WO2020174898A1 - Fluid injection apparatus - Google Patents

Fluid injection apparatus Download PDF

Info

Publication number
WO2020174898A1
WO2020174898A1 PCT/JP2020/000824 JP2020000824W WO2020174898A1 WO 2020174898 A1 WO2020174898 A1 WO 2020174898A1 JP 2020000824 W JP2020000824 W JP 2020000824W WO 2020174898 A1 WO2020174898 A1 WO 2020174898A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve body
fluid
injection
valve seat
Prior art date
Application number
PCT/JP2020/000824
Other languages
French (fr)
Japanese (ja)
Inventor
松本 修一
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112020000972.6T priority Critical patent/DE112020000972T5/en
Publication of WO2020174898A1 publication Critical patent/WO2020174898A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/10Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0694Injectors operating with a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present disclosure relates to a fluid ejection device.
  • the fuel injection device described in Patent Document 1 includes a first valve needle and a second valve needle, and a first valve needle that are configured to control the injection of the first fuel and the second fuel.
  • the first control chamber and the second control chamber, the first control valve, and the second control valve which are associated with the second and second valves, respectively.
  • the first control valve includes a first control valve member and is configured to change the pressure of the control fluid in the first control chamber so that the first valve needle is opened and closed.
  • the second control valve includes a second control valve member and is configured to change the pressure of the control fluid in the second control chamber so that the second valve needle is opened and closed.
  • the first control valve member and the second control valve member are configured to linearly move along the common control valve shaft.
  • Patent Document 1 Special Table 2 0 1 6-5 1 9 2 4 9 Publication
  • such a problem is not limited to a fuel injection device that injects two types of fuel, but is a problem that is common to fluid injection devices that inject any two types of fluid.
  • An object of the present disclosure is to provide a fluid ejecting apparatus that has a structure that ejects two types of fluids and that can have a simple structure.
  • a fluid ejection device includes: a valve body; and a valve body.
  • the valve body has a first valve seat and a second valve seat.
  • the valve body is arranged so as to face both the first valve seat and the second valve seat, and is separated from and seated on the first valve seat and the second valve seat. And has a seated second valve. With the displacement of the valve body, the first valve body and the second valve body are physically displaced. The first valve portion separates from and seats on the first valve seat, so that injection and stop of injection of both the first fluid and the second fluid are performed. By injecting and stopping the injection of the second fluid, the second valve portion separates from and seats on the second valve seat.
  • FIG. 1 is a block diagram showing a schematic configuration of a fuel injection system of a first embodiment.
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure of the fluid ejecting apparatus according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing an operation example of the fluid ejection device of the first embodiment. ⁇ 0 2020/174898 3 ⁇ (: 170? 2020 /000824
  • FIG. 4 is a cross-sectional view showing a cross-sectional structure of a fluid ejecting apparatus of a first modified example of the first embodiment.
  • FIG. 5 is a sectional view showing a sectional structure of a fluid ejecting apparatus according to a second embodiment.
  • FIG. 6 is a cross-sectional view showing a cross-sectional structure of a fluid ejection device of a comparative example.
  • FIG. 7 is a sectional view showing a sectional structure of a fluid ejecting apparatus according to a third embodiment.
  • FIG. 8 is a sectional view showing a sectional structure of a fluid ejection device of a comparative example.
  • FIG. 9 is a sectional view showing a sectional structure of a fluid ejecting apparatus according to a fourth embodiment.
  • FIG. 10 is a sectional view showing a sectional structure of a fluid ejecting apparatus according to a fifth embodiment.
  • FIG. 11 is a cross-sectional view showing an operation example of the fluid ejection device of the fifth embodiment.
  • FIG. 12 is a sectional view showing a sectional structure of a fluid ejecting apparatus according to a sixth embodiment.
  • the fuel injection system 1 shown in Fig. 1 is a system that injects two kinds of fuel, ⁇ ° and light oil, into the cylinder 100 of the diesel engine of the vehicle.
  • ⁇ ° is the main fuel of the diesel engine.
  • Light oil is used as a fuel for ignition.
  • light oil corresponds to the first fluid,
  • the second fluid which is a flammable gas.
  • the fuel injection system 1 includes a fluid injection device 10, a gas fuel tank 110, a liquid fuel tank 120, a gas fuel pump 1300, a liquid fuel pump 1440, and a drive unit 150.
  • a controller 1600 In this embodiment, the controller 160 corresponds to the control unit.
  • the gas fuel pump 1300 pumps the gas fuel tank 1100 filled in to the fluid injection device 1O. Alternatively, the gas fuel pump 1300 pressure-feeds !_° filled in the gas fuel tank 1100 to the fluid injection device 1 0 as the pressure increased to a pressure necessary for injection.
  • the liquid fuel tank 120 is filled with light oil. The liquid fuel pump 140 sends the light oil filled in the liquid fuel tank 120 to the fluid injection device 10 under pressure.
  • the fluid ejecting apparatus 10 includes a valve body 20 formed in a cylindrical shape around the axis 1 and a valve body 30 housed inside the valve body 20.
  • the valve body 30 is displaced in the direction along the axis 1 based on the driving force applied from the driving unit 150.
  • the drive unit 150 for example, an actuator that displaces the valve body 30 by applying an electromagnetic force to the valve body 30 by using solenoid or the like can be used.
  • the valve body 30 opens and closes.
  • the fluid injection device 100 when the valve body 30 is opened, and the light oil is injected into the cylinder 100 of the diesel engine.
  • the controller 160 is mainly composed of a micro computer having a II and a memory.
  • the controller 1600 controls the gas fuel pump 1300 so that the fluid injection device 1 Adjust the pressure of. Further, the controller 160 controls the liquid fuel pump 140 to adjust the pressure of the light oil supplied to the fluid injection device 10.
  • the controller 1600 controls the gas fuel pump 1300 and the liquid fuel pump 1440 so that the pressure of 0 and the pressure of light oil supplied to the fluid injection device 10 are the same. There is. Further, the controller 160 controls the drive unit 150 to control the opening/closing operation of the valve body 30.
  • the controller 1600 controls the injection amount and injection timing of 0 0 and light oil injected into the cylinder 100 by controlling the gas fuel pump 1300, the liquid fuel pump 1440, and the drive unit 150. Execute the controlled fuel injection control.
  • the valve body 20 is formed in a cylindrical shape around the axis 1. Note that in the following, for convenience, of the directions 1 and 2 parallel to the axis 1 shown in FIG. 2, one direction is also referred to as an upper direction and two directions are also referred to as a lower direction.
  • a first valve body accommodating hole is formed so as to extend along the axis 1.
  • the first valve body accommodating hole 21 is formed so as to extend upward from the tip end portion of the valve body 20.
  • the second valve body accommodation hole 22 is formed so as to communicate with the upper end portion of the first valve body accommodation hole 21.
  • the cross sections of the first valve body housing hole 2 1 and the second valve body housing hole 22 which are orthogonal to the axis 1 are circular.
  • the inner diameter of the second valve body accommodation hole 22 is larger than the inner diameter of the first valve body accommodation hole 21.
  • the valve body 30 is accommodated in the first valve body accommodation hole 21 and the second valve body accommodation hole 22.
  • the gap formed between the inner peripheral surface of the second valve body accommodating hole 22 and the outer peripheral surface of the valve body 30 constitutes the first supply passage 11 1.
  • Light oil is supplied to the first supply channel ⁇ / 1 1.
  • the gap formed between the inner peripheral surface of the first valve body accommodating hole 21 and the outer peripheral surface of the valve body 30 constitutes a second supply flow path] 2.
  • the 3rd valve formed in the valve body 20 Is being supplied.
  • a sliding seal portion 40 is provided between the inner peripheral surface of the upper end portion of the first valve body housing hole 21 and the outer peripheral surface of the valve body 30.
  • the sliding seal portion 40 is formed in an annular shape around the axis 1.
  • the sliding seal portion 40 seals a gap formed between the inner peripheral surface of the first valve body accommodating hole 21 and the outer peripheral surface of the valve body 30.
  • the first supply channel ⁇ / 1 1 and the second supply channel ⁇ / 12 are configured as independent channels.
  • the sliding seal portion 40 supports the valve body 30 slidably in the direction along the axis 1.
  • An injection hole 29 is formed in the center of the tip of the valve body 20 so as to penetrate from the first valve body housing hole 21 to the outside of the valve body 20. Nozzle 29 is And light oil are injected into the cylinder 100.
  • a conical surface 24 is formed on the inner peripheral surface of the first valve body accommodation hole 21 at a portion located at the tip of the valve body 20. ⁇ 0 2020/174898 6 ⁇ (: 170? 2020 /000824
  • the conical surface 24 is formed centering on the axis 1 and is formed such that the cross-sectional area of the internal space orthogonal to the axis 1 becomes smaller as it approaches the injection hole 29.
  • the valve body 30 is formed in a bottomed cylindrical shape centering on the axis 1.
  • the tip of the valve body 30 is formed in a conical shape around the axis 1.
  • the conical surface 35 formed at the tip of the valve body 30 is arranged so as to face the conical surface 24 of the valve body 20.
  • the conical surface 35 is provided with an annular groove 34 formed in an annular shape around the axis 1.
  • the conical surface 35 of the valve body 30 has two surfaces bounded by the annular groove 3 4. It is divided into 3 610.
  • the one surface 368 will be referred to as the "first valve portion 36.sub.3" and the other surface 36.sub.6 will be referred to as the "second valve portion 36.sub.6".
  • the valve body 30 has an introduction flow passage 32 formed so as to penetrate from the outer peripheral surface of the valve body 30 facing the first supply flow passage 11 to the inner peripheral surface of the introduction flow passage 31.
  • a plurality of introducing channels 33 are formed at the tip of the valve body 30 so as to extend from the annular groove 34 to the inner peripheral surface of the introducing channel 31.
  • the first valve portion 3 6 3 and the second valve portion 3 6 of the valve body 30 are placed on the conical surface 24 of the valve body 20. I am sitting.
  • the surface on which the first valve portion 3 63 of the valve body 30 sits is referred to as the first valve seat 2 5 3 and the second valve of the valve body 30
  • the surface on which the part 36 is seated is called the second valve seat 25.
  • a gap may be formed between the second valve seat 25 of the valve body 20 and the second valve portion 36 of the valve body 30. If a gap is formed between them, there is a concern that ⁇ ° and light oil may leak to the outside even though the valve body 30 is closed.
  • the first valve unit 3 63 and the second valve unit 3 6 of the valve body 30 are The part 36 is separated from the first valve seat 2 53 and the second valve seat 25 of the valve body 20. That is, the valve body 30 is opened by the physical displacement of the first valve portion 363 and the second valve portion 36 along with the displacement of the valve body 30.
  • the first injection passage ⁇ 2 1 is formed between the first valve portion 3 6 3 of the valve body 30 and the first valve seat 2 5 3 of the valve body 20 and the valve body 3
  • a second injection passage ⁇ / 2 2 is formed between the second valve portion 36 of 0 and the second valve seat 25 of the valve body 20. Therefore, the first supply channel]
  • the light oil supplied to 1 is injected from the injection hole 29 through the introduction flow paths 31 to 33 and the first injection flow path ⁇ /21 of the valve body 30. Further, 0° supplied to the second supply flow path ⁇ / 12 is injected from the injection hole 29 through the second injection flow path 22 and the first injection flow path 21. Therefore, light oil and Is injected into the cylinder 100.
  • the first valve portion 3 of the valve body 30 is
  • valve body 30 ⁇ 0 2020/174898 8 ⁇ (: 170? 2020 /000824
  • the second valve portion 36 of the valve seat is separated from and seated on the second valve seat 25 of the valve body 20. Injection and stop of injection are performed.
  • first valve part 3 63 and the second valve part 36 are formed in one valve body 30, it corresponds to each of the two types of fluid like the conventional fuel injection device.
  • the structure can be simplified as compared with the structure having three valve bodies.
  • the first valve section 3 63 and the second valve section 36 of the valve body 30 are the first valve section of the valve body 20.
  • the light oil is the first injection flow path of the 1st injection flow path 1 and the 2nd injection flow path 2 2 ⁇ / 2 1 Only 0 flows through the first and second injection channels 21 and 22 and is injected. With such a configuration, it is possible to eject two types of fluid with a simple structure.
  • the valve body 30 has an introduction passage 3 1 for introducing light oil into the first injection passage ⁇ / 21.
  • ⁇ 33 are formed. With such a configuration, it is possible to simplify the structure for injecting light oil.
  • the same conical surface 35 having a first valve portion 3 6 3 and the second valve portion 3 6 spoon coaxially is formed.
  • the valve body 20 is formed with the same conical surface 24 having the first valve seat 25 3 and the second valve seat 25 coaxially.
  • the conical surface 35 of the valve body 30 is brought into contact with the conical surface 24 of the valve body 20 by the axial driving force applied to the valve body 30 from the drive section 150. Then, due to the wedge effect, a force greater than the axial force applied to the valve body 30 is applied to the contact portion between the first valve seat 2 5 3 and the first valve portion 3 6 3, and the second valve. It can be applied to the contact portion between the seat 25 and the second valve portion 36. Therefore, the valve body 30 can be closed more accurately.
  • the first valve portion 363 and the second valve portion 613 are formed as surfaces on the conical surface 35 of the valve body 30.
  • the first valve seat 2 53 and the second valve seat 25 are formed as surfaces on the conical surface 24 of the valve body 20.
  • the conical surface 35 of the valve body 30 has a ring ⁇ 0 2020/174898 9 ⁇ (: 170? 2020 /000824
  • a groove 3 4 is formed.
  • the conical surface 35 of the valve body 30 is formed with a first valve portion 3 63 and a second valve portion 36 with a portion corresponding to the annular groove 34 as a boundary.
  • a first valve seat 25 3 and a second valve seat 25 are formed on the conical surface 24 of the valve body 20 with a portion corresponding to the annular groove 34 as a boundary.
  • the first valve seat 25 3 and the second valve seat 25 are formed on the conical surface 24 of the valve body 20 with ridge lines, and the conical surface 3 of the valve body 30 is formed.
  • the machining of the valve body 20 and the valve body 30 becomes easier.
  • the light oil flowing through the plurality of introduction channels 33 flows into the annular groove 34, so that the light oil flows in the circumferential direction of the conical surface 35 of the valve body 30. Since it is possible to reduce the variation in the flow rate distribution of, the unevenness in the injection state of the light oil injected from the fluid injection device 10 is less likely to occur.
  • the introduction flow passage 33 functions as a throttle unit that adjusts the flow rate of the light oil supplied from the introduction flow passage 3 1 to the first injection flow passage ⁇ / 21. With such a configuration, it is possible to easily adjust the injection amount of light oil.
  • the pressure for injection applied to light oil and the pressure for injection applied to 0.00 are set to the same pressure. According to such a configuration, light oil supplied from the introduction flow passage 33 of the valve body 30 to the first injection flow passage ⁇ / 2 1 flows to the second supply flow passage ⁇ / 12 2, It is possible to avoid that 0 supplied from the second supply flow passage ⁇ / 12 to the second injection flow passage ⁇ / 2 2 flows into the introduction flow passage 33 of the valve body 30. Therefore, it is difficult for the light oil and XX to mix inside the fluid ejection device 10. ⁇ 0 2020/174898 10 (: 17 2020 /000824
  • the fluid ejection device 10 ejects light oil, which is a liquid, and OO, which is a gas. According to such a configuration, it is possible to utilize the expansion energy of the gas ⁇ ° to improve the injection speed of the liquid gas oil and to atomize the liquid gas oil more. ..
  • an annular groove 14 and a supply channel 15 are formed as a channel for supplying 0° to the second supply channel 12.
  • Annular groove An annular shape is formed on the outer peripheral surface of the valve body 20.
  • the supply channel ⁇ / 15 is formed so as to connect the annular groove ⁇ / 14 and the second supply channel ⁇ / 1 2.
  • is supplied from the gas fuel pump 1300 to the annular groove 14.
  • Supplied to annular groove 1 4 It is supplied to the second supply channel ⁇ / 1 2 through the supply channel ⁇ / 1 5. Even with such a configuration, the second supply flow formed inside the valve body 20 Can be supplied.
