WO2020173288A1 - 被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2020173288A1
WO2020173288A1 PCT/CN2020/074322 CN2020074322W WO2020173288A1 WO 2020173288 A1 WO2020173288 A1 WO 2020173288A1 CN 2020074322 W CN2020074322 W CN 2020074322W WO 2020173288 A1 WO2020173288 A1 WO 2020173288A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
condition
node
buffer
wireless signal
Prior art date
Application number
PCT/CN2020/074322
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2020173288A1 publication Critical patent/WO2020173288A1/zh
Priority to US17/412,208 priority Critical patent/US11924809B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0046Code rate detection or code type detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and in particular, to a method and device that supports wireless signal forwarding. Background technique
  • radio bearers In traditional cellular systems, user equipment may establish a large number of radio bearers; each radio bearer corresponds to a logical channel (Logical Channel); and the channel allocation request is initiated by higher layers, such as BSR (Buffer Status Report). Status reporting), or SR (Scheduling Request, scheduling request) are all triggered by higher layers.
  • BSR Buffer Status Report
  • SR Service Request, scheduling request
  • the UE with higher-level connections can improve the transmission efficiency by relaying the grant-free uplink data.
  • this application discloses a solution. It should be noted that the embodiments of the application and the features in the embodiments can be combined with each other arbitrarily under the condition of no conflict. Further, although the original intention of this application is for communications similar to those exempt from grants, the methods and devices in this application are also applicable to other communication structures, such as grant-based communications, communications between base stations, and so on.
  • This application discloses a method used in a first node for wireless communication, which is characterized in that it includes:
  • the first information is triggered at the higher layer, send a first wireless signal, where the first wireless signal includes the first information
  • the first information is used to indicate the amount of data that can be sent in the buffer
  • the first condition set includes a first condition
  • the first condition includes that the first buffer information is transferred from the physical layer to a higher layer.
  • the above method enables the physical layer of the first node to initiate a channel allocation request, which avoids processing of the first bit block by a higher layer of the first node; and shortens the relay delay.
  • the higher layer of the first node does not participate in the processing of the first bit block, but it can consider the existence of the first bit block when deciding whether to trigger the first information; It accurately reflects the current buffer status, and on the other hand reduces the processing complexity of higher layers.
  • the transmission of the first signal set is based on a similar exemption method, and the retransmission of the first signal set, that is, the second wireless signal, is performed by the first node that has established a higher-level connection Compared with the retransmission performed by the sender of the first signal set, the above method improves the spectral efficiency of the retransmission.
  • multiple receivers perform blind detection on the first signal set at the same time, and the first node Is one of the plurality of receivers; compared with only one receiver, the probability that the first signal set is correctly decoded is greatly increased; effectively reducing the transmission of the first signal set The probability of retransmission by the user, or the MCS (Modulation Coding Status, Modulation Coding Status) and power of the first signal set are reduced; thereby, the transmission efficiency is improved.
  • MCS Modulation Coding Status, Modulation Coding Status
  • the above method is characterized in that it includes:
  • the target information is monitored in the second air interface resource pool to determine that the first bit block has not been correctly decoded by the target receiver; specifically, according to an aspect of the present invention, the above method is characterized in that the first condition set includes The second condition, the second condition includes: there is no data available for transmission on all logical channels.
  • the above method is characterized in that the first condition set includes a third condition, the first buffer information indicates a first priority, and the third condition includes: the first condition The priority is higher than the priority of any logical channel in the logical channel group that has data available for transmission.
  • the above method is characterized in that the first buffer information indicates a buffer size occupied by the first bit block.
  • the above method is characterized in that it includes:
  • the second set of conditions Before the first wireless signal is sent, when a second set of conditions is met, trigger second information; wherein, the second information is used to request channel resources; and the second set of conditions includes the first The information is not terminated and the channel resources are not allocated.
  • the above method is characterized in that it includes:
  • the third set of conditions instruct the physical layer to send second information and send the second information;
  • the first receiver receives first signaling, and the first signaling includes the first wireless The scheduling information of the signal; wherein the third condition set includes at least one channel resource that can be used for the second information and is configured for the transmission time interval.
  • the above method is characterized in that it includes:
  • the second signaling includes scheduling information of the second wireless signal, and the first bit block is used to generate the second wireless signal.
  • the above method is characterized in that the first information is a buffer status report.
  • This application discloses a first node used for wireless communication, which is characterized in that it includes:
  • the first receiver receiving the first signal set through blind detection in the first air interface resource pool, and recovering the first bit block at the physical layer according to the first signal set;
  • the first processor transfers the first buffer information from the physical layer to the higher layer; when the first condition set is met, triggers the first information at the higher layer;
  • a first transmitter after the first information is triggered at the higher layer, send a first wireless signal, where the first wireless signal includes the first information;
  • the first information is used to indicate the amount of data that can be sent in the buffer
  • the first condition set includes a first condition
  • the first condition includes that the first buffer information is transferred from the physical layer to a higher layer.
  • the first bit block is used to generate a first signal set to be transmitted in the first air interface resource pool; the first information is used to indicate the amount of data that can be transmitted in the buffer;
  • the condition set is met, the first information is triggered at a higher layer; the first condition set includes a first condition, and the first condition includes a first buffer Information is passed from the physical layer to a higher layer; after the first information is triggered, the first wireless signal is sent.
  • the above method is characterized in that it includes:
  • target information is used to indicate that the first bit block is not correctly decoded.
  • the above method is characterized in that the first condition set includes a second condition, and the second condition includes: there is no data available for transmission on all logical channels.
  • the above method is characterized in that the first condition set includes a third condition, the first buffer information indicates a first priority, and the third condition includes: the first condition The priority is higher than the priority of any logical channel in the logical channel group that has data available for transmission.
  • the above method is characterized in that the first buffer information indicates a buffer size occupied by the first bit block.
  • the above method is characterized in that, before the first wireless signal is sent, when a second set of conditions is satisfied, second information is triggered, and the second information is used for Request channel resources; the second set of conditions includes that the first information is not terminated and channel resources are not allocated.
  • the above method is characterized in that it includes:
  • the third condition set when the third condition set is met, the physical layer is instructed to send the second information; the third condition set includes at least one channel resource that can be used for the second information and is configured for the transmission time interval.
  • the above method is characterized in that it includes:
  • the first transmitter sends the second signaling
  • the first receiver receiving a second wireless signal
  • the second signaling includes scheduling information of the second wireless signal, and the first bit block is used to generate the second wireless signal.
  • the above method is characterized in that the first information is a buffer status report.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • a second receiver performing blind detection in the first air interface resource pool and failing to correctly decode the first bit block; receiving a first wireless signal, where the first wireless signal includes first information;
  • the first bit block is used to generate a first signal set to be transmitted in the first air interface resource pool; the first information is used to indicate the amount of data that can be transmitted in the buffer; When the condition set is met, the first information is triggered at a higher layer; the first condition set includes a first condition, and the first condition includes that the first buffer information is transferred from the physical layer to the higher layer; After the first information is triggered, the first wireless signal is sent.
  • this application has the following advantages:
  • Fig. 1 shows a processing flowchart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • 4 shows a schematic diagram of two communication devices communicating with each other according to an embodiment of the present application
  • FIG. 5 shows a schematic diagram of an air interface resource pool according to an embodiment of the present application
  • Fig. 6 shows a flow chart of transmission of a first wireless signal according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram of requesting channel allocation according to an embodiment of the present application.
  • Fig. 8 shows a schematic diagram of indicating that the first signal set is not correctly decoded through target information according to an embodiment of the present application
  • Fig. 9 shows a schematic diagram of a first time-frequency resource pool and a second time-frequency resource pool according to an embodiment of the present application
  • Fig. 10 shows a schematic diagram of resource mapping according to an embodiment of the present application
  • Fig. 11 shows a schematic diagram of a first bit block according to an embodiment of the present application.
  • Fig. 12 shows a schematic diagram of a first bit block according to an embodiment of the present application.
  • Figure 13 shows a schematic diagram of a second bit block according to an embodiment of the present application.
  • Fig. 14 shows a structural block diagram of a processing device in the first node according to an embodiment of the present application
  • Fig. 15 shows a structural block diagram of a processing device in the second node according to an embodiment of the present application. detailed description
  • Embodiment 1 illustrates the processing flowchart of the first node, as shown in FIG. 1.
  • the first node receives the first signal set through blind detection in the first air interface resource pool in step S01, and restores the first bit block at the physical layer according to the first signal set; in step S02
  • the layer transfers the first buffer information to the higher layer; when the first set of conditions is met, trigger the first information at the higher layer; in step S03, the first wireless signal is sent, and the first wireless signal includes the first information.
  • the first information is used to indicate the amount of data that can be sent in the buffer
  • the first condition set includes the first condition
  • the first condition includes that the first buffer information is transferred from the physical layer to the Higher level.
  • the first signal set includes K wireless signals
  • the first bit block includes K bit sub-blocks
  • the K bit sub-blocks are respectively used to generate the K wireless signals, so
  • the K is a positive integer greater than 1; the K wireless signals are sent by K senders respectively.
  • the first signal set is sent on one physical layer channel.
  • the first node simultaneously retransmits data for K senders, which further improves the spectrum efficiency of small packet transmission.
  • the first signal set is sent by one user equipment.
  • the K senders are respectively K user equipments.
  • the first signal set is sent by one sender.
  • the first information is used to request channel resources.
  • the first information is BSR (Buffer Status Report, Buffer Status Report).
  • the bits in the first bit block are not passed to the higher layer.
  • the target recipient of the first bit block does not include the first node.
  • the first information indicates data that can be used for sending (avai labl e for transmi ss ion) in an uplink buffer associated with a MAC (Media Access Control) entity (Ent ity) The amount of information.
  • MAC Media Access Control
  • the first information includes a buffer size (Buffer Si ze).
  • the identity of the target recipient is used to generate the first signal set.
  • the identity of the target recipient is used to scramble the first bit block.
  • the identity of the target recipient is used to scramble the CRC in the first bit block.
  • the identity of the target receiver is used to generate a DMRS (DeModulation Reference Signal, demodulation reference signal) in the first signal set.
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • the first wireless signal is sent on PUSCH (Physical Uplink Shared CHannel, physical uplink shared channel).
  • PUSCH Physical Uplink Shared CHannel, physical uplink shared channel
  • the first wireless signal is sent on PUCCH (Physical Uplink Control CHannel, physical uplink control channel).
  • PUCCH Physical Uplink Control CHannel, physical uplink control channel
  • the first wireless signal is sent on the PSSCH C Physical Sidelink Shared CHannel.
  • the first node is user equipment.
  • the first node is a base station device.
  • the first node is a relay node.
  • the first air interface resource pool includes a first time-frequency resource pool.
  • the first air interface resource pool occupies a positive integer number of multi-carrier symbols in the time domain, and a positive integer number of subcarriers in the frequency domain.
  • the first air interface resource pool occupies multiple multiple-access signatures on the code domain.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing, orthogonal frequency division multiplexing) symbol.
  • the multi-carrier symbol is an SC-FDMA (Single Carrier Frequency Division Multiplexing Access, single carrier frequency division multiple access) symbol.
  • SC-FDMA Single Carrier Frequency Division Multiplexing Access, single carrier frequency division multiple access
  • the multi-carrier symbol is an FBMC (Filter Bank Multi-Carrier, filter bank multi-carrier) symbol.
  • FBMC Filter Bank Multi-Carrier, filter bank multi-carrier
  • the first bit block includes multiple bits.
  • the first bit block includes a plurality of bits arranged in sequence.
  • the first signal set is sent on a PUSCH (Physical Uplink Shared Channel, physical uplink shared channel), and the first signal set is sent by a UE.
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • the first bit block is an output after the first signal set is sequentially channel equalized, broadband symbol demodulation, de-resource particle mapping, de-layer mapping, de-scrambling, and channel-decoding.
  • the first bit block is the output of the first signal set after channel equalization, broadband symbol demodulation, resource particle mapping, descrambling, and channel decoding.
  • the first bit block includes K bit sub-blocks, the first signal set includes K wireless signals; and the K is a positive integer greater than one.
  • the K bit sub-blocks are respectively obtained after the K wireless signals sequentially undergo channel equalization, broadband symbol demodulation, de-resource particle mapping, de-layer mapping, descrambling, and channel decoding.
  • the K bit sub-blocks are respectively obtained after the K wireless signals undergo channel equalization, broadband symbol demodulation, resource particle mapping, descrambling, and channel decoding.
  • the channel coding corresponding to the channel decoding is based on a polar code (Polar Coding).
  • the channel coding corresponding to the channel decoding is based on LDPC (Low Density Parity Check, low density check) coding.
  • the K wireless signals are respectively sent on K PUSCHs.
  • the first bit block is formed by sequentially concatenating the K bit sub-blocks.
  • the first bit block indicates the K.
  • the first bit block indicates the K senders.
  • the first bit block includes K identities, and the K identities respectively identify the K senders.
  • the first information includes the K identities.
  • the first information indicates a buffer size occupied by the first bit block (buffer s ize).
  • the first information indicates the number of bits included in the first bit block.
  • each of the K identities includes E1 bits, and the E1 is a positive integer greater than one.
  • the E1 is 8.
  • the K identities are K RNTIs (Radio Network Temporary Identifier, wireless network identities) respectively.
  • the phrase receiving the first signal set through blind detection in the first air interface resource pool includes: the first signal set is exempt.
  • the phrase receiving the first signal set through blind detection in the first air interface resource pool includes: there is no change between the target receiver of the first signal set and the sender of the first signal set High-level connection.
  • the phrase receiving the first signal set through blind detection in the first air interface resource pool includes: there is no higher-level connection between the first node and the sender of the first signal set.
  • the higher layer connection includes an RRC (Radio Resource Control, radio resource control) layer connection.
  • RRC Radio Resource Control, radio resource control
  • the higher-level connection includes a NAS (Non Access System, non-access system) connection.
  • NAS Non Access System, non-access system
  • the higher layer connection includes an application layer connection.
  • the phrase receiving the first signal set through blind detection in the first air interface resource pool includes: before the first node correctly decodes the first signal set, the first node cannot determine the Whether the first signal set is sent in the first air interface resource pool.
  • the phrase receiving the first signal set through blind detection in the first air interface resource pool includes: the first node performs Q channel decoding in the first air interface resource pool, where Q is A positive integer greater than 1, each channel decoding in the Q channel decoding includes: determining whether the corresponding wireless signal is received correctly according to CRC (Cyclic Redundancy Check);
  • the signal set includes Q1 wireless signals, and the Q1 wireless signals are respectively received correctly by the Q1 channel decoding in the Q channel decoding; the Q1 is a positive integer not greater than the Q.
  • the Q channel decoding is based on the Viterbi algorithm.
  • each channel decoding in the Q channel decoding is based on iteration.
  • the Q channel decoding is based on the BP (belief propagation, credibility propagation) algorithm.
  • the Q sub-channel decoder is based on LLR (Log Likelyhood Ratio, log likelihood ratio) _ on BP algorithm.
  • the phrase receiving the first signal set through blind detection in the first air interface resource pool includes: the first signal set includes Q1 wireless signals, and the first node is on the first air interface resource Perform Q times of characteristic sequence detection in the pool, where Q is a positive integer greater than 1, and each characteristic sequence detection in the Q times of characteristic sequence detection includes: determining whether the corresponding wireless signal is transmitted according to the coherent detection of the sequence; The Q1 characteristic sequence detection in the Q times of characteristic sequence detection is respectively used to determine that the Q1 wireless signals are transmitted; the Q1 is a positive integer not greater than the Q.
  • the physical layer is Layer 1 (Layer 1).
  • the physical layer is a PHY layer.
  • the first information is a buffer status report.
  • the buffer status report is a regular (Regular) buffer status report (BSR).
  • the buffer status report is a padding (Padding) buffer status report.
  • the first condition set includes a second condition, and the second condition includes: there is no data available for transmission on all logical channels.
  • the first set of conditions includes a third condition, the first buffer information indicates a first priority, and the third condition includes: the first priority is higher than all existing ones available for transmission The priority of any logical channel in the logical channel group for data.
  • the first buffer information indicates a buffer size occupied by the first bit block.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2.
  • FIG. 2 illustrates a network architecture 200 of LTE (Long-Term Evolution, Long-Term Evolution), LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) and the future 5G system.
  • the LTE network architecture 200 can be called EPS (Evolved Packet System, Evolved Packet System) 200 JPS 200 can include one or more UEs (User Equipment) 201, E-UTRAN-NR (Evolved UMTS Terrestrial Radio Access Network- New wireless) 202, 5G-CN (5G-CoreNetwork, 5G core network)/EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • UEs User Equipment
  • E-UTRAN-NR Evolved UMTS Terrestrial Radio Access Network- New wireless
  • 5G-CN 5G-CoreNetwork, 5G core network
  • EPC Evolved Packet Core
  • HSS Home Subscriber Server
  • UMTS corresponds to Universal Mobile Communications System (Universal Mobile Communications System).
  • EPS200 can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in Figure 2, EPS200 provides packet switching services, but those skilled in the art will readily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services.
  • E-UTRAN-NR202 includes NR (New Radio) Node B (gNB) 203 and other gNB204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • gNB203 may be connected via an X2 interface (e.g., backhaul) to other gNB204 o gNB203 may also be called a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (the BSS), Extended Service Set (ESS) , TRP (Transmit and Receive Point) or some other suitable term.
  • gNB203 provides UE201 with an access point to 5G-CN/EPC210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircrafts, narrowband physical network equipment, machine type communication equipment, land vehicles, automobiles, wearable devices, or any other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to 5G-CN/EPC210 through the S 1 interface.
