WO2020175058A1 - Biaxially oriented polyester film, and production method for biaxially oriented polyester film - Google Patents

Biaxially oriented polyester film, and production method for biaxially oriented polyester film Download PDF

Info

Publication number
WO2020175058A1
WO2020175058A1 PCT/JP2020/004302 JP2020004302W WO2020175058A1 WO 2020175058 A1 WO2020175058 A1 WO 2020175058A1 JP 2020004302 W JP2020004302 W JP 2020004302W WO 2020175058 A1 WO2020175058 A1 WO 2020175058A1
Authority
WO
WIPO (PCT)
Prior art keywords
biaxially oriented
oriented polyester
polyester film
film
resin
Prior art date
Application number
PCT/JP2020/004302
Other languages
French (fr)
Japanese (ja)
Inventor
昇 玉利
考道 後藤
雅幸 春田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2020531787A priority Critical patent/JP6826784B2/en
Publication of WO2020175058A1 publication Critical patent/WO2020175058A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • Biaxially oriented polyester film and method for producing biaxially oriented polyester film
  • the present invention relates to a biaxially oriented polyester film, and a method for producing the biaxially oriented polyester film.
  • Polybutylene terephthalate (hereinafter, referred to as polybutylene terephthalate) is a polyethylene terephthalate (hereinafter, polyethylene terephthalate is abbreviated as "mite") resin, which is superior in moldability to a vacuum heat insulating material.
  • mite polyethylene terephthalate
  • Applications are also being investigated in the fields of exterior materials, drawing films, films for can inner bags, release films, etc.
  • Patent Document 1 60% by weight of Mingko resin is used, yield stress in the longitudinal and width directions is 7 OMPa or more, breaking strength is 160 IV! 3 or more, and breaking elongation is It is disclosed that the content of 100% or more can be preferably used for nylon film and other flexible film applications.
  • a release layer containing an acid-modified olefin resin and a cross-linking agent is provided on one side of a polyester film containing substantially no particles, and a release layer having an easy-sliding layer is provided on the other outermost layer. Mold films are disclosed. Further, the arithmetic average roughness of the surface of the release layer is 10 n 01 or less, the maximum height is 100 n or less, and the easy sliding layer contains particles, the easy sliding layer contains particles, The arithmetic mean roughness of the surface of the easy-slip layer is 10 It is disclosed that it can be preferably used by setting it to less than.
  • Patent Document 3 the surface roughness is 0.05 to 0.
  • the difference in the thermal shrinkage ratio in the longitudinal direction at both ends of the film is 0 to 0.3%, and the difference in anisotropy is 0 to 0.
  • Patent Document 1 Patent No. 5 9 9 4 8 6 4
  • Patent Document 2 JP 2 0 1 6-2 2 1 7 3 7
  • Patent Document 3 Patent No. 3 0 3 1 5 2 0 Summary of Invention
  • the end portion of the film obtained by casting tends to be thicker than the center portion for manufacturing reasons. Therefore, crystallization becomes more remarkable at the edges of the film obtained by casting.
  • polyethylene terephthalate is preferably used as a release film by using it as a substrate film.
  • release film applications that involve molding, it may not be possible to support deep drawing due to the characteristics of the polyethylene terephthalate substrate.
  • an object of the present invention is to provide a biaxially oriented polyester film which has a good film quality that can be used for industrial applications and is also suitable as a release film accompanied by deep drawing.
  • ⁇ 02020/175058 3 ((171?2020/004302
  • the present inventors have earnestly studied a biaxially oriented polyester film. As a result, it was found that, by adopting the following constitution, a biaxially oriented polyester film having good deep-drawing moldability and having few fish eyes in the film and excellent quality can be obtained, and the present invention is completed. Came to.
  • the number of layers is 7 or less
  • the intrinsic viscosity of the biaxially oriented polyester film is 0.7 ⁇ / 9 or more.
  • the absolute value of the orientation angle of the biaxially oriented polyester film is 25 degrees or more.
  • the degree of plane orientation ⁇ of the biaxially oriented polyester film is ⁇ 0.145 to ⁇ .
  • the puncture strength of the biaxially oriented polyester film measured by the puncture test according to 1 3-7 1 7 0 7 is 0.401 ⁇ 1/1 or more.
  • Thickness unevenness of the biaxially oriented polyester film is 0.7% or less.
  • the number of laminated layers is 7 or less, it is possible to manufacture without introducing a static mixer in the melt line. Therefore, it is possible to prevent the generation of fish eyes (small particle defects) in the film caused by the introduction of the static mixer. As a result, a film with high quality can be obtained.
  • the biaxially oriented polyester is ⁇ 02020/175058 4 ⁇ (: 171?2020/004302
  • the absolute value of the orientation angle is 25 degrees or more. The larger the absolute value of the orientation angle, the closer to the widthwise end of the film. If the plane orientation angle is less than 25 degrees, the film is near the center in the width direction of the film, so when the molten resin is in close contact with the cooling port, the end of the cold air blown from the face side by the multi-duct. The effect of lowering the temperature is less. For films that have an absolute orientation angle of 25 degrees or more and are close to the edges in the width direction, when the molten resin is adhered to the cooling holes, the edges of the cold air blown by the multi-duct from the face side By lowering the temperature, the number of breaks during film formation can be reduced, and the thickness unevenness of the obtained film can be reduced.
  • the plane orientation degree is 0. 145 to 0. 160. Since the above-mentioned degree of plane orientation ⁇ is not less than 0.145, the plane orientation is suitably high, the puncture strength is sufficient, and the deep drawability is superior. Since the plane orientation degree ⁇ is not more than 0.160, the heat shrinkage can be kept low and the thermal stability can be made better.
  • the puncture strength is 0.401 ⁇ 1/1 or more, the deep drawing formability can be improved.
  • the thickness variation is 0.7% or less, uniform molding can be performed when deep drawing is performed, and tearing of the film and pinholes are less likely to occur.
  • the biaxially oriented polyester film of the present invention is assumed to be a film after production (after casting and stretching treatment), that is, a film not subjected to slit treatment (film in a mill roll state). ing.
  • the biaxially oriented polyester film of the present invention contains a polyester resin composition containing 60 to 100% by weight of a polybutylene terephthalate resin (8), and the number of laminated layers is 7 or less, and the above requirement (1 )-(5) ⁇ 02020/175058 5 ⁇ (: 171?2020/004302
  • the film is not limited, and includes, for example, a film made into small pieces by slit processing or the like, and a single film.
  • the polyester resin composition contains a polyester resin (Mitsumi) other than the polyethylene terephthalate resin (8).
  • the polyester resin composition contains a polyester resin (Mitsumi) other than the polypropylene terephthalate resin (8), the film formability during biaxial stretching and the mechanical properties of the obtained film can be adjusted.
  • the maximum diameter on the biaxially oriented polyester film is ⁇ .
  • the fish-eye When the fish-eye is a 5/2 or less, to one surface of the biaxially oriented polyester film, may have a release layer, when the winding storage, opposite to the release layer It is possible to suppress the transfer of unevenness to the release layer by the fish eyes on the surface. As a result, it is possible to make it difficult to impair the film quality. Also, the film can be provided with elaborate printing layers.
  • the present invention is the method for producing a biaxially oriented polyester film, which comprises a step of casting a resin composition for producing a biaxially oriented polyester film in a cooling port to form an unstretched sheet.
  • a process step of blowing air to the unstretched sheet on the cooling port the process step, when the total width of the unstretched sheet is 100%, the temperature of the wind blown to the center is X, When the temperature blown to both ends is assumed to be less than 1, X is 15 ° or less, and the temperature is lower than X, and the end is at least 1 from the edge. It is characterized by including the area within 0%.
  • the unstretched sheet on the cooling port is blown with a wind of not more than 15°, and the unstretched sheet has a mound surface (a surface opposite to the surface in contact with the cooling port) ) Is rapidly cooled, the crystallinity can be reduced and the film-forming property can be improved.
  • ⁇ 02020/175058 6 ⁇ (: 171-12020/004302
  • the thickness of the end portion of the unstretched sheet is often thicker than that of the central portion.
  • the temperature is 10 ° or less.
  • the grain diameter is 10° or less, the crystallinity of the end face of the unstretched sheet does not become too high and the film formability becomes better.
  • Fig. 1 is a schematic front view for explaining a method of blowing cooling air from a multi-duct onto a mound surface of an unstretched sheet on a cooling port.
  • Fig. 2 is a side view of Fig. 1.
  • FIG. 3 is a bottom view showing an example of a multi-duct.
  • FIG. 4 A cross-sectional view of a mold used for evaluation of deep drawing formability.
  • FIG. 5 is a plan view of the mold shown in FIG. MODE FOR CARRYING OUT THE INVENTION
  • the biaxially oriented polyester film according to the present embodiment is
  • the number of layers is 7 or less
  • a biaxially oriented polyester film which satisfies the following requirements (1) to (5).
  • the intrinsic viscosity of the biaxially oriented polyester film is 0.7 ⁇ / 9 or more.
  • the absolute value of the orientation angle of the biaxially oriented polyester film is 25 degrees or more. ⁇ 02020/175058 7 ⁇ (: 171-12020/004302
  • the degree of plane orientation ⁇ of the biaxially oriented polyester film is ⁇ 0.145 to ⁇ .
  • the piercing strength of the biaxially oriented polyester film measured by the piercing test according to 707 is 0.401 ⁇ 1/ or more.
  • Thickness unevenness of the biaxially oriented polyester film is 0.7% or less.
  • the polyester resin composition has a minor resin () as a main constituent, and the content of the minor resin (8) in the polyester resin composition is 60% by mass or more. It is preferably 75% by mass or more, and more preferably 90% by mass or more. When the amount is 60% by mass or more, the puncture strength can be made sufficient and the deep drawing moldability can be improved.
  • Mingho resin (8) is used as a dicarboxylic acid component.
  • the content of terephthalic acid is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 98 mol% or more, and most preferably 100 mol%.
  • the glycol component is preferably 1,4-butanediol in an amount of 90 mol% or more, more preferably 95 mol% or more.
  • the lower limit of the intrinsic viscosity of the above-mentioned Mingko resin (8) is preferably ⁇ 0.80 / 9 , more preferably ⁇ 0.95/ 9 , and further preferably 1.0 I/9. ..
  • the intrinsic viscosity of Mending resin () By setting the intrinsic viscosity of Mending resin () to be 0.80 ⁇ / 9 or more, the intrinsic viscosity of the film obtained by film formation can be increased, and the deep drawability and film formability are improved. be able to.
  • the upper limit of the intrinsic viscosity of the Mouto resin () is preferably 1.3 ⁇ / 9 . 1. With ⁇ / 9 or less, to suppress a high stress during film stretching Risugiru, the film-forming property can be improved. Furthermore, when using Mingbo resin with a high intrinsic viscosity, the melting temperature of the resin increases, so it is necessary to raise the extrusion temperature, but Mingo with an intrinsic viscosity of 1.3 I / 9 or less. ⁇ 02020/175058 8 ⁇ (: 171?2020/004302
  • the polyester resin composition contains a polyester resin (M) other than the Ming resin (8) for the purpose of adjusting film-forming properties during biaxial stretching and mechanical properties of the obtained film. Is preferred.
  • polyester resin examples include polyester, polyethylene naphthalate, polypropylene naphthalate, polypropylene terephthalate and the like, or isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, cyclohexanedicarboxylic acid.
  • Acid adipic acid, azelaic acid, sebacic acid, and at least one dicarboxylic acid copolymerized with Mitsuba resin, ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol , Neopentyl glycol, 1,5-pentane diol, 1,6-hexane diol, diethylene glycol, cyclohexane diol, polyethylene glycol, polytetramethylene glycol and at least one diol component selected from the group consisting of polycarbonate.
  • At least one dicarboxylic acid selected from the group consisting of polymerized benign resin, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, cyclohexanedicarboxylic acid, adipic acid, azelaic acid and sebacic acid.
  • the resin mainly composed of mitoba has a high melting point, is excellent in heat resistance, has good compatibility with mitoba resin and is excellent in transparency, and therefore mitoba resin or copolymerized mitoba resin is preferable.
  • mitoba resin or copolymerized mitoba resin is preferable.
  • Mingko resin is particularly preferable. ⁇ 02020/175058 9 ⁇ (: 171?2020/004302
  • the amount of the polyester resin (M) added is preferably 40% by mass or less, more preferably 30% by mass or less, and further preferably 20% by mass, based on the entire polyester resin composition. % Or less, particularly preferably 10% by mass or less.
  • the amount of the polyester resin (Mitsumi) added is 30% by mass or less, the puncture strength can be further increased, and the deep drawability is more excellent. Also, the transparency can be kept high.
  • the addition amount of the polyester resin (Mitsumi), which has excellent impact strength and pinhole resistance is 0% by mass or more, 10% by mass or more, 20% by mass or more based on the whole polyester resin composition. can do.
  • the lower limit of the intrinsic viscosity of the polyester resin (Mitsumi) is preferably 0.5 I/
  • the upper limit of the intrinsic viscosity of the polyester resin (Mitsumi) is preferably 1.3 ⁇ / 9 .
  • the biaxially oriented polyester film contains, in addition to the polyester resin composition, conventionally known additives such as a lubricant, a stabilizer, a colorant, an antioxidant, an antistatic agent, and an ultraviolet absorber. It may be contained.
  • the content of the polyester resin composition is preferably 99.5% by mass or more, and more preferably 99.6% by mass or more. , 99.7 mass% or more is more preferable.
  • the content of the polyester resin composition is preferably 100% by mass or less, when the total amount of the biaxially oriented polyester film is 100% by mass, and 99.
  • the above-mentioned lubricant can adjust the dynamic friction coefficient of the film, and examples thereof include inorganic lubricants such as silica, calcium carbonate and alumina, and organic lubricants. Silica and calcium carbonate are more preferable, and silica has a low haze. ⁇ 0 2020/175058 10 ⁇ (: 171-1? 2020 /004302
  • the lower limit of the content of the lubricant in the biaxially oriented polyester film is preferably 100 mass 111, more preferably 800 mass 111. When the amount is 100 mass or more, the slipperiness can be improved.
  • the upper limit of the lubricant content is preferably 2000 mass 111, more preferably 100 mass, and particularly preferably 180 mass 111. By setting the amount to be 200 mass% or less, transparency can be maintained.
  • the biaxially oriented polyester film has 7 or less laminated layers.
  • the number of laminated layers is more preferably 3 or less. From the viewpoint of reducing fish eyes, a single layer is most preferable.
  • a layer structure of 2 types 2 layers, 2 types 3 layers, or 3 types 3 layers in which a plurality of types of layers having different compositions are laminated is preferable.
  • Properties that improve include slipperiness, antistatic properties, ultraviolet cutability, and easy adhesion. The improvement of these surface properties can be achieved by adding a lubricant, an antistatic agent, an ultraviolet absorber, a copolymer, and their auxiliaries to the surface layer of the plurality of layers.
  • the biaxially oriented polyester film has an intrinsic viscosity of 0.7 0.7 / 9 or more.
  • the intrinsic viscosity is preferably at least 0.751/ 9, more preferably at least 0.80 That is all. Since the intrinsic viscosity is 0.7 7 / 9 or more, when the resin composition for producing a biaxially oriented polyester film is cast in a cooling port to obtain an unstretched sheet, the unstretched sheet is crystallized. It can be suppressed, and the yield stress can be prevented from becoming too high especially at the thick end. As a result, it can be made difficult to break in the stretching step. ⁇ 02020/175058 11 ⁇ (: 171-1? 2020 /004302
  • the inherent viscosity is preferably 1. is a 20 I / less, more preferred is properly 1. is 1 5 ⁇ / 9 or less, more preferably 1 0 ⁇ / 9 hereinafter 1..
  • the intrinsic viscosity is 1.20 ⁇ /9 or less, the stress during stretching does not become too high and the film-forming property becomes better.
  • the intrinsic viscosity of the unstretched sheet is almost the same as the intrinsic viscosity of the biaxially oriented polyester film, the lower limit is preferably 0.7 I / 9, and more preferably 0. 75 I / 9 , It is more preferably 0.80 / 9 , and particularly preferably 0.90 / 9 .
  • the extrusion temperature in order to set the intrinsic viscosity of the biaxially oriented polyester film in a preferable range, it is preferable to set the extrusion temperature as low as possible. Although the temperature changes depending on the intrinsic viscosity of the polyester resin used, the shape of the extruder, etc., lowering the intrinsic viscosity of the biaxially oriented polyester film can be suppressed by extrusion at a low temperature, and as a result, during stretching. Breakage tends to occur less easily.
  • the absolute value of the orientation angle of the biaxially oriented polyester film is 25 degrees or more. The larger the absolute value of the orientation angle, the closer to the widthwise end of the film. If the surface orientation angle is less than 25 degrees, the film is near the center in the width direction of the film, so when the molten resin is in close contact with the cooling port, the end of the cold air blown by the multi-duct from the face side The effect of lowering the temperature is less. For films that have an absolute orientation angle of 25 degrees or more and are close to the edges in the width direction, the temperature of the edges of the cold air blown by the multi-duct from the face side when the molten resin is in close contact with the cooling holes is controlled. By lowering it, breakage during film formation is reduced, and unevenness in the thickness of the obtained film can be reduced.
  • the biaxially oriented polyester film has a degree of plane orientation of 8 0.145 to 0.
  • the plane orientation degree is more preferably 0.145 or more, and further preferably 0.146 or more. ⁇ When it is 45 or more, the surface orientation is suitably high, the piercing strength is sufficient, and the deep drawability is superior. ⁇ 02020/175058 12 ((171?2020/004302
  • the degree of plane orientation 8 is more preferably 0.157 or less, and further preferably 0.154 or less. When it is less than 0.160, the heat shrinkage rate can be kept low, and the heat stability can be further improved.
  • the puncture strength of the biaxially oriented polyester film measured by the puncture test according to 3 _ 1 707 is 0.401 ⁇ 1/0.01 or more.
  • the puncture strength is preferably ⁇ .501 ⁇ 1/ or more, more preferably ⁇ .601 ⁇ 1/ or more. Since the puncture strength is ⁇ .401 ⁇ 1/ or more, it is possible to improve the deep drawing formability.
  • the puncture strength is preferably 1.01 ⁇ !/ or less, more preferably ⁇ .901 ⁇ 1/ or less, further preferably ⁇ .851 ⁇ 1/ or less, and particularly preferably ⁇ . It is less than 801 ⁇ 1/. ...! If it is less than .01 ⁇ 1/, the heat shrinkage is suppressed and the thermal stability is superior.
  • the lower limit of the thickness of the biaxially oriented polyester film is preferably 5. It is more preferably 7, and even more preferably 90! When it is at least 50!, the strength as a film can be made sufficient.
  • the upper limit of the thickness of the biaxially oriented polyester film is preferably 40. It is more preferably 30, and even more preferably 20.
  • the thickness is thin.
  • the uneven thickness of the biaxially oriented polyester film is 0.7% or less.
  • the aforementioned thickness unevenness is preferably 0.6% or less, more preferably 0.5% or less. Since the thickness unevenness is 0.7% or less, uniform molding can be performed when deep drawing is performed, and tearing of the film and pinholes are less likely to occur.
  • the thickness variation is determined by the method described in Examples. ⁇ 02020/175058 13 ⁇ (: 171?2020/004302
  • the biaxially oriented polyester film is preferably a maximum diameter 0.5 3_Rei on the biaxially oriented polyester film! ⁇ ! More fisheyes is 5 / ⁇ ! 2 below.
  • the fisheyes more preferably 4/2 or less, and more preferably 3/2 or less. If the number of fish eyes is not more than 5/2, even if the release layer is provided on one surface of the biaxially oriented polyester film, it is on the surface opposite to the release layer during winding and storage. Moreover, it is possible to suppress the transfer of unevenness onto the release layer by the fisheye. As a result, it is possible to make it difficult to deteriorate the film quality.
  • the upper limit of the heat shrinkage rate of the biaxially oriented polyester film after heating at 150°° for 15 minutes in the IV!0 direction for 15 minutes is preferably 5%. It is more preferably 3.0% and even more preferably 2.5%. When it is 5% or less, it is possible to prevent the film from shrinking significantly when heat is applied in the post-processing, and the processing becomes easier.
  • the lower limit of the heat shrinkage rate of the biaxially oriented polyester film after heating at 150° ⁇ for 15 minutes in the IV!0 direction is preferably ⁇ %. It is more preferably 0.8% and even more preferably 1.2%. When it is 0%% or more, the puncture strength can be increased and the bag puncture resistance can be maintained high.
  • the upper limit of the heat shrinkage rate of the biaxially oriented polyester film after heating for 15 minutes at 150° in the zero direction for 15 minutes is preferably 5%. It is more preferably 3.0% and even more preferably 2.5%. When it is 5% or less, it is possible to prevent the film from shrinking significantly when heat is applied in the post-processing, and the processing becomes easier.
  • the lower limit of the heat shrinkage rate of the biaxially oriented polyester film after heating for 15 minutes at 150° in the zero direction for 15 minutes is preferably 11%. It is more preferably 0.8% and even more preferably 1.2%. If it is more than 1% %, the puncture strength can be increased and the bag puncture resistance can be maintained high. ⁇ 02020/175058 14 ⁇ (: 171?2020/004302
  • sampling is performed at a position of 1 from each of the left and right ends toward the center, and each of them is sampled.”
  • 3_ ⁇ 7 1 1 most higher value of the two density measured in accordance with the 1.40 9 / ⁇ 3 or less. More preferably 1. And more preferably...! 389/ ⁇ 01 3 .
  • the density is &!. 49 / Rei_rei_1 3 or less, the crystallization of the end portion is suppressed. As a result, it is possible to suppress excessive stress at the end portion in the stretching step when manufacturing the biaxially oriented polyester film, and to improve the film forming property.
  • the density is preferably 1.28. 3 or more, and more preferably 1. Or more, further preferably 1.30 9 / Rei_rei_1 3 than on. 1.28 When it is 3 or more, the crystallinity is moderately high and the mechanical strength is better.
  • the biaxially oriented polyester film has a width direction of the biaxially oriented polyester film that is 1 toward the center from each of the left and right ends. Sampling was performed at each position, and the Fourier transform infrared spectroscopy When I asked for Minami
  • the highest value is less than 0.62.
  • the ratio/min (highest value of the ratio/min) is more preferably 0.61 or less, and further preferably 0.6 or less.
  • the ratio 8/M is less than or equal to 0.62, the crystallinity does not become too high, so the stress during stretching is suppressed and it becomes difficult to break.
  • the ratio/min is preferably 0.52 or more, more preferably 0.53 or more, and still more preferably 0.54 or more. ⁇ .52 and above ⁇ 02020/175058 15 ⁇ (: 171?2020/004302
  • the crystallinity is not too low, and the mechanical strength is better.
  • the biaxially oriented polyester film has a surface ratio of 8/norths of 0.62 or less, naturally, the ratio of 8/norms of the surfaces also satisfies 0. 622 or less.
  • the biaxially oriented polyester film preferably has the same composition over the entire area of the film.
  • a printing layer may be laminated on the biaxially oriented polyester film.
  • water-based and solvent-based resin-containing printing inks can be preferably used as the printing ink for forming the printing layer.
  • the resin used in the printing ink include acrylic resin, urethane resin, polyester resin, vinyl chloride resin, vinyl acetate copolymer resin, and mixtures thereof.
  • Printing inks include antistatic agents, light blocking agents, UV absorbers, plasticizers, lubricants, fillers, colorants, stabilizers, lubricants, defoamers, cross-linking agents, anti-blocking agents, antioxidants, etc. Known additives may be contained.
  • the printing method for providing the printing layer is not particularly limited, and known printing methods such as an offset printing method, a gravure printing method and a screen printing method can be used.
  • known drying methods such as hot air drying, hot air drying, and infrared drying can be used.
  • the biaxially oriented polyester film may be subjected to corona discharge treatment, glow discharge treatment, flame treatment, and surface roughening treatment, as long as the object of the present invention is not impaired.
  • Known anchor coat treatment, printing, decoration and the like may be applied.
  • a gas barrier layer such as an inorganic thin film layer or a metal foil such as an aluminum foil may be provided on at least one surface of the biaxially oriented polyester film.
  • the inorganic thin film layer is a thin film made of metal or inorganic oxide.
  • the material for forming the inorganic thin film layer is not particularly limited as long as it can form a thin film, but from the viewpoint of gas barrier properties, inorganic oxides such as silicon oxide (silica), aluminum oxide (alumina), and a mixture of silicon oxide and aluminum oxide. The thing is preferably mentioned. Especially the flexibility of the thin film layer ⁇ 0 2020/175058 16 ⁇ (: 171? 2020 /004302
  • a composite oxide of silicon oxide and aluminum oxide is preferable from the viewpoint of achieving both denseness.
  • the mixing ratio of silicon oxide and aluminum oxide is preferably in the range of 20 to 70% by weight in terms of metal content. If the Hachijo concentration is 20% or more, the water vapor gas barrier property can be further enhanced. On the other hand, when the content is 70% or less, the inorganic thin film layer can be softened, and it is possible to prevent the film from being destroyed during the secondary processing such as printing or laminating, thereby lowering the gas barrier property.
  • the term "silicon oxide” as used herein refers to various silicon oxides such as 3 O and 3 I 0 2 or a mixture thereof
  • aluminum oxide refers to various aluminum oxides such as 8 O and 8 O 2 O 3 . Or a mixture thereof.
  • the thickness of the inorganic thin film layer is usually 1 to 100 nm, preferably 5 to 50 n.
  • the thickness of the inorganic thin film layer is 1 nm or more, more satisfactory gas barrier properties are likely to be obtained.
  • it is 100 or less, it is advantageous in terms of bending resistance and manufacturing cost.
  • the method for forming the inorganic thin film layer is not particularly limited, and examples thereof include physical vapor deposition methods such as vacuum vapor deposition method, sputtering method, and ion plating method ( ⁇ method).
  • a known vapor deposition method such as a chemical vapor deposition method ( ⁇ 30 method) may be appropriately adopted.
  • a typical method for forming an inorganic thin film layer will be described by taking a silicon oxide/aluminum oxide thin film as an example.
  • a mixture of 3 ⁇ 2 and eight ⁇ 2 ⁇ 3 as evaporation raw material, or 3 ⁇ 2 and eight ⁇ mixtures are preferably used.
  • Particles are usually used as these vapor deposition raw materials, and it is desirable that the size of each particle is such that the pressure during vapor deposition does not change, and the preferable particle diameter is 1101 to 501. 01.
  • the film forming conditions can be arbitrarily changed, such as applying a bias to the layer film) or heating or cooling the deposition target.
  • the vapor deposition material, reaction gas, bias of the object to be vapor-deposited, heating/cooling, etc. can be similarly changed when the sputtering method or the zero method is adopted.
  • a printing layer may be laminated on the inorganic thin film layer.