  • the controller 1600 of the present modification is configured so that the gas fuel pump 1300 and the liquid fuel pump 1440 are controlled so that the pressure of OO is higher than the pressure of the light oil supplied to the fluid injection device 10. Control. That is, in this modification, the pressure for injection applied to OO is higher than the pressure for injection applied to light oil. With such a configuration, it is possible to inject light oil using the flow velocity of 0.00. Further, since the pressure applied to the light oil for injection can be reduced, it is possible to use a small-sized pump as the liquid fuel pump 140.
  • the pressure applied to the light oil for injection can be set to zero. With such a configuration, the liquid fuel pump 140 itself is unnecessary. ⁇ 0 2020/174898 1 1 ⁇ (: 170? 2020 /000824
  • the controller 160 of the present modified example uses the gas fuel pump 130 and the liquid fuel pump 140 so that the pressure of the light oil is higher than the pressure of 0 supplied to the fluid injection device 10.
  • the pressure for injection applied to diesel fuel is higher than the pressure for injection applied to XOO.
  • the controller 160 of the present modification executes drive control for adjusting the lift amount, valve opening time, etc. of the valve body 30 by controlling the drive unit 150.
  • the controller 1600 responds to the situation by controlling the drive of the valve body 30. Adjust the firing rate.
  • the controller 160 controls the liquid fuel pump 140 to perform pressure control for adjusting the pressure applied to the light oil for injection.
  • the controller 160 controls the injection amount of light oil through the pressure control of the liquid fuel pump 140. According to such a configuration, It is possible to control the injection amount of both ⁇ and diesel oil without the need for pressure regulation.
  • the fluid ejecting apparatus 10 of the present embodiment has the first valve portion 3 6 3 and the second valve portion 36 6 of the valve body 30.
  • the entire surface of each of the is configured to contact the conical surface 24 of the valve body 20. More thereto, when the contact portion between the first valve seat 2 5 3 and the valve element 3 first valve portion 3 6 3 0 of the valve body 2 0 and the first isolation portion, the inner diameter of the first isolation portions ⁇ 1 0 Is equal to the inner diameter of the first valve portion 3 63 of the valve body 30 and the outer diameter ⁇ 11 of the first seat portion is equal to the outer diameter of the first valve portion 3 63 of the valve body 30.
  • the inner diameter ⁇ 20 of the second seat portion is The inner diameter of the second valve portion 36 of the valve body 30 is equal to the outer diameter ⁇ 2 1 of the second seal portion is equal to the outer diameter of the second valve portion 36 of the valve body 30.
  • FIG. 6 shows, as a comparative example, a fluid injection device 10 configured such that a part of the first valve portion 3 63 of the valve body 30 contacts the conical surface 24 of the valve body 20.
  • the cross-sectional structure is illustrated.
  • the inner diameter ⁇ 10 of the first seat portion is equal to the inner diameter of the conical surface 24 of the valve body 20 and the outer diameter 0 1 1 of the first seat portion is the first valve portion 3 of the valve body 30. It is equal to the outer diameter of 6 3.
  • the accuracy of the concentricity of the four diameters 0 1 0, 0 1 1, 0 2 0, ⁇ 2 1 and the accuracy of the widths of the first and second seat parts are In order to raise the height, a high machining accuracy is required for each of the conical surface 24 of the valve body 20 and each of the valve portions 3 63, 3 6 of the valve body 30. Therefore, it may be difficult to improve the accuracy of the concentricity and width of the first sheet portion and the second sheet portion.
  • each valve part of the valve body 30 With regard to 3 6 13 it is only necessary to increase the processing accuracy. Therefore, it is possible to easily improve the accuracy of the concentricity and width of the first and second seat portions.
  • the first valve portion 3 63 and the second valve portion 3 6 of the valve body 30 have the first valve seat 2 of the valve body 20.
  • the entire surface of the first valve portion 36 3 and the entire surface of the second valve portion 36 contact the conical surface 24 of the valve body 20.
  • the inner diameter 0 1 0 and the outer diameter 0 11 of the first seat portion, the inner diameter 0 2 0 and the outer diameter ⁇ 2 1 of the second seat portion, and the accuracy of the first sheet It becomes easy to improve the accuracy of the width of the second portion and the second sheet portion.
  • a flat surface 37 is formed at the tip of the valve body 30.
  • the plane surface 37 is provided with an annular groove 34 formed in an annular shape around the axis 1.
  • the valve body 30 is formed with a plurality of introduction channels 33 so as to extend from the annular groove 34 to the inner peripheral surface of the introduction channel 31.
  • a concave portion 38 which is formed in a circular shape around the axis 1, is provided in a portion inside the annular groove 34 on the plane 37.
  • a flat surface 26 is formed in a portion of the inner peripheral surface of the first valve body housing hole 21 of the valve body 20 located at the tip of the valve body 20.
  • the plane 26 of the valve body 20 faces the plane 37 of the valve body 30.
  • An injection hole 29 is formed at the center of the tip of the valve body 20 so as to penetrate from the first valve body accommodation hole 21 to the tip surface of the valve body 20.
  • the inner diameter of the injection hole 29 is smaller than the inner diameter of the recess 38 of the valve body 30.
  • the plane 37 of the valve body 30 is bounded by the annular groove 34. It is divided into 3 6 b.
  • one surface 3 63 is referred to as “first valve portion 3 63” and the other surface 36 6 is referred to as "second valve portion 3 6".
  • the first valve portion 36 is a portion of the plane 37 of the valve body 30 that is located inside the annular groove 34 and outside the recess 38, and that is also the valve body 20. It is a portion facing the plane 26 of.
  • the second valve section 36 has a circular groove 34 in the plane 37 of the valve body 30. ⁇ 0 2020/174898 14 ⁇ (: 170? 2020 /000824
  • the portion where the first valve portion 3 63 of the valve body 30 comes into contact when the valve body 30 closes constitutes the first valve seat 2 5 3.
  • the portion of the valve body 30 in contact with the second valve portion 36 has the second valve seat 25.
  • the entire surface of the first valve portion 3 6 3 of the valve body 30 is a flat surface 2 6 of the valve body 20. Is configured to contact.
  • the inner diameter 0 1 0 of the first seat portion is The inner diameter of the first valve portion 3 63 of the valve body 30 is equal to the outer diameter ⁇ 1 1 of the first seat portion is equal to the outer diameter of the first valve portion 3 6 3 of the valve body 30.
  • the inner diameter 0 2 0 of the second seat portion is The inner diameter of the second valve portion 36 of the body 30 is equal to the outer diameter 0 21 of the second seat portion is equal to the outer diameter of the second valve portion 36 of the valve body 30.
  • FIG. 8 illustrates a cross-sectional structure of the fluid ejection device 10 in which the recess 37 is not provided in the plane 37 of the valve body 30.
  • the inner diameter 0 1 0 of the first cover part is equal to the inner diameter of the flat face 26 of the valve body 20 and the outer diameter 0 1 1 of the first cover part is the first valve part 3 of the valve body 30. It is equal to the outer diameter of 6 3.
  • the accuracy of the concentricity of the four diameters ⁇ 1 0, 0 1 1, 0 2 0, ⁇ 2 1 and the accuracy of the width of each of the first and second seat parts are To increase the valve body
  • each valve part of the valve body 30 With regard to 3 6 13 it is only necessary to increase the processing accuracy. That ⁇ 0 2020/174898 15 ⁇ (: 170? 2020 /000824
  • the first valve section 363 and the second valve section 36 are formed as planes on the plane 37 of the valve body 30.
  • the first valve seat 2 53 and the second valve seat 25 are formed as planes on the flat surface 26 of the valve body 20.
  • a first valve portion 36 3 and a second valve portion 36 6 are formed on the plane of the valve body 30 with a portion corresponding to the annular groove 34 as a boundary.
  • a first valve seat 25 3 and a second valve seat 25 are formed on a plane 26 of the valve body 20 with a portion corresponding to the annular groove 34 as a boundary.
  • the first valve seat 25 3 and the second valve seat 25 are formed by the ridge line on the plane 26 of the valve body 20 and the first valve seat 25 is formed on the plane 37 of the valve body 30.
  • a sack portion 27 having a hemispherical space is formed in a portion of the valve body 20 that abuts the tip end of the conical surface 24. ..
  • a plurality of injection holes 29 are formed in the valve body 20 so as to penetrate from the inner peripheral surface of the sack portion 27 to the tip surface of the valve body 20.
  • the valve body 30 opens, it passes through the first injection flow path ⁇ / 2 1 and after light oil is temporarily stored in the sack portion 27, it is It is injected from the injection hole 29.
  • the first ejection flow path orthogonal to the axis 1
  • valve body accommodation hole 21 is formed so as to penetrate the tip surface 28 of the valve body 20.
  • the valve body 30 is accommodated in the valve body accommodation hole 21.
  • Inner peripheral surface of valve body receiving hole 21 and valve body 30 ⁇ 0 2020/174898 17 ⁇ (: 170? 2020 /000824
  • the gap formed between the outer peripheral surface and the outer peripheral surface constitutes the second supply channel 12 through which 0° flows.
  • the valve body 20 has An annular groove ⁇ / 14 and a supply channel ⁇ / 15 are formed as a flow path for supplying the gas.
  • the annular groove ⁇ / 14 is formed in an annular shape on the outer peripheral surface of the valve body 20.
  • the supply channel ⁇ / 15 is formed so as to connect the annular groove ⁇ / 14 and the second supply channel ⁇ / 1 2.
  • is supplied from the gas fuel pump 130 to the annular groove 14.
  • the 0° supplied to the annular groove 14 is supplied to the second supply channel ⁇ / 1 2 through the supply channel ⁇ / 15.
  • a conical surface 52 is formed at the opening of the valve body accommodation hole 21.
  • the conical surface 52 is formed in a divergent shape so that the inner diameter increases toward the tip surface 28 of the valve body 20.
  • Conical surface 52 On the conical surface 52, an annular groove 50 formed in an annular shape centering on the axis ⁇ ! 1 is formed.
  • Conical surface 52 is an annular groove It is divided into 5 1 swallows. In the following, one surface will be referred to as the “first valve seat 5 13 ”, and the other surface 5 1 will be referred to as the “second valve seat 5 1 stub”.
  • a plurality of first supply flow paths 11 through which light oil flows are formed in a portion of the valve body 20 that surrounds the valve body accommodation hole 21.
  • the plurality of first supply channels 11 are formed so as to extend parallel to the axis 1.
  • Each first supply channel ⁇ / 11 is communicated with the annular groove 50 through the introduction channel 5 1.
  • the tip portion 60 of the valve body 30 is formed in a truncated cone shape so that the outer diameter increases toward the lower side.
  • a conical surface 61 formed on the outer circumference of the tip portion 60 faces the conical surface 52 of the valve body 20.
  • the conical surface 6 1 of the valve body 30 causes the first valve seat 5 1 3 and the second valve seat 5 1 3 Seat 5 1 Seated in a swamp.
  • the conical surface 61 of the valve body 3 0 refers to the surface in contact with the first valve seat 5 1 3 of the valve body 2 0 and the first valve portion 6 2 3, the valve body 2 0 second valve
  • the surface that contacts the seat 51 is called the second valve portion 62.
  • the drive unit 150 moves the valve body 30 downward from the state shown in FIG. 11, as shown in FIG. 10, as shown in FIG.
  • the second valve portion 62 is separated from the first valve seat 5 1 3 and the second valve seat 51 of the valve body 20.
  • the first injection passage ⁇ / 2 1 is formed between the first valve portion 6 2 3 of the valve body 30 and the first valve seat 5 13 of the valve body 20 and the valve is
  • a second injection passage 22 is formed between the second valve portion 36 of the body 30 and the second valve seat 51 of the valve body 20. Therefore, the light oil supplied to the first supply flow path ⁇ / 1 1 is injected through the introduction flow path 5 1 and the first injection flow path ⁇ / 2 1. Further, 0° supplied to the second supply channel ⁇ / 12 is injected through the second injection channel 22 and the first injection channel 2 1. Therefore, light oil and Is injected into the cylinder 100.
  • the first valve portion 6 of the valve body 30 is
  • valve portion 6 2 of the valve body 30 separates from and seats on the second valve seat 5 1 of the valve body 20, Injection and stop of injection are performed.
  • the fluid injection device 10 of the present embodiment is used as a urea water injection device that injects urea water into the exhaust gas for the purpose of purifying exhaust gas of the vehicle.
  • the fluid ejecting apparatus 10 is configured to drive the valve body 30 by using fluid pressure to drive the valve body 30 instead of the drive unit 150 applying an external force to the valve body 30.
  • the outer diameter of the sliding portion 63 that is a portion that slides with respect to the sliding seal portion 40 is , And is larger than the outer diameter of the intermediate portion 64 on the tip side.
  • a step portion 65 is formed between the sliding portion 63 and the intermediate portion 64.
  • the valve body 30 is biased toward the conical surface 24 of the valve body 20 by a spring 70 provided inside the valve body 20.
  • urea water is supplied to the first supply channel 11 of the present embodiment. Air is supplied to the second supply channel ⁇ / 12 through the third supply channel ⁇ / 13 3.
  • urea water corresponds to the first fluid, and air corresponds to the second fluid.
  • the controller 160 controls the fluid pressure applied to the valve body 30 by controlling the pump that pumps urea water to the fluid injection device 10 and the pump that pumps air to the fluid injection device 10. Adjust the urea water pressure and the air pressure so that they are larger than the urging force of the pulling 70. Since the fluid pressure applied to the valve body 30 becomes larger than the biasing force of the spring 70, the valve body 30 performs a riffing action against the biasing force of the spring 70 and the valve body 30 opens. Speak.
  • the annular groove 34 is the conical surface of the valve body 30.
  • the annular groove 34 may be formed on at least one of the plane 37 of the valve body 30 and the plane 26 of the valve body 20. The same applies to other embodiments.
  • the injection pressure of light oil which is fuel
  • the fluid injection device 10 of each embodiment is configured to inject light oil and air.
  • the pressure of air can be utilized to atomize and inject light oil, which makes it possible to solve the above-mentioned problems of diesel engines.
  • the gas is not combustible, so it is not necessary to consider the leakage of combustible substances in the pump or the like. Therefore, the structure of the pump can be simplified. Also, a tank for storing gas is not required.
  • the injection pressure of gasoline which is a fuel
  • the fluid injection device 10 of each embodiment is configured to inject gas and air.
  • the pressure of the air can be used to atomize and inject gasoline, which makes it possible to solve the problems of the gasoline engine described above.
  • the injection pressure applied to the air may be set to a constant pressure.
  • the controller 160 controls the air pump so that the injection pressure applied to the air is constant.
  • the controller 160 controls the pump for liquid fuel to perform pressure control for adjusting the pressure for injection applied to the liquid fuel.
  • the controller 160 controls the drive unit 150 to execute drive control for adjusting the lift amount and valve opening time of the valve body 30.
  • the controller 160 controls the injection amounts of air and liquid fuel through the pressure control of the liquid fuel and the drive control of the valve body 30. According to such a configuration, the configuration for controlling the pressure of air is not necessary, so that the gas fuel pump 130 can be simplified.
  • the two types of fluids used in the fluid ejection device 10 of each embodiment can be changed as appropriate.
  • propane gas (I-0) or the like may be used as the combustible gas.
  • propane gas When propane gas is used, it is compressed to about 1 [IV! 3] and supplied to the fluid ejecting apparatus 10 so that the propane gas is in a liquid state inside the fluid ejecting apparatus 10. May exist in. That is, the gas used in the fluid ejection device 10 includes a fluid that is a gas at room temperature and atmospheric pressure.
  • the controller 160 and its control method described in the present disclosure are provided by configuring a processor and a memory programmed to perform one or more functions embodied by a computer program. It may be realized by one or more dedicated computers. The controller 160 and its control method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor including one or more dedicated hardware logic circuits. A controller 160 and control method thereof described in this disclosure provides a processor and memory programmed to perform one or more functions and a processor including one or more hardware logic circuits. ⁇ 0 2020/174898 22 ⁇ (: 170? 2020 /000824
  • the computer program may be stored in a computer-readable non-transition tangible recording medium as instructions executed by the computer.
  • the dedicated hardware logic circuit and the hardware logic circuit may be realized by a digital circuit including a plurality of logic circuits or an analog circuit.
  • the present disclosure is not limited to the above specific examples. Those obtained by those skilled in the art who have made appropriate design changes to the above specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure.
  • the elements included in each of the above-described specific examples, and the arrangement, conditions, shapes, and the like of the elements are not limited to those illustrated, but can be appropriately changed.
  • the respective elements included in the above-described specific examples can be appropriately combined as long as no technical contradiction occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