  • the 5G-CN/EPC 210 includes MME 21 1, other MME 214, S-GW (Service Gateway, service gateway) 212, and P-GW (Packet Date Network Gateway, packet data network gateway) 213.
  • MME211 is a control node that processes signaling between UE201 and 5G-CN/EPC210. In general, MME211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • the P-GW213 is connected to the Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • the first node in this application is a UE201
  • the second node in this application is the gNB203.
  • the sender of each wireless signal in the first signal set in this application is a UE201.
  • the first node and the second node in this application are respectively a UE201, and the sender of each wireless signal in the first signal set in this application is a UE201.
  • the first node supports V2V communication
  • the UE 201 supports V2V communication.
  • the gNB203 supports V2V communication.
  • Example 3
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a radio protocol architecture for user plane and control plane, as shown in FIG. 3, FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for user plane and control plane, FIG. 3
  • Layer 1 L1 layer
  • PHY301 physical layer
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between UE and gNB through PHY301.
  • the L2 layer 305 includes MAC (Medium Access Control, medium access control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data). Convergence protocol) sublayer 304, these sublayers terminate at the gNB on the network side.
  • the UE may have several protocol layers above the L2 layer 305, including the network layer (for example, the IP layer) that terminates at the P-GW 213 on the network side and the other end of the connection (for example, The application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper-layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception caused by HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request).
  • HARQ Hybrid Automatic Repeat reQuest, hybrid automatic repeat request.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architectures for the UE and gNB are basically the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and uses RRC signaling between the gNB and the UE to set the lower layer.
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the L2 layer 305 belongs to a higher layer.
  • the RRC sublayer 306 in the L3 layer belongs to a higher layer.
  • the channel between the PHY301 and the MAC sublayer 302 is a transmission channel.
  • the channel between the RLC sublayer 303 and the MAC sublayer 302 is a logical channel.
  • Embodiment 4 illustrates a schematic diagram of two communication devices communicating with each other, as shown in FIG. 4.
  • Fig. 4 is a block diagram of a node 410 and a node 450 communicating with each other in the access network.
  • the node 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the node 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, a transmitter/receiver 454, and an antenna 452 .
  • the upper layer data packet is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the node 450, and is based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)) , M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)) signal cluster mapping.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding/beamforming processing on the coded and modulated symbols to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes it with a reference signal (for example, pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate The physical channel that carries the multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmitting processor 471 performs transmission simulation on the time-domain multi-carrier symbol stream Precoding/beamforming operation.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs receiving analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving analog precoding/beamforming operations from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered by the multi-antenna receiving processor 458 after multi-antenna detection. Any spatial flow for the destination.
  • the symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the node 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, and control signal processing to restore upper layer data packets.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • the memory 460 is used as a buffer for data to be sent.
  • the memory 460 is used to buffer the received data.
  • the memory 460 is used to buffer the first bit block.
  • the memory 476 is used as a buffer for data to be sent.
  • the memory 476 is used to buffer the received data.
  • the memory 476 is used for buffering the first bit block.
  • the data to be sent is transmitted on UL-SCH (UpLink Shared CHannel, uplink shared channel).
  • UL-SCH UpLink Shared CHannel, uplink shared channel
  • the received data is transmitted on a DL-SCH (DownLink Shared CHannel, uplink shared channel).
  • DL-SCH DownLink Shared CHannel, uplink shared channel
  • the space occupied by one bit block in the memory 460 is referred to as the buffer size of the one bit block.
  • the smallest candidate space among the multiple candidate spaces that is not less than the space occupied by one bit block in the memory 460 is referred to as the buffer size of the one bit block.
  • the sizes of any two candidate spaces in the plurality of candidate spaces are different.
  • the controller/processor 475 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the node 450.
  • the controller/processor 459 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the controller/processor 475 in the transmission link from the node 410 to the node 450, provides header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels. And the allocation of radio resources to the node 450 based on various priority metrics.
  • the controller/processor 459 implements demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, and control signal processing based on the wireless resource allocation of the controller/processor 475 to restore upper-layer data packets .
  • the controller/processor 475 implements header compression, encryption, packet segmentation, and reconfiguration based on the wireless resource allocation of the controller/processor 459. Sorting and multiplexing between logic and transport channels.
  • the controller/processor 475 implements L2 layer functions for the user plane and the control plane.
  • the controller/processor 459 implements L2 layer functions applied to the user plane and control plane.
  • the transmission steps in the above transmission link from the node 410 to the node 450 are reused-except that the function of the module in the node 410 is used by the corresponding module in the node 450 Completed and the function of the module in node 450 is completed by the corresponding module in node 410.
  • the node 410 is a first node; and the node 420 is a second node.
  • the node 410 is a base station device, and the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transport channels, and multiplexing based on various priorities.
  • the level measures the allocation of radio resources to the node 450.
  • the controller/processor 475 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the node 450.
  • the node 450 is a user equipment
  • the first node is the node 450
  • the node 410 is a second node.
  • the node 450 is user equipment
  • the first node adopts the hardware structure of the node 450
  • the sender of any wireless signal in the first signal set also adopts the node 450 hardware structure.
  • the antenna 452, the receiver 454, and the receiving processor 456 ⁇ are used to receive the first signal set through blind detection in the first air interface resource pool, according to the A signal set recovers the first bit block at the physical layer; ⁇ the antenna 452, the transmitter 454, and the transmission processor 468 ⁇ are used to send the first wireless signal.
  • the multi-antenna receiving processor 458 is used to receive the first signal set, and the multi-antenna transmitting processor 457 is used to transmit the first wireless signal.
  • the antenna 452, the transmitter 454, and the transmission processor 468 ⁇ are used to send the first signal set.
  • the antenna 420, the receiver 418, and the receiving processor 470 ⁇ are used to receive the first signal set and the first wireless signal.
  • ⁇ the antenna 420, the transmitter 418, and the transmit processor 416 ⁇ are used to send the first signaling, ⁇ the antenna 452, the receiver 454, the receiver The processor 456 ⁇ is used to receive the first signaling.
  • the multi-antenna receiving processor 458 is used to receive the first signaling
  • the multi-antenna transmitting processor 471 is used to send the first signaling.
  • the node 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with Used together with the at least one processor, the node 410 at least: performs blind detection in the first air interface resource pool and fails to correctly decode the first bit block; receives a first wireless signal, where the first wireless signal includes the first A piece of information; wherein, the first bit block is used to generate a first signal set to be sent in the first air interface resource pool; the first information is used to indicate the amount of data that can be sent in the buffer; When the first set of conditions is met, the first information is triggered at a higher layer; the first set of conditions includes a first condition, and the first condition includes that the first buffer information is transferred from the physical layer to the higher layer; The first wireless signal is transmitted.
  • the node 450 includes: at least one processor and at least one memory, where the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with The at least one processor is used together, and the node 450 at least: receives the first signal set through blind detection in the first air interface resource pool, and restores the first bit block at the physical layer according to the first signal set; The higher layer transmits the first buffer information; when the first condition set is met, triggers the first information at the higher layer; sends a first wireless signal, where the first wireless signal includes the first information; wherein, the The first information is used to indicate the amount of data that can be sent in the buffer, the first set of conditions includes a first condition, and the first condition includes that the first buffer information is transferred from the physical layer to a higher layer.
  • the node 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: in the first air interface resource Blind detection is performed in the pool, and the first bit block cannot be decoded correctly; receiving a first wireless signal, where the first wireless signal First information; wherein, the first bit block is used to generate a first signal set to be sent in the first air interface resource pool; the first information is used to indicate the amount of data that can be sent in the buffer When the first set of conditions is met, the first information is triggered at a higher layer; the first set of conditions includes a first condition, and the first condition includes that the first buffer information is transferred from the physical layer to the higher layer ; The first wireless signal is sent.
  • the node 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: accessing a first air interface resource
  • the pool receives the first signal set through blind detection, and restores the first bit block at the physical layer according to the first signal set; transfers the first buffer information from the physical layer to the higher layer; when the first condition set is met, The higher layer triggers the first information; sends a first wireless signal, and the first wireless signal includes the first information; wherein, the first information is used to indicate the amount of data that can be sent in the buffer, and the first
  • the set of conditions includes a first condition, and the first condition includes that the first buffer information is transferred from the physical layer to a higher layer.
  • the node 410 and the node 450 are user equipments respectively.
  • the node 410 and the node 450 are base station equipment respectively.
  • the node 410 and the node 450 are base station equipment and user equipment, respectively.
  • Example 5
  • Embodiment 5 illustrates a schematic diagram of an air interface resource pool, as shown in FIG. 5.
  • the one air interface resource pool includes L air interface resources, that is, air interface resources #0, #1,, # (L-1), where L is a positive integer greater than 1;
  • the occupied time-frequency resources are the same-as indicated by the bold line frame in Figure 7; air interface resources #0, #1,, # (L-1) respectively correspond to L different code domain resources, that is, multiple access signatures.
  • the first air interface resource pool is the one air interface resource pool.
  • the second air interface resource pool is the one air interface resource pool.
  • the time-frequency resources occupied by the L air interface resources include multiple REs (Resource Elements, resource particles).
  • the time-frequency resource occupied by the L air interface resources does not exceed 1 millisecond in the time domain.
  • the first signal set includes K wireless signals, where K is a positive integer greater than 1, and the K wireless signals are respectively sent in K air interface resources among the L air interface resources.
  • Embodiment 6 illustrates the transmission flowchart of the first wireless signal, as shown in FIG. 6.
  • the steps in box F1, box F2 and box F3 are optional.
  • the first signal set is received by blind detection in the first air interface resource pool, and the first bit block is recovered at the physical layer according to the first signal set; in step S11, The air interface resource pool monitors the target information to determine that the first bit block has not been correctly decoded by the target receiver; in step S12, the first node N1 is transferred from the physical layer of the first node N1 to the higher layer of the first node N1.
  • the third set of conditions in step S14, instruct the physical layer of the first node N1 to send second information and send the second information, and receive first signaling in step S15,
  • the first signaling includes the scheduling information of the first wireless signal; in step S16, the first wireless signal is transmitted, and the first wireless signal includes the first information; in step S17, the second signaling is received; in step S17 Sending a second wireless signal in S18;
  • step S20 blind detection is performed in the first air interface resource pool, and the first bit block cannot be decoded correctly; in step S21, the first bit block is indicated by target information in the second air interface resource pool. The bit block is not correctly decoded; when the third condition set is met, the second information is received in step S22; the first signaling is sent in step S23; the first wireless signal is received in step S24 Signal; send the second signaling in step S25; receive the second wireless signal in step S25; For the other node set N3, in step S30, the first signal set is sent in the first air interface resource pool.
  • the first information is used to indicate the amount of data that can be sent in the buffer
  • the first condition set includes a first condition
  • the first condition includes that the first buffer information is removed from the first condition.
  • the physical layer of the node N1 is transferred to the higher layer of the first node N1;
  • the second information is used to request channel resources;
  • the second set of conditions includes that the first information is not terminated and the channel resources are not allocated
  • the third condition set includes that at least one channel resource that can be used for the second information is configured for the transmission time interval;
  • the second signaling includes the scheduling information of the second wireless signal, and the first One bit block is used to generate the second wireless signal.
  • the second information is used by the second node N2 to trigger the sending of the first signaling.
  • the second information is triggered at a higher layer of the first node N1.
  • the scheduling information includes MCS (Modulation Coding Status, Modulation Coding Status).
  • the scheduling information includes RV (Redundancy Version).
  • the scheduling information includes HARQ (Hybrid Auto Repeat reQuest) process number (Process Number).
  • HARQ Hybrid Auto Repeat reQuest
  • Process Number Process Number
  • the scheduling information includes NDI (New Data Indicator, New Data Indicator).
  • the scheduling information includes HARQ process number, RV, NDI and MCS.
  • the scheduling information includes a transmitting antenna port.
  • the scheduling information includes TCI (Transmission Configuration Indicator, transmission configuration indicator).
  • the scheduling information includes TPC (Transmit Power Control, transmit power control).
  • the target signaling is DCI (Downlink Control Information, Downlink Control Information).
  • the target signaling is sent on PDCCH (Physical Downlink Control CHannel, physical downlink control channel).
  • PDCCH Physical Downlink Control CHannel, physical downlink control channel
  • the target signaling is the DCI used for Uplink Grant.
  • the first wireless signal is PUSCH (Physical Uplink Shared CHannel, physical uplink shared channel).
  • PUSCH Physical Uplink Shared CHannel, physical uplink shared channel
  • the target signaling includes some or all fields in the LTE (Long Term Evolution) DCI format 0.
  • LTE Long Term Evolution
  • the target signaling includes some or all of the fields in the LTE DCI format 4.
  • the target signaling is a DCI with a (with) NR (New Radio, New Radio) format 0_0.
  • the target signaling is a DCI with an NR DCI format 0_1.
  • the target signaling is the first signaling.
  • the target signaling is second signaling.
  • the phrase failed to correctly decode the first bit block includes: the first signal set is not correctly decoded by the second node N2.
  • the phrase failed to correctly decode the first bit block includes: any wireless signal in the first signal set is not correctly decoded by the second node N2.
  • the phrase failed to correctly decode the first bit block includes: any wireless signal in the first signal set fails to pass the CRC check performed by the second node N2 in channel decoding .
  • the phrase failed to correctly decode the first bit block includes: the second node N2 fails to realize the existence of any wireless signal in the first signal set through feature sequence detection.
  • the second node N2 is a target receiver of the first signal set.
  • the first node N2 maintains the serving cell of the first node N1.
  • the identity of the second node N2 is used for the generation of any wireless signal in the first signal set.
  • the identity of the second node N2 is used for the scrambling code of the CRC included in any wireless signal in the first signal set.
  • the identity of the second node N2 is used for RS (Referene Signal) of a DMRS (DeModulation Reference Signal, demodulation reference signal) included in any wireless signal in the first signal set ) Sequence generation.
  • RS Referene Signal
  • DMRS DeModulation Reference Signal, demodulation reference signal
  • the first air interface resource pool is allocated by the second node N2.
  • the target information is broadcast.
  • the target information is sent on the PDCCH.
  • the one condition set is the first condition set.
  • the one condition set is a second condition set.
  • the one condition set is a third condition set.
  • the first bit block is used to generate the second wireless signal
  • the second wireless signal is sent on a first channel
  • the scheduling information of the second wireless signal is the The allocation information of the first channel.
  • the first channel is (the second node N2) allocated to the first node N1.
  • the identity of the first node N1 is used to scramble the bit block transmitted on the first channel.
  • the identity of the first node is used to scramble the CRC (cyclic redundancy check) of the bit block transmitted on the first channel.
  • the first channel is exclusive to the first node.
  • the first buffer information indicates the number of information bits in the first signal set. As an embodiment, the first buffer information indicates the number of bits included in the first bit block. As an embodiment, the first node N1 is user equipment, the second node N2 is base station equipment, and the other node set N3 includes at least one user equipment.
  • the first node N1 is user equipment
  • the second node N2 is user equipment
  • the other node set N3 includes at least one user equipment.
  • the first signal set includes K wireless signals, and the K is a positive integer greater than 1.
  • the other node set N3 includes K user equipments, and the K wireless signals are respectively K user equipment sends.
  • the first buffer information indicates the K.
  • the buffer sizes occupied by the K wireless signals are the same.
  • any user equipment of the K user equipments is connected to the second node.
  • the higher-layer connection includes an RRC connection (Connect ion).
  • the higher layer connection includes a core network connection.
  • the time-frequency resources occupied by the K wireless signals are the same.
  • the K wireless signals occupy K physical layer channels respectively.
  • the target information includes indication information of all wireless signals correctly decoded by the second node N2 in the first air interface resource pool, and the target information does not include information in the first signal set Indication information of any wireless signal.
  • the indication information includes HARQ-ACK.
  • the target information includes indication information of a wireless signal that the second node N2 decodes incorrectly in the first air interface resource pool, and the target information includes each signal in the first signal set. Instruction information of the wireless signal.
  • the second air interface resource pool is associated with the first air interface resource pool.
  • the time-frequency resources occupied by the first air interface resource pool are used to determine the time-frequency resources occupied by the second air interface resource pool.
  • the first node N1 obtains the first bit block after performing channel decoding on the first signal set, and performs channel coding on the first bit block to generate the second wireless signal,
  • the code rate used for the channel coding is indicated by the first physical layer signaling.
  • the K wireless signals are respectively sent by K senders, and the phrase receiving the first signal set through blind detection in the first air interface resource pool includes: any one of the K senders sends There is no higher-level connection between the sender and the sender of the first signal subset.
  • the K wireless signals are respectively sent by K senders, and the phrase receiving the first signal set through blind detection in the first air interface resource pool includes: the first node and the K senders There is no higher-level connection between any of the senders.
  • the first information and the second information are BSRC Buffer Status Report and SR (Scheduling Request) respectively.
  • the first bit block is scrambled.
  • the scrambling code is executed at the physical layer of the sender of the first signal set.
  • the first channel is sPUSCHC short Physical Uplink Shared Channel
  • the first channel is a physical layer channel.
  • the first channel is exclusive to the first node.
  • the third condition set includes that the second information is triggered
