WO2020174651A1 - Catheter system - Google Patents

Catheter system Download PDF

Info

Publication number
WO2020174651A1
WO2020174651A1 PCT/JP2019/007785 JP2019007785W WO2020174651A1 WO 2020174651 A1 WO2020174651 A1 WO 2020174651A1 JP 2019007785 W JP2019007785 W JP 2019007785W WO 2020174651 A1 WO2020174651 A1 WO 2020174651A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
temperature
flow rate
ablation
unit
Prior art date
Application number
PCT/JP2019/007785
Other languages
French (fr)
Japanese (ja)
Inventor
久生 宮本
Original Assignee
日本ライフライン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ライフライン株式会社 filed Critical 日本ライフライン株式会社
Priority to PCT/JP2019/007785 priority Critical patent/WO2020174651A1/en
Publication of WO2020174651A1 publication Critical patent/WO2020174651A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating

Definitions

  • the present invention relates to a catheter system that is used for treatment of, for example, arrhythmia, and has an irrigation mechanism that causes a liquid such as physiological saline to flow during cauterization (ablation) of an affected area in the treatment.
  • the electrode catheter is inserted into the body (for example, the inside of the heart) through a blood vessel and is used for arrhythmia examination and treatment.
  • the shape near the tip (distal end) inserted into the body is manipulated by the operation unit attached to the base end (proximal end, rear end, proximal side) arranged outside the body. In accordance with the above, it is changed (deflected or curved) in one direction or both directions.
  • the shape near the tip is fixed.
  • ablation catheter the following problems may occur during ablation of the affected area. That is, during the ablation operation of the heart or the like, there may arise a problem that the temperature of the treated portion rises excessively and is damaged, or a thrombus sticks to the treated portion.
  • a catheter system includes an ablation catheter having an irrigation mechanism and a temperature measurement unit that measures the temperature of a liquid for irrigation, and a power supply that supplies power to the ablation catheter during ablation.
  • a liquid supply section that supplies a liquid to the ablation catheter
  • a liquid heating section that is arranged on the liquid supply path from the liquid supply section to the ablation catheter, and that heats the liquid, and power in the power supply section.
  • a control unit for controlling the liquid supply operation in the liquid supply unit and the liquid supply operation in the liquid supply unit, respectively.
  • the controller controls the temperature of the liquid in the ablation catheter measured by the temperature measurement unit when the liquid heating mode is set to supply the liquid heated by the liquid heating unit to the ablation catheter. According to the above, by controlling the liquid supply operation, the flow rate of the liquid is controlled.
  • the irrigation operation is performed by using the heated liquid, for example, the unheated liquid.
  • the ablation efficiency at the time of ablation is improved as compared with the case where the irrigation operation is performed using.
  • the flow rate of the liquid is controlled by controlling the liquid supply operation in accordance with the temperature of the liquid inside the ablation catheter measured by the temperature measuring unit. In this way, the flow rate of the liquid is controlled according to the temperature of the liquid, so that the flow rate of the liquid can be appropriately adjusted, for example, according to the situation of the temperature of the liquid.
  • the temperature of a part of the liquid on the supply path decreases over time, and It is possible to avoid the risk that the ablation area becomes narrower during ablation due to deviation from the set temperature index range. In other words, even if the temperature of a part of the liquid has decreased over time, deviation from the range of the set temperature index is prevented, and the ablation area during ablation is secured.
  • the control unit sets the flow rate of the liquid to the first flow rate during the execution period of the power supply operation, and the period before the start of the power supply operation.
  • the flow rate of the liquid is set to the second flow rate higher than the first flow rate, and when the temperature of the liquid becomes equal to or higher than the threshold temperature,
  • the power supply operation may be started.
  • the power supply operation is stopped.
  • the flow rate of the liquid will increase compared to during the execution period. Therefore, even if the temperature of a part of the liquid on the supply path has decreased over time, the liquid can be quickly discharged in advance (before the start of the power supply operation). Become.
  • the second flow rate may be the maximum flow rate within the set range.
  • the pre-discharge of the liquid is most quickly performed within the set range, so that the cauterization region can be surely formed as desired, resulting in further improved convenience.
  • the temperature of the heated liquid may be, for example, a temperature near the body temperature.
  • the cauterization efficiency during ablation is further improved, the burden on the patient is reduced, and the treatment time is shortened. Planned.
  • the temperature of the liquid in the ablation catheter measured by the temperature measuring unit may be, for example, the temperature of the liquid in the operating unit (holding unit) of the ablation catheter.
  • the accuracy of measuring the temperature of the liquid in the ablation catheter is improved. As a result, the flow rate of the liquid can be adjusted more appropriately.
  • the supply of the liquid is performed according to the temperature of the liquid in the ablation catheter measured by the temperature measuring unit. Since the flow rate of the liquid is controlled by controlling the operation, it is as follows. That is, even when the temperature of a part of the liquid on the supply path is lowered with time, it is possible to secure the cauterization region at the time of ablation. Therefore, it is possible to reduce the disadvantage due to the irrigated liquid and perform appropriate ablation.
  • FIG. 1 is a block diagram schematically showing an example of the overall configuration of a catheter system according to an embodiment of the present invention. It is a schematic diagram showing the schematic structural example of the ablation catheter shown in FIG. It is a schematic diagram showing an example of a liquid flow rate operation. 7 is a flowchart showing an example of the operation of the catheter system shown in FIG. 1.
  • FIG. 1 is a schematic block diagram showing an example of the overall configuration of a catheter system (catheter system 6) according to an embodiment of the present invention.
  • the catheter system 6 is a system used when treating arrhythmia or the like in a patient (patient 9 in this example), and includes an ablation catheter 1, a liquid supply device 2, a power supply device 3, a liquid heating device 4, and a return electrode plate 5. Equipped with. That is, in the catheter system 6 of the present embodiment, the liquid supply device 2, the power supply device 3, and the liquid heating device 4 are configured as separate bodies.
  • the ablation catheter 1 is an electrode catheter that is inserted into the body of a patient 9 through a blood vessel and ablates an affected part to treat arrhythmia and the like.
  • the ablation catheter 1 also has an irrigation mechanism that drains (sprays) a predetermined irrigation liquid (eg, physiological saline) from the tip P1 side during such ablation.
  • a predetermined irrigation liquid eg, physiological saline
  • FIG. 2 schematically shows an example of a schematic configuration of the ablation catheter 1.
  • the ablation catheter 1 has a shaft 11 (catheter shaft) as a catheter body, and an operating portion 12 attached to the proximal end of the shaft 11.
  • the shaft 11 is made of a flexible tubular structure (tubular member), and has a shape that extends along its own axial direction (Z-axis direction).
  • the shaft 11 has a so-called single lumen structure in which one lumen (pore, through hole) is formed so as to extend along the axial direction of the shaft 11, or a plurality of lumens (for example, four lumens).
  • Various thin wires (not shown) (conductor wires, operation wires, etc.) are inserted into such a lumen while being electrically insulated from each other.
  • a lumen for flowing the liquid L for irrigation described above is formed so as to extend along the axial direction.
  • a mechanism for measuring the temperature near the tip P1 (around the affected part) is provided.
  • a thermocouple or the like as a temperature sensor for measuring such a temperature is inserted through the lumen inside the shaft 11. The temperature around the tip P1 measured in this manner is supplied from the ablation catheter 1 to the power supply device 3 as the measured temperature information Tm1.
  • Such a shaft 11 is made of, for example, a synthetic resin such as polyolefin, polyamide, polyether polyamide, or polyurethane.
  • the length of the shaft 11 in the axial direction is about 500 to 1200 mm (for example, 1170 mm), and the outer diameter of the shaft 11 (the outer diameter of the XY cross section) is about 0.6 to 3 mm (for example, 2 mm). 0.0 mm).
  • a plurality of electrodes (here, three ring-shaped electrodes 111a, 111b, 111c and one tip electrode 112) are provided near the tip P1 of the shaft 11 as shown in an enlarged view near the tip P1 in FIG. It is provided. Specifically, in the vicinity of the tip P1, the ring-shaped electrodes 111a, 111b, 111c and the tip electrode 112 are arranged at a predetermined interval in this order toward the most distal side of the shaft 11. The ring-shaped electrodes 111 a, 111 b, 111 c are fixedly arranged on the outer peripheral surface of the shaft 11, while the tip electrode 112 is fixedly arranged at the tip of the shaft 11.
  • Electrodes are electrically connected to the operation unit 12 via a plurality of conducting wires (not shown) inserted in the lumen of the shaft 11 described above. Further, the liquid L for irrigation described above flows out from the vicinity of the tip of the tip electrode 112, as indicated by the arrow in FIG.
  • the tip of the above-mentioned temperature measuring mechanism (for example, a thermocouple) is arranged inside the tip electrode 112 used for cauterization.
  • a resin tube for flowing the liquid for irrigation 1 is drawn through the inside of the ablation catheter 1, and a port connecting from the operation section 12 to the outside is formed.
  • the ablation catheter 1 is connected to a liquid heating device 4 and a liquid supply device 2 which will be described later via another connection tube connected to this port, and the liquid 1 delivered from the liquid supply device 2 is supplied to the tip P1. Can be irrigated from the side.
  • the ring-shaped electrodes 111a, 111b, 111c and the tip electrode 112 are electrically conductive such as aluminum (Al), copper (Cu), stainless steel (SUS), gold (Au), platinum (Pt), etc. It is composed of a metallic material having good properties. It is preferable that the ablation catheter 1 is made of platinum or an alloy thereof in order to improve the X-ray contrast when the ablation catheter 1 is used.
  • the outer diameter of each of the ring-shaped electrodes 111a, 111b, 111c and the tip electrode 112 is not particularly limited, but is preferably about the same as the outer diameter of the shaft 11 described above.
  • the operation unit 12 is attached to the base end of the shaft 11, and has a handle 121 (grip) and a rotating plate 122.
  • the handle 121 is a portion that an operator (doctor) holds (grips) when using the ablation catheter 1.
  • the various thin wires described above extend from the inside of the shaft 11.
  • a temperature measuring unit 120 for measuring the temperature (temperature Tm2) of the irrigation liquid L in the ablation catheter 1 (in the handle 121) is provided inside the handle 121.
  • the temperature measuring unit 120 is configured by using, for example, a thermocouple or the like as a temperature sensor, and can measure the temperature in the resin tube as the flow path of the liquid L provided in the handle 121 described above. ing.
  • the temperature Tm2 of the liquid L thus measured is supplied from the ablation catheter 1 to the power supply device 3 (see FIG. 1).
  • the rotary plate 122 is a member for performing a deflection movement operation (pivoting operation), which is an operation for deflecting the vicinity of the tip of the shaft 11. Specifically, here, as shown by the arrow in FIG. 2, the operation of rotating the rotary plate 122 along the rotation direction d1 is possible.
  • the liquid supply device 2 is a device for supplying the above-mentioned liquid L for irrigation to the ablation catheter 1, and has a liquid supply unit 21 as shown in FIG.
  • the liquid supply unit 21 supplies the liquid L at a flow rate defined by a control signal CTL2 described later to the ablation catheter 1 as needed.
  • the liquid supply unit 21 is configured to include, for example, a liquid pump and a resin tube.
  • the liquid heating device 4 is arranged on the supply path of the liquid L from the liquid supply unit 21 to the ablation catheter 1 and has a liquid heating unit 41.
  • the liquid heating unit 41 heats the liquid L supplied from the liquid supply unit 21, and is configured using, for example, various types of heaters (heating bodies).
  • the liquid heating unit 41 may be, for example, a resin tube arranged in a spiral shape and covered with a heater. With such a configuration, it is possible to obtain a sufficient heating time by ensuring the length of the resin tube while maintaining a compact configuration.
  • the liquid L (liquid L′) heated by the liquid heating unit 41 in this manner is supplied to the ablation catheter 1 via the path P2 shown in FIG.
  • the heated liquid L is supplied to the ablation catheter 1 (the heated liquid L is used to perform the above-mentioned irrigation operation in the ablation catheter 1).
  • the "warming mode" can be set.
  • the temperature of the liquid L heated in this way is, for example, a temperature around the body temperature of the patient 9 (human) (for example, around 37° C.).
  • the power supply device 3 supplies the ablation catheter 1 and the return electrode plate 5 with electric power for ablation (for example, output power Pout composed of a radio frequency (RF)), and a liquid L supply operation in the liquid supply device 2.
  • RF radio frequency
  • the power supply device 3 has an input unit 31, a power supply unit 32, a voltage measurement unit 33, a current measurement unit 34, a control unit 35, and a display unit 36.
  • the input unit 31 is a unit for inputting various setting values and an instruction signal for instructing a predetermined operation described later.
  • threshold temperature Tth described later
  • target temperature Tt target temperature
  • maximum flow rate Fmax during “Max” flow rate operation described later.
  • These set values are input by the operator (for example, an engineer) of the power supply device 3.
  • the threshold temperature Tth may not be input by the operator, but may be set in advance in the power supply device 3 when the product is shipped.
  • the set value input by the input unit 31 is supplied to the control unit 35.
  • the set power Ps is shown as a representative among these various set values.
  • Such an input unit 31 is configured using, for example, a predetermined dial, button, touch panel, or the like.
  • the power supply unit 32 is a unit that supplies the above-described output power Pout to the ablation catheter 1 and the return electrode plate 5 in accordance with a control signal CTL1 described later.
  • a power supply unit 32 is configured by using a predetermined power supply circuit (for example, a switching regulator or the like).
  • the frequency is, for example, about 450 kHz to 550 kHz (eg, 500 kHz).
  • the voltage measuring unit 33 is a unit that measures (detects) the voltage of the output power Pout output from the power supply unit 32 as needed, and is configured using a predetermined voltage detection circuit. The voltage (actually measured voltage Vm) measured by the voltage measuring unit 33 in this manner is output to the control unit 35.
  • the current measuring unit 34 is a unit that measures the current in the output power Pout output from the power supply unit 32 at any time, and is configured using a predetermined current detection circuit. The current (actually measured current Im) measured by the current measuring unit 34 in this manner is output to the control unit 35.
  • the control unit 35 is a unit that controls the entire power supply device 3 and performs predetermined arithmetic processing, and is configured using, for example, a microcomputer. Specifically, the control unit 35 first has a function of calculating the actually measured power Pm (corresponding to the power value of the output power Pout) described below. Further, the control unit 35 uses the control signal CTL1 to control the supply operation of the output power Pout in the power supply unit 32 (power supply control function) and the control signal CTL2 to use the liquid L in the liquid supply unit 21. Has a function of controlling the supply operation of (liquid supply control function).
  • the control unit 35 controls the start of the supply operation of the output power Pout according to whether or not a predetermined condition described later is satisfied when the above-described “liquid heating mode” is set. Specifically, the control unit 35 controls the supply operation of the output power Pout by generating the control signal CTL1 and outputting it to the power supply unit 32.
  • control unit 35 generates the control signal CTL1 based on the above-mentioned measured temperature information Tm1 and outputs the control signal CTL1 to the power supply unit 32 to adjust (fine adjust) the magnitude of the output power Pout.
  • control unit 35 keeps the temperature near the tip P1 of the shaft 11 (the temperature near the tip electrode 112) indicated by the measured temperature information Tm1 (temperature near the tip electrode 112) substantially constant (desirably constant), in other words, The magnitude of the output power Pout is adjusted so that this temperature becomes substantially equal to (desirably equal to) the preset target temperature Tt.
  • the control unit 35 controls the output power Pout to increase.
  • the control unit 35 controls so that the value of the output power Pout decreases. In this way, the actual output power Pout is supplied after the power is appropriately adjusted based on the input set power Ps. In other words, it can be said that the value of the set power Ps and the value of the actual output power Pout (actually measured power Pm) do not necessarily match.
  • the liquid supply control function described above is as follows. That is, the control unit 35 controls the flow rate of the liquid L (liquid flow rate F) by generating the control signal CTL2 and outputting it to the liquid supply unit 21.
  • FIG. 3 schematically shows an example of such a liquid flow rate F (flow rate operation of the liquid L).
  • the control unit 35 uses the above-mentioned control signal CTL2 to set the value of the liquid flow rate F (type of flow rate operation in the liquid supply unit 21) defined by the control signal CTL2. Specifically, in the example shown in FIG. 3, as the value of the liquid flow rate F (type of flow rate operation), the following one can be mentioned.
  • the above-mentioned flow rate Fst corresponds to a specific example of "first flow rate” in the present invention.
  • the maximum flow rate Fmax described above corresponds to a specific example of “second flow rate” and “maximum flow rate” in the present invention.
  • control unit 35 controls the supply operation of the liquid L in accordance with the temperature Tm2 of the liquid L inside the ablation catheter 1 (in the handle 121) measured by the temperature measuring unit 120 described above. By doing so, the liquid flow rate F is controlled. That is, the control unit 35 controls the liquid flow rate F by generating and outputting the control signal CTL2 according to the temperature Tm2 of the liquid L.
  • the display unit 36 is a part (monitor) that displays various information and outputs it to the outside.
  • the information to be displayed includes, for example, the above-described various set values (set power Ps and the like) input from the input unit 31, measured power Pm supplied from the control unit 35, and measured temperature supplied from the ablation catheter 1.
  • Information on the information Tm1 and the temperature Tm2 and the like can be given.
  • the information to be displayed is not limited to these pieces of information, and other information may be displayed instead or in addition to the other information.
  • the display unit 36 as described above is configured using a display according to various systems (for example, a liquid crystal display, a CRT (Cathode Ray Tube) display, an organic EL (Electro Luminescence) display, or the like).
  • the counter electrode plate 5 is used while being attached to the body surface of the patient 9 during ablation.
  • the counter electrode plate 5 is, for example, a sheet-shaped electrode made of metal, and is configured to have a large surface area.
  • high frequency current is applied between the counter electrode plate 5 and the electrode of the ablation catheter 1 inserted into the body of the patient 9.
  • the power (output power Pout) at the time of ablation is supplied from the power supply device 3 (power supply unit 32) to the ablation catheter 1 and the counter electrode plate 5 as described above.
  • high-frequency electricity is applied between the counter electrode plate 5 attached to the body surface of the patient 9 and the tip electrode 112 of the ablation catheter 1 inserted into the body of the patient 9. Done.
  • high-frequency power supply a site to be treated (treatment portion) in the patient 9 is selectively ablated, and percutaneous treatment such as arrhythmia is performed.
  • the liquid L for irrigation is supplied from the liquid supply device 2 (liquid supply unit 21) to the ablation catheter 1. Further, the power supply device 3 (control unit 35) controls the supply operation of the liquid L in the liquid supply device 2 using the control signal CTL2. As a result, the irrigation liquid L is ejected from the vicinity of the tip of the tip electrode 112 in the ablation catheter 1 (see the arrow in FIG. 2). As a result, it is avoided that the temperature of the treated part during ablation rises too much and damage or the thrombus sticks to the treated part (improvement of blood retention).
  • the liquid heating unit 41 is arranged on the supply path of the liquid L from the liquid supply unit 21 to the ablation catheter 1.
  • the "liquid heating mode" in which the liquid L (liquid L') heated by the liquid heating unit 41 is supplied to the ablation catheter 1 can be set.
  • the heating is performed as such.
  • the ablation efficiency at the time of ablation is improved as compared with the case where the irrigation operation is performed using the liquid L that is not present (the ablation region can be enlarged because the treated portion is not cooled too much).
  • the burden on the patient 9 can be reduced, and the treatment time can be shortened.
  • the liquid L on the path P2 between the liquid heating unit 41 and the ablation catheter 1 may be heated by the liquid heating unit 41.
  • the temperature index the range of the ablation region formed when ablation is performed while the heated liquid L is irrigated
  • the ablation region at the time of ablation may be narrowed. There is. As a result, it becomes difficult to perform appropriate ablation when the above-mentioned “liquid heating mode” is set (the irrigation operation using the heated liquid L is performed). ..
  • FIG. 4 is a flow chart showing an example of the ablation operation (control operation by the control unit 35) of the present embodiment. Note that, in the example shown in FIG. 4, the control operation of the output power Pout using the above-described actually measured temperature information Tm1 is omitted for simplification of description.
  • step S101 the above-mentioned "liquid heating mode” is set (step S101). That is, for example, the operator of the liquid heating device 4 gives an instruction to start the heating operation (liquid heating operation) of the liquid L in the liquid heating unit 41. Then, the liquid heating unit 41 starts such a liquid heating operation (for example, an operation in which electricity flows through the heater to heat the resin tube therein) (step S102), and as described above.
  • the temperature of the heated liquid L is set to be near the body temperature of the patient 9, for example.
  • step S103 the above-mentioned "Standby” flow rate operation is started (step S103). That is, when the operator of the power supply device 3 inputs an instruction signal for starting the “Standby” flow rate operation to the control section 35 via the input section 31, the control section 35 causes the “Standby” flow rate operation.
  • the operation of the liquid supply unit 21 is controlled so that the operation is started.
  • step S104 the operator sets (instructs) the start of ablation (cauterization operation) from the input unit 31 (step S105). That is, an instruction signal for starting ablation is input to the control unit 35 via the input unit 31. Specifically, for example, the ablation start is instructed by operating the ablation start switch as the input unit 31, or by stepping on the foot switch instructing the energization of the ablation catheter 1.
  • control unit 35 determines whether or not the temperature (liquid temperature) Tm2 of the liquid L measured by the temperature measuring unit 120 is lower than a predetermined threshold temperature Tth (Tm2 ⁇ Tth) (step). S106). Then, the control unit 35 controls the supply operation of the liquid L (control of the liquid flow rate F) as follows according to the temperature Tm2 of the liquid L as described above.
  • the case where the temperature Tm2 of the liquid L is lower than the threshold temperature Tth corresponds to the case where the above-described predetermined condition is satisfied.
  • the threshold temperature Tth is, for example, about 34 (° C.) to 36 (° C.).
  • step S106: N when it is determined that (Tm2 ⁇ Tth) (step S106: N, when the above predetermined condition is not satisfied), the following is performed. That is, in this case, the control unit 35 proceeds to step S108 described later without performing the liquid discharge control (step S107) described below, and starts the supply operation of the output power Pout described later (step described later). S109).
  • the liquid L on the supply path from the liquid supply section 21 to the ablation catheter 1 (for example, the liquid L′ on the path P2 between the liquid heating section 41 and the ablation catheter 1). ) Will be discharged in advance (before the start of the supply operation of the output power Pout described later).
  • the process returns to step S106 described above, and it is determined again whether or not (Tm2 ⁇ Tth). It has become.
  • step S106 when it is determined in step S106 that (Tm2 ⁇ Tth) (step S106: N), the supply operation of the output power Pout is started as follows (described later). Step S109) is performed. That is, the control unit 35 starts the supply operation of the output power Pout when the temperature Tm2 of the liquid L becomes equal to or higher than the threshold temperature Tth (after Tm2 ⁇ Tth).
  • RF small flow rate operation
  • Step S109 This initiates ablation of the treatment site in the low power state and "RF" flow rate operation, according to the principles described above. Further, the ablation operation at this time is an ablation operation using the irrigation operation using the heated liquid L, because the "liquid heating mode" described above is set.
  • output power Pout for example, high frequency output
  • the control unit 35 outputs the control signal CTL1 to that effect to the power supply unit 32.
  • the output of the output power Pout (high frequency output) is stopped by outputting the output power to (step S110).
  • a predetermined standby time for example, about 1 (seconds) to 5 (seconds)
  • the control unit 35 described above from the above-mentioned “RF” flow rate operation is controlled so as to shift to the "Standby" flow rate operation (step S111).
  • the liquid flow rate F can be appropriately adjusted according to the situation of the temperature Tm2.
  • a part of the liquid L on the supply path from the liquid supply section 21 to the ablation catheter 1 for example, the liquid L′ on the path P2 between the liquid heating section 41 and the ablation catheter 1). It is possible to avoid the risk that the ablation region is narrowed at the time of ablation due to the temperature decrease of (1) decreasing with time and deviating from the range of the set temperature index.
  • the temperature Tm2 of the liquid L is set
  • the liquid flow rate F (>Fst) at the time of performing the above-described liquid discharge control is set to the maximum flow rate Fmax within the set range. That is, since the above-described pre-discharge of the liquid L is most quickly performed within the set range, the cauterization region can be reliably formed as desired, resulting in further improved convenience.
  • the temperature of the liquid L (liquid L′) heated by the liquid heating unit 41 is set to a temperature near the body temperature of the patient 9 (human), the following is performed. Become. That is, since the irrigation operation in the ablation catheter 1 is performed using the liquid L having a temperature near the body temperature, the cauterization efficiency during ablation is further improved, the burden on the patient 9 is reduced, and the treatment time is shortened. It becomes possible to shorten the length.
  • the temperature Tm2 of the liquid L in the operating portion 12 (handle 121) of the ablation catheter 1 is measured as the temperature Tm2 of the liquid L in the ablation catheter 1 measured by the temperature measuring unit 120. Since it is used, it becomes as follows. That is, since the temperature Tm2 of the liquid L in the vicinity of the irrigation mechanism is measured, the measurement accuracy of the temperature Tm2 of the liquid L in the ablation catheter 1 is improved. As a result, the liquid flow rate F can be adjusted more appropriately.
  • the liquid supply device 2, the power supply device 3, and the liquid heating device 4 are configured as separate bodies, each device is individually arranged according to the usage situation. Therefore, the convenience of the catheter system 6 as a whole can be improved. Specifically, for example, as shown in FIG. 1, by disposing the liquid supply device 2 and the liquid heating device 4 relatively close to the patient 9, the liquid supply device 2 and the liquid heating device 4 are connected to each other. Since the liquid supply tube connecting to the ablation catheter 1 is short, it becomes easy for the doctor to operate. At the same time, by disposing the power supply device 3 relatively far from the patient 9, it becomes easy for an engineer or the like to operate. In this way, the device can be arranged according to the usage situation.
  • each layer and each member described in the above embodiment is not limited, and other materials may be used.
  • the structure of the ablation catheter 1 (shaft 11) has been specifically described, but it is not necessary to include all members, and other members may be further included.
  • a leaf spring that is deformable in the bending direction may be provided inside the shaft 11 as a swinging member.
  • the configuration of the electrodes on the shaft 11 is not limited to those described in the above embodiment.
  • the ablation catheter of the type in which the shape near the tip P1 of the shaft 11 changes in one direction according to the operation of the operation unit 12 has been described as an example, but the present invention is not limited to this. That is, the present invention can be applied to, for example, an ablation catheter of a type in which the shape near the tip P1 of the shaft 11 changes in both directions according to the operation of the operation unit 12, and in this case, the operation wire. Will be used multiple times.
  • the present invention can also be applied to an ablation catheter of the type in which the shape near the distal end P1 of the shaft 11 is fixed. In this case, the operating wire, the rotating plate 122, etc. are unnecessary. Become. That is, the handle 121 alone constitutes the operation unit.
  • the block configuration of the liquid supply device 2, the power supply device 3, and the liquid heating device 4 is specifically described, but it is not always necessary to include all the blocks described in the above-described embodiment. However, it may be provided with another block. Further, the catheter system as a whole may further include other devices in addition to the devices described in the above embodiments.
  • the functions of the liquid supply device 2, the power supply device 3, and the liquid heating device 4 are integrated and configured as a single device (control device). You may be allowed to.
  • the liquid supply unit 21, the input unit 31, the power supply unit 32, the voltage measuring unit 33, the current measuring unit 34, the control unit 35, the display unit 36, and the liquid heating unit 41 are each a single device control device. It may be provided inside. In this case, the configuration of the entire catheter system can be simplified.
  • each process at the time of the ablation operation is specifically described using the flowchart, but it is not necessary to perform all the processes described in the above-described embodiment, and other processes. May be further performed.
  • the liquid flow rate F (>Fst) at the time of performing the liquid discharge control described above is not the maximum flow rate Fmax within the set range, but an arbitrary flow rate within the range (Fst ⁇ F ⁇ Fmax).
  • the temperature of the liquid L (liquid L') heated by the liquid heating unit 41 is not limited to the temperature near the body temperature of the patient 9 (human), and may be another temperature.
  • at least one of the “Standby” flow rate operation and the control operation of the output power Pout using the measured temperature information Tm1 described in the above embodiment may not be performed in some cases.