This fluid injection apparatus is provided with a valve body (20) and a valving element (30). The valve body has a first valve seat (25a) and a second valve seat (25b). The valving element has a first valve part (36a) and a second valve part (36b) which are seated and unseated with respect to the first valve seat and the second valve seat, and which are disposed opposite the first and second valve seats, respectively. In response to displacement of the valving element, the first valving element and the second valving element are displaced integrally. When the first valve part is unseated and seated with respect to the first valve seat, injection of both a first fluid and a second fluid and termination of injection thereof take place, respectively. When the second valve part is unseated and seated with respect to the second valve seat, injection of the second fluid and termination of injection thereof take place, respectively.

Description

\¥0 2020/174898 1 卩(:17 2020 /000824 明 細 書 \¥0 2020/174898 1 ((17 2020/000824 Clarification
発明の名称 : 流体噴射装置 Title of invention: Fluid ejection device
関連出願の相互参照 Cross-reference of related applications
[0001 ] 本出願は、 2 0 1 9年2月 2 7日に出願された日本国特許出願 2 0 1 9— [0001] This application is a Japanese patent application filed on Feb. 27, 1921.
0 3 4 4 8 5号に基づくものであって、 その優先権の利益を主張するもので あり、 その特許出願の全ての内容が、 参照により本明細書に組み込まれる。 技術分野 No. 0 3 4 4 8 5 and claims the benefit of its priority, the entire contents of which patent application is incorporated herein by reference. Technical field
[0002] 本開示は、 流体噴射装置に関する。 [0002] The present disclosure relates to a fluid ejection device.
背景技術 Background technology
[0003] 近年、 車両から排出される二酸化炭素の削減やエミッションの低減を目的 として、 ディーゼルエンジンの燃料として軽油に代えて〇 ◦ (圧縮天然ガ ス) を用いる車両が開発されている。 〇 〇は、 軽油と比較すると着火性が 悪いため、 ディーゼルエンジンの気筒内で圧縮した際に燃焼し難いという問 題がある。 そこで、 着火用に少量の軽油をディーゼルエンジンの気筒内に噴 射することが検討されている。 このような構成の場合、 2種類の燃料を噴射 する燃料噴射装置をディーゼルエンジンに搭載する必要がある。 従来、 2種 類の燃料を噴射する燃料噴射装置としては、 例えば下記の特許文献 1 に記載 の燃料噴射装置がある。 [0003] In recent years, for the purpose of reducing carbon dioxide emitted from vehicles and reducing emissions, vehicles have been developed that use 〇 ◦ (compressed natural gas) as fuel for diesel engines instead of diesel oil. There is a problem that OO is less likely to burn when compressed in the cylinder of a diesel engine because it has a poorer ignitability than diesel oil. Therefore, it is considered to inject a small amount of light oil into the cylinder of a diesel engine for ignition. With such a configuration, it is necessary to install a fuel injection device that injects two types of fuel in the diesel engine. Conventionally, as a fuel injection device for injecting two kinds of fuel, for example, there is a fuel injection device described in Patent Document 1 below.
[0004] 特許文献 1 に記載の燃料噴射装置は、 第 1燃料及び第 2燃料の噴射を制御 するように構成される第 1弁二ード及び第 2弁二ードルと、 第 1弁二ードル 及び第 2弁二ードルのそれぞれに関連する第 1制御室及び第 2制御室と、 第 1制御弁と、 第 2制御弁とを備えている。 第 1制御弁は、 第 1制御弁部材を 備え、 第 1弁二ードルの開放及び閉鎖が行われるように第 1制御室の制御流 体の圧力を変化させるように構成されている。 第 2制御弁は、 第 2制御弁部 材を備え、 第 2弁二ードルの開放及び閉鎖が行われるように第 2制御室の制 御流体の圧力を変化させるように構成されている。 第 1制御弁部材及び第 2 制御弁部材は、 共通制御弁軸に沿って直線動作するように構成されている。 \¥0 2020/174898 2 卩(:17 2020 /000824 先行技術文献 [0004] The fuel injection device described in Patent Document 1 includes a first valve needle and a second valve needle, and a first valve needle that are configured to control the injection of the first fuel and the second fuel. The first control chamber and the second control chamber, the first control valve, and the second control valve, which are associated with the second and second valves, respectively. The first control valve includes a first control valve member and is configured to change the pressure of the control fluid in the first control chamber so that the first valve needle is opened and closed. The second control valve includes a second control valve member and is configured to change the pressure of the control fluid in the second control chamber so that the second valve needle is opened and closed. The first control valve member and the second control valve member are configured to linearly move along the common control valve shaft. \\0 2020/174898 2 (: 17 2020/000824 Prior art documents)
特許文献 Patent literature
[0005] 特許文献 1 :特表 2 0 1 6 - 5 1 9 2 4 9号公報 [0005] Patent Document 1: Special Table 2 0 1 6-5 1 9 2 4 9 Publication
発明の概要 Summary of the invention
[0006] 特許文献 1 に記載の燃料噴射装置では、 2種類の燃料を噴射するために、 [0006] In the fuel injection device described in Patent Document 1, in order to inject two types of fuel,
2つの制御弁が必要であるため、 構造が複雑化する可能性がある。 Two control valves are required, which can complicate the structure.
なお、 このような課題は、 2種類の燃料を噴射する燃料噴射装置に限らず 、 任意の 2種類の流体を噴射する流体噴射装置に共通する課題である。 It should be noted that such a problem is not limited to a fuel injection device that injects two types of fuel, but is a problem that is common to fluid injection devices that inject any two types of fluid.
[0007] 本開示の目的は、 2種類の流体を噴射する構成でありながら、 構造を簡素 化することの可能な流体噴射装置を提供することにある。 [0007] An object of the present disclosure is to provide a fluid ejecting apparatus that has a structure that ejects two types of fluids and that can have a simple structure.
[0008] 本開示の一態様による流体噴射装置は、 弁ボディと、 弁体と、 を備える。 [0008] A fluid ejection device according to an aspect of the present disclosure includes: a valve body; and a valve body.
弁ボディは、 第 1弁座及び第 2弁座を有する。 弁体は、 第 1弁座及び第 2弁 座の両方に対向するように配置され、 第 1弁座に対して離座及び着座する第 1弁部、 並びに第 2弁座に対して離座及び着座する第 2弁部を有する。 弁体 の変位に伴って第 1弁体及び第 2弁体が _体的に変位する。 第 1弁部が第 1 弁座に対して離座及び着座することにより、 第 1流体及び第 2流体の両方の 噴射及び噴射の停止が行われる。 第 2弁部が第 2弁座に対して離座及び着座 することにより、 第 2流体の噴射及び噴射の停止が行われる。 The valve body has a first valve seat and a second valve seat. The valve body is arranged so as to face both the first valve seat and the second valve seat, and is separated from and seated on the first valve seat and the second valve seat. And has a seated second valve. With the displacement of the valve body, the first valve body and the second valve body are physically displaced. The first valve portion separates from and seats on the first valve seat, so that injection and stop of injection of both the first fluid and the second fluid are performed. By injecting and stopping the injection of the second fluid, the second valve portion separates from and seats on the second valve seat.
[0009] この構成によれば、 一つの弁体に第 1弁部及び第 2弁部が形成されている ため、 従来の燃料噴射装置のように、 第 1流体に対応する弁体、 及び第 2流 体に対応する弁体を別々に有する構造と比較すると、 構造を簡素化すること が可能である。 [0009] According to this configuration, since the first valve portion and the second valve portion are formed in one valve body, the valve body corresponding to the first fluid, as in the conventional fuel injection device, and the first valve portion and the second valve portion are formed. It is possible to simplify the structure compared to the structure with separate valve bodies corresponding to the two fluids.
図面の簡単な説明 Brief description of the drawings
[0010] [図 1]図 1は、 第 1実施形態の燃料噴射システムの概略構成を示すブロック図 である。 [0010] [FIG. 1] FIG. 1 is a block diagram showing a schematic configuration of a fuel injection system of a first embodiment.
[図 2]図 2は、 第 1実施形態の流体噴射装置の断面構造を示す断面図である。 [図 3]図 3は、 第 1実施形態の流体噴射装置の動作例を示す断面図である。 \¥0 2020/174898 3 卩(:170? 2020 /000824 [FIG. 2] FIG. 2 is a cross-sectional view showing a cross-sectional structure of the fluid ejecting apparatus according to the first embodiment. [FIG. 3] FIG. 3 is a cross-sectional view showing an operation example of the fluid ejection device of the first embodiment. \\0 2020/174898 3 卩 (: 170? 2020 /000824
[図 4]図 4は、 第 1実施形態の第 1変形例の流体噴射装置の断面構造を示す断 面図である。 [FIG. 4] FIG. 4 is a cross-sectional view showing a cross-sectional structure of a fluid ejecting apparatus of a first modified example of the first embodiment.
[図 5]図 5は、 第 2実施形態の流体噴射装置の断面構造を示す断面図である。 [図 6]図 6は、 比較例の流体噴射装置の断面構造を示す断面図である。 [FIG. 5] FIG. 5 is a sectional view showing a sectional structure of a fluid ejecting apparatus according to a second embodiment. [FIG. 6] FIG. 6 is a cross-sectional view showing a cross-sectional structure of a fluid ejection device of a comparative example.
[図 7]図 7は、 第 3実施形態の流体噴射装置の断面構造を示す断面図である。 [図 8]図 8は、 比較例の流体噴射装置の断面構造を示す断面図である。 [FIG. 7] FIG. 7 is a sectional view showing a sectional structure of a fluid ejecting apparatus according to a third embodiment. [FIG. 8] FIG. 8 is a sectional view showing a sectional structure of a fluid ejection device of a comparative example.
[図 9]図 9は、 第 4実施形態の流体噴射装置の断面構造を示す断面図である。 [図 10]図 1 0は、 第 5実施形態の流体噴射装置の断面構造を示す断面図であ る。 [FIG. 9] FIG. 9 is a sectional view showing a sectional structure of a fluid ejecting apparatus according to a fourth embodiment. [FIG. 10] FIG. 10 is a sectional view showing a sectional structure of a fluid ejecting apparatus according to a fifth embodiment.
[図 1 1]図 1 1は、 第 5実施形態の流体噴射装置の動作例を示す断面図である [FIG. 11] FIG. 11 is a cross-sectional view showing an operation example of the fluid ejection device of the fifth embodiment.
[図 12]図 1 2は、 第 6実施形態の流体噴射装置の断面構造を示す断面図であ る。 [FIG. 12] FIG. 12 is a sectional view showing a sectional structure of a fluid ejecting apparatus according to a sixth embodiment.
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[001 1] 以下、 流体噴射装置の実施形態について図面を参照しながら説明する。 説 明の理解を容易にするため、 各図面において同一の構成要素に対しては可能 な限り同一の符号を付して、 重複する説明は省略する。 [001 1] Hereinafter, embodiments of the fluid ejection device will be described with reference to the drawings. In order to facilitate understanding of the explanation, the same constituent elements in each drawing are denoted by the same reference numerals as much as possible, and redundant description will be omitted.
<第 1実施形態> <First embodiment>
はじめに、 図 1 に示される燃料噴射システム 1の概要について説明する。 図 1 に示される燃料噴射システム 1は、 車両のディーゼルエンジンの気筒 1 0 0内に〇 ◦及び軽油の 2種類の燃料を噴射するシステムである、 〇 ◦ は、 ディーゼルエンジンの主燃料である。 軽油は、 着火用の燃料として用い られる。 本実施形態では、 軽油が第 1流体に相当し、
Figure imgf000005_0001
が、 可燃性ガス である第 2流体に相当する。 燃料噴射システム 1は、 流体噴射装置 1 0と、 気体燃料タンク 1 1 〇と、 液体燃料タンク 1 2 0と、 気体燃料ポンプ 1 3 0 と、 液体燃料ポンプ 1 4 0と、 駆動部 1 5 0と、 コントローラ 1 6 0とを備 えている。 本実施形態では、 コントローラ 1 6 0が制御部に相当する。
First, an outline of the fuel injection system 1 shown in Fig. 1 will be described. The fuel injection system 1 shown in Fig. 1 is a system that injects two kinds of fuel, ◯° and light oil, into the cylinder 100 of the diesel engine of the vehicle. ◯° is the main fuel of the diesel engine. Light oil is used as a fuel for ignition. In the present embodiment, light oil corresponds to the first fluid,
Figure imgf000005_0001
Corresponds to the second fluid, which is a flammable gas. The fuel injection system 1 includes a fluid injection device 10, a gas fuel tank 110, a liquid fuel tank 120, a gas fuel pump 1300, a liquid fuel pump 1440, and a drive unit 150. And a controller 1600. In this embodiment, the controller 160 corresponds to the control unit.
[0012] 気体燃料タンク 1 1 0には、 〇 〇、 又は〇 〇が低温液化した!- 〇 ( \¥0 2020/174898 4 卩(:170? 2020 /000824 [0012] In the gaseous fuel tank 110, OO, or OO has liquefied at low temperature! -〇 ( \\0 2020/174898 4 卩 (: 170? 2020 /000824
液化天然ガス) が充填されている。 気体燃料ポンプ 1 3 0は、 気体燃料タン ク 1 1 〇に充填されている を流体噴射装置 1 0に圧送する。 または、 気体燃料ポンプ 1 3 0は、 気体燃料タンク 1 1 0に充填されている !_ ◦を 、 噴射に必要な圧力に昇圧された〇 ◦として流体噴射装置 1 0に圧送する 。 液体燃料タンク 1 2 0には、 軽油が充填されている。 液体燃料ポンプ 1 4 〇は、 液体燃料タンク 1 2 0に充填されている軽油を流体噴射装置 1 0に圧 送する。 Liquefied natural gas). The gas fuel pump 1300 pumps the gas fuel tank 1100 filled in to the fluid injection device 1O. Alternatively, the gas fuel pump 1300 pressure-feeds !_° filled in the gas fuel tank 1100 to the fluid injection device 1 0 as the pressure increased to a pressure necessary for injection. The liquid fuel tank 120 is filled with light oil. The liquid fuel pump 140 sends the light oil filled in the liquid fuel tank 120 to the fluid injection device 10 under pressure.
[0013] 流体噴射装置 1 0は、 軸線 1 を中心に円筒状に形成される弁ボディ 2 0 と、 弁ボディ 2 0の内部に収容される弁体 3 0とを備えている。 弁体 3 0は 、 駆動部 1 5 0から付与される駆動力に基づいて軸線 1 に沿った方向に変 位する。 駆動部 1 5 0としては、 例えばソレノイ ド等を用いて弁体 3 0に電 磁力を付与することにより弁体 3 0を変位させるアクチユエータを用いるこ とができる。 駆動部 1 5 0によって弁体 3 0が変位することで、 弁体 3 0が 開閉動作する。 流体噴射装置 1 〇では、 弁体 3 0が開弁状態になることによ り、 及び軽油がディーゼルエンジンの気筒 1 0 0内に噴射される。 The fluid ejecting apparatus 10 includes a valve body 20 formed in a cylindrical shape around the axis 1 and a valve body 30 housed inside the valve body 20. The valve body 30 is displaced in the direction along the axis 1 based on the driving force applied from the driving unit 150. As the drive unit 150, for example, an actuator that displaces the valve body 30 by applying an electromagnetic force to the valve body 30 by using solenoid or the like can be used. When the valve body 30 is displaced by the drive unit 150, the valve body 30 opens and closes. In the fluid injection device 100, when the valve body 30 is opened, and the light oil is injected into the cylinder 100 of the diesel engine.
[0014] コントローラ 1 6 0は、 〇 IIやメモリ等を有するマイクロコンビユータ を中心に構成されている。 コントローラ 1 6 0は、 気体燃料ポンプ 1 3 0を 制御することにより、 流体噴射装置 1
Figure imgf000006_0001
の圧力を調整す る。 また、 コントローラ 1 6 0は、 液体燃料ポンプ 1 4 0を制御することに より、 流体噴射装置 1 〇に供給される軽油の圧力を調整する。 コントローラ 1 6 0は、 流体噴射装置 1 0に供給される 0 〇の圧力及び軽油の圧力が同 一の圧力となるように気体燃料ポンプ 1 3 0及び液体燃料ポンプ 1 4 0を制 御している。 さらに、 コントローラ 1 6 0は、 駆動部 1 5 0を制御すること により、 弁体 3 0の開閉動作を制御する。 コントローラ 1 6 0は、 気体燃料 ポンプ 1 3 0、 液体燃料ポンプ 1 4 0、 及び駆動部 1 5 0の制御を通じて、 気筒 1 0 0内に噴射される 0 〇及び軽油の噴射量や噴射時期を制御する燃 料噴射制御を実行する。
[0014] The controller 160 is mainly composed of a micro computer having a II and a memory. The controller 1600 controls the gas fuel pump 1300 so that the fluid injection device 1
Figure imgf000006_0001
Adjust the pressure of. Further, the controller 160 controls the liquid fuel pump 140 to adjust the pressure of the light oil supplied to the fluid injection device 10. The controller 1600 controls the gas fuel pump 1300 and the liquid fuel pump 1440 so that the pressure of 0 and the pressure of light oil supplied to the fluid injection device 10 are the same. There is. Further, the controller 160 controls the drive unit 150 to control the opening/closing operation of the valve body 30. The controller 1600 controls the injection amount and injection timing of 0 0 and light oil injected into the cylinder 100 by controlling the gas fuel pump 1300, the liquid fuel pump 1440, and the drive unit 150. Execute the controlled fuel injection control.
[0015] 次に、 流体噴射装置 1 〇の構造について具体的に説明する。 \¥0 2020/174898 5 卩(:17 2020 /000824 Next, the structure of the fluid ejection device 10 will be specifically described. \¥0 2020/174898 5 卩 (: 17 2020 /000824
図 2に示されるように、 弁ボディ 2 0は、 軸線 1 を中心に円筒状に形成 されている。 なお、 以下では、 便宜上、 図 2に示される軸線 1 に平行な方 向 1, 2のうち、 1方向を上方とも称し、 2方向を下方とも称する As shown in FIG. 2, the valve body 20 is formed in a cylindrical shape around the axis 1. Note that in the following, for convenience, of the directions 1 and 2 parallel to the axis 1 shown in FIG. 2, one direction is also referred to as an upper direction and two directions are also referred to as a lower direction.
[0016] 弁ボディ 2 0の内部には、 軸線 1 に沿って延びるように第 1弁体収容孔 [0016] Inside the valve body 20, a first valve body accommodating hole is formed so as to extend along the axis 1.
2 1及び第 2弁体収容孔 2 2が形成されている。 第 1弁体収容孔 2 1は、 弁 ボディ 2 0の先端部から上方に延びるように形成されている。 第 2弁体収容 孔 2 2は、 第 1弁体収容孔 2 1の上端部に連通されるように形成されている 。 軸線 1 に直交する第 1弁体収容孔 2 1及び第 2弁体収容孔 2 2のそれぞ れの断面形状は円形状に形成されている。 第 2弁体収容孔 2 2の内径は、 第 1弁体収容孔 2 1の内径よりも大きい。 第 1弁体収容孔 2 1及び第 2弁体収 容孔 2 2には、 弁体 3 0が収容されている。 第 2弁体収容孔 2 2の内周面と 弁体 3 0の外周面との間に形成される隙間は第 1供給流路 1 1 を構成して いる。 第 1供給流路\^/ 1 1 には軽油が供給されている。 第 1弁体収容孔 2 1 の内周面と弁体 3 0の外周面との間に形成される隙間は第 2供給流路 】 2 を構成している。 第 2供給流路\^/ 1 2には、 弁ボディ 2 0に形成される第 3
Figure imgf000007_0001
が供給されている。