  • the gas barrier layer made of metal oxide is not a completely dense film, but has small defects.
  • the resin in the resin composition for the protective layer penetrates into the defective portion of the metal oxide layer.
  • the gas barrier property is stabilized.
  • the gas barrier performance of the laminated film will be greatly improved.
  • a urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, polybutadiene-based resin, etc., to which a curing agent such as an epoxy-based, isocyanate-based, or melamine-based resin is added can be mentioned.
  • solvent (solvent) used when forming the protective layer examples include aromatic solvents such as benzene and toluene; alcohol solvents such as methanol and ethanol; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate; Ester solvents such as butyl acetate; polyhydric alcohol derivatives such as ethylene glycol monomethyl ether, etc. may be mentioned.
  • the inorganic thin film layer is also subjected to bending load. It is preferable because damage to the can be suppressed.
  • the acid value of urethane resin is 10 to 6 And more preferably within the range of When the acid value of the fat is within the above range, the liquid stability is improved when it is made into an aqueous dispersion, and the protective layer is highly polar. ⁇ 02020/175058 18 ⁇ (: 171?2020/004302
  • the urethane resin preferably has a glass transition temperature (Ding 9) is 8 0 ° ⁇ As, more preferably 9 0 ° ⁇ As.
  • Ding 9 glass transition temperature
  • urethane resin it is more preferable to use a urethane resin containing an aromatic or araliphatic diisocyanate component as a main constituent from the viewpoint of improving gas barrier properties.
  • the metaxylylene diisocyanate component it is particularly preferable to contain the metaxylylene diisocyanate component.
  • the proportion of the aromatic or araliphatic diisocyanate in the urethane resin is not less than 50 mol% in 100 mol% of the polyisocyanate component (50 to 100 mol%). ) It is preferable to set it as the range of.
  • the proportion of the total amount of the aromatic or aromatic aliphatic diisocyanate is preferably 60 to 100 mol%, more preferably 70 to 100 mol%, and further preferably 80 to 100 mol%. is there.
  • “Yukerack (registered trademark) ⁇ ZV P B” series commercially available from Mitsui Chemicals, Inc. can be preferably used.
  • the proportion of the total amount of aromatic or araliphatic diisocyanate is 50 mol% or more, better gas barrier properties can be obtained.
  • the urethane resin preferably has a carboxylic acid group (carboxyl group).
  • carboxylic acid (salt) group for example, a polyol component having a carboxylic acid group such as dimethylolpropionic acid or dimethylolbutanoic acid may be introduced as a copolymerization component. ..
  • a urethane resin of an aqueous dispersion can be obtained by synthesizing a carboxylic acid group-containing urethane resin and then neutralizing it with a salt forming agent.
  • the salt forming agent include ammonia and trimethyl alcohol.
  • the biaxially oriented polyester film may be laminated with a layer made of another material. As a method thereof, the biaxially oriented polyester film may be attached after being produced or may be attached during film formation.
  • the biaxially oriented polyester film is used as a packaging material, for example, by providing an inorganic vapor deposition layer on the biaxially oriented polyester film, and further forming a heat-sealable resin layer (also referred to as a sealant layer) called a sealant. be able to.
  • the heat-sealable resin layer is usually formed by an extrusion laminating method or a dry laminating method.
  • the thermoplastic polymer forming the heat-sealable resin layer may be any one as long as it can sufficiently exhibit sealant adhesiveness, !! _ !_ 0
  • Polyethylene resin such as Tomomi, polypropylene resin. Ethylene-vinyl acetate copolymer, ethylene-olefin-random copolymer, ionomer resin and the like can be used.
  • the sealant layer may be a monolayer film or a multilayer film, and may be selected according to the required function.
  • a multilayer film in which a resin such as an ethylene-cyclic olefin copolymer or polymethylpentene is interposed can be used.
  • the sealant layer may be blended with various additives such as a flame retardant, a slip agent, an anti-blocking agent, an antioxidant, a light stabilizer and a tackifier.
  • the thickness of the sealant layer is preferably from 10 to 1001 and more preferably from 20 to 600!.
  • the biaxially oriented polyester film can be used in the field of packaging foods, pharmaceuticals, industrial products and the like.
  • the biaxially oriented polyester film ⁇ 02020/175058 20 units (: 171-12020/004302
  • base film of a packaging laminate.
  • layer structure of the packaging laminate when the layer boundary is represented by /, for example, base material layer/gas barrier layer/protective layer, base material layer/gas barrier layer/protective layer/adhesive layer/sea run layer, Base material layer/gas barrier layer/protective layer/adhesive layer/resin layer/adhesive layer/sealant layer, base material layer/adhesive layer/resin layer/gas barrier layer/protective layer/adhesive layer/sealant layer, base Material layer/gas barrier layer/protective layer/printing layer/adhesive layer/sealant layer, base material layer/printing layer/gas barrier layer/protective layer/adhesive layer/sealant layer, base material layer/gas barrier layer/protective layer/ Adhesive layer/resin layer/printing layer/adhesive layer/sealant layer, base material layer/a
  • the laminate using the biaxially oriented polyester film can be suitably used for applications such as packaging products, various label materials, lid materials, sheet molded products, and laminated tubes.
  • it is used for packaging bags (eg pillow bags, standing pouches and ashameds such as 4-way pouches).
  • the thickness of the laminate can be appropriately determined according to its application. For example, it is used in the form of a film or sheet having a thickness of about 5 to 500, preferably about 10 to 300.
  • the die method is preferable from the viewpoint of thickness accuracy in the width direction.
  • the stretching ratio is difficult to increase due to the manufacturing method, and thickness defects in the width direction may occur.
  • a conventional method is ⁇ 02020/175058 21 ⁇ (: 171-1? 2020 /004302
  • a method has been proposed in which a uniform unstretched sheet is obtained by suppressing crystallization by forming a resin having the same composition into eight layers or more by using a tick mixer, etc.
  • a layer structure of 2 types 2 layers, 2 types 3 layers, or 3 types 3 layers is preferable.
  • the lower limit of the intrinsic viscosity of the unstretched sheet obtained is preferably 0.7. More preferably ⁇ . 75 ⁇ / 9, more preferably from ⁇ . 80 ⁇ / 9, particularly preferably from 0.9 0_Rei_1 ⁇ / 9. ⁇ .
  • it is 70 70 ⁇ 1 /9 or more, crystallization during casting is suppressed and the yield stress of the unstretched sheet becomes low, and as a result, breakage tends not to occur during stretching.
  • the upper limit of the intrinsic viscosity of the obtained unstretched sheet is preferably 1.2 ⁇ / 9 , more preferably 1.1 ⁇ / 9 . ...! .2 ⁇ / 9 or less
  • the stress during stretching does not become too high, and the film-forming property becomes better.
  • the lower limit of the die temperature is preferably 240°, more preferably 245°, and particularly preferably 250°. If it is 240° or more, the discharge is more stable and the thickness can be made more uniform.
  • the temperature is 240° or more, it is possible to prevent the resin remaining in the resin melt extrusion step from becoming an unmelted substance and being mixed into the film, thereby impairing the quality of the film.
  • the upper limit of the resin melting temperature is preferably 280 ° , more preferably 275°, and most preferably 270°.
  • the temperature is 280 ° C or less, the decomposition of the resin can be suppressed, the film can be prevented from becoming brittle, and the deterioration of the film quality due to a thermally deteriorated product can be prevented. Further, the progress of crystallization during casting can be suppressed, and the film forming property can be further improved. ⁇ 02020/175058 22 ⁇ (: 171?2020/004302
  • the upper limit of the die temperature is preferably from 2 8 0 ° ⁇ , more preferably 2 7 5 ° ⁇ or less, more preferably 2 7 0 ° ⁇ below.
  • it is 280°° or less, it is possible to prevent the thickness from becoming uneven. Further, it is possible to prevent the appearance of the resin from being deteriorated due to stains on the die lip or the like. Further, it is possible to prevent the intrinsic viscosity of the obtained film from decreasing. Further, the progress of crystallization at the time of casting is suppressed, and the film forming property becomes better.
  • the lower limit of the rotation speed of the screw in the resin melt extrusion step is preferably 7
  • the upper limit of the number of rotations of the screw in the resin melt extrusion step is preferably 150 ", more preferably 1300", and particularly preferably 1100". It is possible to suppress the decomposition of the molten resin due to shearing heat generation, and to suppress the decrease in the inherent viscosity of the film to be obtained, and to suppress the progress of crystallization during casting and to improve the film-forming property. It will be better.
  • the upper limit of the cooling port temperature is preferably 40°, and more preferably 10° or less. If it is 40 ° C. or less, the crystallinity of the molten polyester resin composition upon cooling and solidification does not become too high, and the stretching becomes easier.
  • the lower limit of the cooling port temperature is preferably 0°. When it is 0° or more, the effect of suppressing crystallization when the molten polyester resin composition is cooled and solidified can be sufficiently exhibited. When the temperature of the cooling port is within the above range, it is preferable to reduce the humidity of the environment near the cooling port to prevent dew condensation.
  • the thickness of the unstretched sheet is preferably in the range of 15 to 2500. It is more preferably 500 or less, and further preferably 300 or less.
  • the time from when the molten polyester resin composition is discharged from the die until it touches the cooling port is preferably in the range of 0.1 to 1.0 seconds, and More preferably within the range of .2 to .05 seconds.
  • the contact time is a value obtained by (air gap)/(ejection speed).
  • the air gap is the distance between the discharge port 12 and the surface of the cooling port 20.
  • the end portion of the non-stretched sheet's face is quenched more strongly than the center portion.
  • X when the total width of the unstretched sheet is 100%, when the temperature of the air blown to the center is X, and the temperature of the air blown to both ends is lower, X is 15 ° It is below, and it is preferable that the temperature is lower than the temperature X.
  • the thickness of the end portion of the unstretched sheet is often thicker than that of the central portion. Then, by quenching the edge portion more strongly than the central portion, crystallization can be suppressed to the central portion and the film forming property can be improved.
  • the method of quenching is not particularly limited, but a method of blowing cooling air through a multi-duct is preferable from the viewpoint of facility simplicity and maintainability.
  • the X is more preferably 5° or less.
  • the X is preferably _ 5 ° ⁇ or more.
  • the above X is not less than 150°, a sufficient effect of suppressing crystallization of the face of the unstretched sheet can be obtained.
  • the edge portion is an area at least within 10% from the edge. ⁇ 02020/175058 24 ⁇ (: 171?2020/004302
  • the end portion is more preferably an area within 15% from the edge, more preferably an area within 20% from the edge, and particularly preferably an area within 25% from the edge. Is.
  • the temperature is preferably 10° or less, and more preferably 5° or less.
  • the grain size is 10 or less, the crystallinity of the end face of the unstretched sheet does not become too high, and the film formability becomes better.
  • the temperature is _ 5 ° ⁇ or more.
  • the temperature is not less than 15°, a sufficient effect of suppressing the crystallization of the face of the unstretched sheet can be obtained.
  • FIG. 1 is a schematic front view for explaining a method of blowing cooling air from a multi-duct onto the mound surface of an unstretched sheet on a cooling port
  • FIG. 2 is a side view thereof.
  • the die 10 is arranged so that the discharge port 12 faces the surface of the cooling port 20.
  • the distance (shortest distance) between the discharge port 12 and the surface of the cooling port 20 is not particularly limited, but is generally about 20 to 100.
  • a multi-duct 30 is arranged on the outer peripheral surface of the cooling port 20.
  • the position of the multi-duct 30 is the rotation of the cooling port 20 when the position of the die 10 is 0 ° with respect to the center of the cooling port 20. with respect to the direction ( Figure 2, right rotation direction), preferably Rukoto been installed in a range of ⁇ _ ⁇ 4 5 °, 1 0 ⁇ 3 5 ° and more preferred arbitrarily installed in the range of.
  • the multi-duct 30 is arranged within the above range, it is possible to cool the mound surface of the unstretched sheet 40 cast on the cooling port 20 immediately after casting.
  • the time from the time when the resin composition for producing the biaxially oriented polyester film is cast into the cooling port (the time when it is touched) to the time when the air is blown to the relevant part is within 2.0 seconds.
  • the time is preferably within 1.0 second, more preferably within 0.5 second.
  • the time from when the composition is cast into the cooling port (when touched) to when the air is blown to the relevant part is 2
  • the time is within 0.0 seconds, the mound surface of the unstretched sheet 40 can be cooled immediately after casting.
  • the lateral width (length in the left-right direction in FIG. 1) of the multi-duct 30 be equal to or larger than the width of the unstretched sheet 40 to be cast.
  • the multi-duct 30 is blown to the temperature of the wind blown to the central part and the 20% left end and 20% right end. It is preferable that the temperature is different from that of the temperature.
  • the outlet of the multi-duct 30 is divided into a plurality of parts by a partition plate or the like, and air of different temperatures is blown out from each outlet.
  • the mode of dividing the air outlets is not particularly limited, and the air outlets may be evenly divided or may have different widths for the respective air outlets.
  • FIG. 3 shows an example of the multi-duct.
  • Figure 3 is a bottom view (viewed from the side of the cooling port) showing an example of a multi-duct.
  • the width is set so as to be the same width as the unstretched sheet 40 (Fig. 2), and as shown in Fig. 3, the outlet of the multi-duct 30 is partitioned. It is divided into 5 by the plate 3 2. Specifically, the outlets of the multi-duct 30 are divided into outlets 3 1 — 1 to outlets 3 1 — 5 in order from the left side to the right side in FIG.
  • the vertical width of the multi-duct 30 (the length in the vertical direction in Fig. 1) is preferably not less than 30.01 and not more than 800! The following is more preferable.
  • the speed at which the unstretched sheet 40 moves on the cooling port 20 is preferably 20
  • a suitable amount of cooling air can be blown to the bottom surface of the unstretched sheet 40. it can.
  • the upper limit of the height of the multi-duct 30 from the cooling port 20 is 200 or less, and more preferably 100. It is the following. When it is 200 or less, the cooling efficiency is improved, and the effect of suppressing crystallization of the end portion of the unstretched sheet 40 is sufficiently obtained.
  • the lower limit of the height of the multi-duct 30 from the cooling port 20 is not particularly limited, but is preferably within a range where it does not come into contact with the unstretched sheet 40.
  • the upper limit of the wind velocity of the cooling air from the multi-duct 30 is preferably 200 /min, more preferably 18001 /min or less. When it is at most 200/minute, it is possible to prevent the ground point when casting the molten sheet-forming resin composition from being shaken by cooling air.
  • the lower limit of the cooling air velocity is preferably 50/min. When it is 50/min or more, the effect of suppressing crystallization of the end portion of the unstretched sheet 40 can be sufficiently obtained.
  • a step for blowing air to the unstretched sheet on the cooling port wherein the step width is, when the unstretched sheet total width is 100%, the temperature of the wind blown to the center is X, When the temperature sprayed on both ends is assumed to be low, X is 15 ° or less, and the temperature is lower than X, and the end is at least 1 from the edge. It is preferable to include the area within 0%
  • the stretching method may be simultaneous biaxial stretching or sequential biaxial stretching, and is not particularly limited.
  • the lower limit of the stretching temperature in the longitudinal direction (hereinafter, also referred to as IV! 0 direction) is preferably 5 5 ⁇ 02020/175058 27 ⁇ (: 171?2020/004302
  • the upper limit of the elongation temperature in the IV! 0 direction is preferably 100 ° ⁇ , more preferably 95 ° ⁇ .
  • the orientation can be sufficiently provided and the mechanical properties can be further enhanced.
  • the lower limit of the stretching ratio in the IV! 0 direction is preferably 2.5 times, and particularly preferably.
  • the ratio is 2.5 times or more, the orientation can be sufficiently provided and the mechanical properties can be further enhanced. Further, when it is 2.5 times or more, uneven thickness can be suppressed and slack of the film roll can be prevented.
  • the upper limit of the stretching ratio in the IV! 0 direction is preferably 3.8 times, and more preferably
  • the lower limit of the stretching temperature in the width direction (hereinafter, also referred to as the 0 direction) is preferably 55° ⁇ , more preferably 60 ° ⁇ . If it is 55 ° or more, it is possible to make it difficult for fracture to occur. It also prevents the lateral orientation from becoming too strong,
  • the upper limit of the stretching temperature Ding 0 direction is preferably 1 00 ° ⁇ , more preferably 95 ° ⁇ . When it is 100 ° or less, the orientation can be sufficiently provided, and the mechanical properties can be further enhanced.
  • the lower limit of the draw ratio in the 0-direction is preferably 3.5 times, and more preferably
  • the upper limit of the draw ratio in the 0-direction is preferably 5.0 times, and more preferably
  • the lower limit of the heat setting temperature is preferably 1 70 ° ⁇ , more preferably 1 80 ° ⁇ . ⁇ 02020/175058 28 ⁇ (: 171?2020/004302
  • the upper limit of the heat setting temperature is preferably 220° ⁇ . When it is 220° or less, it is possible to prevent the film from melting and the puncture strength from decreasing.
  • the lower limit of the relaxation rate is preferably 0.5%. ⁇ When it is more than 0.5%, the heat shrinkage in the direction of the neck can be kept low.
  • the upper limit of the relaxation rate is preferably 10%. When it is 10% or less, slack and the like can be prevented from occurring, and the flatness can be improved.
  • the lower limit of the temperature for the relaxation process is preferably 130°°, and more preferably 150°°. When it is at least 30°°, the film will be sufficiently shrunk when relaxing and the heat shrinkage reduction effect can be sufficiently obtained.
  • the upper limit of the relaxation temperature is preferably 190 ° ⁇ , more preferably 170° ⁇ . When it is 1 90° or less, it is possible to prevent the flatness of the film from being deteriorated due to wrinkles and the like.
  • the intrinsic viscosity of the sample was measured using an automatic viscosity measuring device "33_600_1_1" manufactured by Shiyama Scientific Instruments Co., Ltd.
  • the length of the film in the longitudinal direction and the width direction centered on the position (13% from the end of the mill roll relative to the total width) is 10 1 Width 40 Was sampled into a long strip and was measured at a speed of 5 (0!/min) using a continuous contact thickness gauge manufactured by Micron Measuring Instruments Co., Ltd.
  • the thickness variation (%) in the longitudinal direction and the thickness variation (%) in the width direction are calculated by the following formula 1 from the standard deviation of the measured thickness and the average value of the thickness, and the thickness variation (%) and the width in the longitudinal direction are calculated.
  • the average value of the thickness unevenness (%) in the direction was defined as the thickness unevenness (%).
  • Thickness variation ⁇ (standard deviation of thickness) / (average value of thickness)) X 100 (%)
  • the film width direction was adjusted from the left and right edges toward the center, respectively. Vertical position centered on the position (position 13 from the end of the mill roll to the entire width) Each of the samples was cut out.
  • the puncture strength of the polyester film was calculated by converting the value measured by the test method described in "1 3-7 1 7 0 7" into 1 by the following formula.
  • Puncture strength (1 ⁇ 1 / ⁇ 0 measured puncture strength / film thickness
  • the heat shrinkage rate of the polyester film was measured by the dimensional change test method described in "3-0-2 318" except that the test temperature was 150° and the heating time was 15 minutes. Samples were prepared from the films prepared in Examples and Comparative Examples from the left and right edges in the width direction of the film toward the central portion, respectively. Position (13% of the total width from the end of the mill roll)
  • sample samples of 5 0! 511 111 in width were cut out from the left and right edges in the width direction of the film, centered at the position of 100! It was
  • the medium crystal was brought into close contact with the film surface layer as diamond, and the spectral intensity was measured by the total reflection method while light was incident parallel to the IV!0 direction.
  • the resolution of the spectrometer 4_Rei - 1 spectrum accumulation number was measured as 6 4 times.
  • the spectral intensity is the absorbance at each wave number. It was calculated by the following formula. The measurement was performed on the Mitsumi surface.
  • Absorbance ratio (8/M) Absorbance 8 Peak spectrum intensity) / Absorbance value (1 4 1 0 ⁇ 1 0 0 0) Intensity of the peak of) [0099] [Film density]
  • the density of the sample was measured by the 0 method (density gradient method) of “3 ⁇ 7 1 1 2 ”.
  • the measurement conditions were as follows. Table 1 shows the highest measured value of the left and right samples.
  • the following release layer-forming coating liquid was applied to one surface of the base material so that the coating amount after drying was 0.05/ 2 . Then, the coated film was heated with hot air at 1300 ° for 5 seconds for 10 seconds, hot air at 1700° for 20 seconds and 10 seconds, ⁇ 02020/175058 32 ⁇ (: 171?2020/004302
  • the release layer was laminated on one surface of the base material. After that, it was rolled up as a mouth.
  • the number of transfer marks was visually counted using a bromolite in the range of 210.101 in the width direction and 300 in the longitudinal direction on the release layer side of the obtained film. Repeat 1 ⁇ times similar operation, by the following equation the average value of 1 0 times the number of counts, was calculated as the number of transfer marks of or 1 2 Ah, was determined by the number. The point to be counted was on the core side of the center of the mouth in the longitudinal direction.
  • Acid-modified polyolefin resin solution 29.4% by mass
  • Hexamethylene diisocyanate-based blocked isocyanate compound 0.5 4% by mass
  • the method for producing the acid-modified polyolefin resin solution will be described below. 80 ° ⁇ the pressurized heated and oxidized wax in toluene 989 (manufactured by Nippon Rosha made 3-9 1 25 acid value 32 9 ⁇ ! ⁇ 1/9) 2 9 were charged, and stirred for 30 minutes to dissolve. After the dissolved acid-modified polyolefin resin solution was cooled to 25 ° ⁇ , it was filtered through a 300 mesh stainless steel filter (wire diameter ⁇ 0.035 ⁇ 101, plain weave) to obtain an acid-modified polyolefin resin solution. ..
  • FIG. 4 is a cross-sectional view of the mold used for evaluation of deep drawing formability
  • FIG. 5 is a plan view of the mold shown in FIG.
  • a film films of Examples and Comparative Examples
  • the squeezing speed was 60101/3.
  • the width of the obtained non-stretched sheet was 1,600.
  • the multi-duct has a structure as shown in Fig. 1, and cool air of 10° ⁇ is blown from the outlets 3 1-1 and 3 1 -5 (hereinafter also referred to as outlets 1 and 5), and the outlet 3 1 Cold wind of 15 ° was blown from -2 to 3 1-4 (hereinafter also referred to as blow-out ports 2 to 4).
  • the widths of the outlets 1 and 5 are respectively Outlet
  • the width of 2 to 4 is did.
  • the vertical width of the multi-duct was 5, and the moving speed of the unstretched sheet was 60/min.
  • the time from the time when the resin composition for producing the biaxially oriented polyester film was cast into the cooling port (the time when it was touched) to the time when the air was blown to the part was 0.5 seconds. ..
  • the content of the silica particles in the resin composition for producing the biaxially oriented polyester film is the silica concentration when the resin composition for producing the biaxially oriented polyester film is the whole (100% by mass). .16% by mass.
  • Table 1 shows the resin composition in the resin composition for producing the biaxially oriented polyester film and the film forming conditions. In addition, Table 1 shows the physical properties and evaluation results of the obtained film.
  • a film was formed in the same manner as in Example 1 except that the resin composition, the die temperature, and the heat treatment temperature were changed as described in Table 1, to obtain a biaxially oriented polyester film having a thickness of 15.
  • Table 1 shows the physical properties and evaluation results of the obtained film.
  • the polyester resin melt was divided and laminated to obtain a multilayer melt of the same raw material and having a number of laminated layers of 10 2 4 and then cast from a die with a die temperature of 250 °
  • a biaxially oriented film was obtained in the same manner as in Example 2 except that an unstretched sheet was obtained while being adhered to the cooling port of °° by the electrostatic adhesion method.
  • the film was formed into a biaxially oriented polyester film having a thickness of 15. Table 1 shows the physical properties and evaluation results of the obtained film.
  • a film was formed in the same manner as in Comparative Example 1 except that the number of layers was changed as shown in Table 1 to obtain a biaxially oriented polyester film having a thickness of 15.
  • the physical properties and evaluation results of the obtained film are shown in Table 1.
  • Example 2 the die temperature was changed to 270° ⁇ (Comparative Example 4) and 285° ⁇ (Comparative Example 6), and when the molten resin was brought into close contact with the cooling port, the multi-duct was applied from the face side.
  • a biaxially oriented film was formed in the same manner as in Example 2 without blowing cold air to obtain a biaxially oriented polyester film having a thickness of 15. The results are shown in Table 1 .
  • Comparative Example 6 the film was ruptured in the stretching process in the width direction, and a sample for evaluating the film could not be obtained.
  • Example 2 a film was formed in the same manner as in Example 2 except that the casting conditions were changed as shown in Table 1 to obtain a biaxially oriented polyester film having a thickness of 15.
  • Table 1 shows the physical properties and evaluation results of the obtained film.
  • a film was formed in the same manner as in Example 2 except that the resin composition was changed as shown in Table 1 to obtain a biaxially oriented polyester film having a thickness of 15.
  • Table 1 shows the physical properties and evaluation results of the obtained film.
  • the biaxially stretched polyester films (Examples 1 to 5) obtained according to the present invention have few thickness irregularities and fish eyes and have good deep drawing moldability. And a biaxially oriented polyester film having excellent quality was obtained.
  • Comparative Example 4 when the molten resin was brought into close contact with the cooling port and no cold air was blown through the multi-duct from the face side, there were many breaks during film formation. In addition, the obtained film had large thickness unevenness and was inferior in deep drawing formability. In Comparative Example 5, the temperature of the cold air blown by the multi-duct from the face side when the molten resin was brought into close contact with the cooling port was higher than that in the Example, so that there were many breaks during film formation. Further, the obtained film had large thickness unevenness and was inferior in deep drawing moldability.
  • the biaxially oriented polyester film of the present invention has a good film quality that can be used for industrial applications, and since it uses Ming as the main component, it is suitable as a release film accompanying deep drawing. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

