の軸方向においてその軸方向の 片側に各軸受 2 1 , 2 2を偏って配置する構成を好適に実現することができ る。 また本構成では、 ユニッ トべース 6 1がハウジング 3 0を介して回転軸 1 1 に繫がる構成となるため、 ユニッ トべース 6 1 を、 回転軸 1 1から電気 的に離れた位置に配置することができる。 なお、 ユニッ トべース 6 1 とハウ ジング 3 0との間に樹脂等の絶縁部材を介在させれば、 ユニッ トべース 6 1 と回転軸 1 1 とが電気的に一層離れた構成となる。 これにより、 軸受 2 1 , [0184] While holding the rotor 40, the holding member 23 of the bearing unit 20 is fixed to the housing 30 on one side in the axial direction, and the housing 30 and the unit base are fixed on the other side. The screws 6 1 (stator holder) are connected to each other (see Fig. 2). According to this configuration, it is possible to preferably realize a configuration in which the bearings 2 1 and 2 2 are arranged eccentrically on one side in the axial direction of the rotating shaft 11. Further, in this configuration, the unit base 6 1 is connected to the rotary shaft 11 via the housing 30 so that the unit base 6 1 is electrically separated from the rotary shaft 11. Can be placed in different positions. If an insulating member such as resin is interposed between the unit base 61 and the housing 30, the unit base 61 and the rotating shaft 11 will be electrically separated from each other. Becomes As a result, the bearing 2 1,
2 2の電食を適正に抑制することができる。 22 It is possible to properly suppress the electrolytic corrosion.
[0185] 本実施形態の回転電機 1 0では、 各軸受 2 1 , 2 2の片側配置等により、 軸受 2 1 , 2 2に作用する軸電圧が低減されている。 また、 回転子 4 0と固 定子 5 0との間の電位差が低減されている。 そのため、 軸受 2 1 , 2 2にお いて導電性グリースを用いなくても、 軸受 2 1 , 2 2に作用する電位差の低 減が可能になっている。 導電性グリースは、 一般的に力ーボンなどの細かい 粒子を含むため音鳴りが生じることが考えられる。 この点、 本実施形態では 〇 2020/175333 54 卩(:171? 2020 /006903 In the rotary electric machine 10 of the present embodiment, the shaft voltage acting on the bearings 21 and 22 is reduced by the one-sided arrangement of the bearings 21 and 22 and the like. Further, the potential difference between the rotor 40 and the stator 50 is reduced. Therefore, the potential difference acting on the bearings 21 and 22 can be reduced without using conductive grease in the bearings 21 and 22. Since conductive grease generally contains fine particles such as carbon, noise may occur. In this respect, in the present embodiment, 〇 2020/175 333 54 卩 (: 171? 2020 /006903
、 軸受 2 1 , 2 2において非導電性グリースを用いる構成としている。 その ため、 軸受 2 1 , 2 2において音鳴りが生じる不都合を抑制できる。 例えば 電気自動車などの電動車両への適用時には回転電機 1 0の音鳴り対策が必要 になると考えられるが、 その音鳴り対策を好適に実施することが可能となる The bearings 21 and 22 are configured to use non-conductive grease. Therefore, it is possible to suppress the inconvenience that noise is generated in the bearings 21 and 22. For example, when applied to an electric vehicle such as an electric vehicle, it is considered necessary to take noise countermeasures for the rotating electric machine 10. However, it is possible to appropriately implement the noise countermeasures.
[0186] 第 3の電食対策では、 固定子巻線 5 1 を固定子コア 5 2と共にモールド材 によりモールドすることで、 固定子 5 0での固定子巻線 5 1の位置ずれを抑 制する構成としている (図 1 1参照) 。 特に本実施形態の回転電機 1 〇では 、 固定子巻線 5 1 における周方向の各導線群 8 1の間に導線間部材 (ティー ス) を有していないため、 固定子巻線 5 1 における位置ずれ生じる懸念が考 えられるが、 固定子巻線 5 1 を固定子コア 5 2と共にモールドすることによ り、 固定子巻線 5 1の導線位置にずれが抑制される。 したがって、 固定子巻 線 5 1の位置ずれによる磁束の歪みや、 それに起因する軸受 2 1 , 2 2の電 食の発生を抑制することができる。 [0186] In the third countermeasure against electrolytic corrosion, the stator winding 5 1 and the stator core 5 2 are molded with a molding material to suppress the positional deviation of the stator winding 5 1 in the stator 50. (See Figure 11). In particular, in the rotating electric machine 100 of the present embodiment, since there is no inter-conductor member (teeth) between each conductor group 8 1 in the circumferential direction of the stator winding 5 1, the stator winding 5 1 Although there is a concern that misalignment may occur, by molding the stator winding 5 1 together with the stator core 52, the displacement of the conductor wire of the stator winding 5 1 is suppressed. Therefore, it is possible to suppress the distortion of the magnetic flux due to the positional deviation of the stator winding 51 and the occurrence of electrolytic corrosion of the bearings 21 and 22 caused by the distortion.
[0187] なお、 固定子コア 5 2を固定するハウジング部材としてのユニッ トべース [0187] A unit base as a housing member for fixing the stator core 52 is provided.
6 1 を、 炭素繊維強化プラスチック
Figure imgf000056_0001
により構成したため、 例え ばアルミ等により構成する場合に比べて、 ユニッ トべ—ス 6 1への放電が抑 制され、 ひいては好適な電食対策が可能となっている。
6 1 for carbon fiber reinforced plastic
Figure imgf000056_0001
Since it is composed of, the discharge to the unit base 61 is suppressed compared with the case of, for example, aluminum and the like, and it is possible to take a suitable countermeasure against electrolytic corrosion.
[0188] その他、 軸受 2 1 , 2 2の電食対策として、 外輪 2 5及び内輪 2 6の少な くともいずれかをセラミックス材により構成する、 又は、 外輪 2 5の外側に 絶縁スリーブを設ける等の構成を用いることも可能である。 [0188] In addition, as a countermeasure against electrolytic corrosion of the bearings 21 and 22, at least one of the outer ring 25 and the inner ring 26 is made of a ceramic material, or an insulating sleeve is provided outside the outer ring 25, etc. It is also possible to use the above configuration.
[0189] 以下に、 他の実施形態を第 1実施形態との相違点を中心に説明する。 [0189] In the following, another embodiment will be described focusing on the differences from the first embodiment.
[0190] (第 2実施形態) [0190] (Second Embodiment)
本実施形態では、 回転子 4 0における磁石ユニッ ト 4 2の極異方構造を変 更しており、 以下に詳しく説明する。 In the present embodiment, the polar anisotropic structure of the magnet unit 42 in the rotor 40 is changed, which will be described in detail below.
[0191 ] 図 2 2及び図 2 3に示すように、 磁石ユニッ ト 4 2は、 ハルバッハ配列と 称される磁石配列を用いて構成されている。 すなわち、 磁石ユニッ ト 4 2は 、 磁化方向 (磁化べクトルの向き) を径方向とする第 1磁石 1 3 1 と、 磁化 〇 2020/175333 55 卩(:171? 2020 /006903 [0191] As shown in Figs. 22 and 23, the magnet unit 42 is configured using a magnet arrangement called a Halbach arrangement. That is, the magnet unit 4 2 is composed of a first magnet 1 3 1 whose radial direction is the magnetization direction (direction of the magnetization vector), and 〇 2020/175333 55 卩 (: 171? 2020 /006903
方向 (磁化ベクトルの向き) を周方向とする第 2磁石 1 3 2とを有しており 、 周方向に所定間隔で第 1磁石 1 3 1が配置されるとともに、 周方向におい て隣り合う第 1磁石 1 3 1の間となる位置に第 2磁石 1 3 2が配置されてい る。 第 1磁石 1 3 1及び第 2磁石 1 3 2は、 例えばネオジム磁石等の希土類 磁石からなる永久磁石である。 It has a second magnet 1 3 2 having a direction (direction of the magnetization vector) as a circumferential direction, and the first magnets 1 3 1 are arranged at a predetermined interval in the circumferential direction, and the first magnets 1 3 1 are arranged adjacent to each other in the circumferential direction. The second magnet 1 3 2 is located at a position between the 1 magnet 1 3 1. The first magnet 1 3 1 and the second magnet 1 3 2 are permanent magnets made of rare earth magnets such as neodymium magnets.
[0192] 第 1磁石 1 3 1は、 固定子 5 0に対向する側 (径方向内側) の極が交互に [0192] The first magnet 1 3 1 has alternating poles on the side facing the stator 50 (inward in the radial direction).
1\1極、 3極となるように周方向に互いに離間して配置されている。 また、 第 2磁石 1 3 2は、 各第 1磁石 1 3 1の隣において周方向に極性が交互となる ように配置されている。 これら各磁石 1 3 1 , 1 3 2を囲うように設けられ る円筒部 4 3は、 軟磁性材料よりなる軟磁性体コアであるとよく、 バックコ アとして機能する。 なお、 この第 2実施形態の磁石ユニッ ト 4 2も、 一9 座標系において、 軸や 9軸に対する磁化容易軸の関係は上記第 1実施形態 と同じである。 They are arranged so as to be separated from each other in the circumferential direction so as to have 1\1 pole and 3 poles. The second magnets 1 3 2 are arranged next to the first magnets 1 3 1 so that the polarities alternate in the circumferential direction. The cylindrical portion 43 provided so as to surround each of these magnets 1 3 1, 1 3 2 is preferably a soft magnetic core made of a soft magnetic material and functions as a back core. The magnet unit 42 of the second embodiment also has the same relationship as the axis or the easy axis of magnetization with respect to the 9-axis in the 19-coordinate system as in the first embodiment.
[0193] また、 第 1磁石 1 3 1の径方向外側、 すなわち磁石ホルダ 4 1の円筒部 4 [0193] In addition, the first magnet 1 31 is radially outside, that is, the cylindrical portion 4 of the magnet holder 41.
3の側には、 軟磁性材料よりなる磁性体 1 3 3が配置されている。 例えば磁 性体 1 3 3は、 電磁鋼板や軟鉄、 圧粉鉄心材料により構成されているとよい 。 この場合、 磁性体 1 3 3の周方向の長さは第 1磁石 1 3 1の周方向の長さ (特に第 1磁石 1 3 1の外周部の周方向の長さ) と同じである。 また、 第 1 磁石 1 3 1 と磁性体 1 3 3とを一体化した状態でのその一体物の径方向の厚 さは、 第 2磁石 1 3 2の径方向の厚さと同じである。 換言すれば、 第 1磁石 1 3 1は第 2磁石 1 3 2よりも磁性体 1 3 3の分だけ径方向の厚さが薄くな っている。 各磁石 1 3 1 , 1 3 2と磁性体 1 3 3とは、 例えば接着剤により 相互に固着されている。 磁石ユニッ ト 4 2において第 1磁石 1 3 1の径方向 外側は、 固定子 5 0とは反対側であり、 磁性体 1 3 3は、 径方向における第 1磁石 1 3 1の両側のうち、 固定子 5 0とは反対側 (反固定子側) に設けら れている。 On the 3 side, a magnetic body 1 3 3 made of a soft magnetic material is arranged. For example, the magnetic body 133 may be made of electromagnetic steel plate, soft iron, or powdered iron core material. In this case, the circumferential length of the magnetic body 1 3 3 is the same as the circumferential length of the first magnet 1 3 1 (in particular, the circumferential length of the outer peripheral portion of the first magnet 1 3 1 ). The radial thickness of the first magnet 1 3 1 and the magnetic body 1 3 3 in the integrated state is the same as the radial thickness of the second magnet 1 3 2. In other words, the first magnet 1 3 1 is thinner than the second magnet 1 3 2 in the radial direction by the amount of the magnetic body 1 3 3. The magnets 1 3 1, 1 3 2 and the magnetic body 1 3 3 are fixed to each other by, for example, an adhesive. The outer side in the radial direction of the first magnet 1 3 1 in the magnet unit 4 2 is the side opposite to the stator 50, and the magnetic body 1 3 3 is one of the two sides of the first magnet 1 3 1 in the radial direction. It is provided on the opposite side of the stator 50 (opposite side of the stator).
[0194] 磁性体 1 3 3の外周部には、 径方向外側、 すなわち磁石ホルダ 4 1の円筒 部 4 3の側に突出する凸部としてのキー 1 3 4が形成されている。 また、 円 〇 2020/175333 56 卩(:171? 2020 /006903 A key 1 3 4 is formed on the outer peripheral portion of the magnetic body 1 3 3 as a convex portion that projects radially outward, that is, to the side of the cylindrical portion 4 3 of the magnet holder 4 1. Also, yen 〇 2020/175 333 56 卩 (: 171? 2020 /006903
筒部 4 3の内周面には、 磁性体 1 3 3のキ_ 1 3 4を収容する凹部としての キー溝 1 3 5が形成されている。 キー 1 3 4の突出形状とキー溝 1 3 5の溝 形状とは同じであり、 各磁性体 1 3 3に形成されたキ _ 1 3 4に対応して、 キー 1 3 4と同数のキー溝 1 3 5が形成されている。 キー 1 3 4及びキー溝 1 3 5の係合により、 第 1磁石 1 3 1及び第 2磁石 1 3 2と磁石ホルダ 4 1 との周方向 (回転方向) の位置ずれが抑制されている。 なお、 キー 1 3 4及 びキー溝 1 3 5 (凸部及び凹部) を、 磁石ホルダ 4 1の円筒部 4 3及び磁性 体 1 3 3のいずれに設けるかは任意でよく、 上記とは逆に、 磁性体 1 3 3の 外周部にキー溝 1 3 5を設けるとともに、 磁石ホルダ 4 1の円筒部 4 3の内 周部にキ _ 1 3 4を設けることも可能である。 A keyway 1 3 5 is formed on the inner peripheral surface of the cylindrical portion 4 3 as a recess for accommodating the key 1 3 4 of the magnetic body 1 3 3. The protruding shape of the keys 1 3 4 and the groove shape of the key grooves 1 3 5 are the same, and the same number of keys as the keys 1 3 4 correspond to the keys 1 3 4 formed on each magnetic substance 1 3 3. Grooves 1 3 5 are formed. Due to the engagement of the keys 1 3 4 and the key grooves 1 3 5, the positional deviation of the first magnet 1 3 1 and the second magnet 1 3 2 and the magnet holder 4 1 in the circumferential direction (rotational direction) is suppressed. It should be noted that the key 1 3 4 and the key groove 1 3 5 (convex portion and concave portion) may be provided on either the cylindrical portion 4 3 of the magnet holder 4 1 or the magnetic body 1 3 3 as desired. In addition, it is possible to provide the key groove 1 3 5 on the outer peripheral portion of the magnetic body 1 3 3 and the key _ 1 3 4 on the inner peripheral portion of the cylindrical portion 4 3 of the magnet holder 41.
[0195] ここで、 磁石ユニッ ト 4 2では、 第 1磁石 1 3 1 と第 2磁石 1 3 2とを交 互に配列することにより、 第 1磁石 1 3 1での磁束密度を大きくすることが 可能となっている。 そのため、 磁石ユニッ ト 4 2において、 磁束の片面集中 を生じさせ、 固定子 5 0寄りの側での磁束強化を図ることができる。 [0195] Here, in the magnet unit 42, the magnetic flux density in the first magnet 1 3 1 is increased by alternately arranging the first magnet 1 3 1 and the second magnet 1 3 2. Is possible. Therefore, in the magnet unit 42, the magnetic flux can be concentrated on one side, and the magnetic flux can be strengthened on the side closer to the stator 50.
[0196] また、 第 1磁石 1 3 1の径方向外側、 すなわち反固定子側に磁性体 1 3 3 を配置したことにより、 第 1磁石 1 3 1の径方向外側での部分的な磁気飽和 を抑制でき、 ひいては磁気飽和に起因して生じる第 1磁石 1 3 1の減磁を抑 制できる。 これにより、 結果的に磁石ユニッ ト 4 2の磁力を増加させること が可能となっている。 本実施形態の磁石ユニッ ト 4 2は、 言うなれば、 第 1 磁石 1 3 1 において減磁が生じ易い部分を磁性体 1 3 3に置き換えた構成と なっている。 [0196] Further, since the magnetic body 1 3 3 is arranged on the outer side in the radial direction of the first magnet 1 3 1, that is, on the side opposite to the stator, partial magnetic saturation on the outer side in the radial direction of the first magnet 1 3 1 is achieved. Can be suppressed, and by extension, demagnetization of the first magnet 1 3 1 caused by magnetic saturation can be suppressed. As a result, it is possible to increase the magnetic force of the magnet unit 42. The magnet unit 42 of the present embodiment is, so to speak, configured such that the portion of the first magnet 1 3 1 where demagnetization is likely to occur is replaced with a magnetic body 1 3 3.
[0197] 図 2 4 (3) 、 図 2 4 (匕) は、 磁石ユニッ ト 4 2における磁束の流れを 具体的に示す図であり、 図 2 4 (3) は、 磁石ユニッ ト 4 2において磁性体 1 3 3を有していない従来構成を用いた場合を示し、 図 2 4 (匕) は、 磁石 ユニッ ト 4 2において磁性体 1 3 3を有している本実施形態の構成を用いた 場合を示している。 なお、 図 2 4 (3) 、 図 2 4 (匕) では、 磁石ホルダ 4 1の円筒部 4 3及び磁石ユニッ ト 4 2を直線状に展開して示しており、 図の 下側が固定子側、 上側が反固定子側となっている。 〇 2020/175333 57 卩(:171? 2020 /006903 [0197] Fig. 24(3) and Fig. 24(匕) are diagrams specifically showing the flow of magnetic flux in the magnet unit 4 2. Fig. 24(3) shows that in the magnet unit 4 2. The case where the conventional configuration without the magnetic body 1 3 3 is used is shown, and FIG. 24 (distance) shows the configuration of the present embodiment having the magnetic body 1 3 3 in the magnet unit 4 2. The case is shown. In addition, in Fig. 24 (3) and Fig. 24 (匕), the cylindrical part 4 3 and the magnet unit 4 2 of the magnet holder 4 1 are shown in a linear form, and the lower side of the figure shows the stator side. The upper side is the side opposite the stator. 〇 2020/175333 57 卩(: 171-1? 2020/006903
[0198] 図 2 4 ( 3 ) の構成では、 第 1磁石 1 3 1の磁束作用面と第 2磁石 1 3 2 の側面とが、 それぞれ円筒部 4 3の内周面に接触している。 また、 第 2磁石 1 3 2の磁束作用面が第 1磁石 1 3 1の側面に接触している。 この場合、 円 筒部 4 3には、 第 2磁石 1 3 2の外側経路を通って第 1磁石 1 3 1 との接触 面に入る磁束 1 と、 円筒部 4 3と略平行で、 かつ第 2磁石 1 3 2の磁束 2を引きつける磁束との合成磁束が生じる。 そのため、 円筒部 4 3において 第 1磁石 1 3 1 と第 2磁石 1 3 2との接触面付近において、 部分的に磁気飽 和が生じることが懸念される。 In the configuration of FIG. 24 (3), the magnetic flux acting surface of the first magnet 1 31 and the side surface of the second magnet 1 3 2 are in contact with the inner peripheral surface of the cylindrical portion 4 3, respectively. The magnetic flux acting surface of the second magnet 1 3 2 is in contact with the side surface of the first magnet 1 3 1. In this case, the magnetic flux 1 entering the contact surface with the first magnet 1 3 1 through the outer path of the second magnet 1 3 2 in the cylindrical portion 4 3 is substantially parallel to the cylindrical portion 4 3 and 2 A combined magnetic flux with the magnetic flux that attracts the magnetic flux 2 of the magnet 1 3 2 is generated. Therefore, there is a concern that a magnetic saturation may partially occur in the cylindrical portion 4 3 near the contact surface between the first magnet 1 3 1 and the second magnet 1 3 2.
[0199] これに対し、 図 2 4 (匕) の構成では、 第 1磁石 1 3 1の固定子 5 0とは 反対側において第 1磁石 1 3 1の磁束作用面と円筒部 4 3の内周面との間に 磁性体 1 3 3が設けられているため、 その磁性体 1 3 3で磁束の通過が許容 される。 したがって、 円筒部 4 3での磁気飽和を抑制でき、 減磁に対する耐 力が向上する。 [0199] On the other hand, in the configuration of Fig. 24 (匕), the magnetic flux acting surface of the first magnet 1 3 1 and the cylindrical portion 4 3 on the side opposite to the stator 50 of the first magnet 1 3 1 Since the magnetic body 133 is provided between the magnetic body 133 and the peripheral surface, the magnetic body 133 is allowed to pass the magnetic flux. Therefore, the magnetic saturation in the cylindrical portion 43 can be suppressed, and the resistance to demagnetization is improved.
[0200] また、 図 2 4 (匕) の構成では、 図 2 4 ( 3 ) とは異なり、 磁気飽和を促 す 2を消すことができる。 これにより、 磁気回路全体のパーミアンスを効 果的に向上させることができる。 このように構成することで、 その磁気回路 特性を、 過酷な高熱条件下でも保つことができる。 [0200] Further, unlike the configuration of Fig. 24 ( 3 ), the configuration of Fig. 24 (distance) can eliminate 2 which promotes magnetic saturation. As a result, the permeance of the entire magnetic circuit can be effectively improved. With this configuration, the magnetic circuit characteristics can be maintained even under severe high heat conditions.
[0201 ] また、 従来の 3 1\/1ロータにおけるラジアル磁石と比べて、 磁石内部を通 る磁石磁路が長くなる。 そのため、 磁石パーミアンスが上昇し、 磁力を上げ 、 トルクを増強することができる。 さらに、 磁束が ¢1軸の中央に集まること により、 正弦波整合率を高くすることができる。 特に、 \^/1\/1制御により、 電流波形を正弦波や台形波とする、 又は 1 2 0度通電のスイッチング I 〇を 利用すると、 より効果的にトルクを増強することができる。 [0201] Further, the magnetic path of the magnet passing through the inside of the magnet becomes longer than that of the radial magnet in the conventional 3 1\/1 rotor. Therefore, the magnet permeance can be increased, the magnetic force can be increased, and the torque can be increased. Furthermore, since the magnetic flux concentrates at the center of the 1st axis, the sine wave matching rate can be increased. In particular, if the current waveform is a sine wave or a trapezoidal wave by the control of \^/1\/1, or the switching I 0 of 120° conduction is used, the torque can be more effectively enhanced.
[0202] なお、 固定子コア 5 2が電磁鋼板により構成される場合において、 固定子 コア 5 2の径方向厚さは、 磁石ユニッ ト 4 2の径方向厚さの 1 / 2、 又は 1 / 2よりも大きいとよい。 例えば、 固定子コア 5 2の径方向厚さは、 磁石ユ ニッ ト 4 2において磁極中心に設けられる第 1磁石 1 3 1の径方向厚さの 1 / 2以上であるとよい。 また、 固定子コア 5 2の径方向厚さは、 磁石ユニッ 〇 2020/175333 58 卩(:171? 2020 /006903 [0202] In the case where the stator core 52 is made of an electromagnetic steel plate, the radial thickness of the stator core 52 is 1/2 of the radial thickness of the magnet unit 42, or 1/. Greater than 2 is good. For example, the radial thickness of the stator core 52 is preferably 1/2 or more of the radial thickness of the first magnet 1 31 provided at the magnetic pole center in the magnet unit 4 2. Also, the radial thickness of the stator core 52 depends on the magnet unit. 〇 2020/175 333 58 卩 (: 171-1? 2020 /006903
卜 4 2の径方向厚さより小さいとよい。 この場合、 磁石磁束は約 1 [丁] で あり、 固定子コア 5 2の飽和磁束密度は 2 [丁] であるため、 固定子コア 5 2の径方向厚さを、 磁石ユニッ ト 4 2の径方向厚さの 1 / 2以上にすること で、 固定子コア 5 2の内周側への磁束漏洩を防ぐことができる。 It should be smaller than the radial thickness of the plate 42. In this case, the magnetic flux of the magnet is about 1 [D], and the saturation magnetic flux density of the stator core 5 2 is 2 [D], so the radial thickness of the stator core 5 2 is equal to that of the magnet unit 4 2. By setting the thickness in the radial direction to 1/2 or more, magnetic flux leakage to the inner peripheral side of the stator core 52 can be prevented.
[0203] ハルバッハ構造や極異方構造の磁石では、 磁路が擬似円弧状になっている ため、 周方向の磁束を扱う磁石厚みに比例して、 その磁束を上昇させること ができる。 こういった構成においては、 固定子コア 5 2に流れる磁束は、 周 方向の磁束を超えることはないと考えられる。 すなわち、 磁石の磁束 1 [丁 ] に対して飽和磁束密度 2 [丁] の鉄系金属を利用した場合、 固定子コア 5 2の厚みを磁石厚みの半分以上とすれば、 磁気飽和せず好適に小型かつ軽量 の回転電機を提供することができる。 ここで、 磁石磁束に対して固定子 5 0 からの反磁界が作用するため、 磁石磁束は一般的に 0 . 9 [丁] 以下となる 。 そのため、 固定子コアは磁石の半分の厚みを持てば、 その透磁率を好適に 高く保つことができる。 [0203] In a Halbach structure or a magnet having a polar anisotropic structure, since the magnetic path is a pseudo arc, the magnetic flux can be increased in proportion to the thickness of the magnet that handles the magnetic flux in the circumferential direction. In such a configuration, it is considered that the magnetic flux flowing in the stator core 52 does not exceed the magnetic flux in the circumferential direction. In other words, when using an iron-based metal with a saturation magnetic flux density of 2 [Cho] to a magnetic flux of 1 [Cho] of the magnet, magnetic saturation will not occur if the thickness of the stator core 52 is more than half the magnet thickness. It is possible to provide a small and lightweight rotating electric machine. Here, since the demagnetizing field from the stator 50 acts on the magnetic flux of the magnet, the magnetic flux of the magnet is generally below 0.9 [C]. Therefore, if the stator core has a thickness half that of the magnet, its magnetic permeability can be suitably kept high.
[0204] 以下に、 上述した構成の一部を変更した変形例について説明する。 [0204] Hereinafter, a modified example in which a part of the configuration described above is modified will be described.
[0205] (変形例 1) [0205] (Modification 1)
上記実施形態では、 固定子コア 5 2の外周面を凹凸のない曲面状とし、 そ の外周面に所定間隔で複数の導線群 8 1 を並べて配置する構成としたが、 こ れを変更してもよい。 例えば、 図 2 5に示すように、 固定子コア 5 2は、 固 定子卷線 5 1の径方向両側のうち回転子 4 0とは反対側 (図の下側) に設け られた円環状のヨーク 1 4 1 と、 そのヨーク 1 4 1から、 周方向に隣り合う 直線部 8 3の間に向かって突出するように延びる突起部 1 4 2とを有してい る。 突起部 1 4 2は、 ヨーク 1 4 1の径方向外側、 すなわち回転子 4 0側に 所定間隔で設けられている。 固定子巻線 5 1の各導線群 8 1は、 突起部 1 4 2と周方向において係合しており、 突起部 1 4 2を導線群 8 1の位置決め部 として用いつつ周方向に並べて配置されている。 なお、 突起部 1 4 2が 「導 線間部材」 に相当する。 In the above embodiment, the outer peripheral surface of the stator core 52 is formed into a curved surface without unevenness, and a plurality of conductor wire groups 8 1 are arranged side by side on the outer peripheral surface at predetermined intervals, but this may be changed. Good. For example, as shown in Fig. 25, the stator core 52 has an annular shape provided on the radial opposite sides of the stator winding 51 on the side opposite to the rotor 40 (lower side in the figure). It has a yoke 1 4 1 and a protrusion 1 4 2 extending from the yoke 1 4 1 so as to protrude between the linear portions 8 3 adjacent to each other in the circumferential direction. The protrusions 1 4 2 are provided on the outer side in the radial direction of the yoke 1 4 1, that is, on the side of the rotor 40, at predetermined intervals. Each conductor wire group 8 1 of the stator winding 5 1 is engaged with the protrusion 1 4 2 in the circumferential direction, and the protrusions 1 4 2 are arranged side by side in the circumferential direction while being used as the positioning portion of the conductor wire group 8 1. Has been done. The protrusions 14 2 correspond to “inter-conductor members”.
[0206] 突起部 1 4 2は、 ヨーク 1 4 1からの径方向の厚さ寸法、 言い換えれば、 〇 2020/175333 59 卩(:171? 2020 /006903 図 2 5に示すように、 ヨーク 1 4 1の径方向において、 直線部 8 3のヨーク 1 4 1 に隣接する内側面 3 2 0から突起部 1 4 2の頂点までの距離 が、 径 方向内外の複数層の直線部 8 3のうち、 ヨーク 1 4 1 に径方向に隣接する直 線部 8 3の径方向の厚さ寸法の 1 / 2 (図の 1~1 1) よりも小さい構成となっ ている。 言い換えれば、 固定子巻線 5 1 (固定子コア 5 2) の径方向におけ る導線群 8 1 (伝導部材) の寸法 (厚み) 丁 1 (導線 8 2の厚みの 2倍、 言 い換えれば、 導線群 8 1の固定子コア 5 2に接する面 3 2 0と、 導線群 8 1 の回転子 4 0に向いた面 3 3 0との最短距離) の 4分の 3の範囲は非磁性部 材 (封止部材 5 7) が占有していればよい。 こうした突起部 1 4 2の厚さ制 限により、 周方向に隣り合う導線群 8 1 (すなわち直線部 8 3) の間におい て突起部 1 4 2がティースとして機能せず、 ティースによる磁路形成がなさ れないようになっている。 突起部 1 4 2は、 周方向に並ぶ各導線群 8 1の間 ごとに全て設けられていなくてもよく、 周方向に隣り合う少なくとも 1組の 導線群 8 1の間に設けられていればよい。 例えば、 突起部 1 4 2は、 周方向 において各導線群 8 1の間の所定数ごとに等間隔で設けられているとよい。 突起部 1 4 2の形状は、 矩形状、 円弧状など任意の形状でよい。 [0206] The protrusion 1 4 2 is a radial thickness dimension from the yoke 1 4 1, that is, 〇 2020/175333 59 (:171? 2020/006903 As shown in Fig. 25, in the radial direction of the yoke 1 41, the protrusion from the inner surface 3 2 0 adjacent to the yoke 1 4 1 of the straight portion 8 3 The distance to the apex of 1 4 2 is 1/2 of the radial thickness dimension of the straight line portion 8 3 that is radially adjacent to the yoke 1 4 1 among the multiple straight layer portions 8 3 inside and outside the radial direction. (1 to 11 in the figure). In other words, the size of the conductor wire group 8 1 (conductive member) in the radial direction of the stator winding 5 1 (stator core 5 2) ( Thickness) 1 (twice the thickness of the conductor 8 2; in other words, the face of the conductor group 8 1 that contacts the stator core 5 2 3 20 and the face of the conductor group 8 1 that faces the rotor 40. The non-magnetic part (sealing member 57) should occupy a three-quarter range of (the shortest distance from 3 30) The circumferential direction is limited by the thickness limitation of these protrusions 1 4 2. The protrusions 1 4 2 do not function as teeth between the conductor groups 8 1 (that is, the straight portions 8 3) adjacent to each other so that the magnetic path is not formed by the teeth. Do not have to be provided all between the conductor groups 8 1 arranged in the circumferential direction, and may be provided between at least one set of conductor groups 8 1 that are adjacent in the circumferential direction. It is preferable that the portions 1 4 2 are provided at equal intervals in the circumferential direction at a predetermined number between the conductor wire groups 8 1. The shape of the protrusions 1 4 2 can be an arbitrary shape such as a rectangular shape or an arc shape. Good.
[0207] また、 固定子コア 5 2の外周面では、 直線部 8 3が一層で設けられていて もよい。 したがって、 広義には、 突起部 1 4 2におけるヨーク 1 4 1からの 径方向の厚さ寸法は、 直線部 8 3における径方向の厚さ寸法の 1 / 2よりも 小さいものであればよい。 [0207] In addition, the outer peripheral surface of the stator core 52 may be provided with a single linear portion 83. Therefore, in a broad sense, the radial thickness of the protrusion 1 4 2 from the yoke 1 4 1 may be smaller than 1/2 of the radial thickness of the straight portion 8 3.
[0208] なお、 回転軸 1 1の軸心を中心とし、 かつヨーク 1 4 1 に径方向に隣接す る直線部 8 3の径方向の中心位置を通る仮想円を想定すると、 突起部 1 4 2 は、 その仮想円の範囲内においてヨーク 1 4 1から突出する形状、 換言すれ ば仮想円よりも径方向外側 (すなわち回転子 4 0側) に突出しない形状をな しているとよい。 [0208] Assuming an imaginary circle centered on the axis of the rotating shaft 11 and passing through the radial center of the straight portion 8 3 radially adjacent to the yoke 1 41, the protrusion 1 4 It is preferable that 2 has a shape that projects from the yoke 1 41 within the range of the virtual circle, in other words, a shape that does not project radially outward (that is, the rotor 40 side) from the virtual circle.
[0209] 上記構成によれば、 突起部 1 4 2は、 径方向の厚さ寸法が制限されており 、 周方向に隣り合う直線部 8 3の間においてティースとして機能するもので ないため、 各直線部 8 3の間にティースが設けられている場合に比べて、 隣 〇 2020/175333 60 卩(:171? 2020 /006903 [0209] According to the above configuration, the protrusions 1 4 2 are limited in the radial thickness dimension and do not function as teeth between the linear portions 8 3 adjacent in the circumferential direction. Compared to the case where teeth are provided between the straight line parts 8 3 〇 2020/175333 60 卩 (:171? 2020 /006903
り合う各直線部 8 3を近づけることができる。 これにより、 導体 8 2 3の断 面積を大きくすることができ、 固定子巻線 5 1の通電に伴い生じる発熱を低 減することができる。 かかる構成では、 テイースがないことで磁気飽和の解 消が可能となり、 固定子巻線 5 1への通電電流を増大させることが可能とな る。 この場合において、 その通電電流の増大に伴い発熱量が増えることに好 適に対処することができる。 また、 固定子巻線 5 1では、 夕ーン部 8 4が、 径方向にシフトされ、 他の夕ーン部 8 4との干渉を回避する干渉回避部を有 することから、 異なる夕ーン部 8 4同士を径方向に離して配置することがで きる。 これにより、 夕ーン部 8 4においても放熱性の向上を図ることができ る。 以上により、 固定子 5 0での放熱性能を適正化することが可能になって いる。 It is possible to bring the respective straight line portions 8 3 that are close to each other closer together. This makes it possible to increase the cross-sectional area of the conductor 8 2 3, can be low reducing the heat generated due to the energization of the stator winding 5 1. In such a configuration, magnetic saturation can be canceled by the absence of teeth, and the current flowing through the stator winding 51 can be increased. In this case, it is possible to appropriately deal with the increase in the amount of heat generated as the energizing current increases. Further, in the stator winding 51, the evening section 8 4 is shifted in the radial direction and has an interference avoiding section for avoiding interference with other evening sections 8 4, so that the different evening It is possible to dispose the inner portions 84 apart from each other in the radial direction. As a result, the heat dissipation can be improved even in the evening section 84. From the above, it is possible to optimize the heat dissipation performance of the stator 50.
[0210] また、 固定子コア 5 2のヨーク 1 4 1 と、 回転子 4 0の磁石ユニッ ト 4 2 (すなわち各磁石 9 1 , 9 2) とが所定距離以上離れていれば、 突起部 1 4 2の径方向の厚さ寸法は、 図 2 5の!· I 1 に縛られるものではない。 具体的に は、 ヨーク 1 4 1 と磁石ユニッ ト 4 2とが 2
Figure imgf000062_0001
以上離れていれば、 突起部
[0210] If the yoke 1 41 of the stator core 5 2 and the magnet unit 4 2 of the rotor 40 (that is, the magnets 9 1 and 9 2) are separated by a predetermined distance or more, the protrusion 1 The radial thickness dimension of 42 is not restricted to !· I 1 in Figure 25. Specifically, the yoke 1 4 1 and the magnet unit 4 2
Figure imgf000062_0001
If it is more than the distance, the protrusion
1 4 2の径方向の厚さ寸法は、 図 2 5の!· I 1以上であってもよい。 例えば、 直線部
Figure imgf000062_0002
を越えており、 かつ導線群 8 1が径方 向内外の 2層の導線 8 2により構成されている場合に、 ヨーク 1 4 1 に隣接 していない直線部 8 3、 すなわちヨーク 1 4 1から数えて 2層目の導線 8 2 の半分位置までの範囲で、 突起部 1 4 2が設けられていてもよい。 この場合 、 突起部 1 4 2の径方向厚さ寸法が 「1~1 1 3 / 2」 までになっていれば、 導線群 8 1 における導体断面積を大きくすることで、 前記効果を少なからず 得ることはできる。
The radial thickness dimension of 1 4 2 may be greater than or equal to !· I 1 in FIG. For example, the straight part
Figure imgf000062_0002
And the conductor wire group 8 1 is composed of two layers of conductor wires 8 2 inside and outside in the radial direction, the straight part 8 3 that is not adjacent to the yoke 1 4 1, that is, from the yoke 1 4 1 The projecting portion 1 4 2 may be provided within the range up to the half position of the conducting wire 8 2 in the second layer. In this case, if the radial thickness of the projection 1 4 2 is up to "1 to 1 1 3 /2", increasing the conductor cross-sectional area of the conductor wire group 8 1 will not significantly reduce the above effect. You can get it.
[021 1 ] また、 固定子コア 5 2は、 図 2 6に示す構成であってもよい。 なお、 図 2 [021 1] Further, the stator core 52 may have the configuration shown in FIG. Figure 2
6では、 封止部材 5 7を省略しているが、 封止部材 5 7が設けられていても よい。 図 2 6では、 便宜上、 磁石ユニッ ト 4 2及び固定子コア 5 2を直線状 に展開して示している。 In FIG. 6, the sealing member 57 is omitted, but the sealing member 57 may be provided. In FIG. 26, for convenience, the magnet unit 42 and the stator core 52 are shown in a linear form.
[0212] 図 2 6の構成では、 固定子 5 0は、 周方向に隣接する導線 8 2 (すなわち 〇 2020/175333 61 卩(:171? 2020 /006903 [0212] In the configuration of FIG. 26, the stator 50 has a circumferentially adjacent conductor 8 2 (ie 〇 2020/175333 61 卩 (: 171-1? 2020 /006903
直線部 8 3) の間に、 導線間部材としての突起部 1 4 2を有している。 固定 子 5 0は、 固定子巻線 5 1が通電されると、 磁石ユニッ ト 4 2の磁極の一つ (1\1極、 または 3極) とともに磁気的に機能し、 固定子 5 0の周方向に延び る一部分 3 5 0を有する。 この部分 3 5 0の固定子 5 0の周方向への長さを !·!とすると、 この長さ範囲 !·!に存在する突起部 1 4 2の合計の幅 (すな わち、 固定子 5 0の周方向への合計の寸法) を とし、 突起部 1 4 2の飽 和磁束密度を巳 5、 磁石ユニッ ト 4 2の 1極分の周方向の幅寸法を \/\/ 01、 磁 石ユニッ ト 4 2の残留磁束密度を巳 「とする場合、 突起部 1 4 2は、 Between the straight portions 8 3), there is a protrusion 1 4 2 as an inter-conductor member. When the stator winding 5 1 is energized, the stator 50 magnetically functions together with one of the magnetic poles of the magnet unit 4 2 (1\1 pole or 3 poles), and the stator 50 It has a portion 350 that extends circumferentially. The length in the circumferential direction of the stator 50 of this part 350 is! Then, this length range! Is the total width of the protrusions 1 4 2 existing in (i.e., the total dimension of the stator 50 in the circumferential direction), and the saturated magnetic flux density of the protrusions 1 4 2 is defined as 5, the magnet unit. If the width of one pole of the rotor 4 2 in the circumferential direction is \/\/ 01 and the residual magnetic flux density of the magnet unit 4 2 is
X巳 3 〇1 X巳 「 ( 1) X X 3 0 1 X X "( 1)
となる磁性材料により構成されている。 It is made of a magnetic material.
[0213] なお、 範囲 W nは、 周方向に隣接する複数の導線群 8 1であって、 励磁時 期が重複する複数の導線群 8 1 を含むように設定される。 その際、 範囲 W n を設定する際の基準 (境界) として、 導線群 8 1の間隙 5 6の中心を設定す ることが好ましい。 例えば、 図 2 6に例示する構成の場合、 周方向において 極の磁極中心からの距離が最も短いものから順番に、 4番目までの導線群 8 1が、 当該複数の導線群 8 1 に相当する。 そして、 当該 4つの導線群 8 1 を含むように範囲 w nが設定される。 その際、 範囲 W nの端 (起点と終点) が間隙 5 6の中心とされている。 [0213] Incidentally, the range W n is a plurality of conductors group 8 1 adjacent in the circumferential direction, the excitation time period is set to include a plurality of conductors group 8 1 overlap. At that time, it is preferable to set the center of the gap 5 6 of the conductor wire group 8 1 as a reference (boundary) when setting the range W n . For example, in the case of the configuration illustrated in FIG. 26, the fourth to the fourth conductor wire group 8 1 corresponds to the plurality of conductor wire groups 8 1 in order from the shortest distance from the magnetic pole center of the pole in the circumferential direction. .. Then, the range w n is set so as to include the four conductor groups 81. At that time, the ends (starting point and ending point) of the range W n are the centers of the gaps 56.
[0214] 図 2 6において、 範囲 nの両端には、 それぞれ突起部 1 4 2が半分ずつ 含まれていることから、 範囲 W nには、 合計 4つ分の突起部 1 4 2が含まれ ている。 したがって、 突起部 1 4 2の幅 (すなわち、 固定子 5 0の周方向に おける突起部 1 4 2の寸法、 言い換えれば、 隣接する導線群 8 1の間隔) を 八とすると、 範囲 W nに含まれる突起部 1 4 2の合計の幅は、
Figure imgf000063_0001
[0214] In Fig. 26, since the protrusions 1 4 2 are included in half at both ends of the range n, the range W n includes a total of 4 protrusions 1 4 2. ing. Therefore, if the width of the protrusion 1 4 2 (that is, the dimension of the protrusion 1 4 2 in the circumferential direction of the stator 5 0, in other words, the interval between the adjacent conductor wire groups 8 1) is set to 8, the range W n is The total width of the protrusions 1 4 2 included is
Figure imgf000063_0001
八+八十八+八+ 1 / 2八= 4八となる。 Eight + Eighty-eight + Eight + One-two-eight = Four-eighth.
[0215] 詳しくは、 本実施形態では、 固定子巻線 5 1の 3相巻線が分布巻であり、 その固定子巻線 5 1では、 磁石ユニッ ト 4 2の 1極に対して、 突起部 1 4 2 の数、 すなわち各導線群 8 1の間となる間隙 5 6の数が 「相数 〇」 個とな っている。 ここで〇とは、 1相の導線 8 2のうち固定子コア 5 2と接する数 である。 なお、 導線 82が回転子 40の径方向に積層された導線群 81であ る場合には、 1相の導線群 81の内周側の導線 82の数であるともいえる。 この場合、 固定子巻線 5 1の 3相巻線が各相所定順序で通電されると、 1極 内において 2相分の突起部 1 42が励磁される。 したがって、 磁石ユニッ ト 42の 1極分の範囲において固定子巻線 5 1の通電により励磁される突起部 1 42の周方向の合計幅寸法 Wtは、 突起部 1 42 (つまり、 間隙 56) の 周方向の幅寸法を Aとすると、 「励磁される相数 XQX A = 2 X 2 X A」 と なる。 [0215] Specifically, in the present embodiment, the three-phase winding of the stator winding 5 1 is distributed winding, and the stator winding 5 1 has a protrusion with respect to one pole of the magnet unit 4 2. The number of parts 1 4 2, that is, the number of gaps 5 6 between the conductor wire groups 8 1 is “phase number ◯”. Here, ◯ is the number of one-phase conductors 8 2 that come into contact with the stator core 5 2. Is. When the conductor wire 82 is the conductor wire group 81 laminated in the radial direction of the rotor 40, it can be said that it is the number of the conductor wires 82 on the inner peripheral side of the one-phase conductor wire group 81. In this case, when the three-phase winding of the stator winding 51 is energized in a predetermined order for each phase, the two-phase protrusions 142 in one pole are excited. Therefore, the total width Wt in the circumferential direction of the protrusion 142 that is excited by the energization of the stator winding 51 in the range of one pole of the magnet unit 42 is the protrusion 142 (that is, the gap 56). When the circumferential width is A, the number of excited phases is XQX A = 2 X 2 XA.
[0216] そして、 こうして合計幅寸法 Wtが規定された上で、 固定子コア 52にお いて、 突起部 1 42が、 上記 (1) の関係を満たす磁性材料として構成され ている。 なお、 合計幅寸法 W tは、 1極内において比透磁率が 1 よりも大き くなりえる部分の周方向寸法でもある。 また、 余裕を考えて、 合計幅寸法 W tを、 1磁極における突起部 1 42の周方向の幅寸法としてもよい。 具体的 には、 磁石ユニッ ト 42の 1極に対する突起部 1 42の数が 「相数 XQ」 で あることから、 1磁極における突起部 1 42の周方向の幅寸法 (合計幅寸法 Wt) を、 「相数 XQXA = 3X2XA = 6 A」 としてもよい。 [0216] Then, after the total width dimension Wt is defined in this way, in the stator core 52, the protrusions 142 are formed as a magnetic material that satisfies the relationship of (1) above. The total width dimension W t is also the circumferential dimension of the part where the relative magnetic permeability can be greater than 1 within one pole. Further, in consideration of the margin, the total width dimension W t may be the circumferential width dimension of the protrusion 142 in one magnetic pole. Specifically, since the number of protrusions 142 for one pole of the magnet unit 42 is “the number of phases XQ”, the circumferential width dimension (total width dimension Wt) of the protrusions 142 for one magnetic pole is , "The number of phases XQXA = 3X2XA = 6 A" may be used.
[0217] なお、 ここでいう分布巻とは、 磁極の 1極対周期 (N極と S極) で、 固定 子卷線 5 1の一極対があるものである。 ここでいう固定子巻線 5 1の一極対 は、 電流が互いに逆方向に流れ、 ターン部 84で電気的に接続された 2つの 直線部 83とターン部 84からなる。 上記条件みたすものであれば、 短節卷 (Short Pitch Winding) であっても、 全節卷 (Fu 11 Pitch Winding) の分布 巻の均等物とみなす。 [0217] The distributed winding mentioned here is one pole pair period (N pole and S pole) of the magnetic pole, and has one pole pair of the stator winding 51. The one pole pair of the stator winding 51 mentioned here is composed of two straight portions 83 and a turn portion 84 in which currents flow in opposite directions and are electrically connected by the turn portion 84. As long as the above conditions are met, even short rolls (Short Pitch Winding) are considered to be equivalent to the distribution rolls of all rolls (Fu 11 Pitch Winding).
[0218] 次に、 集中巻の場合の例を示す。 ここでいう集中巻とは、 磁極の 1極対の 幅と、 固定子巻線 5 1の一極対の幅とが異なるものである。 集中巻の一例と しては、 1つの磁極対に対して導線群 81が 3つ、 2つの磁極対に対して導 線群 81が 3つ、 4つの磁極対に対して導線群 81が 9つ、 5つの磁極対に 対して導線群 81が 9つのような関係であるものが挙げられる。 [0218] Next, an example of concentrated winding is shown. The term "concentrated winding" as used herein means that the width of one pole pair of magnetic poles is different from the width of one pole pair of the stator winding 51. As an example of concentrated winding, there are three conductor groups 81 for one pole pair, three conductor groups 81 for two pole pairs, and nine conductor groups 81 for four pole pairs. One of them is a group of conductors 81 having five relationships with five pairs of magnetic poles.
[0219] ここで、 固定子巻線 5 1 を集中巻とする場合には、 固定子巻線 5 1の 3相 〇 2020/175333 63 卩(:171? 2020 /006903 [0219] Here, when the stator winding 5 1 is concentrated winding, three phases of the stator winding 5 1 〇 2020/175333 63 卩 (:171? 2020 /006903
巻線が所定順序で通電されると、 2相分の固定子巻線 5 1が励磁される。 そ の結果、 2相分の突起部 1 4 2が励磁される。 したがって、 磁石ユニッ ト 4 2の 1極分の範囲において固定子巻線 5 1の通電により励磁される突起部 1 4 2の周方向の幅寸法 1:は、 「八 2」 となる。 そして、 こうして幅寸法 が規定された上で、 突起部 1 4 2が、 上記 (1) の関係を満たす磁性材 料として構成されている。 なお、 上記で示した集中巻の場合は、 同一相の導 線群 8 1 に囲まれた領域において、 固定子 5 0の周方向にある突起部 1 4 2 の幅の総和を八とする。 また、 集中巻における \ZV rnは 「磁石ユニッ ト 4 2の エアギャップに対向する面の全周」 X 「相数」 ÷ 「導線群 8 1の分散数」 に 相当する。 When the windings are energized in a predetermined order, the stator windings 51 for two phases are excited. As a result, the two-phase protrusions 1 4 2 are excited. Therefore, in the range of one pole of the magnet unit 4 2, the circumferential width dimension 1: of the protrusion 1 4 2 excited by the energization of the stator winding 5 1 is “8 2 ”. In addition, the width dimension is defined in this way, and the protrusions 1 42 are configured as a magnetic material that satisfies the relationship of (1) above. In the case of concentrated winding shown above, the total width of the protrusions 1 4 2 in the circumferential direction of the stator 50 is set to 8 in the area surrounded by the same-phase wire group 8 1. In the concentrated winding, \ZV rn is equivalent to "the entire circumference of the surface of the magnet unit 4 2 facing the air gap" X "the number of phases" ÷ "the dispersion number of the conductor group 8 1 ".
[0220] ちなみに、 ネオジム磁石やサマリウムコバルト磁石、 フェライ ト磁石とい った巳1~1積が 2 0 [ 1\/1〇〇6
Figure imgf000065_0001
] 以上の磁石では巳 = 1 . 0 強 [丁] 、 鉄では巳 「= 2 . 0強 [丁] である。 そのため、 高出カモータと しては、 固定子コア 5 2において、 突起部 1 4 2が、
Figure imgf000065_0002
[0220] By the way, the 1 to 1 product of neodymium magnets, samarium-cobalt magnets, and ferrite magnets is 2 0 [1\/1 〇 6
Figure imgf000065_0001
] The above magnets have a force of 1.0 strong, and the iron has a force of 2.0. Therefore, as a high output motor, the stator core 5 2 has a protrusion 1 4 2
Figure imgf000065_0002
関係を満たす磁性材料であればよい。 Any magnetic material that satisfies the relationship may be used.
[0221 ] また、 後述するように導線 8 2が外層被膜 1 8 2を備える場合には、 導線 [0221] In addition, as will be described later, in the case where the conductor 8 2 has an outer layer coating 1 82, the conductor
8 2同士の外層被膜 1 8 2が接触するように、 導線 8 2を固定子コア 5 2の 周方向に配置しても良い。 この場合は、 は、 0又は接触する両導線 8 2 の外層被膜 1 8 2の厚さ、 と看做すことができる。 The conductor wire 8 2 may be arranged in the circumferential direction of the stator core 5 2 so that the outer layer coatings 18 2 of 8 2 are in contact with each other. In this case, can be regarded as 0 or the thickness of the outer coating 18 2 of both conducting wires 8 2 in contact with each other.
[0222] 図 2 5や図 2 6の構成では、 回転子 4 0側の磁石磁束に対して不相応に小 さい導線間部材 (突起部 1 4 2) を有する構成となっている。 なお、 回転子 4 0は、 インダクタンスが低くかつ平坦な表面磁石型ロータであり、 磁気抵 抗的に突極性を有していないものとなっている。 かかる構成では、 固定子 5 0のインダクタンス低減が可能となっており、 固定子巻線 5 1のスイッチン グタイミングのずれに起因する磁束歪みの発生が抑制され、 ひいては軸受 2 1 , 2 2の電食が抑制される。 [0222] In the configurations of Figs. 25 and 26, the inter-conductor members (protrusions 1 4 2) that are disproportionately small with respect to the magnet magnetic flux on the rotor 40 side are configured. The rotor 40 is a flat surface magnet type rotor having a low inductance and a flat surface, and does not have salient poles magnetically. With this configuration, the inductance of the stator 50 can be reduced, the generation of magnetic flux distortion due to the deviation of the switching timing of the stator winding 51 can be suppressed, and eventually the bearings 2 1 and 2 2 Electrolytic corrosion is suppressed.
[0223] (変形例 2) [0223] (Modification 2)
上記式 (1) の関係を満たす導線間部材を用いる固定子 5 0として、 以下 〇 2020/175333 64 卩(:171? 2020 /006903 As the stator 50 using the inter-conductor member that satisfies the relationship of the above formula (1), 〇 2020/175333 64 卩 (:171? 2020 /006903
の構成を採用することも可能である。 図 2 7では、 固定子コア 5 2の外周面 側 (図の上面側) に、 導線間部材として歯状部 1 4 3が設けられている。 歯 状部 1 4 3は、 ヨーク 1 4 1から突出するようにして周方向に所定間隔で設 けられており、 径方向に導線群 8 1 と同じ厚み寸法を有している。 歯状部 1 4 3の側面は導線群 8 1の各導線 8 2に接している。 ただし、 歯状部 1 4 3 と各導線 8 2との間に隙間があってもよい。 It is also possible to adopt the configuration of. In FIG. 27, tooth-like portions 1 4 3 are provided as inter-conductor members on the outer peripheral surface side (upper surface side in the figure) of the stator core 52. The tooth portions 1 4 3 are provided at predetermined intervals in the circumferential direction so as to project from the yoke 1 4 1, and have the same thickness dimension as the conductor wire group 8 1 in the radial direction. The side surface of the toothed portion 1 4 3 is in contact with each conductor wire 8 2 of the conductor wire group 8 1. However, there may be a gap between the tooth-like portion 14 3 and each conducting wire 8 2.