21 and a second valve body accommodation hole 22 are formed. The first valve body accommodating hole 21 is formed so as to extend upward from the tip end portion of the valve body 20. The second valve body accommodation hole 22 is formed so as to communicate with the upper end portion of the first valve body accommodation hole 21. The cross sections of the first valve body housing hole 2 1 and the second valve body housing hole 22 which are orthogonal to the axis 1 are circular. The inner diameter of the second valve body accommodation hole 22 is larger than the inner diameter of the first valve body accommodation hole 21. The valve body 30 is accommodated in the first valve body accommodation hole 21 and the second valve body accommodation hole 22. The gap formed between the inner peripheral surface of the second valve body accommodating hole 22 and the outer peripheral surface of the valve body 30 constitutes the first supply passage 11 1. Light oil is supplied to the first supply channel \^/ 1 1. The gap formed between the inner peripheral surface of the first valve body accommodating hole 21 and the outer peripheral surface of the valve body 30 constitutes a second supply flow path] 2. In the second supply channel \^/12, the 3rd valve formed in the valve body 20
Figure imgf000007_0001
Is being supplied.
[0017] 第 1弁体収容孔 2 1の上端部の内周面と弁体 3 0の外周面との間には、 摺 動シール部 4 0が設けられている。 摺動シール部 4 0は、 軸線 1 を中心に 円環状に形成されている。 摺動シール部 4 0は、 第 1弁体収容孔 2 1の内周 面と弁体 3 0の外周面との間に形成される隙間をシールしている。 これによ り、 第 1供給流路\^/ 1 1 と第 2供給流路\^/ 1 2とが互いに独立した流路とし て構成されている。 摺動シール部 4 0は、 軸線 1 に沿った方向に摺動可能 に弁体 3 0を支持している。 A sliding seal portion 40 is provided between the inner peripheral surface of the upper end portion of the first valve body housing hole 21 and the outer peripheral surface of the valve body 30. The sliding seal portion 40 is formed in an annular shape around the axis 1. The sliding seal portion 40 seals a gap formed between the inner peripheral surface of the first valve body accommodating hole 21 and the outer peripheral surface of the valve body 30. As a result, the first supply channel \^/ 1 1 and the second supply channel \^/ 12 are configured as independent channels. The sliding seal portion 40 supports the valve body 30 slidably in the direction along the axis 1.
[0018] 弁ボディ 2 0の先端部の中央には、 第 1弁体収容孔 2 1から弁ボディ 2 0 の外部に貫通するように噴孔 2 9が形成されている。 噴孔 2 9は、
Figure imgf000007_0002
び軽油を気筒 1 〇〇内に噴射する部分である。 第 1弁体収容孔 2 1の内周面 のうち、 弁ボディ 2 0の先端部に位置する部分には、 円錐面 2 4が形成され \¥0 2020/174898 6 卩(:170? 2020 /000824
An injection hole 29 is formed in the center of the tip of the valve body 20 so as to penetrate from the first valve body housing hole 21 to the outside of the valve body 20. Nozzle 29 is
Figure imgf000007_0002
And light oil are injected into the cylinder 100. A conical surface 24 is formed on the inner peripheral surface of the first valve body accommodation hole 21 at a portion located at the tip of the valve body 20. \\0 2020/174898 6 卩 (: 170? 2020 /000824
ている。 円錐面 2 4は、 軸線 1 を中心に形成されるとともに、 軸線 1 に 直交する内部空間の断面積が噴孔 2 9に近づくほど小さくなるように形成さ れている。 ing. The conical surface 24 is formed centering on the axis 1 and is formed such that the cross-sectional area of the internal space orthogonal to the axis 1 becomes smaller as it approaches the injection hole 29.
[0019] 弁体 3 0は、 軸線 1 を中心に有底円筒状に形成されている。 弁体 3 0の 先端部は、 軸線 1 を中心に円錐状に形成されている。 弁体 3 0の先端部に 形成される円錐面 3 5は、 弁ボディ 2 0の円錐面 2 4に対向するように配置 されている。 円錐面 3 5には、 軸線 1 を中心に円環状に形成される環状溝 3 4が設けられている。 弁体 3 0の円錐面 3 5は、 環状溝 3 4を境界として 2つの面
Figure imgf000008_0001
3 6 1〇に区分されている。 以下では、 一方の面 3 6 8を 「 第 1弁部 3 6 3」 と称し、 他方の面 3 6匕を 「第 2弁部 3 6匕」 と称する。
The valve body 30 is formed in a bottomed cylindrical shape centering on the axis 1. The tip of the valve body 30 is formed in a conical shape around the axis 1. The conical surface 35 formed at the tip of the valve body 30 is arranged so as to face the conical surface 24 of the valve body 20. The conical surface 35 is provided with an annular groove 34 formed in an annular shape around the axis 1. The conical surface 35 of the valve body 30 has two surfaces bounded by the annular groove 3 4.
Figure imgf000008_0001
It is divided into 3 610. In the following, the one surface 368 will be referred to as the "first valve portion 36.sub.3" and the other surface 36.sub.6 will be referred to as the "second valve portion 36.sub.6".
[0020] 弁体 3 0の内部には、 軸線 1 に沿って延びるように導入流路 3 1が形成 されている。 弁体 3 0には、 弁体 3 0において第 1供給流路 1 1 に面する 外周面から導入流路 3 1の内周面に貫通するように導入流路 3 2が形成され ている。 弁体 3 0の先端部には、 環状溝 3 4から導入流路 3 1の内周面に延 びるように複数の導入流路 3 3が形成されている。 Inside the valve body 30 is formed an introduction flow path 31 so as to extend along the axis 1. The valve body 30 has an introduction flow passage 32 formed so as to penetrate from the outer peripheral surface of the valve body 30 facing the first supply flow passage 11 to the inner peripheral surface of the introduction flow passage 31. A plurality of introducing channels 33 are formed at the tip of the valve body 30 so as to extend from the annular groove 34 to the inner peripheral surface of the introducing channel 31.
[0021 ] 次に、 流体噴射装置 1 0の動作例について説明する。 Next, an operation example of the fluid ejection device 10 will be described.
図 3に示されるように、 弁体 3 0が閉弁状態であるとき、 弁体 3 0の第 1 弁部 3 6 3及び第 2弁部 3 6 が弁ボディ 2 0の円錐面 2 4に着座している 。 以下では、 弁ボディ 2 0の円錐面 2 4のうち、 弁体 3 0の第 1弁部 3 6 3 が着座する面を第 1弁座 2 5 3と称し、 弁体 3 0の第 2弁部 3 6匕が着座す る面を第 2弁座 2 5匕と称する。 弁体 3 0が閉弁状態であるとき、 弁体 3 0 の各弁部 3 6 3 , 3 6匕と弁ボディ 2 0の円錐面 2 4との間に形成される隙 間が閉塞されているため、 第 1供給流路\^/ 1 1 に供給される軽油、 及び第 2 供給流路 1 2に供給される 0 ◦は噴孔 2 9から噴射されない。 As shown in Fig. 3, when the valve body 30 is in the closed state, the first valve portion 3 6 3 and the second valve portion 3 6 of the valve body 30 are placed on the conical surface 24 of the valve body 20. I am sitting. In the following, of the conical surface 24 of the valve body 20 the surface on which the first valve portion 3 63 of the valve body 30 sits is referred to as the first valve seat 2 5 3 and the second valve of the valve body 30 The surface on which the part 36 is seated is called the second valve seat 25. When the valve body 30 is in the closed state, the gaps formed between the valve portions 3 63 and 36 of the valve body 30 and the conical surface 24 of the valve body 20 are blocked. Therefore, the light oil supplied to the first supply passage \^/ 1 1 and the 0° supplied to the second supply passage 12 are not injected from the injection hole 29.
[0022] なお、 弁体 3 0及び弁ボディ 2 0の加工上のばらつきにより、 弁体 3 0の 円錐面 3 5の円錐角度及び弁ボディ 2 0の円錐面 2 4の円錐角度には、 実際 には、 ある程度のばらつきが生じる可能性がある。 このような加工上のばら つきにより、 弁ボディ 2 0の第 1弁座 2 5 3と弁体 3 0の第 1弁部 3 6 3と \¥0 2020/174898 7 卩(:170? 2020 /000824 [0022] Note that due to variations in processing of the valve body 30 and the valve body 20, the cone angle of the conical surface 35 of the valve body 30 and the cone angle of the conical surface 2 4 of the valve body 20 are actually There is a possibility that some variation will occur. Due to such processing variations, the first valve seat 2 5 3 of the valve body 20 and the first valve portion 3 6 3 of the valve body 30 \¥0 2020/174898 7 卩 (: 170? 2020 /000824
の間、 及び弁ボディ 2 0の第 2弁座 2 5匕と弁体 3 0の第 2弁部 3 6匕との 間に隙間が形成されるおそれがある。 それらの間に隙間が形成されると、 弁 体 3 0が閉弁状態であるにも関わらず、 〇 ◦及び軽油が外部に漏れる懸念 がある。 A gap may be formed between the second valve seat 25 of the valve body 20 and the second valve portion 36 of the valve body 30. If a gap is formed between them, there is a concern that ◯° and light oil may leak to the outside even though the valve body 30 is closed.
[0023] この点、 弁ボディ 2 0の第 1弁座 2 5 3と弁体 3 0の第 1弁部 3 6 3との 隙間が確実に閉塞されていれば、 仮に弁ボディ 2 0の第 2弁座 2 5匕と弁体 3 0の第 2弁部 3 6匕との間に若干の隙間が形成されたとしても、 〇 ◦及 び軽油の漏れを防止することは可能である。 したがって、 本実施形態の流体 噴射装置 1 〇では、 弁体 3 0が閉弁状態であるとき、 弁ボディ 2 0の第 2弁 座 2 5匕と弁体 3 0の第 2弁部 3 6匕との間に若干の隙間が形成されること は許容範囲であるが、 弁ボディ 2 0の第 1弁座 2 5 3及び弁体 3 0の第 1弁 部 3 6 3は確実に接触することが好ましい。 [0023] In this respect, if the gap between the first valve seat 2 53 of the valve body 20 and the first valve portion 3 63 of the valve body 30 is surely closed, the valve body 20 0 Even if a slight gap is formed between the second valve seat 25 and the second valve portion 36 of the valve body 30, it is possible to prevent leakage of diesel oil. Therefore, in the fluid injection device 100 of the present embodiment, when the valve body 30 is closed, the second valve seat 25 of the valve body 20 and the second valve portion 36 of the valve body 30 are closed. Although it is within the allowable range that a slight gap is formed between the first valve seat 2 5 3 of the valve body 20 and the first valve portion 3 6 3 of the valve body 30. Is preferred.
[0024] 図 3に示される状態から駆動部 1 5 0が弁体 3 0をリフト動作させると、 図 2に示されるように、 弁体 3 0の第 1弁部 3 6 3及び第 2弁部 3 6匕が弁 ボディ 2 0の第 1弁座 2 5 3及び第 2弁座 2 5匕から離座する。 すなわち、 弁体 3 0の変位に伴って第 1弁部 3 6 3及び第 2弁部 3 6匕が_体的に変位 することにより、 弁体 3 0が開弁する。 これにより、 弁体 3 0の第 1弁部 3 6 3と弁ボディ 2 0の第 1弁座 2 5 3との間に第 1噴射流路\^ 2 1が形成さ れるとともに、 弁体 3 0の第 2弁部 3 6匕と弁ボディ 2 0の第 2弁座 2 5匕 との間に第 2噴射流路\^/ 2 2が形成される。 したがって、 第 1供給流路 】[0024] When the drive unit 150 lifts the valve body 30 from the state shown in Fig. 3, as shown in Fig. 2, the first valve unit 3 63 and the second valve unit 3 6 of the valve body 30 are The part 36 is separated from the first valve seat 2 53 and the second valve seat 25 of the valve body 20. That is, the valve body 30 is opened by the physical displacement of the first valve portion 363 and the second valve portion 36 along with the displacement of the valve body 30. As a result, the first injection passage \^ 2 1 is formed between the first valve portion 3 6 3 of the valve body 30 and the first valve seat 2 5 3 of the valve body 20 and the valve body 3 A second injection passage \^/ 2 2 is formed between the second valve portion 36 of 0 and the second valve seat 25 of the valve body 20. Therefore, the first supply channel]
1 に供給されている軽油は、 弁体 3 0の導入流路 3 1〜 3 3及び第 1噴射流 路\^/ 2 1 を通じて噴孔 2 9から噴射される。 また、 第 2供給流路\^/ 1 2に供 給されている 0 ◦は、 第 2噴射流路 2 2及び第 1噴射流路 2 1 を通じ て噴孔 2 9から噴射される。 よって、 軽油及び
Figure imgf000009_0001
が気筒 1 0 0内に噴射 される。
The light oil supplied to 1 is injected from the injection hole 29 through the introduction flow paths 31 to 33 and the first injection flow path \^/21 of the valve body 30. Further, 0° supplied to the second supply flow path \^/ 12 is injected from the injection hole 29 through the second injection flow path 22 and the first injection flow path 21. Therefore, light oil and
Figure imgf000009_0001
Is injected into the cylinder 100.
[0025] このように、 本実施形態の流体噴射装置 1 0では、 弁体 3 0の第 1弁部 3 As described above, in the fluid ejection device 10 of the present embodiment, the first valve portion 3 of the valve body 30 is
6 3が弁ボディ 2 0の第 1弁座 2 5 3に対して離座及び着座することにより 、 軽油及び
Figure imgf000009_0002
の両方の噴射及び噴射の停止が行われる。 また、 弁体 3 0 \¥0 2020/174898 8 卩(:170? 2020 /000824
6 3 is separated from and seated on the first valve seat 2 5 3 of the valve body 20 so that light oil and
Figure imgf000009_0002
Both the injection and the stop of the injection are performed. In addition, the valve body 30 \¥0 2020/174898 8 卩 (: 170? 2020 /000824
の第 2弁部 3 6 が弁ボディ 2 0の第 2弁座 2 5 に対して離座及び着座す ることにより、
Figure imgf000010_0001
の噴射及び噴射の停止が行われる。
The second valve portion 36 of the valve seat is separated from and seated on the second valve seat 25 of the valve body 20.
Figure imgf000010_0001
Injection and stop of injection are performed.
[0026] 以上説明した本実施形態の流体噴射装置 1 0によれば、 以下の ( 1 ) 〜 ( According to the fluid ejection device 10 of the present embodiment described above, the following (1) to (
9 ) に示される作用及び効果を得ることができる。 The action and effect shown in 9) can be obtained.
( 1 ) 一つの弁体 3 0に第 1弁部 3 6 3及び第 2弁部 3 6匕が形成されて いるため、 従来の燃料噴射装置のように 2種類の流体のそれぞれに対応する 2つの弁体を有する構造と比較すると、 構造を簡素化することができる。 (1) Since the first valve part 3 63 and the second valve part 36 are formed in one valve body 30, it corresponds to each of the two types of fluid like the conventional fuel injection device. The structure can be simplified as compared with the structure having three valve bodies.
[0027] ( 2 ) 弁体 3 0の第 1弁部 3 6 3及び第 2弁部 3 6匕が弁ボディ 2 0の第 [0027] (2) The first valve section 3 63 and the second valve section 36 of the valve body 30 are the first valve section of the valve body 20.
1弁座 2 5 3及び第 2弁座 2 5匕から離座したとき、 軽油は、 第 1噴射流路 1及び第 2噴射流路 2 2のうち、 第 1噴射流路\^/ 2 1のみを流れて噴 射され、 0 ◦は、 第 1噴射流路 2 1及び第 2噴射流路 2 2の両方を流 れて噴射される。 このような構成によれば、 簡素な構造で 2種類の流体を噴 射することが可能である。 When separated from the 1st valve seat 2 5 3 and the 2nd valve seat 25, the light oil is the first injection flow path of the 1st injection flow path 1 and the 2nd injection flow path 2 2 \^/ 2 1 Only 0 flows through the first and second injection channels 21 and 22 and is injected. With such a configuration, it is possible to eject two types of fluid with a simple structure.
[0028] ( 3 ) 弁体 3 0には、 軽油を第 1噴射流路\^/ 2 1 に導入する導入流路 3 1 [0028] (3) The valve body 30 has an introduction passage 3 1 for introducing light oil into the first injection passage \^/ 21.
〜 3 3が形成されている。 このような構成によれば、 軽油を噴射するための 構造を簡素化することが可能である。 ~ 33 are formed. With such a configuration, it is possible to simplify the structure for injecting light oil.
( 4 ) 弁体 3 0の先端部には、 第 1弁部 3 6 3及び第 2弁部 3 6匕を同軸 上に有する同一円錐面 3 5が形成されている。 弁ボディ 2 0には、 第 1弁座 2 5 3及び第 2弁座 2 5匕を同軸上に有する同一円錐面 2 4が形成されてい る。 このような構成によれば、 駆動部 1 5 0から弁体 3 0に付与される軸方 向の駆動力により弁ボディ 2 0の円錐面 2 4に弁体 3 0の円錐面 3 5を接触 させた際に、 楔効果により、 弁体 3 0に付与される軸方向の力よりも大きい 力を第 1弁座 2 5 3と第 1弁部 3 6 3との接触部分、 及び第 2弁座 2 5匕と 第 2弁部 3 6匕との接触部分に付与することが可能である。 よって、 より確 実に弁体 3 0を閉弁状態にすることが可能である。 (4) at the distal end of the valve body 3 0, the same conical surface 35 having a first valve portion 3 6 3 and the second valve portion 3 6 spoon coaxially is formed. The valve body 20 is formed with the same conical surface 24 having the first valve seat 25 3 and the second valve seat 25 coaxially. According to this structure, the conical surface 35 of the valve body 30 is brought into contact with the conical surface 24 of the valve body 20 by the axial driving force applied to the valve body 30 from the drive section 150. Then, due to the wedge effect, a force greater than the axial force applied to the valve body 30 is applied to the contact portion between the first valve seat 2 5 3 and the first valve portion 3 6 3, and the second valve. It can be applied to the contact portion between the seat 25 and the second valve portion 36. Therefore, the valve body 30 can be closed more accurately.
[0029] ( 5 ) 第 1弁部 3 6 3及び第 2弁部 3 6 13は、 弁体 3 0の円錐面 3 5に面 として形成されている。 第 1弁座 2 5 3及び第 2弁座 2 5匕は、 弁ボディ 2 0の円錐面 2 4に面として形成されている。 弁体 3 0の円錐面 3 5には、 環 \¥0 2020/174898 9 卩(:170? 2020 /000824 (5) The first valve portion 363 and the second valve portion 613 are formed as surfaces on the conical surface 35 of the valve body 30. The first valve seat 2 53 and the second valve seat 25 are formed as surfaces on the conical surface 24 of the valve body 20. The conical surface 35 of the valve body 30 has a ring \¥0 2020/174898 9 卩 (: 170? 2020 /000824
状溝 3 4が形成されている。 弁体 3 0の円錐面 3 5には、 環状溝 3 4に対応 する部分を境界として第 1弁部 3 6 3及び第 2弁部 3 6匕が形成されている 。 弁ボディ 2 0の円錐面 2 4には、 環状溝 3 4に対応する部分を境界として 第 1弁座 2 5 3及び第 2弁座 2 5匕が形成されている。 このような構成によ れば、 弁ボディ 2 0の円錐面 2 4に第 1弁座 2 5 3及び第 2弁座 2 5匕を稜 線で形成し、 且つ弁体 3 0の円錐面 3 5に第 1弁部 3 6 3及び第 2弁部 3 6 匕を稜線で形成する場合と比較すると、 弁ボディ 2 0及び弁体 3 0の加工が 容易となる。 A groove 3 4 is formed. The conical surface 35 of the valve body 30 is formed with a first valve portion 3 63 and a second valve portion 36 with a portion corresponding to the annular groove 34 as a boundary. A first valve seat 25 3 and a second valve seat 25 are formed on the conical surface 24 of the valve body 20 with a portion corresponding to the annular groove 34 as a boundary. According to such a configuration, the first valve seat 25 3 and the second valve seat 25 are formed on the conical surface 24 of the valve body 20 with ridge lines, and the conical surface 3 of the valve body 30 is formed. Compared with the case where the first valve portion 363 and the second valve portion 336 are formed on the ridge line in 5, the machining of the valve body 20 and the valve body 30 becomes easier.