A biaxially oriented polyester film including a polyester resin composition that contains a polybutylene terephthalate resin (A) at a proportion of 60-100 mass%, said biaxially oriented polyester film having at most 7 layers and satisfying the following requirements: (1) the intrinsic viscosity of the biaxially oriented polyester film is 0.7 dl/g or higher; (2) the absolute value of the orientation angle of the biaxially oriented polyester film is 25° or greater; (3) the planar orientation ΔP of the biaxially oriented polyester film is 0.145-0.160; (4) the puncture strength of the biaxially oriented polyester film as measured by a puncture test conforming to JIS-Z1707 is 0.40 N/μm or greater; and (5) the thickness variation in the biaxially oriented polyester film is 0.7% or less.

Description

\¥0 2020/175058 1 卩(:17 2020 /004302 明 細 書 \¥0 2020/175058 1 卩 (: 17 2020 /004302 Clear details
発明の名称 : Title of invention:
二軸配向ポリエステルフィルム、 及び、 二軸配向ポリエステルフィルムの 製造方法 Biaxially oriented polyester film, and method for producing biaxially oriented polyester film
技術分野 Technical field
[0001 ] 本発明は、 二軸配向ポリエステルフィルム、 及び、 当該二軸配向ポリエス テルフィルムの製造方法に関する。 The present invention relates to a biaxially oriented polyester film, and a method for producing the biaxially oriented polyester film.
背景技術 Background technology
[0002] ポリブチレンテレフタレート (以下、 ポリプチレンテレフタレートを 巳 丁と略す) 樹脂は、 ポリエチレンテレフタレート (以下、 ポリエチレンテレ フタレ—卜を 巳丁と略す) 樹脂より成型性が優れることから、 真空断熱材 の外装材、 絞り成形用フィルム、 缶の内袋用フィルム、 離型フィルムなどの 分野においても応用が検討されている。 [0002] Polybutylene terephthalate (hereinafter, referred to as polybutylene terephthalate) is a polyethylene terephthalate (hereinafter, polyethylene terephthalate is abbreviated as "mite") resin, which is superior in moldability to a vacuum heat insulating material. Applications are also being investigated in the fields of exterior materials, drawing films, films for can inner bags, release films, etc.
[0003] 例えば、 特許文献 1では、 巳丁樹脂が 6 0重量%以上であり、 長手方向 および幅方向の降伏応力が 7 O M P a以上、 破断強度が 1 6 0 IV! 3以上、 破断伸度が 1 〇〇%以上とすることでナイロンフィルムやその他柔軟フィル ム用途に好適に用いられることができると開示されている。 [0003] For example, in Patent Document 1, 60% by weight of Mingko resin is used, yield stress in the longitudinal and width directions is 7 OMPa or more, breaking strength is 160 IV! 3 or more, and breaking elongation is It is disclosed that the content of 100% or more can be preferably used for nylon film and other flexible film applications.
[0004] 特許文献 2では、 実質的に粒子を含有しないポリエステルフィルムの片面 に酸変性オレフィン樹脂および架橋剤が含有されてなる離型層を設け、 他方 の最外層に易滑層を設けた離型フィルムが開示されている。 また、 離型層表 面の算術平均粗さが 1 0 n 01以下、 最大高さが 1 0 0 n 以下であり、 かつ 易滑層が粒子を含有し、 易滑層が粒子を含有し、 易滑層表面の算術平均粗さ が 1 0门
Figure imgf000003_0001
未満とすることで好適に用いることができると開示されている。
[0004] In Patent Document 2, a release layer containing an acid-modified olefin resin and a cross-linking agent is provided on one side of a polyester film containing substantially no particles, and a release layer having an easy-sliding layer is provided on the other outermost layer. Mold films are disclosed. Further, the arithmetic average roughness of the surface of the release layer is 10 n 01 or less, the maximum height is 100 n or less, and the easy sliding layer contains particles, the easy sliding layer contains particles, The arithmetic mean roughness of the surface of the easy-slip layer is 10
Figure imgf000003_0001
It is disclosed that it can be preferably used by setting it to less than.
[0005] 特許文献 3では、 表面粗さが〇. 0 0 5〜〇. 0 5 0 であり、 3 0
Figure imgf000003_0002
以下であり、 フィルム両 端の長手方向の熱収縮率差が 0〜〇. 3 %であり、 かつ異方性差が 0〜〇.
[0005] In Patent Document 3, the surface roughness is 0.05 to 0.
Figure imgf000003_0002
The difference in the thermal shrinkage ratio in the longitudinal direction at both ends of the film is 0 to 0.3%, and the difference in anisotropy is 0 to 0.
2 0とすることにより離型用フィルムとして好適に用いることができると開 \¥0 2020/175058 2 卩(:17 2020 /004302 When it is set to 20, it is considered that it can be suitably used as a release film. \¥0 2020/175058 2 卩 (: 17 2020 /004302
示されている。 It is shown.
先行技術文献 Prior art documents
特許文献 Patent literature
[0006] 特許文献 1 :特許第 5 9 9 4 8 6 4号公報 [0006] Patent Document 1: Patent No. 5 9 9 4 8 6 4
特許文献 2 :特開 2 0 1 6 - 2 2 1 7 3 7号公報 Patent Document 2: JP 2 0 1 6-2 2 1 7 3 7
特許文献 3 :特許第 3 0 3 1 5 2 0号公報 発明の概要 Patent Document 3: Patent No. 3 0 3 1 5 2 0 Summary of Invention
発明が解決しようとする課題 Problems to be Solved by the Invention
[0007] 巳丁樹脂は結晶化速度が速いため、 キャスト時にも結晶化が進行する。 [0007]Because the Mitomo resin has a high crystallization rate, crystallization proceeds even during casting.
特に、 キャストして得られたフィルムの端部は、 製造上の理由で中央部に比 較して厚くなる傾向にある。 そのため、 キャストして得られるフィルムの端 部において、 結晶化はより顕著となる。 In particular, the end portion of the film obtained by casting tends to be thicker than the center portion for manufacturing reasons. Therefore, crystallization becomes more remarkable at the edges of the film obtained by casting.
上記の特許文献 1ではスタティックミキサーを用いて溶融樹脂を丁ーダイ スから押し出す前に超多層している。 そのため、 層間で結晶が成長せずに結 果的にキャスト時の結晶化を抑制することができる。 一方でメルトラインに スタティックミキサーを導入したことによってデッ ド部分 (滞留部分) が増 え、 その部分にゲルが発生して、 結果的に得られたフィルム中のフィッシュ アイ (小さな粒子状欠陥) が増加して、 高い品位が求められる工業用途とし ては不十分な品位となる可能性がある。 In the above-mentioned Patent Document 1, a static mixer is used to form the super-multilayer before extruding the molten resin from the die. Therefore, crystals do not grow between the layers, and as a result, crystallization during casting can be suppressed. On the other hand, by introducing a static mixer in the melt line, the dead area (retention area) increased, and gel was generated in that area, resulting in the formation of fish eyes (small particle defects) in the film. There is a possibility that the number will increase and the quality will be insufficient for industrial applications requiring high quality.
上記の特許文献 2、 3では、 ポリエチレンテレフタレートを基材フィルム として用いることで離型フィルムとして好適に用いられている。 一方で、 成 型が伴う離型フィルム用途では、 基材であるポリエチレンテレフタレートの 特性に基づいて深い絞り成形には対応できない可能性がある。 In the above Patent Documents 2 and 3, polyethylene terephthalate is preferably used as a release film by using it as a substrate film. On the other hand, for release film applications that involve molding, it may not be possible to support deep drawing due to the characteristics of the polyethylene terephthalate substrate.
[0008] 本発明は、 上述した課題に鑑みてなされたものである。 すなわち、 本発明 の目的は、 工業用途にも対応できる良好なフィルム品位を有し、 且つ、 深絞 り成型が伴う離型フィルムにも好適な二軸配向ポリエステルフィルムを提供 することにある。 \¥02020/175058 3 卩(:171?2020/004302 [0008] The present invention has been made in view of the above problems. That is, an object of the present invention is to provide a biaxially oriented polyester film which has a good film quality that can be used for industrial applications and is also suitable as a release film accompanied by deep drawing. \¥02020/175058 3 ((171?2020/004302
課題を解決するための手段 Means for solving the problem
[0009] 本発明者らは、 二軸配向ポリエステルフィルムについて鋭意検討を行った 。 その結果、 下記構成を採用することにより、 良好な深絞り成型性を有し、 且つ、 フィルム中のフィッシュアイが少なく品位に優れる二軸配向ポリエス テルフィルムが得られること見出し、 本発明を完成するに至った。 [0009] The present inventors have earnestly studied a biaxially oriented polyester film. As a result, it was found that, by adopting the following constitution, a biaxially oriented polyester film having good deep-drawing moldability and having few fish eyes in the film and excellent quality can be obtained, and the present invention is completed. Came to.
[0010] すなわち、 本発明に係る二軸配向ポリエステルフィルムは、 That is, the biaxially oriented polyester film according to the present invention,
ポリプチレンテレフタレート樹脂 (八) を 6 0〜 1 0 0質量%含有するポ リエステル樹脂組成物を含み、 A polyester resin composition containing 60 to 100 mass% of a poly(ethylene terephthalate) resin (eight),
積層数が 7層以下であり、 The number of layers is 7 or less,
下記要件 (1) 〜 (5) を満たすことを特徴とする。 It is characterized by satisfying the following requirements (1) to (5).
(1) 二軸配向ポリエステルフィルムの固有粘度が 0 . 7 丨 / 9以上。(1) The intrinsic viscosity of the biaxially oriented polyester film is 0.7 丨/ 9 or more.
(2) 二軸配向ポリエステルフィルムの配向角の絶対値が 2 5度以上。(2) The absolute value of the orientation angle of the biaxially oriented polyester film is 25 degrees or more.
(3) 二軸配向ポリエステルフィルムの面配向度△ が〇. 1 4 5〜〇.(3) The degree of plane orientation △ of the biaxially oriented polyester film is ○ 0.145 to ○.
1 6 0〇 1600
(4) 」 1 3 - 7 1 7 0 7に準じた突き刺し試験で測定した二軸配向ポリ エステルフィルムの突刺し強さが 0 . 4 0 1\1 / 以上。 (4) ”The puncture strength of the biaxially oriented polyester film measured by the puncture test according to 1 3-7 1 7 0 7 is 0.401\1/1 or more.
(5) 二軸配向ポリエステルフィルムの厚み斑が〇. 7 %以下。 (5) Thickness unevenness of the biaxially oriented polyester film is 0.7% or less.
[001 1 ] 前記構成によれば、 ポリプチレンテレフタレート樹脂 (八) を 6 0質量% 以上含有するポリエステル樹脂組成物を含むため、 突刺し強さを向上させる ことができる。 また、 ポリプチレンテレフタレート樹脂 (八) を 6 0質量% 以上含有するポリエステル樹脂組成物を含むため、 絞り成型性を良好なもの とすることができる。 [001 1] According to the above-mentioned constitution, since the polyester resin composition containing 60% by mass or more of the polypropylene terephthalate resin (8) is contained, the puncture strength can be improved. In addition, since the polyester resin composition containing the poly(ethylene terephthalate) resin (8) in an amount of 60% by mass or more is included, the drawability can be improved.
また、 積層数が 7層以下であるため、 メルトラインにスタティックミキサ —を導入しなくても製造することが可能である。 従って、 スタティックミキ サーを導入することによって生じるフィルム中のフィッシュアイ (小さな粒 子状欠陥) の発生を防止することができる。 その結果、 高い品位を有するフ ィルムとすることができる。 Further, since the number of laminated layers is 7 or less, it is possible to manufacture without introducing a static mixer in the melt line. Therefore, it is possible to prevent the generation of fish eyes (small particle defects) in the film caused by the introduction of the static mixer. As a result, a film with high quality can be obtained.
また、 前記固有粘度が、 0 . 7 丨 / 9以上であるため、 二軸配向ポリエ \¥02020/175058 4 卩(:171?2020/004302 In addition, since the intrinsic viscosity is 0.7 0.7 /9 or more, the biaxially oriented polyester is \¥02020/175058 4 卩 (: 171?2020/004302
ステルフィルム製造用の樹脂組成物を冷却口ールにキャストして未延伸シー 卜を得る際に、 未延伸シートの結晶化を抑制することができ、 特に厚みの厚 い端部の降伏応力が高くなりすぎないようにすることができる。 その結果、 延伸工程において破断し難くすることができる。 When a resin composition for producing a steal film is cast on a cooling port to obtain an unstretched sheet, crystallization of the unstretched sheet can be suppressed, and the yield stress at the thick end is particularly You can avoid getting too high. As a result, it can be made difficult to break in the stretching process.
また、 前記配向角の絶対値が 2 5度以上である。 前記配向角の絶対値は、 大きいほどフィルムの幅方向の端部になる。 面配向角が 2 5度より小さい場 合は、 フィルムの幅方向の中央に近いフィルムであるので、 溶融樹脂を冷却 口ールに密着させる際に巳面側からマルチダクトで吹き付ける冷風の端部の 温度をより低くすることの効果は少ない。 配向角の絶対値が 2 5度以上であ る幅方向で端部に近いフィルムについては、 溶融樹脂を冷却口ールに密着さ せる際に巳面側からマルチダクトで吹き付ける冷風の端部の温度をより低く することで、 製膜中の破断が少なくなり、 得られたフィルムの厚み斑を少な くできる。 Further, the absolute value of the orientation angle is 25 degrees or more. The larger the absolute value of the orientation angle, the closer to the widthwise end of the film. If the plane orientation angle is less than 25 degrees, the film is near the center in the width direction of the film, so when the molten resin is in close contact with the cooling port, the end of the cold air blown from the face side by the multi-duct. The effect of lowering the temperature is less. For films that have an absolute orientation angle of 25 degrees or more and are close to the edges in the width direction, when the molten resin is adhered to the cooling holes, the edges of the cold air blown by the multi-duct from the face side By lowering the temperature, the number of breaks during film formation can be reduced, and the thickness unevenness of the obtained film can be reduced.
また、 前記面配向度八 が〇. 1 4 5〜〇. 1 6 0である。 前記面配向度 △ が〇. 1 4 5以上であるため、 面配向が好適に高く、 突刺し強さが充分 となり、 深絞り成型性により優れる。 前記面配向度△ が〇. 1 6 0以下で あるため、 熱収縮率を低く維持することができ、 熱安定性をより良好なもの とすることができる。 Further, the plane orientation degree is 0. 145 to 0. 160. Since the above-mentioned degree of plane orientation Δ is not less than 0.145, the plane orientation is suitably high, the puncture strength is sufficient, and the deep drawability is superior. Since the plane orientation degree Δ is not more than 0.160, the heat shrinkage can be kept low and the thermal stability can be made better.
また、 前記突刺し強さが〇. 4 0 1\1 / 以上であるため、 深絞り成型性 を良好なものとすることができる。 Further, since the puncture strength is 0.401\1/1 or more, the deep drawing formability can be improved.
また、 前記厚み斑が〇. 7 %以下であるため、 深絞り成型を行った際に均 —な成型ができ、 フィルムの裂けやピンホールが発生しにくい。 In addition, since the thickness variation is 0.7% or less, uniform molding can be performed when deep drawing is performed, and tearing of the film and pinholes are less likely to occur.
[0012] なお、 本発明の二軸配向ポリエステルフィルムは、 製造後 (キャスト及び 延伸処理後) のフィルム、 すなわち、 スリッ ト処理等のされていないフィル ム (ミルロールの状態でのフィルム) を想定している。 ただし、 本発明の二 軸配向ポリエステルフィルムは、 ポリブチレンテレフタレート樹脂 (八) を 6 0〜 1 0 0重量%含有するポリエステル樹脂組成物を含み、 積層数が 7層 以下であり、 上記要件 (1) 〜 (5) を満たす限り、 フィルムの形態は特に \¥02020/175058 5 卩(:171?2020/004302 [0012]The biaxially oriented polyester film of the present invention is assumed to be a film after production (after casting and stretching treatment), that is, a film not subjected to slit treatment (film in a mill roll state). ing. However, the biaxially oriented polyester film of the present invention contains a polyester resin composition containing 60 to 100% by weight of a polybutylene terephthalate resin (8), and the number of laminated layers is 7 or less, and the above requirement (1 )-(5) \¥02020/175058 5 卩 (: 171?2020/004302
限定されず、 例えば、 スリッ ト処理等により小口ールとされたフィルムや枚 葉のフィルムも含まれる。 The film is not limited, and includes, for example, a film made into small pieces by slit processing or the like, and a single film.
[0013] 前記構成において、 前記ポリエステル樹脂組成物は、 ポリプチレンテレフ タレート樹脂 (八) 以外のポリエステル樹脂 (巳) を含有することが好まし い。 [0013] In the above structure, it is preferable that the polyester resin composition contains a polyester resin (Mitsumi) other than the polyethylene terephthalate resin (8).
[0014] 前記ポリエステル樹脂組成物が、 ポリプチレンテレフタレート樹脂 (八) 以外のポリエステル樹脂 (巳) を含有すると、 二軸延伸を行う時の製膜性や 得られたフィルムの力学特性を調整することができる。 [0014] When the polyester resin composition contains a polyester resin (Mitsumi) other than the polypropylene terephthalate resin (8), the film formability during biaxial stretching and the mechanical properties of the obtained film can be adjusted. You can
[0015] 前記構成においては、 二軸配向ポリエステルフィルム上の最大直径が〇. [0015] In the above configuration, the maximum diameter on the biaxially oriented polyester film is ◯.
3〇!〇!以上のフィッシュアイが 5個/〇1 2以下であることが好ましい。 It is preferable 3_Rei! 〇! Or more of the fish eye is five / Rei_1 2 or less.
[0016] 前記フィッシュアイが 5個/ 2以下であると、 当該二軸配向ポリエステル フィルムの一方の面に、 離型層を有していても、 巻き取り保管時に、 離型層 とは反対側の面上に、 フィッシュアイによる離型層への凹凸転写を抑制する ことができる。 その結果、 フィルム品位を損ない難くすることができる。 ま た、 フィルムに精巧な印刷層をも設けることができる。 [0016] When the fish-eye is a 5/2 or less, to one surface of the biaxially oriented polyester film, may have a release layer, when the winding storage, opposite to the release layer It is possible to suppress the transfer of unevenness to the release layer by the fish eyes on the surface. As a result, it is possible to make it difficult to impair the film quality. Also, the film can be provided with elaborate printing layers.
[0017] また、 本発明は、 前記二軸配向ポリエステルフィルムの製造方法であって 二軸配向ポリエステルフィルム製造用の樹脂組成物を冷却口ールにキャス 卜して未延伸シートを形成する工程八と、 [0017] Further, the present invention is the method for producing a biaxially oriented polyester film, which comprises a step of casting a resin composition for producing a biaxially oriented polyester film in a cooling port to form an unstretched sheet. When,
前記冷却口ール上の前記未延伸シートに風を吹き付ける工程巳とを有し、 前記工程巳は、 未延伸シート全幅を 1 0 0 %としたとき、 中央に吹き付け る風の温度を X、 両方の端部に吹き付けられる温度を丫としたときに、 前記 Xが 1 5 °〇以下であり、 且つ、 前記丫が前記 Xよりも低い温度であり、 前記端部は、 少なくとも端縁から 1 〇%以内の領域を含むことを特徴とす る。 And a process step of blowing air to the unstretched sheet on the cooling port, the process step, when the total width of the unstretched sheet is 100%, the temperature of the wind blown to the center is X, When the temperature blown to both ends is assumed to be less than 1, X is 15 ° or less, and the temperature is lower than X, and the end is at least 1 from the edge. It is characterized by including the area within 0%.
[0018] 前記構成によれば、 冷却口ール上の未延伸シートに 1 5 °〇以下の風を吹き 付け、 未延伸シートの巳面 (冷却口ールに接した面とは反対の面) を急冷す ることによって、 結晶化度を小さく し、 製膜性を良好とすることができる。 \¥02020/175058 6 卩(:171?2020/004302 [0018] According to the above-mentioned configuration, the unstretched sheet on the cooling port is blown with a wind of not more than 15°, and the unstretched sheet has a mound surface (a surface opposite to the surface in contact with the cooling port) ) Is rapidly cooled, the crystallinity can be reduced and the film-forming property can be improved. \\02020/175058 6 卩 (: 171-12020/004302
また、 未延伸シートの端部の厚みは、 中央部よりも厚い場合が多い。 そこ で端部 (少なくとも端縁から 1 0 %以内の領域) を中央よりも強く急冷する ことにより、 端部を中央部相当に結晶化を抑制し、 製膜性を良好とすること ができる。 In addition, the thickness of the end portion of the unstretched sheet is often thicker than that of the central portion. By quenching the end portion (at least a region within 10% from the edge) more strongly than the center there, crystallization can be suppressed in the end portion corresponding to the center portion, and the film forming property can be improved.
[0019] 前記構成において、 前記丫は 1 0 °〇以下であることが好ましい。 前記丫が 、 1 0 °〇以下であると、 未延伸シートの巳面端部の結晶化度が高くなりすぎ ず、 製膜性がより良好となる。 [0019] In the above configuration, it is preferable that the temperature is 10 ° or less. When the grain diameter is 10° or less, the crystallinity of the end face of the unstretched sheet does not become too high and the film formability becomes better.
発明の効果 Effect of the invention
[0020] 本発明によれば、 良好な深絞り成型性を有し、 且つ、 フィルム中のフィッ シュアイが少なく品位に優れる二軸配向ポリエステルフィルムを提供するこ とができる。 [0020] According to the present invention, it is possible to provide a biaxially oriented polyester film which has good deep-drawing moldability, has few fish eyes in the film, and is excellent in quality.
図面の簡単な説明 Brief description of the drawings
[0021] [図 1]冷却口ール上の未延伸シートの巳面にマルチダクトからの冷却風を吹き 付ける方法を説明するための正面模式図である。 [0021] [Fig. 1] Fig. 1 is a schematic front view for explaining a method of blowing cooling air from a multi-duct onto a mound surface of an unstretched sheet on a cooling port.
[図 2]図 1の側面図である。 [Fig. 2] Fig. 2 is a side view of Fig. 1.
[図 3]マルチダクトの一例を示す底面図である。 FIG. 3 is a bottom view showing an example of a multi-duct.
[図 4]深絞り成型性の評価に用いた金型の横断面図である。 [FIG. 4] A cross-sectional view of a mold used for evaluation of deep drawing formability.
[図 5]図 4に示した金型の平面図である。 発明を実施するための形態 FIG. 5 is a plan view of the mold shown in FIG. MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、 本発明の実施形態について説明する。 [0022] Hereinafter, embodiments of the present invention will be described.
[0023] 本実施形態に係る二軸配向ポリエステルフィルムは、 [0023] The biaxially oriented polyester film according to the present embodiment is
ポリプチレンテレフタレート樹脂 (八) を 6 0〜 1 0 0質量%含有するポ リエステル樹脂組成物を含み、 A polyester resin composition containing 60 to 100 mass% of a poly(ethylene terephthalate) resin (eight),
積層数が 7層以下であり、 The number of layers is 7 or less,
下記要件 (1) 〜 (5) を満たすことを特徴とする二軸配向ポリエステル フイルム。 A biaxially oriented polyester film which satisfies the following requirements (1) to (5).
(1) 二軸配向ポリエステルフィルムの固有粘度が 0 . 7 丨 / 9以上。(1) The intrinsic viscosity of the biaxially oriented polyester film is 0.7 丨/ 9 or more.
(2) 二軸配向ポリエステルフィルムの配向角の絶対値が 2 5度以上。 \¥02020/175058 7 卩(:171?2020/004302 (2) The absolute value of the orientation angle of the biaxially oriented polyester film is 25 degrees or more. \¥02020/175058 7 卩(: 171-12020/004302
(3) 二軸配向ポリエステルフィルムの面配向度△ が〇. 1 45〜〇.(3) The degree of plane orientation △ of the biaxially oriented polyester film is ○ 0.145 to ○.
1 60〇 1 60 〇
(4) 」 1 3-71 707に準じた突き刺し試験で測定した二軸配向ポリ エステルフィルムの突刺し強さが 0. 401\1/ 以上。 (4)” 13-71 The piercing strength of the biaxially oriented polyester film measured by the piercing test according to 707 is 0.401 \1/ or more.
(5) 二軸配向ポリエステルフィルムの厚み斑が〇. 7%以下。 (5) Thickness unevenness of the biaxially oriented polyester film is 0.7% or less.
[0024] [二軸配向ポリエステルフィルムの組成] [0024] [Composition of biaxially oriented polyester film]
前記ポリエステル樹脂組成物は、 巳丁樹脂 ( ) を主たる構成成分とす るものであり、 前記ポリエステル樹脂組成物における 巳丁樹脂 (八) の含 有率は 60質量%以上である。 好ましくは 75質量%以上であり、 より好ま しくは 90質量%以上である。 60質量%以上とすることにより、 突刺し強 さを充分なものとすることができ、 深絞り成型性を向上させることができる 主たる構成成分として用いる 巳丁樹脂 (八) は、 ジカルボン酸成分とし て、 テレフタル酸が 90モル%以上であることが好ましく、 より好ましくは 95モル%以上であり、 さらに好ましくは 98モル%以上であり最も好まし くは 1 00モル%である。 グリコール成分として 1 , 4—ブタンジオールが 90モル%以上であることが好ましく、 より好ましくは 95モル%以上であ る。 The polyester resin composition has a minor resin () as a main constituent, and the content of the minor resin (8) in the polyester resin composition is 60% by mass or more. It is preferably 75% by mass or more, and more preferably 90% by mass or more. When the amount is 60% by mass or more, the puncture strength can be made sufficient and the deep drawing moldability can be improved. Mingho resin (8) is used as a dicarboxylic acid component. Thus, the content of terephthalic acid is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 98 mol% or more, and most preferably 100 mol%. The glycol component is preferably 1,4-butanediol in an amount of 90 mol% or more, more preferably 95 mol% or more.
[0025] 前記 巳丁樹脂 (八) の固有粘度の下限は好ましくは〇. 80 丨 /9で あり、 より好ましくは〇. 95 丨 /9であり、 更に好ましくは 1. 0 I / 9である。 巳丁樹脂 ( ) の固有粘度を〇. 80 丨 /9以上とするこ とで、 製膜して得られるフィルムの固有粘度を高くすることができ、 深絞り 成型性や製膜性を向上させることができる。 [0025] The lower limit of the intrinsic viscosity of the above-mentioned Mingko resin (8) is preferably 〇0.80 / 9 , more preferably 〇0.95/ 9 , and further preferably 1.0 I/9. .. By setting the intrinsic viscosity of Mending resin () to be 0.80 丨/ 9 or more, the intrinsic viscosity of the film obtained by film formation can be increased, and the deep drawability and film formability are improved. be able to.
前記 巳丁樹脂 ( ) の固有粘度の上限は好ましくは 1. 3 丨 /9であ る。 1.
Figure imgf000009_0001
丨 /9以下とすることにより、 フィルム延伸時の応力が高くな りすぎることを抑制し、 製膜性を良好とすることができる。 さらには、 固有 粘度の高い 巳丁樹脂を使用した場合、 樹脂の溶融粘度が高くなるため押出 し温度を高温にする必要があるが、 固有粘度が 1. 3 I / 9以下の 巳丁 \¥02020/175058 8 卩(:171?2020/004302
The upper limit of the intrinsic viscosity of the Mouto resin () is preferably 1.3 丨/ 9 . 1.
Figure imgf000009_0001
With丨/ 9 or less, to suppress a high stress during film stretching Risugiru, the film-forming property can be improved. Furthermore, when using Mingbo resin with a high intrinsic viscosity, the melting temperature of the resin increases, so it is necessary to raise the extrusion temperature, but Mingo with an intrinsic viscosity of 1.3 I / 9 or less. \¥02020/175058 8 卩 (: 171?2020/004302
樹脂 (八) を用いることにより、 高温押出しなくてもよくなり、 分解物の発 生を抑制することできる。 By using the resin (8), it is not necessary to perform high temperature extrusion, and the generation of decomposition products can be suppressed.
[0026] 前記ポリエステル樹脂組成物は二軸延伸を行う時の製膜性や得られたフィ ルムの力学特性を調整する目的で 巳丁樹脂 (八) 以外のポリエステル樹脂 (巳) を含有することが好ましい。 [0026] The polyester resin composition contains a polyester resin (M) other than the Ming resin (8) for the purpose of adjusting film-forming properties during biaxial stretching and mechanical properties of the obtained film. Is preferred.