[0224] 歯状部 1 4 3は、 周方向における幅寸法に制限が付与されており、 磁石量 に対して不相応に細い極歯 (ステータティース) を備えるものとなっている 。 かかる構成により、 歯状部 1 4 3は、 1 . 8丁以上で磁石磁束により確実 に飽和し、 パーミアンスの低下によりインダクタンスを下げることができる [0224] The tooth-shaped portions 1 43 are limited in width in the circumferential direction, and are provided with pole teeth (stator teeth) that are disproportionately thin with respect to the magnet amount. With such a configuration, the tooth-shaped portions 1 43 are reliably saturated by the magnetic flux of the magnet in the number of 1.8 or more, and the inductance can be reduced by lowering the permeance.
[0225] ここで、 磁石ユニッ ト 4 2において、 固定子側における磁束作用面の 1極 あたりの表面積を 3 、 磁石ユニッ ト 4 2の残留磁束密度を巳 「とすると、 磁石ユニッ ト側の磁束は、 例えば 「3 巳 「」 となる。 また、 各歯状部 1 4 3における回転子側の表面積を 3 I、 導線 8 2の一相あたりの数を とし 、 固定子巻線 5 1の通電により 1極内において 2相分の歯状部 1 4 3が励磁 されるとすると、 固定子側の磁束は、 例えば 「3 I
Figure imgf000066_0001
2 X巳 3」 となる 。 この場合、
[0225] Here, in the magnet unit 42, assuming that the surface area per pole of the magnetic flux acting surface on the stator side is 3, and the residual magnetic flux density of the magnet unit 4 2 is Is, for example, "3. The surface area on the rotor side of each toothed portion 1 43 is 3 I, and the number of conductors 8 2 per phase is given by the following equation. If part 1 4 3 is excited, the magnetic flux on the stator side is, for example, "3 I
Figure imgf000066_0001
2 X Sumi 3”. in this case,
Figure imgf000066_0002
(2)
Figure imgf000066_0002
(2)
の関係が成立するように歯状部 1 4 3の寸法を制限することで、 インダクタ ンスの低減が図られている。 The inductance is reduced by limiting the dimensions of the toothed portions 1 4 3 so that
[0226] なお、 磁石ユニッ ト 4 2と歯状部 1 4 3とで軸方向の寸法が同一である場 合、 磁石ユニッ ト 4 2の 1極分の周方向の幅寸法を \ZVrn、 歯状部 1 4 3の周 方向の幅寸法を
Figure imgf000066_0003
Iとすると、 上記式 (2) は、 式 (3) のように置き換 えられる。
[0226] If the magnet unit 4 2 and the tooth portion 1 4 3 have the same axial dimension, the circumferential width of one pole of the magnet unit 4 2 is set to \ZVrn, The width of the groove 1 4 3 in the circumferential direction.
Figure imgf000066_0003
Assuming I, equation (2) can be replaced by equation (3).
Figure imgf000066_0004
Figure imgf000066_0004
より具体的には、 例えば巳 3 = 2丁、 巳 「= 1 丁であり、 01 = 2であると 想定すると、 上記式 (3) は、
Figure imgf000066_0005
の関係となる。 この場 〇 2020/175333 65 卩(:171? 2020 /006903
More specifically, assuming that, for example, 3 = 2 chomes, "1 chome" and 01 = 2, the above formula (3) becomes
Figure imgf000066_0005
It becomes a relationship. This place 〇 2020/175333 65 卩 (: 171-1? 2020 /006903
合、 歯状部 1 4 3の幅寸法 3 1を、 磁石ユニッ ト 4 2の 1極分の幅寸法 の 1 / 8よりも小さくすることで、 インダクタンスの低減が図られている 。 なお、 数 が 1であれば、 歯状部 1 4 3の幅寸法 3 Iを、 磁石ユニッ ト 4 2の 1極分の幅寸法 \ZV rnの 1 / 4よりも小さくするとよい。 In this case, the width dimension 31 of the toothed portion 1 43 is made smaller than 1/8 of the width dimension of one pole of the magnet unit 4 2 to reduce the inductance. If the number is 1, the width dimension 3 I of the toothed portion 1 4 3 should be smaller than 1/4 of the width dimension \ZV rn of one pole of the magnet unit 4 2.
[0227] なお、 上記式 (3) において、 「\^/ 3 I 2」 は、 磁石ユニッ ト 4 2 の 1極分の範囲において固定子巻線 5 1の通電により励磁される歯状部 1 4 3の周方向の幅寸法に相当する。 [0227] In the above formula (3), "\^/ 3 I 2" is a toothed portion 1 excited by energization of the stator winding 5 1 within the range of one pole of the magnet unit 4 2. Corresponds to the circumferential width of 4 3.
[0228] 図 2 7の構成では、 上述した図 2 5 , 図 2 6の構成と同様に、 回転子 4 0 側の磁石磁束に対して不相応に小さい導線間部材 (歯状部 1 4 3) を有する 構成となっている。 かかる構成では、 固定子 5 0のインダクタンス低減が可 能となっており、 固定子巻線 5 1のスイッチングタイミングのずれに起因す る磁束歪みの発生が抑制され、 ひいては軸受 2 1 , 2 2の電食が抑制される [0228] In the configuration of Fig. 27, similarly to the configurations of Fig. 25 and Fig. 26 described above, the inter-conductor member (tooth-like portion 1 4 3) disproportionally small with respect to the magnetic flux of the rotor 40 side. Has a configuration. With such a configuration, the inductance of the stator 50 can be reduced, the generation of magnetic flux distortion due to the deviation of the switching timing of the stator winding 51 is suppressed, and by extension the bearings 2 1, 2 2 Electrolytic corrosion is suppressed
[0229] (変形例 3) [0229] (Modification 3)
上記実施形態では、 固定子巻線 5 1 を覆う封止部材 5 7を、 固定子コア 5 2の径方向外側において各導線群 8 1 を全て含む範囲、 すなわち径方向の厚 さ寸法が各導線群 8 1の径方向の厚さ寸法よりも大きくなる範囲で設ける構 成としたが、 これを変更してもよい。 例えば、 図 2 8に示すように、 封止部 材 5 7を、 導線 8 2の一部がはみ出すように設ける構成とする。 より具体的 には、 封止部材 5 7を、 導線群 8 1 において最も径方向外側となる導線 8 2 の一部を径方向外側、 すなわち固定子 5 0側に露出させた状態で設ける構成 とする。 この場合、 封止部材 5 7の径方向の厚さ寸法は、 各導線群 8 1の径 方向の厚さ寸法と同じ、 又はその厚さ寸法よりも小さいとよい。 In the above-described embodiment, the sealing member 57 covering the stator winding 51 is in a range including all the conductor wire groups 81 on the outer side in the radial direction of the stator core 52, that is, the radial thickness dimension is equal to that of each conductor wire. Although it is configured to be provided within a range that is larger than the radial thickness of the group 81, this may be changed. For example, as shown in FIG. 28, the sealing member 57 is provided so that a part of the conducting wire 82 protrudes. More specifically, the sealing member 57 is provided in such a manner that a part of the conductor wire 8 2 which is the outermost radial direction in the conductor wire group 8 1 is exposed radially outward, that is, the stator 50 side. To do. In this case, the radial thickness of the sealing member 57 is preferably the same as or smaller than the radial thickness of each conductor group 81.
[0230] (変形例 4) [0230] (Modification 4)
図 2 9に示すように、 固定子 5 0において、 各導線群 8 1が封止部材 5 7 により封止されていない構成としてもよい。 つまり、 固定子卷線 5 1 を覆う 封止部材 5 7を用いない構成とする。 この場合、 周方向に並ぶ各導線群 8 1 の間に導線間部材が設けられず空隙となっている。 要するに、 周方向に並ぶ 〇 2020/175333 66 卩(:171? 2020 /006903 As shown in FIG. 29, in the stator 50, each conductor wire group 81 may not be sealed by the sealing member 57. That is, the sealing member 5 7 covering the stator winding 5 1 is not used. In this case, an inter-conductor member is not provided between the conductor groups 81 arranged in the circumferential direction, and a gap is formed. In short, line up in the circumferential direction 〇 2020/175 333 66 卩 (:171? 2020 /006903
各導線群 8 1の間に導線間部材が設けられていない構成となっている。 なお 、 空気を非磁性体、 又は非磁性体の均等物として巳 3 = 0と看做し、 この空 隙に空気を配置しても良い。 No inter-conductor member is provided between each conductor group 81. Note that air may be regarded as a non-magnetic substance or an equivalent of a non-magnetic substance as 3=0, and air may be arranged in this space.
[0231 ] (変形例 5) [0231] (Modification 5)
固定子 5 0おける導線間部材を非磁性材料により構成する場合に、 その非 磁性材料として、 樹脂以外の材料を用いることも可能である。 例えば、 オー ステナイ ト系のステンレス鋼である 3 II 3 3 0 4を用いる等、 金属系の非磁 性材料を用いてもよい。 When the inter-conductor member of the stator 50 is made of a non-magnetic material, it is possible to use a material other than resin as the non-magnetic material. For example, a metallic non-magnetic material may be used, such as the use of austenitic stainless steel 3 II 3 304.
[0232] (変形例 6) [0232] (Modification 6)
固定子 5 0が固定子コア 5 2を具備していない構成としてもよい。 この場 合、 固定子 5 0は、 図 1 2に示す固定子巻線 5 1 により構成されることにな る。 なお、 固定子コア 5 2を具備していない固定子 5 0において、 固定子卷 線 5 1 を封止材により封止する構成としてもよい。 又は、 固定子 5 0が、 軟 磁性材からなる固定子コア 5 2に代えて、 合成樹脂等の非磁性材からなる円 環状の巻線保持部を備える構成であってもよい。 The stator 50 may not have the stator core 52. In this case, the stator 50 is composed of the stator winding 5 1 shown in Fig. 12. In the stator 50 that does not include the stator core 52, the stator winding 5 1 may be sealed with a sealing material. Alternatively, the stator 50 may include an annular winding holding portion made of a non-magnetic material such as synthetic resin, instead of the stator core 52 made of a soft magnetic material.
[0233] (変形例 7) [0233] (Modification 7)
上記第 1実施形態では、 回転子 4 0の磁石ユニッ ト 4 2として周方向に並 ベた複数の磁石 9 1 , 9 2を用いる構成としたが、 これを変更し、 磁石ユニ ッ ト 4 2として円環状の永久磁石である環状磁石を用いる構成としてもよい 。 具体的には、 図 3 0に示すように、 磁石ホルダ 4 1の円筒部 4 3の径方向 内側に、 環状磁石 9 5が固定されている。 環状磁石 9 5には、 周方向に極性 が交互となる複数の磁極が設けられており、 軸及び 9軸のいずれにおいて も一体的に磁石が形成されている。 環状磁石 9 5には、 各磁極の 軸におい て配向の向きが径方向となり、 各磁極間の 軸において配向の向きが周方向 となるような円弧状の磁石磁路が形成されている。 In the first embodiment described above, a plurality of magnets 9 1 and 9 2 arranged in the circumferential direction are used as the magnet unit 4 2 of the rotor 40, but this is changed and the magnet unit 4 2 Alternatively, an annular magnet, which is an annular permanent magnet, may be used. Specifically, as shown in FIG. 30, an annular magnet 95 is fixed inside the cylindrical portion 43 of the magnet holder 41 in the radial direction. The annular magnet 95 is provided with a plurality of magnetic poles whose polarities alternate in the circumferential direction, and the magnets are integrally formed on both the axis and the nine axes. The annular magnet 95 is formed with an arc-shaped magnet magnetic path in which the orientation direction is radial in the axis of each magnetic pole and the orientation is circumferential in the axis between the magnetic poles.
[0234] なお、 環状磁石 9 5では、 軸寄りの部分において磁化容易軸が 軸に平 行又は 軸に平行に近い向きとなり、 かつ 軸寄りの部分において磁化容易 軸が 軸に直交又は 軸に直交に近い向きとなる円弧状の磁石磁路が形成さ れるように配向がなされていればよい。 [0234] Note that in the annular magnet 95, the easy magnetization axis is oriented in a direction parallel to the axis or parallel to the axis in the portion closer to the axis, and the easy magnetization axis is orthogonal to the axis or orthogonal to the axis in the portion closer to the axis. An arc-shaped magnet magnetic path that is oriented close to It suffices if the orientation is set so that
[0235] (変形例 8) [0235] (Modification 8)
本変形例では、 制御装置 1 1 〇の制御手法の一部を変更している。 本変形 例では、 主に、 第 1実施形態で説明した構成に対する相違部分について説明 する。 In this modification, a part of the control method of the control device 110 is changed. In this modification, differences from the configuration described in the first embodiment will be mainly described.
[0236] まず、 図 3 1 を用いて、 図 20に示した操作信号生成部 1 1 6, 1 26及 び図 2 1 に示した操作信号生成部 1 30 a, 1 30 b内の処理について説明 する。 なお、 各操作信号生成部 1 1 6, 1 26, 1 30 a, 1 3 O bにおけ る処理は基本的には同様である。 このため、 以下では、 操作信号生成部 1 1 6の処理を例にして説明する。 [0236] First, with reference to Fig. 31, the processing in the operation signal generation units 1 16 and 1 26 shown in Fig. 20 and the operation signal generation units 1 30 a and 1 30 b shown in Fig. 21 will be described. explain. The processing in each operation signal generator 1 1 6, 1 26, 1 30 a, 1 3 O b is basically the same. Therefore, the processing of the operation signal generation unit 1 16 will be described below as an example.
[0237] 操作信号生成部 1 1 6は、 キャリア生成部 1 1 6 aと、 U, V, W相比較 器 1 1 6 b U, 1 1 6 b V, 1 1 6 bWとを備えている。 本実施形態におい て、 キャリア生成部 1 1 6 aは、 キャリア信号 S i g Cとして三角波信号を 生成して出力する。 [0237] The operation signal generation unit 1 16 includes a carrier generation unit 1 16 a and U, V, W phase comparators 1 16 bU, 1 16 bV, 1 16 bW. .. In the present embodiment, the carrier generation unit 1 16 a generates and outputs a triangular wave signal as the carrier signal S i g C.
[0238] U, V, W相比較器 1 1 6 b U, 1 1 6 b V, 1 1 6 bWには、 キャリア 生成部 1 1 6 aより生成されたキャリア信号 S i g Cと、 3相変換部 1 1 5 により算出された U, V, W相指令電圧とが入力される。 U, V, W相指令 電圧は、 例えば正弦波状の波形であり、 電気角で位相が 1 20° ずつずれて いる。 [0238] U, V, W phase comparators 1 1 6 b U, 1 1 6 b V, 1 1 6 bW have a carrier signal S ig C generated by the carrier generator 1 1 6 a and a 3-phase The U, V, and W phase command voltages calculated by the converter 1 15 are input. The U, V, and W phase command voltages are, for example, sinusoidal waveforms, and their phases are shifted by 120 ° in terms of electrical angle.
[0239] U, V, W相比較器 1 1 6 b U, 1 1 6 b V, 1 1 6 bWは、 U, V, W 相指令電圧とキャリア信号 S i g Cとの大小比較に基づく PWM (PWM : p ulse width modulation) 制御により、 第 1インバータ 1 01 における U, V , W相の上アーム及び下アームの各スイッチ S p, S nの操作信号を生成す る。 具体的には、 操作信号生成部 1 1 6は、 U, V, W相指令電圧を電源電 圧で規格化した信号と、 キャリア信号との大小比較に基づく PWM制御によ り、 U, V, W相の各スイッチ S p, S nの操作信号を生成する。 ドライバ 1 1 7は、 操作信号生成部 1 1 6により生成された操作信号に基づいて、 第 1インバータ 1 01 における U, V, W相の各スイッチ S p, S nをオンオ 〇 2020/175333 68 卩(:171? 2020 /006903 [0239] U, V, W phase comparator 1 1 6 b U, 1 1 6 b V, 1 16 bW is a PWM based on the magnitude comparison of U, V, W phase command voltage and carrier signal S ig C. By (PWM: pulse width modulation) control, the operation signal of each switch S p, S n of the upper arm and lower arm of the U, V, W phases in the first inverter 101 is generated. Specifically, the operation signal generation unit 1 16 uses U, V, and W by performing PWM control based on the magnitude comparison between the signal in which the U, V, and W phase command voltages are normalized by the power supply voltage and the carrier signal. , Generates operation signals for the W-phase switches S p and S n. The driver 1 17 turns on and off the U, V, and W-phase switches S p and S n in the first inverter 101 on the basis of the operation signal generated by the operation signal generation unit 1 16. 〇 2020/175 333 68 卩 (: 171? 2020 /006903
フさせる。 Let it go.
[0240] 制御装置 1 1 0は、 キャリア信号 3 丨 キャリア周波数干〇、 すなわ ち各スイッチ 3 , 3 nのスイッチング周波数を変更する処理を行う。 キャ リア周波数干〇は、 回転電機 1 0の低トルク領域又は高回転領域において高 く設定され、 回転電機 1 0の高トルク領域において低く設定される。 この設 定は、 各相卷線に流れる電流の制御性の低下を抑制するためになされる。 [0240] The control device 110 performs a process of changing the carrier signal 3, the carrier frequency, that is, the switching frequency of each switch 3, 3 n. The carrier frequency is set high in the low torque region or high rotation region of the rotary electric machine 10 and set low in the high torque region of the rotary electric machine 10. This setting is made in order to suppress the deterioration of the controllability of the current flowing through each winding.
[0241 ] つまり、 固定子 5 0のコアレス化に伴い、 固定子 5 0におけるインダクタ ンスの低減を図ることができる。 ここで、 インダクタンスが低くなると、 回 転電機 1 〇の電気的時定数が小さくなる。 その結果、 各相卷線に流れる電流 のリップルが増加して巻線に流れる電流の制御性が低下し、 電流制御が発散 する懸念がある。 この制御性低下の影響は、 巻線に流れる電流 (例えば、 電 流の実効値) が高電流領域に含まれる場合よりも低電流領域に含まれる場合 に顕著となり得る。 この問題に対処すべく、 本変形例において、 制御装置 1 1 0はキャリア周波数干〇を変更する。 [0241] That is, as the stator 50 becomes coreless, the inductance of the stator 50 can be reduced. Here, when the inductance becomes low, the electrical time constant of the rotating electric machine 10 becomes small. As a result, the ripple of the current flowing in each phase winding increases, the controllability of the current flowing in the winding deteriorates, and there is concern that current control may diverge. The influence of this decrease in controllability can be more pronounced when the current flowing in the winding (for example, the effective value of the current) is included in the low current region than in the high current region. In order to deal with this problem, in this modification, the control device 110 changes the carrier frequency.
[0242] 図 3 2を用いて、 キャリア周波数干〇を変更する処理について説明する。 [0242] A process of changing the carrier frequency will be described with reference to FIG.
この処理は、 操作信号生成部 1 1 6の処理として、 制御装置 1 1 0により、 例えば所定の制御周期で繰り返し実行される。 This processing is repeatedly executed by the control device 110, for example, at a predetermined control cycle as the processing of the operation signal generation unit 116.
[0243] ステップ 3 1 0では、 各相の巻線 5 1 3に流れる電流が低電流領域に含ま れているか否かを判定する。 この処理は、 回転電機 1 0の現在のトルクが低 トルク領域であることを判定するための処理である。 低電流領域に含まれて いるか否かの判定手法としては、 例えば、 以下の第 1 , 第 2の方法が挙げら れる。 [0243] At step 310, it is determined whether or not the current flowing through the winding 5 13 of each phase is included in the low current region. This process is a process for determining that the current torque of the rotary electric machine 10 is in the low torque region. The following first and second methods can be given as examples of methods for determining whether or not the current is included in the low current region.
[0244] <第 1の方法> [0244] <First method>
〇1 変換部 1 1 2により変換された 軸電流と 9軸電流とに基づいて、 回 転電機 1 〇のトルク推定値を算出する。 そして、 算出したトルク推定値が卜 ルク閾値未満であると判定した場合、 巻線 5 1 3に流れる電流が低電流領域 に含まれていると判定し、 トルク推定値がトルク閾値以上であると判定した 場合、 高電流領域に含まれていると判定する。 ここで、 トルク閾値は、 例え 〇 2020/175333 69 卩(:171? 2020 /006903 ○ 1 Calculate the estimated torque value of the rotating electric machine 10 based on the axis current and 9-axis current converted by the converter 1 1 2. Then, when it is determined that the calculated estimated torque value is less than the torque threshold value, it is determined that the current flowing through the winding 5 13 is included in the low current region, and the estimated torque value is equal to or greater than the torque threshold value. If it is determined, it is determined to be included in the high current region. Where the torque threshold is 〇 2020/175 333 69 卩 (: 171-1? 2020 /006903
ば、 回転電機 1 0の起動トルク (拘束トルクともいう) の 1 / 2に設定され ていればよい。 For example, it may be set to 1/2 of the starting torque (also called the restraint torque) of the rotating electric machine 10.
[0245] <第 2の方法> [0245] <Second method>
角度検出器により検出された回転子 4 0の回転角度が速度閾値以上である と判定した場合、 巻線 5 1 3に流れる電流が低電流領域に含まれている、 す なわち高回転領域であると判定する。 ここで、 速度閾値は、 例えば、 回転電 機 1 0の最大トルクがトルク閾値となる場合の回転速度に設定されていれば よい。 When it is determined that the rotation angle of the rotor 40 detected by the angle detector is equal to or greater than the speed threshold value, the current flowing through the winding 5 13 is included in the low current region, that is, in the high rotation region. Judge that there is. Here, the speed threshold may be set to, for example, the rotation speed when the maximum torque of the rotary electric machine 10 becomes the torque threshold.
[0246] ステップ 3 1 0において否定判定した場合には、 高電流領域であると判定 し、 ステップ 3 1 1 に進む。 ステップ 3 1 1では、 キャリア周波数干〇を第 1周波数干!_に設定する。 [0246] When a negative determination is made in step 3110, it is determined to be in the high current region, and the process proceeds to step 311. In step 3 1 1, the carrier frequency is changed to the first frequency! Set to _.
[0247] ステップ 3 1 0において肯定判定した場合には、 ステップ 3 1 2に進み、 キャリア周波数干〇を、 第 1周波数干!_よりも高い第 2周波数干 ! !に設定す る。 [0247] When the affirmative judgment is made in Step 310, the process proceeds to Step 312, and the carrier frequency is set to the first frequency! Set to the second frequency higher than _!
[0248] 以上説明した本変形例によれば、 各相卷線に流れる電流が高電流領域に含 まれる場合よりも低電流領域に含まれる場合においてキャリア周波数チ〇が 高く設定される。 このため、 低電流領域において、 スイッチ 3 , 3 のス イッチング周波数を高くすることができ、 電流リップルの増加を抑制するこ とができる。 これにより、 電流制御性の低下を抑制することができる。 According to the present modification described above, the carrier frequency T is set higher when the current flowing in each phase winding is included in the low current region than in the high current region. Therefore, the switching frequency of switches 3 and 3 can be increased in the low current region, and the increase of current ripple can be suppressed. As a result, a decrease in current controllability can be suppressed.
[0249] 一方、 各相卷線に流れる電流が高電流領域に含まれる場合、 低電流領域に 含まれる場合よりもキャリア周波数チ〇が低く設定される。 高電流領域にお いては、 低電流領域よりも巻線に流れる電流の振幅が大きいため、 インダク タンスが低くなったことに起因する電流リップルの増加が、 電流制御性に及 ぼす影響が小さい。 このため、 高電流領域においては、 低電流領域よりもキ ャリア周波数干〇を低く設定することができ、 各インバータ 1 0 1 , 1 0 2 のスイッチング損失を低減することができる。 [0249] On the other hand, when the current flowing through each phase wire is included in the high current region, the carrier frequency is set to be lower than when it is included in the low current region. In the high current region, the amplitude of the current flowing through the winding is larger than in the low current region, so the increase in the current ripple due to the lower inductance has less effect on the current controllability. .. Therefore, in the high current region, the carrier frequency can be set lower than in the low current region, and the switching loss of each of the inverters 10 1 and 10 2 can be reduced.
[0250] 本変形例においては、 以下に示す形態の実施が可能である。 [0250] In this modification, the following modes can be implemented.
[0251 ] キャリア周波数干〇が第 1周波数干!_に設定されている場合において、 図 32のステップ S 1 0において肯定判定されたとき、 キャリア周波数 f c を、 第 1周波数 f Lから第 2周波数 f Hに向かって徐変させてもよい。 [0251] Carrier frequency is the first frequency! When set to _, When the affirmative determination is made in step S10 of FIG. 32, the carrier frequency fc may be gradually changed from the first frequency fL toward the second frequency fH.
[0252] また、 キャリア周波数 f cが第 2周波数 f Hに設定されている場合におい て、 ステップ S 1 0において否定判定されたとき、 キャリア周波数 f cを、 第 2周波数 f Hから第 1周波数 f Lに向かって徐変させてもよい。 [0252] Also, when the carrier frequency fc is set to the second frequency fH and the negative determination is made in step S10, the carrier frequency fc is changed from the second frequency fH to the first frequency fL. May be gradually changed toward.
[0253] PWM制御に代えて、 空間べクトル変調 (S VM : space vector modu la tion) 制御によりスイッチの操作信号が生成されてもよい。 この場合であっ ても、 上述したスイッチング周波数の変更を適用することができる。 [0253] Instead of the PWM control, the operation signal of the switch may be generated by space vector modulation (SVM: space vector modulation) control. Even in this case, the change of the switching frequency described above can be applied.
[0254] (変形例 9 ) [0254] (Modification 9)
上記各実施形態では、 導線群 81 を構成する各相 2対ずつの導線が、 図 3 3 (a) に示すように並列接続されていた。 図 33 (a) は、 2対の導線で ある第 1 , 第 2導線 88 a, 88 bの電気的接続を示す図である。 ここで、 図 33 (a) に示す構成に代えて、 図 33 (b) に示すように、 第 1 , 第 2 導線 88 a, 88 bが直列接続されていてもよい。 In each of the above-described embodiments, two pairs of conductors of each phase forming the conductor wire group 81 are connected in parallel as shown in FIG. 33(a). FIG. 33(a) is a diagram showing the electrical connection between the first and second conductors 88a and 88b, which are two pairs of conductors. Here, instead of the configuration shown in FIG. 33(a), the first and second conducting wires 88a, 88b may be connected in series as shown in FIG. 33(b).
[0255] また、 3対以上の多層導線が径方向に積層配置されていてもよい。 図 34 に、 4対の導線である第 1〜第 4導線 88 a〜 88 dが積層配置されている 構成を示す。 第 1〜第 4導線 88 a〜 88 dは、 固定子コア 52に近い方か ら、 第 1 , 第 2, 第 3, 第 4導線 88 a, 88 b, 88 c, 88 dの順に径 方向に並んで配置されている。 [0255] Further, three or more pairs of multi-layer conductors may be laminated in the radial direction. Figure 34 shows a configuration in which four pairs of conductors, first to fourth conductors 88a to 88d, are stacked. The 1st to 4th conductors 88a to 88d are arranged in the radial direction in the order of the 1st, 2nd, 3rd and 4th conductors 88a, 88b, 88c, 88d from the side closer to the stator core 52. Are arranged side by side.
[0256] ここで、 図 33 (c) に示すように、 第 3, 第 4導線 88 c, 88 dが並 列接続されるとともに、 この並列接続体の一端に第 1導線 88 aが接続され 、 他端に第 2導線 88 bが接続されていてもよい。 並列接続にすると、 その 並列接続された導線の電流密度を低下させることができ、 通電時の発熱を抑 制できる。 そのため、 冷却水通路 74が形成されたハウジング (ユニッ トべ —ス 6 1 ) に筒状の固定子巻線を組み付ける構成において、 並列接続されて いない第 1 , 第 2導線 88 a, 88 bがユニッ トべース 6 1 に当接する固定 子コア 52側に配置され、 並列接続された第 3, 第 4導線 88 c, 88 dが 反固定子コア側に配置されている構成とする。 これにより、 多層導線構造に 〇 2020/175333 71 卩(:171? 2020 /006903 [0256] Here, as shown in Fig. 33 (c), the third and fourth conductors 88c and 88d are connected in parallel, and the first conductor 88a is connected to one end of the parallel connection body. The second conducting wire 88 b may be connected to the other end. When connected in parallel, the current density of the parallel-connected conductors can be reduced, and heat generation during energization can be suppressed. Therefore, in the configuration where the cylindrical stator winding is assembled in the housing (unit base 61) in which the cooling water passage 74 is formed, the first and second conductors 88a, 88b that are not connected in parallel are The third and fourth conductors 88 c, 88 d, which are arranged on the side of the stator core 52 that abuts on the unit base 61 and connected in parallel, are arranged on the side of the non-stator core. This gives a multi-layer conductor structure 〇 2020/175333 71 卩(: 171? 2020/006903
おける各導線 8 8 3〜8 8〇1の冷却性能を均等化することができる。 It is possible to equalize the cooling performance of each of the conducting wires 883 to 8801.
[0257] なお、 第 1〜第 4導線 8 8 3 ~ 8 8 からなる導線群 8 1の径方向の厚さ 寸法は、 1磁極内における 1相分の周方向の幅寸法よりも小さいものとされ ていればよい。 [0257] Note that the radial thickness dimension of the conductor wire group 8 1 composed of the first to fourth conductor wires 8 8 3 to 8 8 is smaller than the circumferential width dimension of one phase in one magnetic pole. It should have been done.
[0258] (変形例 1 0) [0258] (Modification 10)
回転電機 1 〇をインナロータ構造 (内転構造) としてもよい。 この場合、 例えばハウジング 3 0内において、 径方向外側に固定子 5 0が設けられ、 そ の径方向内側に回転子 4 0が設けられるとよい。 また、 固定子 5 0及び回転 子 4 0の軸方向両端のうちその一方の側又はその両方の側にインバータユニ ッ ト 6 0が設けられているとよい。 図 3 5は、 回転子 4 0及び固定子 5 0の 横断面図であり、 図 3 6は、 図 3 5に示す回転子 4 0及び固定子 5 0の一部 を拡大して示す図である。 The rotating electric machine 10 may have an inner rotor structure (inner rotation structure). In this case, for example, in the housing 30, it is preferable that the stator 50 is provided on the outer side in the radial direction and the rotor 40 is provided on the inner side in the radial direction. Further, the inverter unit 60 may be provided on one side or both sides of both axial ends of the stator 50 and the rotor 40. FIG. 35 is a cross-sectional view of the rotor 40 and the stator 50, and FIG. 36 is an enlarged view of a part of the rotor 40 and the stator 50 shown in FIG. is there.
[0259] インナロータ構造を前提とする図 3 5及び図 3 6の構成は、 アウタロータ 構造を前提とする図 8及び図 9の構成に対して、 回転子 4 0及び固定子 5 0 が径方向内外で逆になっていることを除いて、 同様の構成となっている。 簡 単に説明すると、 固定子 5 0は、 扁平導線構造の固定子巻線 5 1 と、 ティー スを持たない固定子コア 5 2とを有している。 固定子巻線 5 1は、 固定子コ ア 5 2の径方向内側に組み付けられている。 固定子コア 5 2は、 アウタロー 夕構造の場合と同様に、 以下のいずれかの構成を有する。 [0259] The configurations of Figs. 35 and 36 assuming the inner rotor structure are different from the configurations of Figs. 8 and 9 assuming the outer rotor structure in that the rotor 40 and the stator 50 are radially inner and outer. It has the same configuration except that it is reversed in. Briefly, the stator 50 has a stator winding 5 1 having a flat conductor structure and a stator core 5 2 having no teeth. The stator winding 51 is assembled inside the stator core 52 in the radial direction. The stator core 52 has one of the following configurations, as in the case of the outer rotor structure.
(八) 固定子 5 0において、 周方向における各導線部の間に導線間部材を設 け、 かつその導線間部材として、 1磁極における導線間部材の周方向の幅寸 法を 1、 導線間部材の飽和磁束密度を巳 3、 1磁極における磁石ユニッ ト の周方向の幅寸法を 〇!、 磁石ユニッ トの残留磁束密度を巳 「とした場合に 、
Figure imgf000073_0001
「の関係となる磁性材料を用いている。
(8) On the stator 50, provide inter-conductor members between each conductor in the circumferential direction, and as the inter-conductor members, set the circumferential width dimension of the inter-conductor member for one magnetic pole to 1, If the saturation magnetic flux density of the member is 3, and the circumferential width of the magnet unit in one magnetic pole is ◯!, and the residual magnetic flux density of the magnet unit is ‘
Figure imgf000073_0001
"A magnetic material having a relationship of "is used.
(巳) 固定子 5 0において、 周方向における各導線部の間に導線間部材を設 け、 かつその導線間部材として、 非磁性材料を用いている。 (Mitsumi) In the stator 50, an inter-conductor member is provided between the conductor portions in the circumferential direction, and a non-magnetic material is used as the inter-conductor member.
(〇) 固定子 5 0において、 周方向における各導線部の間に導線間部材を設 けていない構成となっている。 〇 2020/175333 72 卩(:171? 2020 /006903 (◯) In the stator 50, the inter-conductor members are not provided between the conductor portions in the circumferential direction. 〇 2020/175333 72 卩 (:171? 2020 /006903
[0260] また、 磁石ユニッ ト 4 2の各磁石 9 1 , 9 2についても同様である。 つま り、 磁石ユニッ ト 4 2は、 磁極中心である ¢1軸の側において、 磁極境界であ る 9軸の側に比べて磁化容易軸の向きが 軸に平行となるように配向がなさ れた磁石 9 1 , 9 2を用いて構成されている。 各磁石 9 1 , 9 2における磁 化方向等の詳細は既述のとおりである。 磁石ユニッ ト 4 2において環状磁石 9 5 (図 3 0参照) を用いることも可能である。 [0260] The same applies to the magnets 9 1 and 9 2 of the magnet unit 42. In other words, the magnet unit 42 is oriented so that the direction of the easy axis of magnetization is parallel to the axis on the Axis 1 side, which is the center of the magnetic pole, compared to the axis 9 side, which is the magnetic pole boundary. The magnets 9 1 and 9 2 are used. The details of the magnetization direction of each magnet 9 1, 9 2 are as described above. It is also possible to use an annular magnet 95 (see Fig. 30) in the magnet unit 42.
[0261 ] 図 3 7は、 インナロータ型とした場合における回転電機 1 0の縦断面図で あり、 これは既述の図 2に対応する図面である。 図 2の構成との相違点を簡 単に説明する。 図 3 7において、 ハウジング 3 0の内側には、 環状の固定子 5 0が固定され、 その固定子 5 0の内側には、 所定のエアギャップを挟んで 回転子 4 0が回転可能に設けられている。 図 2と同様に、 各軸受 2 1 , 2 2 は、 回転子 4 0の軸方向中央に対して軸方向のいずれか一方側に偏って配置 されており、 これにより、 回転子 4 0が片持ち支持されている。 また、 回転 子 4 0の磁石ホルダ 4 1の内側に、 インバータユニッ ト 6 0が設けられてい る。 [0261] Fig. 37 is a vertical cross-sectional view of the rotating electric machine 10 in the case of the inner rotor type, which corresponds to Fig. 2 described above. Differences from the configuration of FIG. 2 will be briefly described. In FIG. 37, an annular stator 50 is fixed inside the housing 30, and a rotor 40 is rotatably provided inside the stator 50 with a predetermined air gap in between. ing. Similar to Fig. 2, the bearings 21 and 22 are arranged so as to be offset to either side in the axial direction with respect to the center of the rotor 40 in the axial direction. Has been supported. Further, the inverter unit 60 is provided inside the magnet holder 41 of the rotor 40.
[0262] 図 3 8には、 インナロータ構造の回転電機 1 0として別の構成を示す。 図 [0262] Fig. 38 shows another configuration of the rotary electric machine 10 having an inner rotor structure. Figure
3 8において、 ハウジング 3 0には、 軸受 2 1 , 2 2により回転軸 1 1が回 転可能に支持されており、 その回転軸 1 1 に対して回転子 4 0が固定されて いる。 図 2等に示す構成と同様に、 各軸受 2 1 , 2 2は、 回転子 4 0の軸方 向中央に対して軸方向のいずれか一方側に偏って配置されている。 回転子 4 0は、 磁石ホルダ 4 1 と磁石ユニッ ト 4 2とを有している。 In the housing 38, the rotating shaft 11 is rotatably supported by the bearings 21 and 22 in the housing 30 and the rotor 40 is fixed to the rotating shaft 11. Similar to the configuration shown in FIG. 2 and the like, the bearings 21 and 22 are arranged so as to be biased to one side in the axial direction with respect to the axial center of the rotor 40. The rotor 40 has a magnet holder 41 and a magnet unit 42.
[0263] 図 3 8の回転電機 1 0では、 図 3 7の回転電機 1 0との相違点として、 回 転子 4〇の径方向内側にインバータユニッ ト 6 0が設けられていない構成と なっている。 磁石ホルダ 4 1は、 磁石ユニッ ト 4 2の径方向内側となる位置 で回転軸 1 1 に連結されている。 また、 固定子 5 0は、 固定子巻線 5 1 と固 定子コア 5 2とを有しており、 ハウジング 3 0に対して取り付けられている [0263] The rotating electric machine 10 of Fig. 38 differs from the rotating electric machine 10 of Fig. 37 in that the rotor unit 40 is not provided with the inverter unit 60 inside the radial direction. ing. The magnet holder 41 is connected to the rotary shaft 11 at a position radially inward of the magnet unit 42. The stator 50 has a stator winding 5 1 and a stator core 52, and is attached to the housing 30.
[0264] (変形例 1 1) 〇 2020/175333 73 卩(:171? 2020 /006903 [0264] (Modification 1 1) 〇 2020/175333 73 卩(: 171-1? 2020/006903
インナロータ構造の回転電機として別の構成を以下に説明する。 図 3 9は 、 回転電機 2 0 0の分解斜視図であり、 図 4 0は、 回転電機 2 0 0の側面断 面図である。 なおここでは、 図 3 9及び図 4 0の状態を基準に上下方向を示 すこととしている。 Another configuration of the rotating electric machine having the inner rotor structure will be described below. FIG. 39 is an exploded perspective view of the rotary electric machine 200, and FIG. 40 is a side sectional view of the rotary electric machine 200. Here, the vertical direction is shown based on the states of FIGS. 39 and 40.
[0265] 図 3 9及び図 4 0に示すように、 回転電機 2 0 0は、 環状の固定子コア 2 [0265] As shown in FIGS. 39 and 40, the rotary electric machine 200 has an annular stator core 2
0 1及び多相の固定子巻線 2 0 2を有する固定子 2 0 3と、 固定子コア 2 0 1の内側に回転自在に配設される回転子 2 0 4とを備えている。 固定子 2 0 3が電機子に相当し、 回転子 2 0 4が界磁子に相当する。 固定子コア 2 0 1 は、 多数の珪素鋼板が積層されて構成されており、 その固定子コア 2 0 1 に 対して固定子巻線 2 0 2が取り付けられている。 図示は省略するが、 回転子 2 0 4は、 回転子コアと、 磁石ユニッ トとして複数の永久磁石とを有してい る。 回転子コアには、 円周方向に等間隔で複数の磁石揷入孔が設けられてい る。 磁石揷入孔のそれぞれには、 隣接する磁極毎に交互に磁化方向が変わる ように磁化された永久磁石が装着されている。 なお、 磁石ユニッ トの永久磁 石は、 図 2 3で説明したようなハルバッハ配列又はそれに類する構成を有す るものであるとよい。 又は、 磁石ユニッ トの永久磁石は、 図 9や図 3 0で説 明したような磁極中心である 軸と磁極境界である 軸との間において配向 方向 (磁化方向) が円弧状に延びている極異方性の特性を備えるものである とよい。 0 1 and a stator 20 3 having a multi-phase stator winding 20 2, and a rotor 20 4 rotatably arranged inside the stator core 20 1. The stator 203 corresponds to an armature, and the rotor 2044 corresponds to a field element. The stator core 20 1 is configured by laminating a large number of silicon steel plates, and the stator windings 20 2 are attached to the stator core 20 1. Although not shown, the rotor 204 has a rotor core and a plurality of permanent magnets as a magnet unit. The rotor core is provided with a plurality of magnet insertion holes at equal intervals in the circumferential direction. A permanent magnet magnetized so that the magnetizing direction is alternately changed for each adjacent magnetic pole is attached to each of the magnet insertion holes. The permanent magnet of the magnet unit may have the Halbach array as described in Fig. 23 or a similar structure. Alternatively, in the permanent magnet of the magnet unit, the orientation direction (magnetization direction) extends in an arc shape between the axis that is the magnetic pole center and the axis that is the magnetic pole boundary as described in FIGS. 9 and 30. It is preferable to have polar anisotropy characteristics.
[0266] ここで、 固定子 2 0 3は、 以下のいずれかの構成であるとよい。 [0266] Here, the stator 203 may have any of the following configurations.
(八) 固定子 2 0 3において、 周方向における各導線部の間に導線間部材を 設け、 かつその導線間部材として、 1磁極における導線間部材の周方向の幅 寸法を 1、 導線間部材の飽和磁束密度を巳 3、 1磁極における磁石ユニッ 卜の周方向の幅寸法を 、 磁石ユニッ トの残留磁束密度を巳 「とした場合 に、
Figure imgf000075_0001
「の関係となる磁性材料を用いている。
(8) In the stator 203, an inter-conductor member is provided between each conductor portion in the circumferential direction, and as the inter-conductor member, the circumferential width dimension of the inter-conductor member in one magnetic pole is 1, and the inter-conductor member is Where the saturation magnetic flux density of the magnet unit is 3, and the width of the magnet unit in the circumferential direction in one magnetic pole is defined as, and the residual magnetic flux density of the magnet unit is defined as
Figure imgf000075_0001
"A magnetic material having a relationship of "is used.
(巳) 固定子 2 0 3において、 周方向における各導線部の間に導線間部材を 設け、 かつその導線間部材として、 非磁性材料を用いている。 (Mimi) In the stator 203, an inter-conductor member is provided between the conductor portions in the circumferential direction, and a non-magnetic material is used as the inter-conductor member.
(〇) 固定子 2 0 3において、 周方向における各導線部の間に導線間部材を 〇 2020/175333 74 卩(:171? 2020 /006903 (〇) In the stator 203, an inter-conductor member is placed between the conductor parts in the circumferential direction. 〇 2020/175333 74 卩(: 171-1? 2020/006903
設けていない構成となっている。 It is not provided.
[0267] また、 回転子 2 0 4において、 磁石ユニッ トは、 磁極中心である 軸の側 において、 磁極境界である 軸の側に比べて磁化容易軸の向きが 軸に平行 となるように配向がなされた複数の磁石を用いて構成されている。 [0267] Further, in the rotor 204, the magnet unit is oriented so that the direction of the easy magnetization axis is parallel to the axis on the side of the axis that is the center of the magnetic pole, compared to the side of the axis that is the magnetic pole boundary. It is composed of a plurality of magnets.
[0268] 回転電機 2 0 0の軸方向の一端側には、 環状のインバータケース 2 1 1が 設けられている。 インバータケース 2 1 1は、 ケース下面が固定子コア 2 0 1の上面に接するように配置されている。 インバータケース 2 1 1内には、 インバータ回路を構成する複数のパワーモジュール 2 1 2と、 半導体スイッ チング素子のスイッチング動作により生じる電圧 ·電流の脈動 (リップル) を抑制する平滑コンデンサ 2 1 3と、 制御部を有する制御基板 2 1 4と、 相 電流を検出する電流センサ 2 1 5と、 回転子 2 0 4の回転数センサであるレ ゾルバステータ 2 1 6とが設けられている。 パワーモジュール 2 1 2は、 半 導体スイッチング素子である 丨 ◦巳丁やダイオードを有している。 [0268] An annular inverter case 211 is provided on one end side of the rotary electric machine 200 in the axial direction. The inverter case 2 11 is arranged such that the lower surface of the case is in contact with the upper surface of the stator core 2 0 1. Inside the inverter case 2 11 are a plurality of power modules 2 12 that make up the inverter circuit, and a smoothing capacitor 2 1 3 that suppresses the ripples of voltage and current generated by the switching operation of the semiconductor switching elements. A control board 2 14 having a control unit, a current sensor 2 15 for detecting a phase current, and a resolver stator 2 16 which is a rotation speed sensor of the rotor 20 4 are provided. The power module 2 1 2 has a semi-conducting switching element, such as a knife and a diode.
[0269] インバータケース 2 1 1の周縁には、 車両に搭載されるバッテリの直流回 路と接続されるパワーコネクタ 2 1 7と、 回転電機 2 0 0側と車両側制御装 置との間で各種信号の受け渡しに用いられる信号コネクタ 2 1 8とが設けら れている。 インバータケース 2 1 1はトップカバー 2 1 9で覆われている。 車載バッテリからの直流電力は、 パワーコネクタ 2 1 7を介して入力され、 パワーモジュール 2 1 2のスイッチングにより交流に変換されて各相の固定 子卷線 2 0 2に送られる。 [0269] A power connector 2 17 connected to the DC circuit of the battery mounted on the vehicle and the rotary electric machine 200 0 side and the vehicle side control device are provided on the periphery of the inverter case 2 11. A signal connector 2 18 used to transfer various signals is provided. The inverter case 2 1 1 1 is covered with a top cover 2 1 9. DC power from the on-vehicle battery is input via the power connector 2 17 and is converted to AC by the switching of the power module 2 1 2 and sent to the stator winding 20 2 of each phase.
[0270] 固定子コア 2 0 1の軸方向両側のうちインバータケース 2 1 1の反対側に は、 回転子 2 0 4の回転軸を回転可能に保持する軸受ユニッ ト 2 2 1 と、 そ の軸受ユニッ ト 2 2 1 を収容する環状のリアケース 2 2 2とが設けられてい る。 軸受ユニッ ト 2 2 1は、 例えば 2つ一組の軸受を有しており、 回転子 2 〇 4の軸方向中央に対して軸方向のいずれか一方側に偏って配置されている 。 ただし、 軸受ユニッ ト 2 2 1 における複数の軸受を固定子コア 2 0 1の軸 方向両側に分散させて設け、 それら各軸受により回転軸を両持ち支持する構 成であってもよい。 リアケース 2 2 2が車両のギアケースや変速機などの取 〇 2020/175333 75 卩(:171? 2020 /006903 [0270] On both sides in the axial direction of the stator core 201, on the side opposite to the inverter case 211, a bearing unit 2221 for rotatably holding the rotating shaft of the rotor 204 and its An annular rear case 2 2 2 which houses the bearing unit 2 2 1 is provided. The bearing unit 2 21 has, for example, a pair of bearings, and is arranged so as to be deviated to either one side in the axial direction with respect to the axial center of the rotor 204. However, a plurality of bearings in the bearing unit 2 21 may be provided dispersedly on both sides in the axial direction of the stator core 2 0 1, and the bearing may support both ends of the rotary shaft. The rear case 2 2 2 is used to mount the gear case and transmission of the vehicle. 〇 2020/175333 75 卩(: 171-1? 2020/006903
付部にボルト締結して固定されることで、 回転電機 2 0 0が車両側に取り付 けられるようになっている。 The rotary electric machine 200 can be mounted on the vehicle side by being bolted and fixed to the attachment part.
[0271 ] インバータケース 2 1 1内には、 冷媒を流すための冷却流路 2 1 1 3が形 成されている。 冷却流路 2 1 1 3は、 インバータケース 2 1 1の下面から環 状に凹設された空間を固定子コア 2 0 1の上面で閉塞して形成されている。 冷却流路 2 1 1 3は、 固定子巻線 2 0 2のコイルエンドを囲むように形成さ れている。 冷却流路 2 1 1 3内には、 パワーモジュール 2 1 2のモジュール ケース 2 1 2 3が揷入されている。 リアケース 2 2 2にも、 固定子巻線 2 0 2のコイルエンドを囲むように冷却流路 2 2 2 3が形成されている。 冷却流 路 2 2 2 3は、 リアケース 2 2 2の上面から環状に凹設された空間を固定子 コア 2 0 1の下面で閉塞して形成されている。 [0271] Inside the inverter case 211, a cooling channel 211 for flowing a refrigerant is formed. The cooling flow path 2 1 1 1 3 is formed by closing a space that is annularly recessed from the lower surface of the inverter case 2 1 1 with the upper surface of the stator core 2 0 1. The cooling channel 2 11 3 is formed so as to surround the coil end of the stator winding 2 0 2. The module case 2 1 2 3 of the power module 2 1 2 is put into the cooling passage 2 1 1 3. Also in the rear case 2 22, a cooling flow path 2 2 2 3 is formed so as to surround the coil end of the stator winding 2 0 2. The cooling channel 2 2 2 3 is formed by closing a space, which is annularly recessed from the upper surface of the rear case 2 2 2, with the lower surface of the stator core 2 0 1.
[0272] (変形例 1 2) [0272] (Modification 12)
これまでは、 回転界磁形の回転電機にて具体化した構成を説明したが、 こ れを変更し、 回転電機子形の回転電機にて具体化することも可能である。 図 4 1 に、 回転電機子形の回転電機 2 3 0の構成を示す。 Up to now, the configuration embodied in the rotating field type rotating electric machine has been described, but it is also possible to change this and realize the rotating armature type rotating electric machine. Figure 4 1 shows the structure of a rotating armature-type rotating electric machine 230.
[0273] 図 4 1の回転電機 2 3 0において、 ハウジング
Figure imgf000077_0001
2 3 1 匕にはそ れぞれ軸受 2 3 2が固定され、 その軸受 2 3 2により回転軸 2 3 3が回転自 在に支持されている。 軸受 2 3 2は、 例えば多孔質金属に油を含ませてなる 含油軸受である。 回転軸 2 3 3には、 電機子としての回転子 2 3 4が固定さ れている。 回転子 2 3 4は、 回転子コア 2 3 5とその外周部に固定された多 相の回転子卷線 2 3 6とを有している。 回転子 2 3 4において、 回転子コア 2 3 5はスロッ トレス構造を有し、 回転子卷線 2 3 6は扁平導線構造を有し ている。 つまり、 回転子卷線 2 3 6は、 1相ごとの領域が径方向よりも周方 向に長い扁平構造となっている。
[0273] In the rotary electric machine 230 shown in Fig. 41, the housing
Figure imgf000077_0001
A bearing 2 3 2 is fixed to each of the 2 3 1 bearings, and the rotating shaft 2 3 3 is rotatably supported by the bearing 2 3 2. The bearing 23 2 is, for example, an oil-impregnated bearing made of porous metal containing oil. The rotor 2 3 4 as an armature is fixed to the rotary shaft 2 3 3. The rotor 2 3 4 has a rotor core 2 3 5 and a multiphase rotor winding line 2 3 6 fixed to the outer periphery of the rotor core 2 3 5. In the rotor 2 3 4, the rotor core 2 3 5 has a slotless structure, and the rotor winding wire 2 3 6 has a flat conductor structure. In other words, the rotor winding line 2 36 has a flat structure in which the region for each phase is longer in the circumferential direction than in the radial direction.
[0274] また、 回転子 2 3 4の径方向外側には、 界磁子としての固定子 2 3 7が設 けられている。 固定子 2 3 7は、 ハウジング 2 3 1 3に固定された固定子コ ア 2 3 8と、 その固定子コア 2 3 8の内周側に固定された磁石ユニッ ト 2 3 9とを有している。 磁石ユニッ ト 2 3 9は、 周方向に極性が交互となる複数 〇 2020/175333 76 卩(:171? 2020 /006903 [0274] Further, a stator 237 serving as a field element is provided on the outer side in the radial direction of the rotor 234. The stator 2 3 7 has a stator core 2 3 8 fixed to the housing 2 3 1 3 and a magnet unit 2 3 9 fixed to the inner peripheral side of the stator core 2 3 8. ing. Magnet unit 2 3 9 has multiple magnets with alternating polarity in the circumferential direction. 〇 2020/175 333 76 卩 (:171? 2020 /006903
の磁極を含む構成となっており、 既述した磁石ユニッ ト 4 2等と同様に、 磁 極中心である 軸の側において、 磁極境界である 軸の側に比べて磁化容易 軸の向きが 軸に平行となるように配向がなされて構成されている。 磁石ユ ニッ ト 2 3 9は、 配向が行われた焼結ネオジム磁石を有しており、 その固有 保磁力は 4 0 0 [ 1< /〇! ] 以上、 かつ残留磁束密度は 1 . 0 [丁] 以上と なっている。 As in the previously described magnet unit 42, etc., on the side of the axis that is the center of the magnetic pole, the direction of the easy axis of magnetization is closer to the axis that is the magnetic pole boundary than the side of the axis that is the magnetic pole boundary. It is configured so that it is oriented parallel to. The magnet unit 2339 has an oriented sintered neodymium magnet, and its intrinsic coercive force is more than 400 [1 </○!] and the residual magnetic flux density is 1.0 [ It's over.
[0275] 本例の回転電機 2 3 0は、 2極 3コイルのブラシ付コアレスモータであり 、 回転子卷線 2 3 6は 3つに分割され、 磁石ユニッ ト 2 3 9は 2極である。 ブラシ付きモータの極数とコイル数は、 2 : 3、 4 : 1 0、 4 : 2 1などそ の用途に応じて様々である。 [0275] The rotary electric machine 230 of this example is a 2-pole 3-coil brushless coreless motor, the rotor winding 2 36 is divided into 3 parts, and the magnet unit 2 3 9 is 2-pole. .. The number of poles and the number of coils of the brushed motor varies depending on the application, such as 2:3, 4:1 0, and 4:1.