[0030] ( 6 ) 仮に弁体 3 0に環状溝 3 4が形成されていない場合には、 弁体 3 0 の複数の導入流路 3 3から第 1噴射流路\^/ 2 1 に軽油が直接供給されること になる。 この場合、 弁体 3 0の円錐面 3 5において複数の導入流路 3 3が開 口している部分には軽油が流れ易くなる一方、 複数の導入流路 3 3が開口し ていない部分には軽油が流れ難い。 そのため、 弁体 3 0の円錐面 3 5の周方 向において軽油の流量分布にばらつきが生じる。 これは、 流体噴射装置 1 0 から噴射される軽油の噴射状態にむらを生じさせる要因となる。 この点、 本 実施形態の流体噴射装置 1 〇では、 複数の導入流路 3 3を流れた軽油が環状 溝 3 4に流入することにより、 弁体 3 0の円錐面 3 5の周方向において軽油 の流量分布にばらつきを軽減することができるため、 流体噴射装置 1 〇から 噴射される軽油の噴射状態にむらが生じ難くなる。 (6) If the annular groove 34 is not formed in the valve body 30, light oil is introduced from the plurality of introduction channels 3 3 of the valve body 30 into the first injection channel \^/ 2 1. Will be supplied directly. In this case, light oil will easily flow to the portion of the conical surface 35 of the valve body 30 where the plurality of introduction flow passages 33 are open, while the plurality of introduction flow passages 33 will not be opened. Light oil is hard to flow. Therefore, the flow rate distribution of light oil varies in the circumferential direction of the conical surface 35 of the valve body 30. This causes unevenness in the injection state of the light oil injected from the fluid injection device 10. In this respect, in the fluid injection device 10 of the present embodiment, the light oil flowing through the plurality of introduction channels 33 flows into the annular groove 34, so that the light oil flows in the circumferential direction of the conical surface 35 of the valve body 30. Since it is possible to reduce the variation in the flow rate distribution of, the unevenness in the injection state of the light oil injected from the fluid injection device 10 is less likely to occur.
[0031 ] ( 7 ) 導入流路 3 3は、 導入流路 3 1から第 1噴射流路\^/ 2 1 に供給され る軽油の流量を調整する絞り部として機能する。 このような構成によれば、 軽油の噴射量を容易に調整することが可能である。 [0031] (7) The introduction flow passage 33 functions as a throttle unit that adjusts the flow rate of the light oil supplied from the introduction flow passage 3 1 to the first injection flow passage \^/ 21. With such a configuration, it is possible to easily adjust the injection amount of light oil.
( 8 ) 軽油に印加される噴射のための圧力、 及び 0 〇に印加される噴射 のための圧力は、 同一の圧力に設定されている。 このような構成によれば、 弁体 3 0の導入流路 3 3から第 1噴射流路\^/ 2 1 に供給される軽油が第 2供 給流路\^/ 1 2に流れたり、 第 2供給流路\^/ 1 2から第 2噴射流路\^/ 2 2に供 給される 0 〇が弁体 3 0の導入流路 3 3に流れたりすることを回避できる 。 よって、 流体噴射装置 1 〇の内部において軽油及び〇 〇が混合し難くな \¥0 2020/174898 10 卩(:17 2020 /000824 (8) The pressure for injection applied to light oil and the pressure for injection applied to 0.00 are set to the same pressure. According to such a configuration, light oil supplied from the introduction flow passage 33 of the valve body 30 to the first injection flow passage \^/ 2 1 flows to the second supply flow passage \^/ 12 2, It is possible to avoid that 0 supplied from the second supply flow passage \^/ 12 to the second injection flow passage \^/ 2 2 flows into the introduction flow passage 33 of the valve body 30. Therefore, it is difficult for the light oil and XX to mix inside the fluid ejection device 10. \¥0 2020/174898 10 (: 17 2020 /000824
る。 It
[0032] (9) 流体噴射装置 1 0は、 液体である軽油と、 気体である〇 〇とを噴 射する。 このような構成によれば、 気体である〇 ◦の膨張エネルギを活用 して、 液体である軽油の噴射速度を向上させることができるとともに、 液体 である軽油をより微粒化することが可能である。 (9) The fluid ejection device 10 ejects light oil, which is a liquid, and OO, which is a gas. According to such a configuration, it is possible to utilize the expansion energy of the gas ◯° to improve the injection speed of the liquid gas oil and to atomize the liquid gas oil more. ..
[0033] (第 1変形例) [0033] (First Modification)
次に、 第 1実施形態の流体噴射装置 1 0の第 1変形例について説明する。 図 4に示されるように、 本変形例の弁ボディ 2 0には、 第 2供給流路 1 2に 0 ◦を供給するための流路として、 環状溝 1 4及び供給流路 1 5 が形成されている。 環状溝
Figure imgf000012_0001
弁ボディ 2 0の外周面に円環状に形成 されている。 供給流路\^/ 1 5は、 環状溝 \^/ 1 4と第 2供給流路\^/ 1 2とを連 通するように形成されている。 本変形例の流体噴射装置 1 〇では、 気体燃料 ポンプ 1 3 0から環状溝 1 4に 0 ◦が供給される。 環状溝 1 4に供給 される
Figure imgf000012_0002
供給流路\^/ 1 5を通じて第 2供給流路\^/ 1 2に供給される 。 このような構成であっても、 弁ボディ 2 0の内部に形成される第 2供給流
Figure imgf000012_0003
を供給することが可能である。
Next, a first modified example of the fluid ejection device 10 of the first embodiment will be described. As shown in FIG. 4, in the valve body 20 of this modified example, an annular groove 14 and a supply channel 15 are formed as a channel for supplying 0° to the second supply channel 12. Has been done. Annular groove
Figure imgf000012_0001
An annular shape is formed on the outer peripheral surface of the valve body 20. The supply channel \^/ 15 is formed so as to connect the annular groove \^/ 14 and the second supply channel \^/ 1 2. In the fluid injection device 10 of the present modification, 0° is supplied from the gas fuel pump 1300 to the annular groove 14. Supplied to annular groove 1 4
Figure imgf000012_0002
It is supplied to the second supply channel \^/ 1 2 through the supply channel \^/ 1 5. Even with such a configuration, the second supply flow formed inside the valve body 20
Figure imgf000012_0003
Can be supplied.
[0034] (第 2変形例) [0034] (Second Modification)
次に、 第 1実施形態の流体噴射装置 1 〇の第 2変形例について説明する。 本変形例のコントローラ 1 6 0は、 流体噴射装置 1 0に供給される軽油の 圧力よりも、 〇 〇の圧力の方が高くなるように気体燃料ポンプ 1 3 0及び 液体燃料ポンプ 1 4 0を制御する。 すなわち、 本変形例では、 軽油に印加さ れる噴射のための圧力よりも、 〇 〇に印加される噴射のための圧力の方が 高い。 このような構成によれば、 〇 〇の流速を利用して軽油を噴射するこ とができる。 また、 軽油に印加される噴射のための圧力を小さくできること から、 液体燃料ポンプ 1 4 0として小型のボンプを用いることが可能である Next, a second modified example of the fluid ejection device 10 according to the first embodiment will be described. The controller 1600 of the present modification is configured so that the gas fuel pump 1300 and the liquid fuel pump 1440 are controlled so that the pressure of OO is higher than the pressure of the light oil supplied to the fluid injection device 10. Control. That is, in this modification, the pressure for injection applied to OO is higher than the pressure for injection applied to light oil. With such a configuration, it is possible to inject light oil using the flow velocity of 0.00. Further, since the pressure applied to the light oil for injection can be reduced, it is possible to use a small-sized pump as the liquid fuel pump 140.
[0035] なお、 軽油に印加される噴射のための圧力を零に設定することも可能であ る。 このような構成によれば、 液体燃料ポンプ 1 4 0そのものを不要とする \¥0 2020/174898 1 1 卩(:170? 2020 /000824 [0035] The pressure applied to the light oil for injection can be set to zero. With such a configuration, the liquid fuel pump 140 itself is unnecessary. \\0 2020/174898 1 1 卩 (: 170? 2020 /000824
ことができる。 be able to.
(第 3変形例) (Third modification)
次に、 第 1実施形態の流体噴射装置 1 〇の第 3変形例について説明する。 Next, a third modified example of the fluid ejection device 10 of the first embodiment will be described.
[0036] 本変形例のコントローラ 1 6 0は、 流体噴射装置 1 0に供給される 0 〇 の圧力よりも、 軽油の圧力が高くなるように気体燃料ポンプ 1 3 0及び液体 燃料ポンプ 1 4 0を制御する。 すなわち、 本変形例では、 〇 〇に印加され る噴射のための圧力よりも、 軽油に印加される噴射のための圧力の方が高い 。 このような構成によれば、 第 1供給流路\^/ 1 1 を流れる軽油を摺動シール 部 4 0と弁体 3 0との間の摺動部分に流入させることが可能である。 また、 第 1供給流路\^/ 1 1 を流れる軽油を、 導入流路 3 1 〜 3 3を通じて第 2弁座 2 5 匕と第 2弁部 3 6 匕との間の摺動部分にも流入させることが可能である 。 それらの摺動部分の少なくとも一方に軽油が流入することにより、 それら の摺動部分の少なくとも一方を潤滑することができるため、 摺動部分の摩耗 を抑制することができる。 The controller 160 of the present modified example uses the gas fuel pump 130 and the liquid fuel pump 140 so that the pressure of the light oil is higher than the pressure of 0 supplied to the fluid injection device 10. To control. That is, in this modification, the pressure for injection applied to diesel fuel is higher than the pressure for injection applied to XOO. With such a configuration, it is possible to cause the light oil flowing through the first supply flow path \^/ 1 1 to flow into the sliding portion between the sliding seal portion 40 and the valve body 30. In addition, the light oil flowing in the first supply channel \^/11 is also applied to the sliding part between the second valve seat 25 and the second valve section 36 by way of the introduction channels 31-33. It is possible to inflow. By flowing the light oil into at least one of the sliding parts, it is possible to lubricate at least one of the sliding parts, so that the wear of the sliding parts can be suppressed.
[0037] (第 4変形例) [0037] (Fourth Modification)
次に、 第 1実施形態の流体噴射装置 1 〇の第 4変形例について説明する。 本変形例のコントローラ 1 6 0は、 駆動部 1 5 0を制御することにより、 弁体 3 0のリフ ト量や開弁時間等を調整する駆動制御を実行する。 コントロ —ラ 1 6 0は、 この弁体 3 0の駆動制御を通じて、 状況に応じた
Figure imgf000013_0001
射量の調整を行う。 また、 コントローラ 1 6 0は、 液体燃料ポンプ 1 4 0を 制御することにより、 軽油に印加される噴射のための圧力を調整する圧力制 御を行う。 コントローラ 1 6 0は、 液体燃料ポンプ 1 4 0の圧力制御を通じ て、 軽油の噴射量の調整を行う。 このような構成によれば、
Figure imgf000013_0002
の調圧が 不要でありながら、 〇 〇及び軽油の両方の噴射量を制御することが可能で ある。
Next, a fourth modified example of the fluid ejection device 10 according to the first embodiment will be described. The controller 160 of the present modification executes drive control for adjusting the lift amount, valve opening time, etc. of the valve body 30 by controlling the drive unit 150. The controller 1600 responds to the situation by controlling the drive of the valve body 30.
Figure imgf000013_0001
Adjust the firing rate. Further, the controller 160 controls the liquid fuel pump 140 to perform pressure control for adjusting the pressure applied to the light oil for injection. The controller 160 controls the injection amount of light oil through the pressure control of the liquid fuel pump 140. According to such a configuration,
Figure imgf000013_0002
It is possible to control the injection amount of both ○○ and diesel oil without the need for pressure regulation.
[0038] <第 2実施形態> [Second Embodiment]
次に、 流体噴射装置 1 〇の第 2実施形態について説明する。 以下、 第 1実 施形態の流体噴射装置 1 〇との相違点を中心に説明する。 \¥0 2020/174898 12 卩(:170? 2020 /000824 Next, a second embodiment of the fluid ejection device 10 will be described. Hereinafter, differences from the fluid ejection device 100 of the first embodiment will be mainly described. \¥0 2020/174898 12 (: 170? 2020 /000824
図 5に示されるように、 本実施形態の流体噴射装置 1 0は、 弁体 3 0が閉 弁した際に、 弁体 3 0の第 1弁部 3 6 3及び第 2弁部 3 6匕のそれぞれの全 面が、 弁ボディ 2 0の円錐面 2 4に接触するように構成されている。 これに より、 弁ボディ 2 0の第 1弁座 2 5 3と弁体 3 0の第 1弁部 3 6 3との接触 部分を第 1 ト部とすると、 第 1 ト部の内径 ø 1 0は弁体 3 0の第 1 弁部 3 6 3の内径に等しく、 第 1シート部の外径 ¢ 1 1は弁体 3 0の第 1弁 部 3 6 3の外径に等しくなっている。 また、 弁ボディ 2 0の第 2弁座 2 5匕 と弁体 3 0の第 2弁部 3 6匕との接触部分を第 2シート部とすると、 第 2シ -卜部の内径 ø 2 0は弁体 3 0の第 2弁部 3 6匕の内径に等しく、 第 2シー 卜部の外径 ø 2 1は弁体 3 0の第 2弁部 3 6匕の外径に等しくなっている。 As shown in FIG. 5, when the valve body 30 is closed, the fluid ejecting apparatus 10 of the present embodiment has the first valve portion 3 6 3 and the second valve portion 36 6 of the valve body 30. The entire surface of each of the is configured to contact the conical surface 24 of the valve body 20. More thereto, when the contact portion between the first valve seat 2 5 3 and the valve element 3 first valve portion 3 6 3 0 of the valve body 2 0 and the first isolation portion, the inner diameter of the first isolation portions ų 1 0 Is equal to the inner diameter of the first valve portion 3 63 of the valve body 30 and the outer diameter ¢ 11 of the first seat portion is equal to the outer diameter of the first valve portion 3 63 of the valve body 30. Further, if the contact portion between the second valve seat 25 of the valve body 20 and the second valve portion 36 of the valve body 30 is the second seat portion, the inner diameter ø20 of the second seat portion is The inner diameter of the second valve portion 36 of the valve body 30 is equal to the outer diameter ø 2 1 of the second seal portion is equal to the outer diameter of the second valve portion 36 of the valve body 30.
[0039] 図 6は、 比較例として、 弁体 3 0の第 1弁部 3 6 3の一部が弁ボディ 2 0 の円錐面 2 4に接触するように構成された流体噴射装置 1 0の断面構造を図 示したものである。 この場合、 第 1シート部の内径 ø 1 0は、 弁ボディ 2 0 の円錐面 2 4の内径に等しく、 また第 1シート部の外径 0 1 1は弁体 3 0の 第 1弁部 3 6 3の外径に等しくなっている。 図 6に示される構造の場合、 4 つの径 0 1 0 , 0 1 1 , 0 2 0 , ø 2 1の同軸度の精度、 並びに第 1シート 部及び第 2シート部のそれぞれの幅の精度を高めるためには、 弁ボディ 2 0 の円錐面 2 4及び弁体 3 0の各弁部 3 6 3 , 3 6 のそれぞれに関して高い 加工精度が要求される。 そのため、 第 1シート部及び第 2シート部の同軸度 や幅の精度を高めることが困難になるおそれがある。 FIG. 6 shows, as a comparative example, a fluid injection device 10 configured such that a part of the first valve portion 3 63 of the valve body 30 contacts the conical surface 24 of the valve body 20. The cross-sectional structure is illustrated. In this case, the inner diameter ø 10 of the first seat portion is equal to the inner diameter of the conical surface 24 of the valve body 20 and the outer diameter 0 1 1 of the first seat portion is the first valve portion 3 of the valve body 30. It is equal to the outer diameter of 6 3. In the case of the structure shown in Fig. 6, the accuracy of the concentricity of the four diameters 0 1 0, 0 1 1, 0 2 0, ø 2 1 and the accuracy of the widths of the first and second seat parts are In order to raise the height, a high machining accuracy is required for each of the conical surface 24 of the valve body 20 and each of the valve portions 3 63, 3 6 of the valve body 30. Therefore, it may be difficult to improve the accuracy of the concentricity and width of the first sheet portion and the second sheet portion.
[0040] これに対し、 図 5に示される本実施形態の流体噴射装置 1 0では、 4つの 径 0 1 0 , 0 1 1 , 0 2 0 , ¢ 2 1の同軸度の精度、 並びに第 1シート部及 び第 2シート部のそれぞれの幅の精度を高めるためには、 基本的には、 弁体 3 0の各弁部
Figure imgf000014_0001
3 6 13に関して加工精度を高めるだけでよい。 そのた め、 第 1シート部及び第 2シート部の同軸度や幅の精度を容易に高めること が可能である。
On the other hand, in the fluid ejection device 10 of the present embodiment shown in FIG. 5, the accuracy of the coaxiality of the four diameters 0 1 0, 0 1 1, 0 2 0, ¢ 2 1 and the first In order to improve the accuracy of the width of the seat part and the second seat part, basically, each valve part of the valve body 30
Figure imgf000014_0001
With regard to 3 6 13 it is only necessary to increase the processing accuracy. Therefore, it is possible to easily improve the accuracy of the concentricity and width of the first and second seat portions.
[0041 ] 以上説明した本実施形態の流体噴射装置 1 0によれば、 以下の (1 0) に 示される作用及び効果を更に得ることができる。 \¥0 2020/174898 13 卩(:170? 2020 /000824 According to the fluid ejecting apparatus 10 of the present embodiment described above, it is possible to further obtain the action and effect shown in (10) below. \¥0 2020/174898 13 卩 (: 170? 2020 /000824
( 1 0 ) 図 5に示される構造を有する流体噴射装置 1 0では、 弁体 3 0の 第 1弁部 3 6 3及び第 2弁部 3 6匕が弁ボディ 2 0の第 1弁座 2 5 3及び第 2弁座 2 5匕に着座したとき、 第 1弁部 3 6 3の全面及び第 2弁部 3 6匕の 全面が弁ボディ 2 0の円錐面 2 4に接触する。 このような構成によれば、 第 1 シート部の内径 0 1 0及び外径 0 1 1、 並びに第 2シート部の内径 0 2 0 及び外径 ø 2 1の同軸度の精度、 並びに第 1 シート部及び第 2シート部のそ れそれの幅の精度を向上させ易くなる。 (1 0) In the fluid injection device 10 having the structure shown in FIG. 5, the first valve portion 3 63 and the second valve portion 3 6 of the valve body 30 have the first valve seat 2 of the valve body 20. When seated on 5 3 and the second valve seat 25, the entire surface of the first valve portion 36 3 and the entire surface of the second valve portion 36 contact the conical surface 24 of the valve body 20. According to this structure, the inner diameter 0 1 0 and the outer diameter 0 11 of the first seat portion, the inner diameter 0 2 0 and the outer diameter ø 2 1 of the second seat portion, and the accuracy of the first sheet It becomes easy to improve the accuracy of the width of the second portion and the second sheet portion.
[0042] <第 3実施形態> <Third Embodiment>
次に、 流体噴射装置 1 〇の第 3実施形態について説明する。 以下、 第 1実 施形態の流体噴射装置 1 〇との相違点を中心に説明する。 Next, a third embodiment of the fluid ejection device 10 will be described. Hereinafter, differences from the fluid ejection device 100 of the first embodiment will be mainly described.
図 7に示されるように、 本実施形態の流体噴射装置 1 0では、 弁体 3 0の 先端部に平面 3 7が形成されている。 平面 3 7には、 軸線 1 を中心に円環 状に形成される環状溝 3 4が設けられている。 弁体 3 0には、 環状溝 3 4か ら導入流路 3 1の内周面に延びるように複数の導入流路 3 3が形成されてい る。 平面 3 7における環状溝 3 4の内側の部分には、 軸線 1 を中心に円形 状に形成される凹部 3 8が設けられている。 As shown in FIG. 7, in the fluid ejection device 10 of the present embodiment, a flat surface 37 is formed at the tip of the valve body 30. The plane surface 37 is provided with an annular groove 34 formed in an annular shape around the axis 1. The valve body 30 is formed with a plurality of introduction channels 33 so as to extend from the annular groove 34 to the inner peripheral surface of the introduction channel 31. A concave portion 38, which is formed in a circular shape around the axis 1, is provided in a portion inside the annular groove 34 on the plane 37.
[0043] 弁ボディ 2 0の第 1弁体収容孔 2 1の内周面のうち、 弁ボディ 2 0の先端 部に位置する部分には、 平面 2 6が形成されている。 弁ボディ 2 0の平面 2 6は弁体 3 0の平面 3 7に対向している。 弁ボディ 2 0の先端部の中央には 、 第 1弁体収容孔 2 1から弁ボディ 2 0の先端面に貫通するように噴孔 2 9 が形成されている。 噴孔 2 9の内径は弁体 3 0の凹部 3 8の内径よりも小さ い。 A flat surface 26 is formed in a portion of the inner peripheral surface of the first valve body housing hole 21 of the valve body 20 located at the tip of the valve body 20. The plane 26 of the valve body 20 faces the plane 37 of the valve body 30. An injection hole 29 is formed at the center of the tip of the valve body 20 so as to penetrate from the first valve body accommodation hole 21 to the tip surface of the valve body 20. The inner diameter of the injection hole 29 is smaller than the inner diameter of the recess 38 of the valve body 30.