  • the current transmission time (this TTI) interval does not belong to a measurement gap (measurement gap).
  • the first node can perform wireless transmission in the current transmission time interval.
  • the second set of conditions includes that the first timer is not running.
  • the second set of conditions includes that the first counter is less than a specific threshold, and the specific threshold is a positive integer.
  • the specific threshold is greater than one.
  • the specific threshold is configurable.
  • the first node restarts the cell search.
  • the first timer is started.
  • the first information is used to generate scheduling information in the second signaling.
  • the first information is used to generate the number of REs (Resource Element, resource particles) occupied by the second wireless signal.
  • the second condition set includes that the first information is triggered at the higher layer.
  • the third condition set includes that the second information is triggered
  • the first information is a buffer status report.
  • the buffer status report is a regular (Regular) buffer status report.
  • the buffer status report is a padding (Padding) buffer status report.
  • Embodiment 7 illustrates a schematic diagram of requesting channel resources, as shown in FIG. 7; the physical layer and higher layers in FIG. 7 are on the first node side.
  • the first node recovers the first bit block at the physical layer according to the first signal set, determines the first buffer information according to the buffer size occupied by the first bit block; and transmits the first buffer information to A higher layer, when a first set of conditions is met, trigger first information at the higher layer, the first set of conditions includes the first condition, and the first condition includes that the first buffer information is transferred from the physical layer to the more High layer; when a second set of conditions is met, the higher layer triggers second information, and the second set of conditions includes that the first information is triggered at the higher layer and the first information is not terminated and the channel Resources are not allocated; when the third set of conditions is met, the higher layer instructs the physical layer to send the second information and the physical layer sends the second information.
  • the second information is used to request channel resources
  • the third condition set includes that at least one channel resource that can be used for the second information is configured for the current transmission time interval
  • the third condition set The set of conditions includes that the second information is triggered.
  • the requesting channel resources includes requesting UL-SCH (UpLink Shared CHannel, uplink shared channel) resources.
  • UL-SCH UpLink Shared CHannel, uplink shared channel
  • the second information is a scheduling request (Scheduling Request).
  • the second information is used to request channel resources for a new transmission.
  • the unallocated channel resource includes: this TTI (Transport Time Interval, transmission time interval)
  • TTI Transport Time Interval, transmission time interval
  • the MAC entity (entity) in the higher layer has not been allocated an uplink resource for new transmission.
  • the uplink resource includes a transmission channel.
  • the uplink resource includes a logical channel.
  • the unallocated channel resource includes: Uplink Grant is not configured.
  • the second set of conditions includes that the first timer is not running.
  • the first timer is maintained at the higher layer.
  • the first timer is used to interrupt the sending of the second information.
  • the first timer is logicalChannelSR-ProhibitTimer.
  • the physical layer of the first node sends first buffer information to the higher layer of the first node, and the first buffer information is used by the higher layer of the first node To determine the buffer size occupied by the first signal set.
  • the first buffer information indicates the number of information bits in the first signal set. As an embodiment, the first buffer information indicates the number of bits included in the first bit block. As an embodiment, the first buffer information indicates the number of bits obtained after channel decoding is performed on the first signal set.
  • the first signal set occupies K air interface resources, the K air interface resources respectively include K multiple access signatures, the first buffer information indicates the K, and the K is a positive value greater than 1. Integer.
  • the higher layer of the first node includes a MAC (Medium Access Control, media intervention control) layer of the first node.
  • MAC Medium Access Control, media intervention control
  • the higher layer of the first node includes an RLC (Radio Link Control, radio link control) layer of the first node.
  • RLC Radio Link Control, radio link control
  • the higher layer of the first node includes a PDCP (Packet Data Convergence Protocol, Packet Data Convergence Protocol) layer of the first node.
  • PDCP Packet Data Convergence Protocol, Packet Data Convergence Protocol
  • the first set of conditions includes a third condition
  • the first buffer information indicates a first priority
  • the third condition includes: the first priority is higher than all existing ones available for transmission The priority of any logical channel in the logical channel group for data.
  • the first priority is a positive integer.
  • the first priority is a candidate priority in a candidate priority set
  • the candidate The selection priority set consists of the priorities that all logical channels may be assigned.
  • the first priority is configured by the base station.
  • the first priority is configured by the serving cell of the first node.
  • the first priority is associated with the first air interface resource pool.
  • Embodiment 8 illustrates a flowchart of using target information to indicate that the first signal set is not correctly decoded, as shown in FIG. 8. The steps in Figure 8 are executed in the second node.
  • step S60 the second node determines whether there is a correctly decoded wireless signal in the first air interface resource pool; if so, in step S62, the target information is sent in the second air interface resource pool, if not, in step S61 Keep zero transmission power in the second air interface resource pool.
  • the target information is set to be empty.
  • the wireless signal correctly decoded by the second node in the first air interface resource pool includes M wireless signals, where M is a positive integer; the target information includes M identities, and the M Each identity is used to identify the M wireless signals.
  • none of the M wireless signals belong to the first signal set.
  • the M identities are respectively used to identify the sender of the M wireless signals.
  • the M identities are respectively used for scrambling codes of the M wireless signals.
  • the M identities are respectively used to generate the RS sequence of the DMRS included in the M wireless signals.
  • the M identities are M RNTIs respectively.
  • Embodiment 9 illustrates a schematic diagram of the first time-frequency resource pool and the second time-frequency resource pool, as shown in FIG. 9.
  • the time domain resources occupied by the second time-frequency resource pool are after the time domain resources occupied by the first time-frequency resource pool.
  • the frequency domain resources occupied by the second time-frequency resource pool and the frequency domain resources occupied by the first time-frequency resource pool belong to the same BWP (Bandwidth Part).
  • the frequency domain resources occupied by the second time-frequency resource pool and the frequency domain resources occupied by the first time-frequency resource pool include the same subcarriers.
  • the time slot occupied by the second time-frequency resource pool is the u-th time slot after the time slot occupied by the first time-frequency resource pool, and the u is a positive integer.
  • the u is a fixed constant.
  • the u is configurable.
  • the first time-frequency resource pool and the second time-frequency resource pool are time-frequency resources occupied by the first air interface resource pool and the second air interface resource pool, respectively.
  • the first time-frequency resource pool and the second time-frequency resource pool are time-frequency resources occupied by the first air interface resource pool and the first channel, respectively.
  • the first time-frequency resource pool and the second time-frequency resource pool are the time-frequency resources occupied by the first signaling and the first wireless signal, respectively, and the u is the time-frequency resource occupied by the first physical Instructed by layer signaling.
  • the first time-frequency resource pool and the second time-frequency resource pool are time-frequency resources occupied by the second signaling and the second wireless signal, respectively, and the u is the time-frequency resource occupied by the second physical Instructed by layer signaling.
  • the second air interface resource pool is associated with the first air interface resource pool.
  • Embodiment 10 illustrates a schematic diagram of time-frequency resources occupied by wireless signals, as shown in FIG. 8.
  • the horizontal axis and the vertical axis are the time axis and the frequency axis, respectively, and a small square represents a RE (Resource Element).
  • ⁇ 0-0, 1-0, 2-0, ⁇ ⁇ ⁇ , P-0 ⁇ ; ⁇ 0—1, 1-1, 2-1, 3-1, ⁇ ⁇ ⁇ , P— 1 ⁇ ; ⁇ 0-2, 1_2, 2_2, 3_2,.. ., P_V ⁇ represents resource particles that are all occupied by a wireless signal and belong to V multi-carrier symbols.
  • the time-frequency resource occupied by any wireless signal in the first signal set includes ⁇ 0_0, 1_0, 2-0,, P-0 ⁇ ; ⁇ 0-1, 1-1, 2- 1, 3—1,, P— 1 ⁇ ; ⁇ 0—2, 1—2, 2—2, 3—2,, P—V ⁇ represents the resource particle.
  • the time-frequency resources occupied by the second wireless signal include ⁇ 0_0, 1_0, 2_0,.. ., P_0 ⁇ ; ⁇ 0_1, 1_1, 2_1, 3_1, P_l ⁇ ; ⁇ 0_2, 1_2, 2_2 , 3_2, P_V ⁇ represents the resource particle.
  • the modulation symbols obtained after being modulated by j in the first bit block are sequentially mapped to REs in the second wireless signal that are not occupied by DMRS according to the rule of frequency domain first and time domain second.
  • some of the bits in the first bit block are extracted to form a second bit block, and the modulation symbols obtained after the bits in the second bit block are modulated according to the first in frequency domain and second in time domain.
  • the modulation symbols obtained after the bits in the second bit block are modulated according to the first in frequency domain and second in time domain.
  • the modulation symbols obtained after the bits in the second bit block are modulated are sequentially mapped to those in the second wireless signal that are not occupied by DMRS according to the rule of frequency domain first and time domain second. RE.
  • the modulation symbols obtained after the bits in the first bit block are modulated are sequentially mapped to those in the second wireless signal that are not occupied by DMRS according to the rule of frequency domain first and time domain second. RE.
  • the bits in the second bit block include UCI, and the position of the UCI in the second bit block is before the position of the bit in the first bit block in the second bit block.
  • the REs represented by the small gray-filled squares in FIG. 10 are allocated to the DMRS of the second wireless signal.
  • the P is a positive integer multiple of 12.
  • the V is 1.
  • the V is 2.
  • the V is 7.
  • the V is 14.
  • Example 11 is
  • Embodiment 11 illustrates a schematic diagram of the first bit block, as shown in FIG. 11.
  • the first bit block includes a systematic bit block and an identification bit block.
  • the identification bit block indicates the sender of the first bit block.
  • the CRC of the systematic bit block of the first bit block is used to generate the identification bit block in the first bit block.
  • the CRC of the systematic bit block of the first bit block is scrambled to obtain the identification bit block in the first bit block.
  • the first bit block is sent by one user equipment.
  • the first signal set includes only one wireless signal.
  • the first signal set is sent on one PUSCH.
  • the second wireless signal is that the first bit block sequentially passes through a modulation mapper (Modulation Mapper), a layer mapper (Layer Mapper), a precoding (Precoding), and a resource element mapper (Resource Element Mapper). , Output after multi-carrier symbol generation (Generation).
  • Modulation Mapper Modulation Mapper
  • Layer Mapper Layer Mapper
  • Precoding Precoding
  • Resource Element Mapper Resource Element Mapper
  • the second wireless signal is an output after the first bit block passes through a modulation mapper, a resource particle mapper, and a multi-carrier symbol.
  • Embodiment 12 illustrates a schematic diagram of the first bit block, as shown in FIG. 12.
  • the first bit block includes K bit sub-blocks, namely, bit sub-block #1, bit sub-block #2, ..., bit sub-block #K ; each bit sub-block includes a systematic bit block And a block of identification bits.
  • the K bit sub-blocks are sent by K senders respectively.
  • the CRC of the systematic bit block in each bit sub-block of the K bit sub-blocks is used to generate the identification bit block in the first bit block.
  • the CRC of the systematic bit block of the first bit block in each bit sub-block of the K bit sub-blocks is scrambled to obtain the identification bit in the first bit block Piece.
  • Embodiment 13 illustrates a schematic diagram of the second bit block, as shown in FIG. 13.
  • the other bit blocks are optional.
  • the first node restores the first bit block according to the first signal set, and the second bit block includes a part of bits selected from the first bit block; the second bit block is used to generate the first bit block 2.
  • Wireless signal
  • the second bit block sequentially passes through a Modulation Mapper, Layer Mapper, Precoding, and Resource Element Mapper. Mapper), the output after multi-carrier symbol generation (Generation).
  • the second wireless signal is an output after the second bit block passes through a modulation mapper, a resource particle mapper, and a multi-carrier symbol.
  • the systematic bit block #1, the systematic bit block #2,..., and the systematic bit block #K in Fig. 13 are selected from the first bit block.
  • the first bit block is shown in FIG. 12; in FIG. 13, systematic bit block #1, system bit block #2,...
  • the systematic bit block #1, the systematic bit block #2,... And the systematic bit block #K in FIG. 13 are used to generate the check bit block in FIG.
  • the system bit block #1, the system bit block #2, .. ., the system bit block #1 (the information bit block formed by concatenation is used to generate the CRC, and the cross-check bit block is the CRC Obtained after scrambling.
  • the second bit block includes other bit blocks, and the other bit blocks are not related to the first bit block.
  • the second bit sub-block includes other bit blocks, and the other bit blocks are not related to the first signal set.
  • the other bit block includes UCI.
  • Embodiment 14 illustrates the structural block diagram of the processing device in the first node, as shown in FIG. 14.
  • the first node 1400 includes a first receiver 1401, a first processor 1402, and a first transmitter 1403.
  • the first receiver 1401 receives the first signal set through blind detection in the first air interface resource pool, and restores the first bit block at the physical layer according to the first signal set; the first processor 1402 updates from the physical layer
  • the higher layer transmits the first buffer information; when the first set of conditions is met, the first information is triggered at the higher layer; the first transmitter 1403 sends a first wireless signal, and the first wireless signal includes the first information.
  • the first information is used to indicate the amount of data that can be sent in the buffer
  • the first condition set includes the first condition
  • the first condition includes that the first buffer information is transferred from the physical layer to the Higher level.
  • the first receiver 1401 monitors target information in the second air interface resource pool to determine that the first bit block has not been correctly decoded by the target receiver.
  • the first condition set includes a second condition, and the second condition includes: there is no data available for transmission on all logical channels.
  • the first set of conditions includes a third condition
  • the first buffer information indicates a first priority
  • the third condition includes: the first priority is higher than all existing ones available for transmission The priority of any logical channel in the logical channel group for data.
  • the first buffer information indicates a buffer size occupied by the first bit block.
  • the first processor 1402 triggers second information; wherein, the second information is used to request channel resources ;
  • the second condition set includes that the first information is not terminated and channel resources are not allocated.
  • the first processor 1402 instructs the physical layer to send the second information and the first transmitter sends the second information; the first receiver 1401 receives first signaling, where the first signaling includes scheduling information of the first wireless signal; wherein, the third condition set includes that at least one channel resource that can be used for the second information is configured to This transmission interval.
  • the first receiver 1401 receives second signaling; the first transmitter 1403 sends a second wireless signal; wherein, the second signaling includes scheduling information of the second wireless signal, The first bit block is used to generate the second wireless signal.
  • the first information is a buffer status report.
  • the first node 1400 is the node 450 in FIG. 4.
  • the first node 1400 adopts the hardware structure of the node 450 in FIG. 4, and the sender of the first signal set also adopts the hardware structure of the node 450 in FIG. 4.
  • the first processor 1401 includes the receiving processor 456 in FIG. 4.
  • the first processor 1401 includes the controller/processor 459 and the memory 460 in FIG. 4; the first receiver 1402 includes ⁇ the antenna 452 in FIG. 4 , The receiver 454, the receiving processor 456 ⁇ ; the first transmitter 1403 includes ⁇ the antenna 452, the transmitter 454, and the transmitting processor 468 ⁇ in FIG. 4.
  • the first processor 1401 includes the data source 467 in FIG. 4.
  • the first processor 1401 includes the memory 460 in FIG. 4.
  • the memory 460 is used for buffering of the first node 1400.
  • the first receiver 1401 includes the multi-antenna receiving processor 458 in FIG. 4, and the first transmitter 1403 includes the multi-antenna transmitting processor 457 in FIG. 4.
  • the first receiver 1401 includes the controller/processor 459 in FIG. 4.
  • the first information is BSR.
  • the first information is a regular (Regular) buffer status report (BSR).
  • BSR buffer status report
  • Embodiment 15 illustrates the structural block diagram of the processing device in the second node, as shown in FIG. 15.
  • the second node 1500 includes a second receiver 1501 and a second transmitter 1502, where the second transmitter 1502 is optional.
  • the second receiver 1501 performs blind detection in the first air interface resource pool, but fails to correctly decode the first bit block; receives a first wireless signal, where the first wireless signal includes first information;
  • the first bit block is used to generate a first signal set to be transmitted in the first air interface resource pool; the first information is used to indicate the amount of data that can be transmitted in the buffer; When the first set of conditions is met, the first information is triggered at a higher layer; the first set of conditions includes a first condition, and the first condition includes that the first buffer information is transferred from the physical layer to the higher layer; The first wireless signal is transmitted.
  • the second transmitter 1502 indicates in the second air interface resource pool that the first bit block is not correctly decoded through target information.
  • the first condition set includes a second condition, and the second condition includes: all logic There is no data available for transmission on the channel.
  • the first set of conditions includes a third condition, the first buffer information indicates a first priority, and the third condition includes: the first priority is higher than all existing ones available for transmission The priority of any logical channel in the logical channel group for data.
  • the first buffer information indicates a buffer size occupied by the first bit block.
  • the second set of conditions includes The first information is not terminated and channel resources are not allocated.
  • the second receiver 1501 receives second information; the second transmitter 1502 sends first signaling, and the first signaling includes the first Wireless signal scheduling information; wherein, when the third condition set is met, the physical layer is instructed to send the second information; the third condition set includes at least one channel resource that can be used for the second information is configured for This transmission interval.
  • the second transmitter 1502 sends second signaling; the second receiver 1501 receives the second wireless signal; wherein, the second signaling includes scheduling information of the second wireless signal, and The first bit block is used to generate the second wireless signal.
  • the first information is a buffer status report.
  • the first information is BSR
  • the second information is SR
  • the first information is a regular (Regular) buffer status report (BSR), and the second information is an SR.
  • BSR regular buffer status report
  • the second node 1500 is the node 410 in FIG. 4.
  • the second node 1500 adopts the hardware structure of the node 410 in FIG. 4, and the sender of the first signal set adopts the hardware structure of the node 450 in FIG. 4.
  • the second transmitter 1502 includes ⁇ the antenna 420, the transmitter 418, and the transmit processor 416 ⁇ in FIG. 4; the second receiver 1501 includes the ⁇ The antenna 420, the receiver 418, the receiving processor 470 ⁇ .
  • the second receiver 1502 includes the multi-antenna receiving processor 472 in FIG. 4, and the second transmitter 1503 includes the multi-antenna transmitting processor 471 in FIG. 4.
  • the second transmitter 1503 includes the controller/processor 459 in FIG. 4.
  • the second receiver 1502 includes the controller/processor 459 in FIG. 4.
  • the user equipment, terminal, and UE in this application include, but are not limited to, drones, communication modules on drones, remotely controlled aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, in-vehicle communication equipment, wireless sensors, network cards, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTCC Machine Type Communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, internet card, in-vehicle communication equipment, low-cost mobile phone, low cost Cost tablets and other equipment.
  • the base stations in this application include, but are not limited to, wireless communication devices such as macro cell base stations, micro cell base stations, home base stations, relay base stations, gNB (NR node B), TRP (Transmitter Receiver Point) and other wireless communication devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了被用于无线通信的用户设备、基站中的方法和装置。作为一个实施例,第一节点在第一空口资源池中通过盲检测接收第一信号集合,根据第一信号集合在物理层恢复出第一比特块;从物理层向更高层传递第一缓冲信息;当第一条件集合被满足时,在所述更高层触发第一信息;在所述第一信息在所述更高层被触发以后,发送第一无线信号,所述第一无线信号包括所述第一信息;其中,所述第一信息被用于指示缓冲里可被发送的数据量,所述第一条件集合包括第一条件,所述第一条件包括第一缓冲信息被从物理层传递到更高层。本申请提高了传输效率和频谱利用率,同时有效避免缓冲溢出。