[0276] 回転軸 2 3 3にはコミュテータ 2 4 1が固定されており、 その径方向外側 には複数のブラシ 2 4 2が配置されている。 コミユテータ 2 4 1は、 回転軸 2 3 3に埋め込まれた導線 2 4 3を介して回転子卷線 2 3 6に電気接続され ている。 これらコミユテータ 2 4 1、 ブラシ 2 4 2、 導線 2 4 3を通じて、 回転子卷線 2 3 6に対する直流電流の流入及び流出が行われる。 コミュテー 夕 2 4 1は、 回転子卷線 2 3 6の相数に応じて周方向に適宜分割されて構成 されている。 なお、 ブラシ 2 4 2は、 そのまま電気配線を介して蓄電池など の直流電源に接続されていてもよいし、 端子台などを介して直流電源に接続 されていてもよい。 [0276] A commutator 2 4 1 is fixed to the rotating shaft 2 3 3, and a plurality of brushes 2 4 2 are arranged on the radially outer side of the commutator 2 4 1. The commutator 2 4 1 is electrically connected to the rotor winding 2 3 6 via a conductor 2 4 3 embedded in the rotating shaft 2 3 3. A direct current flows in and out of the rotor winding 2 3 6 through these commutator 2 4 1, brush 2 4 2, and conductor 2 4 3. The commutator 2 4 1 is appropriately divided in the circumferential direction according to the number of phases of the rotor winding line 2 3 6. The brush 2 42 may be directly connected to a DC power source such as a storage battery via electric wiring, or may be connected to a DC power source via a terminal block or the like.
[0277] 回転軸 2 3 3には、 軸受 2 3 2とコミユテータ 2 4 1 との間に、 シール材 としての樹脂ワッシャ 2 4 4が設けられている。 樹脂ワッシャ 2 4 4により 、 含油軸受である軸受 2 3 2からしみ出た油がコミュテータ 2 4 1側に流れ 出ることが抑制される。 [0277] The rotating shaft 2 3 3 is provided with a resin washer 2 4 4 as a seal material between the bearing 2 3 2 and the commutator 2 4 1. The resin washer 2 4 4 prevents the oil exuding from the oil-impregnated bearing 2 3 2 from flowing out to the commutator 2 4 1 side.
[0278] (変形例 1 3) [0278] (Modification 13)
回転電機 1 〇の固定子巻線 5 1 において、 各導線 8 2を、 内外に複数の絶 縁被膜を有する構成としてもよい。 例えば、 絶縁被膜付きの複数の導線 (素 線) を 1本に束ね、 それを外層被膜により覆って導線 8 2を構成するとよい 。 この場合、 素線の絶縁被膜が内側の絶縁被膜を構成し、 外層被膜が外側の 〇 2020/175333 77 卩(:171? 2020 /006903 In the stator winding 5 1 of the rotating electric machine 10, each conductor wire 82 may have a plurality of insulating coatings inside and outside. For example, it is advisable to bundle a plurality of conductive wires (elementary wires) with an insulating coating and to cover them with an outer coating to form the conductive wire 82. In this case, the insulation coating of the wires constitutes the inner insulation coating, and the outer coating is the outer insulation coating. 〇 2020/175333 77 卩(: 171-1? 2020/006903
絶縁被膜を構成する。 また特に、 導線 8 2における複数の絶縁被膜のうち外 側の絶縁被膜の絶縁能力を、 内側の絶縁被膜の絶縁能力よりも高めておくと よい。 具体的には、 外側の絶縁被膜の厚さを、 内側の絶縁被膜の厚さよりも 厚くする。 例えば、 外側の絶縁被膜の厚さを 1 〇〇 、 内側の絶縁被膜の 厚さを 4 0 とする。 又は、 外側の絶縁被膜として、 内側の絶縁被膜より も誘電率の低い材料を用いるとよい。 これらは少なくともいずれかが適用さ れればよい。 なお、 素線が、 複数の導電材の集合体として構成されていると よい。 It constitutes an insulating film. Further, it is particularly preferable that the insulating ability of the outer insulating coating of the plurality of insulating coatings of the conductor 82 is higher than that of the inner insulating coating. Specifically, the thickness of the outer insulating coating is made thicker than the thickness of the inner insulating coating. For example, the thickness of the outer insulating coating is 100, and the thickness of the inner insulating coating is 40. Alternatively, a material having a lower dielectric constant than the inner insulating film may be used as the outer insulating film. At least one of these may be applied. Note that the strands of wire may be configured as an aggregate of a plurality of conductive materials.
[0279] 上記のとおり導線 8 2における最外層の絶縁を強くすることにより、 高電 圧の車両用システムに用いる場合に好適なものとなる。 また、 気圧の低い高 地などでも、 回転電機 1 0の適正な駆動が可能となる。 [0279] By strengthening the insulation of the outermost layer of the conductive wire 82 as described above, it becomes suitable for use in a vehicle system with high voltage. Further, the rotating electric machine 10 can be properly driven even in a high place where the atmospheric pressure is low.
[0280] (変形例 1 4) [0280] (Modification 14)
内外に複数の絶縁被膜を有する導線 8 2において、 外側の絶縁被膜と内側 の絶縁被膜とで、 線膨張率 (線膨張係数) 及び接着強さの少なくともいずれ かが異なる構成としてもよい。 本変形例における導線 8 2の構成を図 4 2に 示す。 In the conductor 82 having a plurality of insulating coatings inside and outside, at least one of the linear expansion coefficient (coefficient of linear expansion) and the adhesive strength may be different between the outer insulating coating and the inner insulating coating. Figure 4 2 shows the structure of the conducting wire 82 in this modification.
[0281 ] 図 4 2において、 導線 8 2は、 複数 (図では 4本) の素線 1 8 1 と、 その 複数の素線 1 8 1 を囲む例えば樹脂製の外層被膜 1 8 2 (外側絶縁被膜) と 、 外層被膜 1 8 2内において各素線 1 8 1の周りに充填された中間層 1 8 3 (中間絶縁被膜) とを有している。 素線 1 8 1は、 銅材よりなる導電部 1 8 1 3と、 絶縁材料よりなる導体被膜 1 8 1 (内側絶縁被膜) とを有してい る。 固定子巻線として見れば、 外層被膜 1 8 2により相間が絶縁される。 な お、 素線 1 8 1が、 複数の導電材の集合体として構成されているとよい。 [0281] In Fig. 42, a conductor wire 8 2 is composed of a plurality of (four in the figure) element wires 1 81 and an outer layer film 1 82 2 made of, for example, resin surrounding the plurality of element wires 1 8 1 (outer insulation Coating) and an intermediate layer 183 (intermediate insulating coating) filled around each element wire 1 81 in the outer coating 182. The element wire 1 81 has a conductive portion 181 3 made of a copper material and a conductor film 181 (inner insulating film) made of an insulating material. When viewed as a stator winding, the outer layer coating 182 insulates the phases. In addition, it is preferable that the wire 181 is configured as an aggregate of a plurality of conductive materials.
[0282] 中間層 1 8 3は、 素線 1 8 1の導体被膜 1 8 1 匕よりも高い線膨張率を有 し、 かつ外層被膜 1 8 2よりも低い線膨張率を有している。 つまり、 導線 8 2では、 外側ほど線膨張率が高くなっている。 一般的に、 外層被膜 1 8 2で は導体被膜 1 8 1 匕よりも線膨張係数が高いが、 それらの間にその中間の線 膨張率を有する中間層 1 8 3を設けることにより、 その中間層 1 8 3がクッ 〇 2020/175333 78 卩(:171? 2020 /006903 [0282] The intermediate layer 183 has a linear expansion coefficient higher than that of the conductor coating 181 of the element wire 181 and lower than that of the outer coating 182. In other words, the conductor 82 has a higher linear expansion coefficient toward the outer side. In general, the outer coating 1 82 has a higher linear expansion coefficient than the conductor coating 1 81, but by providing an intermediate layer 1 8 3 having a linear expansion coefficient between them, Layer 1 8 3 〇 2020/175 333 78 卩 (: 171? 2020 /006903
シヨン材として機能し、 外層側及び内層側での同時割れを防ぐことができる It functions as a cushion material and can prevent simultaneous cracks on the outer and inner layers.
[0283] また、 導線 8 2では、 素線 1 8 1 において導電部 1 8 1 3と導体被膜 1 8 [0283] In addition, in the case of the conductor wire 8 2, the conductive portion 1 8 1 3 and the conductor film 1 8 1
1 匕とが接着されるとともに、 導体被膜 1 8 1 匕と中間層 1 8 3、 中間層 1 8 3と外層被膜 1 8 2がそれぞれ接着されており、 それら各接着部分では、 導線 8 2の外側ほど、 接着強さが弱くなっている。 つまり、 導電部 1 8 1 3 及び導体被膜 1 8 1 の接着強さは、 導体被膜 1 8 1 及び中間層 1 8 3の 接着強さ、 中間層 1 8 3及び外層被膜 1 8 2の接着強さよりも弱くなってい る。 また、 導体被膜 1 8 1 匕及び中間層 1 8 3の接着強さと、 中間層 1 8 3 及び外層被膜 1 8 2の接着強さとを比較すると、 後者の方 (外側の方) が弱 いか、 又は同等であるとよい。 なお、 各被膜同士の接着強さの大きさは、 例 えば 2層の被膜を引き剥がす際に要する引っ張り強さ等により把握可能であ る。 上記のごとく導線 8 2の接着強さが設定されていることで、 発熱又は冷 却による内外温度差が生じても、 内層側及び外層側で共に割れが生じること (共割れ) を抑制することができる。 1 Stain is adhered, and conductor coating 1 8 1 Stain and intermediate layer 1 8 3 are bonded, and intermediate layer 1 8 3 and outer coating 1 8 2 are also bonded. The adhesive strength is weaker toward the outside. In other words, the adhesive strength of the conductive part 181 3 and the conductor film 181 is the adhesive strength of the conductor film 181 and the intermediate layer 183, and the adhesive strength of the intermediate layer 183 and the outer layer 182. It is getting weaker than that. Also, comparing the adhesive strength of the conductor coating 1 81 and the intermediate layer 1 83 with the adhesive strength of the intermediate layer 1 8 3 and the outer coating 1 82, the latter (outer) is weaker? Or it is good to be equivalent. The magnitude of the adhesive strength between the coatings can be grasped, for example, from the tensile strength required to peel off the two coating layers. By setting the adhesive strength of the conducting wire 82 as described above, it is possible to suppress the occurrence of cracks (co-cracking) on both the inner layer side and the outer layer side even if there is a difference in temperature between the inside and outside due to heat generation or cooling. You can
[0284] ここで、 回転電機の発熱、 温度変化は、 主に素線 1 8 1の導電部 1 8 1 3 から発熱される銅損と、 鉄心内から発せられる鉄損として生じるが、 それら 2種類の損失は、
Figure imgf000080_0001
又は導線 8 2の外部より伝 わるものであり、 中間層 1 8 3に発熱源があるわけではない。 この場合、 中 間層 1 8 3が両方に対してクッションとなり得る接着力を持つことで、 その 同時割れを防ぐことができる。 したがって、 車両用途など、 高耐圧又は温度 変化の大きい分野での使用に際しても、 好適なる使用が可能となる。
[0284] Here, the heat generation and temperature change of the rotating electric machine mainly occur as copper loss generated from the conductive portion 181 3 of the wire 181 and iron loss generated from the inside of the iron core. The type of loss is
Figure imgf000080_0001
Alternatively, the heat is transmitted from the outside of the conducting wire 82, and the intermediate layer 183 does not have a heat source. In this case, the intermediate layer 183 has an adhesive force capable of acting as a cushion for both, so that the simultaneous cracking can be prevented. Therefore, it can be suitably used even in the field of high withstand voltage or large temperature change such as vehicle application.
[0285] 以下に補足する。 素線 1 8 1は、 例えばエナメル線であってもよく、 かか る場合には 、 I、 I等の樹脂被膜層 (導体被膜 1 8 1 匕) を有す る。 また、 素線 1 8 1 より外側の外層被膜 1 8 2は、 同様の 、 丨、 八 丨等よりなり、 かつ厚みが厚いものであることが望ましい。 これにより、 線膨張率差による被膜の破壊が抑えられる。 なお、 外層被膜 1 8 2としては 、 八、 丨、 八 I等の前記材料を厚く して対応するものとは別に、 〇 2020/175333 79 卩(:171? 2020 /006903 [0285] The following is supplemented. The strand 1 8 1 may be, for example, an enameled wire, and in such a case, it has a resin coating layer of I, I, etc. (conductor coating 18 1 匕). Further, it is desirable that the outer layer coating 1 82 outside the element wire 1 81 be made of the same material, such as 丨 and 縨, and be thick. As a result, the destruction of the coating film due to the difference in linear expansion coefficient is suppressed. In addition, as the outer layer coating 1 82, apart from those corresponding to the above materials such as 8, I, and 8 I by thickening them, 〇 2020/175333 79 卩(: 171-1?2020/006903
3、 巳巳 、 フッ素、 ポリカーボネート、 シリコン、 エポキシ、 ポリエチ レンナフタレート、 !_〇 といった、 誘電率が 丨、 八 丨 よりも小さいも のを使うことも回転機の導体密度を高めるためには望ましい。 これらの樹脂 であれば、 導体被膜 1 8 1 匕同等の \ , P A \被膜よりも薄いか、 導体被 膜 1 8 1 13と同等の厚みであっても、 その絶縁能力を高くすることができ、 これにより導電部の占有率を高めることが可能となる。 一般的には、 上記樹 脂は、 誘電率がエナメル線の絶縁被膜より良好な絶縁を有している。 当然、 成形状態や、 混ぜ物によって、 その誘電率を悪くする例も存在する。 中でも 、 3、 巳巳 は、 その線膨張係数がエナメル被膜より一般的には大き いが、 他樹脂よりも小さいため、 第 2層の外層被膜として適するのである。 3, Mimi, Fluorine, Polycarbonate, Silicone, Epoxy, Polyethylene naphthalate,! It is also desirable to use a material with a dielectric constant such as __ that is smaller than 8 or 8 in order to increase the conductor density of the rotating machine. With these resins, even if they are thinner than the equivalent conductor film 1 81 1 \, PA \ film, or have the same thickness as the conductor film 1 8 1 13, the insulation ability can be increased. As a result, it becomes possible to increase the occupation ratio of the conductive portion. Generally, the above-mentioned resin has a better dielectric constant than the insulating coating of the enamel wire. Of course, there are some cases where the dielectric constant deteriorates depending on the molding conditions and the mixture. Among them, 3, the coefficient of linear expansion is generally larger than that of the enamel coating, but the coefficient of thermal expansion is smaller than that of the other resins, and therefore, 3, is suitable as the outer layer coating of the second layer.
[0286] また、 素線 1 8 1の外側における 2種類の被膜 (中間絶縁被膜、 外側絶縁 被膜) と素線 1 8 1のエナメル被膜との接着強さは、 素線 1 8 1 における銅 線とエナメル被膜との間の接着強さよりも弱いことが望ましい。 これにより 、 エナメル被膜と前記 2種類の被膜とが一度に破壊される現象が抑制される [0286] Further, the adhesive strength between the two kinds of coatings (intermediate insulation coating and outer insulation coating) on the outside of the strand 1 81 and the enamel coating of the strand 1 8 1 is the copper strength of the strand 1 8 1. It is desirable that it be weaker than the bond strength between the and enamel coating. This suppresses the phenomenon that the enamel coating and the above two types of coatings are destroyed at once.
[0287] 固定子に水冷構造、 液冷構造、 空冷構造が付加されている場合には、 基本 的に、 外層被膜 1 8 2から先に熱応力や衝撃応力が掛かると考えられる。 し かし、 素線 1 8 1の絶縁層と、 前記 2種類の被膜とが違う樹脂の場合でも、 その被膜を接着しない部位を設けることにより、 前記熱応力や衝撃応力を低 減することができる。 すなわち、 素線 (エナメル線) と空隙を設け、 フッ素 、 ポリカーボネート、 シリコン、 エポキシ、 ポリエチレンナフタレート、 !_ 〇 を配置することで前記絶縁構造がなされる。 この場合、 エポキシなどか らなる低誘電率で、 かつ低線膨張係数からなる接着材を用いて、 外層被膜と 内層被膜とを接着することが望ましい。 こうすることで、 機械的強度だけで なく、 導電部の振動による揺れなどによる摩擦による被膜破壊、 または線膨 張係数差による外層被膜の破壊を抑えることができる。 [0287] When a water-cooled structure, a liquid-cooled structure, or an air-cooled structure is added to the stator, it is basically considered that thermal stress or impact stress is applied first from the outer layer coating 182. However, even if the insulating layer of the wire 181 and the two types of coatings are different from each other, the thermal stress and impact stress can be reduced by providing a part that does not bond the coatings. it can. That is, a gap is formed between the element wire (enamel wire) and fluorine, polycarbonate, silicon, epoxy, polyethylene naphthalate,! By disposing _ ◯, the insulating structure is formed. In this case, it is desirable to bond the outer layer coating and the inner layer coating with an adhesive material such as epoxy having a low dielectric constant and a low linear expansion coefficient. By doing so, not only the mechanical strength but also the destruction of the coating due to the friction due to the vibration of the conductive portion or the destruction of the outer coating due to the difference in the linear expansion coefficient can be suppressed.
[0288] 上記構成の導線 8 2に対しての、 機械的強度、 固定等を担う、 一般的には 固定子巻線周りの最終工程となる最外層固定としては、 エポキシ、 3、 〇 2020/175333 80 卩(:171? 2020 /006903 [0288] With respect to the conductor wire 8 2 having the above-mentioned configuration, epoxy, 3, 〇 2020/175333 80 卩 (: 171-1? 2020 /006903
巳巳 1_〇 などの成形性が良く、 誘電率、 線膨張係数といった性質が エナメル被膜と近い性質をもった樹脂が好ましい。 It is preferable to use a resin having good moldability such as Mimi 1_○ and having properties such as dielectric constant and linear expansion coefficient similar to those of an enamel coating.
[0289] —般的には、 ウレタン、 シリコンによる樹脂ポッティングが通例なされる が、 前記樹脂においてはその線膨張係数がその他の樹脂と比べて倍近い差が あり、 樹脂をせん断し得る熱応力を発生する。 そのため、 厳しい絶縁規定が 国際的に用いられる 6 0 V以上の用途には不適である。 この点、 エポキシ、 3、 巳巳 、 !_ 0 などにより射出成型等により容易に作られる最終 絶縁工程によれば、 上述の各要件を達成することが可能である。 [0289] —Usually, resin potting with urethane or silicon is generally used. However, the linear expansion coefficient of the resin is nearly double that of other resins, and the thermal stress that can shear the resin is appear. Therefore, it is not suitable for applications above 60 V where strict insulation regulations are used internationally. In this respect, epoxy, 3, Mami,! According to the final insulation process that can be easily made by injection molding or the like with _ 0 or the like, each of the above requirements can be achieved.
[0290] 上記以外の変形例を以下に列記する。 [0290] Modifications other than the above will be listed below.
[0291 ] 磁石ユニッ ト 4 2のうち径方向において電機子側の面と、 回転子の軸心 との径方向における距離口1\/1が 5 0
Figure imgf000082_0001
以上とされていてもよい。 具体的に は、 例えば、 図 4に示す磁石ユニッ ト 4 2 (具体的には、 第 1 , 第 2磁石 9 1 , 9 2) のうち径方向内側の面と、 回転子 4 0の軸心との径方向における
Figure imgf000082_0002
以上とされていてもよい。
[0291] The distance port 1\/1 in the radial direction between the surface of the magnet unit 4 2 on the armature side in the radial direction and the rotor shaft center is 50
Figure imgf000082_0001
The above may be mentioned. Specifically, for example, the inner surface in the radial direction of the magnet unit 4 2 (specifically, the first and second magnets 9 1 and 9 2) shown in FIG. 4 and the axial center of the rotor 40. In the radial direction of and
Figure imgf000082_0002
The above may be mentioned.
[0292] スロッ トレス構造の回転電機としては、 その出力が数十 から数百 級の 模型用などに使用される小規模なものが知られている。 そして、 一般的には 1 0 を超すような工業用の大型の回転電機でスロッ トレス構造が採用さ れた事例を本願開示者は把握していない。 その理由について本願開示者は検 言寸した。 [0292] As a rotating electric machine with a slotless structure, a small-scale one whose output is used for a model of several tens to several hundreds of classes is known. In addition, the present inventors do not understand a case in which a slotless structure is adopted in a large industrial rotary electric machine that generally exceeds 10. The reason for this was clarified by the present inventor.
[0293] 近年主流の回転電機は、 次の 4種類に大別される。 それら回転電機とは、 ブラシ付きモータ、 カゴ型誘導モータ、 永久磁石式同期モータ及びリラクタ ンスモータである。 [0293] In recent years, mainstream rotating electrical machines are roughly classified into the following four types. These rotating electrical machines are brushed motors, cage induction motors, permanent magnet synchronous motors, and reluctance motors.
[0294] ブラシ付きモータには、 ブラシを介して励磁電流が供給される。 このため 、 大型機のブラシ付きモータの場合、 ブラシが大型化したり、 メンテナンス が煩雑になったりしたりする。 これにより、 半導体技術の目覚ましい発達に 伴い、 誘導モータ等のブラシレスモータに置換されてきた経緯がある。 一方 、 小型モータの世界では、 低い慣性及び経済性の利点から、 コアレスモータ も多数世の中に供給されている。 〇 2020/175333 81 卩(:171? 2020 /006903 [0294] An exciting current is supplied to the brushed motor via the brush. For this reason, in the case of a brushed motor of a large machine, the brush becomes large and maintenance becomes complicated. As a result, with the remarkable development of semiconductor technology, it has been replaced by brushless motors such as induction motors. On the other hand, in the world of small motors, coreless motors have been supplied to the majority due to their advantages of low inertia and economy. 〇 2020/175333 81 卩 (: 171-1? 2020 /006903
[0295] カゴ型誘導モータでは、 1次側の固定子巻線で発生させる磁界を 2次側の 回転子の鉄心で受けてカゴ型導体に集中的に誘導電流を流して反作用磁界を 形成することにより、 トルクを発生させる原理である。 このため、 機器の小 型高効率の観点からすれば、 固定子側及び回転子側ともに鉄心をなくすこと は必ずしも得策であるとは言えない。 [0295] In the basket-type induction motor, the magnetic field generated in the stator winding on the primary side is received by the iron core of the rotor on the secondary side, and the induced current is concentrated in the cage-type conductor to form a reaction magnetic field. This is the principle of generating torque. For this reason, it is not necessarily a good idea to eliminate the iron cores on both the stator side and rotor side from the viewpoint of the small size and high efficiency of the equipment.
[0296] リラクタンスモータは、 当に鉄心のリラクタンス変化を活用するモータで あり、 原理的に鉄心をなくすことは望ましくない。 [0296] Reluctance motors are motors that utilize reluctance changes in the iron core, and it is not desirable to eliminate the iron core in principle.
[0297] 永久磁石式同期モータでは、 近年 I 1\/1 (つまり埋め込み磁石型回転子) が主流であり、 特に大型機においては、 特殊事情がない限り 丨 IV!である場 合が多い。 [0297] In the permanent magnet type synchronous motor, I 1\/1 (that is, embedded magnet type rotor) has been predominant in recent years, and especially in a large machine, it is often the IV! unless there are special circumstances.
[0298] I 1\/1は、 磁石トルク及びリラクタンストルクを併せ持つ特性を有してお り、 インバータ制御により、 それらトルクの割合が適時調整されながら運転 される。 このため、 丨 IV!は小型で制御性に優れるモータである。 [0298] I 1\/1 has a characteristic that it has both magnet torque and reluctance torque, and is operated by the inverter control while the ratio of those torques is adjusted in a timely manner. For this reason, the 丨 IV! is a small motor with excellent controllability.
[0299] 本願開示者の分析により、 磁石トルク及びリラクタンストルクを発生する 回転子表面のトルクを、 磁石ユニッ トのうち径方向において電機子側の面と 、 回転子の軸心との径方向における距離口 IV!、 すなわち、 一般的なインナロ —夕の固定子鉄心の半径を横軸にとって描くと図 4 3に示すものとなる。 [0299] According to the analysis of the present disclosure, the torque of the rotor surface that generates the magnet torque and the reluctance torque is measured in the radial direction of the surface of the magnet unit on the armature side in the radial direction and the axial center of the rotor. Distance IV!, that is, the radius of the stator core of a typical Innaro-Yu is plotted along the horizontal axis as shown in Fig. 43.
[0300] 磁石トルクは、 下式 (6 9 1) に示すように、 永久磁石の発生する磁界強 度によりそのポテンシャルが決定されるのに対し、 リラクタンストルクは、 下式 (6 2) に示すように、 インダクタンス、 特に 軸インダクタンスの 大きさがそのポテンシャルを決定する。 [0300] The magnet torque is determined by the magnetic field strength generated by the permanent magnet as shown in the following equation (6 9 1), while the reluctance torque is shown in the following equation (6 2). Thus, the magnitude of the inductance, especially the axial inductance, determines its potential.
[0301 ] 磁石トルク
Figure imgf000083_0001
1 գ . (ø
[0301] Magnet torque
Figure imgf000083_0001
1 ??? ((ø
9 1) 9 1)
リラクタンストルク = !<
Figure imgf000083_0002
. 1 . 1 〇1 . ( 6
Reluctance torque = !<
Figure imgf000083_0002
.1 .1 ○ 1 .( 6
9 2) 9 2)
ここで、 永久磁石の磁界強度と巻線のインダクタンスの大きさとを口 IV!で 比較してみた。 永久磁石の発する磁界強度、 すなわち磁束量 は、 固定子と 対向する面の永久磁石の総面積に比例する。 円筒型の回転子であれば円筒の 〇 2020/175333 82 卩(:171? 2020 /006903 Here, I compared the magnetic field strength of the permanent magnet and the magnitude of the inductance of the winding with mouth IV!. The magnetic field strength generated by the permanent magnet, that is, the amount of magnetic flux is proportional to the total area of the permanent magnet on the surface facing the stator. If a cylindrical rotor, 〇 2020/175333 82 卩(: 171-1? 2020/006903
表面積になる。 厳密には、 1\1極と 3極とが存在するので、 円筒表面の半分の 専有面積に比例する。 円筒の表面積は、 円筒の半径と、 円筒長さとに比例す る。 つまり、 円筒長さが一定であれば、 円筒の半径に比例する。 Becomes the surface area. Strictly speaking, there are 1\1 poles and 3 poles, so it is proportional to the occupied area of half of the cylindrical surface. The surface area of a cylinder is proportional to the radius of the cylinder and the length of the cylinder. That is, if the cylinder length is constant, it is proportional to the radius of the cylinder.
[0302] —方、 巻線のインダクタンス1_ 9は、 鉄心形状に依存はするものの感度は 低く、 むしろ固定子巻線の巻数の 2乗に比例するため、 巻数の依存性が高い 。 なお、 を磁気回路の透磁率、
Figure imgf000084_0001
を巻数、 3を磁気回路の断面積、 3を磁 気回路の有効長さとする場合、 インダクタンス1_ = 1\1 2 \ 3 / 5であ る。 巻線の巻数は、 卷線スぺースの大きさに依存するため、 円筒型モータで あれば、 固定子の卷線スぺース、 すなわちスロッ ト面積に依存することにな る。 図 4 4に示すように、 スロッ ト面積は、 スロッ トの形状が略四角形であ るため、 周方向の長さ寸法 3及び径方向の長さ寸法 13との積 3 X匕に比例す る。
[0302] —On the other hand, the inductance 1_9 of the winding depends on the shape of the iron core, but the sensitivity is low. Rather, it is proportional to the square of the number of turns of the stator winding, and thus the number of turns is highly dependent. Where is the permeability of the magnetic circuit,
Figure imgf000084_0001
Inductance 1_ = 1\1 2 \3/5, where is the number of turns, 3 is the cross-sectional area of the magnetic circuit, and 3 is the effective length of the magnetic circuit. Since the number of turns of the winding depends on the size of the winding space, in the case of a cylindrical motor, it depends on the winding space of the stator, that is, the slot area. As shown in Fig. 44, the slot area is proportional to the product of the circumferential length dimension 3 and the radial length dimension 3 3 x 3 because the slot shape is approximately square. ..
[0303] スロッ トの周方向の長さ寸法は、 円筒の直径が大きいほど大きくなるため 、 円筒の直径に比例する。 スロッ トの径方向の長さ寸法は、 当に円筒の直径 に比例する。 つまり、 スロッ ト面積は、 円筒の直径の 2乗に比例する。 また 、 上式 (6 2) からも分かる通り、 リラクタンストルクは、 固定子電流の 2乗に比例するため、 いかに大電流を流せるかで回転電機の性能が決まり、 その性能は固定子のスロッ ト面積に依存する。 以上より、 円筒の長さが一定 なら、 リラクタンストルクは円筒の直径の 2乗に比例する。 このことを踏ま え、 磁石トルク及びリラクタンストルクと口 IV!との関係性をプロッ トした図 が図 4 3である。 [0303] The length of the slot in the circumferential direction increases as the diameter of the cylinder increases, and is proportional to the diameter of the cylinder. The radial dimension of the slot is in proportion to the diameter of the cylinder. So the slot area is proportional to the square of the diameter of the cylinder. Further, as can be seen from the above equation (62), the reluctance torque is proportional to the square of the stator current, so the performance of the rotating electrical machine is determined by how large the current can flow, and the performance is determined by the stator slot. It depends on the area. From the above, if the length of the cylinder is constant, the reluctance torque is proportional to the square of the diameter of the cylinder. With this in mind, Fig. 43 shows a plot of the relationship between magnet torque and reluctance torque and mouth IV!.
[0304] 図 4 3に示すように、 磁石トルクは口 IV!に対して直線的に増加し、 リラク タンストルクは口 IV!に対して 2次関数的に増加する。 口 IV!が比較的小さい場 合は磁石トルクが支配的であり、 固定子鉄心半径が大きくなるに連れてリラ クタンストルクが支配的であることがわかる。 本願開示者は、 図 4 3におけ る磁石トルク及びリラクタンストルクの交点が、 所定の条件下において、 お およそ固定子鉄心半径 = 5 0〇!〇!の近傍であるとの結論に至った。 つまり、 固定子鉄心半径が 5
Figure imgf000084_0003
を十分に超えるような 1 0
Figure imgf000084_0002
級のモータでは、 〇 2020/175333 83 卩(:171? 2020 /006903
[0304] As shown in Fig. 43, the magnet torque increases linearly with the mouth IV!, and the reluctance torque increases quadratically with the mouth IV!. It can be seen that when the mouth IV! is relatively small, the magnet torque is dominant, and the reluctance torque is dominant as the stator core radius increases. The present applicant has concluded that the intersection of the magnet torque and the reluctance torque in Fig. 43 is approximately in the vicinity of the stator core radius = 500!!! That is, the stator core radius is 5
Figure imgf000084_0003
Which is well over 1 0
Figure imgf000084_0002
In a class motor, 〇 2020/175 333 83 卩 (: 171-1? 2020 /006903
リラクタンストルクを活用することが現在の主流であるため鉄心を無くすこ とは困難であり、 このことが大型機の分野においてスロッ トレス構造が採用 されない理由の 1つであると推定される。 It is difficult to eliminate the iron core because it is currently the mainstream to utilize reluctance torque, and this is considered to be one of the reasons why the slotless structure is not adopted in the field of large machines.
[0305] 固定子に鉄心が使用される回転電機の場合、 鉄心の磁気飽和が常に課題と なる。 特にラジアルギャップ型の回転電機では、 回転軸の縦断面形状は 1磁 極当たり扇型となり、 機器内周側程磁路幅が狭くなりスロッ トを形成するテ ィース部分の内周側寸法が回転電機の性能限界を決める。 いかに高性能な永 久磁石を使おうとも、 この部分で磁気飽和が発生すると、 永久磁石の性能を 十分にひきだすことができない。 この部分で磁気飽和を発生させないために は、 内周径を大きく設計することになり結果的に機器の大型化に至ってしま うのである。 [0305] In the case of a rotating electric machine in which an iron core is used for the stator, magnetic saturation of the iron core is always an issue. Particularly in radial gap type rotating electrical machines, the vertical cross-sectional shape of the rotating shaft is fan-shaped per magnetic pole, and the magnetic path width becomes narrower toward the inner peripheral side of the equipment, and the inner diameter of the teeth forming the slot rotates. Determine the performance limit of the electric machine. No matter how high-performance permanent magnets are used, if magnetic saturation occurs in this part, the performance of permanent magnets cannot be fully exploited. In order to prevent magnetic saturation from occurring in this part, the inner diameter must be designed to be large, resulting in an increase in the size of the equipment.
[0306] 例えば、 分布巻の回転電機では、 3相巻線であれば、 1磁極あたり 3つ乃 至 6つのティースで分担して磁束を流すのだが、 周方向前方のティースに磁 束が集中しがちであるため、 3つ乃至 6つのティースに均等に磁束が流れる わけではない。 この場合、 一部 (例えば 1つ又は 2つ) のティースに集中的 に磁束が流れながら、 回転子の回転に伴って磁気飽和するティースも周方向 に移動してゆく。 これがスロッ トリップルを生む要因にもなる。 [0306] For example, in a distributed winding rotary electric machine, in the case of a three-phase winding, magnetic flux is distributed by three to six teeth per magnetic pole, but the magnetic flux is concentrated in the teeth in the front in the circumferential direction. Therefore, the magnetic flux does not flow evenly in the three to six teeth. In this case, the magnetic flux concentrates on some of the teeth (for example, one or two), while the teeth that are magnetically saturated also move in the circumferential direction as the rotor rotates. This is also a factor in producing a slotle pill.
[0307] 以上から、 口1\/1が 5
Figure imgf000085_0001
となるスロッ トレス構造の回転電機におい て、 磁気飽和を解消するために、 ティースを廃止したい。 しかし、 ティース が廃止されると、 回転子及び固定子における磁気回路の磁気抵抗が増加し、 回転電機のトルクが低下してしまう。 磁気抵抗増加の理由としては、 例えば 、 回転子と固定子との間のエアギャップが大きくなることがある。 このため 、 上述した口1\/1が 5
Figure imgf000085_0002
以上となるスロッ トレス構造の回転電機において
[0307] From the above, mouth 1\/1 is 5
Figure imgf000085_0001
To eliminate magnetic saturation in a slotless rotating electric machine, which has the following problem, we would like to eliminate teeth. However, when the teeth are abolished, the magnetic resistance of the magnetic circuit in the rotor and the stator increases, and the torque of the rotating electric machine decreases. The reason for the increase in magnetic resistance is, for example, that the air gap between the rotor and the stator becomes large. Therefore, the above-mentioned mouth 1\/1 is 5
Figure imgf000085_0002
In the above-mentioned slotless rotating electrical machine
、 トルクを増強することについて改善の余地がある。 したがって、 上述した
Figure imgf000085_0003
以上となるスロッ トレス構造の回転電機に、 上述したトルク を増強できる構成を適用するメリッ トが大きい。
, There is room for improvement in increasing torque. Therefore, as mentioned above
Figure imgf000085_0003
There is a great advantage in applying the above-mentioned configuration capable of increasing the torque to the slotless rotating electric machine described above.
[0308] なお、 アウタロータ構造の回転電機に限らず、 インナロータ構造の回転電 機についても、 磁石ユニッ トのうち径方向において電機子側の面と、 回転子 〇 2020/175333 84 卩(:171? 2020 /006903 [0308] Not only the rotating electric machine having the outer rotor structure but also the rotating electric machine having the inner rotor structure, the surface of the magnet unit on the armature side in the radial direction and the rotor are 〇 2020/175 333 84 卩 (: 171? 2020 /006903
の軸心との径方向における距離
Figure imgf000086_0001
Radial distance from the axis of
Figure imgf000086_0001
[0309] 回転電機 1 0の固定子巻線 5 1 において、 導線 8 2の直線部 8 3を径方 向に単層で設ける構成としてもよい。 また、 径方向内外に複数層で直線部 8 3を配置する場合に、 その層数は任意でよく、 3層、 4層、 5層、 6層等で 設けてもよい。 [0309] In the stator winding 5 1 of the rotating electric machine 10, the linear portion 8 3 of the conducting wire 8 2 may be provided in a single layer in the radial direction. Further, when the straight line portion 83 is arranged in a plurality of layers inside and outside in the radial direction, the number of layers may be arbitrary, and may be three layers, four layers, five layers, six layers or the like.
[0310] 例えば図 2の構成では、 回転軸 1 1 を、 軸方向で回転電機 1 0の一端側 及び他端側の両方に突出するように設けたが、 これを変更し、 一端側にのみ 突出する構成としてもよい。 この場合、 回転軸 1 1は、 軸受ユニッ ト 2 0に より片持ち支持される部分を端部とし、 その軸方向外側に延びるように設け られるとよい。 本構成では、 インバータユニッ ト 6 0の内部に回転軸 1 1が 突出しない構成となるため、 インバータユニッ ト 6 0の内部空間、 詳しくは 筒状部 7 1の内部空間をより広く用いることができることとなる。 [0310] For example, in the configuration of FIG. 2, the rotary shaft 11 is provided so as to project in both the one end side and the other end side of the rotary electric machine 10 in the axial direction. However, this is changed to only one end side. It may be configured to project. In this case, the rotary shaft 11 may be provided so as to extend outward in the axial direction with the end portion being a portion that is cantilevered by the bearing unit 20. In this configuration, since the rotary shaft 11 does not project inside the inverter unit 60, the internal space of the inverter unit 60, more specifically, the internal space of the tubular portion 71 can be used more widely. Becomes
[031 1 ] 上記構成の回転電機 1 0では、 軸受 2 1 , 2 2において非導電性グリー スを用いる構成としたが、 これを変更し、 軸受 2 1 , 2 2において導電性グ リースを用いる構成としてもよい。 例えば、 金属粒子や力ーボン粒子等が含 まれた導電性グリースを用いる構成とする。 [031 1] In the rotating electric machine 10 having the above configuration, the bearings 2 1 and 2 2 use the non-conductive grease, but this is changed, and the bearings 2 1 and 2 2 use the conductive grease. It may be configured. For example, the conductive grease containing metal particles and carbon particles is used.
[0312] 回転軸 1 1 を回転自在に支持する構成として、 回転子 4 0の軸方向一端 側及び他端側の 2力所に軸受を設ける構成としてもよい。 この場合、 図 1の 構成で言えば、 インバータユニッ ト 6 0を挟んで一端側及び他端側の 2力所 に軸受が設けられるとよい。 [0312] As a structure for rotatably supporting the rotating shaft 11, bearings may be provided at two power points on the axially one end side and the other end side of the rotor 40. In this case, in terms of the configuration of FIG. 1, bearings may be provided at two power points on one end side and the other end side with the inverter unit 60 interposed therebetween.
[0313] 上記構成の回転電機 1 0では、 回転子 4 0において磁石ホルダ 4 1の中 間部 4 5が内側肩部 4 9 3と感情の外側肩部 4 9匕を有する構成としたが、 これらの肩部 4 9
Figure imgf000086_0002
4 9匕を無く し、 平坦な面を有する構成としてもよい
[0313] In the rotary electric machine 1 0 having the above structure, but between 4 5 within the magnet holder 4 1 In the rotor 4 0 is configured to have an outer shoulder 4 9 spoon interior shoulder 4 9 3 and emotions, These shoulders 4 9
Figure imgf000086_0002
It is also possible to eliminate the gap and to have a flat surface.
[0314] 上記構成の回転電機 1 0では、 固定子巻線 5 1の導線 8 2において導体 [0314] In the rotary electric machine 10 configured as described above, a conductor is provided in the conductor wire 8 2 of the stator winding 5 1.
8 2 3を複数の素線 8 6の集合体として構成したが、 これを変更し、 導線 8 2として断面矩形状の角形導線を用いる構成としてもよい。 また、 導線 8 2 として断面円形状又は断面楕円状の丸形導線を用いる構成としてもよい。 〇 2020/175333 85 卩(:171? 2020 /006903 8 23 is configured as an assembly of a plurality of element wires 8 6, but this may be modified to use a rectangular conductive wire having a rectangular cross section as the conductive wire 8 2. Alternatively, a circular conductor having a circular cross section or an elliptical cross section may be used as the conductor 82. 〇 2020/175333 85 卩 (: 171? 2020 /006903
[0315] 上記構成の回転電機 1 0では、 固定子 5 0の径方向内側にインパータユ ニッ ト 6 0を設ける構成としたが、 これに代えて、 固定子 5 0の径方向内側 にインバータユニッ ト 6 0を設けない構成としてもよい。 この場合、 固定子 5 0の径方向内側となる内部領域を空間としておくことが可能である。 また 、 その内部領域に、 インバータユニッ ト 6 0とは異なる部品を配することが 可能である。 [0315] In the rotating electric machine 10 having the above-described configuration, the imper unit 60 is provided inside the stator 50 in the radial direction. However, instead of this, an inverter unit is provided inside the stator 50 in the radial direction. A configuration without 60 may be adopted. In this case, it is possible to set a space inside the inner region of the stator 50 in the radial direction. In addition, it is possible to place components different from the inverter unit 60 in the internal area.
[0316] 上記構成の回転電機 1 0において、 ハウジング 3 0を具備しない構成と してもよい。 この場合、 例えばホイールや他の車両部品の _部において、 回 転子 4 0、 固定子 5 0等が保持される構成であってもよい。 [0316] The rotary electric machine 10 having the above configuration may not have the housing 30. In this case, for example, in _ part of the wheel and other vehicle components, rotating rotor 4 0, it may be configured such that the stator 5 0 and the like are retained.
[0317] (車両用インホイールモータとしての実施形態) [0317] (Embodiment as in-wheel motor for vehicle)
次に、 回転電機を、 車両の車輪に一体にインホイールモータとして設けた 実施形態について説明する。 図 4 5は、 インホイールモータ構造の車輪 4 0 0及びその周辺構造を示す斜視図であり、 図 4 6は、 車輪 4 0 0及びその周 辺構造の縦断面図であり、 図 4 7は、 車輪 4 0 0の分解斜視図である。 これ ら各図は、 いずれも車輪 4 0 0を車両内側から見た斜視図である。 なお、 車 両においては、 本実施形態のインホイールモータ構造を種々の形態で適用す ることが可能であり、 例えば車両前後にそれぞれ 2つの車輪を有する車両で は、 車両前側の 2輪、 車両後側の 2輪、 又は車両前後の 4輪に本実施形態の インホイールモータ構造を適用することが可能である。 ただし、 車両前後の 少なくとも一方が 1輪である車両への適用も可能である。 なお、 インホイー ルモータは、 車両用駆動ユニッ トとしての適用例である。 Next, an embodiment in which the rotary electric machine is provided as an in-wheel motor integrally with a vehicle wheel will be described. FIG. 45 is a perspective view showing a wheel 400 of the in-wheel motor structure and its peripheral structure, FIG. 46 is a longitudinal sectional view of the wheel 400 and its peripheral structure, and FIG. 4 is an exploded perspective view of a wheel 400. FIG. Each of these figures is a perspective view of the wheel 400 as viewed from the inside of the vehicle. The in-wheel motor structure of this embodiment can be applied to various types of vehicles.For example, in the case of a vehicle having two wheels on the front and rear sides of the vehicle, the two wheels on the front side of the vehicle It is possible to apply the in-wheel motor structure of the present embodiment to the two rear wheels or the four front and rear wheels of the vehicle. However, it can be applied to a vehicle in which at least one of the front and rear of the vehicle has one wheel. The in-wheel motor is an example of application as a vehicle drive unit.
[0318] 図 4 5〜図 4 7に示すように、 車輪 4 0 0は、 例えば周知の空気入りタイ ヤであるタイヤ 4 0 1 と、 タイヤ 4 0 1の内周側に固定されたホイール 4 0 2と、 ホイール 4 0 2の内周側に固定された回転電機 5 0 0とを備えている 。 回転電機 5 0 0は、 固定子 (ステータ) を含む部分である固定部と、 回転 子 (ロータ) を含む部分である回転部とを有し、 固定部が車体側に固定され るとともに、 回転部がホイール 4 0 2に固定されており、 回転部の回転によ りタイヤ 4 0 1及びホイール 4 0 2が回転する。 なお、 回転電機 5 0 0にお 〇 2020/175333 86 卩(:171? 2020 /006903 [0318] As shown in FIGS. 45 to 47, the wheels 400 include, for example, a tire 4001 that is a well-known pneumatic tire, and a wheel 4 that is fixed to the inner circumferential side of the tire 4101. 0 2 and a rotating electric machine 5 00 fixed to the inner peripheral side of the wheel 4 02. The rotating electric machine 500 has a fixed portion that is a portion that includes a stator (stator) and a rotating portion that is a portion that includes a rotor (rotor). The fixed portion is fixed to the vehicle body side and The part is fixed to the wheel 4 02, and the tire 4 01 and the wheel 4 02 rotate due to the rotation of the rotating part. The rotary electric machine 500 〇 2020/175 333 86 卩 (:171? 2020 /006903
いて固定部及び回転部を含む詳細な構成は後述する。 The detailed configuration including the fixed portion and the rotating portion will be described later.
[0319] また、 車輪 4 0 0には、 周辺装置として、 不図示の車体に対して車輪 4 0 〇を保持するサスペンション装置と、 車輪 4 0 0の向きを可変とするステア リング装置と、 車輪 4 0 0の制動を行うブレーキ装置とが取り付けられてい る。 [0319] Further, the wheel 400 includes, as peripheral devices, a suspension device that holds the wheel 400 with respect to a vehicle body (not shown), a steering device that can change the direction of the wheel 400, and a wheel. A brake device for braking 400 is installed.
[0320] サスペンション装置は、 独立懸架式サスペンションであり、 例えばトレー リングアーム式、 ストラッ ト式、 ウィッシュボーン式、 マルチリンク式など 任意の形式の適用が可能である。 本実施形態では、 サスペンション装置とし て、 車体中央側に延びる向きでロアアーム 4 1 1が設けられるとともに、 上 下方向に延びる向きでサスペンションアーム 4 1 2及びスプリング 4 1 3が 設けられている。 サスペンションアーム 4 1 2は、 例えばショックアブソー バとして構成されているとよい。 ただしその詳細な図示は省略する。 ロアア —ム 4 1 1及びサスペンションアーム 4 1 2はそれぞれ、 車体側に接続され るとともに、 回転電機 5 0 0の固定部に固定された円板状のベースプレート 4 0 5に接続されている。 図 4 6に示すように、 回転電機 5 0 0側 (ベース プレート 4 0 5側) には、 ロアアーム 4 1 1及びサスペンションアーム 4 1 2が支持軸 4 1 4 , 4 1 5により互いに同軸の状態で支持されている。 [0320] The suspension device is an independent suspension type suspension, and any type such as a trailing arm type, a strut type, a wishbone type, or a multi-link type can be applied. In the present embodiment, as the suspension device, the lower arm 4 11 is provided so as to extend toward the center side of the vehicle body, and the suspension arm 4 1 2 and the spring 4 1 3 are provided so as to extend upward and downward. The suspension arm 4 1 2 may be configured as a shock absorber, for example. However, its detailed illustration is omitted. The lower arm 4 11 and the suspension arm 4 12 are both connected to the vehicle body side and also connected to a disk-shaped base plate 4 05 fixed to a fixed portion of the rotating electric machine 500. As shown in Fig. 46, on the rotary electric machine 500 side (base plate 450 side), the lower arm 4 11 and the suspension arm 4 1 2 are coaxial with each other by the support shafts 4 1 4 and 4 1 5. Supported by.
[0321 ] また、 ステアリング装置としては、 例えばラック &ピニオン式構造、 ボー ル &ナッ ト式構造の適用や、 油圧式パワーステアリングシステム、 電動式パ ワーステアリングシステムの適用が可能である。 本実施形態では、 ステアリ ング装置として、 ラック装置 4 2 1 とタイロッ ド 4 2 2とが設けられており 、 ラック装置 4 2 1がタイロッ ド 4 2 2を介して回転電機 5 0 0側のベース プレート 4 0 5に接続されている。 この場合、 不図示のステアリングシャフ 卜の回転に伴いラック装置 4 2 1が作動すると、 タイロッ ド 4 2 2が車両左 右方向に移動する。 これにより、 車輪 4 0 0が、 ロアアーム 4 1 1及びサス ペンションアーム 4 1 2の支持軸 4 1 4 , 4 1 5を中心として回転し、 車輪 方向が変更される。 [0321] As the steering device, for example, a rack and pinion structure, a ball and nut structure, a hydraulic power steering system, or an electric power steering system can be applied. In the present embodiment, a rack device 4 2 1 and a tie rod 4 2 2 are provided as steering devices, and the rack device 4 21 is mounted on the rotary electric machine 5 00 side via the tie rod 4 2 2. Connected to plate 405. In this case, when the rack device 4 2 1 is operated in accordance with the rotation of the steering shaft (not shown), the tie rod 4 2 2 moves to the left and right of the vehicle. As a result, the wheel 400 rotates about the support shafts 4 1 4 and 4 15 of the lower arm 4 11 and the suspension arm 4 12 and the wheel direction is changed.
[0322] ブレーキ装置としては、 ディスクブレーキやドラムブレーキの適用が好適 〇 2020/175333 87 卩(:171? 2020 /006903 [0322] As the braking device, it is preferable to apply a disc brake or a drum brake. 〇 2020/175 333 87 卩 (: 171? 2020 /006903
である。 本実施形態では、 ブレーキ装置として、 回転電機 5 0 0の回転軸 5 0 1 に固定されたディスクロータ 4 3 1 と、 回転電機 5 0 0側のベースプレ —卜 4 0 5に固定されたブレーキキヤリパ 4 3 2とが設けられている。 ブレ —キキヤリバ 4 3 2ではブレーキパッ ドが油圧等により作動されるようにな っており、 ブレーキパッ ドがディスクロータ 4 3 1 に押し付けられることに より、 摩擦による制動力を生じさせて車輪 4 0 0の回転が停止される。 Is. In the present embodiment, as a brake device, a disk rotor 431 fixed to a rotary shaft 5001 of a rotating electric machine 500 and a brake carriage fixed to a base plate 405 on the rotating electric machine 500 side. 4 3 2 is provided. The brake pad of the brake bar 4 32 is actuated by hydraulic pressure, etc., and the brake pad is pressed against the disc rotor 4 31 to generate a braking force due to friction, and the wheel 4 0 0 rotation is stopped.
[0323] また、 車輪 4 0 0には、 回転電機 5 0 0から延びる電気配線!· I 1や冷却用 配管!· I 2を収容する収容ダクト 4 4 0が取り付けられている。 収容ダクト 4 4 0は、 回転電機 5 0 0の固定部側の端部から回転電機 5 0 0の端面に沿っ て延び、 かつサスペンションアーム 4 1 2を避けるように設けられ、 その状 態でサスペンションアーム 4 1 2に固定されている。 これにより、 サスペン ションアーム 4 1 2における収容ダクト 4 4 0の接続部位は、 ベースプレー 卜 4 0 5との位置関係が固定されたものとなる。 そのため、 電気配線!· I 1や 冷却用配管 ! ! 2において車両の振動などに起因して生じるストレスを抑制で きるようになっている。 なお、 電気配線!· I 1は、 不図示の車載電源部や車載 巳〇 IIに接続され、 冷却用配管!· I 2は、 不図示のラジェータに接続される。 [0323] Further, the wheel 400 is provided with a housing duct 440 for housing the electric wiring !I 1 and the cooling pipe !2 extending from the rotary electric machine 500. The accommodating duct 440 extends along the end surface of the rotating electric machine 500 from the end of the rotating electric machine 500 on the fixed side, and is provided so as to avoid the suspension arm 412, and in that state, the suspension duct It is fixed to arm 4 1 2. As a result, the connection position of the accommodating duct 440 in the suspension arm 412 is fixed relative to the base plate 405. Therefore, it is possible to suppress the stress caused by the vibration of the vehicle in the electric wiring !I 1 and the cooling pipe !2. The electric wiring! I 1 is connected to an on-vehicle power supply unit and an on-vehicle MII II which are not shown, and the cooling pipe! I 2 is connected to a radiator which is not shown.
[0324] 次に、 インホイールモータとして用いられる回転電機 5 0 0の構成を詳細 に説明する。 本実施形態では、 回転電機 5 0 0をインホイールモータに適用 した事例を示している。 回転電機 5 0 0は、 従来技術のように減速機を擁し た車両駆動ユニッ トのモータと比べて、 優れた動作効率、 出力を備える。 す なわち、 回転電機 5 0 0を従来技術に比べて、 コストダウンにより実用的な 価格を実現できるような用途に採用すれば、 車両駆動ユニッ ト以外の用途の モータとしても使ってもよい。 そのような場合であっても、 インホイールモ —夕に適用した場合と同様に、 優れた性能を発揮する。 なお、 動作効率とは 、 車両の燃費を導出する走行モードでの試験時の際に使われる指標を指す。 [0324] Next, the configuration of the rotary electric machine 500 used as an in-wheel motor will be described in detail. In this embodiment, an example in which the rotary electric machine 500 is applied to an in-wheel motor is shown. The rotary electric machine 500 has excellent operating efficiency and output as compared with a motor of a vehicle drive unit having a speed reducer as in the related art. In other words, if the rotary electric machine 500 is used in applications where it is possible to achieve a practical price by reducing costs compared to the conventional technology, it may be used as a motor for applications other than vehicle drive units. Even in such a case, the same excellent performance as when applied to the in-wheel mode is exhibited. The operating efficiency refers to the index used during the test in the driving mode that derives the fuel consumption of the vehicle.