前記ポリエステル樹脂 (巳) としては、 巳丁、 ポリエチレンナフタレー 卜、 ポリプチレンナフタレート、 ポリプロピレンテレフタレートなどのポリ エステル樹脂、 又はイソフタル酸、 オルソフタル酸、 ナフタレンジカルボン 酸、 ビフエニルジカルボン酸、 シクロへキサンジカルボン酸、 アジピン酸、 アゼライン酸及びセバシン酸からなる郡から選択される少なくとも 1種のジ カルボン酸が共重合された 巳丁樹脂、 エチレングリコール、 1 , 3 -プロ ピレングリコール、 1 , 2—プロピレングリコール、 ネオペンチルグリコー ル、 1 , 5—ペンタンジオール、 1 , 6—ヘキサンジオール、 ジエチレング リコール、 シクロヘキサンジオール、 ポリエチレングリコール、 ポリテトラ メチレングリコール及びポリカーボネートからなる郡から選択される少なく とも 1種のジオール成分が共重合された 巳丁樹脂、 イソフタル酸、 オルソ フタル酸、 ナフタレンジカルボン酸、 ビフエニルジカルボン酸、 シクロヘキ サンジカルボン酸、 アジピン酸、 アゼライン酸及びセバシン酸からなる郡か ら選択される少なくとも 1種のジカルボン酸が共重合された 巳丁樹脂、 若 しくは 1 , 3—ブタンジオール、 1 , 3—プロピレングリコール、 1 , 2— プロピレングリコール、 ネオペンチルグリコール、 1 , 5—ペンタンジオー ル、 1 , 6—ヘキサンジオール、 ジエチレングリコール、 シクロへキサンジ オール、 ポリエチレングリコール、 ポリテトラメチレングリコール及びポリ 力ーボネートからなる郡から選択される少なくとも 1種のジオール成分が共 重合された 巳丁樹脂から選ばれる少なくとも 1種の樹脂が挙げられる。 Examples of the polyester resin (Mitsumi) include polyester, polyethylene naphthalate, polypropylene naphthalate, polypropylene terephthalate and the like, or isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, cyclohexanedicarboxylic acid. Acid, adipic acid, azelaic acid, sebacic acid, and at least one dicarboxylic acid copolymerized with Mitsuba resin, ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol , Neopentyl glycol, 1,5-pentane diol, 1,6-hexane diol, diethylene glycol, cyclohexane diol, polyethylene glycol, polytetramethylene glycol and at least one diol component selected from the group consisting of polycarbonate. At least one dicarboxylic acid selected from the group consisting of polymerized benign resin, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, cyclohexanedicarboxylic acid, adipic acid, azelaic acid and sebacic acid. Methylene resin copolymerized with 1,3-butanediol, 1,3-propylene glycol, 1,2-propylene glycol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol , Diethylene glycol, cyclohexanediol, polyethylene glycol, polytetramethylene glycol, and polycarbonate, and at least one resin selected from the Mending resins copolymerized with at least one diol component selected from the group consisting of To be
[0027] 中でも 巳丁を主成分とする樹脂は融点が高く耐熱性に優れ、 巳丁樹脂 との相溶性が良く透明性に優れるので、 巳丁樹脂又は共重合された 巳丁 樹脂が好ましく、 特に 巳丁樹脂が好ましい。 \¥02020/175058 9 卩(:171?2020/004302 [0027] Among them, the resin mainly composed of mitoba has a high melting point, is excellent in heat resistance, has good compatibility with mitoba resin and is excellent in transparency, and therefore mitoba resin or copolymerized mitoba resin is preferable. Mingko resin is particularly preferable. \¥02020/175058 9 卩 (: 171?2020/004302
[0028] 前記ポリエステル樹脂 (巳) の添加量としては、 前記ポリエステル樹脂組 成物全体に対して 4 0質量%以下が好ましく、 3 0質量%以下がより好まし く、 さらに好ましくは 2 0質量%以下であり、 特に好ましくは 1 0質量%以 下である。 前記ポリエステル樹脂 (巳) の添加量が 3 0質量%以下であると 、 突刺し強さをより高めることができ、 深絞り成型性により優れる。 また、 透明性を高く保つことができる。 また、 衝撃強度や耐ピンホール性が優れる 前記ポリエステル樹脂 (巳) の添加量は、 前記ポリエステル樹脂組成物全 体に対して 0質量%以上、 1 〇質量%以上、 2 0質量%以上等とすることが できる。 [0028] The amount of the polyester resin (M) added is preferably 40% by mass or less, more preferably 30% by mass or less, and further preferably 20% by mass, based on the entire polyester resin composition. % Or less, particularly preferably 10% by mass or less. When the amount of the polyester resin (Mitsumi) added is 30% by mass or less, the puncture strength can be further increased, and the deep drawability is more excellent. Also, the transparency can be kept high. Further, the addition amount of the polyester resin (Mitsumi), which has excellent impact strength and pinhole resistance, is 0% by mass or more, 10% by mass or more, 20% by mass or more based on the whole polyester resin composition. can do.
[0029] 前記ポリエステル樹脂 (巳) の固有粘度の下限は好ましくは〇. 5 I / [0029] The lower limit of the intrinsic viscosity of the polyester resin (Mitsumi) is preferably 0.5 I/
9であり、 より好ましくは 0 . 6 丨 / 9であり、 更に好ましくは 0 . 8 丨 / 9である。 前記ポリエステル樹脂 (巳) の固有粘度の上限は好ましくは 1 . 3 丨 / 9である。 前記ポリエステル樹脂 (巳) の固有粘度を上記数値 範囲内とすることにより、 巳丁樹脂 (八) とより良好に混合することが可 能となる。 It is 9, more preferably 0.6 丨/ 9 , and even more preferably 0.8 丨/9. The upper limit of the intrinsic viscosity of the polyester resin (Mitsumi) is preferably 1.3 丨/ 9 . By setting the intrinsic viscosity of the polyester resin (Mitsumi) within the above numerical range, it becomes possible to mix the polyester resin (Mitsumi) with the Mitsuko resin (Hachi) better.
[0030] 前記二軸配向ポリエステルフィルムは、 前記ポリエステル樹脂組成物とは 別に、 従来公知の添加剤、 例えば、 滑剤、 安定剤、 着色剤、 酸化防止剤、 静 電防止剤、 紫外線吸収剤等を含有していてもよい。 [0030] The biaxially oriented polyester film contains, in addition to the polyester resin composition, conventionally known additives such as a lubricant, a stabilizer, a colorant, an antioxidant, an antistatic agent, and an ultraviolet absorber. It may be contained.
[0031 ] 前記二軸配向ポリエステルフィルム全体を 1 0 0質量%としたとき、 前記 ポリエステル樹脂組成物の含有量は、 9 9 . 5質量%以上が好ましく、 9 9 . 6質量%以上がより好ましく、 9 9 . 7質量%以上がさらに好ましい。 前記ポリエステル樹脂組成物の含有量は、 前記二軸配向ポリエステルフィ ルム全体を 1 0 0質量%としたとき、 1 0 0質量%以下が好ましく、 9 9 . [0031] When the total amount of the biaxially oriented polyester film is 100% by mass, the content of the polyester resin composition is preferably 99.5% by mass or more, and more preferably 99.6% by mass or more. , 99.7 mass% or more is more preferable. The content of the polyester resin composition is preferably 100% by mass or less, when the total amount of the biaxially oriented polyester film is 100% by mass, and 99.
9質量%以下がより好ましく、 9 9 . 8質量%以下がさらに好ましい。 9 mass% or less is more preferable, and 99.8 mass% or less is further preferable.
[0032] 前記滑剤は、 フィルムの動摩擦係数を調整することができるものであり、 シリカ、 炭酸カルシウム、 アルミナなどの無機系滑剤、 有機系滑剤が挙げら れる。 シリカ、 炭酸カルシウムがより好ましく、 中でもシリカがヘイズを低 \¥0 2020/175058 10 卩(:171? 2020 /004302 The above-mentioned lubricant can adjust the dynamic friction coefficient of the film, and examples thereof include inorganic lubricants such as silica, calcium carbonate and alumina, and organic lubricants. Silica and calcium carbonate are more preferable, and silica has a low haze. \¥0 2020/175058 10 卩 (: 171-1? 2020 /004302
減する点で特に好ましい。 これらにより透明性と滑り性と発現することがで きる。 It is particularly preferable in that it is reduced. By these, transparency and slipperiness can be exhibited.
[0033] 前記二軸配向ポリエステルフィルムにおける滑剤の含有量の下限は好まし くは 1 0 0質量 111であり、 より好ましくは 8 0 0質量 111である。 1 0 0質量 以上とすることにより、 滑り性を向上させることができる。 前記滑剤の含有量の上限は好ましくは 2 0 0 0 0質量 111であり、 より 好ましくは 1 0 0 0質量 であり、 特に好ましくは 1 8 0 0質量 111 である。 2 0 0 0 0質量 以下とすることにより、 透明性を維持するこ とができる。 The lower limit of the content of the lubricant in the biaxially oriented polyester film is preferably 100 mass 111, more preferably 800 mass 111. When the amount is 100 mass or more, the slipperiness can be improved. The upper limit of the lubricant content is preferably 2000 mass 111, more preferably 100 mass, and particularly preferably 180 mass 111. By setting the amount to be 200 mass% or less, transparency can be maintained.
[0034] [二軸配向ポリエステルフィルムの層構成] [0034] [Layer constitution of biaxially oriented polyester film]
前記二軸配向ポリエステルフィルムは、 積層数が 7層以下である。 前記積 層数は、 積層数は 3層以下がより好ましい。 フィッシュアイを低減させる観 点からは、 単層が最も好ましい。 フィルムの表面の特性を改善したい場合は 、 組成の異なる複数種の層を積層させた 2種 2層、 2種 3層、 あるいは 3種 3層の層構成が好ましい。 改善する特性としては、 滑り性、 帯電防止性、 紫 外線カッ ト性、 易接着性などが挙げられる。 これらの表面特性の改善は、 複 数層のうちの表層に、 滑剤、 帯電防止剤、 紫外線吸収剤、 共重合ポリマー、 及びそれらの助剤を添加することで達成できる。 The biaxially oriented polyester film has 7 or less laminated layers. The number of laminated layers is more preferably 3 or less. From the viewpoint of reducing fish eyes, a single layer is most preferable. When it is desired to improve the surface properties of the film, a layer structure of 2 types 2 layers, 2 types 3 layers, or 3 types 3 layers in which a plurality of types of layers having different compositions are laminated is preferable. Properties that improve include slipperiness, antistatic properties, ultraviolet cutability, and easy adhesion. The improvement of these surface properties can be achieved by adding a lubricant, an antistatic agent, an ultraviolet absorber, a copolymer, and their auxiliaries to the surface layer of the plurality of layers.
[0035] [二軸配向ポリエステルフィルムの特性] [0035] [Characteristics of biaxially oriented polyester film]
( 1 ) 二軸配向ポリエステルフィルムの固有粘度 (1) Intrinsic viscosity of biaxially oriented polyester film
前記二軸配向ポリエステルフィルムの固有粘度は、 〇. 7 丨 / 9以上で ある。 前記固有粘度は、 好ましくは〇. 7 5 1 / 9以上であり、 さらに好 ましくは〇. 8 0 丨
Figure imgf000012_0001
以上である。 前記固有粘度が〇. 7 丨 / 9以上 であるため、 二軸配向ポリエステルフィルム製造用の樹脂組成物を冷却口一 ルにキャストして未延伸シートを得る際に、 未延伸シートの結晶化を抑制す ることができ、 特に厚みの厚い端部の降伏応力が高くなりすぎないようにす ることができる。 その結果、 延伸工程において破断し難くすることができる \¥02020/175058 11 卩(:171? 2020 /004302
The biaxially oriented polyester film has an intrinsic viscosity of 0.7 0.7 / 9 or more. The intrinsic viscosity is preferably at least 0.751/ 9, more preferably at least 0.80
Figure imgf000012_0001
That is all. Since the intrinsic viscosity is 0.7 7 / 9 or more, when the resin composition for producing a biaxially oriented polyester film is cast in a cooling port to obtain an unstretched sheet, the unstretched sheet is crystallized. It can be suppressed, and the yield stress can be prevented from becoming too high especially at the thick end. As a result, it can be made difficult to break in the stretching step. \¥02020/175058 11 卩 (: 171-1? 2020 /004302
また、 前記固有粘度は、 好ましくは 1. 20 I /以下であり、 より好ま しくは 1. 1 5 丨 /9以下であり、 さらに好ましくは 1. 1 0 丨 /9以 下である。 前記固有粘度が、 1. 20 丨 /9以下であると、 延伸時の応力 が高くなりすぎず、 製膜性がより良好となる。 Further, the inherent viscosity is preferably 1. is a 20 I / less, more preferred is properly 1. is 1 5丨/ 9 or less, more preferably 1 0丨/ 9 hereinafter 1.. When the intrinsic viscosity is 1.20 丨/9 or less, the stress during stretching does not become too high and the film-forming property becomes better.
なお、 未延伸シートの固有粘度は、 前記二軸配向ポリエステルフィルムの 固有粘度とほぼ同じであり、 下限は好ましくは〇. 7 I / 9であり、 より 好ましくは〇. 75 丨 /9であり、 さらに好ましくは〇. 80 丨 /9で あり、 特に好ましくは〇. 90 丨 /9である。 The intrinsic viscosity of the unstretched sheet is almost the same as the intrinsic viscosity of the biaxially oriented polyester film, the lower limit is preferably 0.7 I / 9, and more preferably 0. 75 I / 9 , It is more preferably 0.80 / 9 , and particularly preferably 0.90 / 9 .
なお、 前記二軸配向ポリエステルフィルムの固有粘度を好ましい範囲とす るためには、 可能な限り低温での押出温度とすることが好ましい。 使用する ポリエステル樹脂の固有粘度、 押出機の形状等により温度は変化するが、 低 温での押出により前記二軸配向ポリエステルフィルムの固有粘度の低下を抑 制することができ、 結果的に延伸時に破断が生じ難くなる傾向となる。 In addition, in order to set the intrinsic viscosity of the biaxially oriented polyester film in a preferable range, it is preferable to set the extrusion temperature as low as possible. Although the temperature changes depending on the intrinsic viscosity of the polyester resin used, the shape of the extruder, etc., lowering the intrinsic viscosity of the biaxially oriented polyester film can be suppressed by extrusion at a low temperature, and as a result, during stretching. Breakage tends to occur less easily.
[0036] (2) 二軸配向ポリエステルフィルムの配向角の絶対値 [0036] (2) Absolute value of orientation angle of biaxially oriented polyester film
前記二軸配向ポリエステルフィルムの配向角の絶対値は 25度以上である 。 前記配向角の絶対値は、 大きいほどフィルムの幅方向の端部になる。 面配 向角が 25度より小さい場合は、 フィルムの幅方向の中央に近いフィルムで あるので、 溶融樹脂を冷却口ールに密着させる際に巳面側からマルチダクト で吹き付ける冷風の端部の温度をより低くすることの効果は少ない。 配向角 の絶対値が 25度以上である幅方向で端部に近いフィルムについては、 溶融 樹脂を冷却口ールに密着させる際に巳面側からマルチダクトで吹き付ける冷 風の端部の温度をより低くすることで、 製膜中の破断が少なくなり、 得られ たフィルムの厚み斑を少なくできる。 The absolute value of the orientation angle of the biaxially oriented polyester film is 25 degrees or more. The larger the absolute value of the orientation angle, the closer to the widthwise end of the film. If the surface orientation angle is less than 25 degrees, the film is near the center in the width direction of the film, so when the molten resin is in close contact with the cooling port, the end of the cold air blown by the multi-duct from the face side The effect of lowering the temperature is less. For films that have an absolute orientation angle of 25 degrees or more and are close to the edges in the width direction, the temperature of the edges of the cold air blown by the multi-duct from the face side when the molten resin is in close contact with the cooling holes is controlled. By lowering it, breakage during film formation is reduced, and unevenness in the thickness of the obtained film can be reduced.
[0037] (3) 二軸配向ポリエステルフィルムの面配向度△ (3) Degree of plane orientation of biaxially oriented polyester film Δ
前記二軸配向ポリエステルフィルムは、 面配向度八 が〇. 1 45〜〇. The biaxially oriented polyester film has a degree of plane orientation of 8 0.145 to 0.
1 60である。 前記面配向度八 は、 より好ましくは〇. 1 455以上であ り、 さらに好ましくは〇. 1 46以上である。 〇. 1 45以上であると面配 向が好適に高く、 突刺し強さが充分となり、 深絞り成型性により優れる。 \¥02020/175058 12 卩(:171? 2020 /004302 1 60. The plane orientation degree is more preferably 0.145 or more, and further preferably 0.146 or more. 〇 When it is 45 or more, the surface orientation is suitably high, the piercing strength is sufficient, and the deep drawability is superior. \¥02020/175058 12 ((171?2020/004302
前記面配向度八 は、 より好ましくは〇. 1 57以下であり、 さらに好ま しくは〇. 1 54以下である。 〇. 1 60以下であると、 熱収縮率を低く維 持することができ、 熱安定性をより良好なものとすることができる。 The degree of plane orientation 8 is more preferably 0.157 or less, and further preferably 0.154 or less. When it is less than 0.160, the heat shrinkage rate can be kept low, and the heat stability can be further improved.
[0038] (4) 突刺し強さ [0038] (4) Puncture strength
」 丨 3 _ 1 707に準じた突き刺し試験で測定した前記二軸配向ポリエ ステルフィルムの突刺し強さは 0. 401\1/ 〇1以上である。 The puncture strength of the biaxially oriented polyester film measured by the puncture test according to 3 _ 1 707 is 0.401\1/0.01 or more.
前記突刺し強さは、 好ましくは〇. 501\1/ 以上あり、 さらに好まし くは〇. 601\1/ 以上である。 前記突刺し強さが〇. 401\1/ 以上 であるため、 深絞り成型性を良好なものとすることができる。 The puncture strength is preferably 〇.501\1/ or more, more preferably 〇.601\1/ or more. Since the puncture strength is 〇.401 \1/ or more, it is possible to improve the deep drawing formability.
また、 前記突刺し強さは、 好ましくは 1. 01\!/ 以下、 より好ましく は〇. 901\1/ 以下であり、 さらに好ましくは〇. 851\1/ 以下で あり、 特に好ましくは〇. 801\1/ 以下である。 ·! . 01\1/ 以下で あると、 熱収縮率が抑制され、 熱安定性により優れる。 The puncture strength is preferably 1.01\!/ or less, more preferably 〇.901\1/ or less, further preferably 〇.851\1/ or less, and particularly preferably 〇. It is less than 801\1/. ...! If it is less than .01\1/, the heat shrinkage is suppressed and the thermal stability is superior.
なお、 本明細書において、 「突刺し強さが〇. 401\1/ 以上」 とは、 二軸配向ポリエステルフィルムのどの部分においても突刺し強さが 0. 40 1\1/ 以上であることをいう。 In the present specification, "the puncture strength is 0. 401\1/ or more" means that the puncture strength is 0.401\\ or more in any part of the biaxially oriented polyester film. Say.
[0039] (5) 二軸配向ポリエステルフィルムの厚み及び厚み斑 (5) Thickness and unevenness of thickness of biaxially oriented polyester film
前記二軸配向ポリエステルフィルムの厚みの下限は 5 が好ましい。 よ り好ましくは 7 であり、 さらに好ましくは 9 〇!である。 5 〇!以上で あると、 フィルムとしての強度を充分なものとすることができる。 The lower limit of the thickness of the biaxially oriented polyester film is preferably 5. It is more preferably 7, and even more preferably 90! When it is at least 50!, the strength as a film can be made sufficient.
前記二軸配向ポリエステルフィルムの厚みの上限は 40 が好ましい。 より好ましくは 30 であり、 さらに好ましくは 20 である。 The upper limit of the thickness of the biaxially oriented polyester film is preferably 40. It is more preferably 30, and even more preferably 20.
柔軟性や省資源の点からは、 厚みは薄い方が好ましい。 From the viewpoint of flexibility and resource saving, it is preferable that the thickness is thin.
[0040] 前記二軸配向ポリエステルフィルムの厚み斑は、 〇. 7%以下である。 前 記厚み斑は、 好ましくは〇. 6%以下であり、 より好ましくは〇. 5%以下 である。 前記厚み斑が〇. 7%以下であるため、 深絞り成型を行った際に均 —な成型ができ、 フィルムの裂けやピンホールが発生しにくい。 前記厚み斑 の求め方は、 実施例に記載の方法による。 \¥02020/175058 13 卩(:171?2020/004302 [0040] The uneven thickness of the biaxially oriented polyester film is 0.7% or less. The aforementioned thickness unevenness is preferably 0.6% or less, more preferably 0.5% or less. Since the thickness unevenness is 0.7% or less, uniform molding can be performed when deep drawing is performed, and tearing of the film and pinholes are less likely to occur. The thickness variation is determined by the method described in Examples. \¥02020/175058 13 卩(: 171?2020/004302
[0041] (6) フイツシユアイ [0041] (6) Fit Yui
前記二軸配向ポリエステルフィルムは、 二軸配向ポリエステルフィルム上 の最大直径が 0. 3〇!〇!以上のフィッシュアイが 5個/〇! 2以下であることが 好ましい。 前記フィッシュアイは、 4個/ 2以下であることがより好ましく 、 3個/ 2以下であることがさらに好ましい。 前記フィッシュアイが 5個/ 2以下であると、 当該二軸配向ポリエステルフィルムの一方の面に、 離型層 を有していても、 巻き取り保管時に、 離型層とは反対側の面上に、 フィッシ ュアイによる離型層への凹凸転写を抑制することができる。 その結果、 フィ ルム品位を損ない難くすることができる。 The biaxially oriented polyester film is preferably a maximum diameter 0.5 3_Rei on the biaxially oriented polyester film! 〇! More fisheyes is 5 / 〇! 2 below. The fisheyes, more preferably 4/2 or less, and more preferably 3/2 or less. If the number of fish eyes is not more than 5/2, even if the release layer is provided on one surface of the biaxially oriented polyester film, it is on the surface opposite to the release layer during winding and storage. Moreover, it is possible to suppress the transfer of unevenness onto the release layer by the fisheye. As a result, it is possible to make it difficult to deteriorate the film quality.
[0042] (7) 熱収縮率 [0042] (7) Thermal shrinkage
前記二軸配向ポリエステルフィルムの IV! 0方向における 1 50°〇で 1 5分 間加熱後の熱収縮率の上限は 5 %が好ましい。 より好ましくは 3. 0 %であ り、 さらに好ましくは 2. 5%である。 5%以下であると、 後加工で熱を加 えた際にフィルムが大きく縮んでしまうことを抑制でき、 加工がより容易と なる。 The upper limit of the heat shrinkage rate of the biaxially oriented polyester film after heating at 150°° for 15 minutes in the IV!0 direction for 15 minutes is preferably 5%. It is more preferably 3.0% and even more preferably 2.5%. When it is 5% or less, it is possible to prevent the film from shrinking significantly when heat is applied in the post-processing, and the processing becomes easier.
前記二軸配向ポリエステルフィルムの IV! 0方向における 1 50°〇で 1 5分 間加熱後の熱収縮率の下限は〇 %が好ましい。 より好ましくは 0. 8 %であ り、 さらに好ましくは 1. 2%である。 0%%以上であると、 突刺し強さを 高めることができ、 耐破袋性を高く維持できる。 The lower limit of the heat shrinkage rate of the biaxially oriented polyester film after heating at 150° ◯ for 15 minutes in the IV!0 direction is preferably ◯%. It is more preferably 0.8% and even more preferably 1.2%. When it is 0%% or more, the puncture strength can be increased and the bag puncture resistance can be maintained high.
前記二軸配向ポリエステルフィルムの丁 0方向における 1 50°〇で 1 5分 間加熱後の熱収縮率の上限は 5 %が好ましい。 より好ましくは 3. 0 %であ り、 さらに好ましくは 2. 5%である。 5%以下であると、 後加工で熱を加 えた際にフィルムが大きく縮んでしまうことを抑制でき、 加工がより容易と なる。 The upper limit of the heat shrinkage rate of the biaxially oriented polyester film after heating for 15 minutes at 150° in the zero direction for 15 minutes is preferably 5%. It is more preferably 3.0% and even more preferably 2.5%. When it is 5% or less, it is possible to prevent the film from shrinking significantly when heat is applied in the post-processing, and the processing becomes easier.
前記二軸配向ポリエステルフィルムの丁 0方向における 1 50°〇で 1 5分 間加熱後の熱収縮率の下限は一 1 %が好ましい。 より好ましくは 0. 8 %で あり、 さらに好ましくは 1. 2%である。 一 1 %%以上であると、 突刺し強 さを高めることができ、 耐破袋性を高く維持できる。 \¥02020/175058 14 卩(:171?2020/004302 The lower limit of the heat shrinkage rate of the biaxially oriented polyester film after heating for 15 minutes at 150° in the zero direction for 15 minutes is preferably 11%. It is more preferably 0.8% and even more preferably 1.2%. If it is more than 1% %, the puncture strength can be increased and the bag puncture resistance can be maintained high. \¥02020/175058 14 卩 (: 171?2020/004302
[0043] また、 二軸配向ポリエステルフィルムの幅方向において、 左右の端からそ れぞれ中央部に向かって 1 の位置でサンプリングをし、 それぞれ」 丨[0043] In addition, in the width direction of the biaxially oriented polyester film, sampling is performed at a position of 1 from each of the left and right ends toward the center, and each of them is sampled."
3_< 7 1 1 2に準じて測定した密度のうち最も高い方の値が 1. 409 / 〇 3以下が好ましい。 より好ましくは 1.
Figure imgf000016_0001
であり、 さらに好 ましくは·! . 389 /〇 013である。 前記密度が·! . 49/〇〇13以下である ため、 端部の結晶化が抑制されている。 その結果、 当該二軸配向ポリエステ ルフィルムを製造する際の延伸工程における端部での過度な応力を抑制する ことができ、 製膜性を良好とすることができる。
3_ <7 1 1 most higher value of the two density measured in accordance with the 1.40 9 / 〇 3 or less. More preferably 1.
Figure imgf000016_0001
And more preferably...! 389/〇 01 3 . Wherein the density is &!. 49 / Rei_rei_1 3 or less, the crystallization of the end portion is suppressed. As a result, it is possible to suppress excessive stress at the end portion in the stretching step when manufacturing the biaxially oriented polyester film, and to improve the film forming property.
また、 前記密度は、 好ましくは 1. 28
Figure imgf000016_0002
3以上であり、 より好まし くは 1.
Figure imgf000016_0003
以上であり、 さらに好ましくは 1. 309/〇〇13以 上である。 1. 28
Figure imgf000016_0004
3以上であると、 結晶性が適度に高く、 力学強度 がより良好となる。
Further, the density is preferably 1.28.
Figure imgf000016_0002
3 or more, and more preferably 1.
Figure imgf000016_0003
Or more, further preferably 1.30 9 / Rei_rei_1 3 than on. 1.28
Figure imgf000016_0004
When it is 3 or more, the crystallinity is moderately high and the mechanical strength is better.
なお、 端部の密度 (左右の端からそれぞれ中央部に向かって 1
Figure imgf000016_0005
置でサンプリングをした部分の密度) が、 1. 4
Figure imgf000016_0006
3以下であれば、 当 然にサンプリング箇所よりも中央部側の密度は、 1.
Figure imgf000016_0007
以下を満た すことになる。
Note that the density of the edges (from the left and right edges toward the center, 1
Figure imgf000016_0005
The density of the sampled area) is 1.4
Figure imgf000016_0006
If it is 3 or less, the density on the central side of the sampling point is 1.
Figure imgf000016_0007
The following will be met:
[0044] また、 二軸配向ポリエステルフィルムは、 二軸配向ポリエステルフィルム の幅方向において、 左右の端からそれぞれ中央部に向かって 1
Figure imgf000016_0008
の位置 でサンプリングをし、 それぞれフーリエ変換型赤外分光法スぺクトル強度に ークの吸収強度
Figure imgf000016_0009
巳を求めたとき
[0044] In addition, the biaxially oriented polyester film has a width direction of the biaxially oriented polyester film that is 1 toward the center from each of the left and right ends.
Figure imgf000016_0008
Sampling was performed at each position, and the Fourier transform infrared spectroscopy
Figure imgf000016_0009
When I asked for Minami
、 最も高い値が〇. 62以下であることが好ましい。 It is preferable that the highest value is less than 0.62.
前記比 /巳 (前記比 /巳の最も高い値) は、 より好ましくは 0. 6 1 以下であり、 さらに好ましくは〇. 60以下である。 前記比八/巳が 0. 6 2以下であると、 結晶性が高くなりすぎないため、 延伸時の応力が抑制され 、 破断し難くなる。 The ratio/min (highest value of the ratio/min) is more preferably 0.61 or less, and further preferably 0.6 or less. When the ratio 8/M is less than or equal to 0.62, the crystallinity does not become too high, so the stress during stretching is suppressed and it becomes difficult to break.
前記比 /巳は好ましくは〇. 52以上であり、 より好ましくは 0. 53 以上であり、 さらに好ましくは〇. 54以上である。 〇. 52以上であると \¥02020/175058 15 卩(:171?2020/004302 The ratio/min is preferably 0.52 or more, more preferably 0.53 or more, and still more preferably 0.54 or more. 〇.52 and above \¥02020/175058 15 卩(: 171?2020/004302
、 結晶性が低すぎず、 力学強度がより良好なものとなる。 , The crystallinity is not too low, and the mechanical strength is better.
なお、 二軸配向ポリエステルフィルムの巳面の比八/巳が〇. 6 2以下で あれば、 当然に 面の比八/巳も〇. 6 2以下を満たすことになる。 In addition, if the biaxially oriented polyester film has a surface ratio of 8/norths of 0.62 or less, naturally, the ratio of 8/norms of the surfaces also satisfies 0. 622 or less.
[0045] 前記二軸配向ポリエステルフィルムは、 フィルム全域に亙って同一組成で あることが好ましい。 [0045] The biaxially oriented polyester film preferably has the same composition over the entire area of the film.
[0046] 前記二軸配向ポリエステルフィルムには、 印刷層を積層していてもよい。 [0046] A printing layer may be laminated on the biaxially oriented polyester film.
印刷層を形成する印刷インクとしては、 水性及び溶媒系の樹脂含有印刷イン クが好ましく使用できる。 ここで印刷インクに使用される樹脂としては、 ア クリル系樹脂、 ウレタン系樹脂、 ポリエステル系樹脂、 塩化ビニル系樹脂、 酢酸ビニル共重合樹脂及びこれらの混合物が例示される。 印刷インクには、 帯電防止剤、 光線遮断剤、 紫外線吸収剤、 可塑剤、 滑剤、 フィラー、 着色剤 、 安定剤、 潤滑剤、 消泡剤、 架橋剤、 耐ブロッキング剤、 酸化防止剤等の公 知の添加剤を含有させてもよい。 As the printing ink for forming the printing layer, water-based and solvent-based resin-containing printing inks can be preferably used. Examples of the resin used in the printing ink include acrylic resin, urethane resin, polyester resin, vinyl chloride resin, vinyl acetate copolymer resin, and mixtures thereof. Printing inks include antistatic agents, light blocking agents, UV absorbers, plasticizers, lubricants, fillers, colorants, stabilizers, lubricants, defoamers, cross-linking agents, anti-blocking agents, antioxidants, etc. Known additives may be contained.
[0047] 印刷層を設けるための印刷方法としては、 特に限定されず、 オフセッ ト印 刷法、 グラビア印刷法、 スクリーン印刷法等の公知の印刷方法が使用できる 。 印刷後の溶媒の乾燥には、 熱風乾燥、 熱口ール乾燥、 赤外線乾燥等公知の 乾燥方法が使用できる。 The printing method for providing the printing layer is not particularly limited, and known printing methods such as an offset printing method, a gravure printing method and a screen printing method can be used. For drying the solvent after printing, known drying methods such as hot air drying, hot air drying, and infrared drying can be used.
[0048] また、 前記二軸配向ポリエステルフィルムには、 本発明の目的を損なわな い限りにおいて、 コロナ放電処理、 グロー放電処理、 火炎処理、 表面粗面化 処理が施されてもよく、 また、 公知のアンカーコート処理、 印刷、 装飾など が施されてもよい。 Further, the biaxially oriented polyester film may be subjected to corona discharge treatment, glow discharge treatment, flame treatment, and surface roughening treatment, as long as the object of the present invention is not impaired. Known anchor coat treatment, printing, decoration and the like may be applied.