[0044] 弁体 3 0の平面 3 7は、 環状溝 3 4を境界として
Figure imgf000015_0001
3 6 b に区分されている。 以下では、 一方の面 3 6 3を 「第 1弁部 3 6 3」 と称し 、 他方の面 3 6匕を 「第 2弁部 3 6匕」 と称する。 第 1弁部 3 6 3は、 弁体 3 0の平面 3 7のうち、 環状溝 3 4よりも内側に位置するとともに、 凹部 3 8の外側に位置する部分であって、 且つ弁ボディ 2 0の平面 2 6に対向する 部分である。 第 2弁部 3 6匕は、 弁体 3 0の平面 3 7のうち、 環状溝 3 4よ \¥0 2020/174898 14 卩(:170? 2020 /000824
[0044] The plane 37 of the valve body 30 is bounded by the annular groove 34.
Figure imgf000015_0001
It is divided into 3 6 b. In the following, one surface 3 63 is referred to as "first valve portion 3 63" and the other surface 36 6 is referred to as "second valve portion 3 6". The first valve portion 36 is a portion of the plane 37 of the valve body 30 that is located inside the annular groove 34 and outside the recess 38, and that is also the valve body 20. It is a portion facing the plane 26 of. The second valve section 36 has a circular groove 34 in the plane 37 of the valve body 30. \¥0 2020/174898 14 卩 (: 170? 2020 /000824
りも外側に位置し、 且つ弁ボディ 2 0の平面 2 6に対向する部分である。 It is a portion located on the outermost side and facing the plane 26 of the valve body 20.
[0045] 弁ボディ 2 0の平面 2 6のうち、 弁体 3 0が閉弁した際に弁体 3 0の第 1 弁部 3 6 3が接触する部分は第 1弁座 2 5 3を構成し、 弁体 3 0の第 2弁部 3 6匕が接触する部分は第 2弁座 2 5匕を構成している。 [0045] Of the plane 26 of the valve body 20, the portion where the first valve portion 3 63 of the valve body 30 comes into contact when the valve body 30 closes constitutes the first valve seat 2 5 3. However, the portion of the valve body 30 in contact with the second valve portion 36 has the second valve seat 25.
図 7に示される本実施形態の流体噴射装置 1 0は、 弁体 3 0が閉弁した際 に、 弁体 3 0の第 1弁部 3 6 3の全面が弁ボディ 2 0の平面 2 6に接触する ように構成されている。 これにより、 弁ボディ 2 0の第 1弁座 2 5 3と弁体 3 0の第 1弁部 3 6 3との接触部分を第 1 シート部とすると、 第 1シート部 の内径 0 1 0は弁体 3 0の第 1弁部 3 6 3の内径に等しく、 第 1シート部の 外径 ø 1 1は弁体 3 0の第 1弁部 3 6 3の外径に等しくなっている。 また、 弁ボディ 2 0の第 2弁座 2 5匕と弁体 3 0の第 2弁部 3 6匕との接触部分を 第 2シート部とすると、 第 2シート部の内径 0 2 0は弁体 3 0の第 2弁部 3 6匕の内径に等しく、 第 2シート部の外径 0 2 1は弁体 3 0の第 2弁部 3 6 の外径に等しくなっている。 In the fluid injection device 10 of the present embodiment shown in FIG. 7, when the valve body 30 is closed, the entire surface of the first valve portion 3 6 3 of the valve body 30 is a flat surface 2 6 of the valve body 20. Is configured to contact. As a result, when the contact portion between the first valve seat 2 53 of the valve body 20 and the first valve portion 3 63 of the valve body 30 is the first seat portion, the inner diameter 0 1 0 of the first seat portion is The inner diameter of the first valve portion 3 63 of the valve body 30 is equal to the outer diameter ø 1 1 of the first seat portion is equal to the outer diameter of the first valve portion 3 6 3 of the valve body 30. Further, if the contact portion between the second valve seat 25 of the valve body 20 and the second valve portion 36 of the valve body 30 is the second seat portion, the inner diameter 0 2 0 of the second seat portion is The inner diameter of the second valve portion 36 of the body 30 is equal to the outer diameter 0 21 of the second seat portion is equal to the outer diameter of the second valve portion 36 of the valve body 30.
[0046] 図 8は、 比較例として、 弁体 3 0の平面 3 7に凹部 3 8が設けられていな い流体噴射装置 1 〇の断面構造を図示したものである。 この場合、 第 1シー 卜部の内径 0 1 0は、 弁ボディ 2 0の平面 2 6の内径に等しく、 また第 1シ -卜部の外径 0 1 1は弁体 3 0の第 1弁部 3 6 3の外径に等しくなっている 。 図 8に示される構造の場合、 4つの径 ø 1 0 , 0 1 1 , 0 2 0 , ¢ 2 1の 同軸度の精度、 並びに第 1シート部及び第 2シート部のそれぞれの幅の精度 を高めるためには、 弁ボディ
Figure imgf000016_0001
As a comparative example, FIG. 8 illustrates a cross-sectional structure of the fluid ejection device 10 in which the recess 37 is not provided in the plane 37 of the valve body 30. In this case, the inner diameter 0 1 0 of the first cover part is equal to the inner diameter of the flat face 26 of the valve body 20 and the outer diameter 0 1 1 of the first cover part is the first valve part 3 of the valve body 30. It is equal to the outer diameter of 6 3. In the case of the structure shown in Fig. 8, the accuracy of the concentricity of the four diameters ø 1 0, 0 1 1, 0 2 0, ¢ 2 1 and the accuracy of the width of each of the first and second seat parts are To increase the valve body
Figure imgf000016_0001
3 6 13のそれぞれに関して高い加工精度が要求される。 そのため、 第 1シー 卜部及び第 2シート部の同軸度や幅の精度を高めることが困難になるおそれ がある。 High processing accuracy is required for each of the 3 613. Therefore, it may be difficult to improve the accuracy of the concentricity and width of the first sheet portion and the second sheet portion.
[0047] これに対し、 図 7に示される本実施形態の流体噴射装置 1 0では、 4つの 径 0 1 0 , 0 1 1 , 0 2 0 , ¢ 2 1の同軸度の精度、 並びに第 1シート部及 び第 2シート部のそれぞれの幅の精度を高めるためには、 基本的には、 弁体 3 0の各弁部
Figure imgf000016_0002
3 6 13に関して加工精度を高めるだけでよい。 そのた \¥0 2020/174898 15 卩(:170? 2020 /000824
On the other hand, in the fluid ejection device 10 of the present embodiment shown in FIG. 7, the accuracy of the coaxiality of the four diameters 0 1 0, 0 1 1, 0 2 0, ¢ 2 1 and the first In order to improve the accuracy of the width of the seat part and the second seat part, basically, each valve part of the valve body 30
Figure imgf000016_0002
With regard to 3 6 13 it is only necessary to increase the processing accuracy. That \\0 2020/174898 15 卩 (: 170? 2020 /000824
め、 第 1シート部及び第 2シート部の同軸度や幅の精度を容易に高めること が可能である。 Therefore, it is possible to easily improve the accuracy of the concentricity and the width of the first seat portion and the second seat portion.
[0048] 以上説明した本実施形態の流体噴射装置 1 0によれば、 上記の (1) 〜 ( According to the fluid ejection device 10 of the present embodiment described above, the above (1) to (
3) , (6) 〜 (9) に示される作用及び効果に加え、 以下の (1 1) 〜 ( 3) In addition to the actions and effects shown in (6) to (9), the following (11) to (
1 3) に示される作用及び効果を得ることができる。 1 3) The actions and effects shown in can be obtained.
(1 1) 弁体 3 0の先端部には、 第 1弁部 3 6 3及び第 2弁部 3 6 匕を有 する平面 3 7が形成されている。 弁ボディ 2 0には、 第 1弁座 2 5 3及び第 2弁座 2 5匕を有する平面 2 6が形成されている。 このような構成によれば 、 弁ボディ 2 0及び弁体 3 0の接触部分を円錐状に形成する場合と比較する と、 円錐角度のばらつきに起因する開口不良の発生を抑制することができる (1 1) at the distal end of the valve body 3 0, plane 3 7 to have a first valve portion 3 6 3 and the second valve portion 3 6 spoon is formed. A flat surface 26 having a first valve seat 25 3 and a second valve seat 25 is formed on the valve body 20. According to such a configuration, as compared with the case where the contact portions of the valve body 20 and the valve body 30 are formed in a conical shape, it is possible to suppress the occurrence of opening failure due to the variation in the cone angle.
[0049] (1 2) 第 1弁部 3 6 3及び第 2弁部 3 6匕は、 弁体 3 0の平面 3 7に面 として形成されている。 第 1弁座 2 5 3及び第 2弁座 2 5匕は、 弁ボディ 2 0の平面 2 6に面として形成されている。 弁体 3 0の平面には、 環状溝 3 4 に対応する部分を境界として第 1弁部 3 6 3及び第 2弁部 3 6匕が形成され ている。 弁ボディ 2 0の平面 2 6には、 環状溝 3 4に対応する部分を境界と して第 1弁座 2 5 3及び第 2弁座 2 5匕が形成されている。 このような構成 によれば、 弁ボディ 2 0の平面 2 6に第 1弁座 2 5 3及び第 2弁座 2 5匕を 稜線で形成し、 且つ弁体 3 0の平面 3 7に第 1弁部 3 6 3及び第 2弁部 3 6 匕を稜線で形成する場合と比較すると、 弁ボディ 2 0及び弁体 3 0の加工が 容易となる。 (1 2) The first valve section 363 and the second valve section 36 are formed as planes on the plane 37 of the valve body 30. The first valve seat 2 53 and the second valve seat 25 are formed as planes on the flat surface 26 of the valve body 20. A first valve portion 36 3 and a second valve portion 36 6 are formed on the plane of the valve body 30 with a portion corresponding to the annular groove 34 as a boundary. A first valve seat 25 3 and a second valve seat 25 are formed on a plane 26 of the valve body 20 with a portion corresponding to the annular groove 34 as a boundary. According to this structure, the first valve seat 25 3 and the second valve seat 25 are formed by the ridge line on the plane 26 of the valve body 20 and the first valve seat 25 is formed on the plane 37 of the valve body 30. compared to the case of forming the valve portion 3 6 3 and the second valve portion 3 6 spoon at ridgelines it becomes easy processing of the valve body 2 0 and the valve body 3 0.
[0050] (1 3) 第 1弁部 3 6 3及び第 2弁部 3 6匕が第 1弁座 2 5 3及び第 2弁 座 2 5匕に着座したとき、 第 1弁部 3 6 3の全面及び第 2弁部 3 6匕の全面 が弁ボディ 2 0の平面 2 6に接触する。 このような構成によれば、 第 1シー 卜部の内径 ø 1 〇及び外径 ø 1 1、 並びに第 2シート部の内径 0 2 0及び外 径 0 2 1の同軸度の精度、 並びに第 1 シート部及び第 2シート部のそれぞれ の幅の精度を向上させ易くなる。 (1 3) When the first valve portion 3 63 and the second valve portion 3 6 are seated on the first valve seat 2 5 3 and the second valve seat 25 5, the first valve portion 3 6 3 And the entire surface of the second valve section 36 contact the flat surface 26 of the valve body 20. According to such a configuration, the accuracy of the concentricity of the inner diameter ø 1 0 and outer diameter ø 11 of the first seat portion, and the inner diameter 0 2 0 and outer diameter 0 2 1 of the second seat portion, and the 1st sheet It becomes easy to improve the accuracy of the width of each part and the second sheet part.
[0051 ] <第 4実施形態> \¥0 2020/174898 16 卩(:170? 2020 /000824 [0051] <Fourth Embodiment> \¥0 2020/174898 16 卩 (: 170? 2020 /000824
次に、 流体噴射装置 1 〇の第 4実施形態について説明する。 以下、 第 1実 施形態の流体噴射装置 1 〇との相違点を中心に説明する。 Next, a fourth embodiment of the fluid ejection device 10 will be described. Hereinafter, differences from the fluid ejection device 100 of the first embodiment will be mainly described.
図 9に示されるように、 本実施形態の流体噴射装置 1 0では、 弁ボディ 2 〇の円錐面 2 4の先端部に当たる部分に、 半球状の空間からなるサック部 2 7が形成されている。 弁ボディ 2 0には、 サック部 2 7の内周面から弁ボデ ィ 2 0の先端面に貫通するように複数の噴孔 2 9が形成されている。 この流 体噴射装置 1 〇では、 弁体 3 0が開弁した際に、 第 1噴射流路\^/ 2 1 を通過 及び軽油がサック部 2 7に一時的に溜められた後、 複数の噴孔 2 9から噴射される。 As shown in FIG. 9, in the fluid ejection device 10 of the present embodiment, a sack portion 27 having a hemispherical space is formed in a portion of the valve body 20 that abuts the tip end of the conical surface 24. .. A plurality of injection holes 29 are formed in the valve body 20 so as to penetrate from the inner peripheral surface of the sack portion 27 to the tip surface of the valve body 20. In this fluid injection device 10, when the valve body 30 opens, it passes through the first injection flow path \^/ 2 1 and after light oil is temporarily stored in the sack portion 27, it is It is injected from the injection hole 29.
[0052] 本実施形態の流体噴射装置 1 0では、 軸線 1 に直交する第 1噴射流路 In the fluid ejection device 10 of the present embodiment, the first ejection flow path orthogonal to the axis 1
2 1の流路断面積を 「3 1」 とし、 軸線 1 に直交する第 2噴射流路 2 2 の流路断面積を 「3 2」 とし、 軸線 1 に直交する複数の噴孔 2 9のそれぞ れの断面積の合計値である噴孔 2 9の総断面積を 「3 3」 とするとき、 断面 積 3 3は断面積 3 1 , 3 2のいずれよりも小さい。 Let the flow passage cross-sectional area of 2 1 be “3 1 ”, let the flow passage cross-sectional area of the second injection flow passage 2 2 orthogonal to the axis 1 be “3 2 ”, When the total cross-sectional area of the injection hole 29, which is the total value of the cross-sectional areas, is “3 3 ”, the cross-sectional area 33 is smaller than both the cross-sectional areas 3 1 and 3 2.
[0053] 以上説明した本実施形態の流体噴射装置 1 0によれば、 以下の ( 1 4 ) に 示される作用及び効果を更に得ることができる。 According to the fluid ejecting apparatus 10 of the present embodiment described above, it is possible to further obtain the action and effect shown in (14) below.
( 1 4 ) 噴孔 2 9の総断面積 3 3が噴射流路 2 1 , 2 2の断面積 3 1 , 3 2のいずれよりも小さければ、 〇 〇及び軽油が第 1噴射流路 2 1 を 通じてサック部 2 7に流入した際に、
Figure imgf000018_0001
及び軽油をサック部 2 7におい て一時的に溜めることができる。 これにより、 サック部 2 7の内部の圧力を 高めることができるため、 より的確に〇 〇及び軽油を噴射することが可能 となる。
(1 4) If the total cross-sectional area 3 3 of the injection hole 29 is smaller than the cross-sectional area 3 1 or 3 2 of the injection flow paths 2 1 and 2 2, then 0 and light oil are the first injection flow path 2 1 When flowing into the sack part 27 through
Figure imgf000018_0001
And light oil can be temporarily stored in the sack portion 27. As a result, the pressure inside the sack portion 27 can be increased, so that it is possible to inject OO and light oil more accurately.
[0054] <第 5実施形態> <Fifth Embodiment>
次に、 流体噴射装置 1 〇の第 5実施形態について説明する。 以下、 第 1実 施形態の流体噴射装置 1 〇との相違点を中心に説明する。 Next, a fifth embodiment of the fluid ejection device 10 will be described. Hereinafter, differences from the fluid ejection device 100 of the first embodiment will be mainly described.
図 1 0に示されるように、 本実施形態の弁ボディ 2 0には、 弁体収容孔 2 1が弁ボディ 2 0の先端面 2 8に貫通するように形成されている。 弁体収容 孔 2 1 には弁体 3 0が収容されている。 弁体収容孔 2 1の内周面と弁体 3 0 \¥0 2020/174898 17 卩(:170? 2020 /000824 As shown in FIG. 10, in the valve body 20 of the present embodiment, a valve body accommodation hole 21 is formed so as to penetrate the tip surface 28 of the valve body 20. The valve body 30 is accommodated in the valve body accommodation hole 21. Inner peripheral surface of valve body receiving hole 21 and valve body 30 \¥0 2020/174898 17 卩 (: 170? 2020 /000824
の外周面との間に形成される隙間は、 0 ◦が流通する第 2供給流路 1 2 を構成している。 弁ボディ 2 0には、
Figure imgf000019_0001
を供給す るための流路として、 環状溝 \^/ 1 4及び供給流路\^/ 1 5が形成されている。 環状溝 \^/ 1 4は、 弁ボディ 2 0の外周面に円環状に形成されている。 供給流 路\^/ 1 5は、 環状溝 \^/ 1 4と第 2供給流路\^/ 1 2とを連通するように形成さ れている。 本実施形態の流体噴射装置 1 〇では、 気体燃料ポンプ 1 3 0から 環状溝 1 4に 0 ◦が供給される。 環状溝 1 4に供給される 0 ◦は、 供給流路\^/ 1 5を通じて第 2供給流路\^/ 1 2に供給される。
The gap formed between the outer peripheral surface and the outer peripheral surface constitutes the second supply channel 12 through which 0° flows. The valve body 20 has
Figure imgf000019_0001
An annular groove \^/ 14 and a supply channel \^/ 15 are formed as a flow path for supplying the gas. The annular groove \^/ 14 is formed in an annular shape on the outer peripheral surface of the valve body 20. The supply channel \^/ 15 is formed so as to connect the annular groove \^/ 14 and the second supply channel \^/ 1 2. In the fluid injection device 100 of the present embodiment, 0° is supplied from the gas fuel pump 130 to the annular groove 14. The 0° supplied to the annular groove 14 is supplied to the second supply channel \^/ 1 2 through the supply channel \^/ 15.
[0055] 弁体収容孔 2 1の開口部には、 円錐面 5 2が形成されている。 円錐面 5 2 は、 弁ボディ 2 0の先端面 2 8に向かうほど、 内径が大きくなるように末広 がり状に形成されている。 A conical surface 52 is formed at the opening of the valve body accommodation hole 21. The conical surface 52 is formed in a divergent shape so that the inner diameter increases toward the tip surface 28 of the valve body 20.
円錐面 5 2には、 軸線〇! 1 を中心に円環状に形成される環状溝 5 0が形成 されている。 円錐面 5 2は、 環状溝
Figure imgf000019_0002
5 1 匕に区分されている。 以下では、 一方の面を 「第 1弁座 5 1 3」 と称し、 他 方の面 5 1 匕を 「第 2弁座 5 1 匕」 と称する。
On the conical surface 52, an annular groove 50 formed in an annular shape centering on the axis ◯! 1 is formed. Conical surface 52 is an annular groove
Figure imgf000019_0002
It is divided into 5 1 swallows. In the following, one surface will be referred to as the “first valve seat 5 13 ”, and the other surface 5 1 will be referred to as the “second valve seat 5 1 stub”.
[0056] 弁ボディ 2 0において弁体収容孔 2 1の周囲にあたる部分には、 軽油が流 通する複数の第 1供給流路 1 1が形成されている。 複数の第 1供給流路 1 1は、 軸線 1 に対して平行に延びるように形成されている。 各第 1供給 流路\^/ 1 1は、 導入流路 5 1 を通じて環状溝 5 0に連通されている。 A plurality of first supply flow paths 11 through which light oil flows are formed in a portion of the valve body 20 that surrounds the valve body accommodation hole 21. The plurality of first supply channels 11 are formed so as to extend parallel to the axis 1. Each first supply channel \^/ 11 is communicated with the annular groove 50 through the introduction channel 5 1.
[0057] 弁体 3 0の先端部 6 0は、 下方に向かうほど外径が大きくなるように円錐 台状に形成されている。 先端部 6 0の外周に形成される円錐面 6 1は、 弁ボ ディ 2 0の円錐面 5 2に対向している。 [0057] The tip portion 60 of the valve body 30 is formed in a truncated cone shape so that the outer diameter increases toward the lower side. A conical surface 61 formed on the outer circumference of the tip portion 60 faces the conical surface 52 of the valve body 20.
次に、 本実施形態の流体噴射装置 1 〇の動作例について説明する。 Next, an operation example of the fluid ejection device 10 of the present embodiment will be described.