[0325] 回転電機 5 0 0の概要を図 4 8〜図 5 1 に示す。 図 4 8は、 回転電機 5 0 [0325] The outline of the rotating electric machine 500 is shown in Figs. 48 to 51. Fig. 48 shows the rotary electric machine 50
0を回転軸 5 0 1の突出側 (車両内側) から見た側面図であり、 図 4 9は、 回転電機 5 0 0の縦断面図 (図 4 8の 4 9 - 4 9線断面図) であり、 図 5 0 〇 2020/175333 88 卩(:171? 2020 /006903 Fig. 4 is a side view of 0 viewed from the protruding side (inside of the vehicle) of the rotating shaft 501, and Fig. 49 is a vertical cross-sectional view of the rotating electric machine 550 (cross-sectional view taken along line 4 9-4 9 in Fig. 48). And Figure 50 〇 2020/175 333 88 卩 (:171? 2020 /006903
は、 回転電機 5 0 0の横断面図 (図 4 9の 5 0 - 5 0線断面図) であり、 図 5 1は、 回転電機 5 0 0の構成要素を分解した分解断面図である。 以下の記 載では、 回転軸 5 0 1が、 図 5 1 においては車体の外側方向に延びる方向を 軸方向とし、 回転軸 5 0 1から放射状に延びる方向を径方向とし、 図 4 8に おいては回転軸 5 0 1の中央、 言い換えれば回転部分の回転中心、 を通る断 面 4 9を作るために引いた中心線上の、 回転部分の回転中心以外の任意の点 より、 円周状に延びる 2つの方向をいずれも周方向としている。 言い換える と、 周方向は、 断面 4 9上の任意の点を起点とした時計回りの方向、 又は反 時計回りの方向のいずれの方向であってもよい。 また、 車両搭載状態からす れば、 図 4 9において右側が車両外側であり、 左側が車両内側である。 言い 換えると、 同車両搭載状態からすれば、 後述する回転子 5 1 0は、 回転子力 バ _ 6 7 0よりも車体の外側方向に配置される。 FIG. 5 is a cross-sectional view of the rotary electric machine 500 (a cross-sectional view taken along the line 50-500 in FIG. 49), and FIG. 51 is an exploded cross-sectional view of the components of the rotary electric machine 500. In the following description, the direction of the rotary shaft 50 1 extending in the outer direction of the vehicle body is the axial direction in FIG. 51, and the direction extending radially from the rotary shaft 50 1 is the radial direction. The center of the axis of rotation 5 0 1, in other words, the center of rotation of the rotating part, is drawn on the center line drawn to make the cross-section 4 9 passing through, and from any point other than the center of rotation of the rotating part Each of the two extending directions is the circumferential direction. In other words, the circumferential direction may be either a clockwise direction starting from an arbitrary point on the cross section 49 or a counterclockwise direction. Further, in the state of being mounted on the vehicle, the right side is the vehicle outside and the left side is the vehicle inside in FIG. In other words, from the state of being mounted on the vehicle, the rotor 510 described later is arranged more to the outside of the vehicle body than the rotor force bar_670.
[0326] 本実施形態に係る回転電機 5 0 0は、 アウタロータ式の表面磁石型回転電 機である。 回転電機 5 0 0は、 大別して、 回転子 5 1 0と、 固定子 5 2 0と 、 インバータユニット 5 3 0と、 軸受 5 6 0と、 回転子カバー 6 7 0とを備 えている。 これら各部材は、 いずれも回転子 5 1 0に一体に設けられた回転 軸 5 0 1 に対して同軸に配置され、 所定順序で軸方向に組み付けられること で回転電機 5 0 0が構成されている。 [0326] The rotary electric machine 500 according to the present embodiment is an outer rotor type surface magnet type rotary electric machine. The rotating electric machine 500 is roughly divided into a rotor 510, a stator 520, an inverter unit 5300, a bearing 560, and a rotor cover 670. Each of these members is coaxially arranged with respect to a rotating shaft 501, which is integrally provided in the rotor 5100, and is assembled in a predetermined order in the axial direction to form the rotating electric machine 500. There is.
[0327] 回転電機 5 0 0において、 回転子 5 1 0及び固定子 5 2 0はそれぞれ円筒 状をなしており、 エアギャップを挟んで互いに対向配置されている。 回転子 5 1 0が回転軸 5 0 1 と共に一体回転することにより、 固定子 5 2 0の径方 向外側にて回転子 5 1 0が回転する。 回転子 5 1 0が 「界磁子」 に相当し、 固定子 5 2 0が 「電機子」 に相当する。 [0327] In the rotating electric machine 500, the rotor 510 and the stator 520 each have a cylindrical shape, and are arranged to face each other across an air gap. The rotor 5 10 rotates integrally with the rotating shaft 5 0 1, so that the rotor 5 10 rotates on the radially outer side of the stator 5 20. The rotor 5 1 0 corresponds to the "field element" and the stator 5 2 0 corresponds to the "armature".
[0328] 回転子 5 1 0は、 略円筒状の回転子キャリア 5 1 1 と、 その回転子キャリ ア 5 1 1 に固定された環状の磁石ユニッ ト 5 1 2とを有している。 回転子キ ャリア 5 1 1 に回転軸 5 0 1が固定されている。 [0328] The rotor 5110 has a substantially cylindrical rotor carrier 511 and an annular magnet unit 512 fixed to the rotor carrier 511. The rotating shaft 5 0 1 is fixed to the rotor carrier 5 1 1.
[0329] 回転子キャリア 5 1 1は、 円筒部 5 1 3を有している。 円筒部 5 1 3の内 周面には磁石ユニッ ト 5 1 2が固定されている。 つまり、 磁石ユニッ ト 5 1 〇 2020/175333 89 卩(:171? 2020 /006903 [0329] The rotor carrier 5 11 has a cylindrical portion 5 13. A magnet unit 5 12 is fixed to the inner peripheral surface of the cylindrical portion 5 13. In other words, magnet unit 5 1 〇 2020/175333 89 卩 (: 171-1? 2020 /006903
2は、 回転子キャリア 5 1 1の円筒部 5 1 3に径方向外側から包囲された状 態で設けられている。 また、 円筒部 5 1 3は、 その軸方向に対向する第 1端 と第 2端とを有している。 第 1端は、 車体の外側の方向に位置し、 第 2端は 、 ベースプレート 4 0 5が存在する方向に位置する。 回転子キャリア 5 1 1 において、 円筒部 5 1 3の第 1端には端板 5 1 4が連続して設けられている 。 すなわち円筒部 5 1 3と端板 5 1 4とは一体の構造である。 円筒部 5 1 3 の第 2端は開放されている。 回転子キャリア 5 1 1は、 例えば機械強度が充 分な冷間圧延鋼板 (3 〇〇や 3 〇〇より板厚が厚い 3 1~1〇 、 鍛造用 鋼、 炭素繊維強化プラスチック
Figure imgf000091_0001
などにより形成されている。
2 is provided in a state of being surrounded by the cylindrical portion 5 13 of the rotor carrier 5 11 from the outside in the radial direction. Further, the cylindrical portion 5 13 has a first end and a second end that face each other in the axial direction. The first end is located outside the vehicle body and the second end is located in the direction in which the base plate 405 exists. In the rotor carrier 511, an end plate 514 is continuously provided at the first end of the cylindrical portion 513. That is, the cylindrical portion 5 13 and the end plate 5 14 are integrated. The second end of the cylindrical portion 5 13 is open. The rotor carrier 5 11 is, for example, a cold-rolled steel plate with sufficient mechanical strength (thickness 3 1 to 10 thicker than 3 0 0 or 3 0 0 0, forging steel, carbon fiber reinforced plastic).
Figure imgf000091_0001
It is formed by.
[0330] 回転軸 5 0 1の軸長は、 回転子キャリア 5 1 1の軸方向の寸法よりも長い 。 言い換えると、 回転軸 5 0 1は、 回転子キャリア 5 1 1の開放端側 (車両 内側方向) に突出しており、 その突出側の端部に、 上述のブレーキ装置等が 取り付けられるようになっている。 [0330] The axial length of the rotary shaft 5 01 is longer than the axial dimension of the rotor carrier 5 11. In other words, the rotary shaft 50 1 projects toward the open end side (inward direction of the vehicle) of the rotor carrier 5 11 and the above-mentioned brake device etc. can be attached to the projecting end. There is.
[0331 ] 回転子キャリア 5 1 1の端板 5 1 4にはその中央部に貫通孔 5 1 4 3が形 成されている。 回転軸 5 0 1は、 端板 5 1 4の貫通孔 5 1 4 3に揷通された 状態で、 回転子キャリア 5 1 1 に固定されている。 回転軸 5 0 1は、 回転子 キャリア 5 1 1が固定される部分に、 軸方向に交差 (直交) する向きに延び るフランジ 5 0 2を有しており、 そのフランジと端板 5 1 4の車両外側の面 とが面接合されている状態で、 回転子キャリア 5 1 1 に対して回転軸 5 0 1 が固定されている。 なお、 車輪 4 0 0においては、 回転軸 5 0 1のフランジ 5 0 2から車両外側方向に立設されたボルト等の締結具を用いてホイール 4 0 2が固定されるようになっている。 [0331] A through hole 5 1 4 3 is formed in the center of the end plate 5 1 4 of the rotor carrier 5 1 1. The rotating shaft 5 01 is fixed to the rotor carrier 5 1 1 in a state of being passed through the through hole 5 1 4 3 of the end plate 5 1 4. The rotating shaft 5 01 has a flange 5 0 2 extending in a direction intersecting (orthogonal to) the axial direction at a portion where the rotor carrier 5 11 is fixed, and the flange and the end plate 5 1 4 The rotary shaft 5 0 1 is fixed to the rotor carrier 5 1 1 in a state where the outer surface of the vehicle is surface-joined. In addition, in the wheel 400, the wheel 400 is fixed by using a fastener such as a bolt erected from the flange 502 of the rotary shaft 501 in the vehicle outer direction.
[0332] また、 磁石ユニッ ト 5 1 2は、 回転子 5 1 0の周方向に沿って極性が交互 に変わるように配置された複数の永久磁石により構成されている。 これによ り、 磁石ユニッ ト 5 1 2は、 周方向に複数の磁極を有する。 永久磁石は、 例 えば接着により回転子キャリア 5 1 1 に固定されている。 磁石ユニッ ト 5 1 2は、 第 1実施形態の図 8 , 図 9において磁石ユニッ ト 4 2として説明した 構成を有しており、 永久磁石として、 固有保磁力が 4 0 0 [ 1<八/ ] 以上 〇 2020/175333 90 卩(:171? 2020 /006903 [0332] Further, the magnet unit 5 12 is composed of a plurality of permanent magnets arranged so that the polarities thereof alternate along the circumferential direction of the rotor 5 10. As a result, the magnet unit 5 12 has a plurality of magnetic poles in the circumferential direction. The permanent magnet is fixed to the rotor carrier 5 1 1, for example by gluing. The magnet unit 5 12 has the configuration described as the magnet unit 4 2 in FIGS. 8 and 9 of the first embodiment, and as a permanent magnet, its intrinsic coercive force is 40 0 [1<8/ ] that's all 〇 2020/175333 90 卩 (: 171-1? 2020 /006903
であり、 かつ残留磁束密度巳 「が 1 . 0 [丁] 以上である焼結ネオジム磁石 を用いて構成されている。 And a residual neodymium magnet having a residual magnetic flux density of "1.0" or more.
[0333] 磁石ユニッ ト 5 1 2は、 図 9等の磁石ユニッ ト 4 2と同様に、 それぞれ極 異方性磁石でありかつ極性が互いに異なる第 1磁石 9 1及び第 2磁石 9 2を 有している。 図 8及び図 9で説明したように、 各磁石 9 1 , 9 2ではそれぞ れ、 ¢1軸側 (〇1軸寄りの部分) と 9軸側 ( 軸寄りの部分) とで磁化容易軸 の向きが相違しており、 軸側では磁化容易軸の向きが 軸に平行な方向に 近い向きとなり、 軸側では磁化容易軸の向きが 軸に直交する方向に近い 向きとなっている。 そして、 この磁化容易軸の向きに応じた配向により円弧 状の磁石磁路が形成されている。 なお、 各磁石 9 1 , 9 2において、 軸側 では磁化容易軸を 軸に平行な向きとし、 9軸側では磁化容易軸を 9軸に直 交する向きとしてもよい。 要するに、 磁石ユニッ ト 5 1 2は、 磁極中心であ る ¢1軸の側において、 磁極境界である 軸の側に比べて磁化容易軸の向きが 軸に平行となるように配向がなされて構成されている。 [0333] The magnet unit 5 1 2 is a polar anisotropic magnet and has a first magnet 9 1 and a second magnet 9 2 having different polarities, as in the magnet unit 4 2 of FIG. doing. As explained in Fig. 8 and Fig. 9, the magnets 9 1 and 9 2 each have an easy magnetization axis on the ¢1 axis side (the part near the 0 axis) and the 9 axis side (the part near the axis). On the axis side, the direction of the easy axis of magnetization is close to the direction parallel to the axis, and on the side of the axis, the direction of the easy axis of magnetization is close to the direction orthogonal to the axis. An arc-shaped magnet magnetic path is formed with an orientation corresponding to the direction of this easy axis of magnetization. In addition, in each magnet 91, 92, the easy axis may be oriented parallel to the axis on the axis side, and the easy axis may be oriented directly on the 9 axis side. In short, the magnet unit 5 12 is configured such that the direction of the easy magnetization axis is parallel to the axis, which is the magnetic pole center, compared to the axis, which is the magnetic pole boundary. Has been done.
[0334] 各磁石 9 1 , 9 2によれば、 軸での磁石磁束が強化され、 かつ 軸付近 での磁束変化が抑えられる。 これにより、 各磁極において 軸から 軸にか けての表面磁束変化がなだらかになる磁石 9 1 , 9 2を好適に実現できるも のとなっている。 磁石ユニッ ト 5 1 2として、 図 2 2及び図 2 3に示す磁石 ユニッ ト 4 2の構成や、 図 3 0に示す磁石ユニッ ト 4 2の構成を用いること も可能である。 [0334] According to each of the magnets 9 1 and 9 2, the magnetic flux of the magnet on the axis is strengthened, and the change of the magnetic flux near the axis is suppressed. As a result, the magnets 9 1 and 9 2 in which the surface magnetic flux changes gently from axis to axis in each magnetic pole can be suitably realized. As the magnet unit 5 12 it is also possible to use the structure of the magnet unit 4 2 shown in FIGS. 22 and 23 or the structure of the magnet unit 4 2 shown in FIG.
[0335] なお、 磁石ユニッ ト 5 1 2は、 回転子キャリア 5 1 1の円筒部 5 1 3の側 、 すなわち外周面側に、 複数の電磁鋼板が軸方向に積層されて構成された回 転子コア (バックヨーク) を有していてもよい。 つまり、 回転子キャリア 5 1 1の円筒部 5 1 3の径方向内側に回転子コアを設けるとともに、 その回転 子コアの径方向内側に永久磁石 (磁石 9 1 , 9 2) を設ける構成とすること も可能である。 [0335] It should be noted that the magnet unit 5 12 is a rotation unit formed by axially laminating a plurality of magnetic steel sheets on the side of the cylindrical portion 5 13 of the rotor carrier 5 11 that is, on the outer peripheral surface side. It may have a child core (back yoke). That is, the rotor core is provided on the radially inner side of the cylindrical portion 5 13 of the rotor carrier 5 11 and the permanent magnets (magnets 9 1 and 9 2) are provided on the radially inner side of the rotor core. It is also possible.
[0336] 図 4 7に示すように、 回転子キャリア 5 1 1の円筒部 5 1 3には、 周方向 の所定間隔にて、 軸方向に延びる向きで凹部 5 1 3 3が形成されている。 こ 〇 2020/175333 91 卩(:171? 2020 /006903 [0336] As shown in FIG. 47, the cylindrical portion 5 13 of the rotor carrier 5 11 is provided with recesses 5 1 3 3 at predetermined intervals in the circumferential direction and extending in the axial direction. .. This 〇 2020/175333 91 卩(: 171-1? 2020/006903
の凹部 5 1 3 3は例えばプレス加工により形成されており、 図 5 2に示すよ うに、 円筒部 5 1 3の内周面側には、 凹部 5 1 3 3の裏側となる位置に凸部 5 1 3匕が形成されている。 一方、 磁石ユニッ ト 5 1 2の外周面側には、 円 筒部 5 1 3の凸部 5 1 3匕に合わせて凹部 5 1 2 3が形成されており、 その 凹部 5 1 2 3内に円筒部 5 1 3の凸部 5 1 3匕が入り込むことで、 磁石ユニ ッ ト 5 1 2の周方向の位置ずれが抑制されるようになっている。 つまり、 回 転子キヤリア 5 1 1側の凸部 5 1 3匕は、 磁石ユニッ ト 5 1 2の回り止め部 として機能する。 なお、 凸部 5 1 3匕の形成方法は、 プレス加工以外であっ てもよく任意である。 The concave portion 5 1 3 3 of the concave portion 5 1 3 3 is formed by, for example, press working, and as shown in FIG. 5 1 3 Sinks are formed. On the other hand, a concave portion 5 1 2 3 is formed on the outer peripheral surface side of the magnet unit 5 1 2 so as to match the convex portion 5 1 3 of the cylindrical portion 5 1 3 and is formed in the concave portion 5 1 2 3. When the convex portion 5 13 of the cylindrical portion 5 13 enters, the positional displacement of the magnet unit 5 12 in the circumferential direction is suppressed. In other words, the convex portion 5 13 on the rotator carrier 5 11 side functions as a detent portion for the magnet unit 5 1 2. The method for forming the convex portion 5 13 sack may be any method other than press working.
[0337] 図 5 2には、 磁石ユニッ ト 5 1 2における磁石磁路の方向が矢印により示 されている。 磁石磁路は、 磁極境界である 軸を跨ぐようにして円弧状に延 び、 かつ磁極中心である〇1軸では、 軸に平行又は平行に近い向きとなって いる。 磁石ユニッ ト 5 1 2には、 その内周面側に、 軸に相当する位置ごと に凹部 5 1 2匕が形成されている。 この場合、 磁石ユニッ ト 5 1 2では、 固 定子 5 2 0に近い側 (図の下側) と遠い側 (図の上側) とで磁石磁路の長さ が異なり、 固定子 5 2 0に近い側の方が磁石磁路長が短くなっており、 その 磁石磁路長が最短となる位置に凹部 5 1 2匕が形成されている。 つまり、 磁 石ユニッ ト 5 1 2では磁石磁路長が短い場所において十分な磁石磁束を生じ させることが困難になることを考慮して、 その磁石磁束の弱い場所で磁石を 削除するようにしている。 [0337] In Fig. 52, the directions of the magnet magnetic paths in the magnet unit 5 12 are indicated by arrows. The magnet magnetic path extends in an arc shape so as to straddle the axis that is the magnetic pole boundary, and the 0 axis, which is the center of the magnetic pole, is oriented parallel or nearly parallel to the axis. The magnet unit 5 12 is provided with recesses 5 12 on its inner peripheral surface side at each position corresponding to the axis. In this case, in the magnet unit 5 1 2, the length of the magnetic path differs between the side closer to the stator 5 20 (lower side in the figure) and the side farther (upper side in the figure). The magnet magnetic path length is shorter on the closer side, and a concave portion 5 1 2 is formed at a position where the magnet magnetic path length is the shortest. In other words, considering that it is difficult for the magnet unit 5 1 2 to generate a sufficient magnetic flux in the place where the magnetic path length is short, the magnet should be deleted in the place where the magnetic flux is weak. There is.
[0338] ここで、 磁石の実効磁束密度巳 は、 磁石内部を通る磁気回路の長さが長 いほど高くなる。 また、 パーミアンス係数 〇と磁石の実効磁束密度巳 と は、 そのうち一方が高くなると他方が高くなる関係にある。 上記図 5 2の構 成によれば、 磁石の実効磁束密度巳 の高さの指標となるパーミアンス係数 〇の低下を抑制しつつ、 磁石量の削減を図ることができる。 なお、 巳一1~1 座標において、 磁石の形状に応じたパーミアンス直線と減磁曲線との交点が 動作点であり、 その動作点の磁束密度が磁石の実効磁束密度巳 である。 本 実施形態の回転電機 5 0 0では、 固定子 5 2 0の鉄量を少なく した構成とし 〇 2020/175333 92 卩(:171? 2020 /006903 [0338] Here, the effective magnetic flux density value of the magnet increases as the length of the magnetic circuit passing through the interior of the magnet increases. Moreover, the permeance coefficient ◯ and the effective magnetic flux density of the magnet are in a relationship that when one of them becomes higher, the other becomes higher. According to the configuration of FIG. 52, it is possible to reduce the amount of magnets while suppressing a decrease in the permeance coefficient ◯, which is an index of the height of the effective magnetic flux density of the magnet. In the 1st to 1st coordinates, the operating point is the intersection of the demagnetization curve and the permeance line corresponding to the shape of the magnet, and the magnetic flux density at that operating point is the effective magnetic flux density of the magnet. The rotating electrical machine 500 of this embodiment has a structure in which the amount of iron in the stator 520 is reduced. 〇 2020/175 333 92 卩 (: 171? 2020 /006903
ており、 かかる構成において 軸を跨いだ磁気回路を設定する手法は極めて 有効である。 Therefore, in such a configuration, the method of setting the magnetic circuit across the axes is extremely effective.
[0339] また、 磁石ユニッ ト 5 1 2の凹部 5 1 2匕は、 軸方向に延びる空気通路と して用いることができる。 そのため、 空冷性能を高めることも可能となる。 [0339] Further, the concave portion 5 12 of the magnet unit 5 12 can be used as an air passage extending in the axial direction. Therefore, it is possible to improve the air cooling performance.
[0340] 次に、 固定子 5 2 0の構成を説明する。 固定子 5 2 0は、 固定子巻線 5 2 [0340] Next, the structure of the stator 520 will be described. The stator 5 2 0 is the stator winding 5 2
1 と固定子コア 5 2 2とを有している。 図 5 3は、 固定子巻線 5 2 1 と固定 子コア 5 2 2とを分解して示す斜視図である。 1 and a stator core 5 22. FIG. 53 is an exploded perspective view of the stator winding 5 21 and the stator core 5 22.
[0341 ] 固定子巻線 5 2 1は、 略筒状 (環状) に卷回形成された複数の相巻線より なり、 その固定子巻線 5 2 1の径方向内側にベース部材としての固定子コア 5 2 2が組み付けられている。 本実施形態では、 II相、 V相及び 相の相巻 線を用いることで、 固定子巻線 5 2 1が 3相の相巻線として構成されている 。 各相卷線は、 径方向に内外 2層の導線 5 2 3により構成されている。 固定 子 5 2 0は、 既述の固定子 5 0と同様に、 スロッ トレス構造と固定子巻線 5 2 1の扁平導線構造とを有することを特徴としており、 図 8〜図 1 6に示さ れた固定子 5 0と同様又は類似の構成を有している。 [0341] The stator winding 5 2 1 is composed of a plurality of phase windings that are wound in a substantially tubular shape (annular shape), and is fixed inside the stator winding 5 2 1 as a base member in the radial direction. Child core 5 2 2 is assembled. In the present embodiment, the stator winding 5 21 is configured as a three-phase phase winding by using phase windings of II phase, V phase, and phase. Each winding wire is composed of inner and outer two-layer conductors 5 2 3 in the radial direction. The stator 52 0 is characterized by having a slotless structure and a flat conductor structure of the stator winding 5 21 as in the case of the above-mentioned stator 50, and is shown in Figs. 8 to 16. The stator 50 has the same or similar structure as the stator 50.
[0342] 固定子コア 5 2 2の構成について説明する。 固定子コア 5 2 2は、 既述の 固定子コア 5 2と同様に、 軸方向に複数の電磁鋼板が積層され、 かつ径方向 に所定の厚さを有する円筒状をなしており、 固定子コア 5 2 2において回転 子 5 1 0側となる径方向外側に固定子巻線 5 2 1が組み付けられている。 固 定子コア 5 2 2の外周面は凹凸のない曲面状をなしており、 固定子巻線 5 2 1が組み付けられた状態では、 固定子コア 5 2 2の外周面に、 固定子巻線 5 2 1 を構成する導線 5 2 3が周方向に並べて配置されている。 固定子コア 5 2 2はバックコアとして機能する。 [0342] The structure of the stator core 52 2 will be described. The stator core 52 2 has a cylindrical shape in which a plurality of magnetic steel sheets are laminated in the axial direction and has a predetermined thickness in the radial direction, like the stator core 52 described above. The stator winding 5 21 is assembled on the outer side of the core 5 22 on the rotor 5 10 side in the radial direction. The outer peripheral surface of the stator core 5 2 2 has a curved surface without unevenness, and when the stator winding 5 2 1 is assembled, the outer surface of the stator core 5 2 2 is Conductive wires 5 2 3 forming 2 1 are arranged side by side in the circumferential direction. The stator core 5 22 functions as a back core.
[0343] 固定子 5 2 0は、 以下の (八) 〜 (〇) のいずれかを用いたものであると よい。 [0343] The stator 520 may use any one of the following (8) to (○).
(八) 固定子 5 2 0において、 周方向における各導線 5 2 3の間に導線間部 材を設け、 かつその導線間部材として、 1磁極における導線間部材の周方向 の幅寸法を I、 導線間部材の飽和磁束密度を巳 3、 1磁極における磁石ユ 〇 2020/175333 93 卩(:171? 2020 /006903 (8) In the stator 520, an inter-conductor wire member is provided between each conductor 523 in the circumferential direction, and as the inter-conductor member, the circumferential width dimension of the inter-conductor member in one magnetic pole is I, The saturation magnetic flux density of the inter-conductor member is calculated by 〇 2020/175333 93 卩 (: 171? 2020 /006903
ニッ ト 5 1 2の周方向の幅寸法を \ZV rn、 磁石ユニッ ト 5 1 2の残留磁束密度 を巳 「とした場合に、 X巳 巳 「の関係となる磁性材料を用い ている。 When the circumferential width of the nit 5 1 2 is \ZV rn and the residual magnetic flux density of the magnet unit 5 1 2 is defined as "," a magnetic material having a relation of "X" is used.
(巳) 固定子 5 2 0において、 周方向における各導線 5 2 3の間に導線間部 材を設け、 かつその導線間部材として、 非磁性材料を用いている。 (Mitsumi) In the stator 520, an inter-conductor wire member is provided between each conductor 523 in the circumferential direction, and a non-magnetic material is used as the inter-conductor member.
(〇) 固定子 5 2 0において、 周方向における各導線 5 2 3の間に導線間部 材を設けていない構成となっている。 (◯) In the stator 520, no inter-conductor material is provided between each conductor 523 in the circumferential direction.
[0344] こうした固定子 5 2 0の構成によれば、 固定子巻線としての各導線部の間 に磁気経路を確立するためのティース (鉄心) が設けられる一般的なティー ス構造の回転電機に比べて、 インダクタンスが低減される。 具体的には、 イ ンダクタンスを 1 / 1 0以下にすることが可能となっている。 この場合、 イ ンダクタンスの低下に伴いインピーダンスが低下することから、 回転電機 5 0 0において入力電力に対する出力電力を大きく し、 ひいてはトルク増加に 貢献できるものとなっている。 また、 インピーダンス成分の電圧を利用して トルク出力を行う (言い換えればリラクタンストルクを利用する) 埋込み磁 石型回転子を用いた回転電機に比べて、 大出力の回転電機を提供することが 可能となっている。 [0344] According to such a configuration of the stator 520, a rotary electric machine having a general tooth structure in which teeth (iron core) for establishing a magnetic path are provided between the conductor wire portions as the stator windings. Inductance is reduced compared to. Specifically, it is possible to reduce the inductance to 1/10 or less. In this case, since the impedance decreases as the inductance decreases, it is possible to increase the output power with respect to the input power in the rotary electric machine 500 and thus contribute to the torque increase. Further, it is possible to provide a rotating electric machine with a large output as compared with a rotating electric machine using an embedded magnet type rotor that outputs torque using the voltage of the impedance component (in other words, uses reluctance torque). Has become.
[0345] 本実施形態では、 固定子巻線 5 2 1が、 固定子コア 5 2 2と共に樹脂等か らなるモールド材 (絶縁部材) により _体にモールドされており、 周方向に 並ぶ各導線 5 2 3の間には、 モールド材が介在する構成となっている。 かか る構成からすると、 本実施形態の固定子 5 2 0は、 上記 (八) 〜 (〇 のう ち (巳) の構成に相当する。 また、 周方向に隣り合う各導線 5 2 3は、 周方 向の端面同士が互いに当接するか、 又は微小な間隔を隔てて近接配置されて おり、 この構成から言えば上記 (0) の構成であってもよい。 なお、 上記 ( 八) の構成を採用する場合には、 軸方向における導線 5 2 3の向きに合わせ て、 すなわち例えばスキュー構造の固定子巻線 5 2 1であればスキュー角度 に合わせて、 固定子コア 5 2 2の外周面に突部が設けられているとよい。 [0345] In the present embodiment, the stator winding 5 2 1, resin or Ranaru molding material with the stator core 5 2 2 are molded _ body by (insulating member), each conductor arranged in the circumferential direction A molding material is interposed between the 5 2 3 and the 5 3 2 3 According to this configuration, the stator 520 of this embodiment corresponds to the configurations of (8) to (○) (Mitsumi) described above. The end faces in the circumferential direction are in contact with each other, or are arranged close to each other with a minute gap therebetween, and in view of this configuration, the configuration of (0) above may be adopted. When adopting the configuration, the outer circumference of the stator core 5 2 2 is adjusted according to the direction of the conductor wire 5 2 3 in the axial direction, that is, according to the skew angle in the case of the stator winding 5 2 1 having a skew structure, for example. The surface may be provided with a protrusion.
[0346] 次に、 固定子巻線 5 2 1の構成を、 図 5 4を用いて説明する。 図 5 4は、 〇 2020/175333 94 卩(:171? 2020 /006903 [0346] Next, the configuration of the stator winding 5 21 will be described with reference to Fig. 54. Figure 54 shows 〇 2020/175 333 94 卩 (: 171-1? 2020 /006903
固定子巻線 5 2 1 を平面状に展開して示す正面図であり、 図 5 4 ( a ) には 径方向において外層に位置する各導線 5 2 3を示し、 図 5 4 ( b ) には径方 向において内層に位置する各導線 5 2 3を示す。 FIG. 5 is a front view showing the stator winding 5 2 1 in a flattened state.Fig. 5 4 (a) shows the conductors 5 2 3 located on the outer layer in the radial direction, and Fig. 5 4 (b) shows Indicates the conductors 52 3 located in the inner layer in the radial direction.
[0347] 固定子巻線 5 2 1は、 分布巻きにより円環状に巻回形成されている。 固定 子卷線 5 2 1では、 径方向内外 2層に導線材が卷回され、 かつ内層側及び外 層側の各導線 5 2 3にて互いに異なる方向へのスキユーが施されている (図 5 4 ( 3 ) 、 図 5 4 ( b ) 参照) 。 各導線 5 2 3は、 それぞれ相互に絶縁さ れている。 導線 5 2 3は、 複数の素線 8 6の集合体として構成されていると よい (図 1 3参照) 。 また、 同相でかつ通電方向を同じとする導線 5 2 3が 、 周方向に例えば 2本ずつ並べて設けられている。 固定子巻線 5 2 1では、 径方向に 2層かつ周方向に 2本 (すなわち計 4本) の各導線 5 2 3により同 相の 1つの導線部が構成され、 その導線部が 1磁極内で 1つずつ設けられて いる。 [0347] The stator windings 5 2 1 are formed by distributed winding in an annular shape. In the stator winding 5 21, the conductive wire material is wound in two layers inside and outside in the radial direction, and the inner and outer conductors 5 2 3 are skewed in different directions (Fig. 5 4 ( 3 ), see Figure 54 (b)). The conductors 5 2 3 are insulated from each other. The conducting wire 5 23 is preferably configured as an assembly of a plurality of element wires 8 6 (see Fig. 13). In addition, for example, two conducting wires 523 having the same phase and the same energizing direction are arranged side by side in the circumferential direction. In the stator winding 5 2 1, two conductors in the radial direction and 2 conductors in the circumferential direction (that is, a total of 4 conductors) constitute one conductor part of the same phase, and each conductor part has one magnetic pole. There is one inside each.
[0348] 導線部では、 その径方向の厚さ寸法を、 1磁極内における 1相分の周方向 の幅寸法よりも小さいものとし、 これにより固定子巻線 5 2 1 を扁平導線構 造とすることが望ましい。 具体的には,例えば、 固定子巻線 5 2 1 において、 径方向に 2層かつ周方向に 4本 (すなわち計 8本) の各導線 5 2 3により同 相の 1つの導線部を構成するとよい。 又は、 図 5 0に示す固定子巻線 5 2 1 の導線断面において、 周方向の幅寸法が径方向の厚さ寸法よりも大きくなっ ているとよい。 固定子巻線 5 2 1 として、 図 1 2に示す固定子巻線 5 1 を用 いることも可能である。 ただしこの場合には、 回転子キャリア 5 1 1内に固 定子卷線のコイルエンドを収容するスペースを確保する必要がある。 [0348] In the conductor portion, the radial thickness dimension is set to be smaller than the circumferential width dimension for one phase in one magnetic pole, whereby the stator winding 5 2 1 is formed into a flat conductor structure. It is desirable to do. Specifically, for example, in the stator winding 5 2 1, if two conductors in the radial direction and 4 conductors in the circumferential direction (that is, 8 conductors in total) 5 2 3 constitute one conductor part of the same phase. Good. Alternatively, in the conductor wire cross section of the stator winding 5 21 shown in FIG. 50, the width dimension in the circumferential direction may be larger than the thickness dimension in the radial direction. It is also possible to use the stator winding 5 1 shown in Fig. 12 as the stator winding 5 21. However, in this case, it is necessary to secure a space for housing the coil end of the stator winding in the rotor carrier 5 11.
[0349] 固定子巻線 5 2 1では、 固定子コア 5 2 2に対して径方向内外に重なるコ イルサイ ド 5 2 5において所定角度で傾斜させて導線 5 2 3が周方向に並べ て配置されるとともに、 固定子コア 5 2 2よりも軸方向外側となる両側のコ イルエンド 5 2 6において軸方向内側への反転 (折り返し) が行われて連続 結線がなされている。 図 5 4 ( a ) には、 コイルサイ ド 5 2 5となる範囲と コイルエンド 5 2 6となる範囲とがそれぞれ示されている。 内層側の導線 5 〇 2020/175333 95 卩(:171? 2020 /006903 [0349] In the stator winding 5 21, the conductors 5 2 3 are arranged side by side in the circumferential direction by inclining at a predetermined angle in the coil side 5 2 5 that overlaps with the stator core 5 2 2 in the radial direction. At the same time, the coil ends 526 on both sides, which are axially outside of the stator core 52, are turned inward (folded back) inward in the axial direction to form a continuous wire connection. Figure 5 4 (a) shows the range of coil side 5 25 and the range of coil end 5 26, respectively. Inner conductor 5 〇 2020/175 333 95 卩 (: 171? 2020 /006903
2 3と外層側の導線 5 2 3とはコイルエンド 5 2 6にて互いに接続されてお り、 これにより、 コイルエンド 5 2 6で導線 5 2 3が軸方向に反転される都 度 (折り返される都度) 、 導線 5 2 3が内層側と外層側とで交互に切り替わ るようになっている。 要するに、 固定子巻線 5 2 1では、 周方向に連続する 各導線 5 2 3において、 電流の向きが反転するのに合わせて内外層の切り替 えが行われる構成となっている。 2 3 and the conductor 5 2 3 on the outer layer side are connected to each other at the coil end 5 26, so that every time the conductor 5 2 3 is axially inverted at the coil end 5 2 6 (folded back). Each time), the conductors 5 2 3 are alternately switched between the inner layer side and the outer layer side. In short, the stator winding 5 21 has a structure in which the inner and outer layers are switched in accordance with the reversal of the direction of the current in each of the conducting wires 5 23 that are continuous in the circumferential direction.
[0350] また、 固定子巻線 5 2 1では、 軸方向の両端となる端部領域と、 その端部 領域に挟まれた中央領域とでスキュー角度が異なる 2種類のスキューが施さ れている。 すなわち、 図 5 5に示すように、 導線 5 2 3において、 中央領域 のスキュー角度 0 3 1 と端部領域のスキュー角度 0 3 2とが異なっており、 スキュー角度 0 3 1がスキュー角度 0 3 2よりも小さくなる構成となってい る。 軸方向において、 端部領域は、 コイルサイ ド 5 2 5を含む範囲で定めら れている。 スキュー角度 0 3 1 , スキュー角度 0 3 2は、 軸方向に対して各 導線 5 2 3が傾斜している傾斜角度である。 中央領域のスキュー角度 0 3 1 は、 固定子巻線 5 2 1の通電により生じる磁束の高調波成分を削減するのに 適正な角度範囲で定められているとよい。 [0350] Further, the stator winding 5 21 is provided with two types of skews having different skew angles in the end regions at both ends in the axial direction and the central region sandwiched by the end regions. .. That is, as shown in Fig. 55, in the conductive wire 5 23, the skew angle 0 3 1 in the central region is different from the skew angle 0 3 2 in the end region, and the skew angle 0 3 1 is the skew angle 0 3 1. It is smaller than 2. In the axial direction, the end region is defined in the range including the coil side 5 25. The skew angle 0 3 1 and the skew angle 0 3 2 are the tilt angles at which the conductors 5 23 are tilted with respect to the axial direction. The skew angle 0 3 1 in the central region is preferably set within an appropriate angle range for reducing the harmonic components of the magnetic flux generated by the energization of the stator winding 5 21.
[0351 ] 固定子巻線 5 2 1 における各導線 5 2 3のスキュー角度を中央領域と端部 領域とで相違させ、 中央領域のスキュー角度 0 3 1 を端部領域のスキュー角 度 0 3 2よりも小さくすることで、 コイルエンド 5 2 6の縮小を図りつつも 、 固定子巻線 5 2 1の卷線係数を大きくすることができる。 言い換えれば、 所望の巻線係数を確保しつつも、 コイルエンド 5 2 6の長さ、 すなわち固定 子コア 5 2 2から軸方向にはみ出た部分の導線長を短くすることができる。 これにより、 回転電機 5 0 0の小型化を図りつつ、 トルク向上を実現するこ とができる。 [0351] The skew angle of each conductor 5 2 3 in the stator winding 5 2 1 is made different between the central region and the end region, and the skew angle 0 3 1 in the central region is set to the skew angle 0 3 2 in the end region. By making it smaller than this, it is possible to increase the winding line coefficient of the stator winding 5 21 while reducing the coil end 5 26. In other words, it is possible to shorten the length of the coil end 5 26, that is, the length of the conductor wire extending axially from the stator core 5 22 while securing a desired winding coefficient. This makes it possible to improve the torque while reducing the size of the rotary electric machine 500.
[0352] ここで、 中央領域のスキュー角度 0 3 1 としての適正範囲を説明する。 固 定子卷線 5 2 1 において 1磁極内に導線 5 2 3が X本配置されている場合に は、 固定子巻線 5 2 1の通電により X次の高調波成分が生じることが考えら れる。 相数を 3、 対数を 111とする場合、 乂= 2 3 111である。 本願開示者 〇 2020/175333 96 卩(:171? 2020 /006903 [0352] Here, an appropriate range as the skew angle 0 3 1 of the central area will be described. When X conductors 5 2 3 are arranged in one magnetic pole in the stator winding 5 2 1, it is considered that the Xth harmonic component is generated by the energization of the stator winding 5 21. .. If the number of phases is 3 and the logarithm is 111, then = 2 3 111. Discloser of the application 〇 2020/175 333 96 卩 (:171? 2020 /006903
は、 X次の高調波成分が、 X— 1次の高調波成分と乂+ 1次の高調波成分と の合成波を構成する成分であるため、 X— 1次の高調波成分又は乂+ 1次の 高調波成分の少なくともいずれかを低減することにより、 X次の高調波成分 を低減できることに着目した。 この着目を踏まえ、 本願開示者は、 電気角で 「360° / (乂+ 1) 〜 360° / (乂一 1) 」 の角度範囲内にスキュー 角度 03 1 を設定することにより、 X次の高調波成分を低減できることを見 出した。 Is the component that forms the composite wave of the X— 1st-order harmonic component and the + 1st-order harmonic component, so the X— 1st-order harmonic component or + We focused on reducing the X-order harmonic component by reducing at least one of the first-order harmonic components. Based on this attention, the present disclosure sets the skew angle 03 1 within the angular range of “360 ° / (侂+1) ~ 360 ° / (乂1 1)” in electrical angle, and We have found that harmonic components can be reduced.
[0353] 例えば 3 = 3、 = 2である場合、 乂= 1 2次の高調波成分を低減すべく 、 「360° /1 3~360° /1 1」 の角度範囲内にスキュー角度 03 1 を設定する。 つまり、 スキュー角度 03 1は、 27. 7° 〜 32. 7° の範 囲内の角度で設定されるとよい。 [0353] For example, if 3 = 3 and = 2, then = 1 In order to reduce the 2nd order harmonic component, the skew angle 03 1 within the angle range of "360° / 1 3 to 360° / 1 1" To set. That is, the skew angle 031 should be set within the range of 27.7° to 32.7°.
[0354] 中央領域のスキュー角度 03 1が上記のように設定されることにより、 そ の中央領域において、 3交互の磁石磁束を積極的に鎖交させることができ 、 固定子巻線 52 1の卷線係数を高くすることができる。 [0354] By setting the skew angle 031 of the central area as described above, three alternating magnet magnetic fluxes can be positively interlinked in the central area, and the stator winding 52 1 The roll coefficient can be increased.
[0355] 端部領域のスキュー角度 032は、 上述した中央領域のスキュー角度 03 [0355] The skew angle 032 in the end area is equal to the skew angle 03 in the center area described above.
1 よりも大きい角度である。 この場合、 スキュー角度 032の角度範囲は、 「03 1 <032<90° 」 である。 The angle is greater than 1. In this case, the angle range of the skew angle 032 is “03 1 <032<90° ”.
[0356] また、 固定子巻線 52 1 において、 内層側の導線 523と外層側の導線 5 [0356] Also, in the stator winding 52 1, the inner layer side conductor wire 523 and the outer layer side conductor wire 5
23とは、 各導線 523の端部どうしの溶接や接着により繫げられているか 、 又は折り曲げにより繫げられているとよい。 固定子巻線 52 1では、 軸方 向両側の各コイルエンド 526のうち一方側 (すなわち軸方向一端側) にて 各相卷線の端部が電力変換器 (インパータ) にバスバー等を介して電気的に 接続される構成となっている。 そのためここでは、 バスバー接続側のコイル エンド 526とその反対側のコイルエンド 526とを区別しつつ、 コイルエ ンド 526において各導線同士が繫げられている構成を説明する。 The 23 is preferably welded or bonded between the end portions of the respective conductive wires 523 or is preferably bent by bending. In the stator winding 521, one end of each coil end 526 on both sides in the axial direction (that is, one end in the axial direction) has the end of each winding wire connected to a power converter (imperter) via a bus bar or the like. It is configured to be electrically connected. Therefore, here, a configuration will be described in which the conductors are connected to each other in the coil end 526 while distinguishing between the coil end 526 on the bus bar connection side and the coil end 526 on the opposite side.
[0357] 第 1の構成としては、 バスバー接続側のコイルエンド 526において各導 線 523を溶接にて繫げるとともに、 その反対側のコイルエンド 526にお いて各導線 523を溶接以外の手段にて繫げる構成とする。 溶接以外の手段 〇 2020/175333 97 卩(:171? 2020 /006903 [0357] As a first configuration, each wire 523 is welded at the coil end 526 on the bus bar connection side, and each wire 523 is connected to other means at the coil end 526 on the opposite side by welding. It will be constructed in a conducive manner. Means other than welding 〇 2020/175333 97 卩(: 171-1? 2020/006903
とは、 例えば導線材の折り曲げによる繫ぎが考えられる。 バスバー接続側の コイルエンド 5 2 6では、 各相卷線の端部にバスバーが溶接にて接続される ことが想定される。 そのため、 それと同じコイルエンド 5 2 6において各導 線 5 2 3を溶接にて繫げる構成とすることで、 各溶接部を一連の工程で行わ せることができ、 作業効率の向上を図ることができる。 For example, it is considered that the wire is bent by bending the conductor. At the coil end 526 on the bus bar connection side, it is assumed that the bus bar will be welded to the end of each phase line. Therefore, by configuring each wire 5 23 to be welded at the same coil end 5 26, each weld can be performed in a series of steps, improving work efficiency. You can
[0358] 第 2の構成としては、 バスバー接続側のコイルエンド 5 2 6において各導 線 5 2 3を溶接以外の手段にて繫げるとともに、 その反対側のコイルエンド 5 2 6において各導線 5 2 3を溶接にて繫げる構成とする。 この場合、 仮に バスバー接続側のコイルエンド 5 2 6において各導線 5 2 3を溶接にて繫げ る構成であると、 その溶接部とバスバーとの接触を避けるべく、 バスバーと コイルエンド 5 2 6との間の離間距離を十分に取る必要が生じるが、 本構成 とすることで、 バスバーとコイルエンド 5 2 6との間の離間距離を小さくす ることができる。 これにより、 軸方向における固定子巻線 5 2 1の長さ又は /くスバーに関する規制を緩めることができる。 [0358] As a second configuration, in the coil end 5 2 6 on the bus bar connection side, each conductor 5 2 3 is connected by a means other than welding, and at the coil end 5 2 6 on the opposite side, each conductor is connected. 5 2 3 is constructed by welding. In this case, if the conductors 5 2 3 are connected by welding at the coil end 5 2 6 on the bus bar connection side, the bus bar and coil end 5 2 6 should be prevented in order to avoid contact between the weld and the bus bar. Although it is necessary to secure a sufficient separation distance between the bus bar and the coil end 5 26, it is possible to reduce the separation distance between the bus bar and the coil end 5 26. As a result, it is possible to loosen the restriction on the length of the stator winding 5 21 in the axial direction and/or the crossbar.
[0359] 第 3の構成としては、 軸方向両側のコイルエンド 5 2 6において各導線 5 [0359] In the third configuration, the coil ends 5 2 6 on both sides in the axial direction have the conductors 5
2 3を溶接にて繫げる構成とする。 この場合、 溶接前に用意する導線材はい ずれも短い線長のものでよく、 曲げ工程の削減による作業効率の向上を図る ことができる。 2 and 3 are welded together. In this case, the conductor wire prepared before welding may have a short wire length, and the work efficiency can be improved by reducing the bending process.
[0360] 第 4の構成としては、 軸方向両側のコイルエンド 5 2 6において各導線 5 [0360] As a fourth configuration, the coil ends 5 2 6 on both sides in the axial direction are connected to each conductor 5
2 3を溶接以外の手段にて繫げる構成とする。 この場合、 固定子巻線 5 2 1 において溶接が行われる部位を極力減らすことができ、 溶接工程での絶縁剥 離が生じることの懸念を低減できる。 2 3 is constructed by a method other than welding. In this case, the portion of the stator winding 5 21 where welding is performed can be reduced as much as possible, and it is possible to reduce the concern that insulation separation will occur in the welding process.
[0361 ] また、 円環状の固定子巻線 5 2 1 を製作する工程において、 平面状に整列 された帯状巻線を製作し、 その後にその帯状巻線を環状に成形するとよい。 この場合、 平面状の帯状卷線となっている状態で、 必要に応じてコイルエン ド 5 2 6での導線同士の溶接を行うとよい。 平面状の帯状巻線を環状に成形 する際には、 固定子コア 5 2 2と同径の円柱治具を用いてその円柱治具に巻 き付けるようにして帯状巻線を環状に成形するとよい。 又は、 帯状巻線を固 \¥0 2020/175333 98 卩(:17 2020 /006903 [0361] Further, in the process of manufacturing the annular stator winding 5 21, it is preferable to manufacture a band-shaped winding arranged in a plane and then shape the band-shaped winding into a ring. In this case, it is advisable to weld the conductor wires at the coil ends 52 6 as needed in the state of the flat band-shaped winding wire. When forming a flat strip winding into an annular shape, use a cylindrical jig having the same diameter as the stator core 52 to wind the strip winding into an annular shape. Good. Or, fix the strip winding \¥0 2020/175 333 98 卩 (: 17 2020 /006903
定子コア 5 2 2に直接巻き付けるようにしてよい。 It may be wound directly around the determinate core 522.
[0362] なお、 固定子巻線 5 2 1の構成を以下のように変更することも可能である [0362] Note that the configuration of the stator winding 5 21 can be changed as follows.
[0363] 例えば、 図 5 4 (a) , (匕) に示す固定子巻線 5 2 1 において、 中央領 域及び端部領域のスキュー角度を同一とする構成であってもよい。 [0363] For example, in the stator winding 5 21 shown in Fig. 54 (a) and (匕), the skew angles of the central region and the end region may be the same.
[0364] また、 図 5 4 (a) , (1〇) に示す固定子卷線 5 2 1 において、 周方向に 隣り合う同相の導線 5 2 3の端部同士を、 軸方向に直交する向きに延びる渡 り線部により接続する構成であってもよい。 [0364] In addition, in the stator winding 5 2 1 shown in Figs. 5 4 (a) and (10), the ends of in-phase conductors 5 2 3 adjacent to each other in the circumferential direction are oriented in the direction orthogonal to the axial direction. It may be configured to be connected by a crossover portion extending to.
[0365] 固定子巻線 5 2 1の層数は、 2 c n層 (nは自然数) であればよく、 固定 子卷線 5 2 1 を、 2層以外に 4層、 6層等にすることも可能である。 [0365] The number of layers of the stator winding 5 2 1, 2 c n layer (n is a natural number) may be any, the stator卷線5 2 1, 4-layer in addition to two layers, to 6 layers, etc. It is also possible.
[0366] 次に、 電力変換ユニッ トであるインバータユニッ ト 5 3 0について説明す る。 ここでは、 インバータユニッ ト 5 3 0の分解断面図である図 5 6及び図 5 7を併せ用いて、 インバータユニッ ト 5 3 0の構成を説明する。 なお、 図 5 7では、 図 5 6に示す各部材を 2つのサブアセンブリとして示している。 [0366] Next, the inverter unit 5300, which is a power conversion unit, will be described. Here, the configuration of the inverter unit 5300 will be described with reference to FIGS. 56 and 57, which are exploded cross-sectional views of the inverter unit 5300. In FIG. 57, each member shown in FIG. 56 is shown as two subassemblies.
[0367] インバータユニッ ト 5 3 0は、 インバータハウジング 5 3 1 と、 そのイン バータハウジング 5 3 1 に組み付けられる複数の電気モジュール 5 3 2と、 それら各電気モジュール 5 3 2を電気的に接続するバスバーモジュール 5 3 3とを有している。 [0367] The inverter unit 530 electrically connects the inverter housing 531, a plurality of electrical modules 532 assembled in the inverter housing 531, and each of the electrical modules 532. It has a busbar module 5 3 3.
[0368] インバータハウジング 5 3 1は、 円筒状をなす外壁部材 5 4 1 と、 外周径 が外壁部材 5 4 1 よりも小径の円筒状をなし、 外壁部材 5 4 1の径方向内側 に配置される内壁部材 5 4 2と、 内壁部材 5 4 2の軸方向一端側に固定され るボス形成部材 5 4 3とを有している。 これら各部材 5 4 1〜 5 4 3は、 導 電性材料により構成されているとよく、 例えば炭素繊維強化プラスチック ( により構成されている。 インバータハウジング 5 3 1は、 外壁部 材 5 4 1 と内壁部材 5 4 2とが径方向内外に重ねて組み合わされ、 かつ内壁 部材 5 4 2の軸方向一端側にボス形成部材 5 4 3が組み付けられることで構 成されている。 その組み付け状態が図 5 7に示す状態である。 [0368] The inverter housing 531 has a cylindrical outer wall member 541, and a cylindrical shape having an outer peripheral diameter smaller than that of the outer wall member 541, and is arranged radially inward of the outer wall member 541. Inner wall member 5 42 and a boss forming member 5 4 3 fixed to one axial end of the inner wall member 5 4 2. Each of these members 5 41 to 5 4 3 is preferably made of a conductive material, for example, carbon fiber reinforced plastic (. The inverter housing 5 3 1 and the outer wall member 5 4 1 The inner wall member 5 4 2 and the inner wall member 5 4 2 are overlapped with each other in the radial direction, and the boss forming member 5 4 3 is attached to one end side of the inner wall member 5 4 2 in the axial direction. The state is shown in FIG.
[0369] インバータハウジング 5 3 1の外壁部材 5 4 1の径方向外側には固定子コ 〇 2020/175333 99 卩(:171? 2020 /006903 [0369] A stator coil is placed on the outer side of the outer wall member 541 of the inverter housing 531. 〇 2020/175 333 99 卩 (: 171? 2020 /006903
ア 5 2 2が固定される。 これにより、 固定子 5 2 0とインバータユニッ ト 5A 5 2 2 is fixed. As a result, the stator 520 and the inverter unit 520 are
3 0とが一体化されるようになっている。 It is designed to be integrated with 30.
[0370] 図 5 6に示すように、 外壁部材 5 4 1 には、 その内周面に複数の凹部 5 4 [0370] As shown in FIG. 56, the outer wall member 541 has a plurality of recesses 541 on its inner peripheral surface.
1 3 , 5 4 1 13 , 5 4 1 〇が形成されるとともに、 内壁部材 5 4 2には、 そ の外周面に複数の凹部 5 4 2
Figure imgf000101_0001
5 4 2 13 , 5 4 2〇が形成されている。 そ して、 外壁部材 5 4 1及び内壁部材 5 4 2が互いに組み付けられることによ り、 これら両者の間には
Figure imgf000101_0002
5 4 4 13 , 5 4 4〇が形成 されている (図 5 7参照) 。 このうち、 中央の中空部 5 4 4匕は、 冷媒とし ての冷却水を流通させる冷却水通路 5 4 5として用いられる。 また、 中空部 5 4 4匕 (冷却水通路 5 4 5) を挟んで両側の中空部
Figure imgf000101_0003
5 4 4〇に はシール材 5 4 6が収容されている。 このシール材 5 4 6により、 中空部 5
1 3 ,5 4 1 13 ,5 4 1 ○ is formed, and the inner wall member 5 4 2 has a plurality of recesses 5 4 2 on its outer peripheral surface.
Figure imgf000101_0001
5 4 2 13 and 5 4 2 0 are formed. The outer wall member 5 4 1 and the inner wall member 5 4 2 are assembled to each other so that there is a space between them.
Figure imgf000101_0002
5 4 4 13 and 5 4 4 0 are formed (see Fig. 5 7). Of these, the central hollow portion 5454 is used as a cooling water passage 5445 through which cooling water as a refrigerant flows. In addition, the hollow part on both sides of the hollow part (cooling water passage 5445) is sandwiched.