[0049] 前記二軸配向ポリエステルフィルムの少なくとも片面に無機薄膜層やアル ミ箔のような金属箔などのガスバリア層を設けることができる。 [0049] A gas barrier layer such as an inorganic thin film layer or a metal foil such as an aluminum foil may be provided on at least one surface of the biaxially oriented polyester film.
[0050] ガスバリア層として無機薄膜層を用いる場合の無機薄膜層としては、 金属 又は無機酸化物からなる薄膜である。 無機薄膜層を形成する材料は、 薄膜に できるものなら特に制限はないが、 ガスバリア性の観点から、 酸化ケイ素 ( シリカ) 、 酸化アルミニウム (アルミナ) 、 酸化ケイ素と酸化アルミニウム との混合物等の無機酸化物が好ましく挙げられる。 特に、 薄膜層の柔軟性と \¥0 2020/175058 16 卩(:171? 2020 /004302 When the inorganic thin film layer is used as the gas barrier layer, the inorganic thin film layer is a thin film made of metal or inorganic oxide. The material for forming the inorganic thin film layer is not particularly limited as long as it can form a thin film, but from the viewpoint of gas barrier properties, inorganic oxides such as silicon oxide (silica), aluminum oxide (alumina), and a mixture of silicon oxide and aluminum oxide. The thing is preferably mentioned. Especially the flexibility of the thin film layer \\0 2020/175058 16 卩 (: 171? 2020 /004302
緻密性を両立できる点からは、 酸化ケイ素と酸化アルミニウムとの複合酸化 物が好ましい。 A composite oxide of silicon oxide and aluminum oxide is preferable from the viewpoint of achieving both denseness.
[0051 ] この複合酸化物において、 酸化ケイ素と酸化アルミニウムとの混合比は、 金属分の重量比で八 丨が 2 0〜 7 0 %の範囲であることが好ましい。 八 丨濃 度を 2 0 %以上であると、 水蒸気ガスバリア性をより高くすることができる 。 一方、 7 0 %以下であると、 無機薄膜層を柔らかくすることができ、 印刷 やラミネートといった二次加工の際に膜が破壊されてガスバリア性が低下す ることを抑制することができる。 なお、 ここでいう酸化ケイ素とは 3 丨 〇や 3 I 〇2等の各種珪素酸化物又はそれらの混合物であり、 酸化アルミニウムと は、 八 丨 〇や八 丨 23等の各種アルミニウム酸化物又はそれらの混合物であ る。 [0051] In this composite oxide, the mixing ratio of silicon oxide and aluminum oxide is preferably in the range of 20 to 70% by weight in terms of metal content. If the Hachijo concentration is 20% or more, the water vapor gas barrier property can be further enhanced. On the other hand, when the content is 70% or less, the inorganic thin film layer can be softened, and it is possible to prevent the film from being destroyed during the secondary processing such as printing or laminating, thereby lowering the gas barrier property. The term "silicon oxide" as used herein refers to various silicon oxides such as 3 O and 3 I 0 2 or a mixture thereof, and aluminum oxide refers to various aluminum oxides such as 8 O and 8 O 2 O 3 . Or a mixture thereof.
[0052] 無機薄膜層の膜厚は、 通常 1〜 1 0 0 n m、 好ましくは 5〜 5 0 n であ る。 無機薄膜層の膜厚が 1 n m以上であると、 より満足のいくガスバリア性 が得られやすくなる。 一方、 1 〇〇门 以下であると、 耐屈曲性や製造コス 卜の点で有利となる。 The thickness of the inorganic thin film layer is usually 1 to 100 nm, preferably 5 to 50 n. When the thickness of the inorganic thin film layer is 1 nm or more, more satisfactory gas barrier properties are likely to be obtained. On the other hand, when it is 100 or less, it is advantageous in terms of bending resistance and manufacturing cost.
[0053] 無機薄膜層を形成する方法としては、 特に制限はなく、 例えば真空蒸着法 、 スパッタリング法、 イオンプレーティング法等の物理蒸着法 ( 〇法) The method for forming the inorganic thin film layer is not particularly limited, and examples thereof include physical vapor deposition methods such as vacuum vapor deposition method, sputtering method, and ion plating method (○ method).
、 あるいは化学蒸着法 (<3 0法) 等、 公知の蒸着法を適宜採用すればよい 。 以下、 無機薄膜層を形成する典型的な方法を、 酸化ケイ素 ·酸化アルミニ ウム系薄膜を例に説明する。 例えば、 真空蒸着法を採用する場合は、 蒸着原 料として 3 丨 〇2と八 丨 23の混合物、 あるいは 3 丨 〇2と八 丨の混合物等が 好ましく用いられる。 これら蒸着原料としては通常粒子が用いられるが、 そ の際、 各粒子の大きさは蒸着時の圧力が変化しない程度の大きさであること が望ましく、 好ましい粒子径は 1 01〇1〜 5 01 01である。 加熱には、 抵抗加熱 、 高周波誘導加熱、 電子ビーム加熱、 レーザー加熱などの方式を採用するこ とができる。 また、 反応ガスとして酸素、 窒素、 水素、 アルゴン、 炭酸ガス 、 水蒸気等を導入したり、 オゾン添加、 イオンアシスト等の手段を用いた反 応性蒸着を採用することも可能である。 さらに、 被蒸着体 (蒸着に供する積 \¥02020/175058 17 卩(:171?2020/004302 Alternatively, a known vapor deposition method such as a chemical vapor deposition method (<30 method) may be appropriately adopted. Hereinafter, a typical method for forming an inorganic thin film layer will be described by taking a silicon oxide/aluminum oxide thin film as an example. For example, when employing the vacuum evaporation method, a mixture of 3丨〇 2 and eight丨23 as evaporation raw material, or 3丨〇 2 and eight丨mixtures are preferably used. Particles are usually used as these vapor deposition raw materials, and it is desirable that the size of each particle is such that the pressure during vapor deposition does not change, and the preferable particle diameter is 1101 to 501. 01. For heating, resistance heating, high frequency induction heating, electron beam heating, laser heating, and other methods can be adopted. It is also possible to introduce oxygen, nitrogen, hydrogen, argon, carbon dioxide, water vapor or the like as the reaction gas, or employ reactive vapor deposition using means such as ozone addition or ion assist. In addition, the object to be vapor-deposited \¥02020/175058 17 卩(: 171?2020/004302
層フィルム) にバイアスを印加したり、 被蒸着体を加熱もしくは冷却するな ど、 成膜条件も任意に変更することができる。 このような蒸着材料、 反応ガ ス、 被蒸着体のバイアス、 加熱 ·冷却等は、 スパッタリング法や〇 0法を 採用する場合にも同様に変更可能である。 さらに、 上記無機薄膜層上に印刷 層を積層していてもよい。 The film forming conditions can be arbitrarily changed, such as applying a bias to the layer film) or heating or cooling the deposition target. The vapor deposition material, reaction gas, bias of the object to be vapor-deposited, heating/cooling, etc. can be similarly changed when the sputtering method or the zero method is adopted. Further, a printing layer may be laminated on the inorganic thin film layer.
[0054] 本実施形態においては、 前記ガスバリア層の上に保護層を設けることが好 ましい。 金属酸化物からなるガスバリア層は完全に密な膜ではなく、 微小な 欠損部分が点在している。 金属酸化物層上に後述する特定の保護層用樹脂組 成物を塗工して保護層を形成することにより、 金属酸化物層の欠損部分に保 護層用樹脂組成物中の樹脂が浸透し、 結果としてガスバリア性が安定すると いう効果が得られる。 加えて、 保護層そのものにもガスバリア性を持つ材料 を使用することで、 積層フィルムのガスバリア性能も大きく向上することに なる。 [0054] In the present embodiment, it is preferable to provide a protective layer on the gas barrier layer. The gas barrier layer made of metal oxide is not a completely dense film, but has small defects. By coating the metal oxide layer with a specific resin composition for the protective layer, which will be described later, to form the protective layer, the resin in the resin composition for the protective layer penetrates into the defective portion of the metal oxide layer. As a result, the gas barrier property is stabilized. In addition, by using a material with gas barrier properties for the protective layer itself, the gas barrier performance of the laminated film will be greatly improved.
[0055] 前記保護層としては、 ウレタン系、 ポリエステル系、 アクリル系、 チタン 系、 イソシアネート系、 イミン系、 ポリブタジエン系等の樹脂に、 エポキシ 系、 イソシアネート系、 メラミン系等の硬化剤を添加したものが挙げられる 。 保護層を形成させる際に使用する溶媒 (溶剤) としては、 例えば、 ベンゼ ン、 トルエン等の芳香族系溶剤; メタノール、 エタノール等のアルコール系 溶剤; アセトン、 メチルエチルケトン等のケトン系溶剤;酢酸エチル、 酢酸 プチル等のエステル系溶剤;エチレングリコ—ルモノメチルエ—テル等の多 価アルコール誘導体等が挙げられる。 [0055] As the protective layer, a urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, polybutadiene-based resin, etc., to which a curing agent such as an epoxy-based, isocyanate-based, or melamine-based resin is added Can be mentioned. Examples of the solvent (solvent) used when forming the protective layer include aromatic solvents such as benzene and toluene; alcohol solvents such as methanol and ethanol; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate; Ester solvents such as butyl acetate; polyhydric alcohol derivatives such as ethylene glycol monomethyl ether, etc. may be mentioned.
[0056] 前記のウレタン樹脂は、 ウレタン結合の極性基が無機薄膜層と相互作用す るとともに、 非晶部分の存在により柔軟性をも有するため、 屈曲負荷がかか つた際にも無機薄膜層へのダメージを抑えることができるため好ましい。 ウレタン樹脂の酸価は 1 〇〜 6
Figure imgf000019_0001
の範囲内であるのが好ま さらに好ましく
Figure imgf000019_0002
脂の酸価が前記範 囲であると、 水分散液とした際に液安定性が向上し、 また保護層は高極性の \¥02020/175058 18 卩(:171?2020/004302
[0056] In the urethane resin, since the polar group of the urethane bond interacts with the inorganic thin film layer and also has flexibility due to the presence of the amorphous portion, the inorganic thin film layer is also subjected to bending load. It is preferable because damage to the can be suppressed. The acid value of urethane resin is 10 to 6
Figure imgf000019_0001
And more preferably within the range of
Figure imgf000019_0002
When the acid value of the fat is within the above range, the liquid stability is improved when it is made into an aqueous dispersion, and the protective layer is highly polar. \¥02020/175058 18 卩 (: 171?2020/004302
無機薄膜上に均一に堆積することができるため、 コート外観が良好となる。 Since it can be uniformly deposited on the inorganic thin film, the coat appearance becomes good.
[0057] 前記のウレタン樹脂は、 ガラス転移温度 (丁 9) が 8 0 °〇以上であること が好ましく、 より好ましくは 9 0 °〇以上である。 丁 9を 8 0 °〇以上にするこ とで、 湿熱処理過程 (昇温〜保温〜降温) における分子運動による保護層の 膨潤を低減できる。 [0057] The urethane resin preferably has a glass transition temperature (Ding 9) is 8 0 ° ● As, more preferably 9 0 ° ● As. By setting Ding 9 to 80 ° or more, the swelling of the protective layer due to the molecular motion in the wet heat treatment process (temperature increase-heat retention-temperature decrease) can be reduced.
[0058] 前記のウレタン樹脂は、 ガスバリア性向上の面から、 芳香族又は芳香脂肪 族ジイソシアネート成分を主な構成成分として含有するウレタン樹脂を用い ることがより好ましい。 As the urethane resin, it is more preferable to use a urethane resin containing an aromatic or araliphatic diisocyanate component as a main constituent from the viewpoint of improving gas barrier properties.
その中でも、 メタキシリレンジイソシアネート成分を含有することが特に 好ましい。 上記樹脂を用いることで、 芳香環同士のスタッキング効果により ウレタン結合の凝集力を一層高めることができ、 結果として良好なガスバリ ア性が得られる。 Among them, it is particularly preferable to contain the metaxylylene diisocyanate component. By using the above resin, the cohesive force of the urethane bond can be further increased by the stacking effect of the aromatic rings, and as a result, good gas barrier properties can be obtained.
[0059] 本実施形態においては、 ウレタン樹脂中の芳香族又は芳香脂肪族ジイソシ アネートの割合を、 ポリイソシアネート成分 1 0 0モル%中、 5 0モル%以 上 (5 0〜 1 0 0モル%) の範囲とすることが好ましい。 芳香族又は芳香脂 肪族ジイソシアネートの合計量の割合は、 6 0 ~ 1 0 0モル%が好ましく、 より好ましくは 7 0〜 1 0 0モル%、 さらに好ましくは 8 0〜 1 0 0モル% である。 このような樹脂として、 三井化学株式会社から市販されている 「夕 ケラック (登録商標) \ZV P B」 シリーズは好適に用いることができる。 芳香 族又は芳香脂肪族ジイソシアネートの合計量の割合が 5 0モル%以上である と、 より良好なガスバリア性が得られる。 In the present embodiment, the proportion of the aromatic or araliphatic diisocyanate in the urethane resin is not less than 50 mol% in 100 mol% of the polyisocyanate component (50 to 100 mol%). ) It is preferable to set it as the range of. The proportion of the total amount of the aromatic or aromatic aliphatic diisocyanate is preferably 60 to 100 mol%, more preferably 70 to 100 mol%, and further preferably 80 to 100 mol%. is there. As such a resin, “Yukerack (registered trademark) \ZV P B” series commercially available from Mitsui Chemicals, Inc. can be preferably used. When the proportion of the total amount of aromatic or araliphatic diisocyanate is 50 mol% or more, better gas barrier properties can be obtained.
[0060] 前記ウレタン樹脂は、 無機薄膜層との親和性向上の観点から、 カルボン酸 基 (カルボキシル基) を有することが好ましい。 ウレタン樹脂にカルボン酸 (塩) 基を導入するためには、 例えば、 ポリオール成分として、 ジメチロー ルプロピオン酸、 ジメチロールブタン酸等のカルボン酸基を有するポリオー ル化合物を共重合成分として導入すればよい。 また、 カルボン酸基含有ウレ タン樹脂を合成後、 塩形成剤により中和すれば、 水分散体のウレタン樹脂を 得ることができる。 塩形成剤の具体例としては、 アンモニア、 トリメチルア \¥0 2020/175058 19 卩(:171? 2020 /004302 From the viewpoint of improving the affinity with the inorganic thin film layer, the urethane resin preferably has a carboxylic acid group (carboxyl group). In order to introduce the carboxylic acid (salt) group into the urethane resin, for example, a polyol component having a carboxylic acid group such as dimethylolpropionic acid or dimethylolbutanoic acid may be introduced as a copolymerization component. .. Further, a urethane resin of an aqueous dispersion can be obtained by synthesizing a carboxylic acid group-containing urethane resin and then neutralizing it with a salt forming agent. Specific examples of the salt forming agent include ammonia and trimethyl alcohol. \\0 2020/175058 19 卩 (: 171-1? 2020 /004302
ミン、 トリエチルアミン、 トリイソプロピルアミン、 トリー 11—プロピルア ミン、 トリー 1·! -ブチルアミン等のトリアルキルアミン類、 1\1 -メチルモル ホリン、 1\]—エチルモルホリン等の 1\1—アルキルモルホリン類、 1\1—ジメチ ルエタノールアミン、 1\1 _ジエチルエタノールアミン等の 1\1 _ジアルキルア ルカノールアミン類等が挙げられる。 これらは単独で使用してもよいし、 2 種以上を併用してもよい。 Min, triethylamine, triisopropylamine, tree 11-propylamine, tree 1·!-butylamine and other trialkylamines, 1\1-methylmorpholine, 1\]-ethylmorpholine and other 1\1-alkylmorpholines, 1\1-dimethyl ethanolamine, 1\1-diethyl ethanolamine and other 1\1-dialkylalkanolamines. These may be used alone or in combination of two or more.
[0061 ] 前記二軸配向ポリエステルフィルムには他素材の層を積層しても良く、 そ の方法として、 二軸配向ポリエステルフィルムを作製後に貼り合わせるか、 製膜中に貼り合わせることができる。 [0061] The biaxially oriented polyester film may be laminated with a layer made of another material. As a method thereof, the biaxially oriented polyester film may be attached after being produced or may be attached during film formation.
[0062] 前記二軸配向ポリエステルフィルムは、 例えば、 前記二軸配向ポリエステ ルフィルムに無機蒸着層を設け、 更にシーラントと呼ばれるヒートシール性 樹脂層 (シーラント層ともいう) を形成し、 包装材料として使用することが できる。 ヒートシール性樹脂層の形成は、 通常、 押出しラミネート法あるい はドライラミネート法によりなされる。 ヒートシール性樹脂層を形成する熱 可塑性重合体としては、 シーラント接着性が充分に発現できるものであれば よく、
Figure imgf000021_0001
!_ !_ 0 巳などのポリエチレン樹脂類、 ポリプ ロピレン樹脂。 エチレンー酢酸ビニル共重合体、 エチレンー « -オレフィン ランダム共重合体、 アイオノマー樹脂等を使用できる。
[0062] The biaxially oriented polyester film is used as a packaging material, for example, by providing an inorganic vapor deposition layer on the biaxially oriented polyester film, and further forming a heat-sealable resin layer (also referred to as a sealant layer) called a sealant. be able to. The heat-sealable resin layer is usually formed by an extrusion laminating method or a dry laminating method. The thermoplastic polymer forming the heat-sealable resin layer may be any one as long as it can sufficiently exhibit sealant adhesiveness,
Figure imgf000021_0001
!! _ !_ 0 Polyethylene resin such as Tomomi, polypropylene resin. Ethylene-vinyl acetate copolymer, ethylene-olefin-random copolymer, ionomer resin and the like can be used.
[0063] シーラント層は、 単層フィルムであってもよく、 多層フィルムであっても よく、 必要とされる機能に応じて選択すればよい。 例えば、 防湿性を付与す る点では、 エチレンー環状オレフィン共重合体やポリメチルペンテン等の樹 脂を介在させた多層フィルムが使用できる。 また、 シーラント層は、 難燃 剤、 スリップ剤、 アンチブロッキング剤、 酸化防止剤、 光安定剤、 粘着付与 剤等の各種添加剤が配合されてもよい。 [0063] The sealant layer may be a monolayer film or a multilayer film, and may be selected according to the required function. For example, from the viewpoint of imparting moisture resistance, a multilayer film in which a resin such as an ethylene-cyclic olefin copolymer or polymethylpentene is interposed can be used. Further, the sealant layer may be blended with various additives such as a flame retardant, a slip agent, an anti-blocking agent, an antioxidant, a light stabilizer and a tackifier.
シーラント層の厚さは、 1 0〜 1 0 0 〇1が好ましく、 2 0〜 6 0 〇!が より好ましい。 The thickness of the sealant layer is preferably from 10 to 1001 and more preferably from 20 to 600!.
[0064] 前記二軸配向ポリエステルフィルムは、 食品、 医薬品、 工業製品等の包装 分野に用いることができる。 特に、 前記二軸配向ポリエステルフィルムは、 \¥02020/175058 20 卩(:171?2020/004302 [0064] The biaxially oriented polyester film can be used in the field of packaging foods, pharmaceuticals, industrial products and the like. In particular, the biaxially oriented polyester film, \¥02020/175058 20 units (: 171-12020/004302
包装用積層体の基材フィルム (基材層) として使用することができる。 包装 用積層体の層構成としては、 /で層の境界を表わすと、 例えば、 基材層/ガ スバリア層/保護層、 基材層/ガスバリア層/保護層/接着剤層/シーラン 卜層、 基材層/ガスバリア層/保護層/接着剤層/樹脂層/接着剤層/シー ラント層、 基材層/接着剤層/樹脂層/ガスバリア層/保護層/接着剤層/ シーラント層、 基材層/ガスバリア層/保護層/印刷層/接着剤層/シーラ ント層、 基材層/印刷層/ガスバリア層/保護層/接着剤層/シーラント層 、 基材層/ガスバリア層/保護層/接着剤層/樹脂層/印刷層/接着剤層/ シーラント層、 基材層/接着剤層/樹脂層/印刷層/ガスバリア層/保護層 /接着剤層/シーラント層、 基材層/印刷層/ガスバリア層/保護層/接着 剤層/樹脂層/接着剤層/シーラント層、 基材層/印刷層/接着剤層/樹脂 層/ガスバリア層/保護層/接着剤層/シーラント層、 基材層/接着剤層/ 樹脂層/ガスバリア層/保護層/印刷層/接着剤層/シーラント層、 等が挙 げられる。 It can be used as a base film (base layer) of a packaging laminate. In the layer structure of the packaging laminate, when the layer boundary is represented by /, for example, base material layer/gas barrier layer/protective layer, base material layer/gas barrier layer/protective layer/adhesive layer/sea run layer, Base material layer/gas barrier layer/protective layer/adhesive layer/resin layer/adhesive layer/sealant layer, base material layer/adhesive layer/resin layer/gas barrier layer/protective layer/adhesive layer/sealant layer, base Material layer/gas barrier layer/protective layer/printing layer/adhesive layer/sealant layer, base material layer/printing layer/gas barrier layer/protective layer/adhesive layer/sealant layer, base material layer/gas barrier layer/protective layer/ Adhesive layer/resin layer/printing layer/adhesive layer/sealant layer, base material layer/adhesive layer/resin layer/printing layer/gas barrier layer/protective layer/adhesive layer/sealant layer, base material layer/printing layer / Gas barrier layer / Protective layer / Adhesive layer / Resin layer / Adhesive layer / Sealant layer, Substrate layer / Printing layer / Adhesive layer / Resin layer / Gas barrier layer / Protective layer / Adhesive layer / Sealant layer, Substrate Layer/adhesive layer/resin layer/gas barrier layer/protective layer/printing layer/adhesive layer/sealant layer, etc.
[0065] 前記二軸配向ポリエステルフィルムを用いた積層体は、 包装製品、 各種ラ ベル材料、 蓋材、 シート成型品、 ラミネートチューブ等の用途に好適に使用 することができる。 特に、 包装用袋 (例えば、 ピロー袋、 スタンディングパ ウチや 4方バウチ等のバウチ) に用いられる。 積層体の厚さは、 その用途に 応じて、 適宜決定することができる。 例えば、 5〜 5 0 0 、 好ましくは 1 0〜 3 0 0 程度の厚みのフィルムないしシート状の形態で用いられる [0065] The laminate using the biaxially oriented polyester film can be suitably used for applications such as packaging products, various label materials, lid materials, sheet molded products, and laminated tubes. In particular, it is used for packaging bags (eg pillow bags, standing pouches and bouches such as 4-way pouches). The thickness of the laminate can be appropriately determined according to its application. For example, it is used in the form of a film or sheet having a thickness of about 5 to 500, preferably about 10 to 300.
[0066] [二軸配向ポリエステルフィルムの製造方法] [0066] [Method for producing biaxially oriented polyester film]
前記二軸配向ポリエステルフィルムを得るための好適な方法として、 幅方 向の厚み精度の観点から丁ダイ方式が好ましい。 インフレーシヨン方式では その製造方法に起因して延伸倍率が上がりにくく、 幅方向の厚み不良が生じ ることがある。 As a suitable method for obtaining the biaxially oriented polyester film, the die method is preferable from the viewpoint of thickness accuracy in the width direction. In the inflation method, the stretching ratio is difficult to increase due to the manufacturing method, and thickness defects in the width direction may occur.
また前記二軸配向ポリエステルフィルムを得るための好適な方法として、 溶融ポリエステル樹脂組成物を冷却口ールにキャストする時に、 従来はスタ \¥02020/175058 21 卩(:171? 2020 /004302 Further, as a suitable method for obtaining the biaxially oriented polyester film, when a molten polyester resin composition is cast in a cooling port, a conventional method is \¥02020/175058 21 卩 (: 171-1? 2020 /004302
ティックミキサーなどで同一組成の樹脂を 8層以上に多層化することによっ て結晶化を抑えて均一な未延伸シートを得る方法が提案されているが、 高い 品位を有するフィルムが得られる観点、 及び、 設備の簡便さや保守性の観点 から以下に記載する均質な未延伸シートを得るキャスト方法で、 溶融押出し する際に 7層以下の積層にすることが好ましい。 積層数は 3層以下が更に好 ましい。 設備のメンテナンスの面では、 単層が最も好ましい。 フィルムの表 面の特性を改善したい場合は、 2種 2層、 2種 3層、 あるいは 3種 3層の層 構成が好ましい。 A method has been proposed in which a uniform unstretched sheet is obtained by suppressing crystallization by forming a resin having the same composition into eight layers or more by using a tick mixer, etc. In addition, from the viewpoint of facility simplicity and maintainability, it is preferable to form a laminate of 7 layers or less at the time of melt extrusion by the casting method described below for obtaining a homogeneous unstretched sheet. More preferably, the number of layers is 3 or less. In terms of equipment maintenance, single layer is the most preferable. When it is desired to improve the surface properties of the film, a layer structure of 2 types 2 layers, 2 types 3 layers, or 3 types 3 layers is preferable.
巳丁樹脂は結晶化速度が速いため、 得られる未延伸シートの固有粘度の 下限は好ましくは〇. 7
Figure imgf000023_0001
より好ましくは〇. 75 丨 /9 であり、 さらに好ましくは〇. 80 丨 /9であり、 特に好ましくは 0. 9 0〇1 丨 /9である。 〇. 70 ¢1 丨 /9以上であると、 キャスト時の結晶化が 抑制され、 未延伸シートの降伏応力が低くなるため、 結果的に延伸時に破断 が生じ難くなる傾向となる。
Since the Ming resin has a high crystallization rate, the lower limit of the intrinsic viscosity of the unstretched sheet obtained is preferably 0.7.
Figure imgf000023_0001
More preferably 〇. 75丨/ 9, more preferably from 〇. 80丨/ 9, particularly preferably from 0.9 0_Rei_1丨/ 9. ◯. When it is 70 70 ¢1 /9 or more, crystallization during casting is suppressed and the yield stress of the unstretched sheet becomes low, and as a result, breakage tends not to occur during stretching.
得られる未延伸シートの固有粘度の上限は好ましくは 1. 2 丨 /9であ り、 さらに好ましくは 1. 1 丨 /9である。 ·! . 2 丨 /9以下であるとThe upper limit of the intrinsic viscosity of the obtained unstretched sheet is preferably 1.2 丨/ 9 , more preferably 1.1 丨/ 9 . ...! .2 丨/ 9 or less
、 延伸時の応力が高くなりすぎず、 製膜性がより良好となる。 The stress during stretching does not become too high, and the film-forming property becomes better.
[0067] ダイス温度の下限は好ましくは 240°〇であり、 より好ましくは 245°〇 であり、 特に好ましくは 250°〇である。 240°〇以上であると、 吐出がよ り安定し、 厚みをより均一とすることができる。 The lower limit of the die temperature is preferably 240°, more preferably 245°, and particularly preferably 250°. If it is 240° or more, the discharge is more stable and the thickness can be made more uniform.
また、 240°〇以上であると、 樹脂の溶融押出し工程内で滞留した 巳丁 樹脂が未溶融物となってフィルム中に混入し、 フィルムの品位を損ねてしま うことを防止することできる。 樹脂溶融温度の上限は好ましくは 280 °〇で あり、 より好ましくは 275°〇であり、 最も好ましくは 270°〇である。 2 80°〇以下であると、 樹脂の分解を抑制することができ、 フィルムが脆くな ってしまうことを防止することができるほか、 熱劣化物によるフィルム品位 の低下も防止することができる。 また、 キャスト時の結晶化の進行を抑制す ることができ、 製膜性をより良好とすることができる。 \¥02020/175058 22 卩(:171?2020/004302 Further, when the temperature is 240° or more, it is possible to prevent the resin remaining in the resin melt extrusion step from becoming an unmelted substance and being mixed into the film, thereby impairing the quality of the film. The upper limit of the resin melting temperature is preferably 280 ° , more preferably 275°, and most preferably 270°. When the temperature is 280 ° C or less, the decomposition of the resin can be suppressed, the film can be prevented from becoming brittle, and the deterioration of the film quality due to a thermally deteriorated product can be prevented. Further, the progress of crystallization during casting can be suppressed, and the film forming property can be further improved. \¥02020/175058 22 卩 (: 171?2020/004302
ダイス温度の上限は好ましくは 2 8 0 °〇であり、 より好ましくは 2 7 5 °〇 以下であり、 さらに好ましくは 2 7 0 °◦以下である。 2 8 0 °◦以下であると 、 厚みが不均一となることを抑制することができる。 また、 樹脂の劣化が起 こり、 ダイリツプ汚れなどで外観不良となることを抑制することができる。 また、 得られるフイルムの固有粘度が低下することを抑制することができる 。 また、 キャスト時の結晶化の進行が抑制され、 製膜性がより良好となる。 The upper limit of the die temperature is preferably from 2 8 0 ° 〇, more preferably 2 7 5 ° 〇 or less, more preferably 2 7 0 ° ◦ below. When it is 280°° or less, it is possible to prevent the thickness from becoming uneven. Further, it is possible to prevent the appearance of the resin from being deteriorated due to stains on the die lip or the like. Further, it is possible to prevent the intrinsic viscosity of the obtained film from decreasing. Further, the progress of crystallization at the time of casting is suppressed, and the film forming property becomes better.
[0068] 樹脂の溶融押出し工程におけるスクリューの回転数の下限は好ましくは 7 [0068] The lower limit of the rotation speed of the screw in the resin melt extrusion step is preferably 7
0 「 であり、 より好ましくは 8 0 「 であり、 特に好ましくは 9 0 「 01である。 7 0 「 01以上であると吐出がより安定し、 厚みがより均一と なる。 また、 樹脂の混ざりがより十分となり、 外観不良をより抑制すること ができる。 0 ", more preferably 8 0 ", and particularly preferably 90 "01. 7 0" When 01 or more, the discharge is more stable and the thickness is more uniform. Is more sufficient, and appearance defects can be further suppressed.
樹脂の溶融押し出し工程におけるスクリューの回転数の上限は好ましくは 1 5 0 「 であり、 より好ましくは 1 3 0 「 であり、 特に好ましくは 1 1 0 「 である。 1 5 0 「 以下であると、 せん断発熱により溶融樹 脂の分解が進行することを抑制することができ、 得られるフイルムの固有粘 度の低下を抑制できる。 また、 キャスト時の結晶化の進行が抑制され、 製膜 性がより良好となる。 The upper limit of the number of rotations of the screw in the resin melt extrusion step is preferably 150 ", more preferably 1300", and particularly preferably 1100". It is possible to suppress the decomposition of the molten resin due to shearing heat generation, and to suppress the decrease in the inherent viscosity of the film to be obtained, and to suppress the progress of crystallization during casting and to improve the film-forming property. It will be better.