Description

被用于无线通信的用户设备、 基站中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置, 尤其是涉及支持无线信号转发的方 法和装置。 背景技术
为了小数据突发建立更高层连接显著降低了系统传输效率, 因此免授予(Grant Free) 传输被提出以节省信令传输所占用的空口资源。
在 3GPP (3rd Generat ion Partner Project , 第三代合作伙伴项目) LTE ( Long Term Evolution, 长期演进) 和 NR (New Radio, 新无线) 系统中, 设备间直接通信被提出, 例如 D2D (Device to Device, 装置到装置), V2V(Vehicle to Vehicle , 汽车到汽车) 等。
传统的蜂窝系统中, 用户设备可能建立大量无线承载 (Radio Bearer); 每个无线承 载对应一个逻辑信道(Logical Channel); 而信道分配请求是由更高层发起的, 例如 BSR (Buffer Status Report , 缓冲状态上报), 或者 SR(Schedul ing Request , 调度请求) 都是由更高层触发的。 发明内容
发明人通过研究发现: 在类似免授予的技术中, 基站设备和 UE (User Equipment , 用户设备) 之间缺少更高层连接或者高效率的调度, 因此相比于基于授予的频谱效率较 低, 因此具备更高层连接的 UE中继免授予的上行数据能够提高传输效率。 发明人通过进 一步研究发现: 现有的信道分配请求机制无法满足上述机制。
针对上述发现, 本申请公开了一种解决方案。 需要说明的是, 在不冲突的情况下, 本 申请的实施例和实施例中的特征可以任意相互组合。 进一步的, 虽然本申请的初衷是针对类 似免授予的通信, 本申请中的方法和装置也适用于其他的通信结构, 例如基于授予的通信, 基站之间的通信等等。 本申请公开了被用于无线通信的第一节点中的方法, 其特征在于, 包括:
在第一空口资源池中通过盲检测接收第一信号集合, 根据第一信号集合在物理层恢 复出第一比特块;
从物理层向更高层传递第一缓冲信息; 当第一条件集合被满足时, 在所述更高层触 发第一信息;
在所述第一信息在所述更高层被触发以后, 发送第一无线信号, 所述第一无线信号 包括所述第一信息;
其中, 所述第一信息被用于指示缓冲里可被发送的数据量, 所述第一条件集合包括 第一条件, 所述第一条件包括第一缓冲信息被从物理层传递到更高层。
作为一个实施例, 上述方法使得第一节点的物理层能够发起信道分配请求, 避免了 第一节点的更高层对所述第一比特块的处理; 缩短了中继延时。
作为一个实施例, 第一节点的更高层没有参与对所述第一比特块的处理, 但是在判 决是否触发所述第一信息时能够考虑到所述第一比特块的存在; 因此一方面更准确的反 映当前缓冲状态, 另一方面降低了更高层的处理复杂度。
作为一个实施例, 所述第一信号集合的传输是基于类似免授予的方式, 而所述第一 信号集合的重传即第二无线信号是由己经建立更高层连接的所述第一节点执行的; 相比 于所述第一信号集合的发送者执行重传, 上述方法提高了重传的频谱效率。
作为一个实施例, 多个接收者同时对所述第一信号集合进行盲检测, 所述第一节点 是所述多个接收者中的一个接收者; 相比于仅有一个接收者, 所述第一信号集合被正确 译码的概率大大增加了; 有效地减少了所述第一信号集合的发送者进行重传的概率, 或 者降低了第一信号集合的 MCS (Modulation Coding Status , 调制编码状态) 和功率; 进而提高了传输效率。
具体的, 根据本发明的一个方面, 上述方法的特征在于, 包括:
在第二空口资源池中监测目标信息以确定所述第一比特块未被目标接收者正确译码; 具体的, 根据本发明的一个方面, 上述方法的特征在于, 所述第一条件集合包括第 二条件, 所述第二条件包括: 所有逻辑信道上没有可用于发送的数据。
具体的, 根据本发明的一个方面, 上述方法的特征在于, 所述第一条件集合包括第 三条件, 所述第一缓冲信息指示第一优先级, 所述第三条件包括: 所述第一优先级高于 所有己有可用于发送的数据的逻辑信道组中的任一逻辑信道的优先级。
具体的, 根据本发明的一个方面, 上述方法的特征在于, 所述第一缓冲信息指示所 述第一比特块所占用的缓冲尺寸。
具体的, 根据本发明的一个方面, 上述方法的特征在于, 包括:
在所述第一无线信号被发送之前, 当第二条件集合被满足时, 触发第二信息; 其中, 所述第二信息被用于请求信道资源; 所述第二条件集合包括所述第一信息未 被终止以及信道资源未被分配。
具体的, 根据本发明的一个方面, 上述方法的特征在于, 包括:
当第三条件集合被满足时, 指示所述物理层发送第二信息并且发送所述第二信息; 所述第一接收机接收第一信令, 所述第一信令包括所述第一无线信号的调度信息; 其中, 所述第三条件集合包括至少一个能被用于所述第二信息的信道资源被配置给 本传输时间间隔。
具体的, 根据本发明的一个方面, 上述方法的特征在于, 包括:
接收第二信令;
发送第二无线信号;
其中, 所述第二信令包括所述第二无线信号的调度信息, 所述第一比特块被用于生 成所述第二无线信号。
具体的, 根据本发明的一个方面, 上述方法的特征在于, 所述第一信息是缓冲状态 上报。 本申请公开了被用于无线通信的第一节点, 其特征在于, 包括:
第一接收机: 在第一空口资源池中通过盲检测接收第一信号集合, 根据第一信号集 合在物理层恢复出第一比特块;
第一处理机: 从物理层向更高层传递第一缓冲信息; 当第一条件集合被满足时, 在 所述更高层触发第一信息;
第一发送机: 在所述第一信息在所述更高层被触发以后, 发送第一无线信号, 所述 第一无线信号包括所述第一信息;
其中, 所述第一信息被用于指示缓冲里可被发送的数据量, 所述第一条件集合包括 第一条件, 所述第一条件包括第一缓冲信息被从物理层传递到更高层。 本申请公开了被用于无线通信的第二节点中的方法, 其特征在于, 包括:
在第一空口资源池中执行盲检测, 未能正确译码第一比特块;
接收第一无线信号, 所述第一无线信号包括第一信息;
其中,所述第一比特块被用于生成在所述第一空口资源池中被发送的第一信号集合; 所述第一信息被用于指示缓冲里可被发送的数据量; 当第一条件集合被满足时, 所述第 一信息在更高层被触发; 所述第一条件集合包括第一条件, 所述第一条件包括第一缓冲 信息被从物理层传递到更高层;在所述第一信息被触发以后,所述第一无线信号被发送。 具体的, 根据本发明的一个方面, 上述方法的特征在于, 包括:
在第二空口资源池中通过目标信息指示所述第一比特块未被正确译码。
具体的, 根据本发明的一个方面, 上述方法的特征在于, 所述第一条件集合包括第 二条件, 所述第二条件包括: 所有逻辑信道上没有可用于发送的数据。
具体的, 根据本发明的一个方面, 上述方法的特征在于, 所述第一条件集合包括第 三条件, 所述第一缓冲信息指示第一优先级, 所述第三条件包括: 所述第一优先级高于 所有己有可用于发送的数据的逻辑信道组中的任一逻辑信道的优先级。
具体的, 根据本发明的一个方面, 上述方法的特征在于, 所述第一缓冲信息指示所 述第一比特块所占用的缓冲尺寸。
具体的, 根据本发明的一个方面, 上述方法的特征在于, 在所述第一无线信号被发 送之前, 当第二条件集合被满足时, 第二信息被触发, 所述第二信息被用于请求信道资 源; 所述第二条件集合包括所述第一信息未被终止以及信道资源未被分配。
具体的, 根据本发明的一个方面, 上述方法的特征在于, 包括:
当第三条件集合被满足时, 接收第二信息;
发送第一信令, 所述第一信令包括所述第一无线信号的调度信息;
其中, 当第三条件集合被满足时, 物理层被指示发送第二信息; 所述第三条件集合 包括至少一个能被用于所述第二信息的信道资源被配置给本传输时间间隔。
具体的, 根据本发明的一个方面, 上述方法的特征在于, 包括:
第一发送机: 发送第二信令;
所述第一接收机: 接收第二无线信号;
其中, 所述第二信令包括所述第二无线信号的调度信息, 所述第一比特块被用于生 成所述第二无线信号。
具体的, 根据本发明的一个方面, 上述方法的特征在于, 所述第一信息是缓冲状态 上报。 本申请公开了被用于无线通信的第二节点, 其特征在于, 包括:
第二接收机: 在第一空口资源池中执行盲检测, 未能正确译码第一比特块; 接收第 一无线信号, 所述第一无线信号包括第一信息;
其中,所述第一比特块被用于生成在所述第一空口资源池中被发送的第一信号集合; 所述第一信息被用于指示缓冲里可被发送的数据量; 当第一条件集合被满足时, 所述第 一信息在更高层被触发; 所述第一条件集合包括第一条件, 所述第一条件包括第一缓冲 信息被从物理层传递到更高层;在所述第一信息被触发以后,所述第一无线信号被发送。 相比于传统方法, 本申请具备如下优点:
提高传输效率, 降低更高层复杂度;
降低传输延时;
更准确反映缓冲状态, 避免缓冲溢出。 附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述, 本申请的其它特征、 目 的和优点将会变得更加明显:
图 1示出了根据本申请的一个实施例的第一节点的处理流程图;
图 2示出了根据本申请的一个实施例的网络架构的示意图;
图 3 示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施 例的示意图; 图 4示出了根据本申请的一个实施例的相互通信的两个通信设备的示意图; 图 5示出了根据本申请的一个实施例的一个空口资源池的示意图;
图 6示出了根据本申请的一个实施例的第一无线信号的传输流程图;
图 7示出了根据本申请的一个实施例的请求信道分配的示意图;
图 8示出了根据本申请的一个实施例的通过目标信息指示第一信号集合未被正确译码的 示意图;
图 9示出了根据本申请的一个实施例的第一时频资源池和第二时频资源池的示意图; 图 10示出了根据本申请的一个实施例的资源映射的示意图;
图 11示出了根据本申请的一个实施例的第一比特块的示意图;
图 12示出了根据本申请的一个实施例的第一比特块的示意图;
图 13示出了根据本申请的一个实施例的第二比特块的示意图;
图 14示出了根据本申请的一个实施例的第一节点中的处理装置的结构框图;
图 15示出了根据本申请的一个实施例的第二节点中的处理装置的结构框图。 具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明, 需要说明的是, 在不冲突的情 况下, 本申请的实施例和实施例中的特征可以任意相互组合。
实施例 1
实施例 1示例了第一节点的处理流程图, 如附图 1所示。
在实施例 1 中, 第一节点在步骤 S01 中在第一空口资源池中通过盲检测接收第一信号 集合, 根据第一信号集合在物理层恢复出第一比特块; 在步骤 S02 中从物理层向更高层 传递第一缓冲信息; 当第一条件集合被满足时, 在所述更高层触发第一信息; 在步骤 S03 中发送第一无线信号, 所述第一无线信号包括所述第一信息。
实施例 1 中, 所述第一信息被用于指示缓冲里可被发送的数据量, 所述第一条件集 合包括第一条件, 所述第一条件包括第一缓冲信息被从物理层传递到更高层。
作为一个实施例, 所述第一信号集合包括 K个无线信号, 所述第一比特块包括 K个 比特子块, 所述 K个比特子块分别被用于生成所述 K个无线信号, 所述 K是大于 1 的正 整数; 所述 K个无线信号分别被 K个发送者发送。
作为上述实施例的一个子实施例, 所述第一信号集合在一个物理层信道上被发送。 上述子实施例中, 所述第一节点同时替 K个发送者重传数据, 进一步提高了小包传 输的频谱效率。
作为一个实施例, 所述第一信号集合被一个用户设备发送。
作为一个实施例, 所述 K个发送者分别是 K个用户设备。
作为一个实施例, 所述第一信号集合被一个发送者发送。
作为一个实施例, 所述第一信息被用于请求信道资源。
作为一个实施例, 所述第一信息是 BSR ( Buffer Status Report , 缓冲状态上报)。 作为一个实施例, 所述第一比特块中的比特不被传递给所述更高层。
作为一个实施例, 所述第一比特块的目标接收者不包括所述第一节点。
作为一个实施例, 所述第一信息指示被关联到 MAC ( Media Acces s Control , 媒体 接入控制) 实体 ( Ent ity ) 的上行缓冲里可用于发送的 ( avai labl e for transmi s s ion ) 的数据量 ( amount of data) 的信息。
作为一个实施例, 所述第一信息包括缓冲尺寸 ( Buffer Si ze )。
作为一个实施例,所述目标接收者的身份被用于生成所述第一信号集合。
作为一个实施例,所述目标接收者的身份被用于对所述第一比特块进行扰码。
作为一个实施例,所述目标接收者的身份被用于对所述第一比特块中的 CRC 进行扰 码。 作为一个实施例,所述目标接收者的身份被用于生成所述第一信号集合中的 DMRS ( DeModulation Reference Signal , 解调参考信号)。
作为一个实施例, 所述第一无线信号在 PUSCH (Physical Upl ink Shared CHannel, 物理上行共享信道) 上被发送。
作为一个实施例, 所述第一无线信号在 PUCCH(Phys ical Upl ink Control CHannel , 物理上行控制信道) 上被发送。
作为一个实施例,所述第一无线信号在 PSSCH C Physical Sidel ink Shared CHannel , 物理副链路共享信道) 上被发送。
作为一个实施例, 所述第一节点是用户设备。
作为一个实施例, 所述第一节点是基站设备。
作为一个实施例, 所述第一节点是中继节点。
作为一个实施例, 所述第一空口资源池包括第一时频资源池。
作为一个实施例, 所述第一空口资源池在时域上占用了正整数个多载波符号, 在频 域占用了正整数个子载波。
作为一个实施例, 所述第一空口资源池在码域上占用了多个多址签名。
作为一个实施例, 所述多载波符号是 OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用) 符号。
作为一个实施例, 所述多载波符号是 SC-FDMA(Single Carrier Frequency Division Multiplexing Access, 单载波频分多址) 符号。
作为一个实施例, 所述多载波符号是 FBMC(Fi lter Bank Multi-Carrier, 滤波器组多 载波) 符号。
作为一个实施例, 所述第一比特块包括多个比特。
作为一个实施例, 所述第一比特块包括多个依次排列的比特。
作为一个实施例, 所述第一信号集合在一个 PUSCH(Physical Uplink Shared Channel , 物理上行共享信道) 上被发送, 所述第一信号集合被一个 UE发送。
作为一个实施例, 所述第一比特块是所述第一信号集合依次经过信道均衡, 宽带符 号解调, 解资源粒子映射, 解层映射, 解扰码, 信道译码之后的输出。
作为一个实施例, 所述第一比特块是所述第一信号集合经过信道均衡, 宽带符号解 调, 解资源粒子映射, 解扰码, 信道译码之后的输出。
作为一个实施例, 所述第一比特块包括 K个比特子块, 所述第一信号集合包括 K个 无线信号; 所述 K是大于 1的正整数。
作为一个实施例, 所述 K个比特子块分别是所述 K个无线信号依次经过信道均衡, 宽带符号解调, 解资源粒子映射, 解层映射, 解扰码, 信道译码之后得到的。
作为一个实施例, 所述 K个比特子块分别是所述 K个无线信号经过信道均衡, 宽带 符号解调, 解资源粒子映射, 解扰码, 信道译码之后得到的。
作为一个实施例, 所述信道译码对应的信道编码是基于极化码 (Polar Coding)。 作为一个实施例, 所述信道译码对应的信道编码是基于 LDPC (Low Density Parity Check, 低密度校验) 编码。
作为一个实施例, 所述 K个无线信号分别在 K个 PUSCH上被发送。
作为一个实施例, 所述第一比特块是由所述 K个比特子块依次级联而成。
作为一个实施例, 所述第一比特块指示所述 K。
作为一个实施例, 所述第一比特块指示所述 K个发送者。
作为一个实施例, 所述第一比特块包括 K个身份, 所述 K个身份分别标识所述 K个 发送者。
作为一个实施例, 所述第一信息包括所述 K个身份。
作为一个实施例, 所述第一信息指示所述第一比特块所占用的缓冲尺寸 (buffer s ize)。
作为一个实施例, 所述第一信息指示所述第一比特块所包括的比特的数量。
作为一个实施例, 所述 K个身份中的每个身份包括 E1个比特, 所述 E1是大于 1的 正整数。
作为一个实施例, 所述 E1是 8。
作为一个实施例, 所述 K 个身份分别是 K 个 RNTI ( Radio Network Temporary Ident ifier, 无线网络身份)。
作为一个实施例,所述短语在第一空口资源池中通过盲检测接收第一信号集合包括: 所述第一信号集合是免授予的。
作为一个实施例,所述短语在第一空口资源池中通过盲检测接收第一信号集合包括: 所述第一信号集合的目标接收者与所述第一信号集合的发送者之间不存在更高层连接。
作为一个实施例,所述短语在第一空口资源池中通过盲检测接收第一信号集合包括: 所述第一节点与所述第一信号集合的发送者之间不存在更高层连接。
作为一个实施例, 所述更高层连接包括 RRC (Radio Resource Control , 无线资源 控制) 层连接。
作为一个实施例, 所述更高层连接包括 NAS (Non Access System, 非接入系统) 连 接。
作为一个实施例, 所述更高层连接包括应用层连接。
作为一个实施例,所述短语在第一空口资源池中通过盲检测接收第一信号集合包括: 在所述第一节点正确译码所述第一信号集合之前, 所述第一节点不能确定所述第一信号 集合是否在所述第一空口资源池中被发送。