Figure imgf000101_0003
Sealing material 5 46 is contained in 544. This sealing material 5 4 6 allows the hollow part 5
4 4匕 (冷却水通路 5 4 5) が密閉化されている。 冷却水通路 5 4 5につい ては後で詳しく説明する。 The spillway (cooling water passage 5 445) is sealed. The cooling water passage 5 4 5 will be described in detail later.
[0371 ] また、 ボス形成部材 5 4 3には、 円板リング状の端板 5 4 7と、 その端板 [0371] Further, the boss forming member 543 includes a disc ring-shaped end plate 547 and the end plate 547.
5 4 7からハウジング内部に向けて突出するボス部 5 4 8とが設けられてい る。 ボス部 5 4 8は、 中空筒状に設けられている。 例えば図 5 1 に示すよう に、 ボス形成部材 5 4 3は、 軸方向における内壁部材 5 4 2の第 1端とそれ に対向する回転軸 5 0 1の突出側 (すなわち車両内側) の第 2端とのうち、 第 2端に固定されている。 なお、 図 4 5〜図 4 7に示す車輪 4 0 0において は、 インバータハウジング 5 3 1 (より詳しくはボス形成部材 5 4 3の端板 5 4 7) にべースプレート 4 0 5が固定されるようになっている。 Bosses 5 48 protruding from 5 47 toward the inside of the housing are provided. The bosses 548 are provided in the shape of a hollow cylinder. For example, as shown in Fig. 51, the boss forming member 543 is arranged such that the first end of the inner wall member 542 in the axial direction and the second end on the protruding side (that is, the vehicle inner side) of the rotating shaft 5011 facing it. It is fixed at the second end of the ends. In the wheels 400 shown in FIGS. 45 to 47, the base plate 450 is fixed to the inverter housing 531 (more specifically, the end plate 547 of the boss forming member 543). It is like this.
[0372] インバータハウジング 5 3 1は、 軸心を中心として径方向に二重の周壁を 有する構成となっており、 その二重の周壁のうち外側の周壁が外壁部材 5 4 1及び内壁部材 5 4 2により形成され、 内側の周壁がボス部 5 4 8により形 成されている。 なお、 以下の説明では、 外壁部材 5 4 1及び内壁部材 5 4 2 により形成された外側の周壁を 「外側周壁 \ZV A 1」 、 ボス部 5 4 8により形 成された内側の周壁を 「内側周壁 \ZV A 2」 とも言う。 [0372] The inverter housing 5 3 1 is configured to have a double peripheral wall in the radial direction around the axis, and the outer peripheral wall of the double peripheral wall is the outer wall member 5 41 and the inner wall member 5 3. 42, and the inner peripheral wall is formed by the boss portion 5 48. In the following description, the outer peripheral wall formed by the outer wall member 5 4 1 and the inner wall member 5 4 2 is referred to as “outer peripheral wall \ZV A 1 ”, and the inner peripheral wall formed by the boss portion 5 4 8 is referred to as “ Inner peripheral wall \ZV A 2".
[0373] インバータハウジング 5 3 1 には、 外側周壁 八 1 と内側周壁 八 2との 〇 2020/175333 100 卩(:171? 2020 /006903 [0373] The inverter housing 5 3 1 has an outer peripheral wall 8 1 and an inner peripheral wall 8 2 〇 2020/175333 100 units (:171? 2020 /006903
間に環状空間が形成されており、 その環状空間内に、 周方向に並べて複数の 電気モジュール 5 3 2が配置されている。 電気モジュール 5 3 2は、 接着や ビス締め等により内壁部材 5 4 2の内周面に固定されている。 本実施形態で は、 インバータハウジング 5 3 1が 「ハウジング部材」 に相当し、 電気モジ ュール 5 3 2が 「電気部品」 に相当する。 An annular space is formed between them, and a plurality of electric modules 5 32 are arranged in the annular space in the circumferential direction. The electric module 5 3 2 is fixed to the inner peripheral surface of the inner wall member 5 4 2 by gluing, screwing or the like. In the present embodiment, the inverter housing 5 3 1 corresponds to the “housing member” and the electric module 5 3 2 corresponds to the “electric component”.
[0374] 内側周壁 \ZV A 2 (ボス部 5 4 8) の内側には軸受 5 6 0が収容されており 、 その軸受 5 6 0により回転軸 5 0 1が回転自在に支持されている。 軸受 5 6 0は、 車輪中心部において車輪 4 0 0を回転可能に支えるハブべアリング である。 軸受 5 6 0は、 回転子 5 1 0や固定子 5 2 0、 インバータユニッ ト [0374] A bearing 560 is housed inside the inner peripheral wall \ZV A 2 (boss 548), and the bearing 560 rotatably supports the rotary shaft 501. The bearing 560 is a hub bearing that rotatably supports the wheel 400 at the center of the wheel. The bearing 560 is composed of a rotor 520, a stator 520, and an inverter unit.
5 3 0に対して軸方向に重複する位置に設けられている。 本実施形態の回転 電機 5 0 0では、 回転子 5 1 0において配向に伴い磁石ユニッ ト 5 1 2の薄 型化が可能であること、 固定子 5 2 0においてスロッ トレス構造や扁平導線 構造が採用されていることにより、 磁気回路部の径方向の厚み寸法を縮小し て、 磁気回路部よりも径方向内側の中空空間を拡張することが可能となって いる。 これにより、 径方向に積層された状態での磁気回路部やインパータユ ニッ ト 5 3 0、 軸受 5 6 0の配置が可能となっている。 ボス部 5 4 8は、 そ の内側に軸受 5 6 0を保持する軸受保持部となっている。 It is provided at a position overlapping axially with respect to 5 30. In the rotating electric machine 500 of this embodiment, it is possible to reduce the thickness of the magnet unit 5 12 in the rotor 5 10 according to the orientation, and the stator 5 20 has a slotless structure or a flat conductor structure. By adopting this, it is possible to reduce the radial thickness of the magnetic circuit part and expand the hollow space inside the magnetic circuit part in the radial direction. This makes it possible to arrange the magnetic circuit part, the inserter unit 530, and the bearing 560 in a laminated state in the radial direction. The boss portion 548 is a bearing holding portion that holds the bearing 560 inside thereof.
[0375] 軸受 5 6 0は、 例えばラジアル玉軸受であり、 筒状をなす内輪 5 6 1 と、 その内輪 5 6 1 よりも大径の筒状をなし内輪 5 6 1の径方向外側に配置され た外輪 5 6 2と、 それら内輪 5 6 1及び外輪 5 6 2の間に配置された複数の 玉 5 6 3とを有している。 軸受 5 6 0は、 外輪 5 6 2がボス形成部材 5 4 3 に組み付けられることでインバータハウジング 5 3 1 に固定されるとともに 、 内輪 5 6 1が回転軸 5 0 1 に固定されている。 これら内輪 5 6 1、 外輪 5 [0375] The bearing 5600 is, for example, a radial ball bearing, and has a cylindrical inner ring 561 and a cylindrical shape having a diameter larger than that of the inner ring 561, and is arranged radially outside the inner ring 561. The outer ring 5 62 is provided with a plurality of balls 5 63 arranged between the inner ring 5 61 and the outer ring 5 62. The bearing 5 6 0 is fixed to the inverter housing 5 3 1 by assembling the outer ring 5 6 2 to the boss forming member 5 4 3 and the inner ring 5 6 1 is fixed to the rotating shaft 5 0 1. These inner ring 5 6 1, outer ring 5
6 2及び玉 5 6 3は、 いずれも炭素鋼等の金属材料よりなる。 Both 6 2 and balls 5 6 3 are made of a metal material such as carbon steel.
[0376] また、 軸受 5 6 0の内輪 5 6 1は、 回転軸 5 0 1 を収容する筒部 5 6 1 3 と、 その筒部 5 6 1 3の軸方向一端部から、 軸方向に交差 (直交) する向き に延びるフランジ 5 6 1 匕とを有している。 フランジ 5 6 1 匕は、 回転子キ ャリア 5 1 1の端板 5 1 4に内側から当接する部位であり、 回転軸 5 0 1 に 〇 2020/175333 101 卩(:171? 2020 /006903 [0376] Further, the inner ring 561 of the bearing 5600 has an axial portion that intersects with the tubular portion 561-3 that houses the rotary shaft 501 and one axial end of the tubular portion 561. It has a flange 5 6 1 swath extending in the (orthogonal) direction. The flange 5 61 is the part that comes into contact with the end plate 5 14 of the rotor carrier 5 11 from the inside. 〇 2020/175333 101 卩(:171? 2020/006903
軸受 5 6 0が組み付けられた状態では、 回転軸 5 0 1のフランジ 5 0 2と内 輪 5 6 1のフランジ 5 6 1 匕とにより挟まれた状態で、 回転子キャリア 5 1 1が保持されるようになっている。 この場合、 回転軸 5 0 1のフランジ 5 0 2及び内輪 5 6 1のフランジ 5 6 1 匕は、 軸方向に対する交差の角度が互い に同じであり (本実施形態ではいずれも直角であり) 、 これら各フランジ 5 0 2 , 5 6 1 匕の間に挟まれた状態で、 回転子キャリア 5 1 1が保持されて いる。 When the bearing 5600 is assembled, the rotor carrier 5111 is held while being sandwiched between the flange 5202 of the rotating shaft 501 and the flange 5611 of the inner ring 561. It has become so. In this case, the flanges 50 2 of the rotating shaft 50 1 and the flanges 5 61 of the inner ring 5 61 have the same angle of intersection with the axial direction (both are right angles in this embodiment), The rotor carrier 5 11 is held in a state of being sandwiched between these flanges 50 2 and 5 61.
[0377] 軸受 5 6 0の内輪 5 6 1 により回転子キャリア 5 1 1 を内側から支える構 成によれば、 回転軸 5 0 1 に対する回転子キャリア 5 1 1の角度を適正角度 に保持でき、 ひいては回転軸 5 0 1 に対する磁石ユニッ ト 5 1 2の平行度を 良好に保つことができる。 これにより、 回転子キャリア 5 1 1 を径方向に拡 張した構成にあっても、 振動等に対する耐性を高めることができる。 [0377] According to the structure in which the inner ring 5 61 of the bearing 5 60 supports the rotor carrier 5 11 from the inside, the angle of the rotor carrier 5 1 1 with respect to the rotating shaft 5 0 1 can be maintained at an appropriate angle, As a result, the parallelism of the magnet unit 5 1 2 with respect to the rotation axis 5 0 1 can be kept good. As a result, even in the configuration in which the rotor carrier 5 11 is expanded in the radial direction, it is possible to enhance resistance to vibration and the like.
[0378] 次に、 インバータハウジング 5 3 1内に収容される電気モジュール 5 3 2 について説明する。 [0378] Next, the electric module 5 3 2 housed in the inverter housing 5 3 1 will be described.
[0379] 複数の電気モジュール 5 3 2は、 電力変換器を構成する半導体スイッチン グ素子や平滑用コンデンサといった電気部品を、 複数に分割して個々にモジ ュール化したものであり、 その電気モジュール 5 3 2には、 パワー素子であ る半導体スイッチング素子を有するスイッチモジュール 5 3 2八と、 平滑用 コンデンサを有するコンデンサモジュール 5 3 2巳とが含まれている。 [0379] The plurality of electric modules 5 3 2 is a module in which electric components such as a semiconductor switching element and a smoothing capacitor that compose the power converter are divided into a plurality of modules and the modules are individually modularized. 532 includes a switch module 532 having a semiconductor switching element which is a power element and a capacitor module 532 having a smoothing capacitor.
[0380] 図 4 9及び図 5 0に示すように、 内壁部材 5 4 2の内周面には、 電気モジ ュール 5 3 2を取り付けるための平坦面を有する複数のスぺーサ 5 4 9が固 定され、 そのスぺーサ 5 4 9に電気モジュール 5 3 2が取り付けられている 。 つまり、 内壁部材 5 4 2の内周面が曲面であるのに対し、 電気モジュール 5 3 2の取付面が平坦面であることから、 スぺーサ 5 4 9により内壁部材 5 4 2の内周面側に平坦面を形成し、 その平坦面に電気モジュール 5 3 2を固 定する構成としている。 [0380] As shown in Fig. 49 and Fig. 50, the inner peripheral surface of the inner wall member 5 42 is provided with a plurality of spacers 5 49 having a flat surface for mounting the electric module 5 32. Fixed and the electrical module 5 3 2 is attached to its spacer 5 4 9. In other words, the inner peripheral surface of the inner wall member 5 4 2 is a curved surface, while the mounting surface of the electric module 5 32 is a flat surface. A flat surface is formed on the surface side, and the electric module 5 32 is fixed on the flat surface.
[0381 ] なお、 内壁部材 5 4 2と電気モジュール 5 3 2との間にスぺーサ 5 4 9を 介在させる構成は必須ではなく、 内壁部材 5 4 2の内周面を平坦面にする、 〇 2020/175333 102 卩(:171? 2020 /006903 [0381] Note that the structure in which the spacer 549 is interposed between the inner wall member 542 and the electric module 532 is not essential, and the inner peripheral surface of the inner wall member 542 is flat. 〇 2020/175333 102 卩(:171? 2020/006903
又は電気モジュール 5 3 2の取付面を曲面することにより内壁部材 5 4 2に 対して電気モジュール 5 3 2を直接取り付けることも可能である。 また、 内 壁部材 5 4 2の内周面に対して非接触の状態で、 電気モジュール 5 3 2をイ ンバータハウジング 5 3 1 に固定することも可能である。 例えば、 ボス形成 部材 5 4 3の端板 5 4 7に対して電気モジュール 5 3 2を固定する。 スイッ チモジュール 5 3 2八を内壁部材 5 4 2の内周面に接触状態で固定するとと もに、 コンデンサモジュール 5 3 2巳を内壁部材 5 4 2の内周面に非接触状 態で固定することも可能である。 Alternatively, the electric module 5 3 2 can be directly attached to the inner wall member 5 4 2 by making the mounting surface of the electric module 5 3 2 a curved surface. It is also possible to fix the electric module 5 3 2 to the inverter housing 5 3 1 without contacting the inner peripheral surface of the inner wall member 5 4 2. For example, the electric module 5 32 is fixed to the end plate 5 47 of the boss forming member 5 43. The switch module 5 3 2 8 is fixed to the inner peripheral surface of the inner wall member 5 4 2 in contact with it, and the capacitor module 5 3 2 is fixed to the inner peripheral surface of the inner wall member 5 4 2 in a non-contact state. It is also possible to do so.
[0382] なお、 内壁部材 5 4 2の内周面にスぺーサ 5 4 9が設けられる場合、 外側 周壁 八 1及びスぺーサ 5 4 9が 「筒状部」 に相当する。 また、 スぺーサ 5 4 9が用いられない場合、 外側周壁 1が 「筒状部」 に相当する。 [0382] When the spacer 549 is provided on the inner peripheral surface of the inner wall member 542, the outer peripheral wall 81 and the spacer 549 correspond to the "cylindrical portion". When the spacer 549 is not used, the outer peripheral wall 1 corresponds to the "cylindrical portion".
[0383] 上述したとおりインバータハウジング 5 3 1の外側周壁 八 1 には、 冷媒 としての冷却水を流通させる冷却水通路 5 4 5が形成されており、 その冷却 水通路 5 4 5を流れる冷却水により各電気モジュール 5 3 2が冷却されるよ うになっている。 なお、 冷媒として、 冷却水に代えて冷却用オイルを用いる ことも可能である。 冷却水通路 5 4 5は、 外側周壁 1 に沿って環状に設 けられており、 冷却水通路 5 4 5内を流れる冷却水は、 各電気モジュール 5 3 2を経由しながら上流側から下流側に流通する。 本実施形態では、 冷却水 通路 5 4 5が、 径方向内外に各電気モジュール 5 3 2に重なり、 かつこれら 各電気モジュール 5 3 2を囲むように環状に設けられている。 [0383] As described above, the outer peripheral wall 8 1 of the inverter housing 5 3 1 is formed with the cooling water passage 5 45 for circulating the cooling water as the refrigerant, and the cooling water passage 5 4 5 flowing through the cooling water passage 5 4 5 is formed. This allows each electric module 5 32 to be cooled. It is also possible to use cooling oil instead of cooling water as the refrigerant. The cooling water passages 5 4 5 are annularly installed along the outer peripheral wall 1, and the cooling water flowing in the cooling water passages 5 4 5 flows from the upstream side to the downstream side while passing through each electric module 5 3 2. Distribute to. In the present embodiment, the cooling water passages 5 45 are provided in an annular shape so as to overlap the electric modules 5 32 in the radial direction and to surround the electric modules 5 32.
[0384] 内壁部材 5 4 2には、 冷却水通路 5 4 5に冷却水を流入させる入口通路 5 [0384] The inner wall member 5 42 has an inlet passage 5 for allowing cooling water to flow into the cooling water passage 5 45.
7 1 と、 冷却水通路 5 4 5から冷却水を流出させる出口通路 5 7 2とが設け られている。 上述したように内壁部材 5 4 2の内周面には複数の電気モジュ —ル 5 3 2が固定されており、 かかる構成において、 周方向に隣り合う電気 モジュール間の間隔が 1力所だけ他よりも拡張され、 その拡張された部分に 、 内壁部材 5 4 2の一部が径方向内側に突出されて突出部 5 7 3が形成され ている。 そして、 その突出部 5 7 3に、 径方向に沿って横並びの状態で入口 通路 5 7 1及び出口通路 5 7 2が設けられている。 [0385] インバータハウジング 5 3 1での各電気モジュール 5 3 2の配置の状態を 図 5 8に示す。 なお、 図 5 8は、 図 5 0と同一の縦断面図である。 7 1 and an outlet passage 5 72 for letting the cooling water flow out from the cooling water passage 5 45 are provided. As described above, a plurality of electric modules 5 32 are fixed to the inner peripheral surface of the inner wall member 5 42, and in such a configuration, there is only one force point between the electric modules adjacent in the circumferential direction. The inner wall member 5 4 2 is further expanded, and a part of the inner wall member 5 4 2 is projected inward in the radial direction to form a protruding portion 5 7 3. The projecting portion 573 is provided with an inlet passage 571 and an outlet passage 572 in a side-by-side arrangement along the radial direction. [0385] Fig. 58 shows the arrangement of the electric modules 532 in the inverter housing 531. Note that FIG. 58 is the same vertical cross-sectional view as FIG.
[0386] 図 5 8に示すように、 各電気モジュール 5 3 2は、 周方向における電気モ ジュール同士の間隔を、 第 1間隔丨 N T 1又は第 2間隔丨 N T 2として周方 向に並べて配置されている。 第 2間隔丨 N T 2は、 第 1間隔丨 N T 1 よりも 広い間隔である。 各間隔丨 N T 1 , 丨 N T 2は、 例えば周方向に隣り合う 2 つ電気モジュール 5 3 2の中心位置同士の間の距離である。 この場合、 突出 部 5 7 3を挟まずに周方向に隣り合う電気モジュール同士の間隔は第 1間隔 I N T 1 となり、 突出部 5 7 3を挟んで周方向に隣り合う電気モジュール同 士の間隔は第 2間隔丨 N T 2となっている。 つまり、 周方向に隣り合う電気 モジュール同士の間隔が _部で拡げられており、 その拡げられた間隔 (第 2 間隔 I N T 2) の例えば中央となる部分に突出部 5 7 3が設けられている。 [0386] As shown in Fig. 58, each electric module 5 32 is arranged in the circumferential direction such that the intervals between the electric modules in the circumferential direction are the first interval NT1 or the second interval NT2. Has been done. The second interval NT 2 is wider than the first interval NT 1. The intervals NT 1 and NT 2 are, for example, the distances between the center positions of two electric modules 5 32 adjacent to each other in the circumferential direction. In this case, the interval between the electric modules adjacent to each other in the circumferential direction without sandwiching the protrusion 573 is the first interval INT 1, and the interval between the electric modules adjacent to each other in the circumferential direction with the protrusion 573 interposed therebetween is The second interval is NT 2. That is, the interval between the electric modules adjacent to each other in the circumferential direction is expanded by the part _ , and the projecting part 5 73 is provided at the central part of the expanded interval (second interval INT 2 ), for example. ..
[0387] 各間隔丨 N T 1 , 丨 N T 2は、 回転軸 5 0 1 を中心とする同一円上におい て、 周方向に隣り合う 2つ電気モジュール 5 3 2の中心位置同士の間の円弧 の距離であってもよい。 又は、 周方向における電気モジュール同士の間隔は 、 回転軸 5 0 1 を中心とする角度間隔 0 i 1 , 0 i 2で定義されていてもよ い ( 0 i 1 < 0 i 2) 0 [0387] The intervals NT 1 and NT 2 are the arcs between the center positions of two electric modules 5 3 2 that are adjacent to each other in the circumferential direction on the same circle centered on the rotation axis 50 1. It may be a distance. Alternatively, the intervals between the electric modules in the circumferential direction may be defined by the angular intervals 0 i 1 and 0 i 2 about the rotation axis 5 0 1 (0 i 1 <0 i 2) 0
[0388] なお、 図 5 8に示す構成では、 第 1間隔丨 N T 1で並ぶ各電気モジュール [0388] Note that in the configuration shown in FIG. 58, each electric module lined up at the first interval NT1
5 3 2が周方向に互いに離間する状態 (非接触の状態) で配置されているが 、 この構成に代えて、 それら各電気モジュール 5 3 2が周方向に互いに接触 する状態で配置されていてもよい。 5 3 2 are arranged so as to be separated from each other in the circumferential direction (non-contact state), but instead of this configuration, the electric modules 5 3 2 are arranged so as to be in contact with each other in the circumferential direction. Good.
[0389] 図 4 8に示すように、 ボス形成部材 5 4 3の端板 5 4 7には、 入口通路 5 [0389] As shown in Fig. 48, the end plate 5 47 of the boss forming member 5 4 3 has an inlet passage 5
7 1及び出口通路 5 7 2の通路端部が形成された水路ポート 5 7 4が設けら れている。 入口通路 5 7 1及び出口通路 5 7 2には、 冷却水を循環させる循 環経路 5 7 5が接続されるようになっている。 循環経路 5 7 5は冷却水配管 よりなる。 循環経路 5 7 5にはポンプ 5 7 6と放熱装置 5 7 7とが設けられ 、 ポンプ 5 7 6の駆動に伴い冷却水通路 5 4 5と循環経路 5 7 5とを通じて 冷却水が循環する。 ポンプ 5 7 6は電動ポンプである。 放熱装置 5 7 7は、 〇 2020/175333 104 卩(:171? 2020 /006903 7 1 and outlet passage 5 7 2 are provided with a waterway port 5 7 4 in which the passage ends are formed. A circulation path 5 75 for circulating cooling water is connected to the inlet path 5 71 and the outlet path 5 72. The circulation route 5 7 5 consists of cooling water piping. The circulation path 5 7 5 is provided with a pump 5 7 6 and a heat dissipation device 5 7 7, and the cooling water circulates through the cooling water passage 5 4 5 and the circulation path 5 7 5 as the pump 5 7 6 is driven. Pump 5 7 6 is an electric pump. The heat dissipation device 5 7 7 〇2020/175333 104 卩(:171? 2020/006903
例えば冷却水の熱を大気放出するラジェータである。 For example, it is a radiator that releases heat of cooling water to the atmosphere.
[0390] 図 5 0に示すように、 外側周壁 八 1の外側には固定子 5 2 0が配置され 、 内側には電気モジュール 5 3 2が配置されていることから、 外側周壁 八 1 に対しては、 その外側から固定子 5 2 0の熱が伝わるとともに、 内側から 電気モジュール 5 3 2の熱が伝わることになる。 この場合、 冷却水通路 5 4 5を流れる冷却水により固定子 5 2 0と電気モジュール 5 3 2とを同時に冷 やすことが可能となっており、 回転電機 5 0 0における発熱部品の熱を効率 良く放出することができる。 [0390] As shown in Fig. 50, since the stator 520 is arranged on the outer side of the outer peripheral wall 81, and the electric module 532 is arranged on the inner side, the outer peripheral wall 81 is compared with the outer peripheral wall 81. As a result, the heat of the stator 520 is transmitted from the outside and the heat of the electric module 532 is transmitted from the inside. In this case, it is possible to cool the stator 5 20 and the electric module 5 32 at the same time by the cooling water flowing through the cooling water passage 5 45, so that the heat generated by the heat-generating components in the rotary electric machine 500 can be efficiently cooled. Can be released well.
[0391 ] ここで、 電力変換器の電気的構成を図 5 9を用いて説明する。 [0391] Here, the electrical configuration of the power converter will be described with reference to FIG.
[0392] 図 5 9に示すように、 固定子巻線 5 2 1は II相巻線、 V相卷線及び 相巻 線よりなり、 その固定子巻線 5 2 1 にインバータ 6 0 0が接続されている。 インバータ 6 0 0は、 相数と同じ数の上下アームを有するフルプリッジ回路 により構成されており、 相ごとに上アームスイッチ 6 0 1及び下アームスイ ッチ 6 0 2からなる直列接続体が設けられている。 これら各スイッチ 6 0 1 , 6 0 2は駆動回路 6 0 3によりそれぞれオンオフされ、 そのオンオフによ り各相の巻線が通電される。 各スイッチ 6 0 1 , 6 0 2は、 例えば 1\/1〇3 巳丁や丨 ◦巳丁等の半導体スイッチング素子により構成されている。 また、 各相の上下アームには、 スイッチ 6 0 1 , 6 0 2の直列接続体に並列に、 ス イッチング時に要する電荷を各スイッチ 6 0 1 , 6 0 2に供給する電荷供給 用のコンデンサ 6 0 4が接続されている。 [0392] As shown in Fig. 59, the stator winding 5 21 is composed of a II-phase winding, a V-phase winding and a phase winding, and the inverter 600 is connected to the stator winding 5 21. Has been done. The inverter 600 is composed of a full bridge circuit having the same number of upper and lower arms as the number of phases, and a series connection body consisting of an upper arm switch 60 1 and a lower arm switch 60 2 is provided for each phase. There is. Each of these switches 60 1 and 60 2 is turned on/off by the drive circuit 60 3, and the winding of each phase is energized by the on/off. Each of the switches 60 1 and 60 2 is composed of a semiconductor switching element such as a 1//1 0 3 den or a den. In addition, the upper and lower arms of each phase are connected to a series connection of switches 60 1 and 60 2 in parallel, and a capacitor 6 for supplying charge that supplies the charges required for switching to each switch 60 1 and 60 2. 0 4 is connected.
[0393] 制御装置 6 0 7は、 〇 IIや各種メモリからなるマイコンを備えており、 回転電機 5 0 0における各種の検出情報や、 力行駆動及び発電の要求に基づ いて、 各スイッチ 6 0 1 , 6 0 2のオンオフにより通電制御を実施する。 制 御装置 6 0 7は、 例えば所定のスイッチング周波数 (キャリア周波数) での \^/1\/1制御や、 矩形波制御により各スイッチ 6 0 1 , 6 0 2のオンオフ制御 を実施する。 制御装置 6 0 7は、 回転電機 5 0 0に内蔵された内蔵制御装置 であってもよいし、 回転電機 5 0 0の外部に設けられた外部制御装置であっ てもよい。 〇 2020/175333 105 卩(:171? 2020 /006903 [0393] The control device 600 is equipped with a microcomputer consisting of 〇II and various memories, and based on various detection information in the rotating electric machine 500 and requests for power running drive and power generation, each switch 60 Energization control is performed by turning on and off 1,600. The control device 60 7 performs on/off control of each switch 60 1 and 60 2 by, for example, \^/1\/1 control at a predetermined switching frequency (carrier frequency) or rectangular wave control. The control device 600 may be a built-in control device built in the rotary electric machine 500, or an external control device provided outside the rotary electric machine 500. 〇 2020/175333 105 卩(: 171-1? 2020/006903
[0394] ちなみに、 本実施形態の回転電機 5 0 0では、 固定子 5 2 0のインダクタ ンス低減が図られていることから電気的時定数が小さくなっており、 その電 気的時定数が小さい状況下では、 スイッチング周波数 (キャリア周波数) を 高く し、 かつスイッチング速度を速くすることが望ましい。 この点において 、 各相のスイッチ 6 0 1 , 6 0 2の直列接続体に並列に電荷供給用のコンデ ンサ 6 0 4が接続されていることで配線インダクタンスが低くなり、 スイッ チング速度を速く した構成であっても適正なサージ対策が可能となる。 [0394] By the way, in the rotary electric machine 500 of this embodiment, the electrical time constant is small because the inductance of the stator 520 is reduced, and the electrical time constant is small. Under the circumstances, it is desirable to increase the switching frequency (carrier frequency) and increase the switching speed. At this point, the capacitor for charge supply 60 4 is connected in parallel to the series connection body of the switches 60 1 and 60 2 of each phase to reduce the wiring inductance and increase the switching speed. Even with the configuration, appropriate surge countermeasures can be taken.
[0395] インバータ 6 0 0の高電位側端子は直流電源 6 0 5の正極端子に接続され 、 低電位側端子は直流電源 6 0 5の負極端子 (グランド) に接続されている 。 また、 インバータ 6 0 0の高電位側端子及び低電位側端子には、 直流電源 6 0 5に並列に平滑用のコンデンサ 6 0 6が接続されている。 [0395] The high potential side terminal of the inverter 600 is connected to the positive terminal of the DC power source 600, and the low potential side terminal is connected to the negative terminal (ground) of the DC power source 600. A smoothing capacitor 606 is connected in parallel with the DC power supply 605 to the high potential side terminal and the low potential side terminal of the inverter 600.
[0396] スイッチモジュール 5 3 2八は、 発熱部品として各スイッチ 6 0 1 , 6 0 [0396] The switch module 5 3 2 8 is a heat generating component for each switch 6 0 1, 6 0.
2 (半導体スイッチング素子) や、 駆動回路 6 0 3 (具体的には駆動回路 6 〇 3を構成する電気素子) 、 電荷供給用のコンデンサ 6 0 4を有している。 また、 コンデンサモジュール 5 3 2巳は、 発熱部品として平滑用のコンデン サ 6 0 6を有している。 スイッチモジュール 5 3 2八の具体的な構成例を図 6 0に示す。 2 (semiconductor switching element), a drive circuit 60 3 (specifically, an electric element forming the drive circuit 60 3 ), and a charge supply capacitor 60 4. Further, the capacitor module 53.2 has a smoothing capacitor 606 as a heat generating component. Figure 60 shows a concrete example of the configuration of the switch module 5 3 2 8.
[0397] 図 6 0に示すように、 スイッチモジュール 5 3 2八は、 収容ケースとして のモジュールケース 6 1 1 を有するとともに、 そのモジュールケース 6 1 1 内に収容された 1相分のスイッチ 6 0 1 , 6 0 2と、 駆動回路 6 0 3と、 電 荷供給用のコンデンサ 6 0 4とを有している。 なお、 駆動回路 6 0 3は、 専 用 丨 〇又は回路基板として構成されてスイッチモジュール 5 3 2八に設けら れている。 [0397] As shown in Fig. 60, the switch module 5 3 2 8 has a module case 6 1 1 as a housing case, and the switch 6 0 for one phase housed in the module case 6 1 1. It has 1, 6 02, a drive circuit 6 03, and a capacitor 6 04 for supplying a charge. The drive circuit 60 3 is provided in the switch module 5 32 8 as a dedicated circuit or a circuit board.
[0398] モジュールケース 6 1 1は、 例えば樹脂等の絶縁材料よりなり、 その側面 がインバータユニッ ト 5 3 0の内壁部材 5 4 2の内周面に当接した状態で、 外側周壁 八 1 に固定されている。 モジュールケース 6 1 1内には樹脂等の モールド材が充填されている。 モジュールケース 6 1 1内において、 スイッ チ 6 0 1 , 6 0 2と駆動回路 6 0 3、 スイッチ 6 0 1 , 6 0 2とコンデンサ 〇 2020/175333 106 卩(:171? 2020 /006903 [0398] The module case 6 11 is made of, for example, an insulating material such as resin, and its side surface is in contact with the inner peripheral surface of the inner wall member 5 4 2 of the inverter unit 5 30 while the outer peripheral wall 8 1 is formed. It is fixed. Molding material such as resin is filled in the module case 6 11. In the module case 6 1 1, the switches 6 0 1 and 6 0 2 and the drive circuit 6 0 3, the switches 6 0 1 and 6 0 2 and the capacitor 〇 2020/175333 106 卩(:171? 2020/006903
6 0 4は、 それぞれ配線 6 1 2により電気的に接続されている。 なお詳しく は、 スイッチモジュール 5 3 2八は、 スぺーサ 5 4 9を介して外側周壁 八 1 に取り付けられるが、 スぺーサ 5 4 9の図示を省略している。 604 are electrically connected by wiring 612. More specifically, the switch module 5 3 2 8 is attached to the outer peripheral wall 8 1 via a spacer 5 49, but the spacer 5 49 is not shown.
[0399] スイッチモジュール 5 3 2八が外側周壁 八 1 に固定された状態では、 ス イッチモジュール 5 3 2八において外側周壁 八 1 に近い側、 すなわち冷却 水通路 5 4 5に近い側ほど冷却性が高いため、 その冷却性に応じてスイッチ 6 0 1 , 6 0 2、 駆動回路 6 0 3及びコンデンサ 6 0 4の配列の順序が定め られている。 具体的には、 発熱量を比べると、 大きいものからスイッチ 6 0 1 , 6 0 2、 コンデンサ 6 0 4、 駆動回路 6 0 3の順序となるため、 その発 熱量の大きさ順序に合わせて、 外側周壁 1 に近い側からスイッチ 6 0 1 , 6 0 2、 コンデンサ 6 0 4、 駆動回路 6 0 3の順序でこれらが配置されて いる。 なお、 スイッチモジュール 5 3 2八の接触面は、 内壁部材 5 4 2の内 周面における接触可能面より小さいとよい。 [0399] When the switch module 5 3 2 8 is fixed to the outer peripheral wall 81, the cooler the switch module 5 3 2 8 is closer to the outer peripheral wall 81, that is, the closer to the cooling water passage 5 45. Therefore, the order of arrangement of the switches 60 1, 60 2, the drive circuit 60 3 and the capacitor 60 4 is determined according to the cooling performance. Specifically, when comparing the amount of heat generation, the order is the switch 601, 602, the capacitor 604, and the drive circuit 603 in descending order, so according to the order of the amount of heat generation, The switches 60 1, 60 2, capacitors 60 4, and drive circuit 60 3 are arranged in this order from the side close to the outer peripheral wall 1. The contact surface of the switch module 532 is preferably smaller than the contactable surface of the inner peripheral surface of the inner wall member 542.
[0400] なお、 コンデンサモジュール 5 3 2巳については詳細な図示を省略するが 、 コンデンサモジュール 5 3 2巳では、 スイッチモジュール 5 3 2八と同じ 形状及び大きさのモジュールケース内に、 コンデンサ 6 0 6が収容されて構 成されている。 コンデンサモジュール 5 3 2巳は、 スイッチモジュール 5 3 2八と同様に、 モジュールケース 6 1 1の側面がインバータハウジング 5 3 1の内壁部材 5 4 2の内周面に当接した状態で、 外側周壁 1 に固定され ている。 [0400] Although detailed illustration of the capacitor module 5 3 2 is omitted, in the capacitor module 5 32, the capacitor 6 0 is placed in a module case of the same shape and size as the switch module 5 3 2 8 Six are housed and configured. As with the switch module 5 3 2 8, the capacitor module 5 3 2 has an outer peripheral wall with the side surface of the module case 6 1 1 abutting on the inner peripheral surface of the inner wall member 5 4 2 of the inverter housing 5 3 1. It is fixed at 1.
[0401 ] スイッチモジュール 5 3 2八及びコンデンサモジュール 5 3 2巳は、 イン バータハウジング 5 3 1の外側周壁 八 1の径方向内側において必ずしも同 心円上に並んでいなくてもよい。 例えばスイッチモジュール 5 3 2八がコン デンサモジュール 5 3 2巳よりも径方向内側に配置される構成、 又はその逆 となるように配置される構成であってもよい。 [0401] The switch module 532 and capacitor module 532 do not necessarily have to be arranged concentrically inside the outer peripheral wall 81 of the inverter housing 531 in the radial direction. For example, the switch module 532 may be arranged radially inward of the capacitor module 532 or vice versa.
[0402] 回転電機 5 0 0の駆動時には、 スイッチモジュール 5 3 2八及びコンデン サモジュール 5 3 2巳と冷却水通路 5 4 5との間で、 外側周壁 八 1の内壁 部材 5 4 2を介して熱交換が行われる。 これにより、 スイッチモジュール 5 〇 2020/175333 107 卩(:171? 2020 /006903 [0402] When the rotating electric machine 500 is driven, the inner wall member 5 4 2 of the outer peripheral wall 8 1 is interposed between the switch module 5 3 2 8 and the capacitor module 5 3 2 and the cooling water passage 5 4 5. Heat is exchanged. This allows the switch module 5 〇 2020/175333 107 卩(: 171-1? 2020/006903
32八及びコンデンサモジュール 532巳における冷却が行われる。 32 8 and condenser module 532 are cooled.
[0403] 各電気モジュール 532は、 その内部に冷却水を引き込み、 モジュール内 部にて冷却水による冷却を行わせる構成であってもよい。 ここでは、 スイッ チモジュール 532八の水冷構造を、 図 6 1 (a) , (b) を用いて説明す る。 図 6 1 (3) は、 外側周壁 八 1 を横切る方向で、 スイッチモジュール 532八の断面構造を示す縦断面図であり、 図 6 1 (匕) は、 図 6 1 (a) の 6 1 6-6 1 巳線断面図である。 [0403] Each electric module 532 may have a configuration in which cooling water is drawn into the inside thereof and cooling is performed by the cooling water inside the module. Here, the water cooling structure of the switch module 5328 is described with reference to FIGS. 61 (a) and (b). Fig. 6 1 (3) is a vertical cross-sectional view showing the cross-sectional structure of the switch module 5328 in the direction crossing the outer peripheral wall 81, and Fig. 61 (匕) is shown in Fig. 61 (a). -6 1 It is a cross-sectional view of the line.
[0404] 図 6 1 (a) , (匕) に示すように、 スイッチモジュール 532八は、 図 [0404] As shown in Fig. 6 1 (a) and (匕), the switch module
60と同様にモジュールケース 6 1 1 と、 1相分のスイッチ 601 , 602 と、 駆動回路 603と、 コンデンサ 604とを有することに加え、 一対の配 管部 62 1 , 622及び冷却器 623からなる冷却装置を有している。 冷却 装置において、 一対の配管部 62 1 , 622は、 外側周壁 1の冷却水通 路 545から冷却器 623へ冷却水を流入させる流入側の配管部 62 1 と、 冷却器 623から冷却水通路 545へ冷却水を流出させる流出側の配管部 6 22とからなる。 冷却器 623は、 冷却対象物に応じて設けられ、 冷却装置 では 1段又は複数段の冷却器 623が用いられる。 図 6 1 (a) , (匕) の 構成では、 冷却水通路 545から離れる方向、 すなわちインバータユニッ ト 53〇の径方向に、 互いに離間した状態で 2段の冷却器 623が設けられて おり、 一対の配管部 62 1 , 622を介してそれら各冷却器 623に対して 冷却水が供給される。 冷却器 623は、 例えば内部が空洞になっている。 た だし、 冷却器 623の内部にインナフィンが設けられていてもよい。 Similar to 60, it has a module case 61 1, switches 601 and 602 for one phase, a drive circuit 603, and a capacitor 604, as well as a pair of pipe parts 62 1 and 622 and a cooler 623. It has a cooling device. In the cooling device, the pair of piping parts 62 1 and 622 are the piping part 62 1 on the inflow side that allows the cooling water to flow from the cooling water passage 545 of the outer peripheral wall 1 to the cooler 623, and the cooling water passage 545 from the cooler 623. It consists of the piping part 6 22 on the outflow side that allows the cooling water to flow out. The cooler 623 is provided according to the object to be cooled, and the cooling device uses one or a plurality of stages of coolers 623. In the configuration shown in Fig. 61 (a) and (匕), a two-stage cooler 623 is installed in the direction away from the cooling water passage 545, that is, in the radial direction of the inverter unit 53 〇, in a state of being separated from each other. Cooling water is supplied to each of the coolers 623 through the pair of piping portions 62 1 and 622. The cooler 623 has, for example, a hollow inside. However, inner fins may be provided inside the cooler 623.
[0405] 2段の冷却器 623を備える構成では、 (1 ) 1段目の冷却器 623の外 側周壁 \ZVA 1側、 (2) 1段目及び 2段目の冷却器 623の間、 (3) 2段 目の冷却器 623の反外側周壁側が、 それぞれ冷却対象の電気部品を配置す る場所であり、 これら各場所は、 冷却性能の高いものから順から (2) 、 ( 1 ) 、 (3) となっている。 つまり、 2つの冷却器 623に挟まれた場所が 最も冷却性能が高く、 いずれか 1つの冷却器 623に隣接する場所では、 外 側周壁 八 1 (冷却水通路 545) に近い方が冷却性能が高くなっている。 〇 2020/175333 108 卩(:171? 2020 /006903 [0405] In the configuration including the two-stage cooler 623, (1) the outer peripheral wall \ZVA 1 side of the first-stage cooler 623, (2) between the first-stage and second-stage coolers 623, (3) The anti-outer peripheral wall side of the second-stage cooler 623 is the place where the electrical parts to be cooled are placed, and these places are from the one with the highest cooling performance in order from (2), (1). , (3). In other words, the place between two coolers 623 has the highest cooling performance, and in the place adjacent to any one cooler 623, the cooling performance is closer to the outer peripheral wall 81 (cooling water passage 545). It's getting higher. 〇 2020/175333 108 卩 (:171? 2020 /006903
これを加味し、 図 6 1 (a) , (b) に示す構成では、 スイッチ 601 , 6Taking this into consideration, in the configuration shown in Fig. 61 (a) and (b), the switches 601 and 6
02が、 (2) 1段目及び 2段目の冷却器 623の間に配置され、 コンデン サ 604が、 (1 ) 1段目の冷却器 623の外側周壁 八 1側に配置され、 駆動回路 603が、 (3) 2段目の冷却器 623の反外側周壁側に配置され ている。 なお、 図示しないが、 駆動回路 603とコンデンサ 604とが逆の 配置であってもよい。 02 is arranged between the (2) first-stage cooler 623 and the second-stage cooler 623, and the capacitor 604 is (1) arranged on the outer peripheral wall 81 side of the first-stage cooler 623, and the drive circuit 603 is (3) arranged on the side opposite to the outer peripheral wall of the second stage cooler 623. Although not shown, the drive circuit 603 and the capacitor 604 may be arranged in reverse.
[0406] いずれの場合であってもモジュールケース 6 1 1内において、 スイッチ 6 [0406] In either case, the switch 6
01 , 602と駆動回路 603、 スイッチ 601 , 602とコンデンサ 60 4は、 それぞれ配線 6 1 2により電気的に接続されている。 また、 スイッチ 601 , 602が駆動回路 603とコンデンサ 604との間に位置するため 、 スイッチ 601 , 602から駆動回路 603に向かって延びる配線 6 1 2 と、 スイッチ 601 , 602からコンデンサ 604に向かって延びる配線 6 1 2は互いに逆方向に延びる関係である。 01, 602 and the drive circuit 603, and the switches 601, 602 and the capacitor 604 are electrically connected by the wiring 6 12 respectively. Further, since the switches 601 and 602 are located between the drive circuit 603 and the capacitor 604, the wiring 6 1 2 extending from the switches 601 and 602 toward the drive circuit 603 and the wiring 612 extending from the switches 601 and 602 toward the capacitor 604. The wirings 6 1 2 have a relationship of extending in mutually opposite directions.
[0407] 図 6 1 (匕) に示すように、 一対の配管部 62 1 , 622は、 周方向、 す なわち冷却水通路 545の上流側及び下流側に並べて配置されており、 上流 側に位置する流入側の配管部 62 1から冷却器 623に冷却水が流入され、 その後、 下流側に位置する流出側の配管部 622から冷却水が流出される。 なお、 冷却装置への冷却水の流入を促すべく、 冷却水通路 545には、 周方 向に見て、 流入側の配管部 62 1 と流出側の配管部 62 1 との間となる位置 に、 冷却水の流れを規制する規制部 624が設けられているとよい。 規制部 624は、 冷却水通路 545を遮断する遮断部、 又は冷却水通路 545の通 路面積を小さくする絞り部であるとよい。 [0407] As shown in Fig. 6 1 (distance), the pair of piping parts 62 1 and 622 are arranged side by side in the circumferential direction, that is, on the upstream side and the downstream side of the cooling water passage 545, and on the upstream side. Cooling water flows into the cooler 623 from the inflow side piping portion 621 located therein, and thereafter, cooling water flows out from the outflow side piping portion 622 located downstream. In order to promote the inflow of cooling water into the cooling device, the cooling water passage 545 is located at a position between the inflow side pipe portion 62 1 and the outflow side pipe portion 62 1 when viewed in the circumferential direction. It is preferable that a regulation unit 624 that regulates the flow of cooling water is provided. The restriction unit 624 may be a blocking unit that blocks the cooling water passage 545, or a throttle unit that reduces the passage area of the cooling water passage 545.
[0408] 図 62には、 スイッチモジュール 532八の別の冷却構造を示す。 図 62 [0408] FIG. 62 shows another cooling structure of the switch module 5328. Fig. 62
(3) は、 外側周壁 八 1 を横切る方向で、 スイッチモジュール 532八の 断面構造を示す縦断面図であり、 図 62 (匕) は、 図 62 (a) の 62巳一 62巳線断面図である。 (3) is a vertical cross-sectional view showing the cross-sectional structure of the switch module 53,28 in the direction crossing the outer peripheral wall 81, and FIG. Is.
[0409] 図 62 (3) , (b) の構成では、 上述した図 6 1 (a) , (b) の構成 との相違点として、 冷却装置における一対の配管部 62 1 , 622の配置が 〇 2020/175333 109 卩(:171? 2020 /006903 [0409] The configuration of Figs. 62 ( 3 ) and (b) differs from the configuration of Figs. 61 (a) and (b) described above in that the arrangement of the pair of piping parts 62 1 and 622 in the cooling device is different. 〇 2020/175333 109 卩 (:171? 2020 /006903
異なっており、 一対の配管部 6 2 1 , 6 2 2が軸方向に並べて配置されてい る。 また、 図 6 2 (〇) に示すように、 冷却水通路 5 4 5は、 流入側の配管 部 6 2 1 に連通される通路部分と、 流出側の配管部 6 2 2に連通される通路 部分とが軸方向に分離して設けられ、 それら各通路部分が各配管部 6 2 1 ,They are different, and a pair of piping parts 6 2 1 and 6 2 2 are arranged side by side in the axial direction. Further, as shown in Fig. 6 2 (○), the cooling water passages 5 45 are connected to the inflow side pipe section 6 21 and the outflow side pipe section 6 2 2. And the passages are separated from each other in the axial direction.
6 2 2及び各冷却器 6 2 3を通じて連通されている。 It is connected through 6 2 2 and each cooler 6 2 3.
[0410] その他に、 スイッチモジュール 5 3 2八として、 次の構成を用いることも 可能である。 [0410] In addition, the following configurations can be used as the switch module 5328.
[041 1 ] 図 6 3 ( 3 ) に示す構成では、 図 6 1 ( 3 ) の構成と比べて、 冷却器 6 2 [041 1] In the configuration shown in Fig. 6 3 (3 ), the cooler 6 2
3が 2段から 1段に変更されている。 この場合、 モジュールケース 6 1 1内 において冷却性能の最も高い場所が図 6 1 ( a ) とは異なっており、 冷却器 6 2 3の径方向両側 (図の左右方向両側) のうち外側周壁 1側の場所が 最も冷却性能が高く、 次いで、 冷却器 6 2 3の反外側周壁側の場所、 冷却器 6 2 3から離れた場所の順に冷却性能が低くなっている。 これを加味し、 図 6 3 ( a ) に示す構成では、 スイッチ 6 0 1 , 6 0 2が、 冷却器 6 2 3の径 方向両側 (図の左右方向両側) のうち外側周壁 1側の場所に配置され、 コンデンサ 6 0 4が、 冷却器 6 2 3の反外側周壁側の場所に配置され、 駆動 回路 6 0 3が、 冷却器 6 2 3から離れた場所に配置されている。 3 has been changed from 2 tiers to 1 tier. In this case, the location with the highest cooling performance in the module case 6 11 is different from that in Fig. 6 1 (a), and the outer peripheral wall The cooling performance is highest in the area on the side, followed by the cooling performance in the order of the location on the side opposite to the outer peripheral wall of the cooler 6 2 3 and the location away from the cooler 6 23 3. Taking this into consideration, in the configuration shown in Fig. 6 3 (a ), the switches 60 1 and 60 2 are located on the outer peripheral wall 1 side of both sides of the cooler 6 23 in the radial direction (both sides in the horizontal direction in the figure). , The condenser 60 4 is arranged at a position on the side opposite to the outer peripheral wall of the cooler 6 23, and the drive circuit 60 3 is arranged at a place apart from the cooler 6 23 3.
[0412] また、 スイッチモジュール 5 3 2八において、 モジュールケース 6 1 1内 に 1相分のスイッチ 6 0 1 , 6 0 2と、 駆動回路 6 0 3と、 コンデンサ 6 0 4とを収容する構成を変更することも可能である。 例えば、 モジュールケー ス 6 1 1内に 1相分のスイッチ 6 0 1 , 6 0 2と、 駆動回路 6 0 3及びコン デンサ 6 0 4のいずれ一方とを収容する構成としてもよい。 [0412] In addition, in the switch module 532, a configuration in which the switches 6011 and 602 for one phase, the drive circuit 603, and the capacitor 604 are housed in the module case 611. It is also possible to change. For example, the configuration may be such that the switches 60 1 and 60 2 for one phase and one of the drive circuit 60 3 and the capacitor 60 4 are housed in the module case 6 11.
[0413] 図 6 3 (匕) では、 モジュールケース 6 1 1内に、 一対の配管部 6 2 1 , [0413] In Fig. 6 3 (匕), a pair of piping parts 6 2 1,
6 2 2と 2段の冷却器 6 2 3とを設けるとともに、 スイッチ 6 0 1 , 6 0 2 を、 1段目及び 2段目の冷却器 6 2 3の間に配置し、 コンデンサ 6 0 4又は 駆動回路 6 0 3を、 1段目の冷却器 6 2 3の外側周壁 1側に配置する構 成としている。 また、 スイッチ 6 0 1 , 6 0 2と駆動回路 6 0 3とを一体化 して半導体モジュールとし、 その半導体モジュールとコンデンサ 6 0 4とを 〇 2020/175333 1 10 卩(:171? 2020 /006903 6 2 2 and a two-stage cooler 6 2 3 are provided, and switches 6 0 1 and 6 0 2 are placed between the first and second coolers 6 2 3 and the condenser 6 0 4 Alternatively, the drive circuit 60 3 is arranged on the outer peripheral wall 1 side of the first-stage cooler 6 23 3. In addition, the switches 60 1 and 60 2 and the drive circuit 60 3 are integrated into a semiconductor module, and the semiconductor module and the capacitor 60 4 are combined. 〇 2020/175 333 1 10 卩 (:171? 2020 /006903
、 モジュールケース 6 1 1内に収容する構成とすることも可能である。 It is also possible to adopt a configuration in which the module case 6 11 is housed.
[0414] なお、 図 6 3 (匕) では、 スイッチモジュール 5 3 2八において、 スイッ チ 6 0 1 , 6 0 2を挟んで両側に配置される冷却器 6 2 3のうち少なくとも —方の冷却器 6 2 3においてスイッチ 6 0 1 , 6 0 2とは逆側にコンデンサ が配置されているとよい。 すなわち、 1段目の冷却器 6 2 3の外側周壁 八 1側と、 2段目の冷却器 6 2 3の反周壁側とのうち一方にのみコンデンサ 6 0 4を配置する構成、 又は両方にコンデンサ 6 0 4を配置する構成が可能で ある。 [0414] In Fig. 63 (匕), in the switch module 5328, at least one of the coolers 623 arranged on both sides of the switch 601, 602 is sandwiched. It is advisable to place a capacitor on the side opposite to the switches 60 1 and 60 2 in the device 6 23. That is, the condenser 60 4 is arranged on only one of the outer peripheral wall 81 side of the first-stage cooler 6 23 and the opposite peripheral wall side of the second-stage cooler 6 23, or both. A configuration in which the capacitor 604 is arranged is possible.
[0415] 本実施形態では、 スイッチモジュール 5 3 2八とコンデンサモジュール 5 [0415] In this embodiment, the switch module 5 3 2 8 and the capacitor module 5 3
3 2巳とのうちスイッチモジュール 5 3 2八のみについて、 冷却水通路 5 4 5からモジュール内部に冷却水を引き込む構成としている。 ただし、 その構 成を変更し、 両方のモジュール 5 3 2八, 5 3 2巳に、 冷却水通路 5 4 5か ら冷却水を引き込む構成としてもよい。 Only the switch module 5 3 2 8 out of 3 2 m is configured to draw cooling water into the module from the cooling water passage 5 4 5. However, the configuration may be changed so that the cooling water is drawn into the both modules 532, 532 from the cooling water passage 5445.