[0069] 冷却口ール温度の上限は好ましくは 4 0 °〇であり、 より好ましくは 1 0 °〇 以下である。 4 0 °〇以下であると、 溶融したポリエステル樹脂組成物が冷却 固化する際の結晶化度が高くなりすぎず、 延伸がより容易となる。 [0069] The upper limit of the cooling port temperature is preferably 40°, and more preferably 10° or less. If it is 40 ° C. or less, the crystallinity of the molten polyester resin composition upon cooling and solidification does not become too high, and the stretching becomes easier.
冷却口ール温度の下限は好ましくは 0 °〇である。 0 °〇以上であると、 溶融 したポリエステル樹脂組成物が冷却固化する際の結晶化抑制の効果を充分に 発揮できる。 また冷却口ールの温度を上記の範囲とする場合、 結露防止のた め冷却口ール付近の環境の湿度を下げておくことが好ましい。 The lower limit of the cooling port temperature is preferably 0°. When it is 0° or more, the effect of suppressing crystallization when the molten polyester resin composition is cooled and solidified can be sufficiently exhibited. When the temperature of the cooling port is within the above range, it is preferable to reduce the humidity of the environment near the cooling port to prevent dew condensation.
[0070] 冷却口ール表面に溶融ポリエステル樹脂組成物をキャストした時、 表面に 高温の樹脂が接触するため冷却口ール表面の温度が上昇する。 通常、 チルロ —ルは内部に配管を通して冷却水を流して冷却するが、 充分な冷却水量を確 保する、 配管の配置を工夫する、 配管にスラツジが付着しないようメンテナ \¥02020/175058 23 卩(:171?2020/004302 [0070] When the molten polyester resin composition is cast on the surface of the cooling hole, the temperature of the surface of the cooling hole rises because the high temperature resin comes into contact with the surface. Normally, a chill roll is cooled by flowing cooling water through a pipe inside, but to ensure a sufficient amount of cooling water, devise a layout of the pipe, and maintain it so that sludge does not adhere to the pipe. \¥02020/175058 23 卩(: 171-12020/004302
ンスを行う、 などして、 チルロール表面の幅方向の温度差を少なくする必要 がある。 It is necessary to reduce the temperature difference in the width direction of the chill roll surface, for example.
このとき、 未延伸シートの厚みは 1 5〜 2 5 0 0 〇1の範囲が好適である 。 より好ましくは 5 0 0 以下であり、 さらに好ましくは 3 0 0 以下 である。 At this time, the thickness of the unstretched sheet is preferably in the range of 15 to 2500. It is more preferably 500 or less, and further preferably 300 or less.
[0071 ] 溶融ポリエステル樹脂組成物がダイスから吐出されてから冷却口ールに触 れるまでの時間 (以下、 接触時間ともいう) は、 〇. 1〜 1 . 0秒の範囲内 が好ましく、 〇. 2〜〇. 5秒の範囲内がより好ましい。 前記接触時間は、 (エアギャップ) / (吐出速度) により得られる値である。 ここで、 エアギ ャップは、 吐出口 1 2と冷却口ール 2 0の面との距離をいう。 [0071] The time from when the molten polyester resin composition is discharged from the die until it touches the cooling port (hereinafter, also referred to as contact time) is preferably in the range of 0.1 to 1.0 seconds, and More preferably within the range of .2 to .05 seconds. The contact time is a value obtained by (air gap)/(ejection speed). Here, the air gap is the distance between the discharge port 12 and the surface of the cooling port 20.
[0072] 未延伸シートの結晶化度を小さく して、 延伸性 (製膜性) を高める観点か ら、 二軸配向ポリエステルフィルム製造用の樹脂組成物を冷却口ールにキャ ストした後 (工程 の後) 、 冷却口ール上の未延伸シートの巳面も急冷する ことが好ましい。 After casting the resin composition for producing the biaxially oriented polyester film in the cooling port, from the viewpoint of reducing the crystallinity of the unstretched sheet and enhancing the stretchability (film forming property). After the step), it is preferable to rapidly cool the bottom surface of the unstretched sheet on the cooling port.
さらに延伸性をより高めるために、 未延伸シートの巳面の端部を中央部よ りも強く急冷することが好ましい。 具体的には、 未延伸シート全幅を 1 0 0 %としたとき、 中央に吹き付ける風の温度を X、 両方の端部に吹き付けられ る温度を丫としたときに、 前記 Xが 1 5 °〇以下であり、 且つ、 前記丫が前記 Xよりも低い温度とすることが好ましい。 Further, in order to further enhance the stretchability, it is preferable that the end portion of the non-stretched sheet's face is quenched more strongly than the center portion. Specifically, when the total width of the unstretched sheet is 100%, when the temperature of the air blown to the center is X, and the temperature of the air blown to both ends is lower, X is 15 ° It is below, and it is preferable that the temperature is lower than the temperature X.
また、 未延伸シートの端部の厚みは、 中央部よりも厚い場合が多い。 そこ で、 端部を中央部よりも強く急冷することにより、 中央部相当に結晶化を抑 制し、 製膜性を良好とすることができる。 急冷する方法は特に限定されない が、 設備の簡便さや保守性の面から、 マルチダクトによる冷却風を吹き付け る方法が好ましい。 In addition, the thickness of the end portion of the unstretched sheet is often thicker than that of the central portion. Then, by quenching the edge portion more strongly than the central portion, crystallization can be suppressed to the central portion and the film forming property can be improved. The method of quenching is not particularly limited, but a method of blowing cooling air through a multi-duct is preferable from the viewpoint of facility simplicity and maintainability.
前記 Xは、 より好ましくは 5 °〇以下である。 前記 Xは、 _ 5 °〇以上が好ま しい。 前記 Xが一 5 °〇以上であると、 未延伸シートの巳面の結晶化抑制効果 が充分に得られる。 The X is more preferably 5° or less. The X is preferably _ 5 ° 〇 or more. When the above X is not less than 150°, a sufficient effect of suppressing crystallization of the face of the unstretched sheet can be obtained.
前記端部は、 少なくとも端縁から 1 0 %以内の領域であることが好ましい \¥02020/175058 24 卩(:171?2020/004302 It is preferable that the edge portion is an area at least within 10% from the edge. \¥02020/175058 24 卩 (: 171?2020/004302
。 前記端部は、 より好ましくは端縁から 1 5 %以内の領域であり、 さらに好 ましくは端縁から 2 0 %以内の領域であり、 特に好ましくは、 端縁から 2 5 %以内の領域である。 .. The end portion is more preferably an area within 15% from the edge, more preferably an area within 20% from the edge, and particularly preferably an area within 25% from the edge. Is.
[0073] 前記丫は、 1 0 °〇以下であることが好ましく、 より好ましくは 5 °〇以下で ある。 前記丫が、 1 〇 以下であると、 未延伸シートの巳面端部の結晶化度 が高くなりすぎず、 製膜性がより良好となる。 前記丫は、 _ 5 °〇以上が好ま しい。 前記丫が一 5 °〇以上であると、 未延伸シートの巳面の結晶化抑制効果 が充分に得られる。 [0073] The temperature is preferably 10° or less, and more preferably 5° or less. When the grain size is 10 or less, the crystallinity of the end face of the unstretched sheet does not become too high, and the film formability becomes better. It is preferable that the temperature is _ 5 ° 〇 or more. When the temperature is not less than 15°, a sufficient effect of suppressing the crystallization of the face of the unstretched sheet can be obtained.
[0074] 図 1は、 冷却口ール上の未延伸シートの巳面にマルチダクトからの冷却風 を吹き付ける方法を説明するための正面模式図であり、 図 2は、 その側面図 である。 [0074] FIG. 1 is a schematic front view for explaining a method of blowing cooling air from a multi-duct onto the mound surface of an unstretched sheet on a cooling port, and FIG. 2 is a side view thereof.
図 1、 図 2に示すように、 ダイス 1 0は、 吐出口 1 2が冷却口ール 2 0の 面に対向するように配置されている。 吐出口 1 2と冷却口ール 2 0の面との 距離 (最短距離) は、 特に限定されないが、 一般的に、 2〇 〜 1 〇〇 程 度である。 As shown in FIGS. 1 and 2, the die 10 is arranged so that the discharge port 12 faces the surface of the cooling port 20. The distance (shortest distance) between the discharge port 12 and the surface of the cooling port 20 is not particularly limited, but is generally about 20 to 100.
また、 冷却口ール 2 0の外周面上には、 マルチダクト 3 0が配設されてい る。 Further, a multi-duct 30 is arranged on the outer peripheral surface of the cooling port 20.
マルチダクト 3 0の位置は、 側面図 (図 2) において、 冷却口ール 2 0の 中心に対して、 ダイス 1 0の位置を 0 ° としたときに、 冷却口ール 2 0の回 転方向 (図 2では右回転方向) に対して、 〇〜 4 5 ° の範囲に設置されてい ることが好ましく、 1 0〜 3 5 ° の範囲内に設置されていることがより好ま しい。 マルチダクト 3 0が前記範囲内に配置されていると、 冷却口ール 2 0 上にキャストされる未延伸シート 4 0の巳面を、 キャスト後すぐに冷却する ことが可能となる。 In the side view (Fig. 2), the position of the multi-duct 30 is the rotation of the cooling port 20 when the position of the die 10 is 0 ° with respect to the center of the cooling port 20. with respect to the direction (Figure 2, right rotation direction), preferably Rukoto been installed in a range of 〇_~ 4 5 °, 1 0~ 3 5 ° and more preferred arbitrarily installed in the range of. When the multi-duct 30 is arranged within the above range, it is possible to cool the mound surface of the unstretched sheet 40 cast on the cooling port 20 immediately after casting.
また、 二軸配向ポリエステルフィルム製造用の樹脂組成物が冷却口ールに キャストされた時点 (触れた時点) から、 当該部分に前記風が吹き付けられ るまでの時間は、 2 . 0秒以内が好ましく 1 . 0秒以内がより好ましく、 0 . 5秒以内がさらに好ましい。 二軸配向ポリエステルフィルム製造用の樹脂 \¥02020/175058 25 卩(:171?2020/004302 Further, the time from the time when the resin composition for producing the biaxially oriented polyester film is cast into the cooling port (the time when it is touched) to the time when the air is blown to the relevant part is within 2.0 seconds. The time is preferably within 1.0 second, more preferably within 0.5 second. Resin for manufacturing biaxially oriented polyester film \¥02020/175058 25 卩 (: 171?2020/004302
組成物が冷却口ールにキャストされた時点 (触れた時点) から、 当該部分に 前記風が吹き付けられるまでの時間 (当該部分がマルチダクト 3 0の直下に 移動するまでの時間) が、 2 . 0秒以内であると、 未延伸シート 4 0の巳面 を、 キャスト後すぐに冷却することが可能となる。 The time from when the composition is cast into the cooling port (when touched) to when the air is blown to the relevant part (time until the relevant part moves directly under the multi-duct 30) is 2 When the time is within 0.0 seconds, the mound surface of the unstretched sheet 40 can be cooled immediately after casting.
[0075] マルチダクト 3 0の横幅 (図 1 における左右方向の長さ) は、 キャストさ れる未延伸シート 4 0の幅以上となるものであることが好ましい。 マルチダ クト 3 0の横幅を、 キャストされる未延伸シート 4 0の幅以上とすることに より、 未延伸シート 4 0の巳面の端部まで充分に結晶化抑制効果が得られや すくなる。 It is preferable that the lateral width (length in the left-right direction in FIG. 1) of the multi-duct 30 be equal to or larger than the width of the unstretched sheet 40 to be cast. By setting the width of the multi-duct 30 to be equal to or larger than the width of the unstretched sheet 40 to be cast, it becomes easy to obtain a sufficient crystallization suppressing effect up to the end of the mound face of the unstretched sheet 40.
[0076] マルチダクト 3 0は、 未延伸シート全幅を 1 0 0 %としたとき、 中央部に 吹き付ける風の温度と、 左端部 2 0 %の部分及び右端部 2 0 %の部分に吹き 付けられる温度とを異ならせることができる構成であることか好ましい。 具 体的には、 マルチダクト 3 0の吹き出し口を仕切り板等により複数に分割さ れた構成とし、 各吹き出し口から異なる温度の風を吹き出す方法が挙げられ る。 吹き出し口の分割の態様は特に限定されず、 均等に分割されていてもよ く、 各吹き出し口ごとに幅が異なっていてもよい。 [0076] When the total width of the unstretched sheet is 100%, the multi-duct 30 is blown to the temperature of the wind blown to the central part and the 20% left end and 20% right end. It is preferable that the temperature is different from that of the temperature. Specifically, there is a method in which the outlet of the multi-duct 30 is divided into a plurality of parts by a partition plate or the like, and air of different temperatures is blown out from each outlet. The mode of dividing the air outlets is not particularly limited, and the air outlets may be evenly divided or may have different widths for the respective air outlets.
[0077] マルチダクトの一例を図 3に示す。 図 3は、 マルチダクトの一例を示す底 面図 (冷却口ール面側から見た図) である。 本実施形態に係るマルチダクト 3 0では、 未延伸シート 4 0と同じ幅となるように横幅が設定されており ( 図 2) 、 図 3に示すように、 マルチダクト 3 0の吹き出し口が仕切り板 3 2 により 5分割されている。 具体的に、 マルチダクト 3 0の吹き出し口は、 図 3の左側から右側に向かって順に吹き出し口 3 1 — 1〜吹き出し口 3 1 — 5 に分割されている。 [0077] Fig. 3 shows an example of the multi-duct. Figure 3 is a bottom view (viewed from the side of the cooling port) showing an example of a multi-duct. In the multi-duct 30 according to the present embodiment, the width is set so as to be the same width as the unstretched sheet 40 (Fig. 2), and as shown in Fig. 3, the outlet of the multi-duct 30 is partitioned. It is divided into 5 by the plate 3 2. Specifically, the outlets of the multi-duct 30 are divided into outlets 3 1 — 1 to outlets 3 1 — 5 in order from the left side to the right side in FIG.
[0078] マルチダクト 3 0の縦幅 (図 1 における上下方向の長さ) は、 3 0〇〇1以 上 8 0〇〇!以下であることが好ましく、
Figure imgf000027_0001
以下であるこ とがより好ましい。
[0078] The vertical width of the multi-duct 30 (the length in the vertical direction in Fig. 1) is preferably not less than 30.01 and not more than 800!
Figure imgf000027_0001
The following is more preferable.
また、 冷却口ール 2 0上において未延伸シート 4 0が移動する速度は、 2 〇|^ /分〜 1 0 0 01 /分であることが好ましく、 4 0 01 /分〜 8 0 01 /分で \¥02020/175058 26 卩(:171?2020/004302 The speed at which the unstretched sheet 40 moves on the cooling port 20 is preferably 20 |^/min to 100001/min, and 4001/min to 8001/ In minutes \¥02020/175058 26 卩 (: 171?2020/004302
あることがより好ましい。 More preferably.
マルチダクト 3 0の縦幅を前記数値範囲内とし、 未延伸シート 4 0の速度 を前記数値範囲内とすることにより、 好適な量の冷却風を未延伸シート 4 0 の巳面に吹き付けることができる。 By setting the vertical width of the multi-duct 30 within the above numerical range and the speed of the unstretched sheet 40 within the above numerical range, a suitable amount of cooling air can be blown to the bottom surface of the unstretched sheet 40. it can.
[0079] マルチダクト 3 0の冷却口ール 2 0からの高さの上限は 2 0〇 以下であ り、 より好ましくは 1 0〇
Figure imgf000028_0001
以下である。 2 0〇 以下であると冷却効率が 向上し、 未延伸シート 4 0の端部の結晶化抑制効果が充分に得られる。 マルチダクト 3 0の冷却口ール 2 0からの高さの下限は特に制限されない が、 未延伸シート 4 0に接触しない範囲が望ましい。
[0079] The upper limit of the height of the multi-duct 30 from the cooling port 20 is 200 or less, and more preferably 100.
Figure imgf000028_0001
It is the following. When it is 200 or less, the cooling efficiency is improved, and the effect of suppressing crystallization of the end portion of the unstretched sheet 40 is sufficiently obtained. The lower limit of the height of the multi-duct 30 from the cooling port 20 is not particularly limited, but is preferably within a range where it does not come into contact with the unstretched sheet 40.
[0080] マルチダクト 3 0からの冷却風の風速の上限は好ましくは 2 0 0 /分で あり、 より好ましくは 1 8 0〇1 /分以下である。 2 0 0 /分以下であると 、 溶融したシート形成用樹脂組成物をキャストする際の接地点が冷却風によ りぶれることを抑制することができる。 [0080] The upper limit of the wind velocity of the cooling air from the multi-duct 30 is preferably 200 /min, more preferably 18001 /min or less. When it is at most 200/minute, it is possible to prevent the ground point when casting the molten sheet-forming resin composition from being shaken by cooling air.
冷却風の風速の下限は 5 0 /分が好ましい。 5 0 /分以上であると、 未延伸シート 4 0の端部の結晶化抑制効果が充分に得られる。 The lower limit of the cooling air velocity is preferably 50/min. When it is 50/min or more, the effect of suppressing crystallization of the end portion of the unstretched sheet 40 can be sufficiently obtained.
[0081 ] 上述した中でも、 本実施形態に係る二軸配向ポリエステルフィルムの製造 方法は、 Among the above, the method for producing the biaxially oriented polyester film according to the present embodiment,
二軸配向ポリエステルフィルム製造用の樹脂組成物を冷却口ールにキャス 卜して未延伸シートを形成する工程八と、 A step 8 of forming a non-stretched sheet by casting a resin composition for producing a biaxially oriented polyester film in a cooling port.
前記冷却口ール上の前記未延伸シートに風を吹き付ける工程巳とを有し、 前記工程巳は、 未延伸シート全幅を 1 0 0 %としたとき、 中央に吹き付け る風の温度を X、 両方の端部に吹き付けられる温度を丫としたときに、 前記 Xが 1 5 °〇以下であり、 且つ、 前記丫が前記 Xよりも低い温度であり、 前記端部は、 少なくとも端縁から 1 0 %以内の領域を含むことが好ましい And a step for blowing air to the unstretched sheet on the cooling port, wherein the step width is, when the unstretched sheet total width is 100%, the temperature of the wind blown to the center is X, When the temperature sprayed on both ends is assumed to be low, X is 15 ° or less, and the temperature is lower than X, and the end is at least 1 from the edge. It is preferable to include the area within 0%
[0082] 次に延伸方法について説明する。 延伸方法は、 同時二軸延伸でも逐次二軸 延伸でも可能であり、 特に限定されない。 Next, the stretching method will be described. The stretching method may be simultaneous biaxial stretching or sequential biaxial stretching, and is not particularly limited.
[0083] 長手方向 (以下、 IV! 0方向ともいう) の延伸温度の下限は好ましくは 5 5 \¥02020/175058 27 卩(:171?2020/004302 [0083] The lower limit of the stretching temperature in the longitudinal direction (hereinafter, also referred to as IV! 0 direction) is preferably 5 5 \¥02020/175058 27 卩 (: 171?2020/004302
°〇であり、 より好ましくは 60°〇である。 55°〇以上であると、 破断をより 抑制することができる。 また、 縦方向の配向が強くなりすぎるのを防ぎ、 IV! 〇方向の熱収縮率が大きくなることを抑制することができる。 IV! 0方向の延 伸温度の上限は好ましくは 1 〇〇°〇であり、 より好ましくは 95°〇である。Is 0°, more preferably 60°. If it is 55° or more, fracture can be further suppressed. Further, it is possible to prevent the orientation in the vertical direction from becoming too strong, and to suppress an increase in the thermal shrinkage in the IV! The upper limit of the elongation temperature in the IV! 0 direction is preferably 100 ° 〇, more preferably 95 ° 〇.
1 00°〇以下であると、 配向を充分に持たせることができ、 力学特性をより 高めることができる。 If it is 100 ° or less, the orientation can be sufficiently provided and the mechanical properties can be further enhanced.
[0084] IV! 0方向の延伸倍率の下限は好ましくは 2. 5倍であり、 特に好ましくは [0084] The lower limit of the stretching ratio in the IV! 0 direction is preferably 2.5 times, and particularly preferably.
2. 7倍である。 2. 5倍以上であると、 配向を充分に持たせることができ 、 力学特性をより高めることができる。 また、 2. 5倍以上であると、 厚み ムラを抑制することができ、 フィルムロールの弛みを防止することができる 2.7 times. If the ratio is 2.5 times or more, the orientation can be sufficiently provided and the mechanical properties can be further enhanced. Further, when it is 2.5 times or more, uneven thickness can be suppressed and slack of the film roll can be prevented.
IV! 0方向の延伸倍率の上限は好ましくは 3. 8倍であり、 より好ましくはThe upper limit of the stretching ratio in the IV! 0 direction is preferably 3.8 times, and more preferably
3. 6倍であり、 特に好ましくは 3. 4倍である。 3. 8倍以下であると、 力学強度や厚みムラ改善の効果が充分に得られる。 It is 3.6 times, particularly preferably 3.4 times. When it is not more than 8 times, the effect of improving mechanical strength and thickness unevenness can be sufficiently obtained.
[0085] 幅方向 (以下、 丁 0方向ともいう) の延伸温度の下限は好ましくは 55°〇 であり、 より好ましくは 60°〇である。 55 °〇以上であると、 破断を起こり にくくすることができる。 また、 横方向の配向が強くなりすぎるのを防ぎ、[0085] The lower limit of the stretching temperature in the width direction (hereinafter, also referred to as the 0 direction) is preferably 55° 〇, more preferably 60 ° 〇. If it is 55 ° or more, it is possible to make it difficult for fracture to occur. It also prevents the lateral orientation from becoming too strong,
70方向の熱収縮率が大きくなることを抑制することができる。 It is possible to prevent the heat shrinkage in the 70 direction from increasing.
丁 0方向の延伸温度の上限は好ましくは 1 00°〇であり、 より好ましくは 95°〇である。 1 00°〇以下であると、 配向を充分に持たせることができ、 力学特性をより高めることができる。 The upper limit of the stretching temperature Ding 0 direction is preferably 1 00 ° 〇, more preferably 95 ° 〇. When it is 100 ° or less, the orientation can be sufficiently provided, and the mechanical properties can be further enhanced.
[0086] 丁 0方向の延伸倍率の下限は好ましくは 3. 5倍であり、 より好ましくは [0086] The lower limit of the draw ratio in the 0-direction is preferably 3.5 times, and more preferably
3. 6倍であり、 特に好ましくは 3. 7倍である。 3. 5倍以上であると幅 方向の配向度を大きくすることができ、 力学強度を高くすることができる。 丁 0方向の延伸倍率の上限は好ましくは 5. 0倍であり、 より好ましくは It is 3.6 times, particularly preferably 3.7 times. If it is 3.5 times or more, the degree of orientation in the width direction can be increased and the mechanical strength can be increased. The upper limit of the draw ratio in the 0-direction is preferably 5.0 times, and more preferably
4. 6倍であり、 特に好ましくは 4. 3倍である。 5. 0倍以下であると、 力学強度や厚みムラ改善の効果が充分得られる。 It is 4.6 times, particularly preferably 4.3 times. When it is 5.0 times or less, the effect of improving mechanical strength and thickness unevenness can be sufficiently obtained.
[0087] 熱固定温度の下限は好ましくは 1 70°〇であり、 より好ましくは 1 80°〇 \¥02020/175058 28 卩(:171?2020/004302 [0087] The lower limit of the heat setting temperature is preferably 1 70 ° 〇, more preferably 1 80 ° 〇. \¥02020/175058 28 卩 (: 171?2020/004302
である。 1 70°〇以上であると熱収縮率をより小さくすることができる。 熱固定温度の上限は好ましくは 220°〇である。 220°〇以下であると、 フィルムが融けてしまうことや、 突刺し強さが低下することを抑制すること ができる。 Is. When it is 1 70° or more, the heat shrinkage rate can be further reduced. The upper limit of the heat setting temperature is preferably 220°○. When it is 220° or less, it is possible to prevent the film from melting and the puncture strength from decreasing.
[0088] リラックス率の下限は好ましくは〇. 5%である。 〇. 5%以上であると 丁口方向の熱収縮率を低く保つことができる。 The lower limit of the relaxation rate is preferably 0.5%. ○ When it is more than 0.5%, the heat shrinkage in the direction of the neck can be kept low.
リラックス率の上限は好ましくは 1 0%である。 1 0%以下であるとたる みなどが生じることを防止でき、 平面性を向上させることができる。 The upper limit of the relaxation rate is preferably 10%. When it is 10% or less, slack and the like can be prevented from occurring, and the flatness can be improved.
[0089] リラックスエ程の温度の下限は好ましくは 1 30°〇であり、 より好ましく は 1 50°◦である。 1 30°◦以上であるとリラックスを行った際にフィルム が十分に縮み、 熱収縮率低減効果を十分に得ることが可能となる。 [0089] The lower limit of the temperature for the relaxation process is preferably 130°°, and more preferably 150°°. When it is at least 30°°, the film will be sufficiently shrunk when relaxing and the heat shrinkage reduction effect can be sufficiently obtained.
リラックスエ程温度の上限は好ましくは 1 90 °〇であり、 より好ましくは 1 70°〇である。 1 90°〇以下であると、 シワ等によりフィルムの平面性の 悪化が生じることを抑制することができる。 The upper limit of the relaxation temperature is preferably 190 ° 〇, more preferably 170° 〇. When it is 1 90° or less, it is possible to prevent the flatness of the film from being deteriorated due to wrinkles and the like.
[0090] 以上、 本実施形態に係る二軸配向ポリエステルフィルムの製造方法を説明 した。 The method for manufacturing the biaxially oriented polyester film according to this embodiment has been described above.
実施例 Example
[0091] 次に、 実施例により本発明をさらに詳細に説明するが、 本発明は以下の例 に限定されるものではない。 なお、 フィルムの評価は次の測定法によって行 った。 [0091] Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples. The film was evaluated by the following measuring method.
[0092] [フィルムの固有粘度] [0092] [Intrinsic viscosity of film]
実施例、 比較例で作製したフィルムから、 フィルム幅方向の中央位置、 お よび、 左右の端からそれぞれ中央部に向かって 1 00101の位置を中心とする
Figure imgf000030_0001
のサンプルをそれぞれ切り出した。
From the films produced in the Examples and Comparative Examples, the center position in the film width direction and the position of 100011 from the left and right ends toward the center are centered.
Figure imgf000030_0001
Each sample was cut out.
サンプルについて、 固有粘度は (株) 紫山科学機器製作所社製、 自動粘度 測定装置 「33_600_1_ 1」 を使用して測定した。 溶媒液としては、 —クロロフェノール/ 1 , 1 , 2, 2—テトラクロロエタン = 6/4 (質量 比) の混合液を使用した。 \¥02020/175058 29 卩(:171?2020/004302 The intrinsic viscosity of the sample was measured using an automatic viscosity measuring device "33_600_1_1" manufactured by Shiyama Scientific Instruments Co., Ltd. As the solvent liquid, a mixed liquid of —chlorophenol/1,1,2,2-tetrachloroethane=6/4 (mass ratio) was used. \¥02020/175058 29 卩 (: 171?2020/004302
[0093] [フィルムの厚み及び厚み斑] [0093] [Thickness and thickness unevenness of film]
フィルム幅方向の左右の端からそれぞれ中央部に向かって 6
Figure imgf000031_0001
置 (ミルロールの端から全幅に対して 1 3%の位置) を中心として長手方向 及び幅方向にフィルムを長さ 1 〇1 幅 40
Figure imgf000031_0002
の長尺な短冊状にサンプリン グし、 ミクロン測定器株式会社製の連続接触式厚み計を用いて、 5 (0!/分 ) の速度で測定した。
6 from the left and right edges of the film width direction toward the center
Figure imgf000031_0001
The length of the film in the longitudinal direction and the width direction centered on the position (13% from the end of the mill roll relative to the total width) is 10 1 Width 40
Figure imgf000031_0002
Was sampled into a long strip and was measured at a speed of 5 (0!/min) using a continuous contact thickness gauge manufactured by Micron Measuring Instruments Co., Ltd.
測定された厚みの標準偏差及び厚みの平均値から下式 1で長手方向の厚み 斑 (%) と幅方向の厚み斑 (%) とを算出し、 さらに長手方向の厚み斑 (% ) 及び幅方向の厚み斑 (%) の平均値を厚み斑 (%) とした。 The thickness variation (%) in the longitudinal direction and the thickness variation (%) in the width direction are calculated by the following formula 1 from the standard deviation of the measured thickness and the average value of the thickness, and the thickness variation (%) and the width in the longitudinal direction are calculated. The average value of the thickness unevenness (%) in the direction was defined as the thickness unevenness (%).
厚み斑 = { (厚みの標準偏差) / (厚みの平均値) ) X 1 00 (%) Thickness variation = {(standard deviation of thickness) / (average value of thickness)) X 100 (%)
- 式 1 -Formula 1
[0094] [フィルムの配向角] [0094] [Orientation angle of film]
フィルム幅方向の左右の端からそれぞれ中央部に向かって 6
Figure imgf000031_0003
置 (ミルロールの端から全幅に対して 1 3%の位置) を中心としてフィルム
Figure imgf000031_0004
り取り、 王子計測株式会社製の IV!〇八一 60 04型分子配向計を用いて、 フィルムの幅方向の軸を基準にして、 分子鎖主 軸の配向角を求めた。 このとき、 フィルム幅方向に対して反時計回りの傾き を 「十」 、 時計回りを 「一」 とした。
6 from the left and right edges of the film width direction toward the center
Figure imgf000031_0003