作为一个实施例,所述短语在第一空口资源池中通过盲检测接收第一信号集合包括: 所述第一节点在所述第一空口资源池中执行 Q次信道译码, 所述 Q是大于 1的正整数, 所述 Q次信道译码中的每次信道译码包括: 根据 CRC (Cycl ic Redundancy Check, 循环 冗余校验)确定相应的无线信号是否被正确接收;所述第一信号集合包括 Q1个无线信号, 所述 Q1个无线信号分别被所述 Q次信道译码中的 Q1次信道译码正确接收;所述 Q1是不 大于所述 Q的正整数。
作为一个实施例, 所述 Q次信道译码都是基于维特比算法。
作为一个实施例, 所述 Q次信道译码中的每次信道译码是基于迭代的。
作为一个实施例, 所述 Q次信道译码都是基于 BP (bel ief propagation , 可信度 传播) 算法。
作为一个实施例, 所述 Q次信道译码都是基于 LLR (Log Likelyhood Ratio, 对数 似然比) _BP算法。
^作为一个实施例,所述短语在第一空口资源池中通过盲检测接收第一信号集合包括: 所述第一信号集合包括 Q1个无线信号,所述第一节点在所述第一空口资源池中执行 Q次 特征序列检测, 所述 Q是大于 1的正整数, 所述 Q次特征序列检测中的每次特征序列检 测包括: 根据序列的相干检测确定相应的无线信号是否被发送; 所述 Q次特征序列检测 中的 Q1次特征序列检测分别被用于确定所述 Q1个无线信号被发送;所述 Q1是不大于所 述 Q的正整数。
作为一个实施例, 所述物理层是层 1 (Layer 1)。
作为一个实施例, 所述物理层是 PHY层。
作为一个实施例, 所述第一信息是缓冲状态上报。
作为一个实施例, 所述缓冲状态上报是定期的 (Regular) 缓冲状态上报(BSR)。 作为一个实施例, 所述缓冲状态上报是填充 (Padding) 缓冲状态上报。
作为一个实施例, 所述第一条件集合包括第二条件, 所述第二条件包括: 所有逻辑 信道上没有可用于发送的数据。 作为一个实施例, 所述第一条件集合包括第三条件, 所述第一缓冲信息指示第一优 先级, 所述第三条件包括: 所述第一优先级高于所有己有可用于发送的数据的逻辑信道 组中的任一逻辑信道的优先级。
作为一个实施例, 所述第一缓冲信息指示所述第一比特块所占用的缓冲尺寸。 实施例 2
实施例 2示例了网络架构的示意图, 如附图 2所示。
附图 2说明了 LTE(Long-Term Evolut ion, 长期演进), LTE-A(Long-Term Evolut ion Advanced, 增强长期演进)及未来 5G 系统的网络架构 200。 LTE 网络架构 200 可称为 EPS(Evolved Packet System,演进分组系统) 200 JPS 200可包括一个或一个以上 UE(User Equipment , 用户设备)201, E-UTRAN-NR(演进 UMTS 陆地无线电接入网络-新无线) 202, 5G-CN( 5G-CoreNetwork , 5G核心网) /EPC(Evolved Packet Core , 演进分组核心) 210, HSS(Home Subscriber Server, 归属签约用户服务器) 220和因特网服务 230。 其中, UMTS 对应通用移动通信业务(Universal Mobi le Te lecommuni cat ions System)。 EPS200可与 其它接入网络互连, 但为了简单未展示这些实体 /接口。 如附图 2所示, EPS200 提供包 交换服务, 然而所属领域的技术人员将容易了解, 贯穿本申请呈现的各种概念可扩展到 提供电路交换服务的网络。 E-UTRAN-NR202包括 NR(New Radio , 新无线)节点 B(gNB) 203 和其它 gNB204。 gNB203提供朝向 UE201的用户和控制平面协议终止。 gNB203可经由 X2 接口(例如, 回程)连接到其它 gNB204 o gNB203也可称为基站、基站收发台、无线电基站、 无线电收发器、 收发器功能、 基本服务集合( BSS )、 扩展服务集合( ESS )、 TRP(发送 接收点)或某种其它合适术语。 gNB203为 UE201提供对 5G-CN/EPC210 的接入点。 UE201 的实例包括蜂窝式电话、 智能电话、 会话起始协议( SIP)电话、 膝上型计算机、 个人数 字助理( PDA)、 卫星无线电、 全球定位系统、 多媒体装置、 视频装置、 数字音频播放器 ( 例如, MP3播放器)、 相机、 游戏控制台、 无人机、 飞行器、 窄带物理网设备、 机器类 型通信设备、 陆地交通工具、 汽车、 可穿戴设备, 或任何其它类似功能装置。 所属领域 的技术人员也可将 UE201称为移动台、 订户台、 移动单元、 订户单元、 无线单元、 远程 单元、 移动装置、 无线装置、 无线通信装置、 远程装置、 移动订户台、 接入终端、 移动 终端、 无线终端、 远程终端、 手持机、 用户代理、 移动客户端、 客户端或某个其它合适 术语。 gNB203通过 S 1接口连接到 5G-CN/EPC210。 5G-CN/EPC210包括 MME 21 1、其它 MME214、 S-GW(Service Gateway , 服务网关)212以及 P-GW(Packet Date Network Gateway, 分组 数据网络网关)213。 MME211是处理 UE201与 5G-CN/EPC210之间的信令的控制节点。 大 体上, MME211 提供承载和连接管理。 所有用户 IP(Internet Protocal, 因特网协议)包 是通过 S-GW212传送, S-GW212自身连接到 P-GW213。 P-GW213提供 UE IP地址分配以及 其它功能。 P-GW213连接到因特网服务 230。 因特网服务 230包括运营商对应因特网协议 服务, 具体可包括因特网、 内联网、 IMS(IP Mult imedia Subsystem, IP多媒体子系统) 和 PS串流服务( PSS )。
作为一个实施例, 本申请中的第一节点是一个 UE201, 本申请中的第二节点是所述 gNB203。
作为上述实施例的一个子实施例, 本申请中的所述第一信号集合中的每个无线信号 的发送者都是一个 UE201。
作为一个实施例, 本申请中的第一节点和第二节点分别是一个 UE201, 本申请中的 所述第一信号集合中的每个无线信号的发送者都是一个 UE201。
作为上述实施例的一个子实施例, 所述第一节点支持 V2V通信
作为一个子实施例, 所述 UE201支持 V2V通信。
作为一个子实施例, 所述 gNB203支持 V2V通信。 实施例 3
实施例 3示例了用户平面和控制平面的无线协议架构的实施例的示意图,如附图 3所 附图 3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图, 附图 3用三个层展示用于 UE和 gNB的无线电协议架构: 层 1、 层 2和层 3。 层 1( L 1层)是最 低层且实施各种 PHY(物理层)信号处理功能。 L 1 层在本文将称为 PHY301 , 或者物理层。 层 2(L2层)305在 PHY301之上, 且负责通过 PHY301在 UE与 gNB之间的链路。 在用户平 面中, L2层 305包括 MAC(Medium Access Control, 媒体接入控制)子层 302、 RLC(Radio Link Control , 无线链路层控制协议)子层 303 和 PDCP(Packet Data Convergence Protocol , 分组数据汇聚协议)子层 304, 这些子层终止于网络侧上的 gNB处。 虽然未图 示, 但 UE可具有在 L2层 305之上的若干协议层, 包括终止于网络侧上的 P-GW213处的 网络层(例如, IP层)和终止于连接的另一端(例如, 远端 UE、 服务器等等)处的应用层。 PDCP子层 304提供不同无线电承载与逻辑信道之间的多路复用。 PDCP子层 304还提供用 于上层数据包的标头压缩以减少无线电发射开销, 通过加密数据包而提供安全性, 以及 提供 gNB之间的对 UE的越区移交支持。 RLC子层 303提供上层数据包的分段和重组装, 丢失数据包的重新发射以及数据包的重排序以补偿由于 HARQ (Hybrid Automatic Repeat reQuest, 混合自动重传请求)造成的无序接收。 MAC子层 302提供逻辑与输送信道之间的 多路复用。 MAC子层 302还负责在 UE之间分配一个小区中的各种无线电资源(例如, 资 源块)。 MAC子层 302还负责 HARQ操作。 在控制平面中, 用于 UE和 gNB的无线电协议架 构对于物理层 301和 L2层 305来说大体上相同, 但没有用于控制平面的标头压缩功能。 控制平面还包括层 3(L3层)中的 RRC(Radio Resource Control , 无线电资源控制)子层 306。 RRC子层 306负责获得无线电资源(即, 无线电承载)且使用 gNB与 UE之间的 RRC 信令来酉己置下部层。
" 作为一个实施例, 附图 3中的无线协议架构适用于本申请中的第一节点。
作为一个实施例, 附图 3中的无线协议架构适用于本申请中的第二节点。
作为一个实施例, 所述 L2层 305属于更高层。
作为一个实施例, 所述 L3层中的 RRC子层 306属于更高层。
作为一个实施例, 所述 PHY301和所述 MAC子层 302之间的信道是传输信道。
作为一个实施例, 所述 RLC子层 303和所述 MAC子层 302之间的信道是逻辑信道。 实施例 4
实施例 4示例了相互通信的两个通信设备的示意图, 如附图 4所示。 附图 4是在接入 网络中相互通信的节点 410以及节点 450的框图。
节点 410包括控制器 /处理器 475, 存储器 476, 接收处理器 470, 发射处理器 416, 多天 线接收处理器 472, 多天线发射处理器 471, 发射器 /接收器 418和天线 420。
节点 450包括控制器 /处理器 459, 存储器 460, 数据源 467, 发射处理器 468, 接收处理 器 456, 多天线发射处理器 457, 多天线接收处理器 458, 发射器 /接收器 454和天线 452。
在从节点 410到节点 450传输的链路中, 在节点 410处, 上层数据包被提供到控制器 / 处理器 475。 控制器 /处理器 475实施 L2层的功能性。 发射处理器 416和多天线发射处理器 471实施用于 L1层(S卩, 物理层)的各种信号处理功能。 发射处理器 416实施编码和交错以促 进节点 450处的前向错误校正( FEC),以及基于各种调制方案(例如,二元相移键控( BPSK)、 正交相移键控( QPSK)、 M相移键控( M-PSK)、 M正交振幅调制( M-QAM))的信号群集的映 射。多天线发射处理器 471对经编码和调制后的符号进行数字空间预编码 /波束赋型处理, 生 成一个或多个空间流。 发射处理器 416随后将每一空间流映射到子载波, 在时域和 /或频域 中与参考信号(例如, 导频)多路复用, 且随后使用快速傅立叶逆变换( IFFT )以产生载运时 域多载波符号流的物理信道。 随后多天线发射处理器 471对时域多载波符号流进行发送模拟 预编码 /波束赋型操作。每一发射器 418把多天线发射处理器 471提供的基带多载波符号流转 化成射频流, 随后提供到不同天线 420。
在从节点 410到节点 450传输的链路中, 在节点 450处, 每一接收器 454通过其相应天 线 452接收信号。 每一接收器 454恢复调制到射频载波上的信息, 且将射频流转化成基带多 载波符号流提供到接收处理器 456。 接收处理器 456和多天线接收处理器 458实施 L1层的各 种信号处理功能。 多天线接收处理器 458对来自接收器 454的基带多载波符号流进行接收模 拟预编码 /波束赋型操作。 接收处理器 456 使用快速傅立叶变换( FFT )将接收模拟预编码 / 波束赋型操作后的基带多载波符号流从时域转换到频域。 在频域, 物理层数据信号和参考信 号被接收处理器 456解复用, 其中参考信号将被用于信道估计, 数据信号在多天线接收处理 器 458中经过多天线检测后恢复出以节点 450为目的地的任何空间流。 每一空间流上的符号 在接收处理器 456中被解调和恢复, 并生成软决策。 随后接收处理器 456解码和解交错所述 软决策以恢复在物理信道上由节点 410发射的上层数据和控制信号。 随后将上层数据和控制 信号提供到控制器 /处理器 459。控制器 /处理器 459实施 L2层的功能。控制器 /处理器 459 可与存储程序代码和数据的存储器 460相关联。 存储器 460可称为计算机可读媒体。 控制器 /处理器 459提供输送与逻辑信道之间的多路分用、 包重组装、 解密、 标头解压缩、 控制信 号处理以恢复上层数据包。随后将上层数据包提供到 L2层之上的所有协议层。也可将各种控 制信号提供到 L3以用于 L3处理。
作为一个实施例, 所述存储器 460被用于待发送数据的缓冲 (Buffer)。
作为一个实施例, 所述存储器 460被用于接收到的数据的缓冲 (Buffer)。
作为一个实施例, 所述存储器 460被用于第一比特块的缓冲 (Buffer)。
作为一个实施例, 所述存储器 476被用于待发送数据的缓冲 (Buffer)。
作为一个实施例, 所述存储器 476被用于接收到的数据的缓冲 (Buffer)。
作为一个实施例, 所述存储器 476被用于第一比特块的缓冲 (Buffer)。
作为一个实施例, 所述待发送数据在 UL-SCH(UpLink Shared CHannel , 上行共享信道) 上被传输。
作为一个实施例, 所述接收到的数据在 DL-SCH(DownLink Shared CHannel , 上行共享 信道) 上被传输。
作为一个实施例, 一个比特块在所述存储器 460中所占用的空间被称为所述一个比特块 的缓冲尺寸。
作为一个实施例, 多个候选空间中不小于一个比特块在所述存储器 460中所占用的空间 的最小的一个候选空间被称为所述一个比特块的缓冲尺寸。
作为一个实施例, 所述多个候选空间中任意两个候选空间的尺寸不同。
作为一个实施例, 在所述从节点 410到节点 450传输的链路中, 控制器 /处理器 475还 负责 HARQ操作、 丢失包的重新发射, 和到节点 450的信令。 控制器 /处理器 459还负责使用 确认( ACK)和/或否定确认( NACK)协议进行错误检测以支持 HARQ操作。
作为一个实施例, 在所述从节点 410到节点 450传输的链路中, 控制器 /处理器 475提 供标头压缩、 加密、 包分段和重排序、 逻辑与输送信道之间的多路复用, 以及基于各种优先 级量度对节点 450的无线电资源分配。 控制器 /处理器 459基于控制器 /处理器 475的无线 资源分配来实施输送与逻辑信道之间的多路分用、 包重组装、 解密、 标头解压缩、 控制信号 处理以恢复上层数据包。
作为一个实施例, 在所述从节点 410到节点 450传输的链路中, 控制器 /处理器 475基 于控制器 /处理器 459的无线资源分配来实施标头压缩、 加密、 包分段和重排序以及逻辑与 输送信道之间的多路复用。
作为一个实施例, 在所述从节点 410到节点 450传输的链路中, 控制器 /处理器 475实 施用于用户平面和控制平面的 L2层功能。
作为一个实施例, 在所述从节点 410到节点 450传输的链路中, 控制器 /处理器 459实 施用于用户平面和控制平面的 L2层功能。
作为一个实施例, 在从节点 450到节点 410传输的链路中, 上述从节点 410到节点 450 传输的链路中的传输步骤被重用 - 除了节点 410中模块的功能被节点 450中对应的模块完成 并且节点 450中模块的功能被节点 410中对应的模块完成。
作为一个实施例, 所述节点 410是第一节点; 所述节点 420是第二节点。
作为一个实施例,所述节点 410是基站设备,控制器 /处理器 475提供标头压缩、加密、 包分段和重排序、逻辑与输送信道之间的多路复用, 以及基于各种优先级量度对所述节点 450 的无线电资源分配。控制器 /处理器 475还负责 HARQ操作、 丢失包的重新发射, 和到所述节 点 450的信令。
; 作为上述实施例的一个子实施例, 所述节点 450是用户设备,第一节点是所述节点 450; 所述节点 410是第二节点。
作为上述实施例的一个子实施例, 所述节点 450是用户设备,第一节点采用所述节点 450 的硬件结构,所述第一信号集合中的任一无线信号的发送者也采用所述节点 450的硬件结构。
作为上述实施例的一个子实施例, {所述天线 452, 所述接收器 454, 所述接收处理器 456}被用于在第一空口资源池中通过盲检测接收第一信号集合, 根据第一信号集合在物 理层恢复出第一比特块; {所述天线 452, 所述发射器 454, 所述发射处理器 468}被用于发 送第一无线信号。
作为上述实施例的一个子实施例, 所述多天线接收处理器 458被用于接收第一信号集 合, 所述多天线发射处理器 457被用于发送发送第一无线信号。
作为一个实施例, {所述天线 452, 所述发射器 454, 所述发射处理器 468}被用于发送第 一信号集合。
作为一个实施例, {所述天线 420, 所述接收器 418, 所述接收处理器 470}的被用于接收 第一信号集合和第一无线信号。
作为一个实施例, {所述天线 420, 所述发射器 418, 所述发射处理器 416}中的被用于发 送第一信令, {所述天线 452, 所述接收器 454, 所述接收处理器 456}被用于接收第一信令。
作为上述实施例的一个子实施例, 所述多天线接收处理器 458被用于接收第一信令, 所述多天线发射处理器 471被用于发送第一信令。
作为上述实施例的一个子实施例, 所述节点 410包括: 至少一个处理器以及至少一个 存储器, 所述至少一个存储器包括计算机程序代码; 所述至少一个存储器和所述计算机程序 代码被配置成与所述至少一个处理器一起使用, 所述节点 410至少: 在第一空口资源池中执 行盲检测, 未能正确译码第一比特块; 接收第一无线信号, 所述第一无线信号包括第一 信息; 其中, 所述第一比特块被用于生成在所述第一空口资源池中被发送的第一信号集 合; 所述第一信息被用于指示缓冲里可被发送的数据量; 当第一条件集合被满足时, 所 述第一信息在更高层被触发; 所述第一条件集合包括第一条件, 所述第一条件包括第一 缓冲信息被从物理层传递到更高层; 所述第一无线信号被发送。