[0416] また、 各電気モジュール 5 3 2の外面に冷却水を直接当てる状態にして、 各電気モジュール 5 3 2を冷却する構成とすることも可能である。 例えば、 図 6 4に示すように、 外側周壁 八 1 に電気モジュール 5 3 2を埋め込むこ とで、 電気モジュール 5 3 2の外面に冷却水を当てる構成とする。 この場合 、 電気モジュール 5 3 2の一部を冷却水通路 5 4 5内に浸潰させる構成や、 冷却水通路 5 4 5を図 5 8等の構成よりも径方向に拡張して電気モジュール 5 3 2の全てを冷却水通路 5 4 5内に浸潰させる構成が考えられる。 冷却水 通路 5 4 5内に電気モジュール 5 3 2を浸潰させる場合、 浸潰されるモジュ —ルケース 6 1 1 (モジュールケース 6 1 1の浸漬部分) にフィンを設ける と、 冷却性能を更に向上させることができる。 [0416] Further, it is also possible to cool each electric module 5 3 2 by directly applying cooling water to the outer surface of each electric module 5 32. For example, as shown in FIG. 64, a cooling water is applied to the outer surface of the electric module 5 3 2 by embedding the electric module 5 32 in the outer peripheral wall 81. In this case, a configuration in which a part of the electric module 5 32 is sunk into the cooling water passage 5 45, or the cooling water passage 5 45 is expanded in the radial direction compared to the configuration of FIG. It is conceivable that all of 3 2 are immersed in the cooling water passage 5 4 5. When immersing the electric module 5 3 2 in the cooling water passage 5 4 5, providing cooling fins on the module case 6 1 1 (the immersed part of the module case 6 1 1) further improves the cooling performance. be able to.
[0417] また、 電気モジュール 5 3 2には、 スイッチモジュール 5 3 2八とコンデ ンサモジュール 5 3 2巳とが含まれ、 それら両者を比べた場合に発熱量に差 異がある。 この点を考慮して、 インバータハウジング 5 3 1 における各電気 モジュール 5 3 2の配置を工夫することも可能である。 [0417] In addition, the electric module 532 includes a switch module 532 and a capacitor module 532, and there is a difference in the amount of heat generated when the two are compared. Considering this point, it is possible to devise the arrangement of each electric module 5 3 2 in the inverter housing 5 3 1.
[0418] 例えば、 図 6 5に示すように、 複数個のスイッチモジュール 5 3 2八を、 〇 2020/175333 1 1 1 卩(:171? 2020 /006903 [0418] For example, as shown in FIG. 〇 2020/175 333 1 1 1 卩 (: 171? 2020 /006903
分散させず周方向に並べ、 かつ冷却水通路 5 4 5の上流側、 すなわち入口通 路 5 7 1 に近い側に配置する。 この場合、 入口通路 5 7 1から流入した冷却 水は、 先ずは 3つのスイッチモジュール 5 3 2八の冷却に用いられ、 その後 に各コンデンサモジュール 5 3 2巳の冷却に用いられる。 なお、 図 6 5では 、 先の図 6 2 (3) , (b) のように一対の配管部 6 2 1 , 6 2 2が軸方向 に並べて配置されているが、 これに限らず、 先の図 6 1 (a) , (1〇) のよ うに一対の配管部 6 2 1 , 6 2 2が周方向に並べて配置されていてもよい。 They are arranged in the circumferential direction without being dispersed and are arranged on the upstream side of the cooling water passage 5 45, that is, on the side close to the inlet passage 5 71. In this case, the cooling water flowing from the inlet passage 5 71 is first used for cooling the three switch modules 5 3 2 8 and then used for cooling the respective capacitor modules 5 3 2. In Fig. 65, the pair of pipe parts 6 2 1 and 6 2 2 are arranged side by side in the axial direction as shown in Fig. 6 2 ( 3 ) and (b) above. As shown in FIGS. 6 1 (a) and (10) in FIG. 6, a pair of piping parts 6 2 1 and 6 2 2 may be arranged side by side in the circumferential direction.
[0419] 次に、 各電気モジュール 5 3 2及びバスバーモジュール 5 3 3における電 気的な接続に関する構成を説明する。 図 6 6は、 図 4 9の 6 6 - 6 6線断面 図であり、 図 6 7は、 図 4 9の 6 7— 6 7線断面図である。 図 6 8は、 バス バーモジュール 5 3 3を単体で示す斜視図である。 ここではこれら各図を併 せ用いて、 各電気モジュール 5 3 2及びバスバーモジュール 5 3 3の電気接 続に関する構成を説明する。 [0419] Next, a configuration relating to electrical connection in each electric module 532 and bus bar module 533 will be described. FIG. 66 is a sectional view taken along line 6 6-66 of FIG. 49, and FIG. 67 is a sectional view taken along line 6 7-6 7 of FIG. FIG. 68 is a perspective view showing the bus bar module 5 33 as a single unit. Here, the configuration relating to the electrical connection of each electric module 5 3 2 and bus bar module 5 3 3 will be described by using these drawings together.
[0420] 図 6 6に示すように、 インバータハウジング 5 3 1 には、 内壁部材 5 4 2 に設けられた突出部 5 7 3 (すなわち、 冷却水通路 5 4 5に通じる入口通路 5 7 1及び出口通路 5 7 2が設けられた突出部 5 7 3) の周方向に隣となる 位置に、 3つのスイッチモジュール 5 3 2八が周方向に並べて配置されると ともに、 さらにその隣に、 6つのコンデンサモジュール 5 3 2巳が周方向に 並べて配置されている。 その概要として、 インバータハウジング 5 3 1では 、 外側周壁 八 1の内側が周方向に 1 0個 (すなわち、 モジュール数 + 1) の領域に等分に分けられ、 そのうち 9つの領域にそれぞれ電気モジュール 5 3 2が 1つずつ配置されるとともに、 残り 1つの領域に突出部 5 7 3が設け られている。 3つのスイッチモジュ _ル 5 3 2八は、 リ相用モジュ _ル、 V 相用モジュール、 \/\/相用モジュールである。 [0420] As shown in FIG. 6 6, the inverter housing 5 3 1 has a protrusion 5 7 3 provided on the inner wall member 5 4 2 (that is, an inlet passage 5 7 1 leading to the cooling water passage 5 4 5 and Three switch modules 5 3 2 8 are arranged side by side in the circumferential direction at a position adjacent to the projecting portion 5 7 3) provided with the outlet passage 5 7 2 in the circumferential direction, and further adjacent to that, 6 Two capacitor modules 5 3 2 are arranged side by side in the circumferential direction. As an outline of this, in the inverter housing 5 3 1, the inside of the outer peripheral wall 8 1 is divided into 10 areas (that is, the number of modules + 1) in the circumferential direction, and the electric module 5 3 2 are arranged one by one, and a protrusion 5 73 is provided in the remaining one area. Three switch modules _ le 5 3 2 eight is re-phase module _ Le, V-phase module, a \ / \ / phase module.
[0421 ] 図 6 6や前述の図 5 6、 図 5 7等に示すように、 各電気モジュール 5 3 2 (スイッチモジュール 5 3 2八及びコンデンサモジュール 5 3 2巳) は、 モ ジュールケース 6 1 1から延びる複数のモジュール端子 6 1 5を有している 。 モジュール端子 6 1 5は、 各電気モジュール 5 3 2における電気的な入出 〇 2020/175333 1 12 卩(:171? 2020 /006903 [0421] As shown in Fig. 66 and the above-mentioned Fig. 56, Fig. 57, etc., each electric module 5 3 2 (switch module 5 3 2 8 and capacitor module 5 3 2 M) has a module case 6 1 It has a plurality of module terminals 6 15 extending from 1. The module terminals 6 1 5 are the electrical contacts for each electrical module 5 3 2. 〇 2020/175 333 1 12 卩 (: 171? 2020 /006903
力を行わせるモジュール入出力端子である。 モジュール端子 6 1 5は、 軸方 向に延びる向きで設けられており、 より具体的には、 モジュールケース 6 1 1から回転子キャリア 5 1 1の奧側 (車両外側) に向けて延びるように設け られている (図 5 1参照) 。 It is a module input/output terminal for force. The module terminals 6 15 are provided so as to extend in the axial direction, and more specifically, the module terminals 6 15 are arranged so as to extend from the module case 6 11 toward the inner side of the rotor carrier 5 11 (outside the vehicle). It is provided (see Figure 51).
[0422] 各電気モジュール 5 3 2のモジュール端子 6 1 5は、 それぞれバスバーモ ジュール 5 3 3に接続されている。 モジュール端子 6 1 5の数は、 スイッチ モジュール 5 3 2八とコンデンサモジュール 5 3 2巳とで異なっており、 ス イッチモジュール 5 3 2八には 4つのモジュール端子 6 1 5が設けられ、 コ ンデンサモジュール 5 3 2巳には 2つのモジュール端子 6 1 5が設けられて いる。 [0422] The module terminals 6 15 of each electrical module 5 3 2 are connected to the busbar module 5 3 3, respectively. The number of module terminals 6 1 5 is different between the switch module 5 3 2 8 and the capacitor module 5 3 2 8 and the switch module 5 3 2 8 is provided with 4 module terminals 6 1 5 and is a capacitor. The module 5 3 2 is provided with two module terminals 6 1 5.
[0423] また、 図 6 8に示すように、 バスバーモジュール 5 3 3は、 円環状をなす 環状部 6 3 1 と、 その環状部 6 3 1から延び、 電源装置や巳〇11 (電子制御 装置) 等の外部装置との接続を可能とする 3本の外部接続端子 6 3 2と、 固 定子卷線 5 2 1 における各相の卷線端部に接続される卷線接続端子 6 3 3と を有している。 バスバーモジュール 5 3 3が 「端子モジュール」 に相当する [0423] Further, as shown in Fig. 68, the bus bar module 533 is an annular portion 631 having an annular shape, and extends from the annular portion 631, and is connected to a power supply device or a semiconductor device 11 (electronic control device). ), etc., and three external connection terminals 6 3 2 that enable connection with external devices, and a winding wire connection terminal 6 3 3 connected to the end of the winding wire of each phase in the stator winding wire 5 2 1. have. Busbar module 5 3 3 corresponds to "terminal module"
[0424] 環状部 6 3 1は、 インバータハウジング 5 3 1 において外側周壁 八 1の 径方向内側であり、 かつ各電気モジュール 5 3 2の軸方向片側となる位置に 配置されている。 環状部 6 3 1は、 例えば樹脂等の絶縁部材により成形され た円環状の本体部と、 その内部に埋設された複数のバスバーとを有する。 そ の複数のバスバーは、 各電気モジュール 5 3 2のモジュール端子 6 1 5や、 各外部接続端子 6 3 2、 固定子巻線 5 2 1の各相卷線に接続されている。 そ の詳細は後述する。 [0424] The annular portion 631 is arranged radially inside the outer peripheral wall 81 in the inverter housing 531 and on one side in the axial direction of each electric module 532. The annular portion 631 has, for example, an annular main body formed of an insulating member such as resin, and a plurality of bus bars embedded therein. The plurality of bus bars are connected to the module terminals 6 15 of each electric module 5 3 2, each external connection terminal 6 3 2, and each winding of the stator winding 5 21. The details will be described later.
[0425] 外部接続端子 6 3 2は、 電源装置に接続される高電位側の電力端子 6 3 2 八及び低電位側の電力端子 6 3 2巳と、 外部巳(3 IIに接続される 1本の信号 端子 6 3 2 0とからなる。 これら各外部接続端子 6 3 2 (6 3 2八~ 6 3 2 〇) は、 周方向に一列に並び、 かつ環状部 6 3 1の径方向内側において軸方 向に延びるように設けられている。 図 5 1 に示すように、 バスバーモジュー 〇 2020/175333 1 13 卩(:171? 2020 /006903 [0425] The external connection terminals 6 3 2 are the high-potential-side power terminal 6 3 2 8 and the low-potential-side power terminal 6 3 2 which are connected to the power supply device, and the external potential (3 II 1 Each of these external connection terminals 6 3 2 (6 3 2 8 to 6 3 2 0) is arranged in a row in the circumferential direction and is radially inward of the annular portion 6 3 1. It is installed so as to extend in the axial direction at the bus bar module as shown in Fig. 51. 〇 2020/175 333 1 13 卩 (: 171? 2020 /006903
ル 5 3 3が各電気モジュール 5 3 2と共にインバータハウジング 5 3 1 に組 み付けられた状態では、 外部接続端子 6 3 2の一端がボス形成部材 5 4 3の 端板 5 4 7から突出するように構成されている。 具体的には、 図 5 6、 図 5 7に示すように、 ボス形成部材 5 4 3の端板 5 4 7には揷通孔 5 4 7 3が設 けられており、 その揷通孔 5 4 7 3に円筒状のグロメッ ト 6 3 5が取り付け られるとともに、 グロメッ ト 6 3 5を揷通させた状態で外部接続端子 6 3 2 が設けられている。 グロメッ ト 6 3 5は、 密閉コネクタとしても機能する。 When the ruler 5 3 3 is assembled in the inverter housing 5 3 1 together with each electric module 5 3 2, one end of the external connection terminal 6 3 2 protrudes from the end plate 5 4 7 of the boss forming member 5 4 3. Is configured. Specifically, as shown in FIGS. 56 and 57, the end plate 5 47 of the boss forming member 54 3 is provided with a shed hole 5 47 3 and the shed hole 5 47. A cylindrical grommet 6 3 5 is attached to 4 7 3 and an external connection terminal 6 3 2 is provided with the grommet 6 3 5 being put in a knot. Grommet 6 35 also functions as a sealed connector.
[0426] 巻線接続端子 6 3 3は、 固定子巻線 5 2 1の各相の卷線端部に接続される 端子であり、 環状部 6 3 1から径方向外側に延びるように設けられている。 巻線接続端子 6 3 3は、 固定子巻線 5 2 1 における II相巻線の端部に接続さ れる卷線接続端子 6 3 3 II、 V相巻線の端部に接続される卷線接続端子 6 3 3 V、 相巻線の端部にそれぞれ接続に接続される卷線接続端子 6 3 3 \^/を 有する。 これらの各卷線接続端子 6 3 3、 各相卷線に流れる電流 (II相電流 、 V相電流、 相電流) を検出する電流センサ 6 3 4が設けられているとよ い (図 7 0参照) 。 [0426] The winding connection terminal 6 3 3 is a terminal connected to the winding end of each phase of the stator winding 5 21 and is provided so as to extend radially outward from the annular portion 6 3 1. ing. Winding connection terminal 6 3 3 is a winding wire connection terminal 6 3 3 II, which is connected to the end of the II phase winding in the stator winding 5 2 1, and a winding wire that is connected to the end of the V phase winding. It has a connection terminal 6 3 3 V, and a winding wire connection terminal 6 3 3 \^/ that is connected to the connection at each end of the phase winding. It is said that each of these winding wire connection terminals 6 3 3 and a current sensor 6 3 4 for detecting the current (II phase current, V phase current, phase current) flowing in each phase winding wire are provided (Fig. 7 0 See).
[0427] なお、 電流センサ 6 3 4は、 電気モジュール 5 3 2の外部であって、 各卷 線接続端子 6 3 3の周辺に配置されてもよいし、 電気モジュール 5 3 2の内 部に配置されてもよい。 [0427] Note that the current sensor 6 34 may be arranged outside the electric module 5 32 and around each wire connecting terminal 6 33, or inside the electric module 5 32. It may be arranged.
[0428] ここで、 各電気モジュール 5 3 2とバスバーモジュール 5 3 3との接続を 、 図 6 9及び図 7 0を用いてより具体的に説明する。 図 6 9は、 各電気モジ ュール 5 3 2を平面状に展開して示すとともに、 それら各電気モジュール 5 3 2とバスバーモジュール 5 3 3との電気的な接続状態を模式的に示す図で ある。 図 7 0は、 各電気モジュール 5 3 2を円環状に配置した状態での各電 気モジュール 5 3 2とバスバーモジュール 5 3 3との接続を模式的に示す図 である。 なお、 図 6 9には、 電力伝送用の経路を実線で示し、 信号伝送系の 経路を _点鎖線で示している。 図 7 0には、 電力伝送用の経路のみを示して いる。 [0428] Here, the connection between each electric module 5 3 2 and the bus bar module 5 3 3 will be described in more detail with reference to Figs. 69 and 70. FIG. 69 is a diagram showing each electric module 5 32 in a plan view, and schematically showing the electrical connection state between each electric module 5 32 and the bus bar module 5 33. .. FIG. 70 is a diagram schematically showing the connection between the electric modules 5 3 2 and the bus bar module 5 3 3 when the electric modules 5 32 are arranged in an annular shape. Incidentally, in FIG. 6 9 shows a path for power transmission by the solid line indicates the path of a signal transmission system in _ point chain line. In Fig. 70, only the path for power transmission is shown.
[0429] バスバーモジュール 5 3 3は、 電力伝送用のバスバーとして、 第 1バスバ 〇 2020/175333 1 14 卩(:171? 2020 /006903 [0429] The busbar module 5 3 3 is used as a busbar for power transmission, and is the first busbar module. 〇 2020/175 333 1 14 卩 (: 171? 2020 /006903
- 6 4 1 と第 2バスバー 6 4 2と第 3バスバー 6 4 3とを有している。 この うち第 1バスバー 6 4 1が高電位側の電力端子 6 3 2八に接続され、 第 2バ スバー 6 4 2が低電位側の電力端子 6 3 2巳に接続されている。 また、 3つ の第 3バスバー 6 4 3が、 II相の巻線接続端子 6 3 3 II、 V相の巻線接続端 子 6 3 3 V、 相の巻線接続端子 6 3 3 \^/にそれぞれ接続されている。 -6 41, 2nd busbar 6 4 2 and 3rd busbar 6 4 3. Of these, the first bus bar 6 4 1 is connected to the power terminal 6 3 2 8 on the high potential side, and the second bus bar 6 4 2 is connected to the power terminal 6 3 2 on the low potential side. In addition, the three third busbars 6 4 3 are connected to the II phase winding connection terminal 6 3 3 II, the V phase winding connection terminal 6 3 3 V, and the phase winding connection terminal 6 3 3 \^/ Respectively connected to.
[0430] また、 巻線接続端子 6 3 3や第 3バスバー 6 4 3は、 回転電機 1 0の動作 により発熱しやすい部位である。 このため、 巻線接続端子 6 3 3と第 3バス バー 6 4 3との間に図示しない端子台を介在させるとともに、 この端子台を 、 冷却水通路 5 4 5を有するインバータハウジング 5 3 1 に当接させてもよ い。 又は、 巻線接続端子 6 3 3や第 3バスバー 6 4 3をクランク状に曲げる ことで、 巻線接続端子 6 3 3や第 3バスバー 6 4 3を冷却水通路 5 4 5を有 するインバータハウジング 5 3 1 に当接させてもよい。 [0430] Further, the winding connection terminal 6 33 and the third bus bar 6 43 are portions that easily generate heat due to the operation of the rotating electric machine 10. For this reason, a terminal block (not shown) is interposed between the winding connection terminal 6 33 and the third bus bar 6 43, and this terminal block is installed in the inverter housing 5 3 1 having the cooling water passages 5 45. You may make it abut. Alternatively, the winding connection terminal 6 3 3 and the third bus bar 6 4 3 are bent in a crank shape so that the winding connection terminal 6 3 3 and the third bus bar 6 4 3 are connected to the inverter housing having the cooling water passages 5 4 5. It may be brought into contact with 5 31.
[0431 ] このような構成であれば、 巻線接続端子 6 3 3や第 3バスバー 6 4 3で発 生した熱を冷却水通路 5 4 5内の冷却水に放熱することができる。 [0431] With such a configuration, the heat generated in the winding connection terminal 6 3 3 and the third bus bar 6 4 3 can be radiated to the cooling water in the cooling water passage 5 4 5.
[0432] なお、 図 7 0では、 第 1バスバー 6 4 1及び第 2バスバー 6 4 2を、 円環 形状をなすバスバーとして示すが、 これら各バスバー 6 4 1 , 6 4 2は必ず しも円環形状で繫がっていなくてもよく、 周方向の一部が途切れた略<3字状 をなしていてもよい。 また、 各卷線接続端子 6 3 3 II , 6 3 3 V , 6 3 3 \^/ は、 各相に対応するスイッチモジュール 5 3 2 に個々に接続されればよい ため、 バスバーモジュール 5 3 3を介することなく、 直接的に各スイッチモ ジュール 5 3 2八 (実際にはモジュール端子 6 1 5) に接続される構成であ ってもよい。 [0432] Note that in Fig. 70, the first busbar 6 4 1 and the second busbar 6 4 2 are shown as annular busbars, but these busbars 6 4 1 and 6 4 2 are always circles. It may be ring-shaped and unbroken, or may have a substantially <3 character shape with a partial interruption in the circumferential direction. Also, each wire connection terminal 6 3 3 II, 6 3 3 V, 6 3 3 \^/ need only be individually connected to the switch module 5 3 2 corresponding to each phase, so the busbar module 5 3 3 It may be configured such that it is directly connected to each switch module 5 3 2 8 (actually module terminal 6 15) without going through.
[0433] 一方、 各スイッチモジュール 5 3 2八は、 正極側端子、 負極側端子、 巻線 用端子及び信号用端子からなる 4つのモジュール端子 6 1 5を有している。 このうち正極側端子は第 1バスバー 6 4 1 に接続され、 負極側端子は第 2バ スバー 6 4 2に接続され、 卷線用端子は第 3バスバー 6 4 3に接続されてい る。 [0433] On the other hand, each switch module 532 has four module terminals 615 consisting of a positive electrode side terminal, a negative electrode side terminal, a winding terminal and a signal terminal. Of these, the positive terminal is connected to the first bus bar 641, the negative terminal is connected to the second bus bar 642, and the winding wire terminal is connected to the third bus bar 643.
[0434] また、 バスバーモジュール 5 3 3は、 信号伝送系のバスバーとして第 4バ 〇 2020/175333 1 15 卩(:171? 2020 /006903 [0434] In addition, the bus bar module 5 33 is used as a bus bar for the signal transmission system, and the fourth bar. 〇 2020/175 333 1 15 卩(: 171? 2020/006903
スバー 6 4 4を有している。 各スイッチモジュール 5 3 2八の信号用端子が 第 4バスバー 6 4 4に接続されるとともに、 その第 4バスバー 6 4 4が信号 端子 6 3 2〇に接続されている。 It has a sub bar 644. The signal terminal of each switch module 5 3 2 8 is connected to the fourth bus bar 6 4 4, and the 4 th bus bar 6 4 4 is connected to the signal terminal 6 3 20.
[0435] 本実施形態では、 各スイッチモジュール 5 3 2 に対する制御信号を信号 端子 6 3 2〇を介して外部巳〇11から入力する構成としている。 つまり、 各 スイッチモジュール 5 3 2八内の各スイッチ 6 0 1 , 6 0 2は、 信号端子 6 3 2〇を介して入力される制御信号によりオンオフする。 そのため、 各スイ ッチモジュール 5 3 2八が、 途中で回転電機内蔵の制御装置を経由すること なく信号端子 6 3 2〇に対して接続される構成となっている。 ただし、 この 構成を変更し、 回転電機に制御装置を内蔵させ、 その制御装置からの制御信 号が各スイッチモジュール 5 3 2八に入力される構成とすることも可能であ る。 かかる構成を図 7 1 に示す。 [0435] In the present embodiment, the control signal for each switch module 5 3 2 is configured to be input from the external node 11 via the signal terminal 6 320. That is, the switches 60 1 and 60 2 in each of the switch modules 5 3 2 8 are turned on/off by the control signal input via the signal terminal 6 3 2 0. Therefore, each switch module 5328 is connected to the signal terminal 6320 without passing through the control unit with a built-in rotary electric machine on the way. However, it is also possible to change this configuration so that a control device is built in the rotating electric machine and the control signal from the control device is input to each switch module 5328. Such a configuration is shown in Fig. 71.
[0436] 図 7 1の構成では、 制御装置 6 5 2が実装された制御基板 6 5 1 を有し、 その制御装置 6 5 2が各スイッチモジュール 5 3 2八に接続されている。 ま た、 制御装置 6 5 2には信号端子 6 3 2(3が接続されている。 この場合、 制 御装置 6 5 2は、 例えば上位制御装置である外部日(3 IIから力行又は発電に 関する指令信号を入力し、 その指令信号に基づいて各スイッチモジュール 5 3 2八のスイッチ 6 0 1 , 6 0 2を適宜オンオフさせる。 [0436] The configuration of Fig. 71 includes a control board 651 on which a control device 652 is mounted, and the control device 652 is connected to each switch module 532. In addition, the signal terminal 6 3 2 (3 is connected to the control device 6 52. In this case, the control device 6 52 is, for example, an external control unit (3 II for power running or power generation from the upper control device). A command signal relating to this is input, and the switches 601, 602 of each switch module 532 are turned on/off as appropriate based on the command signal.
[0437] インバータユニッ ト 5 3 0においては、 バスバーモジュール 5 3 3よりも 車両外側 (回転子キャリア 5 1 1の奥側) に制御基板 6 5 1が配置されると よい。 又は、 各電気モジュール 5 3 2とボス形成部材 5 4 3の端板 5 4 7と の間に制御基板 6 5 1が配置されるとよい。 制御基板 6 5 1は、 各電気モジ ュール 5 3 2に対して少なくとも一部が軸方向に重複するように配置される とよい。 [0437] In the inverter unit 5300, the control board 651 may be arranged on the outer side of the vehicle (the inner side of the rotor carrier 511) than the busbar module 533. Alternatively, the control board 6 51 may be arranged between each electric module 5 32 and the end plate 5 47 of the boss forming member 5 43. The control board 6 51 may be arranged such that at least a part thereof overlaps with each electric module 5 32 in the axial direction.
[0438] また、 各コンデンサモジュール 5 3 2巳は、 正極側端子及び負極側端子か らなる 2つのモジュール端子 6 1 5を有しており、 正極側端子は第 1バスバ - 6 4 1 に接続され、 負極側端子は第 2バスバー 6 4 2に接続されている。 [0438] Moreover, each capacitor module 5 3 2 has two module terminals 6 1 5 consisting of a positive side terminal and a negative side terminal, and the positive side terminal is connected to the first bus bar 6 4 1. The negative terminal is connected to the second bus bar 6 42.
[0439] 図 4 9及び図 5 0に示すように、 インバータハウジング 5 3 1内には、 周 〇 2020/175333 1 16 卩(:171? 2020 /006903 [0439] As shown in Figs. 49 and 50, the inverter housing 531 has a 〇 2020/175 333 1 16 卩 (: 171? 2020 /006903
方向に各電気モジュール 5 3 2と並ぶ位置に、 冷却水の入口通路 5 7 1及び 出口通路 5 7 2を有する突出部 5 7 3が設けられるとともに、 その突出部 5 7 3に対して径方向に隣り合うようにして外部接続端子 6 3 2が設けられて いる。 換言すれば、 突出部 5 7 3と外部接続端子 6 3 2とが、 周方向に同じ 角度位置に設けられている。 本実施形態では、 突出部 5 7 3の径方向内側の 位置に外部接続端子 6 3 2が設けられている。 また、 インバータハウジング 5 3 1の車両内側から見れば、 ボス形成部材 5 4 3の端板 5 4 7に、 径方向 に並べて水路ポート 5 7 4と外部接続端子 6 3 2とが設けられている (図 4 8参照) 。 A projection 573 having a cooling water inlet passage 571 and an outlet passage 572 is provided at a position juxtaposed with each electric module 532 in the direction, and a radial direction with respect to the projection 573 is provided. The external connection terminal 6 3 2 is provided adjacent to. In other words, the protruding portion 5 73 and the external connection terminal 6 32 are provided at the same angular position in the circumferential direction. In the present embodiment, the external connection terminal 6 32 is provided at a position on the radially inner side of the protrusion 5 73. When viewed from the inside of the inverter housing 531, the end plate 547 of the boss forming member 543 is provided with the waterway port 574 and the external connection terminal 632 arranged side by side in the radial direction. (See Figure 48).
[0440] この場合、 複数の電気モジュール 5 3 2と共に突出部 5 7 3及び外部接続 端子 6 3 2を周方向に並べて配置したことにより、 インバータユニッ ト 5 3 0としての小型化、 ひいては回転電機 5 0 0としての小型化が可能となって いる。 [0440] In this case, the plurality of electric modules 5 3 2 and the protrusions 5 7 3 and the external connection terminals 6 3 2 are arranged side by side in the circumferential direction, thereby reducing the size of the inverter unit 5 30 and eventually the rotating electric machine. It is possible to reduce the size as 500.
[0441 ] 車輪 4 0 0の構造を示す図 4 5及び図 4 7で見ると、 水路ポート 5 7 4に 冷却用配管!· I 2が接続されるとともに、 外部接続端子 6 3 2に電気配線!· I 1 が接続され、 その状態で、 電気配線!· I 1及び冷却用配管!· I 2が収容ダクト 4 4 0に収容されている。 [0441] The structure of the wheel 400 is shown in Fig. 45 and Fig. 47. Cooling piping is connected to the waterway port 574! I 2 is connected and the external connection terminal 6 3 2 is electrically connected. !· I 1 is connected, and in that state, electric wiring!· I 1 and piping for cooling! ·I 2 is stored in the storage duct 440.
[0442] なお、 上記構成では、 インバータハウジング 5 3 1内において外部接続端 子 6 3 2の隣に、 3つのスイッチモジュール 5 3 2八を周方向に並べて配置 するととともに、 さらにその隣に、 6つのコンデンサモジュール 5 3 2巳を 周方向に並べて配置する構成としたが、 これを変更してもよい。 例えば、 外 部接続端子 6 3 2から最も離れた位置、 すなわち回転軸 5 0 1 を挟んで反対 側となる位置に、 3つのスイッチモジュール 5 3 2八を並べて配置する構成 としてもよい。 また、 各スイッチモジュール 5 3 2八の両隣にコンデンサモ ジュール 5 3 2巳が配置されるように、 各スイッチモジュール 5 3 2八を分 散配置することも可能である。 [0442] In the above configuration, three switch modules 5 3 2 8 are arranged side by side in the circumferential direction in the inverter housing 5 3 1 next to the external connection terminal 6 3 2, and further 6 Although the configuration is such that the three capacitor modules 5 32 are arranged side by side in the circumferential direction, this may be changed. For example, the configuration may be such that the three switch modules 5 32 8 are arranged side by side at the position farthest from the external connection terminal 6 32, that is, at the position on the opposite side of the rotary shaft 50 1. It is also possible to disperse each switch module 5 3 2 8 so that the capacitor modules 5 3 2 8 are arranged on both sides of each switch module 5 3 2 8.
[0443] 外部接続端子 6 3 2から最も離れた位置、 すなわち回転軸 5 0 1 を挟んで 反対側となる位置に各スイッチモジュール 5 3 2 を配置する構成とすれば 〇 2020/175333 1 17 卩(:171? 2020 /006903 [0443] If each switch module 5 3 2 is arranged at the position farthest from the external connection terminal 6 3 2, that is, at the position on the opposite side of the rotary shaft 5 0 1. 〇 2020/175 333 1 17 卩 (:171? 2020 /006903
、 外部接続端子 6 3 2と各スイツチモジュール 5 3 2八との間における相互 インダクタンスに起因する誤動作等を抑制できる。 , It is possible to suppress malfunction caused by mutual inductance between the external connection terminal 6 32 and each switch module 5 32 8.
[0444] 次に、 回転角度センサとして設けられるレゾルバ 6 6 0に関する構成を説 明する。 [0444] Next, the configuration related to the resolver 660 provided as the rotation angle sensor will be described.
[0445] 図 4 9〜図 5 1 に示すように、 インバータハウジング 5 3 1 には、 回転電 機 5 0 0の電気角 0を検出するレゾルバ 6 6 0が設けられている。 レゾルバ 6 6 0は、 電磁誘導式センサであり、 回転軸 5 0 1 に固定されたレゾルバロ —夕 6 6 1 と、 そのレゾルバロータ 6 6 1の径方向外側に対向配置されたレ ゾルバステータ 6 6 2とを備えている。 レゾルバロータ 6 6 1は、 円板リン グ状をなしており、 回転軸 5 0 1 を揷通させた状態で、 回転軸 5 0 1 に同軸 で設けられている。 レゾルバステータ 6 6 2は、 円環状をなすステータコア 6 6 3と、 ステータコア 6 6 3に形成された複数のティースに卷回されたス テータコイル 6 6 4とを備えている。 ステータコイル 6 6 4には、 1相の励 磁コイルと 2相の出カコイルとが含まれている。 [0445] As shown in FIGS. 49 to 51, the inverter housing 531 is provided with a resolver 660 that detects an electrical angle 0 of the rotary electric machine 500. The resolver 660 is an electromagnetic induction type sensor, and includes a resolver fixed on the rotating shaft 5 01 and a resolver stator 6 6 arranged opposite to the resolver rotor 6 61 in the radial direction. It has 2 and. The resolver rotor 6 61 has a disk ring shape, and is provided coaxially with the rotary shaft 5 01 with the rotary shaft 5 01 being passed through. The resolver stator 6 62 includes an annular stator core 6 63 and a stator coil 6 64 wound around a plurality of teeth formed on the stator core 6 63. The stator coil 6 64 includes a 1-phase excitation coil and a 2-phase output coil.
[0446] ステータコイル 6 6 4の励磁コイルは、 正弦波状の励磁信号によって励磁 され、 励磁信号によって励磁コイルに生じた磁束は、 _対の出カコイルを鎖 交する。 この際、 励磁コイルと一対の出カコイルとの相対的な配置関係がレ ゾルバロータ 6 6 1の回転角 (すなわち回転軸 5 0 1の回転角) に応じて周 期的に変化するため、 一対の出カコイルを鎖交する磁束数は周期的に変化す る。 本実施形態では、 一対の出カコイルのそれぞれに生じる電圧の位相が互 いに / 2だけずれるように一対の出カコイルと励磁コイルとが配置されて いる。 これにより、 一対の出カコイルそれぞれの出力電圧は、 励磁信号を変 調波 3 丨 11 0、 〇〇 3 0のそれぞれによって変調した被変調波となる。 より 具体的には、 励磁信号を 「 3 丨 1^ 0 1:」 とすると、 被変調波はそれぞれ 「 3 I 11 0 X 3 I 门〇 1:」 , 「0 0 3 0 X 3 1 门〇 1:」 となる。 [0446] The excitation coil of the stator coil 6 64 is excited by the sinusoidal excitation signal, and the magnetic flux generated in the excitation coil by the excitation signal interlinks the _ pairs of output coils. At this time, the relative positional relationship between the exciting coil and the pair of output coils changes cyclically according to the rotation angle of the resolver rotor 6 61 (that is, the rotation angle of the rotation shaft 50 1 ). The number of magnetic fluxes that link the output coil changes periodically. In the present embodiment, the pair of output coils and the excitation coil are arranged so that the phases of the voltages generated in the pair of output coils are shifted from each other by /2. As a result, the output voltage of each of the pair of output coils becomes a modulated wave in which the excitation signal is modulated by each of the modulation waves 311 and 030. More specifically, assuming that the excitation signal is “3 1 1 0 1 :”, the modulated waves are “3 I 11 0 X 3 I ◯ 1:” and “0 0 3 0 X 3 1 门 〇”, respectively. 1:”.
[0447] レゾルバ 6 6 0はレゾルバデジタルコンバータを有している。 レゾルバデ ジタルコンバータは、 生成された被変調波及び励磁信号に基づく検波によっ て電気角 0を算出する。 例えばレゾルバ 6 6 0は信号端子 6 3 2〇に接続さ 〇 2020/175333 1 18 卩(:171? 2020 /006903 [0447] The resolver 660 has a resolver digital converter. The resolver digital converter calculates the electrical angle 0 by detection based on the generated modulated wave and excitation signal. For example, resolver 660 is connected to signal terminal 6320. 〇 2020/175 333 1 18 卩 (: 171? 2020 /006903
れており、 レゾルバデジタルコンバータの算出結果は、 信号端子 6 3 2〇を 介して外部装置に出力される。 また、 回転電機 5 0 0に制御装置が内蔵され ている場合には、 その制御装置にレゾルバデジタルコンバータの算出結果が 入力される。 The calculation result of the resolver digital converter is output to the external device via the signal terminal 6320. Further, when the rotating electric machine 500 has a built-in control device, the calculation result of the resolver digital converter is input to the control device.
[0448] ここで、 インバータハウジング 5 3 1 におけるレゾルバ 6 6 0の組み付け 構造について説明する。 [0448] Here, the assembling structure of the resolver 660 in the inverter housing 531 will be described.
[0449] 図 4 9及び図 5 1 に示すように、 インバータハウジング 5 3 1 を構成する ボス形成部材 5 4 3のボス部 5 4 8は中空筒状をなしており、 そのボス部 5 4 8の内周側には、 軸方向に直交する向きに延びる突出部 5 4 8 3が形成さ れている。 そして、 この突出部 5 4 8 3に軸方向に当接した状態で、 ネジ等 によりレゾルバステータ 6 6 2が固定されている。 ボス部 5 4 8内には、 突 出部 5 4 8 3を挟んで軸方向の一方側に軸受 5 6 0が設けられるとともに、 他方側にレゾルバ 6 6 0が同軸で設けられている。 [0449] As shown in FIGS. 4 9 and 5 1, the boss portion 5 4 8 of the boss forming member 5 4 3 forming the inverter housing 5 3 1 has a hollow cylindrical shape, and the boss portion 5 4 8 On the inner peripheral side, a protrusion 5 4 8 3 extending in a direction orthogonal to the axial direction is formed. The resolver stator 6 62 is fixed by a screw or the like in a state where the resolver stator 6 62 is in axial contact with the projecting portion 5 48 3. Inside the boss portion 548, a bearing 5600 is provided on one side in the axial direction with the protruding portion 5448 being sandwiched, and a resolver 6600 is provided coaxially on the other side.
[0450] また、 ボス部 5 4 8の中空部には、 軸方向においてレゾルバ 6 6 0の一方 の側に突出部 5 4 8 3が設けられるとともに、 他方の側に、 レゾルバ 6 6 0 の収容空間を閉鎖する円板リング状のハウジングカバー 6 6 6が取り付けら れている。 ハウジングカバー 6 6 6は、 炭素繊維強化プラスチック (〇 [¾ 9) 等の導電性材料により構成されている。 ハウジングカバー 6 6 6の中央 部には、 回転軸 5 0 1 を揷通させる孔 6 6 6 3が形成されている。 孔 6 6 6 3内には、 回転軸 5 0 1の外周面との間の空隙を封鎖するシール材 6 6 7が 設けられている。 シール材 6 6 7により、 レゾルバ収容空間が密閉されてい る。 シール材 6 6 7は、 例えば樹脂材料よりなる摺動シールであるとよい。 [0450] Further, the hollow portion of the boss portion 548 is provided with a projecting portion 5448 on one side of the resolver 660 in the axial direction, and accommodates the resolver 660 on the other side. A disc ring-shaped housing cover 6 6 6 is attached to close the space. The housing cover 6666 is made of a conductive material such as carbon fiber reinforced plastic (○[¾9)). A hole 6 6 6 3 is formed in the center of the housing cover 6 6 6 to allow the rotary shaft 50 1 to pass through it. A seal member 667 is provided in the hole 6663 to seal the gap between the hole 6166 and the outer peripheral surface of the rotary shaft 501. The resolver accommodating space is sealed by the sealing material 667. The sealing material 667 is preferably a sliding seal made of a resin material, for example.
[0451 ] レゾルバ 6 6 0が収容される空間は、 ボス形成部材 5 4 3において円環状 をなすボス部 5 4 8に囲まれ、 かつ軸方向が軸受 5 6 0とハウジングカバー 6 6 6とにより挟まれた空間であり、 レゾルバ 6 6 0の周囲は導電材料によ り囲まれている。 これにより、 レゾルバ 6 6 0に対する電磁ノイズの影響を 抑制できるようになっている。 [0451] The space in which the resolver 660 is housed is surrounded by the boss portion 548 having an annular shape in the boss forming member 543, and the axial direction is defined by the bearing 560 and the housing cover 666. It is a sandwiched space, and the circumference of the resolver 660 is surrounded by a conductive material. As a result, the influence of electromagnetic noise on the resolver 660 can be suppressed.
[0452] また、 上述したとおりインバータハウジング 5 3 1は、 二重となる外側周 〇 2020/175333 1 19 卩(:171? 2020 /006903 [0452] Further, as described above, the inverter housing 5 3 1 has a double outer periphery. 〇 2020/175 333 1 19 卩 (:171? 2020 /006903
壁 1 と内側周壁 2とを有しており (図 5 7参照) 、 その二重となる 周壁の外側 (外側周壁 八 1の外側) には固定子 5 2 0が配置され、 二重の 周壁の間 ( 八 1 , \ZV A 2の間) には電気モジュール 5 3 2が配置され、 二 重の周壁の内側 (内側周壁 八 2の内側) にはレゾルバ 6 6 0が配置されて いる。 インバータハウジング 5 3 1は導電性部材であるため、 固定子 5 2 0 とレゾルバ 6 6 0とは、 導電性の隔壁 (本実施形態では特に二重の導電性隔 壁) を隔てて配置されるようになっており、 固定子 5 2 0側 (磁気回路側) とレゾルバ 6 6 0とについて相互の磁気干渉の発生を好適に抑制できるもの となっている。 It has a wall 1 and an inner peripheral wall 2 (see Fig. 57), and a stator 5 20 is arranged on the outer side of the double peripheral wall (outer side of the outer peripheral wall 81). The electric module 5 32 is arranged between the two (8 1, \ZV A 2) and the resolver 6 60 is arranged inside the double peripheral wall (inside the inner peripheral wall 8 2 ). Since the inverter housing 5 3 1 is a conductive member, the stator 5 20 and the resolver 6 60 are arranged with a conductive partition wall (particularly a double conductive partition wall in this embodiment) separated from each other. Thus, the occurrence of magnetic interference between the stator 520 side (magnetic circuit side) and the resolver 660 can be appropriately suppressed.
[0453] 次に、 回転子キャリア 5 1 1の開放端部の側に設けられる回転子カバー 6 [0453] Next, the rotor cover 6 provided on the open end side of the rotor carrier 5 1 1
7 0について説明する。 7 0 will be described.
[0454] 図 4 9及び図 5 1 に示すように、 回転子キャリア 5 1 1は軸方向の一方側 が開放されており、 その開放端部に、 略円板リング状の回転子カバー 6 7 0 が取り付けられている。 回転子カバー 6 7 0は、 溶接や接着、 ビス止め等の 任意の接合手法により回転子キャリア 5 1 1 に対して固定されているとよい 。 回転子カバー 6 7 0が、 磁石ユニッ ト 5 1 2の軸方向への移動を抑制でき るように回転子キャリア 5 1 1の内周よりも小さめに寸法設定されている部 位を持つとなおよい。 回転子カバー 6 7 0は、 その外径寸法が、 回転子キャ リア 5 1 1の外径寸法に一致し、 内径寸法が、 インバータハウジング 5 3 1 の外径寸法よりも僅かに大きい寸法となっている。 なお、 インバータハウジ ング 5 3 1の外径寸法と固定子 5 2 0の内径寸法とは同じである。 [0454] As shown in Figs. 49 and 51, the rotor carrier 511 is open on one side in the axial direction, and the open end portion thereof has a substantially disc-shaped rotor cover 6 7. 0 is installed. The rotor cover 670 may be fixed to the rotor carrier 511 by any joining method such as welding, adhesion, and screw fixing. It is even more desirable if the rotor cover 670 has a position that is dimensioned to be smaller than the inner circumference of the rotor carrier 511 so as to prevent axial movement of the magnet unit 512. Good. The outer diameter of the rotor cover 6 70 matches that of the rotor carrier 5 11 and the inner diameter is slightly larger than that of the inverter housing 5 31. ing. The outer diameter of the inverter housing 5 3 1 and the inner diameter of the stator 5 20 are the same.
[0455] 上述したとおりインバータハウジング 5 3 1の径方向外側には固定子 5 2 [0455] As described above, the stator 5 2 is located radially outside the inverter housing 5 3 1.
0が固定されており、 それら固定子 5 2 0及びインバータハウジング 5 3 1 が互いに接合されている接合部分では、 固定子 5 2 0に対してインバータハ ウジング 5 3 1が軸方向に突出している。 そして、 インバータハウジング 5 3 1の突出部分を囲むように回転子カバー 6 7 0が取り付けられている。 こ の場合、 回転子カバー 6 7 0の内周側の端面とインバータハウジング 5 3 1 の外周面との間には、 それらの間の隙間を封鎖するシール材 6 7 1が設けら 〇 2020/175333 120 卩(:171? 2020 /006903 0 is fixed, and at the joint where the stator 5 20 and the inverter housing 5 3 1 are joined to each other, the inverter housing 5 3 1 projects axially with respect to the stator 5 20. .. A rotor cover 670 is attached so as to surround the protruding portion of the inverter housing 531. In this case, seal material 671 is installed between the inner peripheral end surface of the rotor cover 670 and the outer peripheral surface of the inverter housing 531 to seal the gap between them. 〇 2020/175333 120 卩(:171? 2020/006903
れている。 シール材 6 7 1 により、 磁石ユニッ ト 5 1 2及び固定子 5 2 0の 収容空間が密閉されている。 シール材 6 7 1は、 例えば樹脂材料よりなる摺 動シールであるとよい。 Has been. The seal member 671 seals the housing space for the magnet unit 512 and the stator 520. The sealing material 6 71 may be a sliding seal made of, for example, a resin material.
[0456] 以上詳述した本実施形態によれば、 以下の優れた効果が得られる。 [0456] According to this embodiment described in detail above, the following excellent effects are obtained.
[0457] 回転電機 5 0 0において、 磁石ユニッ ト 5 1 2及び固定子巻線 5 2 1 より なる磁気回路部の径方向内側に、 インバータハウジング 5 3 1の外側周壁 八 1 を配置し、 その外側周壁 1 に冷却水通路 5 4 5を形成した。 また、 外側周壁 1の径方向内側に、 その外側周壁 1 に沿って周方向に複数 の電気モジュール 5 3 2を配置する構成とした。 これにより、 回転電機 5 0 〇の径方向に積層されるようにして磁気回路部、 冷却水通路 5 4 5、 電力変 換器を配置でき、 軸方向における寸法の縮小化を図りつつ、 効率の良い部品 配置が可能となる。 また、 電力変換器を構成する複数の電気モジュール 5 3 2について効率良く冷却を行わせることができる。 その結果、 回転電機 5 0 0において、 高効率かつ小型化が実現可能となる。 [0457] In the rotating electric machine 500, the outer peripheral wall 8 1 of the inverter housing 5 3 1 is arranged radially inside the magnetic circuit portion consisting of the magnet unit 5 1 2 and the stator winding 5 2 1. Cooling water passages 5 45 were formed in the outer peripheral wall 1. Further, a plurality of electric modules 5 32 are arranged radially inside the outer peripheral wall 1 along the outer peripheral wall 1 in the circumferential direction. As a result, the magnetic circuit section, cooling water passage 5445, and power converter can be arranged so as to be stacked in the radial direction of the rotary electric machine 500, and the efficiency can be reduced while reducing the size in the axial direction. Good parts placement is possible. In addition, it is possible to efficiently cool the plurality of electric modules 5 32 forming the power converter. As a result, in the rotary electric machine 500, high efficiency and downsizing can be realized.
[0458] 半導体スイッチング素子やコンデンサ等の発熱部品を有する電気モジュー ル 5 3 2 (スイッチモジユール 5 3 2八、 コンデンサモジユール 5 3 2巳) を、 外側周壁 1の内周面に接した状態で設ける構成とした。 これにより 、 各電気モジュール 5 3 2における熱が外側周壁 1 に伝達され、 その外 側周壁 八 1での熱交換により電気モジュール 5 3 2が好適に冷却される。 [0458] A state in which an electric module 5 3 2 (a switch module 5 3 2 8 and a capacitor module 5 3 2) having a heat generating component such as a semiconductor switching element or a capacitor is in contact with the inner peripheral surface of the outer peripheral wall 1. The configuration is provided in. Thereby, the heat in each electric module 5 32 is transferred to the outer peripheral wall 1, and the electric module 5 32 is suitably cooled by the heat exchange in the outer peripheral wall 81.
[0459] スイッチモジュール 5 3 2八において、 スイッチ 6 0 1 , 6 0 2を挟んで 両側に冷却器 6 2 3をそれぞれ配置するとともに、 スイッチ 6 0 1 , 6 0 2 の両側の冷却器 6 2 3のうち少なくとも _方の冷却器においてスイッチ 6 0 1 , 6 0 2とは逆側にコンデンサ 6 0 4を配置する構成とした。 これにより 、 スイッチ 6 0 1 , 6 0 2に対する冷却性能を高めることができるとともに 、 コンデンサ 6 0 4の冷却性能も高めることができる。 [0459] In the switch module 5328, coolers 623 are arranged on both sides of the switches 6011 and 6022, respectively, and coolers 62 on both sides of the switches 6011 and 60202 are arranged. In at least one of the three coolers, the condenser 60 4 is arranged on the opposite side of the switches 60 1 and 60 2. As a result, the cooling performance for the switches 60 1 and 60 2 can be improved, and at the same time, the cooling performance of the capacitor 60 4 can be improved.
[0460] スイッチモジュール 5 3 2八において、 スイッチ 6 0 1 , 6 0 2を挟んで 両側に冷却器 6 2 3をそれぞれ配置するとともに、 スイッチ 6 0 1 , 6 0 2 の両側の冷却器 6 2 3のうち _方の冷却器においてスイッチ 6 0 1 , 6 0 2 〇 2020/175333 121 卩(:171? 2020 /006903 [0460] In the switch module 532, the coolers 623 are arranged on both sides of the switches 601 and 602, respectively, and the coolers 62 on both sides of the switches 601 and 6022 are arranged. Switch 6 0 1, 6 0 2 in the cooler of _ 3 out of 3 〇 2020/175333 121 卩(:171? 2020/006903
とは逆側に駆動回路 6 0 3を配置し、 他方の冷却器 6 2 3においてスイッチ 6 0 1 , 6 0 2とは逆側にコンデンサ 6 0 4を配置する構成とした。 これに より、 スイッチ 6 0 1 , 6 0 2に対する冷却性能を高めることができるとと もに、 駆動回路 6 0 3とコンデンサ 6 0 4についても冷却性能も高めること ができる。 The drive circuit 60 3 is arranged on the side opposite to the above, and the condenser 60 4 is arranged on the opposite side to the switches 60 1 and 60 2 in the other cooler 6 23. As a result, the cooling performance for the switches 60 1, 60 2 can be improved, and at the same time, the cooling performance for the drive circuit 60 3 and the capacitor 60 4 can also be improved.
[0461 ] 例えばスイッチモジュール 5 3 2八において、 冷却水通路 5 4 5からモジ ュール内部に冷却水を流入させ、 その冷却水により半導体スイッチング素子 等を冷却する構成とした。 この場合、 スイッチモジュール 5 3 2八は、 外側 周壁 八 1での冷却水による熱交換に加えて、 モジュール内部での冷却水に よる熱交換により冷却される。 これにより、 スイッチモジュール 5 3 2八の 冷却効果を高めることができる。 [0461] For example, in the switch module 5328, cooling water is introduced from the cooling water passage 5445 into the module, and the cooling water is used to cool the semiconductor switching elements and the like. In this case, the switch module 5328 is cooled by heat exchange by the cooling water inside the module in addition to the heat exchange by the cooling water at the outer peripheral wall 81. As a result, the cooling effect of the switch module 5 3 2 8 can be enhanced.
[0462] 冷却水通路 5 4 5に対して外部の循環経路 5 7 5から冷却水を流入させる 冷却システムにおいて、 スイッチモジュール 5 3 2八を冷却水通路 5 4 5の 入口通路 5 7 1 に近い上流側に配置するとともに、 コンデンサモジュール 5 3 2巳をスイッチモジュール 5 3 2八よりも下流側に配置する構成とした。 この場合、 冷却水通路 5 4 5を流れる冷却水が上流側ほど低温であることを 想定すれば、 スイッチモジュール 5 3 2八を優先的に冷却する構成を実現す ることが可能になる。 [0462] In a cooling system in which cooling water flows in from an external circulation path 5 7 5 to the cooling water passage 5 4 5, the switch module 5 3 2 8 is close to the inlet passage 5 7 1 of the cooling water passage 5 4 5. In addition to being arranged on the upstream side, the capacitor module 532 is arranged on the downstream side of the switch module 5328. In this case, assuming that the cooling water flowing through the cooling water passage 5 445 has a lower temperature on the upstream side, it is possible to realize a configuration in which the switch module 5 32 8 is preferentially cooled.
[0463] 周方向に隣り合う電気モジュール同士の間隔を一部で拡げ、 その拡げた間 隔 (第 2間隔丨 1\1丁 2) となる部分に、 入口通路 5 7 1及び出口通路 5 7 2 を有する突出部 5 7 3を設ける構成とした。 これにより、 外側周壁 八 1の 径方向内側となる部分に、 冷却水通路 5 4 5の入口通路 5 7 1及び出口通路 5 7 2を好適に形成することができる。 つまり、 冷却性能を高めるには冷媒 の流通量を確保する必要があり、 そのためには入口通路 5 7 1及び出口通路 5 7 2の開口面積を大きくすることが考えられる。 この点、 上記のとおり電 気モジュール同士の間隔を一部で拡げて突出部 5 7 3を設けることにより、 所望とする大きさの入口通路 5 7 1及び出口通路 5 7 2を好適に形成するこ とができる。 〇 2020/175333 122 卩(:171? 2020 /006903 [0463] The distance between the electric modules adjacent to each other in the circumferential direction is partially expanded, and the inlet passages 5 7 1 and the outlet passages 5 7 are provided at the expanded gaps (the second gap 1 \1 2). The structure is such that the protruding portion 5 73 having 2 is provided. As a result, the inlet passage 5 7 1 and the outlet passage 5 72 of the cooling water passage 5 45 can be preferably formed in the radially inner portion of the outer peripheral wall 81. That is, in order to improve the cooling performance, it is necessary to secure the flow rate of the refrigerant, and for that purpose, it is conceivable to increase the opening area of the inlet passage 5 71 and the outlet passage 5 72. In this regard, as described above, by partially expanding the interval between the electric modules to provide the protrusion 5 73, the inlet passage 5 7 1 and the outlet passage 5 7 2 having a desired size are preferably formed. be able to. 〇 2020/175333 122 卩 (: 171-1? 2020 /006903
[0464] バスバーモジュール 5 3 3の外部接続端子 6 3 2を、 外側周壁 1の径 方向内側において突出部 5 7 3に径方向に並ぶ位置に配置するようにした。 つまり、 外部接続端子 6 3 2を、 周方向に隣り合う電気モジュール同士の間 隔が拡げられた部分 (第 2間隔 I !\!丁 2に相当する部分) に突出部 5 7 3と 共に配置するようにした。 これにより、 各電気モジュール 5 3 2との干渉を 避けつつ、 外部接続端子 6 3 2を好適に配置することができる。 [0464] The external connection terminals 6 3 2 of the bus bar module 5 3 3 are arranged at positions radially aligned with the protruding portion 5 7 3 on the radially inner side of the outer peripheral wall 1. In other words, the external connection terminals 6 32 are placed together with the protrusions 5 7 3 at the portion where the gap between the electric modules adjacent to each other in the circumferential direction is widened (the portion corresponding to the second interval I!\! I decided to do it. As a result, the external connection terminals 6 32 can be preferably arranged while avoiding interference with the electric modules 5 32.