Abstract

Provided is a catheter system with which ablation can be properly performed. A catheter system according to one embodiment of the present invention comprises: an ablation catheter which has an irrigation mechanism and a temperature measurement unit; a power supply unit; a liquid supply unit; a liquid heating unit which is positioned on a liquid supply path from the liquid supply unit to the ablation catheter, and which heats a liquid; and a control unit which controls a power supply operation and a liquid supply operation. When set to a liquid heating mode in which liquid heated by the liquid heating unit is supplied to the ablation catheter, the control unit controls the flow rate of the liquid by controlling the liquid supply operation in accordance with the temperature of the liquid inside the ablation catheter measured by the temperature measurement unit.

Description

カテーテルシステムCatheter system
 本発明は、例えば不整脈等の治療に用いられると共に、その治療における患部の焼灼(アブレーション)の際に生理食塩水等の液体を流す灌注機構を備えたカテーテルシステムに関する。 The present invention relates to a catheter system that is used for treatment of, for example, arrhythmia, and has an irrigation mechanism that causes a liquid such as physiological saline to flow during cauterization (ablation) of an affected area in the treatment.
 電極カテーテルは、血管を通して体内(例えば心臓の内部)に挿入され、不整脈の検査や治療等に用いられるものである。このような電極カテーテルでは一般に、体内に挿入された先端(遠位端)付近の形状が、体外に配置される基端(近位端,後端,手元側)に装着された操作部の操作に応じて、片方向あるいは両方向に変化(偏向,湾曲)するようになっている。また、このように先端の形状が操作に応じて任意に変化するタイプの他にも、先端付近の形状が固定になっているタイプのものも存在する。 The electrode catheter is inserted into the body (for example, the inside of the heart) through a blood vessel and is used for arrhythmia examination and treatment. In such an electrode catheter, in general, the shape near the tip (distal end) inserted into the body is manipulated by the operation unit attached to the base end (proximal end, rear end, proximal side) arranged outside the body. In accordance with the above, it is changed (deflected or curved) in one direction or both directions. In addition to the type in which the shape of the tip is arbitrarily changed according to the operation as described above, there is also a type in which the shape near the tip is fixed.
 ところで、このような電極カテーテルのうちの治療用のもの(いわゆるアブレーションカテーテル)では、患部のアブレーションの際に、以下のような問題が生じ得る。すなわち、心臓等のアブレーション手術の際に、処置部分の温度が上昇しすぎて損傷が起こったり、処置部分に血栓がこびりついたりするなどの問題が生じ得る。 By the way, among such electrode catheters for treatment (so-called ablation catheter), the following problems may occur during ablation of the affected area. That is, during the ablation operation of the heart or the like, there may arise a problem that the temperature of the treated portion rises excessively and is damaged, or a thrombus sticks to the treated portion.
 そこで、このような問題を解決する手法として、アブレーションの際に生理食塩水等の液体を流す灌注機構を備えたカテーテルシステムが挙げられる(例えば、特許文献1,2)。このカテーテルシステムでは、アブレーションの際にアブレーションカテーテルの先端電極から上記液体が流れ出ることで、患部を冷却したり、血栓が生じたりしないようにすることが可能となる(このような灌注機構を備えたカテーテルを、「イリゲーションカテーテル」という)。 Therefore, as a method for solving such a problem, there is a catheter system provided with an irrigation mechanism that causes a liquid such as physiological saline to flow during ablation (for example, Patent Documents 1 and 2). In this catheter system, the above-mentioned liquid flows out from the tip electrode of the ablation catheter at the time of ablation, so that it is possible to cool the affected area and prevent thrombus from occurring (providing such an irrigation mechanism). The catheter is called an "irrigation catheter").
特開2006-239414号公報JP, 2006-239414, A 特開2012-176119号公報JP, 2012-176119, A
 ところで、上記した灌注機構付きのカテーテルシステムでは一般に、アブレーションの際に、灌注される液体による不利益を減らす適切なアブレーションを行うことが求められている。 By the way, in the above-mentioned catheter system with an irrigation mechanism, it is generally required to perform appropriate ablation during ablation so as to reduce the disadvantage due to the irrigated liquid.
 したがって、適切なアブレーションを行うことが可能なカテーテルシステムを提供することが望ましい。 Therefore, it is desirable to provide a catheter system that can perform appropriate ablation.
 本発明の一実施の形態に係るカテーテルシステムは、灌注機構と灌注用の液体の温度を測定する温度測定部とを有するアブレーションカテーテルと、このアブレーションカテーテルに対してアブレーションの際の電力を供給する電源部と、アブレーションカテーテルに対して液体を供給する液体供給部と、この液体供給部からアブレーションカテーテルまでの液体の供給経路上に配置され、液体を加温する液体加温部と、電源部における電力の供給動作と液体供給部における液体の供給動作とをそれぞれ制御する制御部と、を備えたものである。この制御部は、液体加温部によって加温された液体をアブレーションカテーテルに対して供給する液体加温モードに設定されている際に、温度測定部によって測定されたアブレーションカテーテル内での液体の温度に応じて、液体の供給動作を制御することにより、液体の流量を制御する。 A catheter system according to an embodiment of the present invention includes an ablation catheter having an irrigation mechanism and a temperature measurement unit that measures the temperature of a liquid for irrigation, and a power supply that supplies power to the ablation catheter during ablation. Section, a liquid supply section that supplies a liquid to the ablation catheter, a liquid heating section that is arranged on the liquid supply path from the liquid supply section to the ablation catheter, and that heats the liquid, and power in the power supply section. And a control unit for controlling the liquid supply operation in the liquid supply unit and the liquid supply operation in the liquid supply unit, respectively. The controller controls the temperature of the liquid in the ablation catheter measured by the temperature measurement unit when the liquid heating mode is set to supply the liquid heated by the liquid heating unit to the ablation catheter. According to the above, by controlling the liquid supply operation, the flow rate of the liquid is controlled.
 本発明の一実施の形態に係るカテーテルシステムでは、上記液体加温モードに設定されている際には、加温された液体を用いて灌注動作が行われることで、例えば加温されていない液体を用いて灌注動作が行われる場合と比べ、アブレーションの際の焼灼効率が向上する。また、この際に、温度測定部によって測定されたアブレーションカテーテル内での液体の温度に応じて、液体の供給動作が制御されることで、液体の流量が制御される。このようにして、そのような液体の温度に応じて液体の流量が制御されることで、例えば、この液体の温度の状況に応じて、液体の流量が適切に調整できるようになる。これにより、上記供給経路上での液体の一部(例えば、液体加温部とアブレーションカテーテルとの間の経路上の液体)の温度が経時的に低下することに起因して、アブレーションの際の設定温度指標の範囲からずれてしまい、アブレーションの際の焼灼領域が狭くなってしまうおそれが、回避される。言い換えると、そのようにして液体の一部の温度が経時的に低下してしまっている場合であっても、設定温度指標の範囲からのずれが防止され、アブレーションの際の焼灼領域が確保される。 In the catheter system according to the embodiment of the present invention, when the liquid heating mode is set, the irrigation operation is performed by using the heated liquid, for example, the unheated liquid. The ablation efficiency at the time of ablation is improved as compared with the case where the irrigation operation is performed using. Further, at this time, the flow rate of the liquid is controlled by controlling the liquid supply operation in accordance with the temperature of the liquid inside the ablation catheter measured by the temperature measuring unit. In this way, the flow rate of the liquid is controlled according to the temperature of the liquid, so that the flow rate of the liquid can be appropriately adjusted, for example, according to the situation of the temperature of the liquid. As a result, the temperature of a part of the liquid on the supply path (for example, the liquid on the path between the liquid heating unit and the ablation catheter) decreases over time, and It is possible to avoid the risk that the ablation area becomes narrower during ablation due to deviation from the set temperature index range. In other words, even if the temperature of a part of the liquid has decreased over time, deviation from the range of the set temperature index is prevented, and the ablation area during ablation is secured. It
 本発明の一実施の形態に係るカテーテルシステムでは、上記制御部が、電力の供給動作の実行期間中においては、液体の流量を第1流量に設定すると共に、電力の供給動作の開始前の期間においては、液体の温度が閾値温度未満である場合には、液体の流量を上記第1流量よりも大きい第2流量に設定しておき、液体の温度が上記閾値温度以上となった場合に、電力の供給動作を開始させるようにしてもよい。このようにした場合、電力の供給動作の開始前の期間(上記供給経路上における液体の少なくとも一部を灌注機構から事前に排出させる、液体排出制御を行う際)においては、電力の供給動作の実行期間中と比べ、液体の流量が増加することになる。したがって、上記供給経路上の液体の一部の温度が経時的に低下してしまっている場合であっても、その液体が事前(電力供給動作の開始前)に、迅速に排出されるようになる。 In the catheter system according to the embodiment of the present invention, the control unit sets the flow rate of the liquid to the first flow rate during the execution period of the power supply operation, and the period before the start of the power supply operation. In the case where the temperature of the liquid is lower than the threshold temperature, the flow rate of the liquid is set to the second flow rate higher than the first flow rate, and when the temperature of the liquid becomes equal to or higher than the threshold temperature, The power supply operation may be started. In this case, during the period before the start of the power supply operation (when performing liquid discharge control in which at least a part of the liquid on the supply path is discharged in advance from the irrigation mechanism), the power supply operation is stopped. The flow rate of the liquid will increase compared to during the execution period. Therefore, even if the temperature of a part of the liquid on the supply path has decreased over time, the liquid can be quickly discharged in advance (before the start of the power supply operation). Become.
 この場合において、上記第2流量を、設定範囲内における最大流量としてもよい。このようにした場合、上記した液体の事前排出が、設定範囲内で最も迅速化されることから、確実に焼灼領域を所望の通りに形成できる結果、利便性がより一層向上することになる。 In this case, the second flow rate may be the maximum flow rate within the set range. In this case, the pre-discharge of the liquid is most quickly performed within the set range, so that the cauterization region can be surely formed as desired, resulting in further improved convenience.
 なお、加温された液体の温度としては、例えば、体温付近の温度としてもよい。このようにした場合、体温付近の温度の液体を用いて灌注動作が行われることから、アブレーションの際の焼灼効率が更に向上するとともに、患者への負担が低減されたり、治療時間の短縮化が図られる。 The temperature of the heated liquid may be, for example, a temperature near the body temperature. In this case, since the irrigation operation is performed using the liquid having a temperature near the body temperature, the cauterization efficiency during ablation is further improved, the burden on the patient is reduced, and the treatment time is shortened. Planned.
 また、上記温度測定部によって測定される、アブレーションカテーテル内での液体の温度としては、例えば、アブレーションカテーテルにおける操作部(把持部)内での液体の温度が、挙げられる。このようにした場合、灌注機構の近傍での液体の温度が測定されることから、アブレーションカテーテル内での液体の温度の測定精度が、向上することになる。その結果、液体の流量が、より適切に調整できるようになる。 The temperature of the liquid in the ablation catheter measured by the temperature measuring unit may be, for example, the temperature of the liquid in the operating unit (holding unit) of the ablation catheter. In this case, since the temperature of the liquid in the vicinity of the irrigation mechanism is measured, the accuracy of measuring the temperature of the liquid in the ablation catheter is improved. As a result, the flow rate of the liquid can be adjusted more appropriately.
 本発明の一実施の形態に係るカテーテルシステムによれば、上記液体加温モードに設定されている際に、温度測定部によって測定されたアブレーションカテーテル内での液体の温度に応じて、液体の供給動作を制御することによって、液体の流量を制御するようにしたので、以下のようになる。すなわち、上記供給経路上での液体の一部の温度が経時的に低下してしまっている場合であっても、アブレーションの際の焼灼領域を確保することができる。よって、灌注される液体による不利益を減らし、適切なアブレーションを行うことが可能となる。 According to the catheter system according to the embodiment of the present invention, when the liquid heating mode is set, the supply of the liquid is performed according to the temperature of the liquid in the ablation catheter measured by the temperature measuring unit. Since the flow rate of the liquid is controlled by controlling the operation, it is as follows. That is, even when the temperature of a part of the liquid on the supply path is lowered with time, it is possible to secure the cauterization region at the time of ablation. Therefore, it is possible to reduce the disadvantage due to the irrigated liquid and perform appropriate ablation.
本発明の一実施の形態に係るカテーテルシステムの全体構成例を模式的に表すブロック図である。1 is a block diagram schematically showing an example of the overall configuration of a catheter system according to an embodiment of the present invention. 図1に示したアブレーションカテーテルの概略構成例を表す模式図である。It is a schematic diagram showing the schematic structural example of the ablation catheter shown in FIG. 液体の流量動作の一例を表す模式図である。It is a schematic diagram showing an example of a liquid flow rate operation. 図1に示したカテーテルシステムの動作の一例を表す流れ図である。7 is a flowchart showing an example of the operation of the catheter system shown in FIG. 1.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態(液体供給装置と液体加温装置と電源装置とが別体として設けられた例)
2.変形例
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The description will be given in the following order.
1. Embodiment (an example in which a liquid supply device, a liquid heating device, and a power supply device are provided as separate bodies)
2. Modification
<1.実施の形態>
[全体構成]
 図1は、本発明の一実施の形態に係るカテーテルシステム(カテーテルシステム6)の全体構成例を、模式的にブロック図で表したものである。このカテーテルシステム6は、患者(この例では患者9)における不整脈等の治療の際に用いられるシステムであり、アブレーションカテーテル1、液体供給装置2、電源装置3、液体加温装置4および対極板5を備えている。すなわち、本実施の形態のカテーテルシステム6では、液体供給装置2と電源装置3と液体加温装置4とが、別体として構成されている。
<1. Embodiment>
[overall structure]
FIG. 1 is a schematic block diagram showing an example of the overall configuration of a catheter system (catheter system 6) according to an embodiment of the present invention. The catheter system 6 is a system used when treating arrhythmia or the like in a patient (patient 9 in this example), and includes an ablation catheter 1, a liquid supply device 2, a power supply device 3, a liquid heating device 4, and a return electrode plate 5. Equipped with. That is, in the catheter system 6 of the present embodiment, the liquid supply device 2, the power supply device 3, and the liquid heating device 4 are configured as separate bodies.
(アブレーションカテーテル1)
 アブレーションカテーテル1は、血管を通して患者9の体内に挿入され、患部をアブレーションすることで不整脈等の治療を行うための電極カテーテルである。アブレーションカテーテル1はまた、そのようなアブレーションの際に所定の灌注用の液体(例えば、生理食塩水等)を先端P1側から流し出す(噴射させる)、灌注機構を有している。換言すると、カテーテルシステム6は、そのような灌注機構付きのカテーテルシステムとなっている。
(Ablation catheter 1)