Film (13% to the entire width from the end of the mill roll)
Figure imgf000031_0004
Using an IV! 〇811 60 04 type molecular orientation meter manufactured by Oji Scientific Co., Ltd., the orientation angle of the principal axis of the molecular chain was determined with reference to the axis in the width direction of the film. At this time, the counterclockwise inclination with respect to the film width direction was set to "10", and the clockwise rotation was set to "1".
[0095] [フィルムの面配向度△ ] [0095] [The degree of plane orientation of the film Δ]
実施例、 比較例で作製したフィルムから、 フィルム幅方向の左右の端から それぞれ中央部に向かって 680
Figure imgf000031_0005
の位置 (ミルロールの端から全幅に対 して 1 3%の位置) を中心として縦 5
Figure imgf000031_0006
のサンプルをそれぞれ 切り出した。
From the films produced in Examples and Comparative Examples, the 680
Figure imgf000031_0005
5 centered at the position of (13% from the end of the mill roll to the entire width)
Figure imgf000031_0006
Each sample was cut out.
サンプルについて」 丨 3 < 7 1 42- 1 996 八法により、 ナトリ ウムロ線を光源として接触液としてジヨードメタンを用いてアッベ屈折率計 によりフィルム長手方向の屈折率 ( 父) 、 幅方向の屈折率 (N 7) 、 厚み 方向の屈折率
Figure imgf000031_0008
を測定し、 下式により
Figure imgf000031_0007
を算出した。
Samples” 丨 3 <7 1 42- 1 996 According to the eight method, the refractive index in the longitudinal direction of the film (father) and the widthwise direction ( N 7), Refractive index in thickness direction
Figure imgf000031_0008
Is measured by the following formula
Figure imgf000031_0007
Was calculated.
面配向度 (△?) = [ ( 父十 1\17) /2] -N 2 \¥02020/175058 30 卩(:171?2020/004302 Degree of plane orientation (△?) = [(Fujyu 1\1 7 )/2] -N 2 \¥02020/175058 30 卩 (: 171?2020/004302
[0096] [フィルムの突刺し強さ] [0096] [Strength of film piercing]
実施例、 比較例で作製したフィルムから、 フィルム幅方向の左右の端から それぞれ中央部に向かって 6 8 0
Figure imgf000032_0001
の位置 (ミルロールの端から全幅に対 して 1 3の位置) を中心とする縦
Figure imgf000032_0002
のサンプルをそれぞれ切 り出した。
From the films produced in Examples and Comparative Examples, the film width direction was adjusted from the left and right edges toward the center, respectively.
Figure imgf000032_0001
Vertical position centered on the position (position 13 from the end of the mill roll to the entire width)
Figure imgf000032_0002
Each of the samples was cut out.
ポリエステルフィルムの突刺し強さは、 」 1 3 - 7 1 7 0 7に記載の試験 法で測定した値を下式により 1 換算で算出した。 The puncture strength of the polyester film was calculated by converting the value measured by the test method described in "1 3-7 1 7 0 7" into 1 by the following formula.
突刺し強さ (1\1 / ^0 =突刺し強さ実測値/フィルムの厚み Puncture strength (1\1 / ^0 = measured puncture strength / film thickness
[0097] [フィルムの 1 5 0 °〇で 1 5分間加熱後の熱収縮率] [0097] [The heat shrinkage rate of the film after heating at 150°° for 15 minutes]
ポリエステルフィルムの熱収縮率は、 試験温度 1 5 0 °〇、 加熱時間 1 5分 間とした以外は、 」 丨 3 - 0 - 2 3 1 8記載の寸法変化試験法で測定した。 なお、 サンプルは、 実施例、 比較例で作製したフィルムから、 フィルム幅 方向の左右の端からそれぞれ中央部に向かって 6 8 0
Figure imgf000032_0003
の位置 (ミルロー ルの端から全幅に対して 1 3 %の位置)
Figure imgf000032_0004
The heat shrinkage rate of the polyester film was measured by the dimensional change test method described in "3-0-2 318" except that the test temperature was 150° and the heating time was 15 minutes. Samples were prepared from the films prepared in Examples and Comparative Examples from the left and right edges in the width direction of the film toward the central portion, respectively.
Figure imgf000032_0003
Position (13% of the total width from the end of the mill roll)
Figure imgf000032_0004
サンプルをそれぞれ切り出した。 Each sample was cut out.
[0098] [フーリエ変換型赤外分光法 (全反射法) ] [0098] [Fourier transform infrared spectroscopy (total reflection method)]
実施例、 比較例で作製したフィルムから、 フィルム幅方向の左右の端部か ら中央部に向かって 1 0 〇!の位置を中心とする縦 5 〇! 横 5 111 111のサン プルをそれぞれ切り出した。 From the films produced in Examples and Comparative Examples, sample samples of 5 0! 511 111 in width were cut out from the left and right edges in the width direction of the film, centered at the position of 100! It was
Figure imgf000032_0005
を用い、 媒質結晶を ダイヤモンドとしてフィルム表層に密着させ、 IV! 0方向に平行に光を入射し つつ、 全反射法によってスペクトル強度を測定した。 分光器の分解能は 4〇 - 1、 スペクトル積算回数は 6 4回として測定した。 スペクトル強度は各波 数での吸光度とする。 下式により算出した。 測定は、 巳面について行った。 吸光度比 (八/巳) =吸光度八
Figure imgf000032_0006
ピークのスぺク トル強度) /吸光度巳 ( 1 4 1 0 ± 1 0〇
Figure imgf000032_0007
のピークのスぺクトル強度) [0099] [フィルムの密度]
Figure imgf000032_0005
Using, the medium crystal was brought into close contact with the film surface layer as diamond, and the spectral intensity was measured by the total reflection method while light was incident parallel to the IV!0 direction. The resolution of the spectrometer 4_Rei - 1, spectrum accumulation number was measured as 6 4 times. The spectral intensity is the absorbance at each wave number. It was calculated by the following formula. The measurement was performed on the Mitsumi surface. Absorbance ratio (8/M) = Absorbance 8
Figure imgf000032_0006
Peak spectrum intensity) / Absorbance value (1 4 1 0 ± 1 0 0 0)
Figure imgf000032_0007
Intensity of the peak of) [0099] [Film density]
実施例、 比較例で作製したフィルムから、 フィルム幅方向の左右の端部か \¥02020/175058 31 卩(:171?2020/004302 From the films prepared in Examples and Comparative Examples, \¥02020/175058 31 卩 (: 171?2020/004302
ら中央部に向かって 1 0 111〇!の位置を中心とする縦 5 〇! 横 5 111 111のサン プルを切り出した。 From the center toward the center, a sample with a length of 5! and a width of 5 111 111 centered at the position of 1 0 111!
サンプルの密度について、 」 丨 3 < 7 1 1 2の 0法 (密度勾配法) に より測定した。 測定条件は、 以下の通りとした。 表 1 には、 左端、 右端の 2 つのサンプルのうち、 測定値が最も高い方を示した。 The density of the sample was measured by the 0 method (density gradient method) of “3 <7 1 1 2 ”. The measurement conditions were as follows. Table 1 shows the highest measured value of the left and right samples.
<測定条件> <Measurement conditions>
勾配液:硝酸カルシウム四水和物 Gradient liquid: calcium nitrate tetrahydrate
勾配管内の温度: 3〇〇 Temperature in gradient tube: 300
サンプルサイズ: 5 01 111 X 5 111 111 Sample size: 5 01 111 X 5 111 111
浸潰時間: 1 6時間 Soaking time: 16 hours
[0100] [製膜性の評価] [0100] [Evaluation of film formability]
各実施例、 比較例のフィルムの作製時に、 3 0分以上破断無く、 連続製膜 が可能であった場合を〇、 3 0分以内に少なくとも 1回破断が生じた場合を Xとして評価した。 When the films of Examples and Comparative Examples were produced, the case where continuous film formation was possible without break for 30 minutes or more was evaluated as ◯, and the case where breakage occurred at least once within 30 minutes was evaluated as X.
[0101] [フィッシュアイの評価] [0101] [Evaluation of fish eyes]
実施例、 比較例で作製したフィルムから、 フィルム幅方向の左右の端から それぞれ中央部に向かって 6 8 0 01 01の位置 (ミルロールの端から全幅に対 して 1 3 %の位置) を中心とする幅方向に
Figure imgf000033_0002
長手方向に
Figure imgf000033_0001
のサンプルをそれぞれ切り出し、 東海産業社製ルーペ (I - - 1 〇乂) (観測 倍率 1 0倍) を用いて、 偏向下、 フィッシュアイの個数をカウントした。 同 様の操作を 1 〇回繰り返して、 1 0回のカウント数の平均値を下式により、
From the films produced in Examples and Comparative Examples, centered at the position of 6800 1 01 from the left and right edges in the film width direction toward the center (13% of the width from the edge of the mill roll). To the width direction
Figure imgf000033_0002
Longitudinally
Figure imgf000033_0001
Each of the samples was cut out and the number of fish eyes was counted under deflection using a magnifying glass (I--10) made by Tokai Sangyo Co., Ltd. (observation magnification: 10 times). The same operation is repeated 10 times, and the average value of the counts of 10 times is calculated by the following formula.
1 あたりのフィッシュアイの個数として算出した。 It was calculated as the number of fish eyes per one.
[フィッシュアイ (個/〇! 2) ] = [フィッシュアイの平均カウント数 (個 ) ] / [測定範囲 (6 3 0^ 2) ] [Fish eyes (pieces/〇! 2 )] = [average count of fish eyes (pieces)] / [measuring range (6 3 0^ 2 )]
[0102] [離型層への転写の評価] [0102] [Evaluation of transfer to release layer]
基材の一方の面に乾燥後の塗布量が〇. 0 5 / 2になるように、 下記の 離型層形成用塗布液を塗工した。 次いで、 塗工後のフィルムを 1 3 0 °〇、 5 秒の熱風で 1 0秒間、 1 7 0 °〇、 2 0 /秒の熱風で 1 0秒間、 さらに \¥02020/175058 32 卩(:171?2020/004302 The following release layer-forming coating liquid was applied to one surface of the base material so that the coating amount after drying was 0.05/ 2 . Then, the coated film was heated with hot air at 1300 ° for 5 seconds for 10 seconds, hot air at 1700° for 20 seconds and 10 seconds, \¥02020/175058 32 卩 (: 171?2020/004302
1 30°〇、 20〇!/秒の熱風で 1 0秒間乾燥させた。 以上により、 基材の一 方の面に離型層を積層した。 その後、 口ールとして巻き取った。 1 It was dried for 10 seconds with hot air of 30°○, 200○!/sec. As described above, the release layer was laminated on one surface of the base material. After that, it was rolled up as a mouth.
得られた口ールの離型層側を幅方向に 2 1 0〇1〇1、 長手方向に 300 の 範囲でブロモライ トを用いて目視で転写痕の個数をカウントした。 同様の操 作を 1 〇回繰り返して、 1 0回のカウント数の平均値を下式により、 1 2あ たりの転写痕の個数として算出し、 個数によって判定をした。 カウントの対 象となる箇所は、 口ールの長手方向中央よりも卷芯側とした。 The number of transfer marks was visually counted using a bromolite in the range of 210.101 in the width direction and 300 in the longitudinal direction on the release layer side of the obtained film. Repeat 1 〇 times similar operation, by the following equation the average value of 1 0 times the number of counts, was calculated as the number of transfer marks of or 1 2 Ah, was determined by the number. The point to be counted was on the core side of the center of the mouth in the longitudinal direction.
[転写痕 (個/
Figure imgf000034_0001
] = [平均転写痕のカウント数 (個) ] / [測定範囲 ( 63〇! 2) ]
[Transfer marks (pieces/
Figure imgf000034_0001
] = [Average transfer mark count (pieces)] / [Measurement range (63 〇! 2 )]
判定 3個/ 0! 2以下:〇、 4個/ 0! 2以上: X Judgment 3 pieces / 0! 2 or less: ○, 4 pieces / 0! 2 or more: X
[0103] [離型層形成用塗布液の作製] [0103] [Preparation of release layer forming coating liquid]
以下に示す組成で各成分を混合し、 離型層形成用塗布液を得た。 トルエン = 56. 05質量% The components were mixed in the composition shown below to obtain a release layer-forming coating liquid. Toluene = 56.05 mass%
イソプロパノール : 1 4. 01質量% Isopropanol: 1 4.01 mass%
酸変性ポリオレフィン樹脂溶解液 = 29. 4質量% Acid-modified polyolefin resin solution = 29.4% by mass
ヘキサメチレンジイソシアネート系ブロックイソシアネート化合物: 0. 5 4質量% Hexamethylene diisocyanate-based blocked isocyanate compound: 0.5 4% by mass
(旭化成ケミカルズ社製デュラネート (登録商標) 1\/1 _[<60巳 固形分 濃度 60 % 1\1〇〇%= 6. 5 %) (Asahi Kasei Chemicals Duranate (registered trademark) 1\/1 _ [<60 solids concentration 60% 1\100% = 6.5%)
なお、 酸変性ポリオレフィン樹脂溶液の作製方法を次に示す。 80°〇に加 熱したトルエン 989に酸化ワックス (日本製蝋社製 3-9 1 25 酸価 32 9<〇!~1/9) 29を投入し、 30分間攪拌し、 溶解させた。 溶 解した酸変性ポリオレフィン樹脂溶解液を 25 °〇まで冷却したのち、 300 メッシュのステンレス製フィルター (線径〇. 035〇1〇1、 平織) でろ過し 、 酸変性ポリオレフィン樹脂溶解液を得た。 The method for producing the acid-modified polyolefin resin solution will be described below. 80 ° 〇 the pressurized heated and oxidized wax in toluene 989 (manufactured by Nippon Rosha made 3-9 1 25 acid value 32 9 <〇! ~ 1/9) 2 9 were charged, and stirred for 30 minutes to dissolve. After the dissolved acid-modified polyolefin resin solution was cooled to 25 ° 〇, it was filtered through a 300 mesh stainless steel filter (wire diameter 〇0.035 〇 101, plain weave) to obtain an acid-modified polyolefin resin solution. ..
[0104] [深絞り成型性の評価] [0104] [Evaluation of deep drawability]
実施例、 比較例で作製したフィルムから、 フィルム幅方向の左右の端から それぞれ中央部に向かって 680 の位置 (ミルロールの端から全幅に対 \¥02020/175058 33 卩(:171?2020/004302 From the films produced in Examples and Comparative Examples, 680 positions from the left and right ends in the width direction of the film toward the central part (from the end of the mill roll to the full width) \¥02020/175058 33 卩 (: 171-12020/004302
して 1 3%の位置) を中心とする縦 (長手方向) 1 5〇〇1 横 (幅方向) 1 0〇 のサンプルを切り出した。 このサンプルを図 4、 図 5に示す金型にセ ッ トし、 上からプレスをして絞り成形を行った。 図 4は、 深絞り成型性の評 価に用いた金型の横断面図であり、 図 5は、 図 4に示した金型の平面図であ る。 具体的には、
Figure imgf000035_0001
サイズ 3 の金型 50上に フィルム (実施例、 比較例のフィルム) を配置し、 フィルム抑え 52でフ ィルム を抑えた状態で、 金型 50に対応する形状のパンチ 54でプレスし た。 絞り速度は 60101 / 3とした。
Then, a sample was cut out in the longitudinal direction (longitudinal direction) 1500 1 and the lateral direction (width direction) 100, centered at 13% position. This sample was set in the mold shown in Figs. 4 and 5, and pressed from above to perform draw forming. FIG. 4 is a cross-sectional view of the mold used for evaluation of deep drawing formability, and FIG. 5 is a plan view of the mold shown in FIG. In particular,
Figure imgf000035_0001
A film (films of Examples and Comparative Examples) was placed on the mold 50 of size 3, and the film was pressed by the punch 54 having a shape corresponding to the mold 50 while the film was suppressed by the film presser 52. The squeezing speed was 60101/3.
各絞り深さに対して N= 1 0で実施し、 N= 1 0でフィルムの裂けやピン ホールが発生しなかった時の最大の絞り深さをそのサンプルの深絞り成型値 とした。 N = 10 was performed for each drawing depth, and the maximum drawing depth when no film tearing or pinholes occurred at N = 10 was taken as the deep drawing molding value of the sample.
[0105] [実施例 1 ] [0105] [Example 1]
—軸押出機を用い、 巳丁樹脂 (テレフタル酸//ブタンジオール = 1 0 0//1 00 (モル%) からなる固有粘度 1. 28 I /9) と 巳丁樹脂 (テレフタル酸//エチレングリコール = 1 0〇// 1 00 (モル%) から なる固有粘度〇. 62 1 /9、 シリカ粒子配合) を含む二軸配向ポリエス テルフィルム製造用の樹脂組成物を 290°〇で溶融させた後、 250°〇の丁 —ダイスからキャストし、 1 0°〇の冷却口ールに静電密着法により密着させ ながら、 巳面にマルチダクトから冷風を吹き付けて未延伸シートを得た。 得 られた未延伸シートの幅は、 1 60〇 であった。 マルチダクトは図 1 に示 すような構造であり、 吹き出し口 3 1 - 1、 3 1 -5 (以下、 吹き出し口 1 、 5ともいう) より 1 0°〇の冷風を吹き付け、 吹き出し口 3 1 -2〜 3 1 - 4 (以下、 吹き出し口 2〜 4ともいう) から 1 5 °〇の冷風を吹き付けた。 本実施例では、 吹き出し口 1、 5の幅は、 それぞれ
Figure imgf000035_0002
吹き出し口
— Using a screw extruder, Mingko resin (terephthalic acid//butanediol = 100/100/100 (mol %) intrinsic viscosity 1.28 I/ 9 ) and Mending resin (terephthalic acid//ethylene) A resin composition for the production of biaxially oriented polyester film containing an intrinsic viscosity of 0.62 1/9 (containing silica particles) consisting of glycol = 100//100 (mol %) was melted at 290°○. After that, the unstretched sheet was obtained by casting from a 250° 〇 die and making a cold air blow from the multi-duct to the face while adhering to the 10 ° cooling port by the electrostatic contact method. The width of the obtained non-stretched sheet was 1,600. The multi-duct has a structure as shown in Fig. 1, and cool air of 10° 〇 is blown from the outlets 3 1-1 and 3 1 -5 (hereinafter also referred to as outlets 1 and 5), and the outlet 3 1 Cold wind of 15 ° was blown from -2 to 3 1-4 (hereinafter also referred to as blow-out ports 2 to 4). In this embodiment, the widths of the outlets 1 and 5 are respectively
Figure imgf000035_0002
Outlet
2〜 4の横幅は、 それぞれ
Figure imgf000035_0003
した。
The width of 2 to 4 is
Figure imgf000035_0003
did.
未延伸シートのうち、 左右の端からそれぞれ中央部に向かって 32〇
Figure imgf000035_0004
の 位置までは、 吹き出し口 1又は吹き出し口 5からの風が吹き付けられ、 それ よりも中央部側は、 吹き出し口 2〜 4からの風が吹き付けられた。 \¥02020/175058 34 卩(:171?2020/004302
Of the unstretched sheet, 32 〇 toward the center from the left and right edges
Figure imgf000035_0004
The wind from the outlet 1 or 5 was blown up to the position of, and the wind from the outlets 2 to 4 was blown to the central portion side than that. \¥02020/175058 34 卩(: 171-12020/004302
この際、 マルチダクトの縦幅は、 5 あり、 未延伸シートの移動速 度は、 6 0 /分であった。 At this time, the vertical width of the multi-duct was 5, and the moving speed of the unstretched sheet was 60/min.
また、 二軸配向ポリエステルフィルム製造用の樹脂組成物が冷却口ールに キャストされた時点 (触れた時点) から、 当該部分に風が吹き付けられるま での時間は、 〇. 5秒であった。 In addition, the time from the time when the resin composition for producing the biaxially oriented polyester film was cast into the cooling port (the time when it was touched) to the time when the air was blown to the part was 0.5 seconds. ..
なお、 二軸配向ポリエステルフィルム製造用の樹脂組成物中のシリカ粒子 の含有量は、 二軸配向ポリエステルフィルム製造用の樹脂組成物を全体 ( 1 0 0質量%) としたときにシリカ濃度として〇. 1 6質量%である。 The content of the silica particles in the resin composition for producing the biaxially oriented polyester film is the silica concentration when the resin composition for producing the biaxially oriented polyester film is the whole (100% by mass). .16% by mass.
[0106] 次いで、 得られた未延伸シートを 7 0 °〇の温度で長手方向
Figure imgf000036_0001
方向) に
[0106] Next, the obtained unstretched sheet was machined in the longitudinal direction at a temperature of 70 °C.
Figure imgf000036_0001
Direction)
3 . 3倍で延伸し、 次いで、 テンターに通して 8 0 °〇で幅方向 (丁〇方向) に 4 . 0倍で延伸し、 2 0 0 °〇で 3秒間の熱固定処理と 1秒間 9 %の緩和処 理を実施して、 厚さ 1 5 の二軸配向ポリエステルフィルムを得た。 二軸 配向ポリエステルフィルム製造用の樹脂組成物中の樹脂組成、 および、 製膜 条件を表 1 に示した。 また、 得られたフィルムの物性及び評価結果を表 1 に ^した。 Stretching at 3.3 times, then passing through a tenter at 80 ° 〇 in the width direction (chome direction) at 4.0 times, heat setting treatment at 200 ° 〇 for 3 seconds and 1 second. A relaxation treatment of 9% was carried out to obtain a biaxially oriented polyester film having a thickness of 15. Table 1 shows the resin composition in the resin composition for producing the biaxially oriented polyester film and the film forming conditions. In addition, Table 1 shows the physical properties and evaluation results of the obtained film.
[0107] [実施例 2〜 6 ] [0107] [Examples 2 to 6]
樹脂組成、 ダイス温度、 熱処理温度を表 1 に記載したとおり変えた以外は 実施例 1 と同様に製膜して、 厚さ 1 5 の二軸配向ポリエステルフィルム を得た。 得られたフィルムの物性及び評価結果を表 1 に示した。 A film was formed in the same manner as in Example 1 except that the resin composition, the die temperature, and the heat treatment temperature were changed as described in Table 1, to obtain a biaxially oriented polyester film having a thickness of 15. Table 1 shows the physical properties and evaluation results of the obtained film.
[0108] [比較例 1 ] [0108] [Comparative Example 1]
—軸押出機を用い、 巳丁樹脂を 8 0質量%と 巳丁樹脂を 2 0質量%混 合したものに、 不活性粒子として平均粒径 2 . 4 のシリカ粒子をシリカ 濃度として混合樹脂に対して 9 0 0 となるように配合したものを 2 9 〇°〇で溶融させた後、 メルトラインを 1 0エレメントのスタティックミキサ 一に導入した。 これにより、 ポリエステル樹脂溶融体の分割 ·積層を行い、 同一の原料からなる積層数が 1 0 2 4層の多層溶融体を得た後、 2 5 0 °〇の 丁ーダイスからキャストし、 1 0 °〇の冷却口ールに静電密着法により密着さ せながら未延伸シートを得た以外は、 実施例 2と同様にして二軸配向フィル ムを製膜して、 厚さ 1 5 の二軸配向ポリエステルフィルムを得た。 得ら れたフィルムの物性及び評価結果を表 1 に示した。 — Using a screw extruder, mix 80% by weight of Mending resin and 20% by weight of Mending resin, and use silica particles with an average particle size of 2.4 as inert particles in the mixed resin. was melted at 9 0 0 become as those formulated 2 9 〇 ° 〇 in contrast, the introduction of melt line static mixers one 1 0 element. As a result, the polyester resin melt was divided and laminated to obtain a multilayer melt of the same raw material and having a number of laminated layers of 10 2 4 and then cast from a die with a die temperature of 250 ° A biaxially oriented film was obtained in the same manner as in Example 2 except that an unstretched sheet was obtained while being adhered to the cooling port of °° by the electrostatic adhesion method. The film was formed into a biaxially oriented polyester film having a thickness of 15. Table 1 shows the physical properties and evaluation results of the obtained film.
[0109] [比較例 2、 比較例 3 ] [Comparative Example 2, Comparative Example 3]
積層数を表 1 に記載したとおり変えた以外は比較例 1 と同様に製膜して、 厚さ 1 5 の二軸配向ポリエステルフィルムを得た。 得られたフィルムの 物性及び評価結果を表 1 に示した。 A film was formed in the same manner as in Comparative Example 1 except that the number of layers was changed as shown in Table 1 to obtain a biaxially oriented polyester film having a thickness of 15. The physical properties and evaluation results of the obtained film are shown in Table 1.
[01 10] [比較例 4、 6 ] [01 10] [Comparative Examples 4 and 6]
実施例 2において、 ダイス温度を 2 7 0 °〇 (比較例 4) 、 2 8 5 °〇 (比較 例 6) に変え、 溶融樹脂を冷却口ールに密着させる際に巳面側からマルチダ クトで冷風を吹き付けず、 実施例 2と同様に二軸配向フィルムを製膜して、 厚さ 1 5 の二軸配向ポリエステルフィルムを得た。 結果を表 1 に示した 。 なお、 比較例 6では、 幅方向の延伸工程でフィルムが破断してフィルムの 評価をするためのサンプルが得られなかった。 In Example 2, the die temperature was changed to 270° 〇 (Comparative Example 4) and 285° 〇 (Comparative Example 6), and when the molten resin was brought into close contact with the cooling port, the multi-duct was applied from the face side. A biaxially oriented film was formed in the same manner as in Example 2 without blowing cold air to obtain a biaxially oriented polyester film having a thickness of 15. The results are shown in Table 1 . In Comparative Example 6, the film was ruptured in the stretching process in the width direction, and a sample for evaluating the film could not be obtained.
[01 1 1 ] [比較例 5 ] [01 1 1] [Comparative example 5]
実施例 2において、 キャスト条件を表 1 に記載したとおり変えた以外は実 施例 2と同様に製膜して、 厚さ 1 5 の二軸配向ポリエステルフィルムを 得た。 得られたフィルムの物性及び評価結果を表 1 に示した。 In Example 2, a film was formed in the same manner as in Example 2 except that the casting conditions were changed as shown in Table 1 to obtain a biaxially oriented polyester film having a thickness of 15. Table 1 shows the physical properties and evaluation results of the obtained film.
[01 12] [比較例 7 ] [01 12] [Comparative Example 7]
実施例 2において、 樹脂組成を表 1 に記載したとおり変えた以外は実施例 2と同様に製膜して、 厚さ 1 5 の二軸配向ポリエステルフィルムを得た 。 得られたフィルムの物性及び評価結果を表 1 に示した。 A film was formed in the same manner as in Example 2 except that the resin composition was changed as shown in Table 1 to obtain a biaxially oriented polyester film having a thickness of 15. Table 1 shows the physical properties and evaluation results of the obtained film.
[01 13] 〔¾二 [01 13] [¾ji
Figure imgf000038_0001
Figure imgf000038_0001
\¥02020/175058 37 卩(:171?2020/004302 \¥02020/175058 37 卩(: 171-12020/004302
[01 14] 表 1 に示すように、 本発明によって得られた二軸延伸ポリエステルフィル ム (実施例 1〜 5) は、 厚み斑とフィッシュアイが少なく、 良好な深絞り成 型性を有し、 且つ、 品位に優れる二軸配向ポリエステルフィルムが得られた [0114] As shown in Table 1, the biaxially stretched polyester films (Examples 1 to 5) obtained according to the present invention have few thickness irregularities and fish eyes and have good deep drawing moldability. And a biaxially oriented polyester film having excellent quality was obtained.
—方、 比較例 1〜 3は、 メルトラインをスタティックミキサーに導入し 6 4層以上に多層化したため、 フィッシュアイの個数は実施例に比べて多く、 高品位が要求される用途には適さなかった。 However, in Comparative Examples 1 to 3, since the melt line was introduced into the static mixer and multilayered to 64 layers or more, the number of fish eyes was larger than that of the Examples, and it was not suitable for applications requiring high quality. It was
比較例 4において、 溶融樹脂を冷却口ールに密着させる際に巳面側からマ ルチダクトで冷風を吹き付けなかった場合は、 製膜中に破断が多かった。 ま た得られたフィルムは、 厚み斑が大きく、 深絞り成型性が劣っていた。 比較例 5においては、 実施例に比べて溶融樹脂を冷却口ールに密着させる 際に巳面側からマルチダクトで吹き付ける冷風の温度が高かったため、 製膜 中に破断が多かった。 また得られたフィルムは、 厚み斑が大きく、 深絞り成 型性が劣っていた。 In Comparative Example 4, when the molten resin was brought into close contact with the cooling port and no cold air was blown through the multi-duct from the face side, there were many breaks during film formation. In addition, the obtained film had large thickness unevenness and was inferior in deep drawing formability. In Comparative Example 5, the temperature of the cold air blown by the multi-duct from the face side when the molten resin was brought into close contact with the cooling port was higher than that in the Example, so that there were many breaks during film formation. Further, the obtained film had large thickness unevenness and was inferior in deep drawing moldability.
比較例 6では、 樹脂を溶融し押し出す温度が高いためフィルムの固有粘度 が低くなり、 幅方向の延伸工程でフィルムが破断してフィルムの評価をする ためのサンプルが得られなかった。 In Comparative Example 6, since the temperature at which the resin was melted and extruded was high, the intrinsic viscosity of the film was low, and the film broke during the stretching process in the width direction, and a sample for evaluating the film could not be obtained.
また、 比較例 7は、 巳丁の比率が低いため突き刺し強度が悪かった。 産業上の利用可能性 Further, in Comparative Example 7, the piercing strength was poor because the ratio of Mitsuko was low. Industrial availability
[01 15] 本発明の二軸配向ポリエステルフィルムは、 工業用途にも対応できる良好 なフィルム品位を有し、 且つ、 巳丁を主成分にしているので深絞り成型が 伴う離型フィルムとして好適である。 [0115] The biaxially oriented polyester film of the present invention has a good film quality that can be used for industrial applications, and since it uses Ming as the main component, it is suitable as a release film accompanying deep drawing. is there.
符号の説明 Explanation of symbols
[01 16] 1 0 ダイス [01 16] 1 0 Dice
1 2 吐出口 1 2 Discharge port
2 0 冷却口ール 20 Cooling port
3 0 マルチダクト \¥02020/175058 38 卩(:171?2020/004302 3 0 multi duct \¥02020/175058 38
3 1 (3 1 - 1、 3 1 -2、 3 1 -3、 3 1 -4、 3 1 -5) 吹き出し 3 1 (3 1-1, 3 1 -2, 3 1 -3, 3 1 -4, 3 1 -5) Balloon
32 仕切り板 32 dividers
40 未延伸シート 40 unstretched sheet
50 金型 50 mold
60 フイルム 60 films
70 フイルム抑え 70 film control
80 パンチ 80 punch