作为上述实施例的一个子实施例, 所述节点 450包括: 至少一个处理器以及至少一个 存储器, 所述至少一个存储器包括计算机程序代码; 所述至少一个存储器和所述计算机程序 代码被配置成与所述至少一个处理器一起使用, 所述节点 450至少: 在第一空口资源池中通 过盲检测接收第一信号集合, 根据第一信号集合在物理层恢复出第一比特块; 从物理层 向更高层传递第一缓冲信息; 当第一条件集合被满足时, 在所述更高层触发第一信息; 发送第一无线信号, 所述第一无线信号包括所述第一信息; 其中, 所述第一信息被用于 指示缓冲里可被发送的数据量, 所述第一条件集合包括第一条件, 所述第一条件包括第 一缓冲信息被从物理层传递到更高层。
作为一个实施例, 所述节点 410包括: 一种存储计算机可读指令程序的存储器, 所述计 算机可读指令程序在由至少一个处理器执行时产生动作, 所述动作包括: 在第一空口资源池 中执行盲检测, 未能正确译码第一比特块; 接收第一无线信号, 所述第一无线信号包括 第一信息; 其中, 所述第一比特块被用于生成在所述第一空口资源池中被发送的第一信 号集合;所述第一信息被用于指示缓冲里可被发送的数据量;当第一条件集合被满足时, 所述第一信息在更高层被触发; 所述第一条件集合包括第一条件, 所述第一条件包括第 一缓冲信息被从物理层传递到更高层; 所述第一无线信号被发送。
作为一个实施例, 所述节点 450包括: 一种存储计算机可读指令程序的存储器, 所述计 算机可读指令程序在由至少一个处理器执行时产生动作, 所述动作包括: 在第一空口资源池 中通过盲检测接收第一信号集合, 根据第一信号集合在物理层恢复出第一比特块; 从物 理层向更高层传递第一缓冲信息; 当第一条件集合被满足时, 在所述更高层触发第一信 息; 发送第一无线信号, 所述第一无线信号包括所述第一信息; 其中, 所述第一信息被 用于指示缓冲里可被发送的数据量, 所述第一条件集合包括第一条件, 所述第一条件包 括第一缓冲信息被从物理层传递到更高层。
作为一个实施例, 所述节点 410和所述节点 450分别是用户设备。
作为一个实施例, 所述节点 410和所述节点 450分别是基站设备。
作为一个实施例, 所述节点 410和所述节点 450分别是基站设备和用户设备。 实施例 5
实施例 5示例了一个空口资源池的示意图, 如附图 5所示。
在实施例 5中, 所述一个空口资源池包括 L个空口资源, 即空口资源 #0, #1, , # (L-1), L是大于 1 的正整数; 所述 L个空口资源所占用的时频资源相同 - 如附图 7 的粗线框标示; 空口资源 #0 , #1, , # (L- 1)分别对应 L个不同的码域资源即多址签名。
作为一个实施例, 第一空口资源池是所述一个空口资源池。
作为一个实施例, 第二空口资源池是所述一个空口资源池。
作为一个实施例, 所述 L个空口资源所占用的所述时频资源包括多个 RE ( Resource Element , 资源粒子)。
作为一个实施例,所述 L个空口资源所占用的所述时频资源在时域上不超过 1毫秒。 作为一个实施例, 第一信号集合包括 K个无线信号, 所述 K是大于 1的正整数, 所 述 K个无线信号分别在所述 L个空口资源中的 K个空口资源中被发送。 实施例 6
实施例 6示例了第一无线信号的传输流程图, 如附图 6所示。 附图 6中, 方框 F1, 方 框 F2和方框 F3中的步骤分别是可选的。
对于第一节点 N1,在步骤 S 10中在第一空口资源池中通过盲检测接收第一信号集合, 根据第一信号集合在物理层恢复出第一比特块; 在步骤 S 11 中在第二空口资源池中监测 目标信息以确定所述第一比特块未被目标接收者正确译码; 在步骤 S12 中从所述第一节 点 N1 的物理层向所述第一节点 N1的更高层传递第一缓冲信息; 当第一条件集合被满足 时, 在所述更高层触发第一信息; 当第二条件集合被满足时, 在步骤 S13 中在所述第一 无线信号被发送之前触发第二信息; 当第三条件集合被满足时, 在步骤 S14 中指示所述 第一节点 N1的所述物理层发送第二信息并且发送所述第二信息,在步骤 S15中接收第一 信令, 所述第一信令包括所述第一无线信号的调度信息; 在步骤 S16 中发送第一无线信 号, 所述第一无线信号包括所述第一信息; 在步骤 S17中接收第二信令; 在步骤 S18中 发送第二无线信号;
对于第二节点 N2 , 在步骤 S20中在第一空口资源池中执行盲检测, 未能正确译码第 一比特块; 在步骤 S21 中在第二空口资源池中通过目标信息指示所述第一比特块未被正 确译码; 当第三条件集合被满足时, 在步骤 S22中接收所述第二信息; 在步骤 S23中发 送所述第一信令; 在步骤 S24中接收所述第一无线信号; 在步骤 S25中发送所述第二信 令; 在步骤 S25中接收所述第二无线信号; 对于其他节点集合 N3 , 在步骤 S30中在第一空口资源池中发送第一信号集合。
实施例 6 中, 所述第一信息被用于指示缓冲里可被发送的数据量, 所述第一条件集 合包括第一条件,所述第一条件包括第一缓冲信息被从所述第一节点 N1的物理层传递到 所述第一节点 N1的更高层; 所述第二信息被用于请求信道资源; 所述第二条件集合包括 所述第一信息未被终止以及信道资源未被分配; 所述第三条件集合包括至少一个能被用 于所述第二信息的信道资源被配置给本传输时间间隔; 所述第二信令包括所述第二无线 信号的调度信息, 所述第一比特块被用于生成所述第二无线信号。
作为一个实施例, 所述第二信息被所述第二节点 N2用于触发所述第一信令的发送。 作为一个实施例, 所述第二信息在所述第一节点 N1的更高层被触发。
作为一个实施例, 所述调度信息包括 MCS (Modulation Coding Status , 调制编码 状态)。
作为一个实施例, 所述调度信息包括 RV(Redundancy Vers ion, 冗余版本)。
作为一个实施例, 所述调度信息包括 HARQ (Hybrid Auto Repeat reQuest, 混合自 动重复请求) 进程号 (Process Number)。
作为一个实施例, 所述调度信息包括 NDI (New Data Indicator, 新数据指示)。 作为一个实施例, 所述调度信息包括 HARQ进程号、 RV、 NDI和 MCS。
作为一个实施例, 所述调度信息包括发送天线端口。
作为一个实施例,所述调度信息包括 TCI( Transmiss ion Configurat ion Indicator, 传输配置指示)。
作为一个实施例, 所述调度信息包括 TPC (Transmit Power Control , 发送功率控 制)。
作为一个实施例, 目标信令是 DCI (Downl ink Control Information, 下行控制信 息)。
作为一个实施例, 目标信令在 PDCCH (Physical Downl ink Control CHannel , 物理 下行控制信道) 被发送。
作为一个实施例, 目标信令是被用于上行授予 (Upl ink Grant) 的 DCI。
作为上述实施例的一个子实施例, 所述第一无线信号是 PUSCH (Physical Upl ink Shared CHannel , 物理上行共享信道)。
作为上述实施例的一个子实施例, 目标信令包括 LTE (Long Term Evolution, 长期 演进) DCI格式 0中的部分或者所有域 (field)。
作为上述实施例的一个子实施例, 目标信令包括 LTE DCI格式 4中的部分或者所有 域。
作为上述实施例的一个子实施例, 目标信令是具有 (with) NR (New Radio , 新无 线) 格式 0_0的 DCI。
作为上述实施例的一个子实施例, 目标信令是具有 NR DCI格式 0_1的 DCI。
作为一个实施例, 所述目标信令是第一信令。
作为一个实施例, 所述目标信令是第二信令。
作为一个实施例, 所述短语未能正确译码第一比特块包括: 所述第一信号集合未被 所述第二节点 N2正确译码。
作为一个实施例, 所述短语未能正确译码第一比特块包括: 所述第一信号集合中的 任一无线信号未被所述第二节点 N2正确译码。
作为一个实施例, 所述短语未能正确译码第一比特块包括: 所述第一信号集合中的 任一无线信号未能通过所述第二节点 N2在信道译码中执行的 CRC校验。
作为一个实施例, 所述短语未能正确译码第一比特块包括: 所述第二节点 N2通过特 征序列检测未能意识到所述第一信号集合中的任一无线信号的存在。
作为一个实施例, 所述第二节点 N2是所述第一信号集合的目标接收者。 作为一个实施例, 所述第」 :节点 N2维持所述第一节点 N1的服务小区。
作为一个实施例,所述第二 节点 N2的身份被用于所述第一信号集合中的任一无线信 号的生成。
作为一个实施例,所述第二 节点 N2的身份被用于所述第一信号集合中的任一无线信 号所包括的 CRC的扰码。
作为一个实施例,所述第二节点 N2的身份被用于所述第一信号集合中的任一无线信 号所包括的 DMRS (DeModulation Reference Signal , 解调参考信号) 的 RS (Referene Signal , 参考信号) 序列的生成。
作为一个实施例, 所述第一空口资源池是被所述第二节点 N2分配的。
作为一个实施例, 所述目标信息是广播的。
作为一个实施例, 所述目标信息在 PDCCH上被发送。
作为一个实施例, 只有当一个条件集合中的所有条件被满足时, 所述一个条件集合 才被满足。
作为一个实施例, 所述一个条件集合是第一条件集合。
作为一个实施例, 所述一个条件集合是第二条件集合。
作为一个实施例, 所述一个条件集合是第三条件集合。
作为一个实施例, 所述第一比特块被用于生成所述第二无线信号, 所述第二无线信 号在第一信道上被发送,所述第二无线信号的所述调度信息是所述第一信道的分配信息。
作为一个实施例, 所述第一信道被 (所述第二节点 N2) 分配给所述第一节点 N1。 作为一个实施例,所述第一节点 N1的身份被用于对所述第一信道上传输的比特块进 行扰码。
作为一个实施例,所述第一节点的身份被用于对所述第一信道上传输的比特块的 CRC (循环冗余校验) 进行扰码。
作为一个实施例, 所述第一信道是所述第一节点专有的。
作为一个实施例, 所述第一缓冲信息指示所述第一信号集合中的信息比特的数量。 作为一个实施例, 所述第一缓冲信息指示所述第一比特块所包括的比特的数量。 作为一个实施例, 所述第一节点 N1是用户设备, 所述第二节点 N2是基站设备, 所 述其他节点集合 N3包括至少一个用户设备。
作为一个实施例, 所述第一节点 N1是用户设备, 所述第二节点 N2是用户设备, 所 述其他节点集合 N3包括至少一个用户设备。
作为一个实施例,所述第一信号集合包括 K个无线信号,所述 K是大于 1的正整数; 所述其它节点集合 N3中包括 K个用户设备,所述 K个无线信号分别被所述 K个用户设备 发送。
作为一个实施例, 所述第一缓冲信息指示所述 K。
作为一个实施例, 所述 K个无线信号所占用的缓冲大小是相同的。
作为一个实施例, 所述 K个用户设备中的任一用户设备与所述第一节点之间不存在 更高层连接, 所述 K个用户设备中的任一用户设备与所述第二节点之间不存在更高层连 接, 所述第一节点和所述第二节点之间存在更高层连接。
作为一个实施例, 所述更高层连接包括 RRC连接 (Connect ion)。
作为一个实施例, 所述更高层连接包括核心网连接。
作为一个实施例, 所述 K个无线信号所占用的时频资源是相同的。
作为一个实施例, 所述 K个无线信号分别占用 K个物理层信道。
作为一个实施例,所述目标信息包括所述第二节点 N2在所述第一空口资源池中正确 译码的所有无线信号的指示信息, 所述目标信息不包括所述第一信号集合中的任一无线 信号的指示信息。
作为一个实施例, 所述指示信息包括 HARQ-ACK。 作为一个实施例,所述目标信息包括所述第二节点 N2在所述第一空口资源池中错误 译码的无线信号的指示信息, 所述目标信息包括所述第一信号集合中的每一无线信号的 指示信息。
作为一个实施例, 所述第二空口资源池被关联到所述第一空口资源池。
作为一个实施例, 所述第一空口资源池所占用的时频资源被用于确定所述第二空口 资源池所占用的时频资源。
作为一个实施例,所述第一节点 N1对所述第一信号集合执行信道译码以后得到所述 第一比特块, 对所述第一比特块进行信道编码后生成所述第二无线信号, 所述信道编码 采用的码率由所述第一物理层信令指示。
作为一个实施例, 所述 K个无线信号分别被 K个发送者发送, 所述短语在第一空口 资源池中通过盲检测接收第一信号集合包括: 所述 K个发送者中的任一发送者与所述第 一信号子集的发送者之间不存在更高层连接。
作为一个实施例, 所述 K个无线信号分别被 K个发送者发送, 所述短语在第一空口 资源池中通过盲检测接收第一信号集合包括: 所述第一节点与所述 K个发送者中的任一 发送者之间不存在更高层连接。
作为一个实施例,所述第一信息和所述第二信息分别是 BSRC Buffer Status Report , 缓冲状态上报) 和 SR (Schedul ing Request , 调度请求)。
作为一个实施例, 所述第一比特块经过扰码。
作为上述实施例的一个子实施例, 所述扰码在所述第一信号集合的发送者的物理层 被执行。
作为一个实施例,所述第一信道是 sPUSCHC short Physical Upl ink Shared Channel ,
4日物捆 H千土 t宣梓请)
作为一 i实^例/所述第一信道是物理层信道。
作为一个实施例, 所述第一信道是所述第一节点专有的。
作为一个实施例, 所述第三条件集合包括所述第二信息被触发;
作为一个实施例, 所述本传输时间 (this TTI) 间隔不属于测量间隙 (measurement gap)。
作为一个实施例, 所述第一节点在所述本传输时间间隔能够进行无线发送。
作为一个实施例, 所述第二条件集合包括第一计时器未运行。
作为一个实施例, 所述第二条件集合包括第一计数器小于特定阈值, 所述特定阈值 是正整数。
作为一个实施例, 所述特定阈值大于 1。
作为一个实施例, 所述特定阈值是可配置的。
作为一个实施例, 当所述第一计数器不小于所述特定阈值时, 所述第一节点重新发 起小区搜索。
作为一个实施例, 当所述第一计数器是 SRJ:0UNTER。
作为一个实施例, 在所述第一处理机指示所述物理层发送第二信息之后, 所述第一 计时器被启动。
作为一个实施例, 所述第一信息被用于生成所述第二信令中的调度信息。
作为一个实施例,所述第一信息被用于生成所述第二无线信号所占用的 RE( Resource Element , 资源粒子) 的数量。
作为一个实施例, 所述第二条件集合包括所述第一信息在所述更高层被触发。
作为一个实施例, 所述第三条件集合包括所述第二信息被触发;
作为一个实施例, 所述第一信息是缓冲状态上报。
作为一个实施例, 所述缓冲状态上报是定期的 (Regular) 缓冲状态上报。
作为一个实施例, 所述缓冲状态上报是填充 (Padding) 缓冲状态上报。 实施例 7
实施例 7示例了请求信道资源的示意图,如附图 7所示; 附图 7中的物理层和更高层是 第一节点侧的。
实施例 7 中, 第一节点在物理层根据第一信号集合恢复出第一比特块, 根据所述第 一比特块所占用的缓冲尺寸确定第一缓冲信息; 将所述第一缓冲信息传递给更高层, 当 第一条件集合被满足时,在所述更高层触发第一信息,所述第一条件集合包括第一条件, 所述第一条件包括第一缓冲信息被从物理层传递到更高层; 当第二条件集合被满足时, 所述更高层触发第二信息, 所述第二条件集合包括所述第一信息在所述更高层被触发以 及所述第一信息未被终止以及信道资源未被分配; 当第三条件集合被满足时, 所述更高 层指示所述物理层发送第二信息并且所述物理层发送所述第二信息。
实施例 7 中, 所述第二信息被用于请求信道资源, 所述第三条件集合包括至少一个 能被用于所述第二信息的信道资源被配置给当前传输时间间隔, 所述第三条件集合包括 所述第二信息被触发。
作为一个实施例, 所述请求信道资源包括请求 UL-SCH (UpLink Shared CHannel , 上行共享信道) 资源。
作为一个实施例, 所述第二信息是调度请求 (Schedul ing Request)。
作为一个实施例, 所述第二信息被用于为新传输请求信道资源。
作为一个实施例, 所述信道资源未被分配包括: 本 TTI(Transport Time Interval , 传输时间间隔) 所述更高层中的 MAC实体 (entity) 未被分配用于新发送的上行资源。
作为一个实施例, 所述上行资源包括传输信道。
作为一个实施例, 所述上行资源包括逻辑信道。
作为一个实施例,所述信道资源未被分配包括:未被配置上行授予(Upl ink Grant)。 作为一个实施例, 所述第二条件集合包括第一计时器未运行。
作为一个实施例, 所述第一计时器是在所述更高层被维护的。
作为一个实施例, 所述第一计时器被用于中断所述第二信息的发送。
作为一个实施例, 所述第一计时器是 logicalChannelSR-ProhibitTimer。
作为一个实施例, 所述第一节点的所述物理层发送第一缓冲信息给所述第一节点的 所述更高层, 所述第一缓冲信息被所述第一节点的所述更高层用于确定所述第一信号集 合所占用的缓冲尺寸。
作为一个实施例, 所述第一缓冲信息指示所述第一信号集合中的信息比特的数量。 作为一个实施例, 所述第一缓冲信息指示所述第一比特块所包括的比特的数量。 作为一个实施例, 所述第一缓冲信息指示对所述第一信号集合进行信道译码以后得 到的比特的数量。
作为一个实施例, 所述第一信号集合占用 K个空口资源, 所述 K个空口资源分别包 括 K个多址签名, 所述第一缓冲信息指示所述 K, 所述 K是大于 1的正整数。
作为一个实施例, 所述第一节点的所述更高层包括所述第一节点的 MAC (Medium Access Control , 媒体介入控制) 层。
作为一个实施例, 所述第一节点的所述更高层包括所述第一节点的 RLC(Radio Link Control , 无线链路控制) 层。