The ablation catheter 1 is an electrode catheter that is inserted into the body of a patient 9 through a blood vessel and ablates an affected part to treat arrhythmia and the like. The ablation catheter 1 also has an irrigation mechanism that drains (sprays) a predetermined irrigation liquid (eg, physiological saline) from the tip P1 side during such ablation. In other words, the catheter system 6 is a catheter system with such an irrigation mechanism.
 図2は、アブレーションカテーテル1の概略構成例を、模式的に表したものである。このアブレーションカテーテル1は、カテーテル本体としてのシャフト11(カテーテルシャフト)と、このシャフト11の基端に装着された操作部12とを有している。 FIG. 2 schematically shows an example of a schematic configuration of the ablation catheter 1. The ablation catheter 1 has a shaft 11 (catheter shaft) as a catheter body, and an operating portion 12 attached to the proximal end of the shaft 11.
 シャフト11は、可撓性を有する管状構造(管状部材)からなり、自身の軸方向(Z軸方向)に沿って延伸する形状となっている。また、シャフト11は、自身の軸方向に沿って延在するように内部に1つのルーメン(細孔,貫通孔)が形成された、いわゆるシングルルーメン構造、あるいは、複数(例えば4つ)のルーメンが形成された、いわゆるマルチルーメン構造を有している。なお、シャフト11の内部において、シングルルーメン構造からなる領域と、マルチルーメン構造からなる領域と、の双方が設けられていてもよい。このようなルーメンには、図示しない各種の細線(導線や操作用ワイヤ等)がそれぞれ、互いに電気的に絶縁された状態で挿通されている。 The shaft 11 is made of a flexible tubular structure (tubular member), and has a shape that extends along its own axial direction (Z-axis direction). The shaft 11 has a so-called single lumen structure in which one lumen (pore, through hole) is formed so as to extend along the axial direction of the shaft 11, or a plurality of lumens (for example, four lumens). Has a so-called multi-lumen structure. It should be noted that both a region having a single-lumen structure and a region having a multi-lumen structure may be provided inside the shaft 11. Various thin wires (not shown) (conductor wires, operation wires, etc.) are inserted into such a lumen while being electrically insulated from each other.
 シャフト11の内部には、そのような各種の細線を挿通させるためのルーメンに加え、上記した灌注用の液体Lを流すためのルーメンが、軸方向に沿って延伸するように形成されている。また、シャフト11の先端P1付近には、その先端P1付近(患部周辺)の温度を測定するための機構(温度測定機構)が設けられている。具体的には、シャフト11の内部のルーメンに、そのような温度を測定するための温度センサとしての熱電対等が、挿通されている。なお、このようにして測定された先端P1付近の温度は、実測温度情報Tm1として、アブレーションカテーテル1から電源装置3へと供給されるようになっている。 Inside the shaft 11, in addition to a lumen for inserting such various fine wires, a lumen for flowing the liquid L for irrigation described above is formed so as to extend along the axial direction. Further, near the tip P1 of the shaft 11, a mechanism (temperature measuring mechanism) for measuring the temperature near the tip P1 (around the affected part) is provided. Specifically, a thermocouple or the like as a temperature sensor for measuring such a temperature is inserted through the lumen inside the shaft 11. The temperature around the tip P1 measured in this manner is supplied from the ablation catheter 1 to the power supply device 3 as the measured temperature information Tm1.
 このようなシャフト11は、例えば、ポリオレフィン、ポリアミド、ポリエーテルポリアミド、ポリウレタン等の合成樹脂により構成されている。また、シャフト11の軸方向の長さは、約500~1200mm程度(例えば1170mm)であり、シャフト11の外径(X-Y断面の外径)は、約0.6~3mm程度(例えば2.0mm)である。 Such a shaft 11 is made of, for example, a synthetic resin such as polyolefin, polyamide, polyether polyamide, or polyurethane. The length of the shaft 11 in the axial direction is about 500 to 1200 mm (for example, 1170 mm), and the outer diameter of the shaft 11 (the outer diameter of the XY cross section) is about 0.6 to 3 mm (for example, 2 mm). 0.0 mm).
 シャフト11の先端P1付近には、図2中の先端P1付近の拡大図に示したように、複数の電極(ここでは、3つのリング状電極111a,111b,111cおよび1つの先端電極112)が設けられている。具体的には、先端P1付近において、リング状電極111a,111b,111cおよび先端電極112が、シャフト11の最先端側に向かってこの順で所定の間隔をおいて配置されている。また、リング状電極111a,111b,111cはそれぞれ、シャフト11の外周面上に固定配置される一方、先端電極112は、シャフト11の最先端に固定配置されている。これらの電極は、前述したシャフト11のルーメン内に挿通された複数の導線(図示せず)を介して、操作部12と電気的に接続されるようになっている。また、先端電極112の先端付近からは、図2中の矢印で示したように、前述した灌注用の液体Lが流れ出るようになっている。なお、上記した温度測定機構(例えば熱電対)の先端は、焼灼に用いられる先端電極112の内部に配置されている。また、アブレーションカテーテル1の内部には、灌注用の液体■を流すための樹脂チューブが引き通されており、操作部12から外部につながるポートが形成されている。アブレーションカテーテル1は、このポートと接続される他の接続チューブを介して、後述する液体加温装置4および液体供給装置2と接続されており、液体供給装置2から送り出される液体■を、先端P1側から灌注することができる。 A plurality of electrodes (here, three ring-shaped electrodes 111a, 111b, 111c and one tip electrode 112) are provided near the tip P1 of the shaft 11 as shown in an enlarged view near the tip P1 in FIG. It is provided. Specifically, in the vicinity of the tip P1, the ring-shaped electrodes 111a, 111b, 111c and the tip electrode 112 are arranged at a predetermined interval in this order toward the most distal side of the shaft 11. The ring-shaped electrodes 111 a, 111 b, 111 c are fixedly arranged on the outer peripheral surface of the shaft 11, while the tip electrode 112 is fixedly arranged at the tip of the shaft 11. These electrodes are electrically connected to the operation unit 12 via a plurality of conducting wires (not shown) inserted in the lumen of the shaft 11 described above. Further, the liquid L for irrigation described above flows out from the vicinity of the tip of the tip electrode 112, as indicated by the arrow in FIG. The tip of the above-mentioned temperature measuring mechanism (for example, a thermocouple) is arranged inside the tip electrode 112 used for cauterization. In addition, a resin tube for flowing the liquid for irrigation 1 is drawn through the inside of the ablation catheter 1, and a port connecting from the operation section 12 to the outside is formed. The ablation catheter 1 is connected to a liquid heating device 4 and a liquid supply device 2 which will be described later via another connection tube connected to this port, and the liquid 1 delivered from the liquid supply device 2 is supplied to the tip P1. Can be irrigated from the side.
 このようなリング状電極111a,111b,111cおよび先端電極112はそれぞれ、例えば、アルミニウム(Al)、銅(Cu)、ステンレス鋼(SUS)、金(Au)、白金(Pt)等の、電気伝導性の良好な金属材料により構成されている。なお、アブレーションカテーテル1の使用時におけるX線に対する造影性を良好にするためには、白金またはその合金により構成されていることが好ましい。また、これらのリング状電極111a,111b,111cおよび先端電極112の外径は、特には限定されないが、上記したシャフト11の外径と同程度であることが望ましい。 The ring-shaped electrodes 111a, 111b, 111c and the tip electrode 112 are electrically conductive such as aluminum (Al), copper (Cu), stainless steel (SUS), gold (Au), platinum (Pt), etc. It is composed of a metallic material having good properties. It is preferable that the ablation catheter 1 is made of platinum or an alloy thereof in order to improve the X-ray contrast when the ablation catheter 1 is used. The outer diameter of each of the ring-shaped electrodes 111a, 111b, 111c and the tip electrode 112 is not particularly limited, but is preferably about the same as the outer diameter of the shaft 11 described above.
 操作部12は、シャフト11の基端に装着されており、ハンドル121(把持部)および回転板122を有している。 The operation unit 12 is attached to the base end of the shaft 11, and has a handle 121 (grip) and a rotating plate 122.
 ハンドル121は、アブレーションカテーテル1の使用時に操作者(医師)が掴む(握る)部分である。このハンドル121の内部には、シャフト11の内部から前述した各種の細線がそれぞれ延伸している。また、例えば図2に示したように、このハンドル121の内部には、アブレーションカテーテル1内(ハンドル121内)での灌注用の液体Lの温度(温度Tm2)を測定する、温度測定部120が設けられている。この温度測定部120は、例えば、温度センサとしての熱電対等を用いて構成されており、上記したハンドル121内に設けられた液体Lの流路としての樹脂チューブ内の温度を、測定できるようにしている。なお、このようにして測定された液体Lの温度Tm2は、アブレーションカテーテル1から電源装置3へと供給されるようになっている(図1参照)。 The handle 121 is a portion that an operator (doctor) holds (grips) when using the ablation catheter 1. Inside the handle 121, the various thin wires described above extend from the inside of the shaft 11. Further, for example, as shown in FIG. 2, inside the handle 121, a temperature measuring unit 120 for measuring the temperature (temperature Tm2) of the irrigation liquid L in the ablation catheter 1 (in the handle 121) is provided. It is provided. The temperature measuring unit 120 is configured by using, for example, a thermocouple or the like as a temperature sensor, and can measure the temperature in the resin tube as the flow path of the liquid L provided in the handle 121 described above. ing. The temperature Tm2 of the liquid L thus measured is supplied from the ablation catheter 1 to the power supply device 3 (see FIG. 1).
 回転板122は、シャフト11の先端付近を偏向させる際の操作である、偏向移動操作(首振り操作)を行うための部材である。具体的には、ここでは図2中の矢印で示したように、回転方向d1に沿って回転板122を回転させる操作が可能となっている。 The rotary plate 122 is a member for performing a deflection movement operation (pivoting operation), which is an operation for deflecting the vicinity of the tip of the shaft 11. Specifically, here, as shown by the arrow in FIG. 2, the operation of rotating the rotary plate 122 along the rotation direction d1 is possible.
(液体供給装置2)
 液体供給装置2は、アブレーションカテーテル1に対して前述した灌注用の液体Lを供給する装置であり、図1に示したように、液体供給部21を有している。
(Liquid supply device 2)
The liquid supply device 2 is a device for supplying the above-mentioned liquid L for irrigation to the ablation catheter 1, and has a liquid supply unit 21 as shown in FIG.
 液体供給部21は、後述する制御信号CTL2により規定される流量の液体Lを、アブレーションカテーテル1に対して随時供給するものである。この液体供給部21は、例えば液体ポンプや樹脂チューブ等を含んで構成されている。 The liquid supply unit 21 supplies the liquid L at a flow rate defined by a control signal CTL2 described later to the ablation catheter 1 as needed. The liquid supply unit 21 is configured to include, for example, a liquid pump and a resin tube.
(液体加温装置4)
 液体加温装置4は、図1に示したように、液体供給部21からアブレーションカテーテル1までの、液体Lの供給経路上に配置されており、液体加温部41を有している。
(Liquid heating device 4)
As shown in FIG. 1, the liquid heating device 4 is arranged on the supply path of the liquid L from the liquid supply unit 21 to the ablation catheter 1 and has a liquid heating unit 41.
 液体加温部41は、液体供給部21から供給される液体Lを加温するものであり、例えば、各種方式のヒータ(加熱体)を用いて構成されている。この液体加温部41は、例えば、渦巻き状に配置された樹脂チューブを、ヒータで覆ったものであってもよい。このような構成にした場合、コンパクトな構成にしつつ、樹脂チューブの長さを担保することで、加温時間を十分に得ることができる。このようにして液体加温部41によって加温された液体L(液体L’)は、図1中に示した経路P2を経由して、アブレーションカテーテル1に対して供給される。このようにしてカテーテルシステム6では、加温された液体Lをアブレーションカテーテル1に対して供給する(加温された液体Lを用いて、アブレーションカテーテル1において前述した灌注動作が行われる)、「液体加温モード」が設定可能となっている。なお、このようにして加温された液体Lの温度としては、例えば、患者9(人間)における体温付近(例えば37℃付近)の温度が、挙げられる。 The liquid heating unit 41 heats the liquid L supplied from the liquid supply unit 21, and is configured using, for example, various types of heaters (heating bodies). The liquid heating unit 41 may be, for example, a resin tube arranged in a spiral shape and covered with a heater. With such a configuration, it is possible to obtain a sufficient heating time by ensuring the length of the resin tube while maintaining a compact configuration. The liquid L (liquid L′) heated by the liquid heating unit 41 in this manner is supplied to the ablation catheter 1 via the path P2 shown in FIG. Thus, in the catheter system 6, the heated liquid L is supplied to the ablation catheter 1 (the heated liquid L is used to perform the above-mentioned irrigation operation in the ablation catheter 1). The "warming mode" can be set. The temperature of the liquid L heated in this way is, for example, a temperature around the body temperature of the patient 9 (human) (for example, around 37° C.).
(電源装置3)
 電源装置3は、アブレーションカテーテル1および対極板5に対してアブレーションの際の電力(例えば高周波(RF;Radio Frequency)からなる出力電力Pout)を供給すると共に、液体供給装置2における液体Lの供給動作を制御する装置である。この電源装置3は、図1に示したように、入力部31、電源部32、電圧測定部33、電流測定部34、制御部35および表示部36を有している。
(Power supply device 3)
The power supply device 3 supplies the ablation catheter 1 and the return electrode plate 5 with electric power for ablation (for example, output power Pout composed of a radio frequency (RF)), and a liquid L supply operation in the liquid supply device 2. Is a device for controlling. As shown in FIG. 1, the power supply device 3 has an input unit 31, a power supply unit 32, a voltage measurement unit 33, a current measurement unit 34, a control unit 35, and a display unit 36.
 入力部31は、各種の設定値や、後述する所定の動作を指示するための指示信号を入力する部分である。各種の設定値としては、詳細は後述するが、例えば、設定電力Ps(=出力電力Poutにおける最大電力)、後述する閾値温度Tth、目標温度Tt、後述する「Max」流量動作時の最大流量Fmax、後述する「RF」流量動作時の流量Frf、後述する「Standby」流量動作時の流量Fst、各種の待機時間等が挙げられる。これらの設定値は、電源装置3の操作者(例えば技師等)によって入力されるようになっている。ただし、例えば閾値温度Tthついては、操作者によって入力されるのではなく、製品の出荷時等に予め電源装置3内で設定されているようにしてもよい。また、入力部31により入力された設定値は、制御部35へ供給されるようになっている。なお、図1中では、これらの各種の設定値のうち、設定電力Psを代表して示している。このような入力部31は、例えば所定のダイヤルやボタン、タッチパネル等を用いて構成されている。 The input unit 31 is a unit for inputting various setting values and an instruction signal for instructing a predetermined operation described later. Although details of various set values will be described later, for example, set power Ps (=maximum power in output power Pout), threshold temperature Tth described later, target temperature Tt, and maximum flow rate Fmax during “Max” flow rate operation described later. The flow rate Frf during the "RF" flow rate operation described below, the flow rate Fst during the "Standby" flow rate operation described below, various standby times, and the like. These set values are input by the operator (for example, an engineer) of the power supply device 3. However, for example, the threshold temperature Tth may not be input by the operator, but may be set in advance in the power supply device 3 when the product is shipped. The set value input by the input unit 31 is supplied to the control unit 35. Note that in FIG. 1, the set power Ps is shown as a representative among these various set values. Such an input unit 31 is configured using, for example, a predetermined dial, button, touch panel, or the like.
 電源部32は、後述する制御信号CTL1に従って、上記した出力電力Poutを、アブレーションカテーテル1および対極板5に対して供給する部分である。このような電源部32は、所定の電源回路(例えばスイッチングレギュレータ等)を用いて構成されている。なお、出力電力Poutが高周波電力からなる場合、その周波数は、例えば450kHz~550kHz程度(例えば500kHz)である。 The power supply unit 32 is a unit that supplies the above-described output power Pout to the ablation catheter 1 and the return electrode plate 5 in accordance with a control signal CTL1 described later. Such a power supply unit 32 is configured by using a predetermined power supply circuit (for example, a switching regulator or the like). When the output power Pout is high frequency power, the frequency is, for example, about 450 kHz to 550 kHz (eg, 500 kHz).