[0465] ァウタロータ式の回転電機 5 0 0において、 外側周壁 八 1の径方向外側 に固定子 5 2 0を固定し、 かつ径方向内側に複数の電気モジュール 5 3 2を 配置する構成とした。 これにより、 外側周壁 \ZV A 1 に対して、 その径方向外 側から固定子 5 2 0の熱が伝わるとともに、 径方向内側から電気モジュール 5 3 2の熱が伝わることになる。 この場合、 固定子 5 2 0と電気モジュール 5 3 2とを, 冷却水通路 5 4 5を流れる冷却水により同時に冷やすことが可 能となり、 回転電機 5 0 0における発熱部材の熱を効率良く放出することが できる。 [0465] In the rotor-rotor electric machine 500, the stator 520 is fixed to the outer side of the outer peripheral wall 81 in the radial direction, and the plurality of electric modules 532 are arranged on the inner side in the radial direction. As a result, the heat of the stator 5 20 is transferred from the outer side in the radial direction to the outer peripheral wall \ZV A 1, and the heat of the electric module 5 3 2 is transferred from the inner side in the radial direction. In this case, the stator 520 and the electric module 532 can be cooled at the same time by the cooling water flowing through the cooling water passage 545, and the heat of the heat generating member in the rotating electric machine 550 can be efficiently released. can do.
[0466] 外側周壁 1 を挟んで径方向内側の電気モジュール 5 3 2と径方向外側 の固定子巻線 5 2 1 とを、 バスバーモジュール 5 3 3の卷線接続端子 6 3 3 により電気的に接続する構成とした。 またこの場合、 巻線接続端子 6 3 3を 、 冷却水通路 5 4 5に対して軸方向に離れた位置に設ける構成とした。 これ により、 外側周壁 1 において環状に冷却水通路 5 4 5が形成される構成 、 すなわち外側周壁 八 1の内外が冷却水通路 5 4 5により分断されている 構成であっても、 電気モジュール 5 3 2と固定子巻線 5 2 1 とを好適に接続 することができる。 [0466] The radially inner electric module 5 3 2 and the radially outer stator winding 5 2 1 with the outer peripheral wall 1 sandwiched therebetween are electrically connected to each other by the winding wire connection terminal 6 3 3 of the bus bar module 5 3 3. It is configured to connect. Further, in this case, the winding connection terminal 6 33 is provided at a position axially separated from the cooling water passage 5 45. As a result, even if the cooling water passages 5 45 are formed in an annular shape on the outer peripheral wall 1, that is, the inside and outside of the outer peripheral wall 81 are divided by the cooling water passages 5 45, the electric module 5 3 2 and the stator winding 5 2 1 can be suitably connected.
[0467] 本実施形態の回転電機 5 0 0では、 固定子 5 2 0において周方向に並ぶ各 導線 5 2 3の間のテイース (鉄心) を小さくする又は無くすことで、 それら 各導線 5 2 3の間で生じる磁気飽和に起因するトルク制限を抑制するととも に、 導線 5 2 3を扁平薄型にすることでトルク低下を抑制するものとしてい る。 この場合、 仮に回転電機 5 0 0の外径寸法が同じであっても、 固定子 5 2 0の薄型化により磁気回路部の径方向内側の領域を拡張することが可能と 〇 2020/175333 123 卩(:171? 2020 /006903 [0467] In the rotating electric machine 500 of the present embodiment, by reducing or eliminating the teeth (iron core) between the conductors 5 23 arranged in the stator 5 20 in the circumferential direction, the conductors 5 2 3 In addition to suppressing the torque limit due to magnetic saturation that occurs between the two, the conductor wire 52 3 is made flat and thin to suppress the torque decrease. In this case, even if the outer diameter of the rotary electric machine 500 is the same, it is possible to expand the radially inner region of the magnetic circuit unit by thinning the stator 520. 〇 2020/175333 123 卩 (:171? 2020 /006903
なり、 その内側領域を用いて、 冷却水通路 5 4 5を有する外側周壁 1や 、 外側周壁 1の径方向内側に設けられた複数の電気モジュール 5 3 2を 好適に配置することができる。 Therefore, by using the inner region, the outer peripheral wall 1 having the cooling water passages 5 45 and the plurality of electric modules 5 32 provided on the radially inner side of the outer peripheral wall 1 can be suitably arranged.
[0468] 本実施形態の回転電機 5 0 0では、 磁石ユニッ ト 5 1 2において磁石磁束 が 軸側に集まることで 軸での磁石磁束が強化され、 それに伴う トルク増 強が可能となっている。 この場合、 磁石ユニッ ト 5 1 2において径方向の厚 さ寸法の縮小化 (薄型化) が可能になることに伴い、 磁気回路部の径方向内 側の領域を拡張することが可能となり、 その内側領域を用いて、 冷却水通路 5 4 5を有する外側周壁 1や、 外側周壁 1の径方向内側に設けられ た複数の電気モジュール 5 3 2を好適に配置することができる。 [0468] In the rotary electric machine 500 of the present embodiment, the magnet magnetic flux gathers on the shaft side in the magnet unit 5 12 to strengthen the magnet magnetic flux in the shaft, and the torque can be increased accordingly. .. In this case, the radial thickness of the magnet unit 5 1 2 can be reduced (thinned), and the radial inner area of the magnetic circuit can be expanded. Using the inner region, the outer peripheral wall 1 having the cooling water passages 5 45 and the plurality of electric modules 5 32 provided on the radially inner side of the outer peripheral wall 1 can be suitably arranged.
[0469] また、 磁気回路部、 外側周壁 八 1、 複数の電気モジュール 5 3 2だけで なく、 軸受 5 6 0やレゾルバ 6 6 0についても同様に、 径方向に好適に配置 することができる。 [0469] Further, not only the magnetic circuit portion, the outer peripheral wall 81, and the plurality of electric modules 532, but also the bearing 5600 and the resolver 660 can be similarly preferably arranged in the radial direction.
[0470] 回転電機 5 0 0をインホイールモータとして用いた車輪 4 0 0は、 インバ [0470] A wheel 400 that uses the rotary electric machine 500 as an in-wheel motor is
—タハウジング 5 3 1 に固定されたべースプレート 4 0 5と、 サスペンシヨ ン装置等の装着機構とを介して車体に装着される。 ここで、 回転電機 5 0 0 では小型化が実現されていることから、 車体への組み付けを想定しても省ス ペース化が可能となる。 そのため、 車両においてバッテリ等の電源装置の設 置領域を拡大したり、 車室スペースを拡張したりする上で有利な構成を実現 できる。 — It is mounted on the vehicle body via the base plate 450 fixed to the housing 531 and a mounting mechanism such as a suspension device. Here, since the rotating electrical machine 500 has been downsized, it is possible to save space even if it is supposed to be mounted on the vehicle body. Therefore, it is possible to realize an advantageous configuration in expanding the installation area of a power supply device such as a battery or expanding the vehicle interior space in a vehicle.
[0471 ] 以下に、 インホイールモータに関する変形例を説明する。 [0471] Hereinafter, modifications of the in-wheel motor will be described.
[0472] (インホイールモータにおける変形例 1) [0472] (Modification 1 of in-wheel motor)
回転電機 5 0 0では、 インバータユニッ ト 5 3 0の外側周壁 八 1の径方 向内側に、 電気モジュール 5 3 2及びバスバーモジュール 5 3 3が配置され るとともに、 外側周壁 1 を隔てて径方向の内側及び外側に、 電気モジュ —ル 5 3 2及びバスバーモジュール 5 3 3と、 固定子 5 2 0とがそれぞれ配 置されている。 かかる構成において、 電気モジュール 5 3 2に対するバスバ —モジュール 5 3 3の位置は任意に設定可能である。 また、 外側周壁 八 1 〇 2020/175333 124 卩(:171? 2020 /006903 In the rotating electric machine 500, the electric module 532 and the busbar module 533 are arranged radially inward of the outer peripheral wall 81 of the inverter unit 5300, and the outer peripheral wall 1 is separated in the radial direction. An electric module 532, a bus bar module 5333, and a stator 52O are arranged inside and outside the electric motor, respectively. In such a configuration, the position of the bus bar module 533 with respect to the electric module 532 can be set arbitrarily. Also, the outer wall 8 1 〇 2020/175333 124 卩 (:171? 2020 /006903
を径方向に横切って固定子巻線 52 1の各相卷線とバスバーモジュール 53 3とを接続する場合において、 その接続に用いられる巻線接続線 (例えば巻 線接続端子 633) を案内する位置は任意に設定可能である。 When connecting each winding of the stator winding 52 1 and the bus bar module 53 3 across the radial direction, the position to guide the winding connection wire (for example, the winding connection terminal 633) used for the connection. Can be set arbitrarily.
[0473] すなわち、 電気モジュール 532に対するバスバーモジュール 533の位 置としては、 (《 1 ) バスバーモジュール 533を、 軸方向において電気モ ジュール 532よりも車両外側、 すなわち回転子キャリア 5 1 1側の奥側と する構成と、 [0473] That is, as the position of the busbar module 533 with respect to the electric module 532, (<< 1) the busbar module 533 is arranged on the outer side of the vehicle in the axial direction than the electric module 532, that is, on the inner side of the rotor carrier 5 1 1 side. And the configuration,
{(X 2) バスバーモジュール 533を、 軸方向において電気モジュール 53 2よりも車両内側、 すなわち回転子キャリア 5 1 1側の手前側とする構成と が考えられる。 It is conceivable that the {(X 2) busbar module 533 is located inside the electric module 532 in the axial direction, that is, on the front side of the rotor carrier 5 11 side.
[0474] また、 巻線接続線を案内する位置としては、 [0474] Further, as a position for guiding the winding connection line,
((31 ) 巻線接続線を、 軸方向において車両外側、 すなわち回転子キャリア 5 1 1側の奥側で案内する構成と、 ((31) A configuration in which the winding connecting wire is guided outside the vehicle in the axial direction, that is, on the back side of the rotor carrier 5 11 side,
(/32) 巻線接続線を、 軸方向において車両内側、 すなわち回転子キャリア 5 1 1側の手前側で案内する構成と、 (/32) A configuration in which the winding connecting wire is guided inside the vehicle in the axial direction, that is, on the front side of the rotor carrier 5 11 side,
が考えられる。 Is possible.
[0475] 以下には、 電気モジュール 532、 バスバーモジュール 533及び卷線接 続線の配置に関する 4つの構成例を、 図 72 (3) 〜 (¢0 を用いて説明す る。 図 72 (3) 〜 (¢0 は、 回転電機 500の構成を簡略化して示す縦断 面図であり、 同図には、 既に説明した構成に同じ符号が付されている。 巻線 接続線 637は、 固定子巻線 52 1の各相卷線とバスバーモジュール 533 とを接続する電気配線であり、 例えば既述の巻線接続端子 633がこれに相 当する。 [0475] In the following, four configuration examples regarding the arrangement of the electric module 532, the bus bar module 533, and the winding wire connection line will be described with reference to Figs. 72( 3 ) to (¢0. Fig. 72( 3 )). ~ (¢0 is a vertical cross-sectional view showing a simplified structure of the rotary electric machine 500, and the same reference numerals are given to the structures already described in the figure. The winding connecting wire 637 is a stator winding. It is electrical wiring that connects each winding wire of the wire 521 and the bus bar module 533, and for example, the winding connection terminal 633 described above corresponds to this.
[0476] 図 72 (a) の構成では、 電気モジュール 532に対するバスバーモジュ —ル 533の位置として上記 (《 1 ) を採用するとともに、 巻線接続線 63 7を案内する位置として上記 (/3 1 ) を採用している。 つまり、 電気モジュ —ル 532及びバスバーモジュール 533、 固定子巻線 52 1及びバスバー 〇 2020/175333 125 卩(:171? 2020 /006903 [0476] In the configuration of Fig. 72 (a), the above (<< 1) is adopted as the position of the bus bar module 533 with respect to the electric module 532, and the above (/3 1 ) Is adopted. That is, the electric module 532 and the busbar module 533, the stator winding 52 1 and the busbar. 〇 2020/175333 125 卩 (:171? 2020 /006903
モジュール 5 3 3がいずれも車両外側 (回転子キャリア 5 1 1の奥側) で接 続される構成となっている。 なおこれは、 図 4 9に示す構成に相当する。 All of the modules 5 3 3 are connected outside the vehicle (the inner side of the rotor carrier 5 11 ). Note that this corresponds to the configuration shown in FIG.
[0477] 本構成によれば、 外側周壁 八 1 において、 巻線接続線 6 3 7との干渉を 懸念することなく冷却水通路 5 4 5を設けることができる。 また、 固定子巻 線 5 2 1 とバスバーモジュール 5 3 3とを接続する卷線接続線 6 3 7を簡易 に実現できる。 [0477] According to this configuration, the cooling water passage 5445 can be provided in the outer peripheral wall 81 without fear of interference with the winding connection wire 637. Further, the winding wire connecting wire 6 3 7 connecting the stator winding 5 21 and the bus bar module 5 3 3 can be easily realized.
[0478] 図 7 2 (匕) の構成では、 電気モジュール 5 3 2に対するバスバーモジュ —ル 5 3 3の位置として上記 (《 1) を採用するとともに、 巻線接続線 6 3 7を案内する位置として上記 (/3 2) を採用している。 つまり、 電気モジュ —ル 5 3 2とバスバーモジュール 5 3 3とが車両外側 (回転子キャリア 5 1 1の奥側) で接続されるとともに、 固定子巻線 5 2 1 とバスバーモジュール 5 3 3とが車両内側 (回転子キャリア 5 1 1の手前側) で接続される構成と なっている。 [0478] In the configuration of Fig. 7 2 (匕), the above (<< 1) is adopted as the position of the bus bar module 5 3 3 with respect to the electric module 5 3 2 and the position for guiding the winding connecting wire 6 3 7 The above (/3 2) is adopted as. That is, the electric module 5 3 2 and the busbar module 5 3 3 are connected on the outside of the vehicle (the inner side of the rotor carrier 5 11) and the stator winding 5 2 1 and the busbar module 5 3 3 are connected. Are connected inside the vehicle (front side of rotor carrier 5 1 1).
[0479] 本構成によれば、 外側周壁 1 において、 巻線接続線 6 3 7との干渉を 懸念することなく冷却水通路 5 4 5を設けることができる。 According to this configuration, the cooling water passages 5 45 can be provided in the outer peripheral wall 1 without fear of interference with the winding connection line 6 37.
[0480] 図 7 2 (〇) の構成では、 電気モジュール 5 3 2に対するバスバーモジュ —ル 5 3 3の位置として上記 (《 2) を採用するとともに、 巻線接続線 6 3 7を案内する位置として上記 (/3 1) を採用している。 つまり、 電気モジュ —ル 5 3 2とバスバーモジュール 5 3 3とが車両内側 (回転子キャリア 5 1 1の手前側) で接続されるとともに、 固定子巻線 5 2 1 とバスバーモジュー ル 5 3 3とが車両外側 (回転子キャリア 5 1 1の奥側) で接続される構成と なっている。 [0480] In the configuration of Fig. 7 2 (○), the above (<< 2) is adopted as the position of the bus bar module 5 33 with respect to the electric module 5 32, and the position for guiding the winding connecting wire 6 3 7 is adopted. As above, (/3 1) is adopted. That is, the electric module 5 3 2 and the busbar module 5 3 3 are connected inside the vehicle (front side of the rotor carrier 5 11 1), and the stator winding 5 2 1 and the busbar module 5 3 3 are connected. And are connected on the outside of the vehicle (the inner side of the rotor carrier 5 11).
[0481 ] 図 7 2 ( ) の構成では、 電気モジュール 5 3 2に対するバスバーモジュ —ル 5 3 3の位置として上記 (《 2) を採用するとともに、 巻線接続線 6 3 7を案内する位置として上記 (/3 2) を採用している。 つまり、 電気モジュ —ル 5 3 2及びバスバーモジュール 5 3 3、 固定子巻線 5 2 1及びバスバー モジュール 5 3 3がいずれも車両内側 (回転子キャリア 5 1 1の手前側) で 接続される構成となっている。 〇 2020/175333 126 卩(:171? 2020 /006903 [0481] In the configuration of Fig. 7 2 (), the above (<< 2) is adopted as the position of the bus bar module 5 3 3 with respect to the electric module 5 3 2 and the position for guiding the winding connecting wire 6 3 7 is adopted. The above (/3 2) is adopted. That is, the configuration in which the electric module 5 3 2 and the bus bar module 5 3 3, the stator winding 5 2 1 and the bus bar module 5 3 3 are all connected inside the vehicle (front side of the rotor carrier 5 1 1) Has become. 〇 2020/175 333 126 卩(: 171-1? 2020/006903
[0482] 図 7 2 (〇) , 図 7 2 ( の構成によれば、 バスバーモジュール 5 3 3 が車両内側 (回転子キャリア 5 1 1の手前側) に配置されることで、 仮にフ ァンモータなどの電気部品を追加しようとする場合に、 その配線が容易とな ることが考えられる。 また、 軸受よりも車両内側に配置されるレゾルバ 6 6 0に対してバスバーモジュール 5 3 3を近づけることが可能になり、 レゾル バ 6 6 0に対する配線が容易になることも考えられる。 [0482] According to the configurations of Fig. 7 2 (○) and Fig. 7 2 (, the bus bar module 5 3 3 is arranged inside the vehicle (front side of the rotor carrier 5 1 1), so that a fan motor or the like is temporarily placed. It is conceivable that the wiring will be easier if an electric component of the busbar module 5 3 3 is placed closer to the resolver 6 6 0 arranged inside the vehicle than the bearing. It will be possible, and wiring to the resolver 660 will be easier.
[0483] (インホイールモータにおける変形例 2) [0483] (Modification 2 of in-wheel motor)
以下に、 レゾルバロータ 6 6 1の取付構造の変形例を説明する。 すなわち 、 回転軸 5 0 1、 回転子キャリア 5 1 1及び軸受 5 6 0の内輪 5 6 1は一体 的に回転する回転体であり、 その回転体に対するレゾルバロータ 6 6 1の取 付構造の変形例について以下に説明する。 A modified example of the mounting structure of the resolver rotor 6 61 will be described below. That is, the rotating shaft 501, the rotor carrier 511 and the inner ring 561 of the bearing 5600 are rotating bodies that rotate integrally, and the deformation of the mounting structure of the resolver rotor 661 with respect to the rotating body. An example will be described below.
[0484] 図 7 3 (3) 〜 (〇) は、 上記回転体に対するレゾルバロータ 6 6 1の取 付構造例を示す構成図である。 いずれの構成においても、 レゾルバ 6 6 0は 、 回転子キャリア 5 1 1及びインバータハウジング 5 3 1等により囲まれ、 外部からの被水や被泥等から防護された密閉空間に設けられている。 図 7 3 (3) 〜 (〇) のうち図 7 3 (a) では、 軸受 5 6 0を、 図 4 9と同じ構成 としている。 また、 図 7 3 (匕) 、 図 7 3 (〇) では、 軸受 5 6 0を、 図 4 9とは異なる構成とし、 かつ回転子キャリア 5 1 1の端板 5 1 4から離れた 位置に配置している。 これら各図には、 レゾルバロータ 6 6 1の取付場所と してそれぞれ 2力所を例示している。 なお、 レゾルバステータ 6 6 2につい ては図示されていないが、 例えばボス形成部材 5 4 3のボス部 5 4 8をレゾ ルバロータ 6 6 1の外周側又はその付近まで延ばし、 そのボス部 5 4 8にレ ゾルバステータ 6 6 2が固定されていればよい。 [0484] Figs. 73 (3) to (○) are configuration diagrams showing an example of the mounting structure of the resolver rotor 6 61 to the rotating body. In either configuration, the resolver 660 is surrounded by the rotor carrier 5 11 and the inverter housing 5 3 1 and is provided in a closed space protected from water and mud from the outside. In Fig. 73 (a) of Fig. 73 (3) to (○), the bearing 560 has the same configuration as that of Fig. 49. In addition, in Fig. 7 3 (slung) and Fig. 7 3 (○), the bearing 5 60 has a different configuration from that of Fig. 49 and is located at a position away from the end plate 5 1 4 of the rotor carrier 5 11. It is arranged. In each of these figures, two force stations are illustrated as the mounting locations of the resolver rotor 6 61. Although the resolver stator 6 62 is not shown, for example, the boss portion 5 48 of the boss forming member 5 4 3 is extended to the outer peripheral side of the resolver rotor 6 61 or its vicinity, and the boss portion 5 4 8 is formed. It suffices that the resolver stator 6 62 be fixed to the.
[0485] 図 7 3 (a) の構成では、 軸受 5 6 0の内輪 5 6 1 にレゾルバロータ 6 6 [0485] In the configuration shown in Fig. 73 (a), the resolver rotor 6 6 is attached to the inner ring 5 6 1 of the bearing 5 60.
1が取り付けられている。 具体的には、 レゾルバロータ 6 6 1が、 内輪 5 6 1のフランジ 5 6 1 13の軸方向端面に設けられているか、 又は内輪 5 6 1の 筒部 5 6 1 3の軸方向端面に設けられている。 1 is installed. Specifically, the resolver rotor 6 61 is provided on the axial end surface of the flange 5 6 1 13 of the inner ring 5 61, or on the axial end surface of the tubular portion 5 6 1 3 of the inner ring 5 61. Has been.
[0486] 図 7 3 (匕) の構成では、 回転子キャリア 5 1 1 にレゾルバロータ 6 6 1 〇 2020/175333 127 卩(:171? 2020 /006903 [0486] In the configuration shown in Fig. 7 3 (匕), the resolver rotor 6 6 1 is attached to the rotor carrier 5 1 1. 〇 2020/175333 127 卩(: 171-1? 2020/006903
が取り付けられている。 具体的には、 レゾルバロータ 6 6 1が、 回転子キャ リア 5 1 1 において端板 5 1 4の内面に設けられている。 又は、 回転子キャ リア 5 1 1が、 端板 5 1 4の内周縁部から回転軸 5 0 1 に沿って延びる筒部 5 1 5を有する構成において、 レゾルバロータ 6 6 1が、 回転子キャリア 5 1 1の筒部 5 1 5の外周面に設けられている。 後者の場合、 レゾルバロータ 6 6 1は、 回転子キャリア 5 1 1の端板 5 1 4と軸受 5 6 0との間に配置さ れている。 Is attached. Specifically, the resolver rotor 6 61 is provided on the inner surface of the end plate 5 14 in the rotor carrier 5 11. Alternatively, in the configuration in which the rotor carrier 5 11 has the cylindrical portion 5 15 extending from the inner peripheral edge portion of the end plate 5 14 along the rotation axis 5 0 1, the resolver rotor 6 6 1 includes the rotor carrier 6 1 1. It is provided on the outer peripheral surface of the cylindrical portion 5 1 5 1. In the latter case, the resolver rotor 6 61 is arranged between the end plate 5 14 of the rotor carrier 5 11 and the bearing 5 6 0.
[0487] 図 7 3 (〇) の構成では、 回転軸 5 0 1 にレゾルバロータ 6 6 1が取り付 けられている。 具体的には、 レゾルバロータ 6 6 1が、 回転軸 5 0 1 におい て回転子キャリア 5 1 1の端板 5 1 4と軸受 5 6 0との間に設けられている か、 又は回転軸 5 0 1 において軸受 5 6 0を挟んで回転子キャリア 5 1 1の 反対側に配置されている。 [0487] In the configuration of Fig. 7 3 (○), the resolver rotor 6 61 is attached to the rotating shaft 50 1. Specifically, the resolver rotor 6 61 is provided between the end plate 5 1 4 of the rotor carrier 5 1 1 and the bearing 5 6 0 in the rotary shaft 5 0 1, or the rotary shaft 5 6 1. It is arranged on the opposite side of the rotor carrier 5 1 1 with the bearing 5 6 0 sandwiched in 0 1.
[0488] (インホイールモータにおける変形例 3) [0488] (Modification 3 of in-wheel motor)
以下に、 インバータハウジング 5 3 1及び回転子カバー 6 7 0の変形例を 図 7 4を用いて説明する。 図 7 4 (3) 、 図 7 4 (匕) は、 回転電機 5 0 0 の構成を簡略化して示す縦断面図であり、 同図には、 既に説明した構成に同 じ符号が付されている。 なお、 図 7 4 (a) に示す構成は、 実質的に図 4 9 等で説明した構成に相当し、 図 7 4 (匕) に示す構成は、 図 7 4 (3) の構 成の _部を変更した構成に相当する。 A modification of the inverter housing 531 and the rotor cover 670 will be described below with reference to FIG. Fig. 7 4 ( 3 ) and Fig. 7 4 (匕) are vertical cross-sectional views showing a simplified structure of the rotating electric machine 500, in which the same reference numerals are assigned to the structures already described. There is. Note that the structure described in FIG. 4 (a) substantially corresponds to the configuration described in FIG. 4 9 such that the configuration shown in FIG. 4 (spoon) is 7 4 Configuring (3) _ This corresponds to the configuration in which the parts are changed.
[0489] 図 7 4 (3) に示す構成では、 回転子キャリア 5 1 1の開放端部に固定さ れた回転子カバー 6 7 0が、 インバータハウジング 5 3 1の外側周壁 八 1 を囲むように設けられている。 つまり、 回転子カバー 6 7 0の内径側の端面 が外側周壁 八 1の外周面に対向しており、 それら両者の間にシール材 6 7 1が設けられている。 また、 インバータハウジング 5 3 1のボス部 5 4 8の 中空部にはハウジングカバー 6 6 6が取り付けられ、 そのハウジングカバー 6 6 6と回転軸 5 0 1 との間にシール材 6 6 7が設けられている。 バスバー モジュール 5 3 3を構成する外部接続端子 6 3 2は、 インバータハウジング 5 3 1 を貫通して車両内側 (図の下側) に延びている。 \¥0 2020/175333 128 卩(:17 2020 /006903 [0489] In the configuration shown in Fig. 7 4 ( 3 ), the rotor cover 6 70 fixed to the open end of the rotor carrier 5 11 surrounds the outer peripheral wall 8 1 of the inverter housing 5 3 1. It is provided in. That is, the end surface on the inner diameter side of the rotor cover 670 is opposed to the outer peripheral surface of the outer peripheral wall 81, and the seal material 671 is provided between them. In addition, a housing cover 666 is attached to the hollow part of the boss 548 of the inverter housing 531, and a sealing material 667 is provided between the housing cover 666 and the rotary shaft 501. Has been. The external connection terminals 6 3 2 that compose the bus bar module 5 3 3 penetrate the inverter housing 5 3 1 and extend to the inside of the vehicle (lower side in the figure). \\0 2020/175 333 128 (: 17 2020 /006903
[0490] また、 インバータハウジング 5 3 1 には、 冷却水通路 5 4 5に連通する入 口通路 5 7 1及び出口通路 5 7 2が形成されるとともに、 それら入口通路 5 7 1及び出口通路 5 7 2の通路端部を含む水路ポート 5 7 4が形成されてい る。 [0490] Further, the inverter housing 5 3 1 is formed with an inlet passage 5 7 1 and an outlet passage 5 7 2 which communicate with the cooling water passage 5 45, and the inlet passage 5 7 1 and the outlet passage 5 7 A waterway port 5 74 including the passage end of 7 2 is formed.
[0491 ] これに対して、 図 7 4 (匕) に示す構成では、 インバータハウジング 5 3 [0491] On the other hand, in the configuration shown in Fig. 74 (匕), the inverter housing 5 3
1 (詳しくはボス形成部材 5 4 3) に、 回転軸 5 0 1の突出側 (車両内側) に延びる環状の凸部 6 8 1が形成されており、 回転子カバー 6 7 0が、 イン バータハウジング 5 3 1の凸部 6 8 1 を囲むように設けられている。 つまり 、 回転子カバー 6 7 0の内径側の端面が凸部 6 8 1の外周面に対向しており 、 それら両者の間にシール材 6 7 1が設けられている。 また、 バスバーモジ ュール 5 3 3を構成する外部接続端子 6 3 2は、 インバータハウジング 5 3 1のボス部 5 4 8を貫通してボス部 5 4 8の中空領域に延びるとともに、 ハ ウジングカバー 6 6 6を貫通して車両内側 (図の下側) に延びている。 1 (specifically, the boss forming member 54 3) is formed with an annular convex portion 6 81 extending to the protruding side (inside the vehicle) of the rotating shaft 5 01, and the rotor cover 6 7 0 It is provided so as to surround the convex portion 681 of the housing 531. That is, the end surface on the inner diameter side of the rotor cover 670 is opposed to the outer peripheral surface of the convex portion 681, and the seal material 671 is provided between them. Also, the external connection terminals 6 3 2 that compose the bus bar module 5 3 3 penetrate the boss portion 5 4 8 of the inverter housing 5 3 1 and extend into the hollow area of the boss portion 5 4 8 and the housing cover 6 6 2. It passes through 6 and extends to the inside of the vehicle (lower side in the figure).
[0492] また、 インバータハウジング 5 3 1 には、 冷却水通路 5 4 5に連通する入 口通路 5 7 1及び出口通路 5 7 2が形成されており、 それら入口通路 5 7 1 及び出口通路 5 7 2は、 ボス部 5 4 8の中空領域に延び、 かつ中継配管 6 8 2を介してハウジングカバー 6 6 6よりも車両内側 (図の下側) に延びてい る。 本構成では、 ハウジングカバー 6 6 6から車両内側に延びる配管部分が 水路ポート 5 7 4となっている。 [0492] Further, the inverter housing 531 is formed with an inlet passage 571 and an outlet passage 572 communicating with the cooling water passage 5445, and these inlet passage 571 and the outlet passage 571 are formed. 7 2 extends in the hollow region of the boss portion 5 48 and extends to the inside of the vehicle (lower side in the figure) with respect to the housing cover 6 6 6 via the relay pipe 6 82. In this configuration, the pipe portion extending from the housing cover 6 66 to the inside of the vehicle is the waterway port 5 74.
[0493] 図 7 4 (3) 、 図 7 4 (b) の各構成によれば、 回転子キャリア 5 1 1及 び回転子カバー 6 7 0の内部空間の密閉性を保持しつつ、 これら回転子キャ リア 5 1 1及び回転子カバー 6 7 0をインバータハウジング 5 3 1 に対して 好適に回転させることができる。 [0493] According to the configurations shown in Fig. 7 4 ( 3 ) and Fig. 7 4 (b), the rotor carrier 5 1 1 and the rotor cover 6 7 0 can be rotated while maintaining the internal space tightness. The child carrier 5 11 and the rotor cover 6 70 can be suitably rotated with respect to the inverter housing 5 3 1.
[0494] また特に、 図 7 4 (13) の構成によれば、 図 7 4 (a) の構成に比べて、 回転子カバー 6 7 0の内径が小さくなっている。 そのため、 電気モジュール 5 3 2よりも車両内側となる位置に、 インバータハウジング 5 3 1 と回転子 カバー 6 7 0とが軸方向に二重に設けられるようになり、 電気モジュール 5 3 2にて懸念される電磁ノイズによる不都合を抑制することができる。 また \¥0 2020/175333 129 卩(:17 2020 /006903 [0494] Particularly, according to the configuration of Fig. 74 (13), the inner diameter of the rotor cover 670 is smaller than that of the configuration of Fig. 74 (a). Therefore, the inverter housing 5 3 1 and the rotor cover 6 70 are doubly provided in the axial direction at a position on the vehicle inner side of the electric module 5 32, which is a concern in the electric module 5 32. The inconvenience caused by the generated electromagnetic noise can be suppressed. Also \\0 2020/175 333 129 卩 (: 17 2020 /006903
、 回転子カバー 6 7 0の内径を小さくすることによりシール材 6 7 1の摺動 径が小さくなり、 回転摺動部分における機械的ロスを抑制することができる , By reducing the inner diameter of the rotor cover 670, the sliding diameter of the seal material 617 is reduced, and the mechanical loss in the rotary sliding portion can be suppressed.
[0495] (インホイールモータにおける変形例 4) [0495] (Modification 4 of in-wheel motor)
以下に、 固定子巻線 5 2 1の変形例を説明する。 図 7 5に、 固定子巻線 5 2 1 に関する変形例を示す。 A modification of the stator winding 5 21 will be described below. Figure 75 shows a modification of the stator winding 5 21.
[0496] 図 7 5に示すように、 固定子巻線 5 2 1は、 横断面が矩形状をなす導線材 を用い、 その導線材の長辺が周方向に延びる向きにして波巻により巻回され ている。 この場合、 固定子巻線 5 2 1 においてコイルサイ ドとなる各相の導 線 5 2 3は、 相ごとに所定ピッチ間隔で配置されるとともに、 コイルエンド で互いに接続されている。 コイルサイ ドにおいて周方向に隣り合う各導線 5 2 3は、 周方向の端面同士が互いに当接するか、 又は微小な間隔を隔てて近 接配置されている。 [0496] As shown in Fig. 75, the stator winding 5 21 uses a conductor wire having a rectangular cross section, and is wound by wave winding with the long side of the conductor wire extending in the circumferential direction. It has been turned. In this case, the conductors 5 23 of each phase, which are coil sides in the stator winding 5 21, are arranged at a predetermined pitch interval for each phase and are connected to each other at the coil ends. In the coil side, the conductor wires 52 3, which are adjacent to each other in the circumferential direction, have their end faces in the circumferential direction abut each other, or are arranged in close proximity to each other with a minute gap.
[0497] また、 固定子巻線 5 2 1では、 コイルエンドにおいて相ごとに導線材が径 方向に折り曲げられている。 より詳しくは、 固定子巻線 5 2 1 (導線材) は 、 軸方向において相ごとに異なる位置にて径方向内側に折り曲げられており 、 これにより、 II相、 V相及び 相の各相巻線における互いの干渉が回避さ れている。 図示の構成では、 各相卷線で導線材の厚み分だけ異ならせて、 相 ごとに導線材が径方向内側に直角に折り曲げられている。 周方向に並ぶ各導 線 5 2 3において軸方向の両端間の長さ寸法は各導線 5 2 3で同じであると よい。 [0497] Further, in the stator winding 521, the conductor wire is bent in the radial direction for each phase at the coil end. More specifically, the stator winding 5 2 1 (conductor wire) is bent inward in the radial direction at different positions for each phase in the axial direction, which results in winding of each phase of II phase, V phase, and phase. Mutual interference in the lines is avoided. In the configuration shown in the figure, the conductor wires are bent inward at a right angle in the radial direction for each phase, with each phase wire differing by the thickness of the conductor wire. It is preferable that the length dimension between both ends in the axial direction of the conductors 5 2 3 arranged in the circumferential direction be the same for each conductor 5 2 3.
[0498] なお、 固定子巻線 5 2 1 に固定子コア 5 2 2を組み付けて固定子 5 2 0を 製作する際には、 固定子巻線 5 2 1 において円環状の一部を非接続として切 り離しておき (すなわち、 固定子巻線 5 2 1 を略〇字状にしておき) 、 固定 子卷線 5 2 1の内周側に固定子コア 5 2 2を組み付けた後に、 切り離し部分 を互いに接続させて固定子巻線 5 2 1 を円環状にするとよい。 [0498] When assembling the stator core 5 2 2 to the stator winding 5 2 1 to manufacture the stator 5 2 0, part of the annular shape of the stator winding 5 2 1 is not connected. The stator windings 5 2 1 in the shape of a circle, and after assembling the stator core 5 2 2 on the inner circumference side of the stator winding 5 2 1, disconnect it. It is advisable to connect the parts to each other and form the stator winding 5 2 1 in an annular shape.
[0499] 上記以外に、 固定子コア 5 2 2を周方向にて複数 (例えば 3つ以上) に分 割しておき、 円環状に形成された固定子巻線 5 2 1の内周側に、 複数に分割 〇 2020/175333 130 卩(:171? 2020 /006903 [0499] In addition to the above, the stator core 5 22 is divided into a plurality (for example, three or more) in the circumferential direction, and the stator core 5 , Split into multiple 〇 2020/175333 130 卩 (: 171-1? 2020 /006903
されたコア片を組み付けるようにすることも可能である。 It is also possible to assemble assembled core pieces.
[0500] (変形例 1 5) [0500] (Modification 15)
次に、 本変形例における回転電機 7 0 0について説明する。 回転電機 7 0 0は、 車両の駆動用ユニッ トとして用いられる。 回転電機 7 0 0の概要を図 7 6〜図 7 8に示す。 図 7 6は、 回転電機 7 0 0の全体を示す斜視図であり 、 図 7 7は、 回転電機 7 0 0の縦断面図であり、 図 7 8は、 回転電機 7 0 0 の構成要素を分解した分解断面図である。 Next, the rotating electric machine 700 according to the present modification will be described. The rotating electric machine 700 is used as a unit for driving a vehicle. An outline of the rotating electric machine 700 is shown in Fig. 76 to Fig. 78. FIG. 76 is a perspective view showing the entire rotating electric machine 700, FIG. 77 is a vertical cross-sectional view of the rotating electric machine 700, and FIG. 78 shows the components of the rotating electric machine 700. It is a disassembled disassembled sectional view.
[0501 ] 回転電機 7 0 0は、 アウタロータ型の表面磁石型回転電機である。 回転電 機 7 0 0は、 大別して、 回転子 7 1 0、 固定子 7 3 0、 インナユニッ ト 7 7 0及びバスバーモジュール 8 1 0を有する回転電機本体と、 その回転電機本 体を囲むように設けられるハウジング 8 3 1及びカバー 8 3 2とを備えてい る。 これら各部材はいずれも、 回転子 7 1 0に一体に設けられた回転軸 7 0 1 に対して同軸に配置されており、 所定順序で軸方向に組み付けられること で回転電機 7 0 0が構成されている。 回転子 7 1 0は、 インナユニッ ト 7 7 〇の径方向内側に設けられた一対の軸受 7 9 1 , 7 9 2に片持ち支持され、 その状態で回転可能となっている。 回転軸 7 0 1 には、 車両の車軸や車輪等 に固定される連結軸 7 0 5が一体に設けられている。 [0501] The rotary electric machine 700 is an outer rotor type surface magnet type rotary electric machine. The rotating electric machine 700 is roughly classified into a rotating electric machine main body having a rotor 710, a stator 730, an inner unit 770 and a bus bar module 810, and a rotating electric machine main body surrounding the rotating electric machine main body. It is provided with a housing 831 and a cover 832 provided. All of these members are coaxially arranged with respect to a rotary shaft 7 01 provided integrally with the rotor 7 100, and the rotary electric machine 70 0 is configured by being assembled in the axial direction in a predetermined order. Has been done. The rotor 7 10 is cantilevered by a pair of bearings 7 9 1 and 7 9 2 provided inside the inner unit 7 70 in the radial direction, and is rotatable in that state. The rotating shaft 7 01 is integrally provided with a connecting shaft 7 05 which is fixed to an axle or a wheel of a vehicle.
[0502] 回転電機 7 0 0において、 回転子 7 1 0及び固定子 7 3 0はそれぞれ円筒 状をなしており、 エアギャップを挟んで径方向に対向配置されている。 回転 子 7 1 0が回転軸 7 0 1 と共に一体回転することにより、 固定子 7 3 0の径 方向外側にて回転子 7 1 0が回転する。 [0502] In the rotary electric machine 700, the rotor 710 and the stator 7300 each have a cylindrical shape, and are arranged to face each other in the radial direction with an air gap therebetween. The rotor 7 1 0 rotates integrally with the rotating shaft 7 0 1, so that the rotor 7 1 0 rotates radially outside the stator 7 3 0.
[0503] 図 7 9に示すように、 回転子 7 1 0は、 略円筒状の回転子キャリア 7 1 1 と、 その回転子キャリア 7 1 1 に固定された円環状の磁石ユニッ ト 7 1 2と を有している。 回転子キャリア 7 1 1は、 端板部 7 1 3と、 その端板部 7 1 3の外周部から軸方向に延びる筒部 7 1 4とを有している。 端板部 7 1 3に は貫通孔 7 1 3 3が形成されており、 その貫通孔 7 1 3 3に揷通された状態 で、 ボルト等の締結具 7 1 5により端板部 7 1 3に回転軸 7 0 1が固定され ている。 回転軸 7 0 1は、 回転子キャリア 7 1 1が固定される部分に、 軸方 〇 2020/175333 131 卩(:171? 2020 /006903 [0503] As shown in FIG. 79, the rotor 710 is composed of a substantially cylindrical rotor carrier 711 and an annular magnet unit 711 fixed to the rotor carrier 711. And have. The rotor carrier 7 11 has an end plate portion 7 13 and a tubular portion 7 14 extending axially from the outer peripheral portion of the end plate portion 7 13. A through hole 7 1 3 3 is formed in the end plate portion 7 1 3, and the end plate portion 7 1 3 3 is tightened with bolts and other fasteners 7 1 5 in a state where the through hole 7 1 3 3 is kneaded. The rotary shaft 701 is fixed to. The axis of rotation 7 01 is axially aligned with the part where the rotor carrier 7 11 is fixed. 〇 2020/175333 131 卩(: 171-1? 2020/006903
向に交差 (直交) する向きに延びるフランジ 7 0 2を有しており、 そのフラ ンジ 7 0 2と端板部 7 1 3とが面接合されている状態で、 回転軸 7 0 1 に対 して回転子キャリア 7 1 1が固定されている。 It has a flange 702 that extends in a direction that intersects (orthogonally) with, and in the state where the flange 702 and the end plate 711 are surface-joined, the rotary shaft 701 faces the rotary shaft 701. Then the rotor carrier 7 1 1 is fixed.
[0504] 磁石ユニッ ト 7 1 2は、 円筒状の磁石ホルダ 7 2 1 と、 その磁石ホルダ 7 [0504] The magnet unit 7 1 2 includes a cylindrical magnet holder 7 2 1 and the magnet holder 7 2 1.
2 1の内周面に固定された磁石 7 2 2と、 磁石 7 2 2の軸方向両側において 回転子キャリア 7 1 1 とは逆側に固定された円環状のエンドブレート 7 2 3 とを有している。 磁石ホルダ 7 2 1は、 軸方向において磁石 7 2 2と同じ長 さ寸法を有している。 磁石 7 2 2は、 磁石ホルダ 7 2 1 に径方向外側から包 囲された状態で設けられている。 また、 磁石ホルダ 7 2 1及び磁石 7 2 2は 、 軸方向両端のうち一端側が回転子キャリア 7 1 1 に当接した状態で固定さ れ、 他端側がエンドブレート 7 2 3に当接した状態で固定されている。 A magnet 7 2 2 fixed on the inner peripheral surface of 2 1 and an annular end plate 7 2 3 fixed on the opposite side to the rotor carrier 7 1 1 on both axial sides of the magnet 7 2 2. doing. The magnet holder 7 2 1 has the same length dimension as the magnet 7 2 2 in the axial direction. The magnet 7 22 is provided in the magnet holder 7 21 so as to be surrounded from the outside in the radial direction. In addition, the magnet holder 7 21 and the magnet 7 22 are fixed with one end of the axial ends contacting the rotor carrier 7 11 and the other end contacting the end plate 7 23. It is fixed at.
[0505] 回転子キャリア 7 1 1、 磁石ホルダ 7 2 1及びエンドブレート 7 2 3は、 いずれも鉄よりも比重が小さい非磁性体であるアルミニウム又は非磁性ステ ンレス (例えば 3 11 3 3 0 4) により構成されている。 これら各部材は、 ア ルミニウム等の軽金属により構成されることが望ましいが、 これに代えて、 合成樹脂により構成されることも可能である。 これら各部材は、 接着又は溶 接により接合されているとよい。 なお、 例えば、 磁石ホルダ 7 2 1は、 非磁 性体の複数のコアシートが軸方向に積層されることにより構成されるもので あってもよい。 コアシートは、 例えば円環板状に打ち抜き形成されている。 また、 例えば、 磁石ホルダ 7 2 1は、 ヘリカルコア構造を有するものであっ てもよい。 ヘリカルコア構造の磁石ホルダ 7 2 1では、 帯状のコアシートが 用いられ、 このコアシートが環状に卷回形成されるとともに軸方向に積層さ れることで、 全体として円筒状の磁石ホルダ 7 2 1が構成される。 [0505] The rotor carrier 7 1 1, the magnet holder 7 2 1 and the end plate 7 2 3 are all made of aluminum or a non-magnetic stainless steel (for example, 3 11 3 3 0 4) which is a non-magnetic material having a smaller specific gravity than iron. ). Each of these members is preferably made of a light metal such as aluminum, but instead of this, it may be made of a synthetic resin. Each of these members may be joined by adhesion or welding. Note that, for example, the magnet holder 721 may be configured by stacking a plurality of non-magnetic core sheets in the axial direction. The core sheet is formed by punching, for example, in the shape of an annular plate. Further, for example, the magnet holder 7 21 may have a helical core structure. The magnet holder 7 21 with a helical core structure uses a strip-shaped core sheet, and the core sheet is formed into an annular wrap and is laminated in the axial direction. Is configured.
[0506] エンドプレート 7 2 3は、 磁石ホルダ 7 2 1 よりも比重が大きい非磁性材 料で構成されている。 これにより、 回転電機 7 0 0の製造工程にてエンドプ レート 7 2 3を削ることにより、 回転軸 7 0 1の軸心を中心とした回転子 7 1 0のバランスを取る場合において、 エンドブレート 7 2 3の削り量を削減 できる。 このため、 バランス取りの作業を容易化することができる。 〇 2020/175333 132 卩(:171? 2020 /006903 [0506] The end plate 7 23 is made of a non-magnetic material having a larger specific gravity than the magnet holder 7 21. As a result, when the end plate 7 23 is cut in the manufacturing process of the rotary electric machine 700, the end plate 7 is balanced when the rotor 7 10 is balanced around the axis of the rotary shaft 7 01. The amount of shaving can be reduced by 23. Therefore, the balancing work can be facilitated. 〇 2020/175333 132 卩 (:171? 2020 /006903
[0507] 図 8 0は、 磁石ユニッ ト 7 1 2の断面構造を拡大して示す部分断面図であ る。 図 8 0には、 磁石 7 2 2の磁化容易軸を矢印にて示している。 [0507] Fig. 80 is a partial cross-sectional view showing an enlarged cross-sectional structure of the magnet unit 7 1 2. In Fig. 80, the easy axis of magnetization of the magnet 72 2 is indicated by an arrow.
[0508] 磁石ユニッ ト 7 1 2において、 磁石 7 2 2は、 回転子 7 1 0の周方向に沿 って極性が交互に変わるように並べて設けられている。 これにより、 磁石 7 2 2は、 周方向に複数の磁極を有する。 磁石 7 2 2は、 極異方性の永久磁石 であり、 固有保磁力が 4 0 0 [ 1<八/〇1 ] 以上であり、 かつ残留磁束密度巳 「が 1 . 0 [丁] 以上である焼結ネオジム磁石を用いて構成されている。 磁 石 7 2 2は、 磁石ホルダ 7 2 1の内周面に、 例えば接着により固定されてい る。 [0508] In the magnet unit 7 12, the magnets 7 22 are arranged side by side so that the polarities thereof alternate along the circumferential direction of the rotor 7 10. As a result, the magnet 72 2 has a plurality of magnetic poles in the circumferential direction. The magnet 72 2 is a polar-anisotropic permanent magnet, has an intrinsic coercive force of at least 400 [1 <8/○ 1] and a residual magnetic flux density of at least 1.0 [D]. It is composed of a sintered neodymium magnet The magnet 7 22 2 is fixed to the inner peripheral surface of the magnet holder 7 21 by, for example, bonding.
[0509] 磁石 7 2 2は、 周方向に隣り合う 2磁極において各磁極の中心である 軸 間を 1磁石として設けられている。 つまり、 磁石 7 2 2は、 1磁極分を 1磁 石とし、 その周方向の中心が 軸となっている。 磁石 7 2 2において径方向 内側の周面が、 磁束の授受が行われる磁束授受面 7 2 4である。 磁石 7 2 2 では、 軸側 (〇1軸寄りの部分) と 9軸側 ( 軸寄りの部分) とで磁化容易 軸の向きが相違しており、 軸側では磁化容易軸の向きが 軸に平行する向 きとなり、 軸側では磁化容易軸の向きが 軸に直交する向きとなっている 。 この場合、 磁化容易軸の向きに沿って円弧状の磁石磁路が形成されている 。 要するに、 磁石 7 2 2は、 磁極中心である 軸の側において、 磁極境界で ある 軸の側に比べて磁化容易軸の向きが 軸に平行となるように配向がな されて構成されている。 [0509] The magnets 72 are provided with two magnetic poles adjacent to each other in the circumferential direction, with one axis being the center of each magnetic pole. In other words, the magnet 722 has one magnetic pole as one magnet, and the center in the circumferential direction is the axis. The radially inner peripheral surface of the magnet 7 22 is a magnetic flux transfer surface 7 2 4 on which magnetic flux is transferred. In the magnet 7 22, the direction of the easy axis of magnetization is different on the axis side (portion closer to the 1st axis) and on the 9th axis side (portion closer to the axis). The orientations are parallel, and on the axis side, the direction of the easy magnetization axis is orthogonal to the axis. In this case, an arc-shaped magnet magnetic path is formed along the direction of the easy axis of magnetization. In short, the magnet 72 is oriented so that the easy axis of magnetization is closer to the axis, which is the center of the magnetic pole, than the axis, which is the magnetic pole boundary.
[0510] 周方向に並べられた各磁石 7 2 2によれば、 軸での磁石磁束が強化され [0510] The magnets 7 22 arranged in the circumferential direction enhance the magnetic flux of the magnets in the axis.
、 かつ 軸付近での磁束変化が抑えられる。 これにより、 各磁極において 軸から 軸にかけての表面磁束変化がなだらかになる磁石 7 2 2を好適に実 現できるものとなっている。 磁石 7 2 2は、 周方向の中心を 軸とする構成 に代えて、 周方向の中心を 軸とする構成であってもよい。 また、 磁石 7 2 2として、 磁極数と同じ数の磁石を用いる構成に代えて、 円環状に繫がった 磁石を用いる構成としてもよい。 And, the magnetic flux change near the axis can be suppressed. As a result, it is possible to preferably realize a magnet 72 2 in which the surface magnetic flux changes gently from axis to axis at each magnetic pole. The magnet 72 2 may have a structure having the center in the circumferential direction as the axis, instead of the structure having the center in the circumferential direction as the axis. Further, as the magnets 72, instead of using the same number of magnets as the number of magnetic poles, a magnet having an annular shape may be used.
[051 1 ] 磁石 7 2 2は以下の構成であることが望ましい。 磁石 7 2 2において、 径 〇 2020/175333 133 卩(:171? 2020 /006903 [051 1] The magnet 7 2 2 preferably has the following configuration. Magnet 7 2 2 〇 2020/175333 133 卩 (: 171-1? 2020 /006903
方向における厚み寸法は、 軸間の磁束授受面 7 2 4の円弧長さ以下と なっており、 具体的には上記円弧長さよりも小さくなっている。 これにより 、 磁石 7 2 2の厚みを低減でき、 磁石 7 2 2の使用量を低減できる。 The thickness in the direction is less than or equal to the arc length of the magnetic flux transfer surface 7 24 between the shafts, and specifically, is smaller than the above arc length. As a result, the thickness of the magnet 72 2 can be reduced, and the amount of the magnet 7 22 used can be reduced.
[0512] また、 図 8 1 に示すように、 磁石 7 2 2において 9軸と磁束授受面 7 2 4 との交点を中心点〇 とし、 かつ磁石 7 2 2の径方向の厚み寸法を半径とす る円を、 磁石 7 2 2の磁化容易軸を定める配向円 Xとする場合に、 磁石 7 2 2が配向円 Xの四半円分を包括する構成となっている。 つまり、 磁石 7 2 2 では、 軸を横切るように円弧状の磁化容易軸が設けられており、 その磁化 容易軸のうち、 径方向において磁束授受面 7 2 4とは反対側の周面と 9軸と の交点を通る磁化容易軸、 すなわち配向円 Xを通る磁化容易軸により最も強 い磁石磁束が生じる。 この場合、 磁石 7 2 2が配向円 Xの四半円分を包括す る構成であることにより、 軸を通る磁石磁路の長さを、 配向円 Xで規定さ れる長さとして確保した上で磁石磁束を生じさせることが可能となっている [0512] Also, as shown in Fig. 81, in the magnet 7 2 2, the intersection of the 9 axis and the magnetic flux transfer surface 7 2 4 is the center point 〇, and the radial thickness of the magnet 7 2 2 is the radius. If the circle is the orientation circle X that defines the easy axis of magnetization of the magnet 7 22, the magnet 7 22 is configured to include a quarter circle of the orientation circle X. In other words, the magnet 7 22 is provided with an arc-shaped easy axis of magnetization so as to cross the axis, and of the easy axis of magnetization, the circumferential surface on the side opposite to the magnetic flux transfer surface 7 24 is located in the radial direction. The strongest magnetic flux is generated by the easy magnetization axis passing through the intersection with the axis, that is, the easy magnetization axis passing through the orientation circle X. In this case, since the magnet 7 22 is configured to include a quarter circle of the orientation circle X, the length of the magnet magnetic path passing through the axis must be secured as the length specified by the orientation circle X. It is possible to generate magnet magnetic flux
[0513] ここで、 磁石 7 2 2において、 径方向における厚み寸法が 一9軸間の磁 束授受面 7 2 4の円弧長さよりも小さくなっていると、 磁石 7 2 2よりも径 方向外側、 すなわち反固定子側への磁束漏れの懸念が生じる。 しかしながら 、 本実施形態では、 磁石ホルダ 7 2 1が非磁性材料にて構成されていること により、 磁束漏れの影響を軽減できるものとなっている。 [0513] Here, when the thickness dimension in the radial direction of the magnet 7 22 is smaller than the arc length of the magnetic flux transfer surface 7 2 4 between the 19 axes, it is radially outside the magnet 7 22. That is, there is a fear of magnetic flux leakage to the side opposite to the stator. However, in this embodiment, since the magnet holder 7 21 is made of a non-magnetic material, the influence of magnetic flux leakage can be reduced.