作为一个实施例, 所述第一节点的所述更高层包括所述第一节点的 PDCP (Packet Data Convergence Protocol , 包数据融合协议) 层。
作为一个实施例, 所述第一条件集合包括第三条件, 所述第一缓冲信息指示第一优 先级, 所述第三条件包括: 所述第一优先级高于所有己有可用于发送的数据的逻辑信道 组中的任一逻辑信道的优先级。
作为一个实施例, 所述第一优先级是正整数。
作为一个实施例, 所述第一优先级是候选优先级集合中的一个候选优先级, 所述候 选优先级集合由所有逻辑信道可能被分配的优先级组成。
作为一个实施例, 所述第一优先级是由基站配置的。
作为一个实施例, 所述第一优先级是由所述第一节点的服务小区配置的。
作为一个实施例, 所述第一优先级被关联到所述第一空口资源池。 实施例 8
实施例 8示例了利用目标信息指示第一信号集合未被正确译码的流程图,如附图 8所 示。 附图 8中的步骤是在第二节点中被执行。
在步骤 S60中, 第二节点判断在第一空口资源池中是否存在被正确译码的无线信号; 如 果是, 在步骤 S62中在第二空口资源池中发送目标信息, 如果否, 在步骤 S61中在第二空口 资源池中保持零发送功率。
作为一个实施例, 在所述步骤 S61中, 目标信息被设置为空。
作为一个实施例, 在所述第一空口资源池中被所述第二节点正确译码的无线信号包 括 M个无线信号, 所述 M是正整数; 所述目标信息包括 M个身份, 所述 M个身份分别被 用于标识所述 M个无线信号。
作为一个实施例, 所述 M个无线信号都不属于所述第一信号集合。
作为一个实施例, 所述 M个身份分别被用于标识所述 M个无线信号的发送者。
作为一个实施例, 所述 M个身份分别被用于所述 M个无线信号的扰码。
作为一个实施例,所述 M个身份分别被用于生成所述 M个无线信号所包括的 DMRS的 RS序列。
作为一个实施例, 所述 M个身份分别是 M个 RNTI。 实施例 9
实施例 9示例了第一时频资源池和第二时频资源池的示意图, 如附图 9所示。
实施例 9中, 第二时频资源池所占用的时域资源在所述第一时频资源池所占用的时域资 源之后。
作为一个实施例, 所述第二时频资源池所占用的频域资源与所述第一时频资源池所占用 的频域资源属于同一个 BWP (Bandwidth Part , 带宽部分)。
作为一个实施例, 所述第二时频资源池所占用的频域资源与所述第一时频资源池所占用 的频域资源包括相同的子载波。
作为一个实施例, 所述第二时频资源池所占用的时隙是所述第一时频资源池所占用的时 隙之后的第 u个时隙, 所述 u是正整数。
作为一个实施例, 所述 u是固定的常数。
作为一个实施例, 所述 u是可配置的。
作为一个实施例, 第一时频资源池和第二时频资源池分别是第一空口资源池和第二空口 资源池所占用的时频资源。
作为一个实施例, 第一时频资源池和第二时频资源池分别是第一空口资源池和第一信道 所占用的时频资源。
作为一个实施例, 第一时频资源池和第二时频资源池分别是所述第一信令和所述第一无 线信号所占用的时频资源, 所述 u是被所述第一物理层信令指示的。
作为一个实施例, 第一时频资源池和第二时频资源池分别是所述第二信令和所述第二无 线信号所占用的时频资源, 所述 u是被所述第二物理层信令指示的。
作为一个实施例, 所述第二空口资源池被关联到所述第一空口资源池。 实施例 10
实施例 10示例了一个无线信号所占用的时频资源的示意图,如附图 8所示。附图 8中, 横轴和纵轴分别是时间轴和频率轴,一个小方格代表一个 RE( Resource Element,资源粒子)。 实施例 10中, {0—0, 1—0, 2—0, · · ·, P— 0} ; {0—1, 1—1, 2—1, 3—1, · · ·, P— 1} ; {0—2, 1_2, 2_2, 3_2, . . ., P_V}所代表的资源粒子都被一个无线信号占用, 并且分别属于 V个多 载波符号。
作为一个实施例,所述第一信号集合中的任一无线信号所占用的时频资源包括 {0_0, 1_0, 2—0, , P— 0} ; {0—1, 1—1, 2—1, 3—1, , P— 1} ; {0—2, 1—2, 2—2, 3—2, , P— V}所 代表的资源粒子。
作为一个实施例,所述第二无线信号所占用的时频资源包括 {0_0, 1_0, 2_0, . . ., P_0} ; {0_1, 1_1, 2_1 , 3_1 , P_l}; {0_2, 1_2, 2_2, 3_2, P_V}所代表的资源粒子。
作为一个实施例, 第一比特块中的 特经过调制 j以后得到的调制符号按照频域第一, 时 域第二的规则被依次映射到所述第二无线信号中未被 DMRS占用的 RE。
作为一个实施例, 第一比特块中部分比特被抽取以组成第二比特块, 所述第二比特块中 的比特经过调制以后得到的调制符号按照频域第一, 时域第二的规则被依次映射到所述第二 无线信号所占用的时频资源中, 即按照 {0_0, 1_0, 2_0, , P_0; 0_1, 1_1, 2_1 , 3_1 , ,
P_l ; . . . }的顺序依次映射。
作为一个实施例,所述第二比特块中的比特经过调制以后得到的调制符号按照频域第一, 时域第二的规则被依次映射到所述第二无线信号中未被 DMRS所占用的 RE。
作为一个实施例,所述第一比特块中的比特经过调制以后得到的调制符号按照频域第一, 时域第二的规则被依次映射到所述第二无线信号中未被 DMRS所占用的 RE。
作为一个实施例, 所述第二比特块中的比特包括 UCI, 所述 UCI在所述第二比特块中的 位置在第一比特块中的比特在所述第二比特块中的位置之前。
作为一个实施例, 所述附图 10中的灰色填充的小方格所代表的 RE被分配给所述第二无 线信号的 DMRS。
作为一个实施例, 所述 P是 12的正整数倍。
作为一个实施例, 所述 V是 1。
作为一个实施例, 所述 V是 2。
作为一个实施例, 所述 V是 7。
作为一个实施例, 所述 V是 14。 实施例 11
实施例 11示例了第一比特块的示意图, 如附图 11所示。
实施例 11中, 第一比特块包括一个系统比特块和一个标识比特块。
作为一个实施例, 所述标识比特块指示所述第一比特块的发送者。
作为一个实施例, 所述第一比特块的所述系统比特块的 CRC被用于生成所述第一比特块 中的所述标识比特块。
作为一个实施例, 所述第一比特块的所述系统比特块的 CRC经过扰码后得到所述第一比 特块中的所述标识比特块。
作为一个实施例, 所述第一比特块被一个用户设备发送。
作为一个实施例, 所述第一信号集合中仅包括一个无线信号。
作为一个实施例, 所述第一信号集合在一个 PUSCH上被发送。
作为一个实施例,第二无线信号是所述第一比特块依次经过调制映射器 ( Modulat ion Mapper) , 层映射器 ( Layer Mapper ), 预编码 ( Precoding ) , 资源粒子映射器 ( Resource Element Mapper ) , 多载波符号发生 ( Generation) 之后的输出。
作为一个实施例, 第二无线信号是所述第一比特块经过调制映射器, 资源粒子映射 器和多载波符号发生之后的输出。 实施例 12
实施例 12示例了第一比特块的示意图, 如附图 12所示。
实施例 12中, 第一比特块包括 K个比特子块, 即比特子块 #1, 比特子块 #2, . . ., 比特 子块 #K; 每个比特子块中包括一个系统比特块和一个标识比特块。
作为一个实施例, 所述 K个比特子块分别被 K个发送者发送。
作为一个实施例, 所述 K个比特子块的每个比特子块中的所述系统比特块的 CRC被用于 生成所述第一比特块中的所述标识比特块。
作为一个实施例, 所述 K个比特子块的每个比特子块中所述第一比特块的所述系统比特 块的 CRC经过扰码后得到所述第一比特块中的所述标识比特块。 实施例 13
实施例 13示例了第二比特块的示意图, 如附图 13所示。 附图 13中, 所述其他比特 块是可选的。
实施例 13中, 第一节点根据第一信号集合恢复出第一比特块, 第二比特块中包括从 第一比特块中抽选一部分比特; 所述第二比特块被用于生成所述第二无线信号。
作为一个实施例, 所述第二无线信号是所述第二比特块依次经过调制映射器 ( Modulat ion Mapper) , 层映射器 ( Layer Mapper) , 预编码 ( Precoding), 资源粒子映 射器 ( Resource Element Mapper) , 多载波符号发生 ( Generat ion) 之后的输出。
作为一个实施例, 所述第二无线信号是所述第二比特块经过调制映射器, 资源粒子 映射器和多载波符号发生之后的输出。
作为一个实施例, 附图 13 中的系统比特块 #1, 系统比特块 #2 , . . ., 系统比特块 #K 是从所述第一比特块中抽选的。
作为一个实施例, 第一比特块如附图 12所示; 附图 13中的系统比特块 #1, 系统比 特块 #2 , . . .,系统比特块瓶分别是从附图 12里的所述比特子块 #1,所述比特子块 #2, . . ., 所述比特子块概。
作为一个实施例, 附图 13 中的系统比特块 #1, 系统比特块 #2 , . . ., 系统比特块 #K 被用于生成附图 13中的校验比特块。
作为一个实施例, 系统比特块 # 1, 系统比特块 #2, . . ., 系统比特块 #1 ( 级联形成的 信息比特块被用于生成 CRC, 所述交验比特块是所述 CRC经过扰码之后得到的。
作为一个实施例, 所述第二比特块中包括其他比特块, 所述其他比特块与第一比特 块无关。
作为一个实施例, 所述第二比特子块包括其他比特块, 所述其他比特块与第一信号集合 无关。
作为一个实施例, 所述其他比特块包括 UCI。 实施例 14
实施例 14示例了第一节点中的处理装置的结构框图, 如附图 14所示。 实施例 14中, 第一节点 1400包括第一接收机 1401, 第一处理机 1402和第一发送机 1403。
所述第一接收机 1401在第一空口资源池中通过盲检测接收第一信号集合, 根据第一 信号集合在物理层恢复出第一比特块; 所述第一处理机 1402从物理层向更高层传递第一 缓冲信息; 当第一条件集合被满足时,在所述更高层触发第一信息;所述第一发送机 1403 发送第一无线信号, 所述第一无线信号包括所述第一信息。
实施例 14中, 所述第一信息被用于指示缓冲里可被发送的数据量, 所述第一条件集 合包括第一条件, 所述第一条件包括第一缓冲信息被从物理层传递到更高层。
作为一个实施例,所述第一接收机 1401在第二空口资源池中监测目标信息以确定所 述第一比特块未被目标接收者正确译码。 作为一个实施例, 所述第一条件集合包括第二条件, 所述第二条件包括: 所有逻辑 信道上没有可用于发送的数据。
作为一个实施例, 所述第一条件集合包括第三条件, 所述第一缓冲信息指示第一优 先级, 所述第三条件包括: 所述第一优先级高于所有己有可用于发送的数据的逻辑信道 组中的任一逻辑信道的优先级。
作为一个实施例, 所述第一缓冲信息指示所述第一比特块所占用的缓冲尺寸。 作为一个实施例, 在所述第一无线信号被发送之前, 当第二条件集合被满足时, 所 述第一处理机 1402触发第二信息; 其中, 所述第二信息被用于请求信道资源; 所述第二 条件集合包括所述第一信息未被终止以及信道资源未被分配。
作为一个实施例, 当第三条件集合被满足时, 所述第一处理机 1402指示所述物理层 发送第二信息并且所述第一发送机发送所述第二信息;所述第一接收机 1401接收第一信 令, 所述第一信令包括所述第一无线信号的调度信息; 其中, 所述第三条件集合包括至 少一个能被用于所述第二信息的信道资源被配置给本传输时间间隔。
作为一个实施例, 所述第一接收机 1401接收第二信令; 所述第一发送机 1403发送 第二无线信号; 其中, 所述第二信令包括所述第二无线信号的调度信息, 所述第一比特 块被用于生成所述第二无线信号。
作为一个实施例, 所述第一信息是缓冲状态上报。
作为一个实施例, 所述第一节点 1400是附图 4中的所述节点 450。
作为一个实施例, 所述第一节点 1400采用附图 4中的所述节点 450的硬件结构, 所述第 一信号集合的发送者也采用附图 4中的所述节点 450的硬件结构。
作为一个实施例, 所述第一处理机 1401包括附图 4中的所述接收处理器 456。
作为一个实施例, 所述第一处理机 1401包括附图 4中的所述控制器 /处理器 459, 所述 存储器 460; 所述第一接收机 1402包括附图 4中的{所述天线 452, 所述接收器 454, 所述 接收处理器 456} ; 所述第一发送机 1403包括附图 4中的{所述天线 452, 所述发射器 454, 所述发射处理器 468}。
作为一个实施例, 所述第一处理机 1401包括附图 4中的所述数据源 467。
作为一个实施例, 所述第一处理机 1401包括附图 4中的所述存储器 460。
作为一个实施例, 所述存储器 460被用于所述第一节点 1400的缓冲。
作为一个实施例, 所述第一接收机 1401包括附图 4中的所述多天线接收处理器 458, 所述第一发送机 1403包括附图 4中的所述多天线发射处理器 457。
作为一个实施例, 所述第一接收机 1401包括附图 4中的所述控制器 /处理器 459。 作为一个实施例, 所述第一信息是 BSR。
作为一个实施例, 所述第一信息是定期的 ( Regular ) 缓冲状态上报 (BSR)。 实施例 15
实施例 15示例了第二节点中的处理装置的结构框图, 如附图 15所示。 实施例 15中, 第二节点 1500包括第二接收机 1501和第二发送机 1502, 其中第二发送机 1502是可选的。
所述第二接收机 1501在第一空口资源池中执行盲检测, 未能正确译码第一比特块; 接收第一无线信号, 所述第一无线信号包括第一信息;
实施例 15中,所述第一比特块被用于生成在所述第一空口资源池中被发送的第一信 号集合;所述第一信息被用于指示缓冲里可被发送的数据量;当第一条件集合被满足时, 所述第一信息在更高层被触发; 所述第一条件集合包括第一条件, 所述第一条件包括第 一缓冲信息被从物理层传递到更高层; 所述第一无线信号被发送。
作为一个实施例,第二发送机 1502在第二空口资源池中通过目标信息指示所述第一 比特块未被正确译码。
作为一个实施例, 所述第一条件集合包括第二条件, 所述第二条件包括: 所有逻辑 信道上没有可用于发送的数据。 作为一个实施例, 所述第一条件集合包括第三条件, 所述第一缓冲信息指示第一优 先级, 所述第三条件包括: 所述第一优先级高于所有己有可用于发送的数据的逻辑信道 组中的任一逻辑信道的优先级。
作为一个实施例, 所述第一缓冲信息指示所述第一比特块所占用的缓冲尺寸。
作为一个实施例, 在所述第一无线信号被发送之前, 当第二条件集合被满足时, 第 二信息被触发, 所述第二信息被用于请求信道资源; 所述第二条件集合包括所述第一信 息未被终止以及信道资源未被分配。
作为一个实施例, 当第三条件集合被满足时, 所述第二接收机 1501接收第二信息; 所述第二发送机 1502发送第一信令, 所述第一信令包括所述第一无线信号的调度信息; 其中, 当第三条件集合被满足时, 物理层被指示发送第二信息; 所述第三条件集合包括 至少一个能被用于所述第二信息的信道资源被配置给本传输时间间隔。
作为一个实施例, 第二发送机 1502发送第二信令; 所述第二接收机 1501接收第二 无线信号; 其中, 所述第二信令包括所述第二无线信号的调度信息, 所述第一比特块被 用于生成所述第二无线信号。
作为一个实施例, 所述第一信息是缓冲状态上报。
作为一个实施例, 所述第一信息是 BSR, 所述第二信息是 SR。
作为一个实施例, 所述第一信息是定期的 (Regular) 缓冲状态上报(BSR), 所述第二 信息是 SR。
作为一个实施例, 所述第二节点 1500是附图 4中的所述节点 410。
作为一个实施例, 所述第二节点 1500采用附图 4中的所述节点 410的硬件结构, 所述第 一信号集合的发送者采用附图 4中的所述节点 450的硬件结构。
作为一个实施例,所述第二发送机 1502包括附图 4中的{所述天线 420,所述发射器 418, 所述发射处理器 416} ;所述第二接收机 1501包括附图 4中的{所述天线 420,所述接收器 418, 所述接收处理器 470}。
作为一个实施例, 所述第二接收机 1502包括附图 4中的所述多天线接收处理器 472, 所 述第二发送机 1503包括附图 4中的所述多天线发射处理器 471。
作为一个实施例, 所述第二发送机 1503包括附图 4中的控制器 /处理器 459。
作为一个实施例, 所述第二接收机 1502包括附图 4中的控制器 /处理器 459。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相 关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读存储器, 硬盘或者光 盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。 相应的, 上述实施例中的各模块单元, 可以采用硬件形式实现, 也可以由软件功能模块 的形式实现, 本申请不限于任何特定形式的软件和硬件的结合。 本申请中的用户设备、 终端和 UE包括但不限于无人机, 无人机上的通信模块, 遥控飞机, 飞行器, 小型飞机, 手机, 平板电脑, 笔记本, 车载通信设备, 无线传感器, 上网卡, 物联网终端, RFID终 端, NB-I0T终端, MTCC Machine Type Communicat ion,机器类型通信)终端, eMTC( enhanced MTC, 增强的 MTC) 终端, 数据卡, 上网卡, 车载通信设备, 低成本手机, 低成本平板电 脑等设备。 本申请中的基站包括但不限于宏蜂窝基站, 微蜂窝基站, 家庭基站, 中继基 站, gNB (NR节点 B), TRP (Transmitter Receiver Point , 发送接收节点) 等无线通信 设备。
以上所述, 仅为本申请的较佳实施例而己, 并非用于限定本申请的保护范围。 凡在 本申请的精神和原则之内, 所做的任何修改, 等同替换, 改进等, 均应包含在本申请的 保护范围之内。