 電圧測定部33は、電源部32から出力される出力電力Poutにおける電圧を随時測定(検出)する部分であり、所定の電圧検出回路を用いて構成されている。このようにして電圧測定部33により測定された電圧(実測電圧Vm)は、制御部35へ出力されるようになっている。 The voltage measuring unit 33 is a unit that measures (detects) the voltage of the output power Pout output from the power supply unit 32 as needed, and is configured using a predetermined voltage detection circuit. The voltage (actually measured voltage Vm) measured by the voltage measuring unit 33 in this manner is output to the control unit 35.
 電流測定部34は、電源部32から出力される出力電力Poutにおける電流を随時測定する部分であり、所定の電流検出回路を用いて構成されている。このようにして電流測定部34により測定された電流(実測電流Im)は、制御部35へ出力されるようになっている。 The current measuring unit 34 is a unit that measures the current in the output power Pout output from the power supply unit 32 at any time, and is configured using a predetermined current detection circuit. The current (actually measured current Im) measured by the current measuring unit 34 in this manner is output to the control unit 35.
 制御部35は、電源装置3全体を制御すると共に所定の演算処理を行う部分であり、例えばマイクロコンピュータ等を用いて構成されている。具体的には、制御部35は、まず、以下説明する実測電力Pm(出力電力Poutの電力値に相当)の算出機能を有している。また、制御部35は、制御信号CTL1を用いて、電源部32における出力電力Poutの供給動作を制御する機能(電力供給制御機能)と、制御信号CTL2を用いて、液体供給部21における液体Lの供給動作を制御する機能(液体供給制御機能)と、を有している。 The control unit 35 is a unit that controls the entire power supply device 3 and performs predetermined arithmetic processing, and is configured using, for example, a microcomputer. Specifically, the control unit 35 first has a function of calculating the actually measured power Pm (corresponding to the power value of the output power Pout) described below. Further, the control unit 35 uses the control signal CTL1 to control the supply operation of the output power Pout in the power supply unit 32 (power supply control function) and the control signal CTL2 to use the liquid L in the liquid supply unit 21. Has a function of controlling the supply operation of (liquid supply control function).
 まず、実測電力Pmの算出機能は、以下の通りである。すなわち、制御部35は、電圧測定部33から出力される実測電圧Vmと、電流測定部34から出力される実測電流Imとに基づいて、実測電力Pmを随時算出する。具体的には、制御部35は、以下の演算式(1)を用いて実測電力Pmを算出する。このようにして制御部35により算出された実測電力Pmは、この例では表示部36へ出力されるようになっている。
Pm=(Vm×Im) ……(1)
First, the function of calculating the measured power Pm is as follows. That is, the control unit 35 calculates the measured power Pm as needed based on the measured voltage Vm output from the voltage measurement unit 33 and the measured current Im output from the current measurement unit 34. Specifically, the control unit 35 calculates the measured electric power Pm using the following arithmetic expression (1). The measured electric power Pm calculated by the control unit 35 in this manner is output to the display unit 36 in this example.
Pm=(Vm×Im) (1)
 次いで、上記した電力供給制御機能は、以下の通りである。すなわち、制御部35は、前述した「液体加温モード」に設定されている際に、後述する所定の条件を満たすのか否か等に応じて、出力電力Poutの供給動作の開始を制御する。具体的には、制御部35は、制御信号CTL1を生成して電源部32へと出力することにより、出力電力Poutの供給動作を制御するようになっている。 Next, the above-mentioned power supply control function is as follows. That is, the control unit 35 controls the start of the supply operation of the output power Pout according to whether or not a predetermined condition described later is satisfied when the above-described “liquid heating mode” is set. Specifically, the control unit 35 controls the supply operation of the output power Pout by generating the control signal CTL1 and outputting it to the power supply unit 32.
 また、制御部35は、前述した実測温度情報Tm1に基づいて制御信号CTL1を生成すると共に、その制御信号CTL1を電源部32へ出力することにより、出力電力Poutの大きさを調整(微調整)する。具体的には、制御部35は、実測温度情報Tm1が示すシャフト11の先端P1付近の温度(先端電極112付近の温度)が略一定(望ましくは一定)に保たれるように、換言すると、この温度が予め設定された目標温度Ttと略等しくなる(望ましくは等しくなる)ように、出力電力Poutの大きさを調整する。 Further, the control unit 35 generates the control signal CTL1 based on the above-mentioned measured temperature information Tm1 and outputs the control signal CTL1 to the power supply unit 32 to adjust (fine adjust) the magnitude of the output power Pout. To do. Specifically, the control unit 35 keeps the temperature near the tip P1 of the shaft 11 (the temperature near the tip electrode 112) indicated by the measured temperature information Tm1 (temperature near the tip electrode 112) substantially constant (desirably constant), in other words, The magnitude of the output power Pout is adjusted so that this temperature becomes substantially equal to (desirably equal to) the preset target temperature Tt.
 詳細には、制御部35は、先端P1付近の温度が目標温度Tt以下である場合には、出力電力Poutの値が増加するように制御する。一方、先端P1付近の温度が目標温度Ttを超えている場合には、制御部35は、出力電力Poutの値が減少するように制御する。このようにして、入力された設定電力Psを基に適切な電力調整がなされたうえで、実際の出力電力Poutが供給されるようになっている。換言すると、設定電力Psの値と、実際の出力電力Pout(実測電力Pm)の値とは、必ずしも一致していないと言える。 Specifically, when the temperature near the tip P1 is equal to or lower than the target temperature Tt, the control unit 35 controls the output power Pout to increase. On the other hand, when the temperature near the tip P1 exceeds the target temperature Tt, the control unit 35 controls so that the value of the output power Pout decreases. In this way, the actual output power Pout is supplied after the power is appropriately adjusted based on the input set power Ps. In other words, it can be said that the value of the set power Ps and the value of the actual output power Pout (actually measured power Pm) do not necessarily match.
 また、上記した液体供給制御機能は、以下の通りである。すなわち、制御部35は、制御信号CTL2を生成して液体供給部21へと出力することにより、液体Lの流量(液体流量F)を制御する。 The liquid supply control function described above is as follows. That is, the control unit 35 controls the flow rate of the liquid L (liquid flow rate F) by generating the control signal CTL2 and outputting it to the liquid supply unit 21.
 図3は、そのような液体流量F(液体Lの流量動作)の一例を、模式的に表したものである。 FIG. 3 schematically shows an example of such a liquid flow rate F (flow rate operation of the liquid L).
 制御部35は、上記した制御信号CTL2を用いて、その制御信号CTL2において規定される、液体流量Fの値(液体供給部21における流量動作の種類)を設定する。具体的には、図3に示した例では、そのような液体流量Fの値(流量動作の種類)として、以下のようなものが挙げられる。 The control unit 35 uses the above-mentioned control signal CTL2 to set the value of the liquid flow rate F (type of flow rate operation in the liquid supply unit 21) defined by the control signal CTL2. Specifically, in the example shown in FIG. 3, as the value of the liquid flow rate F (type of flow rate operation), the following one can be mentioned.
・液体流量Fが設定範囲内での最大流量Fmaxである、最大流量動作(F=Fmaxである「Max」流量動作)
・液体流量Fが相対的に少ない流量Frfである、出力電力Poutの供給動作(アブレーション動作)の実行期間中における小流量動作(F=Frf(<Fmax)である「RF」流量動作)
・液体流量Fが微量(流量Fst)であるスタンバイ流量動作(F=Fst(0<Fst<Frf)である「Standby」流量動作)
・Maximum flow rate operation where the liquid flow rate F is the maximum flow rate Fmax within the setting range (“Max” flow rate operation where F=Fmax)
A small flow rate operation (F=Frf (<Fmax) flow rate operation) during the execution period of the supply operation (ablation operation) of the output power Pout in which the liquid flow rate F is a relatively small flow rate Frf
・Standby flow rate operation where liquid flow rate F is very small (flow rate Fst) (“Standby” flow rate operation where F=Fst (0<Fst<Frf))
 なお、上記したFmax,Frf,Fstの値の具体例としては、以下のようなものが挙げられる。
・Fmax=60(mL/分)
・Frf=10~30(mL/分)(出力電力Poutの設定値(ワット数)に応じて変化)
・Fst=2(mL/分)
The following are specific examples of the values of Fmax, Frf, and Fst described above.
・Fmax=60 (mL/min)
Frf=10 to 30 (mL/min) (changes according to the set value (wattage) of output power Pout)
・Fst=2 (mL/min)
 ここで、上記した流量Fstは、本発明における「第1流量」の一具体例に対応している。また、上記した最大流量Fmaxは、本発明における「第2流量」および「最大流量」の一具体例に対応している。 The above-mentioned flow rate Fst corresponds to a specific example of "first flow rate" in the present invention. The maximum flow rate Fmax described above corresponds to a specific example of “second flow rate” and “maximum flow rate” in the present invention.
 また、本実施の形態では、制御部35は、前述した温度測定部120によって測定されたアブレーションカテーテル1内(ハンドル121内)での液体Lの温度Tm2に応じて、液体Lの供給動作を制御することによって、液体流量Fを制御する。つまり、制御部35は、そのような液体Lの温度Tm2に応じて制御信号CTL2を生成して出力することにより、液体流量Fを制御するようになっている。 In addition, in the present embodiment, the control unit 35 controls the supply operation of the liquid L in accordance with the temperature Tm2 of the liquid L inside the ablation catheter 1 (in the handle 121) measured by the temperature measuring unit 120 described above. By doing so, the liquid flow rate F is controlled. That is, the control unit 35 controls the liquid flow rate F by generating and outputting the control signal CTL2 according to the temperature Tm2 of the liquid L.
 なお、制御部35における、上記した電源供給制御機能の詳細と、液体供給制御機能(液体流量Fの制御動作)の詳細とについては、後述する(図4)。 The details of the power supply control function and the liquid supply control function (control operation of the liquid flow rate F) in the control unit 35 will be described later (FIG. 4).
 表示部36は、各種の情報を表示して外部へと出力する部分(モニター)である。表示対象の情報としては、例えば、入力部31から入力される前述の各種の設定値(設定電力Ps等)や、制御部35から供給される実測電力Pm、アブレーションカテーテル1から供給される実測温度情報Tm1および温度Tm2の情報などが、挙げられる。ただし、表示対象の情報としてはこれらの情報には限られず、他の情報を代わりに、あるいは他の情報を加えて表示するようにしてもよい。このような表示部36は、各種の方式によるディスプレイ(例えば、液晶ディスプレイやCRT(Cathode Ray Tube)ディスプレイ、有機EL(Electro Luminescence)ディスプレイなど)を用いて構成されている。 The display unit 36 is a part (monitor) that displays various information and outputs it to the outside. The information to be displayed includes, for example, the above-described various set values (set power Ps and the like) input from the input unit 31, measured power Pm supplied from the control unit 35, and measured temperature supplied from the ablation catheter 1. Information on the information Tm1 and the temperature Tm2 and the like can be given. However, the information to be displayed is not limited to these pieces of information, and other information may be displayed instead or in addition to the other information. The display unit 36 as described above is configured using a display according to various systems (for example, a liquid crystal display, a CRT (Cathode Ray Tube) display, an organic EL (Electro Luminescence) display, or the like).
(対極板5)
 対極板5は、例えば図1に示したように、アブレーションの際に患者9の体表に装着された状態で用いられるものである。この対極板5は、例えば、金属で作られたシート状の電極であり、表面積が大きくとれるように構成されている。詳細は後述するが、アブレーションの際には、この対極板5と、患者9の体内に挿入されたアブレーションカテーテル1の電極との間で、高周波通電がなされるようになっている。
(Counter electrode plate 5)
For example, as shown in FIG. 1, the counter electrode plate 5 is used while being attached to the body surface of the patient 9 during ablation. The counter electrode plate 5 is, for example, a sheet-shaped electrode made of metal, and is configured to have a large surface area. As will be described later in detail, at the time of ablation, high frequency current is applied between the counter electrode plate 5 and the electrode of the ablation catheter 1 inserted into the body of the patient 9.
[動作および作用・効果]
(A.基本動作)
 このカテーテルシステム6では、不整脈等の治療の際に、アブレーションカテーテル1のシャフト11が血管を通して患者9の体内に挿入される。このとき、操作者による操作部12の操作に応じて、体内に挿入されたシャフト11の先端P1付近の形状が、例えば片方向あるいは両方向に変化する。具体的には、操作者の指によって、例えば図2中の矢印で示した回転方向d1に沿って回転板122が回転されると、シャフト11内で図示しない操作用ワイヤが、基端側へ引っ張られる。その結果、シャフト11の先端付近が、図1中の矢印で示した方向d2に沿って湾曲する。
[Motion and action/effect]
(A. Basic operation)
In this catheter system 6, the shaft 11 of the ablation catheter 1 is inserted into the body of the patient 9 through a blood vessel when treating arrhythmia or the like. At this time, the shape near the tip P1 of the shaft 11 inserted into the body changes in, for example, one direction or both directions according to the operation of the operation unit 12 by the operator. Specifically, when the rotating plate 122 is rotated by the operator's finger along the rotation direction d1 indicated by the arrow in FIG. 2, for example, the operation wire (not shown) in the shaft 11 moves toward the proximal end side. Be pulled. As a result, the vicinity of the tip of the shaft 11 bends along the direction d2 shown by the arrow in FIG.
 ここで、このようなアブレーションカテーテル1および対極板5に対し、電源装置3(電源部32)からアブレーションの際の電力(出力電力Pout)が供給される。これにより、上記した不整脈等の治療の際に、患者9の体表に装着された対極板5と、患者9の体内に挿入されたアブレーションカテーテル1の先端電極112との間で、高周波通電がなされる。このような高周波通電によって、患者9における治療対象の部位(処置部分)が選択的にアブレーションされ、不整脈等の経皮的治療がなされる。 The power (output power Pout) at the time of ablation is supplied from the power supply device 3 (power supply unit 32) to the ablation catheter 1 and the counter electrode plate 5 as described above. As a result, during treatment of the above-mentioned arrhythmia or the like, high-frequency electricity is applied between the counter electrode plate 5 attached to the body surface of the patient 9 and the tip electrode 112 of the ablation catheter 1 inserted into the body of the patient 9. Done. By such high-frequency power supply, a site to be treated (treatment portion) in the patient 9 is selectively ablated, and percutaneous treatment such as arrhythmia is performed.
 このようなアブレーションの際に、液体供給装置2(液体供給部21)からアブレーションカテーテル1に対し、灌注用の液体Lが供給される。また、電源装置3(制御部35)は、制御信号CTL2を用いて、そのような液体供給装置2における液体Lの供給動作を制御する。これにより、アブレーションカテーテル1における先端電極112の先端付近から、灌注用の液体Lが噴出する(図2中の矢印参照)。その結果、アブレーションの際の処置部分の温度が上昇しすぎて損傷が起こったり、処置部分に血栓がこびりついたりすることが回避される(血液滞留が改善される)。 During such ablation, the liquid L for irrigation is supplied from the liquid supply device 2 (liquid supply unit 21) to the ablation catheter 1. Further, the power supply device 3 (control unit 35) controls the supply operation of the liquid L in the liquid supply device 2 using the control signal CTL2. As a result, the irrigation liquid L is ejected from the vicinity of the tip of the tip electrode 112 in the ablation catheter 1 (see the arrow in FIG. 2). As a result, it is avoided that the temperature of the treated part during ablation rises too much and damage or the thrombus sticks to the treated part (improvement of blood retention).