Claims

\¥02020/175058 39 卩(:17 2020 /004302 請求の範囲 [請求項 1] ポリプチレンテレフタレート樹脂 (八) を 60〜 1 00質量%含有 するポリエステル樹脂組成物を含み、 積層数が 7層以下であり、 下記要件 (1 ) 〜 (5) を満たすことを特徴とする二軸配向ポリエ ステルフイルム。 \¥02020/175058 39 卩(: 17 2020/004302 Claims [Claim 1] Polyester terephthalate resin (8) Includes a polyester resin composition containing 60 to 100% by mass, and the number of laminated layers is 7 or less. The biaxially oriented polyester film is characterized by satisfying the following requirements (1) to (5).
(1 ) 二軸配向ポリエステルフィルムの固有粘度が〇. 7 丨 /9 以上。 (1) The intrinsic viscosity of the biaxially oriented polyester film is at least 0.7 7 /9.
(2) 二軸配向ポリエステルフィルムの配向角の絶対値が 25度以 上。 (2) The absolute value of the orientation angle of the biaxially oriented polyester film is 25 degrees or more.
(3) 二軸配向ポリエステルフィルムの面配向度△ が〇. 1 45 〜 0 1 60。 (3) The degree of plane orientation Δ of the biaxially oriented polyester film is ◯ 0.145 to 0 1 60.
(4) 」 1 3-71 707に準じた突き刺し試験で測定した二軸配 向ポリエステルフィルムの突刺し強さが 0. 401\1/ 以上。 (4)” 1 The puncture strength of the biaxially oriented polyester film measured by the puncture test according to 3-71 707 is 0.401 \1/ or more.
(5) 二軸配向ポリエステルフィルムの厚み斑が〇. 7%以下。 (5) Thickness unevenness of the biaxially oriented polyester film is 0.7% or less.
[請求項 2] 前記ポリエステル樹脂組成物は、 ポリブチレンテレフタレート樹脂 [Claim 2] The polyester resin composition is a polybutylene terephthalate resin.
(八) 以外のポリエステル樹脂 (巳) を含有することを特徴とする請 求項 1 に記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to claim 1, containing a polyester resin (Mitsumi) other than (8).
[請求項 3] 二軸配向ポリエステルフィルム上の最大直径が〇. 3
Figure imgf000041_0001
以上のフ ィッシュアイが 5個/ 2以下であることを特徴とする請求項 1又は 2のいずれか 1 に記載の二軸配向ポリエステルフィルム。
[Claim 3] The maximum diameter on a biaxially oriented polyester film is 0.3.
Figure imgf000041_0001
3. The biaxially oriented polyester film according to claim 1, wherein the number of fish eyes is 5 or less/ 2 .
[請求項 4] 請求項 1〜 3のいずれか 1 に記載の二軸配向ポリエステルフィルム の製造方法であって、 [Claim 4] A method for producing the biaxially oriented polyester film according to any one of claims 1 to 3,
二軸配向ポリエステルフィルム製造用の樹脂組成物を冷却口ールに キャストして未延伸シートを形成する工程八と、 Step 8 of casting a resin composition for producing a biaxially oriented polyester film in a cooling port to form an unstretched sheet,
前記冷却口ール上の前記未延伸シートに風を吹き付ける工程巳とを 有し、 A step of blowing air onto the unstretched sheet on the cooling port,
前記工程巳は、 未延伸シート全幅を 1 00%としたとき、 中央に吹 \¥02020/175058 40 卩(:171?2020/004302 When the total width of the unstretched sheet is 100%, the process \¥02020/175058 40 units (:171?2020/004302
き付ける風の温度を X、 両方の端部に吹き付けられる温度を丫とした ときに、 前記 Xが 1 5 °〇以下であり、 且つ、 前記丫が前記 Xよりも低 い温度であり、 When the temperature of the wind to be applied is X, and the temperature of the air blown to both ends is assumed to be 15 ° 〇 or less, and the temperature is lower than X.
前記端部は、 少なくとも端縁から 1 〇%以内の領域を含むことを特 徴とする二軸配向ポリエステルフィルムの製造方法。 The method for producing a biaxially oriented polyester film, wherein the edge portion includes at least a region within 10% from the edge.
PCT/JP2020/004302 2019-02-26 2020-02-05 Biaxially oriented polyester film, and production method for biaxially oriented polyester film WO2020175058A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020531787A JP6826784B2 (en) 2019-02-26 2020-02-05 Biaxially oriented polyester film and method for producing biaxially oriented polyester film

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2019032400 2019-02-26
JP2019-032400 2019-02-26
JP2019-138219 2019-07-26
JP2019138219 2019-07-26
JP2019-144668 2019-08-06
JP2019144668 2019-08-06
JP2020-011499 2020-01-28
JP2020011499 2020-01-28

Publications (1)

Publication Number Publication Date
WO2020175058A1 true WO2020175058A1 (en) 2020-09-03

Family

ID=72238504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004302 WO2020175058A1 (en) 2019-02-26 2020-02-05 Biaxially oriented polyester film, and production method for biaxially oriented polyester film

Country Status (2)

Country Link
JP (1) JP6826784B2 (en)
WO (1) WO2020175058A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060617A (en) * 2003-08-19 2005-03-10 Toyobo Co Ltd Polyester film
JP2007185898A (en) * 2006-01-16 2007-07-26 Toray Ind Inc Biaxially oriented polyester film and its manufacturing process
WO2013172214A1 (en) * 2012-05-14 2013-11-21 東洋紡株式会社 Polyester film and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060617A (en) * 2003-08-19 2005-03-10 Toyobo Co Ltd Polyester film
JP2007185898A (en) * 2006-01-16 2007-07-26 Toray Ind Inc Biaxially oriented polyester film and its manufacturing process
WO2013172214A1 (en) * 2012-05-14 2013-11-21 東洋紡株式会社 Polyester film and method for producing same

Also Published As

Publication number Publication date
JPWO2020175058A1 (en) 2021-03-11
JP6826784B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
JP6826785B2 (en) Biaxially oriented polyester film and method for producing biaxially oriented polyester film
TW201736453A (en) Biaxially-stretched polyester film, laminate and packaging bag
JP6819816B2 (en) Polyester film roll
JPWO2018225559A1 (en) Biaxially oriented polyester film
WO2021117736A1 (en) Biaxially oriented polyester film and production method therefor
CN114207029B (en) Biaxially oriented polyester film
JP7006445B2 (en) Polyester film and gas barrier laminated film
TW202012191A (en) Gas barrier laminate film and the method thereof, laminating body, packaging bag
WO2020080131A1 (en) Layered film
JP6879473B2 (en) Biaxially oriented polyester film
JP2008114606A (en) Polypropylene-based laminated film and packaging body using the film
WO2020175058A1 (en) Biaxially oriented polyester film, and production method for biaxially oriented polyester film
JP7024645B2 (en) Polyester film roll
WO2020203105A1 (en) Polyester film and production method therefor
JP7365569B2 (en) Biaxially oriented polyester film and method for producing biaxially oriented polyester film
CN116745347A (en) Biaxially oriented polyester film and process for producing the same
TW201936734A (en) Biaxially oriented polyester film
JP7365568B2 (en) Biaxially oriented polyester film and method for producing biaxially oriented polyester film
TW202138438A (en) Biaxially oriented polyester film, and production method for biaxially oriented polyester film
TW202112922A (en) Biaxially oriented polyester film and method of producing the same
JP7310876B2 (en) Polyester film and gas barrier laminated film
JP7444177B2 (en) Biaxially oriented polyester films and laminates
TW202128823A (en) Biaxially oriented polyester film, and production method for biaxially oriented polyester film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020531787

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762568

Country of ref document: EP

Kind code of ref document: A1