Claims

权 利 要 求 书
1.被用于无线通信的第一节点, 其特征在于, 包括:
第一接收机: 在第一空口资源池中通过盲检测接收第一信号集合, 根据第一信号集 合在物理层恢复出第一比特块;
第一处理机: 从物理层向更高层传递第一缓冲信息; 当第一条件集合被满足时, 在 所述更高层触发第一信息;
第一发送机: 发送第一无线信号, 所述第一无线信号包括所述第一信息; 其中, 所述第一信息被用于指示缓冲里可被发送的数据量, 所述第一条件集合包括 第一条件, 所述第一条件包括第一缓冲信息被从物理层传递到更高层。
2. 根据权利要求 1所述的第一节点, 其特征在于, 所述第一接收机在第二空口资源 池中监测目标信息以确定所述第一比特块未被目标接收者正确译码。
3. 根据权利要求 1或 2所述的第一节点, 其特征在于, 所述第一条件集合包括第二 条件, 所述第二条件包括: 所有逻辑信道上没有可用于发送的数据。
4. 根据权利要求 1或 2所述的第一节点, 其特征在于, 所述第一条件集合包括第三 条件, 所述第一缓冲信息指示第一优先级, 所述第三条件包括: 所述第一优先级高于所 有己有可用于发送的数据的逻辑信道组中的任一逻辑信道的优先级。
5. 根据权利要求 1至 4中任一权利要求所述的第一节点, 其特征在于, 所述第一缓 冲信息指示所述第一比特块所占用的缓冲尺寸。
6. 根据权利要求 1至 5中任一权利要求所述的第一节点, 其特征在于, 在所述第一 无线信号被发送之前, 当第二条件集合被满足时, 所述第一处理机触发第二信息;
其中, 所述第二信息被用于请求信道资源; 所述第二条件集合包括所述第一信息未 被终止以及信道资源未被分配。
7. 根据权利要求 6所述的第一节点, 其特征在于, 包括:
当第三条件集合被满足时, 所述第一处理机指示所述物理层发送第二信息并且所述 第一发送机发送所述第二信息;
所述第一接收机接收第一信令, 所述第一信令包括所述第一无线信号的调度信息; 其中, 所述第三条件集合包括至少一个能被用于所述第二信息的信道资源被配置给 本传输时间间隔。
8. 根据权利要求 1至 7中任一权利要求所述的第一节点, 其特征在于:
所述第一接收机接收第二信令;
所述第一发送机: 发送第二无线信号;
其中, 所述第二信令包括所述第二无线信号的调度信息, 所述第一比特块被用于生 成所述第二无线信号。
9. 根据权利要求 1至 8中任一权利要求所述的第一节点, 其特征在于, 所述第一信 息是缓冲状态上报。
10.被用于无线通信的第二节点, 其特征在于, 包括:
第二接收机: 在第一空口资源池中执行盲检测, 未能正确译码第一比特块; 接收第 一无线信号, 所述第一无线信号包括第一信息;
其中,所述第一比特块被用于生成在所述第一空口资源池中被发送的第一信号集合; 所述第一信息被用于指示缓冲里可被发送的数据量; 当第一条件集合被满足时, 所述第 一信息在更高层被触发; 所述第一条件集合包括第一条件, 所述第一条件包括第一缓冲 信息被从物理层传递到更高层; 所述第一无线信号被发送。
1 1. 被用于无线通信的第一节点中的方法, 其特征在于, 包括:
在第一空口资源池中通过盲检测接收第一信号集合, 根据第一信号集合在物理层恢 复出第一比特块;
从物理层向更高层传递第一缓冲信息; 当第一条件集合被满足时, 在所述更高层触 发第一信息; 发送第一无线信号, 所述第一无线信号包括所述第一信息;
其中, 所述第一信息被用于指示缓冲里可被发送的数据量, 所述第一条件集合包括 第一条件, 所述第一条件包括第一缓冲信息被从物理层传递到更高层。
12. 被用于无线通信的第二节点中的方法, 其特征在于, 包括:
在第一空口资源池中执行盲检测, 未能正确译码第一比特块;
接收第一无线信号, 所述第一无线信号包括第一信息;
其中,所述第一比特块被用于生成在所述第一空口资源池中被发送的第一信号集合; 所述第一信息被用于指示缓冲里可被发送的数据量; 当第一条件集合被满足时, 所述第 一信息在更高层被触发; 所述第一条件集合包括第一条件, 所述第一条件包括第一缓冲 信息被从物理层传递到更高层; 所述第一无线信号被发送。
PCT/CN2020/074322 2019-02-26 2020-02-05 被用于无线通信的用户设备、基站中的方法和装置 WO2020173288A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/412,208 US11924809B2 (en) 2019-02-26 2021-08-25 Uplink transmission for scheduling resources using buffer status report

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910140360.4A CN111615194B (zh) 2019-02-26 2019-02-26 被用于无线通信的用户设备、基站中的方法和装置
CN201910140360.4 2019-02-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/412,208 Continuation US11924809B2 (en) 2019-02-26 2021-08-25 Uplink transmission for scheduling resources using buffer status report

Publications (1)

Publication Number Publication Date
WO2020173288A1 true WO2020173288A1 (zh) 2020-09-03

Family

ID=72198062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074322 WO2020173288A1 (zh) 2019-02-26 2020-02-05 被用于无线通信的用户设备、基站中的方法和装置

Country Status (3)

Country Link
US (1) US11924809B2 (zh)
CN (2) CN111615194B (zh)
WO (1) WO2020173288A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108259153B (zh) * 2018-01-12 2022-04-19 中兴通讯股份有限公司 一种数据传输方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140348079A1 (en) * 2013-05-21 2014-11-27 Broadcom Corporation Method, Apparatus and Computer Program for Controlling a User Equipment
WO2017029646A1 (en) * 2015-08-20 2017-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Prose relay delay reduction
CN106488577A (zh) * 2016-09-26 2017-03-08 华为技术有限公司 传输信息的方法和用户设备
CN107071916A (zh) * 2017-05-05 2017-08-18 宇龙计算机通信科技(深圳)有限公司 一种资源调度方法及相关设备
CN108811175A (zh) * 2017-05-05 2018-11-13 华硕电脑股份有限公司 无线通信系统中传送数据复制的方法和设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8331394B2 (en) * 2010-02-16 2012-12-11 Motorola Mobility Llc Increasing scheduling request efficiency in a wireless communication system
WO2014153907A1 (zh) * 2013-03-29 2014-10-02 华为技术有限公司 控制请求上行授权资源的方法、用户设备及基站
CN104185290A (zh) * 2013-05-24 2014-12-03 中兴通讯股份有限公司 数据调度的方法、中继设备、中继节点及系统
US10154537B2 (en) * 2014-09-25 2018-12-11 Lg Electronics Inc. Method and apparatus for canceling triggered prose BSR in wireless communication system
US11096217B2 (en) * 2016-02-19 2021-08-17 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system and device for supporting same
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
EP3255950A1 (en) * 2016-06-06 2017-12-13 ASUSTek Computer Inc. Method and apparatus for resource allocation on d2d relay channel in a wireless communication system
CN114364053A (zh) * 2016-08-25 2022-04-15 华为技术有限公司 一种数据通信方法及装置
JP6485429B2 (ja) * 2016-11-04 2019-03-20 トヨタ自動車株式会社 車載ネットワークシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140348079A1 (en) * 2013-05-21 2014-11-27 Broadcom Corporation Method, Apparatus and Computer Program for Controlling a User Equipment
WO2017029646A1 (en) * 2015-08-20 2017-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Prose relay delay reduction
CN106488577A (zh) * 2016-09-26 2017-03-08 华为技术有限公司 传输信息的方法和用户设备
CN107071916A (zh) * 2017-05-05 2017-08-18 宇龙计算机通信科技(深圳)有限公司 一种资源调度方法及相关设备
CN108811175A (zh) * 2017-05-05 2018-11-13 华硕电脑股份有限公司 无线通信系统中传送数据复制的方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) Protocol Specification (Release 15)", 3GPP TS 36.321 V15.3.0 (2018.09), 30 September 2018 (2018-09-30), DOI: 20200414182238A *
HUAWEI ET AL.: "SPS Enhancement on Uu for V2X", 3GPP TSG RAN WG1 MEETING #86 R1-166170, 26 August 2016 (2016-08-26), XP051140090, DOI: 20200414182352A *

Also Published As

Publication number Publication date
CN114390702A (zh) 2022-04-22
US11924809B2 (en) 2024-03-05
CN111615194A (zh) 2020-09-01
CN111615194B (zh) 2022-03-01
US20210385797A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
WO2019174530A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020164417A1 (zh) 被用于无线通信的用户设备、基站中的方法和装置
WO2022041810A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20190380136A1 (en) Method and device for dynamic scheduling in ue and base station
US20200196293A1 (en) Method and device in node for wireless communication
WO2018072615A1 (zh) 一种用于可变的校验比特数的ue、基站中的方法和装置
WO2020253532A1 (zh) 一种被用于无线通信的节点中的方法和装置
US11711185B2 (en) Method and device in communication node for wireless communication
WO2018024158A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
JP7165954B2 (ja) チャネル符号化に用いるユーザー装置、基地局における方法及び装置
US20230370088A1 (en) Method and device in ue and base station for channel coding
WO2021031899A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
US11924809B2 (en) Uplink transmission for scheduling resources using buffer status report
CN112543087A (zh) 一种被用于无线通信的节点中的方法和装置
WO2022041811A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN111525994B (zh) 被用于无线通信的用户设备、基站中的方法和装置
WO2021082933A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021077961A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113810161A (zh) 一种副链路无线通信的方法和装置
CN114125763A (zh) 一种用于中继传输的方法和装置
CN112822645A (zh) 一种被用于无线通信的节点中的方法和装置
WO2024046153A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023193673A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112838914B (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762432

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20762432

Country of ref document: EP

Kind code of ref document: A1