 ところが、処置部分へ放出される液体Lの流量が多過ぎる場合、処置部分の温度が低下し、治療の際の処置に支障(十分に焼灼されず、焼灼領域が小さくなってしまうことなど)が生じてしまうおそれがある。また、液体Lが体内に入り過ぎると、患者への負担が大きくなってしまうおそれもある。一方、逆に液体Lの流量が少な過ぎる場合には、処置部分の冷却や血液滞留の改善の効果が不十分となってしまうおそれがある。特に、アブレーションの際の出力電力Poutが高い場合には、過度のアブレーションによる組織の損傷や血栓が生じやすいため、上記の傾向が高くなる。これらのことから、灌注機構付きのカテーテルシステム6においては、使用状況に応じて液体Lの流量(液体流量F)を調整し、適切な灌注動作を実現することが求められる。 However, when the flow rate of the liquid L discharged to the treatment portion is too large, the temperature of the treatment portion is lowered, and the treatment at the time of treatment is hindered (cauterization is not sufficiently performed and the cauterization region becomes small). May occur. Further, if the liquid L enters the body too much, the burden on the patient may increase. On the other hand, on the contrary, when the flow rate of the liquid L is too low, the effects of cooling the treated portion and improving blood retention may be insufficient. In particular, when the output power Pout at the time of ablation is high, tissue damage or thrombus due to excessive ablation is likely to occur, so the above tendency becomes high. For these reasons, in the catheter system 6 with the irrigation mechanism, it is required to adjust the flow rate of the liquid L (liquid flow rate F) according to the usage situation to realize an appropriate irrigation operation.
 また、本実施の形態のカテーテルシステム6では、液体供給部21からアブレーションカテーテル1までの液体Lの供給経路上に、液体加温部41が配置されている。そして、この液体加温部41によって加温された液体L(液体L’)をアブレーションカテーテル1に対して供給する、「液体加温モード」が設定可能となっている。このような「液体加温モード」に設定されている際には、加温された液体Lを用いて、アブレーションカテーテル1での灌注動作が行われることから、例えば、そのように加温されていない液体Lを用いて灌注動作が行われる場合と比べ、アブレーションの際の焼灼効率が向上する(処置部分が冷やされ過ぎないため、焼灼領域を大きくすることができる)。また、患者9への負担が低減されたり、治療時間の短縮化も図られることになる。 Further, in the catheter system 6 of the present embodiment, the liquid heating unit 41 is arranged on the supply path of the liquid L from the liquid supply unit 21 to the ablation catheter 1. The "liquid heating mode" in which the liquid L (liquid L') heated by the liquid heating unit 41 is supplied to the ablation catheter 1 can be set. When such a "liquid heating mode" is set, since the irrigation operation is performed by the ablation catheter 1 using the heated liquid L, for example, the heating is performed as such. The ablation efficiency at the time of ablation is improved as compared with the case where the irrigation operation is performed using the liquid L that is not present (the ablation region can be enlarged because the treated portion is not cooled too much). In addition, the burden on the patient 9 can be reduced, and the treatment time can be shortened.
 ただし、前述したように、液体加温部41とアブレーションカテーテル1との間の経路P2上(液体加温部41の後段部分)の液体Lについては、液体加温部41によって加温することができない。そのため、例えば、アブレーションカテーテル1の先端を処置部分に合わせるための手技操作などに手間取り、アブレーションの開始前の期間(出力電力Poutの停止時間,待機時間)が長くなると、液体Lの温度が経時的に低下してしまう(例えば、前述した体温付近の温度から、室温に近づいてしまう)。このようにして、上記した供給経路上での液体Lの一部(例えば、上記した経路P2上の液体L’)の温度が、経時的に低下すると、それに起因して、アブレーションの際の設定温度指標の範囲(加温された液体Lが灌注されている状態でアブレーションを行った場合に形成される、焼灼領域の範囲)からずれてしまい、アブレーションの際の焼灼領域が狭くなってしまうおそれがある。その結果、上記した「液体加温モード」が設定されている(加温された液体Lを用いた灌注動作が行われる)際に、適切なアブレーションを行うことが困難となってしまうことになる。 However, as described above, the liquid L on the path P2 between the liquid heating unit 41 and the ablation catheter 1 (the latter part of the liquid heating unit 41) may be heated by the liquid heating unit 41. Can not. Therefore, for example, if it takes time to perform a manipulation operation for aligning the tip of the ablation catheter 1 with the treatment portion and the period before the start of ablation (stop time of the output power Pout, standby time) becomes long, the temperature of the liquid L changes with time. (For example, the temperature near the body temperature approaches the room temperature). In this way, when the temperature of a part of the liquid L on the supply path described above (for example, the liquid L′ on the path P2 described above) decreases over time, this causes the setting at the time of ablation. It may deviate from the range of the temperature index (the range of the ablation region formed when ablation is performed while the heated liquid L is irrigated), and the ablation region at the time of ablation may be narrowed. There is. As a result, it becomes difficult to perform appropriate ablation when the above-mentioned “liquid heating mode” is set (the irrigation operation using the heated liquid L is performed). ..
(B.アブレーション動作の詳細)
 これらのことから、本実施の形態のカテーテルシステム6では、制御部35によって各種制御を行うことで、以下のようなアブレーション動作(加温された液体Lを用いた灌注動作を利用した、アブレーション動作)を行う。以下、そのようなアブレーション動作について、詳細に説明する。
(B. Details of ablation operation)
From these facts, in the catheter system 6 of the present embodiment, various controls are performed by the control unit 35, so that the following ablation operation (ablation operation using the irrigation operation using the heated liquid L) is performed. )I do. Hereinafter, such an ablation operation will be described in detail.
 図4は、本実施の形態のアブレーション動作(制御部35による制御動作)の一例を、流れ図で表わしたものである。なお、この図4に示した例では、前述した実測温度情報Tm1を利用した出力電力Poutの制御動作については、説明の簡便化のため、省略している。 FIG. 4 is a flow chart showing an example of the ablation operation (control operation by the control unit 35) of the present embodiment. Note that, in the example shown in FIG. 4, the control operation of the output power Pout using the above-described actually measured temperature information Tm1 is omitted for simplification of description.
 このアブレーション動作では、まず、前述した「液体加温モード」に設定される(ステップS101)。すなわち、例えば液体加温装置4の操作者によって、液体加温部41における液体Lの加温動作(液体加温動作)の開始が、指示される。すると、液体加温部41は、そのような液体加温動作(例えば、ヒータに電気が流れ、その内部の樹脂チューブを加温する動作等)を開始し(ステップS102)、前述したように、加温された液体Lの温度が、例えば患者9の体温付近となるようにする。 In this ablation operation, first, the above-mentioned "liquid heating mode" is set (step S101). That is, for example, the operator of the liquid heating device 4 gives an instruction to start the heating operation (liquid heating operation) of the liquid L in the liquid heating unit 41. Then, the liquid heating unit 41 starts such a liquid heating operation (for example, an operation in which electricity flows through the heater to heat the resin tube therein) (step S102), and as described above. The temperature of the heated liquid L is set to be near the body temperature of the patient 9, for example.
 次いで、前述した「Standby」流量動作が開始される(ステップS103)。すなわち、電源装置3の操作者によって、入力部31を介して制御部35に対し「Standby」流量動作を開始させるための指示信号が入力されると、制御部35は、この「Standby」流量動作が開始されるように、液体供給部21の動作を制御する。これにより、アブレーションカテーテル1における先端電極112の先端付近から処置部分に、液体流量F=Fstの微量の灌注用の液体Lが放出される。 Next, the above-mentioned "Standby" flow rate operation is started (step S103). That is, when the operator of the power supply device 3 inputs an instruction signal for starting the “Standby” flow rate operation to the control section 35 via the input section 31, the control section 35 causes the “Standby” flow rate operation. The operation of the liquid supply unit 21 is controlled so that the operation is started. As a result, a small amount of the liquid L for irrigation with a liquid flow rate F=Fst is discharged from the vicinity of the tip of the tip electrode 112 in the ablation catheter 1 to the treatment portion.
 続いて、電源装置3の操作者によって、入力部31からアブレーションの際の設定電力Psおよび目標温度Ttの値が入力されると、これらの値が制御部35へ供給されることで、値の設定がなされる(ステップS104)。そして、操作者によって、入力部31からアブレーション(焼灼動作)の開始が設定(指示)される(ステップS105)。つまり、入力部31を介して制御部35に対し、アブレーションを開始させるための指示信号が入力される。具体的には、例えば、入力部31としてのアブレーション開始スイッチを操作することや、アブレーションカテーテル1への通電を指示するフットスイッチを踏むことなどにより、アブレーションの開始が指示される。 Subsequently, when the operator of the power supply device 3 inputs the values of the set power Ps and the target temperature Tt at the time of ablation from the input unit 31, these values are supplied to the control unit 35, so that the values of the values can be changed. Settings are made (step S104). Then, the operator sets (instructs) the start of ablation (cauterization operation) from the input unit 31 (step S105). That is, an instruction signal for starting ablation is input to the control unit 35 via the input unit 31. Specifically, for example, the ablation start is instructed by operating the ablation start switch as the input unit 31, or by stepping on the foot switch instructing the energization of the ablation catheter 1.
 次に、制御部35は、温度測定部120によって測定された液体Lの温度(液温)Tm2が、所定の閾値温度Tth未満(Tm2<Tth)であるのか否かについて、判定を行う(ステップS106)。そして、制御部35は、このような液体Lの温度Tm2に応じて、以下のようにして、液体Lの供給動作の制御(液体流量Fの制御)を行う。 Next, the control unit 35 determines whether or not the temperature (liquid temperature) Tm2 of the liquid L measured by the temperature measuring unit 120 is lower than a predetermined threshold temperature Tth (Tm2<Tth) (step). S106). Then, the control unit 35 controls the supply operation of the liquid L (control of the liquid flow rate F) as follows according to the temperature Tm2 of the liquid L as described above.
 なお、このような液体Lの温度Tm2が閾値温度Tth未満である場合が、前述した所定の条件を満たす場合に対応している。また、上記した閾値温度Tthとしては、例えば、34(℃)~36(℃)程度が挙げられる。 The case where the temperature Tm2 of the liquid L is lower than the threshold temperature Tth corresponds to the case where the above-described predetermined condition is satisfied. The threshold temperature Tth is, for example, about 34 (° C.) to 36 (° C.).
 ここで、(Tm2≧Tth)であると判定された場合(ステップS106:N、上記所定の条件を満たさない場合)には、以下のようになる。すなわち、この場合には制御部35は、以下説明する液体排出制御(ステップS107)を行わずに、後述するステップS108へと移行し、後述する出力電力Poutの供給動作を開始させる(後述するステップS109)ことになる。 Here, when it is determined that (Tm2≧Tth) (step S106: N, when the above predetermined condition is not satisfied), the following is performed. That is, in this case, the control unit 35 proceeds to step S108 described later without performing the liquid discharge control (step S107) described below, and starts the supply operation of the output power Pout described later (step described later). S109).
 一方、(Tm2<Tth)であると判定された場合(ステップS106:Y、上記所定の条件を満たす場合)には、以下のようになる。すなわち、この場合には制御部35は、上記した「Standby」流量動作から、前述した最大流量動作(F=Fmaxである「Max」流量動作)へと切り替わるように、液体流量Fの制御を行う(ステップS107)。これにより、アブレーションカテーテル1における先端電極112の先端付近から処置部分に、液体流量F=Fmaxの液体Lが放出される。その結果、図1に示したように、液体供給部21からアブレーションカテーテル1までの供給経路上における液体L(例えば、液体加温部41とアブレーションカテーテル1との間の経路P2上の液体L’)の少なくとも一部が、事前に(後述する出力電力Poutの供給動作の開始前に)排出されることになる。なお、このような、液体Lを事前に排出させる制御(液体排出制御)を行った後には、上記したステップS106へと戻り、(Tm2<Tth)であるのか否かについて、再度判定されるようになっている。 On the other hand, when it is determined that (Tm2<Tth) (step S106: Y, when the above predetermined condition is satisfied), the following is performed. That is, in this case, the control unit 35 controls the liquid flow rate F so as to switch from the above-mentioned “Standby” flow rate operation to the above-mentioned maximum flow rate operation (“Max” flow rate operation where F=Fmax). (Step S107). As a result, the liquid L having the liquid flow rate F=Fmax is discharged from the vicinity of the tip of the tip electrode 112 in the ablation catheter 1 to the treatment portion. As a result, as shown in FIG. 1, the liquid L on the supply path from the liquid supply section 21 to the ablation catheter 1 (for example, the liquid L′ on the path P2 between the liquid heating section 41 and the ablation catheter 1). ) Will be discharged in advance (before the start of the supply operation of the output power Pout described later). In addition, after performing such control for discharging the liquid L in advance (liquid discharge control), the process returns to step S106 described above, and it is determined again whether or not (Tm2<Tth). It has become.
 ここで、上記したように、ステップS106において、(Tm2≧Tth)であると判定された場合(ステップS106:N)には、以下のようにして、出力電力Poutの供給動作を開始させる(後述するステップS109)ようになっている。つまり、制御部35は、液体Lの温度Tm2が閾値温度Tth以上となった場合(Tm2≧Tthとなってから)、出力電力Poutの供給動作を開始させるようにしている。 Here, as described above, when it is determined in step S106 that (Tm2≧Tth) (step S106: N), the supply operation of the output power Pout is started as follows (described later). Step S109) is performed. That is, the control unit 35 starts the supply operation of the output power Pout when the temperature Tm2 of the liquid L becomes equal to or higher than the threshold temperature Tth (after Tm2≧Tth).
 具体的には、この場合に制御部35は、まず、前述した小流量動作(F=Frf(<Fmax)である「RF」流量動作)が開始されるように、液体供給部21の動作を制御する。すなわち、制御部35は、出力電力Poutの供給動作(アブレーション動作)の実行期間中における流量動作である、「RF」流量動作へと移行させる(ステップS108)。これにより、アブレーションカテーテル1における先端電極112の先端付近から処置部分に、液体流量F=Frfの液体Lが放出される。 Specifically, in this case, the control unit 35 first operates the liquid supply unit 21 so that the above-described small flow rate operation (“RF” flow rate operation where F=Frf (<Fmax)) is started. Control. That is, the control unit 35 shifts to the "RF" flow rate operation, which is the flow rate operation during the execution period of the supply operation (ablation operation) of the output power Pout (step S108). As a result, the liquid L with the liquid flow rate F=Frf is discharged from the vicinity of the tip of the tip electrode 112 in the ablation catheter 1 to the treatment portion.
 続いて、このような「RF」流量動作が開始されてから所定の待機時間が経過したのち、電源部32からアブレーションカテーテル1および対極板5に対する、出力電力Pout(例えば高周波出力)の供給が開始される(ステップS109)。これにより前述した原理にて、低電力状態かつ「RF」流量動作による、処置部分のアブレーションが開始される。また、このときのアブレーション動作は、前述した「液体加温モード」に設定されていることから、加温された液体Lを用いた灌注動作を利用した、アブレーション動作となる。 Then, after a predetermined waiting time has elapsed after the start of the "RF" flow rate operation, the supply of output power Pout (for example, high frequency output) from the power supply unit 32 to the ablation catheter 1 and the counter electrode plate 5 is started. (Step S109). This initiates ablation of the treatment site in the low power state and "RF" flow rate operation, according to the principles described above. Further, the ablation operation at this time is an ablation operation using the irrigation operation using the heated liquid L, because the "liquid heating mode" described above is set.
 次に、電源装置3の操作者によって、入力部31を介して出力電力Poutの出力を停止させるための指示信号が入力されると、制御部35は、その旨の制御信号CTL1を電源部32へ出力することで、出力電力Pout(高周波出力)の供給が停止される(ステップS110)。そして、出力電力Poutの供給が停止してから所定の待機時間(例えば、1(秒)~5(秒)程度)が経過したのち、制御部35は、上記した「RF」流量動作から前述した「Standby」流量動作へと移行するように、液体供給部21の動作を制御する(ステップS111)。 Next, when the operator of the power supply device 3 inputs an instruction signal for stopping the output of the output power Pout via the input unit 31, the control unit 35 outputs the control signal CTL1 to that effect to the power supply unit 32. The output of the output power Pout (high frequency output) is stopped by outputting the output power to (step S110). Then, after a predetermined standby time (for example, about 1 (seconds) to 5 (seconds)) has elapsed since the supply of the output power Pout was stopped, the control unit 35 described above from the above-mentioned “RF” flow rate operation. The operation of the liquid supply unit 21 is controlled so as to shift to the "Standby" flow rate operation (step S111).