[0058] 図 1 1 に示されるように、 弁体 3 0が閉弁状態であるとき、 弁体 3 0の円 錐面 6 1が弁ボディ 2 0の第 1弁座 5 1 3及び第 2弁座 5 1 匕に着座してい る。 以下では、 弁体 3 0の円錐面 6 1のうち、 弁ボディ 2 0の第 1弁座 5 1 3に接触する面を第 1弁部 6 2 3と称し、 弁ボディ 2 0の第 2弁座 5 1 匕に 接触する面を第 2弁部 6 2匕と称する。 弁体 3 0が閉弁状態であるとき、 弁 \¥0 2020/174898 18 卩(:170? 2020 /000824 [0058] As shown in Fig. 11, when the valve body 30 is in the closed state, the conical surface 6 1 of the valve body 30 causes the first valve seat 5 1 3 and the second valve seat 5 1 3 Seat 5 1 Seated in a swamp. Hereinafter, among the conical surface 61 of the valve body 3 0 refers to the surface in contact with the first valve seat 5 1 3 of the valve body 2 0 and the first valve portion 6 2 3, the valve body 2 0 second valve The surface that contacts the seat 51 is called the second valve portion 62. When the valve body 30 is closed, the valve \\0 2020/174898 18 卩 (: 170? 2020 /000824
体 3 0の円錐面 6 1 と弁ボディ 2 0の各弁座 5 1 3 , 5 1 匕との間に形成さ れる隙間が閉塞されているため、 第 1供給流路\^/ 1 1 に供給されている軽油 及び第 2供給流路 1 2に供給されている 0 ◦は噴射されない。 Since the gap formed between the conical surface 6 1 of the body 30 and the valve seats 5 1 3 and 5 1 of the valve body 20 is closed, the first supply flow path \^/ 1 1 The supplied light oil and 0° supplied to the second supply passage 12 are not injected.
[0059] 図 1 1 に示される状態から駆動部 1 5 0が弁体 3 0を下方に動作させると 、 図 1 0に示されるように、 弁体 3 0の第 1弁部 6 2 3及び第 2弁部 6 2匕 が弁ボディ 2 0の第 1弁座 5 1 3及び第 2弁座 5 1 匕から離座する。 これに より、 弁体 3 0の第 1弁部 6 2 3と弁ボディ 2 0の第 1弁座 5 1 3との間に 第 1噴射流路\^/ 2 1が形成されるとともに、 弁体 3 0の第 2弁部 3 6匕と弁 ボディ 2 0の第 2弁座 5 1 匕との間に第 2噴射流路 2 2が形成される。 よ って、 第 1供給流路\^/ 1 1 に供給されている軽油は、 導入流路 5 1及び第 1 噴射流路\^/ 2 1 を通じて噴射される。 また、 第 2供給流路\^/ 1 2に供給され ている 0 ◦は、 第 2噴射流路 2 2及び第 1噴射流路 2 1 を通じて噴射 される。 したがって、 軽油及び
Figure imgf000020_0001
が気筒 1 0 0内に噴射される。
When the drive unit 150 moves the valve body 30 downward from the state shown in FIG. 11, as shown in FIG. 10, as shown in FIG. The second valve portion 62 is separated from the first valve seat 5 1 3 and the second valve seat 51 of the valve body 20. As a result, the first injection passage \^/ 2 1 is formed between the first valve portion 6 2 3 of the valve body 30 and the first valve seat 5 13 of the valve body 20 and the valve is A second injection passage 22 is formed between the second valve portion 36 of the body 30 and the second valve seat 51 of the valve body 20. Therefore, the light oil supplied to the first supply flow path \^/ 1 1 is injected through the introduction flow path 5 1 and the first injection flow path \^/ 2 1. Further, 0° supplied to the second supply channel \^/ 12 is injected through the second injection channel 22 and the first injection channel 2 1. Therefore, light oil and
Figure imgf000020_0001
Is injected into the cylinder 100.
[0060] このように、 本実施形態の流体噴射装置 1 0では、 弁体 3 0の第 1弁部 6 As described above, in the fluid ejection device 10 of the present embodiment, the first valve portion 6 of the valve body 30 is
2 3が弁ボディ 2 0の第 1弁座 5 1 3に対して離座及び着座することにより 、 軽油及び
Figure imgf000020_0002
の両方の噴射及び噴射の停止が行われる。 また、 弁体 3 0 の第 2弁部 6 2 が弁ボディ 2 0の第 2弁座 5 1 に対して離座及び着座す ることにより、
Figure imgf000020_0003
の噴射及び噴射の停止が行われる。
2 3 separates from and seats against the 1st valve seat 5 1 3 of the valve body 20 so that light oil and
Figure imgf000020_0002
Both the injection and the stop of the injection are performed. In addition, the second valve portion 6 2 of the valve body 30 separates from and seats on the second valve seat 5 1 of the valve body 20,
Figure imgf000020_0003
Injection and stop of injection are performed.
[0061 ] 以上説明した本実施形態の流体噴射装置 1 0によれば、 第 1実施形態の流 体噴射装置 1 〇と同一又は類似の作用及び効果を得ることができる。 According to the fluid ejecting apparatus 10 of the present embodiment described above, the same or similar action and effect as those of the fluid ejecting apparatus 10 of the first embodiment can be obtained.
<第 6実施形態> <Sixth Embodiment>
次に、 流体噴射装置 1 〇の第 6実施形態について説明する。 以下、 第 1実 施形態の流体噴射装置 1 〇との相違点を中心に説明する。 Next, a sixth embodiment of the fluid ejection device 10 will be described. Hereinafter, differences from the fluid ejection device 100 of the first embodiment will be mainly described.
[0062] 本実施形態の流体噴射装置 1 0は、 車両の排気の浄化を目的として、 排気 中に尿素水を噴射する尿素水噴射装置として用いられる。 流体噴射装置 1 〇 は、 弁体 3 0を駆動させる構成として、 駆動部 1 5 0により弁体 3 0に外力 を付与する構成に代えて、 流体圧力を利用して弁体 3 0を駆動させる構成を 有している。 \¥0 2020/174898 19 卩(:170? 2020 /000824 The fluid injection device 10 of the present embodiment is used as a urea water injection device that injects urea water into the exhaust gas for the purpose of purifying exhaust gas of the vehicle. The fluid ejecting apparatus 10 is configured to drive the valve body 30 by using fluid pressure to drive the valve body 30 instead of the drive unit 150 applying an external force to the valve body 30. Have a composition. \\0 2020/174898 19 卩 (: 170? 2020 /000824
[0063] 具体的には、 図 1 2に示されるように、 本実施形態の弁体 3 0において摺 動シール部 4 0に対して摺動する部分である摺動部 6 3の外径は、 それより も先端部側の中間部 6 4の外径よりも大きくなっている。 これにより、 摺動 部 6 3と中間部 6 4との間には段差部 6 5が形成されている。 また、 弁体 3 0は、 弁ボディ 2 0の内部に設けられるスプリング 7 0により弁ボディ 2 0 の円錐面 2 4に向かって付勢されている。 Specifically, as shown in FIG. 12, in the valve body 30 of the present embodiment, the outer diameter of the sliding portion 63 that is a portion that slides with respect to the sliding seal portion 40 is , And is larger than the outer diameter of the intermediate portion 64 on the tip side. As a result, a step portion 65 is formed between the sliding portion 63 and the intermediate portion 64. The valve body 30 is biased toward the conical surface 24 of the valve body 20 by a spring 70 provided inside the valve body 20.
本実施形態の第 1供給流路 1 1 には尿素水が供給されている。 また、 第 2供給流路\^/ 1 2には、 第 3供給流路\^/ 1 3を通じて空気が供給されている 。 本実施形態では、 尿素水が第 1流体に相当し、 空気が第 2流体に相当する The urea water is supplied to the first supply channel 11 of the present embodiment. Air is supplied to the second supply channel \^/ 12 through the third supply channel \^/ 13 3. In the present embodiment, urea water corresponds to the first fluid, and air corresponds to the second fluid.
[0064] 次に、 本実施形態の流体噴射装置 1 0の動作例について説明する。 Next, an operation example of the fluid ejection device 10 of the present embodiment will be described.
弁体 3 0が閉弁状態であるとき、 弁体 3 0の段差部 6 5には、 第 1供給流 路\^/ 1 1 に供給される尿素水の圧力と、 第 2供給流路\^/ 1 2に供給される空 気の圧力との差に応じた流体圧力が付与される。 コントローラ 1 6 0は、 流 体噴射装置 1 〇に尿素水を圧送するポンプ、 及び流体噴射装置 1 〇に空気を 圧送するポンプを制御することにより、 弁体 3 0に付与される流体圧力がス プリング 7 0の付勢力よりも大きくなるように尿素水の圧力及び空気の圧力 を調整する。 弁体 3 0に付与される流体圧力がスプリング 7 0の付勢力より も大きくなることにより、 スプリング 7 0の付勢力に抗して弁体 3 0がリフ 卜動作し、 弁体 3 0が開弁する。 When the valve body 30 is closed, the pressure difference of the urea water supplied to the first supply channel \^/ 11 and the second supply channel \ Fluid pressure is applied according to the difference from the pressure of the air supplied to ^/ 12. The controller 160 controls the fluid pressure applied to the valve body 30 by controlling the pump that pumps urea water to the fluid injection device 10 and the pump that pumps air to the fluid injection device 10. Adjust the urea water pressure and the air pressure so that they are larger than the urging force of the pulling 70. Since the fluid pressure applied to the valve body 30 becomes larger than the biasing force of the spring 70, the valve body 30 performs a riffing action against the biasing force of the spring 70 and the valve body 30 opens. Speak.
[0065] 以上説明した本実施形態の流体噴射装置 1 0のように、 流体噴射装置 1 0 で用いられる 2種類の流体の圧力を利用して弁体 3 0をリフト動作させるよ うにすれば、 駆動部 1 5 0が不要となるため、 構造を簡素化することが可能 である。 As in the fluid ejecting apparatus 10 of the present embodiment described above, if the valve body 30 is lifted by using the pressures of two kinds of fluids used in the fluid ejecting apparatus 10, Since the drive unit 150 is not required, the structure can be simplified.
<他の実施形態> <Other Embodiments>
なお、 各実施形態は、 以下の形態にて実施することもできる。 In addition, each embodiment can also be implemented in the following forms.
[0066] 第 1実施形態及び第 2実施形態では、 環状溝 3 4が、 弁体 3 0の円錐面 In the first and second embodiments, the annular groove 34 is the conical surface of the valve body 30.
3 5及び弁ボディ 2 0の円錐面 2 4の少なくとも一方に形成されていればよ \¥0 2020/174898 20 卩(:170? 2020 /000824 3 5 and at least one of the conical surfaces 24 of the valve body 20 \¥0 2020/174898 20 卩 (: 170? 2020 /000824
い。 また、 第 3実施形態では、 環状溝 3 4が、 弁体 3 0の平面 3 7及び弁ボ ディ 2 0の平面 2 6の少なくとも一方に形成されていればよい。 その他の実 施形態についても同様である。 Yes. Further, in the third embodiment, the annular groove 34 may be formed on at least one of the plane 37 of the valve body 30 and the plane 26 of the valve body 20. The same applies to other embodiments.
[0067] ディーゼルエンジンでは、 二酸化炭素の削減やエミッションの低減を目 的として、 燃料である軽油の噴射圧力が益々高くなっており、 現在では 2 5 0 [ 1\/1 3 ] 以上にもなっている。 そのため、 燃料噴射装置の各部の耐圧の 向上が必要となっており、 また軽油の昇圧のためのポンプの仕事量も大きく なるという課題がある。 このようなディーゼルエンジンにおいて軽油を噴射 する燃料噴射装置として、 各実施形態の流体噴射装置 1 0を用いることが有 効である。 具体的には、 各実施形態の流体噴射装置 1 0において軽油及び空 気を噴射するように構成する。 これにより、 空気の圧力を活用して軽油を微 粒化して噴射することができるため、 上記のディーゼルエンジンの課題を解 決することが可能である。 なお、 流体噴射装置 1 0に用いられる気体として 空気を用いれば、 気体が可燃性ではないため、 そのポンプ等における可燃物 の漏れを考慮する必要がなくなる。 そのため、 ポンプの構造を簡素化するこ とができる。 また、 気体を貯蔵するためのタンクが不要となる。 [0067] In diesel engines, the injection pressure of light oil, which is fuel, is increasing more and more with the aim of reducing carbon dioxide and reducing emissions, and it is now over 250 [1\/1 3]. ing. Therefore, it is necessary to improve the pressure resistance of each part of the fuel injection device, and there is a problem that the work of the pump for pressurizing the light oil also becomes large. It is effective to use the fluid injection device 10 of each embodiment as a fuel injection device for injecting light oil in such a diesel engine. Specifically, the fluid injection device 10 of each embodiment is configured to inject light oil and air. As a result, the pressure of air can be utilized to atomize and inject light oil, which makes it possible to solve the above-mentioned problems of diesel engines. If air is used as the gas used in the fluid ejecting apparatus 10, the gas is not combustible, so it is not necessary to consider the leakage of combustible substances in the pump or the like. Therefore, the structure of the pump can be simplified. Also, a tank for storing gas is not required.
[0068] ガソリンエンジンでは、 二酸化炭素の削減やエミッションの低減を目的 として、 燃料であるガソリンの噴射圧が益々高くなっており、 現在では 3 0 [ 1\/1 3 ] 以上にもなっている。 そのため、 燃料噴射装置の各部の耐圧の向 上が必要となっており、 またガソリンの昇圧のためのポンプの仕事量も大き くなるという課題がある。 このようなガソリンエンジンにおいてガソリンを 噴射する燃料噴射装置として、 各実施形態の流体噴射装置 1 0を用いること が有効である。 具体的には、 各実施形態の流体噴射装置 1 0においてガソリ ン及び空気を噴射するように構成する。 これにより、 空気の圧力を活用して ガソリンを微粒化して噴射することができるため、 上記のガソリンエンジン の課題を解決することが可能である。 なお、 流体噴射装置 1 0に用いられる 気体として空気を用いれば、 気体が可燃性ではないため、 そのポンプ等にお ける可燃物の漏れを考慮する必要がなくなる。 そのため、 ポンプの構造を簡 \¥0 2020/174898 21 卩(:170? 2020 /000824 [0068] In a gasoline engine, the injection pressure of gasoline, which is a fuel, has been increasing more and more with the aim of reducing carbon dioxide and reducing emissions, and now it is more than 30 [1\/1 3 ]. .. Therefore, it is necessary to improve the pressure resistance of each part of the fuel injection device, and there is a problem that the work of the pump for boosting the gasoline becomes large. It is effective to use the fluid injection device 10 of each embodiment as a fuel injection device that injects gasoline in such a gasoline engine. Specifically, the fluid ejection device 10 of each embodiment is configured to inject gas and air. As a result, the pressure of the air can be used to atomize and inject gasoline, which makes it possible to solve the problems of the gasoline engine described above. If air is used as the gas used in the fluid ejecting apparatus 10, the gas is not combustible, so it is not necessary to consider the leakage of combustible substances in the pump or the like. Therefore, the pump structure can be simplified. \\0 2020/174898 21 卩 (: 170? 2020 /000824
素化することができる。 また、 気体を貯蔵するためのタンクが不要となる。 Can be categorized. Also, a tank for storing gas is not required.
[0069] 流体噴射装置 1 0から液体燃料と空気とを噴射する場合には、 空気に印 加される噴射の圧力が一定の圧力に設定されていてもよい。 具体的には、 コ ントローラ 1 6 0は、 空気に印加される噴射のための圧力が一定の圧力とな るように空気用のポンプを制御する。 また、 コントローラ 1 6 0は、 液体燃 料用のポンプを制御することにより、 液体燃料に印加される噴射のための圧 力を調整する圧力制御を行う。 さらに、 コントローラ 1 6 0は、 駆動部 1 5 0を制御することにより、 弁体 3 0のリフト量や開弁時間等を調整する駆動 制御を実行する。 コントローラ 1 6 0は、 液体燃料の圧力制御及び弁体 3 0 の駆動制御を通じて空気及び液体燃料のそれぞれの噴射量を制御する。 この ような構成によれば、 空気の圧力を制御する構成が不要となるため、 気体燃 料ポンプ 1 3 0を簡略化することができる。 When injecting liquid fuel and air from the fluid injection device 10, the injection pressure applied to the air may be set to a constant pressure. Specifically, the controller 160 controls the air pump so that the injection pressure applied to the air is constant. Further, the controller 160 controls the pump for liquid fuel to perform pressure control for adjusting the pressure for injection applied to the liquid fuel. Further, the controller 160 controls the drive unit 150 to execute drive control for adjusting the lift amount and valve opening time of the valve body 30. The controller 160 controls the injection amounts of air and liquid fuel through the pressure control of the liquid fuel and the drive control of the valve body 30. According to such a configuration, the configuration for controlling the pressure of air is not necessary, so that the gas fuel pump 130 can be simplified.
[0070] 各実施形態の流体噴射装置 1 0に用いられる 2種類の流体は適宜変更可 能である。 例えば、 可燃性の気体として、 プロパンガス (I - 〇) 等を用い てもよい。 なお、 プロパンガスを用いる場合、 プロパンガスを 1 [ IV! 3 ] 程度に圧縮した状態で流体噴射装置 1 0に供給することにより、 流体噴射装 置 1 0の内部では、 プロパンガスが液体の状態で存在していてもよい。 すな わち、 流体噴射装置 1 0に用いられる気体には、 常温常圧状態で気体である 流体が含まれる。 [0070] The two types of fluids used in the fluid ejection device 10 of each embodiment can be changed as appropriate. For example, propane gas (I-0) or the like may be used as the combustible gas. When propane gas is used, it is compressed to about 1 [IV! 3] and supplied to the fluid ejecting apparatus 10 so that the propane gas is in a liquid state inside the fluid ejecting apparatus 10. May exist in. That is, the gas used in the fluid ejection device 10 includes a fluid that is a gas at room temperature and atmospheric pressure.
[0071 ] 本開示に記載のコントローラ 1 6 0及びその制御方法は、 コンピュータ プログラムにより具体化された 1つ又は複数の機能を実行するようにプログ ラムされたプロセッサ及びメモリを構成することによって提供された 1つ又 は複数の専用コンピュータにより、 実現されてもよい。 本開示に記載のコン トローラ 1 6 0及びその制御方法は、 1つ又は複数の専用ハードウエア論理 回路を含むプロセッサを構成することによって提供された専用コンピュータ により、 実現されてもよい。 本開示に記載のコントローラ 1 6 0及びその制 御方法は、 1つ又は複数の機能を実行するようにプログラムされたプロセッ サ及びメモリと 1つ又は複数のハードウエア論理回路を含むプロセッサとの \¥0 2020/174898 22 卩(:170? 2020 /000824 [0071] The controller 160 and its control method described in the present disclosure are provided by configuring a processor and a memory programmed to perform one or more functions embodied by a computer program. It may be realized by one or more dedicated computers. The controller 160 and its control method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor including one or more dedicated hardware logic circuits. A controller 160 and control method thereof described in this disclosure provides a processor and memory programmed to perform one or more functions and a processor including one or more hardware logic circuits. \¥0 2020/174898 22 卩 (: 170? 2020 /000824
組み合わせにより構成された 1つ又は複数の専用コンピュータにより、 実現 されてもよい。 コンピュータプログラムは、 コンピュータにより実行される インストラクションとして、 コンピュータ読み取り可能な非遷移有形記録媒 体に記憶されていてもよい。 専用ハードウエア論理回路及びハードウエア論 理回路は、 複数の論理回路を含むデジタル回路、 又はアナログ回路により実 現されてもよい。 It may be realized by one or more dedicated computers configured by combination. The computer program may be stored in a computer-readable non-transition tangible recording medium as instructions executed by the computer. The dedicated hardware logic circuit and the hardware logic circuit may be realized by a digital circuit including a plurality of logic circuits or an analog circuit.
[0072] 本開示は上記の具体例に限定されるものではない。 上記の具体例に、 当 業者が適宜設計変更を加えたものも、 本開示の特徴を備えている限り、 本開 示の範囲に包含される。 前述した各具体例が備える各要素、 及びその配置、 条件、 形状等は、 例示したものに限定されるわけではなく適宜変更すること ができる。 前述した各具体例が備える各要素は、 技術的な矛盾が生じない限 り、 適宜組み合わせを変えることができる。 The present disclosure is not limited to the above specific examples. Those obtained by those skilled in the art who have made appropriate design changes to the above specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. The elements included in each of the above-described specific examples, and the arrangement, conditions, shapes, and the like of the elements are not limited to those illustrated, but can be appropriately changed. The respective elements included in the above-described specific examples can be appropriately combined as long as no technical contradiction occurs.