[0514] また、 磁石 7 2 2には、 径方向外側の外周面に、 軸を含む所定範囲で凹 部 7 2 5が形成されているとともに、 径方向内側の内周面に、 軸を含む所 定範囲で凹部 7 2 6が形成されている。 この場合、 磁石 7 2 2の磁化容易軸 の向きによれば、 磁石 7 2 2の外周面において 軸付近で磁石磁路が短くな るとともに、 磁石 7 2 2の内周面において 9軸付近で磁石磁路が短くなる。 そこで、 磁石 7 2 2において磁石磁路長が短い場所で十分な磁石磁束を生じ させることが困難になることを考慮して、 その磁石磁束の弱い場所で磁石が 削除されている。 [0514] Further, the magnet 7 22 has a recess 7 25 formed on the outer peripheral surface on the radial outer side within a predetermined range including the shaft, and the inner peripheral surface on the radial inner side includes the shaft. Recesses 7 26 are formed within a certain range. In this case, according to the direction of the easy axis of magnetization of the magnet 7 22, the magnet magnetic path becomes shorter near the axis on the outer peripheral surface of the magnet 7 22 and near the 9 axis on the inner peripheral surface of the magnet 7 22. The magnet magnetic path becomes shorter. Therefore, considering that it is difficult to generate a sufficient magnetic flux in the magnet 72 2 where the magnetic path length is short, the magnet is deleted in the place where the magnetic flux is weak.
[0515] 磁石ホルダ 7 2 1は、 周方向に並ぶ各磁石 7 2 2の径方向外側に設けられ 〇 2020/175333 134 卩(:171? 2020 /006903 [0515] The magnet holder 7 2 1 is provided on the outer side in the radial direction of each magnet 7 2 2 arranged in the circumferential direction. 〇 2020/175333 134 卩 (: 171? 2020 /006903
ている。 また、 周方向における各磁石 7 2 2の間と各磁石 7 2 2の径方向内 側とを含む範囲で磁石ホルダ 7 2 1が設けられていてもよい。 つまり、 磁石 7 2 2を囲むようにして磁石ホルダ 7 2 1が設けられていてもよい。 磁石ホ ルダ 7 2 1 において各磁石 7 2 2の径方向外側の部分と径方向内側の部分と を有している場合、 径方向外側の部分が径方向内側の部分よりも高強度であ るとよい。 ing. Further, the magnet holder 7 21 may be provided in a range including a space between the magnets 7 22 in the circumferential direction and a radially inner side of the magnets 7 22. That is, the magnet holder 7 21 may be provided so as to surround the magnet 7 22. When the magnet holder 7 2 1 has a radially outer portion and a radially inner portion of each magnet 7 2 2, the radially outer portion has higher strength than the radially inner portion. Good.
[0516] 磁石ホルダ 7 2 1は、 磁石 7 2 2の凹部 7 2 5内に入り込む凸部 7 2 7を 有している。 この場合、 磁石 7 2 2の凹部 7 2 5と磁石ホルダ 7 2 1の凸部 7 2 7との係合により、 磁石 7 2 2の周方向の位置ずれが抑制されるように なっている。 つまり、 磁石ホルダ 7 2 1の凸部 7 2 7は、 磁石 7 2 2の回り 止め部として機能する。 また、 磁石ホルダ 7 2 1が、 磁石 7 2 2よりも径方 向内側 (固定子 7 3 0側) となる部分を有している場合には、 当該部分に、 磁石 7 2 2の凹部 7 2 6内に入り込む凸部が設けられていてもよい。 [0516] The magnet holder 7 2 1 has a convex portion 7 2 7 that enters the concave portion 7 2 5 of the magnet 7 2 2. In this case, the position shift of the magnet 7 22 in the circumferential direction is suppressed by the engagement of the concave portion 7 25 of the magnet 7 22 and the convex portion 7 27 of the magnet holder 7 21. That is, the convex portion 7 27 of the magnet holder 7 21 functions as a rotation stopping portion for the magnet 7 22 2. If the magnet holder 7 2 1 has a portion that is radially inward of the magnet 7 2 2 (on the side of the stator 7 3 0), the concave portion 7 of the magnet 7 2 2 should be located in that portion. There may be provided a convex portion that enters into the inside of 26.
[0517] なお、 回転子キヤリア 7 1 1、 磁石ホルダ 7 2 1及びエンドブレート 7 2 [0517] In addition, the rotor carrier 7 1 1, the magnet holder 7 2 1 and the end plate 7 2
3は、 回転子キヤリア 7 1 1、 磁石ホルダ 7 2 1及びエンドブレート 7 2 3 それぞれの孔に揷通されたロッ ド (不図示) の軸方向両側が溶接されること により一体化されていればよい。 3 is integrated by welding both sides in the axial direction of the rod (not shown) that is inserted into the holes of the rotor carrier 7 11 and the magnet holder 7 2 1 and the end plate 7 2 3 respectively. Good.
[0518] なお、 図 8 0では、 周方向に隣り合う磁石 7 2 2間の間に磁石ホルダ 7 2 [0518] In Fig. 80, the magnet holder 7 2 is provided between the magnets 7 22 adjacent to each other in the circumferential direction.
1が設けられる構成としたがこれに限らず、 磁石ホルダ 7 2 1が設けられな い構成としてもよい。 この場合、 周方向に隣り合う磁石 7 2 2同士が当接す ることとなる。 1 is provided, but the present invention is not limited to this, and the magnet holder 7 21 may not be provided. In this case, the magnets 72 2 adjacent to each other in the circumferential direction come into contact with each other.
[0519] 次に、 固定子 7 3 0の構成を説明する。 [0519] Next, the configuration of the stator 7300 will be described.
[0520] 固定子 7 3 0は、 固定子巻線 7 3 1 と固定子コア 7 3 2とを有している。 [0520] The stator 730 has a stator winding 731 and a stator core 732.
固定子コア 7 3 2は、 磁性体である電磁鋼板からなる複数のコアシートが軸 方向に積層され、 かつ径方向に所定の厚さを有する円筒状をなしており、 固 定子コア 7 3 2において回転子 7 1 0側となる径方向外側に固定子巻線 7 3 1が組み付けられている。 固定子コア 7 3 2の外周面は凹凸のない曲面状を なしている。 固定子コア 7 3 2はバックヨークとして機能する。 固定子コア 〇 2020/175333 135 卩(:171? 2020 /006903 The stator core 7 32 has a cylindrical shape in which a plurality of core sheets made of magnetic steel sheets, which are magnetic materials, are laminated in the axial direction and has a predetermined thickness in the radial direction. In, the stator winding 7 31 is assembled on the radially outer side of the rotor 7 10 side. The outer peripheral surface of the stator core 7 32 has a curved surface without unevenness. The stator core 7 32 functions as a back yoke. Stator core 〇 2020/175333 135 卩(: 171-1? 2020/006903
7 3 2は、 例えば円環板状に打ち抜き形成された複数のコアシートが軸方向 に積層されて構成されている。 ただし、 ヘリカルコア構造を有するものであ ってもよい。 ヘリカルコア構造の固定子コア 7 3 2では、 帯状のコアシート が用いられ、 このコアシートが環状に卷回形成されるとともに軸方向に積層 されることで、 全体として円筒状の固定子コア 7 3 2が構成されている。 7 32 is configured by stacking a plurality of core sheets, which are punched and formed, for example, in an annular plate shape, in the axial direction. However, it may have a helical core structure. In the stator core 7 32 with a helical core structure, a strip-shaped core sheet is used, and this core sheet is wound in a ring shape and laminated in the axial direction, so that the overall stator core 7 has a cylindrical shape. 3 2 are configured.
[0521 ] 固定子 7 3 0は、 軸方向において、 回転子 7 1 0における磁石 7 2 2に径 方向に対向するコイルサイ ドに相当する部分と、 そのコイルサイ ドの軸方向 外側であるコイルエンドに相当する部分とを有している。 この場合、 固定子 コア 7 3 2は、 軸方向においてコイルサイ ドに対応する範囲で設けられてい る。 [0521] The stator 7 30 has a portion corresponding to a coil side radially opposed to the magnet 7 2 2 of the rotor 7 10 in the axial direction and a coil end that is an axial outer side of the coil side. And a corresponding portion. In this case, the stator core 7 32 is provided in the range corresponding to the coil side in the axial direction.
[0522] 固定子巻線 7 3 1は、 複数の相巻線を有し、 各相の相巻線が周方向に所定 順序で配置されることで円筒状 (環状) に形成されている。 固定子巻線 7 3 1の径方向内側に固定子コア 7 3 2が組み付けられている。 本例では、 II相 、 V相及び 相の相巻線を用いることで、 固定子巻線 7 3 1が 3相の相卷線 を有する構成となっている。 [0522] The stator winding 7 31 has a plurality of phase windings, and the phase windings of each phase are arranged in the circumferential direction in a predetermined order to form a cylindrical shape (annular shape). The stator core 7 3 2 is assembled on the radially inner side of the stator winding 7 3 1. In this example, by using phase windings of II phase, V phase, and phase, the stator winding 7 3 1 has a configuration having a 3-phase winding.
[0523] 次に、 インナユニッ ト 7 7 0について説明する。 [0523] Next, the inner unit 770 will be described.
[0524] 図 8 2及び図 8 3は、 インナユニッ ト 7 7 0の縦断面図である。 なお、 図 [0524] Figs. 82 and 83 are vertical cross-sectional views of the inner unit 770. Note that the figure
8 3には、 インナユニッ ト 7 7 0に、 回転軸 7 0 1 を支持する軸受 7 9 1 , 8 3 includes a bearing 7 9 1, which supports the rotating shaft 7 01 on the inner unit 7 70.
7 9 2を組み付けた状態を示している。 便宜上、 以下の説明では、 軸受 7 9 1 を第 1軸受 7 9 1 ( 「基端側軸受」 に相当) 、 軸受 7 9 2を第 2軸受 7 9 2 ( 「縮径側軸受」 に相当) とも称する。 第 1軸受 7 9 1は、 回転軸 7 0 1 の軸方向において基端側、 すなわち連結軸 7 0 5側に設けられた軸受であり 、 第 2軸受 7 9 2は、 回転軸 7 0 1の先端側に設けられた軸受である。 7 9 2 shows the assembled state. For the sake of convenience, in the following description, the bearing 7 91 is the first bearing 7 91 (corresponding to the “base end bearing”) and the bearing 7 92 is the second bearing 7 92 (corresponding to the “reduction side bearing”) Also called. The first bearing 7 91 is a bearing provided on the base end side in the axial direction of the rotating shaft 7 01, that is, on the connecting shaft 7 05 side, and the second bearing 7 92 is the bearing of the rotating shaft 7 0 1 It is a bearing provided on the tip side.
[0525] インナユニッ ト 7 7 0は、 インナハウジング 7 7 1 を有している。 インナ ハウジング 7 7 1は、 円筒状をなす外筒部材 7 7 2と、 外周径が外筒部材 7 7 2よりも小径の円筒状をなし、 外筒部材 7 7 2の径方向内側に配置される 内筒部材 7 7 3と、 これら外筒部材 7 7 2及び内筒部材 7 7 3の軸方向一端 側に固定される略円板状の端板 7 7 4とを有している。 これら各部材 7 7 2 〇 2020/175333 136 卩(:171? 2020 /006903 [0525] The inner unit 770 has an inner housing 771. The inner housing 7 71 has a cylindrical outer cylinder member 7 72 and a cylindrical shape having an outer peripheral diameter smaller than that of the outer cylinder member 7 72, and is arranged inside the outer cylinder member 7 72 in the radial direction. It has an inner cylinder member 773, and a substantially disc-shaped end plate 774 fixed to one end side of the outer cylinder member 772 and the inner cylinder member 773 in the axial direction. Each of these members 7 7 2 〇 2020/175333 136 卩(: 171-1?2020/006903
〜 7 7 4は、 導電性材料により構成されているとよく、 例えば炭素繊維強化 プラスチック
Figure imgf000138_0001
により構成されている。 外筒部材 7 7 2と端板 7 7 4とは同一の外形寸法を有しており、 これら外筒部材 7 7 2及び端板 7 7 4により形成された空間内に内筒部材 7 7 3が設けられている。 内筒部材 7 7 3は、 ボルト等の締結具 7 7 5により外筒部材 7 7 2及び端板 7 7 4に対 してそれぞれ固定されている。
~ 7 74 should be made of conductive material, such as carbon fiber reinforced plastic
Figure imgf000138_0001
It is composed by. The outer cylinder member 7 72 and the end plate 7 74 have the same outer dimensions, and the inner cylinder member 7 7 3 is placed in the space formed by the outer cylinder member 7 72 and the end plate 7 74. Is provided. The inner tubular member 773 is fixed to the outer tubular member 772 and the end plate 774 by fasteners 775 such as bolts.
[0526] インナハウジング 7 7 1の外筒部材 7 7 2の径方向外側には固定子コア 7 [0526] The outer core member 7 7 1 of the inner housing 7 7 1 has a stator core 7 on the outside in the radial direction.
3 2が固定される。 これにより、 固定子 7 3 0とインナユニッ ト 7 7 0とが —体化されるようになっている。 3 2 is fixed. As a result, the stator 7 30 and the inner unit 7 70 are integrated.
[0527] 外筒部材 7 7 2及び内筒部材 7 7 3の間には、 冷却水等の冷媒を流通させ る冷媒通路 7 7 7が形成されている。 冷媒通路 7 7 7は、 インナハウジング [0527] A refrigerant passage 777 through which a refrigerant such as cooling water flows is formed between the outer cylinder member 772 and the inner cylinder member 773. Refrigerant passage 7 7 7 is the inner housing
7 7 1の周方向に環状に設けられている。 図示は省略するが、 冷媒通路 7 7 7には冷媒配管が接続されており、 その冷媒配管から流入する冷媒が冷媒通 路 7 7 7内で熱交換した後、 再び冷媒配管に流出するようになっている。 It is provided annularly in the circumferential direction of 7 71. Although illustration is omitted, a refrigerant pipe is connected to the refrigerant passage 777 so that the refrigerant flowing from the refrigerant pipe exchanges heat in the refrigerant passage 777 and then flows out to the refrigerant pipe again. Has become.
[0528] 内筒部材 7 7 3の径方向内側には環状空間が形成されており、 その環状空 間に、 例えば電力変換器としてのインバータを構成する電気部品が配置され るとよい。 電気部品は、 例えば半導体スイッチング素子やコンデンサをパッ ケージ化した電気モジュールである。 内筒部材 7 7 3に当接した状態で電気 モジュールを配置することにより、 冷媒通路 7 7 7を流れる冷媒により電気 モジュールが冷却されるようになっている。 [0528] An annular space is formed inside the inner tubular member 773 in the radial direction, and electrical components forming an inverter as a power converter may be disposed in the annular space. The electric component is, for example, an electric module in which a semiconductor switching element and a capacitor are packaged. By disposing the electric module in a state of being in contact with the inner cylinder member 773, the electric module is cooled by the refrigerant flowing through the refrigerant passage 777.
[0529] 外筒部材 7 7 2は、 内筒部材 7 7 3よりも径方向内側に円筒状のボス部 7 [0529] The outer cylinder member 7 7 2 has a cylindrical boss portion 7 radially inward of the inner cylinder member 7 7 3.
8 0を有している。 ボス部 7 8 0は、 中空筒状に設けられており、 その中空 部に回転軸 7 0 1が揷通されるようになっている。 ボス部 7 8 0は、 軸受 7 9 1 , 7 9 2を保持する軸受保持部となっており、 その中空部に軸受 7 9 1 , 7 9 2が固定されている。 本実施形態において、 軸受 7 9 1 , 7 9 2は、 筒状の内輪と、 内輪の径方向外側に配置された筒状の外輪と、 それら内輪及 び外輪の間に配置された複数の玉とを有するラジアル玉軸受であり、 外輪が ボス部 7 8 0に固定されることで、 インナユニッ ト 7 7 0に組み付けられて 〇 2020/175333 137 卩(:171? 2020 /006903 Has 80. The boss portion 780 is provided in the shape of a hollow cylinder, and the rotary shaft 701 is passed through the hollow portion. The boss portion 780 serves as a bearing holding portion for holding the bearings 791 and 792, and the bearings 791 and 792 are fixed in the hollow portion thereof. In the present embodiment, the bearings 79 1 and 7 92 include a cylindrical inner ring, a cylindrical outer ring arranged radially outside the inner ring, and a plurality of balls arranged between the inner ring and the outer ring. It is a radial ball bearing with and the outer ring is fixed to the boss 780 so that it can be assembled to the inner unit 770. 〇 2020/175 333 137 卩 (: 171? 2020 /006903
いる。 There is.
[0530] ボス部 7 8 0の中空部には、 第 1軸受 7 9 1 を固定する第 1固定部 7 8 1 ( 「基端側固定部」 に相当) と、 第 2軸受 7 9 2を固定する第 2固定部 7 8 2 ( 「縮径側固定部」 に相当) とが設けられている。 第 1軸受 7 9 1及び第 2軸受 7 9 2は、 回転子 7 1 0の振動や遠心荷重を考慮して、 回転軸 7 0 1 における支持位置に応じて体格が異なっており、 回転軸 7 0 1の基端側を支 持する第 1軸受 7 9 1の方が大きいサイズの軸受、 すなわち支持荷重の大き い軸受となっている。 そのため、 第 1固定部 7 8 1は、 第 2固定部 7 8 2に 比べて大径に形成されている。 [0530] In the hollow portion of the boss portion 7800, the first fixed portion 781 (corresponding to the "base end side fixed portion") for fixing the first bearing 791 and the second bearing 792 are provided. The second fixing part 7 82 (corresponding to the "reduction side fixing part") for fixing is provided. The first bearing 7 91 and the second bearing 7 92 have different physiques depending on the supporting position on the rotary shaft 7 01, considering the vibration and centrifugal load of the rotor 7 10 and the rotary shaft 7 9 1. The first bearing 7 91 supporting the base end side of 0 1 has a larger size, that is, a bearing with a larger supporting load. Therefore, the first fixing portion 7 81 has a larger diameter than the second fixing portion 7 82.
[0531 ] また、 第 1軸受 7 9 1 と第 2軸受 7 9 2とを比べると、 第 1軸受 7 9 1は 、 第 2軸受 7 9 2に比べて径方向の内部隙間、 すなわちラジアル隙間が大き いものとなっている。 なお、 ラジアル隙間は、 軸受の内輪と外輪と玉との軸 方向の遊び量である。 ここで、 第 1軸受 7 9 1は、 第 2軸受 7 9 2に比べて 回転子 7 1 0の振動や遠心荷重を受けやすい軸受であり、 その第 1軸受 7 9 1のラジアル隙間を大きくすることにより、 荷重吸収の効果が高められる。 これにより、 回転軸 7 0 1の基端部側においてボス部 7 8 0に作用する荷重 が低減され、 回転軸 7 0 1の先端側における振れが抑制されるようになって いる。 [0531] Also, comparing the first bearing 7 91 and the second bearing 7 92, the first bearing 7 91 has a larger radial inner clearance, that is, the radial clearance than the second bearing 7 92. It is big. The radial clearance is the amount of axial play between the inner ring, outer ring, and balls of the bearing. Here, the first bearing 7 91 is a bearing that is more susceptible to the vibration and centrifugal load of the rotor 7 10 than the second bearing 7 92, and the radial clearance of the first bearing 7 91 is increased. This enhances the effect of load absorption. As a result, the load acting on the boss portion 780 on the base end side of the rotating shaft 701 is reduced, and the runout on the tip side of the rotating shaft 701 is suppressed.
[0532] 第 1固定部 7 8 1は、 ボス部 7 8 0において軸方向に平行な平行面 7 8 1 [0532] The first fixed portion 7 81 is a parallel surface 7 8 1 parallel to the axial direction in the boss portion 7 80.
3と、 軸方向に直交する直交面 7 8 1 匕とにより形成されており、 これら各 面に当接した状態で第 1軸受 7 9 1が固定されている。 また、 第 2固定部 7 8 2は、 ボス部 7 8 0において軸方向に平行な平行面 7 8 2 3と、 軸方向に 直交する直交面 7 8 2匕とにより形成されており、 これら各面に当接した状 態で第 2軸受 7 9 2が固定されている。 なお、 第 2固定部 7 8 2と第 3固定 部 7 8 3との段差と、 第 2軸受 7 9 2との間に、 第 2軸受 7 9 2に予圧を付 与する図示しないパネが設けられていてもよい。 3 and an orthogonal surface 7 8 1 which is orthogonal to the axial direction, and the first bearing 7 9 1 is fixed in contact with each of these surfaces. Further, the second fixing portion 7 82 is formed by a parallel surface 7 8 2 3 parallel to the axial direction in the boss portion 7 8 0 and an orthogonal surface 7 82 2 orthogonal to the axial direction. The second bearing 7 92 is fixed in the state of abutting against the surface. A panel (not shown) that applies a preload to the second bearing 7 92 is provided between the step between the second fixed portion 7 82 and the third fixed portion 783 and the second bearing 7 92. It may be.
[0533] また、 ボス部 7 8 0の中空部には、 第 1固定部 7 8 1 と第 2固定部 7 8 2 とのうち第 2固定部 7 8 2の側に、 回転センサとしてのレゾルバ 8 0 0を固 〇 2020/175333 138 卩(:171? 2020 /006903 [0533] Further, in the hollow portion of the boss portion 780, a resolver as a rotation sensor is provided on the side of the second fixed portion 782 of the first fixed portion 781 and the second fixed portion 782. 8 00 fixed 〇 2020/175333 138 卩(: 171-1?2020/006903
定する第 3固定部 7 8 3 ( 「拡径側固定部」 に相当) が設けられている。 第 3固定部 7 8 3は、 第 2固定部 7 8 2を段差状に拡径させることで形成され ている。 A fixed third fixed part 783 (corresponding to the "expansion side fixed part") is provided. The third fixing portion 783 is formed by expanding the diameter of the second fixing portion 782 in a stepped shape.
[0534] 図 7 7に示すように、 レゾルバ 8 0 0は、 回転軸 7 0 1 に固定されるレゾ ルバロータ 8 0 1 と、 そのレゾルバロータ 8 0 1の径方向外側に対向配置さ れたレゾルバステータ 8 0 2とを備えている。 レゾルバロータ 8 0 1は、 円 板リング状をなしており、 回転軸 7 0 1 を揷通させた状態で、 回転軸 7 0 1 に同軸に設けられている。 レゾルバステータ 8 0 2は、 不図示のステータコ アとステータコイルとを有し、 ボス部 7 8 0の第 3固定部 7 8 3に固定され ている。 [0534] As shown in Fig. 77, the resolver 800 includes a resolver rotor 8O1 fixed to a rotary shaft 7O1 and a resolver 8A arranged radially outside the resolver rotor 8O1. And a stator 800. The resolver rotor 801 has a disc ring shape and is provided coaxially with the rotating shaft 701 with the rotating shaft 701 being passed through. The resolver stator 802 has a stator core and a stator coil (not shown), and is fixed to the third fixing portion 783 of the boss portion 780.
[0535] 図 8 2に示すように、 ボス部 7 8 0の中空部には、 軸方向において第 1固 定部 7 8 1 と第 2固定部 7 8 2との間となる位置に、 これら各固定部 7 8 1 , 7 8 2よりも小径の縮径部 7 8 4 , 7 8 5が設けられている。 縮径部 7 8 4は第 1固定部 7 8 1 よりも径の小さい孔であり、 縮径部 7 8 5は第 2固定 部 7 8 2よりも径の小さい孔である。 また、 レゾルバ 8 0 0を固定する第 3 固定部 7 8 3は、 第 2固定部 7 8 2よりも軸方向外側となる位置、 換言すれ ば回転軸 7 0 1の先端側となる位置に、 第 2固定部 7 8 2よりも拡径された 部位として設けられている。 第 2固定部 7 8 2と第 3固定部 7 8 3とは、 軸 方向に隣り合う位置に設けられている。 [0535] As shown in FIG. 82, the hollow portion of the boss portion 780 is located at a position between the first fixed portion 781 and the second fixed portion 782 in the axial direction. Reduced diameter portions 7 84, 7 8 5 having a diameter smaller than that of each fixed portion 7 81, 7 82 are provided. The reduced diameter portion 7 84 is a hole having a smaller diameter than the first fixed portion 7 81, and the reduced diameter portion 7 85 is a hole having a smaller diameter than the second fixed portion 7 8 2. In addition, the third fixing portion 783 for fixing the resolver 800 is located axially outside the second fixing portion 782, in other words, is located at the tip end side of the rotary shaft 7101. It is provided as a portion having a diameter larger than that of the second fixed portion 7 82. The second fixed portion 7 82 and the third fixed portion 7 83 are provided at positions adjacent to each other in the axial direction.
[0536] この場合、 外筒部材 7 7 2において中ぐり加工等により孔加工を行う際に 、 第 2固定部 7 8 2と第 3固定部 7 8 3とを同一方向から同軸で連続加工す ることが可能となる。 そのため、 第 2固定部 7 8 2に固定される第 2軸受 7 9 2と第 3固定部 7 8 3に固定されるレゾルバステータ 8 0 2との同軸度が 高められ、 ひいてはレゾルバロータ 8 0 1 とレゾルバステータ 8 0 2との同 軸度が高められることとなる。 この場合、 レゾルバロータ 8 0 1 に対するレ ゾルバステータ 8 0 2の振れが低減され、 ひいてはレゾルバ 8 0 0における 角度検出誤差が低減される。 [0536] In this case, when the outer cylinder member 772 is bored by boring or the like, the second fixing portion 782 and the third fixing portion 783 are continuously machined coaxially from the same direction. It is possible to Therefore, the coaxiality between the second bearing 7 9 2 fixed to the second fixed portion 7 8 2 and the resolver stator 8 0 2 fixed to the third fixed portion 7 8 3 is increased, and by extension, the resolver rotor 8 0 1 This will increase the concentricity between the resolver stator and the resolver stator 802. In this case, the shake of the resolver stator 8O2 with respect to the resolver rotor 8O1 is reduced, and by extension, the angle detection error in the resolver 8O00 is reduced.
[0537] 次に、 バスバーモジユール 8 1 0について説明する。 バスバーモジユール 〇 2020/175333 139 卩(:171? 2020 /006903 [0537] Next, the bus bar module 810 will be described. Bus bar module 〇 2020/175333 139 卩(: 171-1? 2020/006903
8 1 0は、 各相の固定子巻線 7 3 1 を電気的に接続する卷線接続部材である 。 バスバーモジユール 8 1 0は、 円環状をなしている。 Reference numeral 810 is a winding wire connecting member for electrically connecting the stator winding 731 of each phase. The bus bar module 810 has an annular shape.
[0538] 以上説明した本実施形態によれば、 以下の効果が得られる。 According to the present embodiment described above, the following effects can be obtained.
[0539] 第 3固定部 7 8 3と第 2固定部 7 8 2とが軸方向において隣り合っている 。 この構成によれば、 回転軸 7 0 1のうち、 第 2軸受 7 9 2による支持部と 、 レゾルバロータ 8 0 1の固定部との軸方向距離を短くすることができ、 回 転軸 7 0 1の振れを低減できる。 その結果、 レゾルバステータ 8 0 2に対す るレゾルバロータ 8 0 1の振れを低減でき、 回転子 7 1 0の回転位置の検出 精度を向上させることができる。 [0539] The third fixed portion 783 and the second fixed portion 782 are adjacent to each other in the axial direction. According to this structure, the axial distance between the supporting portion of the second bearing 7 92 and the fixed portion of the resolver rotor 8 01 can be shortened in the rotating shaft 7 01, and the rotating shaft 7 01 can be shortened. The shake of 1 can be reduced. As a result, the shake of the resolver rotor 8 01 with respect to the resolver stator 8 02 can be reduced, and the detection accuracy of the rotation position of the rotor 7 10 can be improved.
[0540] また、 第 2固定部 7 8 2と第 3固定部 7 8 3とが軸方向において隣り合っ ている構成は、 ボス部 7 8 0において、 軸方向において端板 7 7 4と対向す る側から中ぐり加工等により孔加工を行う際に、 第 2固定部 7 8 2と第 3固 定部 7 8 3とを同一方向から同軸で連続加工することができる。 このため、 第 2軸受 7 9 2とレゾルバステータ 8 0 2との同軸度を高めることができる 。 これにより、 レゾルバロータ 8 0 1 とレゾルバステータ 8 0 2との同軸度 を高めることができ、 レゾルバステータ 8 0 2に対するレゾルバロータ 8 0 1の振れを低減できる。 その結果、 回転位置の検出精度の向上効果をより高 めることができる。 [0540] In addition, the configuration in which the second fixing portion 7 82 and the third fixing portion 7 8 3 are adjacent to each other in the axial direction is such that the boss portion 7 80 faces the end plate 7 7 4 in the axial direction. The second fixing portion 7 82 and the third fixing portion 7 8 3 can be continuously machined coaxially from the same direction when the hole is machined by boring from the side. Therefore, it is possible to increase the coaxiality between the second bearing 7 92 and the resolver stator 8 02. As a result, the coaxiality between the resolver rotor 8 01 and the resolver stator 8 02 can be increased, and the shake of the resolver rotor 8 01 with respect to the resolver stator 8 02 can be reduced. As a result, the effect of improving the detection accuracy of the rotational position can be further enhanced.
[0541 ] 回転軸 7 0 1のうち軸方向において第 1軸受 7 9 1側にカップ状の回転子 [0541] Cup-shaped rotor on the side of the first bearing 7 91 in the axial direction of the rotating shaft 7 01
7 1 0が固定されている。 このため、 第 1軸受 7 9 1は、 第 2軸受 7 9 2に 比べて回転子の振動や遠心荷重を受けやすい。 ここで、 第 1軸受 7 9 1及び 第 2軸受 7 9 2としてラジアル玉軸受が用いられ、 第 2軸受 7 9 2よりも第 1軸受 7 9 1のラジアル隙間が大きくされている。 この構成によれば、 回転 子 7 1 0の荷重吸収の効果が高めることができ、 ボス部 7 8 0のうち、 第 1 軸受 7 9 1側に作用する荷重を低減できる。 これにより、 回転軸 7 0 1のう ち第 2軸受 7 9 2による支持部の振れを低減でき、 レゾルバステータ 8 0 2 に対するレゾルバロータ 8 0 1の振れを低減できる。 その結果、 回転位置の 検出精度の向上効果をより高めることができる。 〇 2020/175333 140 卩(:171? 2020 /006903 7 1 0 is fixed. Therefore, the first bearing 7 91 is more susceptible to rotor vibration and centrifugal load than the second bearing 7 92. Here, radial ball bearings are used as the first bearing 7 91 and the second bearing 7 92, and the radial gap of the first bearing 7 9 1 is larger than that of the second bearing 7 9 2. According to this configuration, the effect of load absorption of the rotor 710 can be enhanced, and the load acting on the first bearing 791 side of the boss portion 780 can be reduced. As a result, the runout of the support portion of the rotary shaft 7101 due to the second bearing 792 can be reduced, and the runout of the resolver rotor 8O1 with respect to the resolver stator 8O2 can be reduced. As a result, the effect of improving the detection accuracy of the rotational position can be further enhanced. 〇 2020/175333 140 (:171? 2020/006903
[0542] 磁石ホルダ 7 2 1が非磁性材料にて構成されている。 このため、 回転子 7 [0542] The magnet holder 7 21 is made of a non-magnetic material. For this reason, rotor 7
1 0の軽量化を図ることができ、 回転軸 7 0 1の振れを低減できる。 その結 果、 レゾルバステータ 8 0 2に対するレゾルバロータ 8 0 1の振れを低減で き、 回転位置の検出精度の向上効果をより高めることができる。 It is possible to reduce the weight of the rotary shaft 70 and reduce the runout of the rotary shaft 70 1. As a result, the shake of the resolver rotor 8 01 with respect to the resolver stator 8 02 can be reduced, and the effect of improving the rotational position detection accuracy can be further enhanced.
[0543] ここで、 磁石 7 2 2において 9軸と磁束授受面 7 2 4との交点を中心点〇 とし、 磁石 7 2 2の径方向の厚み寸法を半径とする円を配向円 Xとする。 この場合において、 磁石 7 2 2が配向円 Xの四半円分を包括する構成となつ ている。 この構成によれば、 磁石 7 2 2において、 配向円 Xを通る磁化容易 軸により最も強い磁石磁束が生じる。 この最も強い磁石磁束の磁路が磁石ホ ルダ 7 2 1側に形成されることを回避でき、 磁石 7 2 2から磁石ホルダ 7 2 1への磁束漏れの抑制効果を高めることができる。 このように、 本実施形態 によれば、 回転電機 7 0 0のトルクの低下を抑制しつつ、 回転位置の検出精 度を向上させることができる。 [0543] Here, the center of the magnet 7 22 is the intersection of the 9-axis and the magnetic flux transfer surface 7 24, and the circle whose radius is the radial thickness of the magnet 7 22 is the orientation circle X. .. In this case, the magnet 72 2 is configured to include a quarter circle of the orientation circle X. According to this structure, in the magnet 72, the strongest magnet magnetic flux is generated due to the easy axis of magnetization passing through the orientation circle X. It is possible to prevent the magnetic path of the strongest magnetic flux of the magnet from being formed on the side of the magnetic holder 7 2 1, and to enhance the effect of suppressing magnetic flux leakage from the magnet 7 22 to the magnet holder 7 21. As described above, according to the present embodiment, it is possible to improve the detection accuracy of the rotational position while suppressing the decrease in the torque of the rotary electric machine 700.
[0544] (変形例 1 6) [0544] (Modification 16)
以下、 変形例 1 6について、 変形例 1 5との相違点を中心に説明する。 図 8 4に示すように、 第 3固定部 7 8 3のうち、 軸方向においてレゾルバステ —夕 8 0 2よりも開口側の内周面には、 円環状のカバー部材 8 0 3が固定さ れている。 この構成によれば、 1つのカバー部材 8 0 3により、 レゾルバ 8 0 0及び第 2軸受 7 9 2を異物から保護することができる。 Hereinafter, Modification 16 will be described focusing on the differences from Modification 15. As shown in Fig. 84, an annular cover member 803 is fixed to the inner peripheral surface of the third fixing portion 783 on the opening side in the axial direction with respect to the resolver stub 802 in the axial direction. ing. According to this structure, one resolver 803 can protect the resolver 800 and the second bearing 79 2 from foreign matter.
[0545] (他の変形例) [0545] (Other modifications)
-変形例 1 5 , 1 6において、 レゾルバステータ 8 0 2が第 2固定部 7 8 2に固定され、 第 2軸受 7 9 2が第 3固定部 7 8 3に固定されていてもよい -In Modifications 1 5 and 1 6, the resolver stator 8 0 2 may be fixed to the second fixed portion 7 82 and the second bearing 7 9 2 may be fixed to the third fixed portion 7 8 3.
[0546] 変形例 1 5 , 1 6における磁石としては、 図 8 0及び図 8 1 に示したも のに限らず、 例えばハルバッハ配列のものが用いられてもよい。 [0546] The magnets in Modifications 15 and 16 are not limited to those shown in Figs. 80 and 81, and Halbach array magnets may be used, for example.
[0547] 変形例 1 5 , 1 6の構成を、 アウタロータ型の回転電機に代えて、 イン ナロータ型の回転電機に適用してもよい。 The configurations of Modifications 15 and 16 may be applied to an inner rotor type rotating electric machine instead of the outer rotor type rotating electric machine.
[0548] 例えば図 5 0に示すように、 回転電機 5 0 0では、 冷却水通路 5 4 5の 〇 2020/175333 141 卩(:171? 2020 /006903 [0548] For example, as shown in FIG. 50, in the rotary electric machine 500, 〇 2020/175333 141 卩 (:171? 2020 /006903
入口通路 5 7 1 と出口通路 5 7 2とが一力所にまとめて設けられているが、 この構成を変更し、 入口通路 5 7 1 と出口通路 5 7 2とが周方向に異なる位 置にそれぞれ設けられていてもよい。 例えば、 入口通路 5 7 1 と出口通路 5 7 2とを周方向に 1 8 0度異なる位置に設ける構成や、 入口通路 5 7 1及び 出口通路 5 7 2の少なくともいずれかを複数設ける構成であってもよい。 The inlet passage 5 7 1 and the outlet passage 5 7 2 are provided in one place, but this configuration has been modified so that the inlet passage 5 7 1 and the outlet passage 5 7 2 are located at different positions in the circumferential direction. May be provided in each. For example, the inlet passage 5 71 and the outlet passage 5 72 may be provided at positions different by 180 degrees in the circumferential direction, or at least one of the inlet passage 5 71 and the outlet passage 5 72 may be provided in plural. May be.
[0549] 上記実施形態の車輪 4 0 0では、 回転電機 5 0 0の軸方向の片側に回転 軸 5 0 1 を突出させる構成としたが、 これを変更し、 軸方向の両方に回転軸 5 0 1 を突出させる構成としてもよい。 これにより、 例えば車両前後の少な くとも一方が 1輪となる車両において好適な構成を実現できる。 [0549] In the wheel 400 of the above-described embodiment, the rotating shaft 5O1 is configured to project to one side in the axial direction of the rotating electric machine 500. However, this is modified so that the rotating shaft 5 It may be configured such that 0 1 is projected. As a result, for example, a suitable configuration can be realized in a vehicle in which at least one of the front and rear of the vehicle has one wheel.
[0550] 車輪 4 0 0に用いられる回転電機 5 0 0として、 インナロータ式の回転 電機を用いることも可能である。 [0550] As the rotary electric machine 500 used for the wheel 400, an inner rotor type rotary electric machine can be used.
[0551 ] 回転電機としては、 星形結線のものに限らず、 △結線のものであっても よい。 [0551] The rotary electric machine is not limited to the star connection, but may be the Δ connection.
[0552] この明細書における開示は、 例示された実施形態に制限されない。 開示は 、 例示された実施形態と、 それらに基づく当業者による変形態様を包含する 。 例えば、 開示は、 実施形態において示された部品および/または要素の組 み合わせに限定されない。 開示は、 多様な組み合わせによって実施可能であ る。 開示は、 実施形態に追加可能な追加的な部分をもつことができる。 開示 は、 実施形態の部品および/または要素が省略されたものを包含する。 開示 は、 ひとつの実施形態と他の実施形態との間における部品および/または要 素の置き換え、 または組み合わせを包含する。 開示される技術的範囲は、 実 施形態の記載に限定されない。 開示されるいくつかの技術的範囲は、 請求の 範囲の記載によって示され、 さらに請求の範囲の記載と均等の意味及び範囲 内での全ての変更を含むものと解されるべきである。 [0552] The disclosure herein is not limited to the illustrated embodiments. The disclosure includes the illustrated embodiments and variations thereof by one of ordinary skill in the art based on them. For example, the disclosure is not limited to the combination of parts and/or elements shown in the embodiments. The disclosure can be implemented in various combinations. The disclosure may have additional parts that may be added to the embodiments. The disclosure includes omissions of parts and/or elements of the embodiments. The disclosure encompasses replacements or combinations of parts and/or elements between one embodiment and another. The technical scope disclosed is not limited to the description of the embodiments. It is to be understood that some technical scopes disclosed are shown by the description of the claims, and further include meanings equivalent to the description of the claims and all modifications within the scope.
[0553] 本開示は、 実施例に準拠して記述されたが、 本開示は当該実施例や構造に 限定されるものではないと理解される。 本開示は、 様々な変形例や均等範囲 内の変形をも包含する。 加えて、 様々な組み合わせや形態、 さらには、 それ らに一要素のみ、 それ以上、 あるいはそれ以下、 を含む他の組み合わせや形 \¥0 2020/175333 142 卩(:17 2020 /006903 [0553] Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to such examples and structures. The present disclosure also includes various modifications and modifications within an equivalent range. In addition, various combinations and forms, as well as other combinations and forms, including only one element, more, or less, \\0 2020/175 333 142 卩 (: 17 2020 /006903
態をも、 本開示の範疇や思想範囲に入るものである。 The state is also within the scope and spirit of the present disclosure.

Claims

\¥0 2020/175333 143 卩(:17 2020 /006903 請求の範囲 \¥0 2020/175333 143 卩(: 17 2020/006903 Claims
[請求項 1 ] 回転子 (7 1 0) と、 [Claim 1] The rotor (710),
前記回転子の回転軸 (7 0 1) を回転自在に支持する軸受 (7 9 2 ) と、 A bearing (7 92) that rotatably supports the rotating shaft (7 0 1) of the rotor;
前記軸受が固定された軸受保持部 (7 8 0) を有するハウジング ( 7 7 1) と、 A housing (771) having a bearing holder (780) to which the bearing is fixed,
前記軸受保持部に固定されたレゾルバステータ (8 0 2) 、 及び前 記回転軸のうち径方向において前記レゾルバステータと対向する位置 に固定されたレゾルバロータ (8 0 1) を有し、 前記回転子の回転角 信号を出力するレゾルバ (8 0 0) と、 を備える回転電機 (7 0 0) において、 The resolver stator (820) fixed to the bearing holder, and the resolver rotor (801) fixed to a position of the rotating shaft facing the resolver stator in the radial direction, A rotary electric machine (700) including a resolver (800) that outputs a rotation angle signal of a child,
前記軸受保持部のうち軸方向端部は、 その軸方向端部の開口に繫が る孔が形成された拡径側固定部 (7 8 3) とされており、 The axial end portion of the bearing holding portion is a diametrical expansion side fixing portion (783) having a hole formed in the opening of the axial end portion.
前記軸受保持部のうち前記拡径側固定部と軸方向に隣り合う部分は 、 前記拡径側固定部の孔径よりも小さい孔が形成された縮径側固定部 (7 8 2) とされており、 A portion of the bearing holding portion that is adjacent to the expansion-side fixing portion in the axial direction is a reduction-side fixing portion (7 82) in which a hole smaller than the hole diameter of the expansion-side fixing portion is formed. Cage,
前記拡径側固定部及び前記縮径側固定部それぞれの孔に前記回転軸 が揷通されており、 The rotary shaft is threaded through the holes of the diameter-increasing side fixing portion and the diameter-decreasing side fixing portion, respectively.
前記拡径側固定部及び前記縮径側固定部のうち一方に前記軸受が固 定されており、 The bearing is fixed to one of the expanding side fixing part and the reducing side fixing part,
前記拡径側固定部及び前記縮径側固定部のうち前記軸受が固定され ていない方に前記レゾルバステータが固定されている回転電機。 A rotary electric machine in which the resolver stator is fixed to one of the expansion-side fixing portion and the contraction-side fixing portion where the bearing is not fixed.
[請求項 2] 前記軸受を縮径側軸受とし、 [Claim 2] The bearing is a reduced diameter side bearing,
前記縮径側軸受が前記縮径側固定部に固定されており、 The diameter reducing side bearing is fixed to the diameter reducing side fixing portion,
前記レゾルバステータが拡径側固定部に固定されており、 前記軸受保持部のうち軸方向において前記縮径側固定部を挟んで前 記拡径側固定部とは反対側は、 孔が形成された基端側固定部 (7 8 1 ) とされており、 〇 2020/175333 144 卩(:171? 2020 /006903 The resolver stator is fixed to the expansion-side fixing portion, and a hole is formed in the bearing holding portion on the side opposite to the expansion-side fixing portion in the axial direction with the reduction-side fixing portion interposed therebetween. The base end side fixed part (7 8 1) 〇 2020/175 333 144 卩 (: 171? 2020 /006903
前記拡径側固定部、 前記縮径側固定部及び前記基端側固定部それぞ れの孔に前記回転軸が揷通されており、 The rotary shaft is threaded through the respective holes of the diameter expansion side fixing portion, the diameter reduction side fixing portion and the base end side fixing portion,
前記基端側固定部に固定され、 前記回転軸を回転自在に支持する基 端側軸受 (7 9 1) を備え、 A base end bearing (7 91) fixed to the base end side fixed part and rotatably supporting the rotating shaft,
前記回転軸のうち軸方向において前記基端側軸受側に前記回転子が 固定されており、 The rotor is fixed to the proximal bearing side in the axial direction of the rotary shaft,
前記縮径側軸受及び前記基端側軸受は、 外輪と、 内輪と、 それら外 輪及び内輪の間に配置された複数の玉とを有するラジアル玉軸受であ り、 The diameter reducing side bearing and the base end side bearing are radial ball bearings having an outer ring, an inner ring, and a plurality of balls arranged between the outer ring and the inner ring,
前記基端側軸受の外径寸法が前記縮径側軸受の外径寸法よりも大き い請求項 1 に記載の回転電機。 The rotary electric machine according to claim 1, wherein an outer diameter dimension of the base end side bearing is larger than an outer diameter dimension of the contraction side bearing.
[請求項 3] 前記基端側軸受における外輪及び内輪と玉との間の隙間寸法が、 前 記縮径側軸受における外輪及び内輪と玉との間の隙間寸法よりも大き い請求項 2に記載の回転電機。 [Claim 3] The clearance dimension between the outer ring and the inner ring and the ball in the proximal bearing is larger than the clearance dimension between the outer ring and the inner ring and the ball in the reduced diameter bearing. The rotating electric machine described.
[請求項 4] 前記拡径側固定部のうち、 軸方向において前記レゾルバステータ及 び前記軸受よりも開口側に固定された円環状のカバー部材 (8 0 3) を備える請求項 1〜 3のいずれか 1項に記載の回転電機。 4. The ring-shaped cover member (80 3) fixed to the opening side of the resolver stator and the bearing in the axial direction of the radially expanded fixing portion. The rotating electrical machine according to any one of items.
[請求項 5] 径方向において前記回転子と対向する固定子 (7 3 0) を備え、 前記回転子は、 [Claim 5] A stator (730) facing the rotor in a radial direction is provided, and the rotor is
前記回転軸に対して固定された円板状の端板部 (7 1 3) を有し、 前記回転軸と同軸に配置されたキャリア (7 1 1) と、 A carrier (7 1 1) having a disk-shaped end plate portion (7 1 3) fixed to the rotation axis, and arranged coaxially with the rotation axis;
前記回転軸と同軸に配置された円環状の磁石ユニッ ト (7 1 2) と 、 を有し、 An annular magnet unit (7 1 2) arranged coaxially with the rotation axis,
前記磁石ユニッ トは、 The magnet unit is
軸方向における一端が前記端板部に対して固定された円筒状の磁石 ホルダ (7 2 1) と、 A cylindrical magnet holder (7 2 1) whose one end in the axial direction is fixed to the end plate portion,
前記磁石ホルダのうち径方向において前記固定子側の周面に固定さ れ、 周方向に極性が交互となる磁石 (7 2 2) と、 を有し、 〇 2020/175333 145 卩(:171? 2020 /006903 A magnet (7 2 2) fixed to the circumferential surface on the stator side in the radial direction of the magnet holder and having alternating polarities in the circumferential direction; 〇 2020/175 333 145 卩 (: 171? 2020 /006903
前記磁石ホルダが非磁性材料にて構成されており、 The magnet holder is made of a non-magnetic material,
前記磁石において、 軸における磁化容易軸の向きが、 軸に平行 な向きからずらされている請求項 1〜 4のいずれか 1項に記載の回転 電機。 The rotating electric machine according to any one of claims 1 to 4, wherein, in the magnet, a direction of an easy axis of magnetization is displaced from a direction parallel to the axis.
[請求項 6] 前記磁石において 9軸と
Figure imgf000147_0001
9軸間の磁束授受面 (7 2 4) との交 点を中心点 (〇 ) とし、 かつ前記磁石の径方向の厚み寸法を半径と する円を、 前記磁石の磁化容易軸を定める配向円 (X) とする場合、 前記磁石が前記配向円の四半円分を包括する構成となっている請求項 5に記載の回転電機。
[Claim 6] In the magnet, 9 axes
Figure imgf000147_0001
A circle whose center is the intersection with the magnetic flux transfer surface (7 2 4) between the 9 axes and whose radius is the radial thickness of the magnet is the orientation circle that determines the easy axis of magnetization of the magnet. In the case of (X), the rotating electric machine according to claim 5, wherein the magnet includes a quarter circle of the orientation circle.
PCT/JP2020/006903 2019-02-25 2020-02-20 Rotating electric machine WO2020175333A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080016370.8A CN113474976B (en) 2019-02-25 2020-02-20 Rotary electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-032184 2019-02-25
JP2019032184A JP7092066B2 (en) 2019-02-25 2019-02-25 Rotating electric machine

Publications (1)

Publication Number Publication Date
WO2020175333A1 true WO2020175333A1 (en) 2020-09-03

Family

ID=72239530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006903 WO2020175333A1 (en) 2019-02-25 2020-02-20 Rotating electric machine

Country Status (3)

Country Link
JP (1) JP7092066B2 (en)
CN (1) CN113474976B (en)
WO (1) WO2020175333A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0143958B2 (en) * 1982-09-24 1989-09-25 Shiojiri Kogyo Kk
JP2007153495A (en) * 2005-12-02 2007-06-21 Otis Elevator Co Door driving device for elevator
JP2010268633A (en) * 2009-05-15 2010-11-25 Honda Motor Co Ltd Motor unit
JP2015190566A (en) * 2014-03-28 2015-11-02 Ntn株式会社 In-wheel motor driving device
JP2016027786A (en) * 2014-04-23 2016-02-18 株式会社エムリンク Dynamo-electric machine
WO2018147012A1 (en) * 2017-02-07 2018-08-16 日本電産株式会社 Motor
WO2019017496A1 (en) * 2017-07-21 2019-01-24 株式会社デンソー Rotating electrical machine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002142393A (en) * 2000-11-06 2002-05-17 Kawasaki Heavy Ind Ltd Rotating machine
JP2002191157A (en) * 2000-12-19 2002-07-05 Denso Corp Synchronous rotating electric machine with combined use of permanent magnet
EP2167158B1 (en) * 2007-06-14 2016-03-16 Calon Cardio Technology Ltd Reduced diameter axial rotary pump for cardiac assist
JP5562753B2 (en) * 2010-07-29 2014-07-30 三洋電機株式会社 DC motor and hub unit
JP2012120312A (en) * 2010-11-30 2012-06-21 Nippon Densan Corp Rotary electric machine and method for manufacturing rotary electric machine
JP6196827B2 (en) * 2013-07-16 2017-09-13 本田技研工業株式会社 Drive device
JP5920396B2 (en) * 2014-04-23 2016-05-18 日本精工株式会社 Direct drive motor, transfer device, inspection device, and machine tool
JP6579395B2 (en) * 2016-06-03 2019-09-25 株式会社デンソー Rotating electric machine
JP6443958B1 (en) 2018-08-24 2018-12-26 株式会社e−Gle Outer rotor type motor and electric vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0143958B2 (en) * 1982-09-24 1989-09-25 Shiojiri Kogyo Kk
JP2007153495A (en) * 2005-12-02 2007-06-21 Otis Elevator Co Door driving device for elevator
JP2010268633A (en) * 2009-05-15 2010-11-25 Honda Motor Co Ltd Motor unit
JP2015190566A (en) * 2014-03-28 2015-11-02 Ntn株式会社 In-wheel motor driving device
JP2016027786A (en) * 2014-04-23 2016-02-18 株式会社エムリンク Dynamo-electric machine
WO2018147012A1 (en) * 2017-02-07 2018-08-16 日本電産株式会社 Motor
WO2019017496A1 (en) * 2017-07-21 2019-01-24 株式会社デンソー Rotating electrical machine

Also Published As

Publication number Publication date
JP2020137374A (en) 2020-08-31
CN113474976A (en) 2021-10-01
JP7092066B2 (en) 2022-06-28
CN113474976B (en) 2024-01-05

Similar Documents

Publication Publication Date Title
JP6965908B2 (en) Rotating electric machine and wheels using the rotating electric machine
WO2020175334A1 (en) Armature
WO2020080126A1 (en) Rotary electric machine
WO2020090365A1 (en) Rotating electric machine
WO2021176668A1 (en) Rotary electrical machine
JP2020129926A (en) Rotating electric machine
JP7388071B2 (en) wheel drive device
WO2020175223A1 (en) Rotating electrical machine
WO2020100807A1 (en) Rotating electric machine
WO2021049427A1 (en) Rotary electric machine
WO2020090449A1 (en) Electric rotary machine and method for manufacturing same
WO2021090843A1 (en) Rotary electrical machine
WO2020175497A1 (en) Rotating electric machine
WO2020175224A1 (en) Armature and rotating electrical machine
WO2020175222A1 (en) Armature and rotating electrical machine
WO2020090447A1 (en) Electric rotary machine
WO2020203272A1 (en) Rotating electric machine
WO2020162232A1 (en) Rotary motor
WO2020162290A1 (en) Armature and rotary electric machine
WO2020175225A1 (en) Armature and rotating electrical machine
WO2020105490A1 (en) Rotary electric machine
WO2020090383A1 (en) Rotating electric machine
WO2020022282A1 (en) Rotating electrical machine
WO2020175333A1 (en) Rotating electric machine
WO2020175332A1 (en) Rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763530

Country of ref document: EP

Kind code of ref document: A1