 以上により、図4に示したアブレーション動作全体が終了となる。 By the above, the entire ablation operation shown in Fig. 4 is completed.
(C.作用・効果)
 このようにして、本実施の形態のカテーテルシステム6では、「液体加温モード」に設定されている際に、温度測定部120によって測定されたアブレーションカテーテル1内での液体Lの温度Tm2に応じて、液体Lの供給動作を制御することによって、液体流量F(流量動作)を制御するようにしたので、以下のようになる。
(C. Action/effect)
Thus, in the catheter system 6 of the present embodiment, when the “liquid heating mode” is set, the temperature Tm2 of the liquid L in the ablation catheter 1 measured by the temperature measuring unit 120 is measured. Since the liquid flow rate F (flow rate operation) is controlled by controlling the supply operation of the liquid L, the following is performed.
 すなわち、そのような液体の温度Tm2に応じて液体流量Fが制御されることで、例えば、この温度Tm2の状況に応じて、液体流量Fが適切に調整できるようになる。これにより、前述したように、液体供給部21からアブレーションカテーテル1までの供給経路上における液体Lの一部(例えば、液体加温部41とアブレーションカテーテル1との間の経路P2上の液体L’)の温度が経時的に低下することに起因して、設定温度指標の範囲からずれてしまい、アブレーションの際の焼灼領域が狭くなってしまうおそれが、回避される。言い換えると、そのようにして液体Lの一部の温度が経時的に低下してしまっている場合であっても、アブレーションの際の設定温度指標の範囲からのずれが防止され、アブレーションの際の焼灼領域が確保される。その結果、本実施の形態のカテーテルシステム6では、灌注される液体Lによる不利益を減らし、適切なアブレーションを行うことが可能となる。 That is, by controlling the liquid flow rate F according to the temperature Tm2 of the liquid, for example, the liquid flow rate F can be appropriately adjusted according to the situation of the temperature Tm2. Thereby, as described above, a part of the liquid L on the supply path from the liquid supply section 21 to the ablation catheter 1 (for example, the liquid L′ on the path P2 between the liquid heating section 41 and the ablation catheter 1). It is possible to avoid the risk that the ablation region is narrowed at the time of ablation due to the temperature decrease of (1) decreasing with time and deviating from the range of the set temperature index. In other words, even when the temperature of a part of the liquid L is lowered with time in this way, deviation from the range of the set temperature index at the time of ablation is prevented, and the temperature at the time of ablation is prevented. A cauterizing area is secured. As a result, with the catheter system 6 of the present embodiment, it is possible to reduce the disadvantages caused by the irrigated liquid L and perform appropriate ablation.
 なお、アブレーションカテーテル1における先端P1付近の温度(実測温度情報Tm1)を利用する制御方法も考えられるが、実際の治療中には、アブレーションカテーテル1におけるシャフト11の大部分が、患者9の体内(心腔内や血管内など)にある。更に、アブレーションの開始前においては、「Standby」流量動作(F=Fst)で少量の液体Lが流れるだけであるため、ほとんどの場合、上記した実測温度情報Tm1は、体温付近(37℃付近)を示すことになる。すなわち、アブレーションカテーテル1に到達するまでの供給経路内の液体Lの温度が経時的に低下していることは、この実測温度情報Tm1では、検出できないと言える。 A control method using the temperature near the tip P1 of the ablation catheter 1 (measured temperature information Tm1) is also conceivable, but during actual treatment, most of the shaft 11 in the ablation catheter 1 is in the body of the patient 9 ( In the heart chamber and blood vessels). Furthermore, before the start of ablation, a small amount of liquid L only flows in the "Standby" flow rate operation (F=Fst), so in most cases, the above-mentioned measured temperature information Tm1 is near body temperature (around 37°C). Will be shown. That is, it can be said that the measured temperature information Tm1 cannot detect that the temperature of the liquid L in the supply path until it reaches the ablation catheter 1 has decreased with time.
 また、本実施の形態では、出力電力Poutの供給動作の実行期間中においては、液体流量F=Frfに設定すると共に、出力電力Poutの供給動作の開始前の期間においては、液体Lの温度Tm2が閾値温度Tth未満である場合には、液体流量F>Frfに設定しておき、液体Lの温度Tm2が閾値温度Tth以上となった場合に、出力電力Poutの供給動作を開始させるようにしたので、以下のようになる。すなわち、出力電力Poutの供給動作の開始前の期間(前述した液体排出制御を行う際)においては、出力電力Poutの供給動作の実行期間中と比べ、液体流量Fが増加することになる。したがって、上記供給経路上の液体Lの一部の温度が経時的に低下してしまっている場合であっても、その液体Lが事前(電力供給動作の開始前)に、迅速に排出されるようになる。 Further, in the present embodiment, the liquid flow rate F=Frf is set during the execution period of the supply operation of the output power Pout, and the temperature Tm2 of the liquid L is set during the period before the supply operation of the output power Pout is started. Is less than the threshold temperature Tth, the liquid flow rate F>Frf is set, and the supply operation of the output power Pout is started when the temperature Tm2 of the liquid L is equal to or higher than the threshold temperature Tth. So it looks like this: That is, in the period before the start of the supply operation of the output power Pout (when the above-described liquid discharge control is performed), the liquid flow rate F increases compared to during the execution period of the supply operation of the output power Pout. Therefore, even when the temperature of a part of the liquid L on the supply path has decreased over time, the liquid L is quickly discharged in advance (before the start of the power supply operation). Like
 更に、本実施の形態では、上記した液体排出制御を行う際の液体流量F(>Fst)を、設定範囲内における最大流量Fmaxとしたので、以下のようになる。すなわち、上記した液体Lの事前排出が、設定範囲内で最も迅速化されることから、確実に焼灼領域を所望の通りに形成できる結果、利便性をより一層向上させることが可能となる。 Furthermore, in the present embodiment, the liquid flow rate F (>Fst) at the time of performing the above-described liquid discharge control is set to the maximum flow rate Fmax within the set range. That is, since the above-described pre-discharge of the liquid L is most quickly performed within the set range, the cauterization region can be reliably formed as desired, resulting in further improved convenience.
 加えて、本実施の形態では、液体加温部41によって加温された液体L(液体L’)の温度を、患者9(人間)の体温付近の温度とした場合には、以下のようになる。すなわち、体温付近の温度の液体Lを用いて、アブレーションカテーテル1における灌注動作が行われることから、アブレーションの際の焼灼効率が更に向上するとともに、患者9への負担を低減したり、治療時間の短縮化を図ることが可能となる。 In addition, in the present embodiment, when the temperature of the liquid L (liquid L′) heated by the liquid heating unit 41 is set to a temperature near the body temperature of the patient 9 (human), the following is performed. Become. That is, since the irrigation operation in the ablation catheter 1 is performed using the liquid L having a temperature near the body temperature, the cauterization efficiency during ablation is further improved, the burden on the patient 9 is reduced, and the treatment time is shortened. It becomes possible to shorten the length.
 また、本実施の形態では、温度測定部120によって測定される、アブレーションカテーテル1内での液体Lの温度Tm2として、アブレーションカテーテル1における操作部12(ハンドル121)内での液体Lの温度Tm2を用いるようにしたので、以下のようになる。すなわち、灌注機構の近傍での液体Lの温度Tm2が測定されることから、アブレーションカテーテル1内での液体Lの温度Tm2の測定精度が、向上することになる。その結果、液体流量Fを、より適切に調整することが可能となる。 In the present embodiment, the temperature Tm2 of the liquid L in the operating portion 12 (handle 121) of the ablation catheter 1 is measured as the temperature Tm2 of the liquid L in the ablation catheter 1 measured by the temperature measuring unit 120. Since it is used, it becomes as follows. That is, since the temperature Tm2 of the liquid L in the vicinity of the irrigation mechanism is measured, the measurement accuracy of the temperature Tm2 of the liquid L in the ablation catheter 1 is improved. As a result, the liquid flow rate F can be adjusted more appropriately.
 加えて、本実施の形態では、液体供給装置2と電源装置3と液体加温装置4とが、別体として構成されているようにしたので、使用状況に応じて各装置を個別に配置することが可能となるため、カテーテルシステム6全体としての利便性を向上させることができる。具体的には、例えば図1に示したように、液体供給装置2や液体加温装置4を、相対的に患者9の近くに配置させることで、液体供給装置2や液体加温装置4とアブレーションカテーテル1とを繋ぐ、液体供給用のチューブが短くて済むため、医師が操作し易いようになる。また、それと同時に、電源装置3を相対的に患者9から遠方に配置させることで、技師等が操作し易いようになる。このようにして、使用状況に応じた装置配置が可能となる。 In addition, in the present embodiment, since the liquid supply device 2, the power supply device 3, and the liquid heating device 4 are configured as separate bodies, each device is individually arranged according to the usage situation. Therefore, the convenience of the catheter system 6 as a whole can be improved. Specifically, for example, as shown in FIG. 1, by disposing the liquid supply device 2 and the liquid heating device 4 relatively close to the patient 9, the liquid supply device 2 and the liquid heating device 4 are connected to each other. Since the liquid supply tube connecting to the ablation catheter 1 is short, it becomes easy for the doctor to operate. At the same time, by disposing the power supply device 3 relatively far from the patient 9, it becomes easy for an engineer or the like to operate. In this way, the device can be arranged according to the usage situation.
<2.変形例>
 以上、実施の形態を挙げて本発明を説明したが、本発明はこの実施の形態に限定されず、種々の変形が可能である。
<2. Modification>
The present invention has been described above with reference to the embodiment, but the present invention is not limited to this embodiment, and various modifications can be made.
 例えば、上記実施の形態において説明した各層および各部材の材料等は限定されるものではなく、他の材料としてもよい。また、上記実施の形態では、アブレーションカテーテル1(シャフト11)の構成を具体的に挙げて説明したが、必ずしも全ての部材を備える必要はなく、また、他の部材を更に備えていてもよい。具体的には、例えばシャフト11の内部に、首振り部材として、撓み方向に変形可能な板バネが設けられているようにしてもよい。また、シャフト11における電極の構成(リング状電極および先端電極の配置や形状、個数等)は、上記実施の形態で挙げたものには限られない。 For example, the material of each layer and each member described in the above embodiment is not limited, and other materials may be used. Further, in the above-described embodiment, the structure of the ablation catheter 1 (shaft 11) has been specifically described, but it is not necessary to include all members, and other members may be further included. Specifically, for example, a leaf spring that is deformable in the bending direction may be provided inside the shaft 11 as a swinging member. Further, the configuration of the electrodes on the shaft 11 (arrangement, shape, number of ring-shaped electrodes and tip electrodes, etc.) is not limited to those described in the above embodiment.
 また、上記実施の形態では、シャフト11における先端P1付近の形状が操作部12の操作に応じて片方向に変化するタイプのアブレーションカテーテルを例に挙げて説明したが、これには限られない。すなわち、本発明は、例えば、シャフト11における先端P1付近の形状が操作部12の操作に応じて両方向に変化するタイプのアブレーションカテーテルにも適用することが可能であり、この場合には操作用ワイヤを複数本用いることとなる。また、本発明は、シャフト11における先端P1付近の形状が固定となっているタイプのアブレーションカテーテルにも適用することが可能であり、この場合には、操作用ワイヤや回転板122等が不要となる。すなわち、ハンドル121のみで操作部が構成されることになる。 In the above embodiment, the ablation catheter of the type in which the shape near the tip P1 of the shaft 11 changes in one direction according to the operation of the operation unit 12 has been described as an example, but the present invention is not limited to this. That is, the present invention can be applied to, for example, an ablation catheter of a type in which the shape near the tip P1 of the shaft 11 changes in both directions according to the operation of the operation unit 12, and in this case, the operation wire. Will be used multiple times. The present invention can also be applied to an ablation catheter of the type in which the shape near the distal end P1 of the shaft 11 is fixed. In this case, the operating wire, the rotating plate 122, etc. are unnecessary. Become. That is, the handle 121 alone constitutes the operation unit.
 更に、上記実施の形態では、液体供給装置2、電源装置3および液体加温装置4のブロック構成を具体的に挙げて説明したが、上記実施の形態で説明した各ブロックを必ずしも全て備える必要はなく、また、他のブロックを更に備えていてもよい。また、カテーテルシステム全体としても、上記実施の形態で説明した各装置に加えて他の装置を更に備えていてもよい。 Further, in the above-described embodiment, the block configuration of the liquid supply device 2, the power supply device 3, and the liquid heating device 4 is specifically described, but it is not always necessary to include all the blocks described in the above-described embodiment. However, it may be provided with another block. Further, the catheter system as a whole may further include other devices in addition to the devices described in the above embodiments.
 加えて、上記実施の形態のカテーテルシステムとは異なり、例えば、液体供給装置2、電源装置3および液体加温装置4の各機能が一体化され、単一の装置(制御装置)として構成されているようにしてもよい。換言すると、液体供給部21、入力部31、電源部32、電圧測定部33、電流測定部34、制御部35、表示部36および液体加温部41がそれぞれ、単一の装置である制御装置内に設けられているようにしてもよい。このようにした場合、カテーテルシステム全体の構成を、簡素化することが可能となる。 In addition, unlike the catheter system of the above-described embodiment, for example, the functions of the liquid supply device 2, the power supply device 3, and the liquid heating device 4 are integrated and configured as a single device (control device). You may be allowed to. In other words, the liquid supply unit 21, the input unit 31, the power supply unit 32, the voltage measuring unit 33, the current measuring unit 34, the control unit 35, the display unit 36, and the liquid heating unit 41 are each a single device control device. It may be provided inside. In this case, the configuration of the entire catheter system can be simplified.
 また、上記実施の形態では、アブレーション動作の際の各処理を、流れ図を用いて具体的に説明したが、上記実施の形態で説明した各処理を必ずしも全て行う必要はなく、また、他の処理を更に行うようにしてもよい。具体的には、例えば、前述した液体排出制御を行う際の液体流量F(>Fst)が、設定範囲内における最大流量Fmaxではなく、(Fst<F<Fmax)の範囲内での任意の流量であってもよい。また、液体加温部41によって加温された液体L(液体L’)の温度としては、患者9(人間)の体温付近の温度には限られず、他の温度としてもよい。加えて、上記実施の形態で説明した「Standby」流量動作および実測温度情報Tm1を利用した出力電力Poutの制御動作のうちの少なくとも一方を、場合によっては行わないようにしてもよい。 Further, in the above-described embodiment, each process at the time of the ablation operation is specifically described using the flowchart, but it is not necessary to perform all the processes described in the above-described embodiment, and other processes. May be further performed. Specifically, for example, the liquid flow rate F (>Fst) at the time of performing the liquid discharge control described above is not the maximum flow rate Fmax within the set range, but an arbitrary flow rate within the range (Fst<F<Fmax). May be The temperature of the liquid L (liquid L') heated by the liquid heating unit 41 is not limited to the temperature near the body temperature of the patient 9 (human), and may be another temperature. In addition, at least one of the “Standby” flow rate operation and the control operation of the output power Pout using the measured temperature information Tm1 described in the above embodiment may not be performed in some cases.