Claims

\¥0 2020/174898 23 卩(:170? 2020 /000824 請求の範囲 \¥0 2020/174898 23 卩(: 170? 2020/000824 Claims
[請求項 1 ] 第 1弁座
Figure imgf000025_0001
5 1 3) 及び第 2弁座 (2 5匕, 5 1 匕) を有 する弁ボディ (2 0) と、
[Claim 1] First valve seat
Figure imgf000025_0001
5 1 3) and a valve body (2 0) having a second valve seat (2 5 claws, 5 1 claws),
前記第 1弁座及び前記第 2弁座の両方に対向するように配置され、 前記第 1弁座に対して離座及び着座する第 1弁部 (3 6 3 , 6 2 3A first valve portion (3 6 3, 6 2 3 ) that is arranged so as to face both the first valve seat and the second valve seat, and is separated from and seated on the first valve seat.
、 並びに前記第 2弁座に対して離座及び着座する第 2弁部 (3 6匕,, And the second valve part (36 cm, which is separated from and seated on the second valve seat).
6 2匕) を有する弁体 (3 0) と、 を備え、 6 2) and a valve body (30) having
前記弁体の変位に伴って前記第 1弁部及び前記第 2弁部は一体的に 変位し、 With the displacement of the valve body, the first valve portion and the second valve portion are integrally displaced,
前記第 1弁部が前記第 1弁座に対して離座及び着座することにより 、 第 1流体及び第 2流体の両方の噴射及び噴射の停止が行われ、 前記第 2弁部が前記第 2弁座に対して離座及び着座することにより 、 前記第 2流体の噴射及び噴射の停止が行われる By injecting and stopping the injection of both the first fluid and the second fluid by separating and seating the first valve portion with respect to the first valve seat, the second valve portion is operated by the second valve portion. By separating from and seating on the valve seat, injection and stop of the injection of the second fluid are performed.
流体噴射装置。 Fluid ejection device.
[請求項 2] 前記第 1弁部が前記第 1弁座から離座することにより形成される流 路を第 1噴射流路 (\^/ 2 1) とし、 [Claim 2] A flow path formed by separating the first valve portion from the first valve seat is defined as a first injection flow path (\^/21),
前記第 2弁部が前記第 2弁座から離座することにより形成される流 路を第 2噴射流路 (\^/ 2 2) とするとき、 When the flow path formed by separating the second valve portion from the second valve seat is the second injection flow path (\^/22),
前記第 1弁部及び前記第 2弁部が前記第 1弁座及び前記第 2弁座か ら離座したとき、 前記第 1流体は、 前記第 1噴射流路及び前記第 2噴 射流路のうち、 前記第 1噴射流路のみを流れて噴射され、 前記第 2流 体は、 前記第 1噴射流路及び前記第 2噴射流路の両方を流れて噴射さ れる When the first valve portion and the second valve portion are separated from the first valve seat and the second valve seat, the first fluid flows in the first injection flow path and the second injection flow path. Of which, only the first injection flow path is injected and the second fluid is injected both the first injection flow path and the second injection flow path.
請求項 1 に記載の流体噴射装置。 The fluid ejection device according to claim 1.
[請求項 3] 前記弁体には、 前記第 1流体を前記第 1噴射流路に導入する導入流 路 (3 1〜 3 3) が形成されている [Claim 3] The valve body is formed with an introduction flow path (31 to 33) for introducing the first fluid into the first injection flow path.
請求項 2に記載の流体噴射装置。 The fluid ejection device according to claim 2.
[請求項 4] 前記弁体の先端部には、 前記第 1弁部及び前記第 2弁部を同軸上に \¥0 2020/174898 24 卩(:170? 2020 /000824 [Claim 4] The first valve portion and the second valve portion are coaxially arranged at the tip of the valve body. \\0 2020/174898 24 卩 (: 170? 2020 /000824
有する同一円錐面 (3 5 , 6 1 ) が形成され、 The same conical surface with (3 5, 6 1) is formed,
前記弁ボディには、 前記第 1弁座及び前記第 2弁座を同軸上に有す る同一円錐面 (2 4 , 5 2) が形成されている The valve body is formed with the same conical surface (2 4, 5 2) having the first valve seat and the second valve seat coaxially.
請求項 2又は 3に記載の流体噴射装置。 The fluid ejection device according to claim 2 or 3.
[請求項 5] 前記第 1弁部及び前記第 2弁部は、 前記弁体の円錐面に面として形 成され、 [Claim 5] The first valve portion and the second valve portion are formed as surfaces on a conical surface of the valve body,
前記第 1弁座及び前記第 2弁座は、 前記弁ボディの円錐面に面とし て形成され、 The first valve seat and the second valve seat are formed as a surface on a conical surface of the valve body,
前記弁体の円錐面及び前記弁ボディの円錐面の少なくとも一方には 、 環状溝 (3 4 , 5 0) が形成され、 An annular groove (3 4, 50) is formed on at least one of the conical surface of the valve body and the conical surface of the valve body,
前記弁体の円錐面には、 前記環状溝に対応する部分を境界として前 記第 1弁部及び前記第 2弁部が形成され、 On the conical surface of the valve body, the first valve portion and the second valve portion are formed with a portion corresponding to the annular groove as a boundary.
前記弁ボディの円錐面には、 前記環状溝に対応する部分を境界とし て前記第 1弁座及び前記第 2弁座が形成されている On the conical surface of the valve body, the first valve seat and the second valve seat are formed with a portion corresponding to the annular groove as a boundary.
請求項 4に記載の流体噴射装置。 The fluid ejection device according to claim 4.
[請求項 6] 前記第 1弁部及び前記第 2弁部が前記第 1弁座及び前記第 2弁座に 着座したとき、 前記第 1弁部の全面及び前記第 2弁部の全面が前記弁 ボディの前記円錐面に接触する [Claim 6] When the first valve portion and the second valve portion are seated on the first valve seat and the second valve seat, the entire surface of the first valve portion and the entire surface of the second valve portion are Touches the conical surface of the valve body
請求項 4又は 5に記載の流体噴射装置。 The fluid ejection device according to claim 4 or 5.
[請求項 7] 前記弁体の先端部には、 前記第 1弁部及び前記第 2弁部を有する平 面 (3 7) が形成され、 [Claim 7] A flat surface (37) having the first valve portion and the second valve portion is formed at a tip end portion of the valve body,
前記弁ボディには、 前記第 1弁座及び前記第 2弁座を有する平面 ( 2 6) が形成されている The valve body has a flat surface (26) having the first valve seat and the second valve seat.
請求項 2又は 3に記載の流体噴射装置。 The fluid ejection device according to claim 2 or 3.
[請求項 8] 前記第 1弁部及び前記第 2弁部は、 前記弁体の平面に面として形成 され、 [Claim 8] The first valve portion and the second valve portion are formed as surfaces on a plane of the valve body,
前記第 1弁座及び前記第 2弁座は、 前記弁ボディの平面に面として 形成され、 \¥0 2020/174898 25 卩(:170? 2020 /000824 The first valve seat and the second valve seat are formed as surfaces on a plane of the valve body, \¥0 2020/174898 25 卩 (: 170? 2020 /000824
前記弁体の平面及び前記弁ボディの平面の少なくとも一方には、 環 状溝 (3 4) が形成され、 An annular groove (34) is formed in at least one of the plane of the valve body and the plane of the valve body,
前記弁体の平面には、 前記環状溝に対応する部分を境界として前記 第 1弁部及び前記第 2弁部が形成され、 On the plane of the valve body, the first valve portion and the second valve portion are formed with a portion corresponding to the annular groove as a boundary,
前記弁ボディの平面には、 前記環状溝に対応する部分を境界として 前記第 1弁座及び前記第 2弁座が形成されている On the plane of the valve body, the first valve seat and the second valve seat are formed with a portion corresponding to the annular groove as a boundary.
請求項 7に記載の流体噴射装置。 The fluid ejection device according to claim 7.
[請求項 9] 前記第 1弁部及び前記第 2弁部が前記第 1弁座及び前記第 2弁座に 着座したとき、 前記第 1弁部の全面及び前記第 2弁部の全面が前記弁 ボディの平面に接触する [Claim 9] When the first valve portion and the second valve portion are seated on the first valve seat and the second valve seat, the entire surface of the first valve portion and the entire surface of the second valve portion are Touches the plane of the valve body
請求項 7又は 8に記載の流体噴射装置。 9. The fluid ejection device according to claim 7 or 8.
[請求項 10] 前記第 1噴射流路に前記第 1流体を導入する流路を導入流路 (3 1 〜 3 3) とするとき、 [Claim 10] When the flow passage for introducing the first fluid into the first injection flow passage is defined as an introduction flow passage (3 1 to 33 ),
前記導入流路には、 前記第 1噴射流路に導入される前記第 1流体の 流量を調整する絞り部 (3 3) が形成されている A throttle portion (33) for adjusting the flow rate of the first fluid introduced into the first injection passage is formed in the introduction passage.
請求項 2〜 9のいずれか一項に記載の流体噴射装置。 The fluid ejection device according to any one of claims 2 to 9.
[請求項 1 1 ] 前記第 1弁部が前記第 1弁座から離座することにより形成される流 路を第 1噴射流路とし、 [Claim 11] A flow path formed by separating the first valve portion from the first valve seat is defined as a first injection flow path,
前記第 2弁部が前記第 2弁座から離座することにより形成される流 路を第 2噴射流路とするとき、 When the flow path formed by separating the second valve portion from the second valve seat is the second injection flow path,
前記第 1流体及び前記第 2流体を外部に噴射する噴孔 (2 9) の総 断面積は、 前記第 1噴射流路の流路断面積及び前記第 2噴射流路の流 路断面積のいずれよりも小さい The total cross-sectional area of the injection hole (29) for injecting the first fluid and the second fluid to the outside is equal to the flow passage cross-sectional area of the first injection flow passage and the flow passage cross-sectional area of the second injection flow passage. Less than any
請求項 2〜 1 0のいずれか一項に記載の流体噴射装置。 The fluid ejection device according to any one of claims 2 to 10.
[請求項 12] 前記第 1流体に印加される噴射のための圧力、 及び前記第 2流体に 印加される噴射のための圧力は、 同一の圧力に設定されている 請求項 2〜 1 1のいずれか一項に記載の流体噴射装置。 12. The injection pressure applied to the first fluid and the injection pressure applied to the second fluid are set to the same pressure. The fluid ejection device according to any one of claims.
[請求項 13] 前記第 1流体に印加される噴射のための圧力よりも、 前記第 2流体 \¥0 2020/174898 26 卩(:170? 2020 /000824 [Claim 13] The pressure of the second fluid is higher than the pressure for jetting applied to the first fluid. \¥0 2020/174898 26 卩 (: 170? 2020 /000824
に印加される噴射のための圧力の方が高い Higher pressure for injection applied to the
請求項 2〜 1 1のいずれか一項に記載の流体噴射装置。 The fluid ejection device according to any one of claims 2 to 11.
[請求項 14] 前記第 1流体に印加される噴射のための圧力は、 零に設定されてい る [Claim 14] The pressure for injection applied to the first fluid is set to zero.
請求項 1 3に記載の流体噴射装置。 The fluid ejection device according to claim 13.
[請求項 15] 前記第 1流体は液体であり、 [Claim 15] The first fluid is a liquid,
前記第 2流体は気体である The second fluid is a gas
請求項 2〜 1 4のいずれか一項に記載の流体噴射装置。 The fluid ejection device according to any one of claims 2 to 14.
[請求項 16] 前記第 1流体は液体であり、 [Claim 16] The first fluid is a liquid,
前記第 2流体は気体であり、 The second fluid is a gas,
前記気体に印加される噴射のための圧力よりも、 前記液体に印加さ れる噴射のための圧力の方が高い The jetting pressure applied to the liquid is higher than the jetting pressure applied to the gas
請求項 2〜 1 1のいずれか一項に記載の流体噴射装置。 The fluid ejection device according to any one of claims 2 to 11.
[請求項 17] 前記気体は空気である [Claim 17] The gas is air
請求項 1 5又は 1 6に記載の流体噴射装置。 The fluid ejection device according to claim 15 or 16.
[請求項 18] 前記気体に印加される噴射のための圧力は一定の圧力に設定されて おり、 [Claim 18] The pressure applied to the gas for injection is set to a constant pressure,
前記液体に印加される噴射のための圧力を調整する圧力制御、 及び 前記弁体の駆動制御により前記気体及び前記液体のそれぞれの噴射量 を制御する制御部 (1 6 0) を更に備える Pressure control for adjusting the pressure for injection applied to the liquid, and a control unit (160) for controlling the injection amount of each of the gas and the liquid by drive control of the valve body.
請求項 1 5〜 1 7のいずれか一項に記載の流体噴射装置。 The fluid ejection device according to any one of claims 15 to 17.
[請求項 19] 前記気体として、 可燃性ガスが用いられ、 [Claim 19] A flammable gas is used as the gas,
前記弁体の駆動制御により前記可燃性ガスの噴射量を制御するとと もに、 前記液体に印加される噴射のための圧力を調整する圧力制御に より前記液体の噴射量を制御する制御部 (1 6 0) を更に備える 請求項 1 5又は 1 6に記載の流体噴射装置。 A control unit that controls the injection amount of the combustible gas by controlling the drive of the valve element and controls the injection amount of the liquid by pressure control that adjusts the pressure for the injection applied to the liquid. The fluid ejection device according to claim 15 or 16, further comprising:
PCT/JP2020/000824 2019-02-27 2020-01-14 Fluid injection apparatus WO2020174898A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112020000972.6T DE112020000972T5 (en) 2019-02-27 2020-01-14 Fluid injector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019034485A JP2020139435A (en) 2019-02-27 2019-02-27 Fluid injection device
JP2019-034485 2019-02-27

Publications (1)

Publication Number Publication Date
WO2020174898A1 true WO2020174898A1 (en) 2020-09-03

Family

ID=72239344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000824 WO2020174898A1 (en) 2019-02-27 2020-01-14 Fluid injection apparatus

Country Status (3)

Country Link
JP (1) JP2020139435A (en)
DE (1) DE112020000972T5 (en)
WO (1) WO2020174898A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183468A (en) * 2004-12-24 2006-07-13 Denso Corp Fuel injection device
JP2008138609A (en) * 2006-12-01 2008-06-19 Denso Corp Fuel injection nozzle
JP2013217324A (en) * 2012-04-10 2013-10-24 Toyota Motor Corp Fuel injection valve
US20160123286A1 (en) * 2012-06-10 2016-05-05 Quantlogic Corporation Method, system, and fuel injector for multi-fuel injection with pressure intensification and a variable orifice
JP2016145526A (en) * 2015-02-06 2016-08-12 トヨタ自動車株式会社 Injection control device for internal combustion engine
DE102015015518A1 (en) * 2015-11-26 2017-06-14 Hermann GOLLE Fuel / air injection system for internal combustion engines

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201309118D0 (en) 2013-05-21 2013-07-03 Delphi Tech Holding Sarl Fuel Injector
DK178149B1 (en) * 2013-10-30 2015-06-29 Man Diesel & Turbo Deutschland A Fuel Valve for Pilot Oil Injection and for Injecting Gaseous Fuel into the Combustion Chamber of a Self-Igniting Internal Combustion Engine
JP6991781B2 (en) 2017-08-17 2022-01-13 日本カーバイド工業株式会社 Three-dimensional structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183468A (en) * 2004-12-24 2006-07-13 Denso Corp Fuel injection device
JP2008138609A (en) * 2006-12-01 2008-06-19 Denso Corp Fuel injection nozzle
JP2013217324A (en) * 2012-04-10 2013-10-24 Toyota Motor Corp Fuel injection valve
US20160123286A1 (en) * 2012-06-10 2016-05-05 Quantlogic Corporation Method, system, and fuel injector for multi-fuel injection with pressure intensification and a variable orifice
JP2016145526A (en) * 2015-02-06 2016-08-12 トヨタ自動車株式会社 Injection control device for internal combustion engine
DE102015015518A1 (en) * 2015-11-26 2017-06-14 Hermann GOLLE Fuel / air injection system for internal combustion engines

Also Published As

Publication number Publication date
JP2020139435A (en) 2020-09-03
DE112020000972T5 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
US11053866B2 (en) Hydraulically actuated gaseous fuel injector
EP2134954B1 (en) Fuel injection control device for internal combustion engine and method of controlling fuel injection for internal combustion engine
EP3426958B1 (en) Pressure regulating modules with controlled leak paths
JP5075991B2 (en) Fuel injection system
US20080245891A1 (en) Injector
US11193464B2 (en) Fuel injection valve
JP2008309015A (en) Fuel injection control device for internal combustion engine
JP2016522869A (en) Fuel injection device
JP4180592B2 (en) Injection nozzle
EP2711537B1 (en) Fuel injector
JP2013024047A (en) Fuel injection valve
JP2009281298A (en) Injector for internal combustion engine
JP5580939B2 (en) Fuel injection valve for internal combustion engine
WO2019039480A1 (en) Fuel injection valve
US11231001B2 (en) Fuel injector
US20160061168A1 (en) Single Actuator Fuel Injector for Duel Fuels
JP2007218175A (en) Fuel injection device
JP2006514210A (en) Fuel injection valve for internal combustion engine
JP2004517254A (en) Injection valve
WO2020174898A1 (en) Fluid injection apparatus
JP2007024041A (en) Injection nozzle
JP2010223166A (en) Fuel injection control device of internal combustion engine
JP2003511623A (en) Injector for a fuel injection system used in an internal combustion engine having a nozzle needle protruding into a valve control chamber
JP2002322969A (en) Fuel injection device
CN110114568A (en) For the device by fuel gas dosage to injector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763740

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20763740

Country of ref document: EP

Kind code of ref document: A1