Claims (4)

  1.  灌注機構と、灌注用の液体の温度を測定する温度測定部と、を有するアブレーションカテーテルと、
     前記アブレーションカテーテルに対して、アブレーションの際の電力を供給する電源部と、
     前記アブレーションカテーテルに対して、前記液体を供給する液体供給部と、
     前記液体供給部から前記アブレーションカテーテルまでの前記液体の供給経路上に配置され、前記液体を加温する液体加温部と、
     前記電源部における前記電力の供給動作と、前記液体供給部における前記液体の供給動作とを、それぞれ制御する制御部と
     を備え、
     前記制御部は、
     前記液体加温部によって加温された前記液体を前記アブレーションカテーテルに対して供給する、液体加温モードに設定されている際に、
     前記温度測定部によって測定された、前記アブレーションカテーテル内での前記液体の温度に応じて、前記液体の供給動作を制御することにより、前記液体の流量を制御する
     カテーテルシステム。
    An ablation catheter having an irrigation mechanism and a temperature measurement unit for measuring the temperature of the liquid for irrigation,
    A power supply unit that supplies electric power at the time of ablation to the ablation catheter,
    A liquid supply unit for supplying the liquid to the ablation catheter,
    A liquid heating unit that is arranged on the liquid supply path from the liquid supply unit to the ablation catheter and that heats the liquid;
    A control unit that respectively controls the power supply operation of the power supply unit and the liquid supply operation of the liquid supply unit;
    The control unit is
    When the liquid heating mode is set, the liquid heated by the liquid heating unit is supplied to the ablation catheter.
    A catheter system that controls the flow rate of the liquid by controlling the supply operation of the liquid in accordance with the temperature of the liquid in the ablation catheter measured by the temperature measurement unit.
  2.  前記制御部は、
     前記電力の供給動作の実行期間中においては、前記液体の流量を第1流量に設定すると共に、
     前記電力の供給動作の開始前の期間においては、
     前記液体の温度が閾値温度未満である場合には、前記液体の流量を、前記第1流量よりも大きい第2流量に設定しておき、
     前記液体の温度が前記閾値温度以上となった場合に、前記電力の供給動作を開始させる
     請求項1に記載のカテーテルシステム。
    The control unit is
    During the execution period of the power supply operation, while setting the flow rate of the liquid to the first flow rate,
    In the period before the start of the power supply operation,
    When the temperature of the liquid is lower than a threshold temperature, the flow rate of the liquid is set to a second flow rate higher than the first flow rate,
    The catheter system according to claim 1, wherein the operation of supplying the electric power is started when the temperature of the liquid becomes equal to or higher than the threshold temperature.
  3.  前記第2流量が、設定範囲内における最大流量である
     請求項2に記載のカテーテルシステム。
    The catheter system according to claim 2, wherein the second flow rate is a maximum flow rate within a set range.
  4.  前記加温された前記液体の温度が、体温付近の温度である
     請求項1ないし請求項3のいずれか1項に記載のカテーテルシステム。
    The catheter system according to any one of claims 1 to 3, wherein the temperature of the heated liquid is a temperature near a body temperature.
PCT/JP2019/007785 2019-02-28 2019-02-28 Catheter system WO2020174651A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/007785 WO2020174651A1 (en) 2019-02-28 2019-02-28 Catheter system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/007785 WO2020174651A1 (en) 2019-02-28 2019-02-28 Catheter system

Publications (1)

Publication Number Publication Date
WO2020174651A1 true WO2020174651A1 (en) 2020-09-03

Family

ID=72239675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007785 WO2020174651A1 (en) 2019-02-28 2019-02-28 Catheter system

Country Status (1)

Country Link
WO (1) WO2020174651A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239414A (en) * 2005-02-14 2006-09-14 Biosense Webster Inc Irrigated tip catheter and method for manufacturing therefor
JP2012176119A (en) * 2011-02-25 2012-09-13 Japan Lifeline Co Ltd Electrode catheter
JP2014166237A (en) * 2013-02-28 2014-09-11 Japan Lifeline Co Ltd Catheter system
WO2015156158A1 (en) * 2014-04-11 2015-10-15 オリンパス株式会社 Plasma treatment system
US20170273732A1 (en) * 2016-03-24 2017-09-28 Boston Scientific Scimed Inc. Regional flow sensor on cardiac catheter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239414A (en) * 2005-02-14 2006-09-14 Biosense Webster Inc Irrigated tip catheter and method for manufacturing therefor
JP2012176119A (en) * 2011-02-25 2012-09-13 Japan Lifeline Co Ltd Electrode catheter
JP2014166237A (en) * 2013-02-28 2014-09-11 Japan Lifeline Co Ltd Catheter system
WO2015156158A1 (en) * 2014-04-11 2015-10-15 オリンパス株式会社 Plasma treatment system
US20170273732A1 (en) * 2016-03-24 2017-09-28 Boston Scientific Scimed Inc. Regional flow sensor on cardiac catheter

Similar Documents

Publication Publication Date Title
US6235022B1 (en) RF generator and pump apparatus and system and method for cooled ablation
CN107019554B (en) Temperature controlled short duration ablation
US10463428B2 (en) Temperature controlled short duration ablation
JP2012517864A (en) Apparatus and method for supplying fluid to an electrophysiological device
US10893904B2 (en) Temperature controlled short duration ablation
US10507058B2 (en) Temperature controlled short duration ablation
JP5737765B2 (en) Catheter system
JP5757586B2 (en) Catheter system
WO2020174651A1 (en) Catheter system
WO2020174650A1 (en) Catheter system
JP7352011B2 (en) Ablation control system
WO2014208200A1 (en) Catheter system
JP2023105990A (en) Electric medical device control system and electric medical device system control method
WO2017056551A1 (en) Catheter system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP