WO2020172926A1 - 配电检测装置、配电检测方法、无线配电检测系统及方法 - Google Patents

配电检测装置、配电检测方法、无线配电检测系统及方法 Download PDF

Info

Publication number
WO2020172926A1
WO2020172926A1 PCT/CN2019/078729 CN2019078729W WO2020172926A1 WO 2020172926 A1 WO2020172926 A1 WO 2020172926A1 CN 2019078729 W CN2019078729 W CN 2019078729W WO 2020172926 A1 WO2020172926 A1 WO 2020172926A1
Authority
WO
WIPO (PCT)
Prior art keywords
power distribution
detection
signal
distribution device
contact state
Prior art date
Application number
PCT/CN2019/078729
Other languages
English (en)
French (fr)
Inventor
陈加敏
赵海军
沈佳丽
傅杨剑
双兵
莫利顿·维维恩
波里尔·吉拉姆
田·西蒙
刘瀚翼
程颖
Original Assignee
施耐德电器工业公司
陈加敏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 施耐德电器工业公司, 陈加敏 filed Critical 施耐德电器工业公司
Publication of WO2020172926A1 publication Critical patent/WO2020172926A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers

Definitions

  • the present disclosure relates to the field of automation control and power distribution, and more specifically to a power distribution detection device, a power distribution detection method, a wireless power distribution detection system, and a wireless power distribution detection method.
  • the power distribution detection device is connected to the main controller and the power distribution device (such as a contactor or pulse switch) by wired connection, which detects the state of the power distribution device and outputs the status information to the main controller.
  • the power distribution device such as a contactor or pulse switch
  • the present disclosure provides a power distribution detection device, a power distribution detection method, a wireless power distribution detection system, and a wireless power distribution detection method.
  • a power distribution detection device Using the power distribution detection device, power distribution detection method, wireless power distribution detection system, and wireless power distribution detection method provided by the present disclosure, on the basis of achieving good power distribution detection, the volume of the power distribution detection device can be effectively reduced and made Has a lower cost.
  • a power distribution detection device is provided, the power distribution detection device is connected to at least one power distribution device, each power distribution device has a contact, and the power distribution detection device includes a detection module, It is connected with the power distribution device to obtain the contact status signal of the power distribution device and generates and outputs status information according to the acquired contact status signal; the short-range wireless communication module is connected to the detection module and receives the status from the detection module Information and send the status information in a short-range wireless communication manner.
  • the power distribution detection device may further include one or more of the following features, individually or in combination.
  • the power distribution device includes a first power distribution device
  • the detection module includes: a first detection circuit that obtains a contact state signal of the first power distribution device and generates the signal according to the contact state signal And output the corresponding first state feedback signal; the micro control unit receives the first state feedback signal from the first detection circuit, and generates and outputs corresponding state information according to the received first state feedback signal.
  • the power distribution device further includes a second power distribution device
  • the detection module further has a second detection circuit
  • the second detection circuit obtains the contact state signal of the second power distribution device, and according to the touch
  • the point state signal generates and outputs a corresponding second state feedback signal
  • the micro control unit receives the second state feedback signal from the second detection circuit, and generates and outputs corresponding state information according to the received second state feedback signal.
  • the first power distribution device includes a first contact and a second contact
  • the detection module further has a second detection circuit
  • the first detection circuit obtains the contact of the first contact of the first power distribution device.
  • Point status signal and generate and output the corresponding first status feedback signal according to the contact status signal
  • the second detection circuit acquires the contact status signal of the second contact of the first power distribution device, and according to the contact status signal
  • the state signal generates and outputs the corresponding second state feedback signal
  • the micro control unit receives the first state feedback signal and the second state feedback signal, and generates and outputs the corresponding state feedback signal according to the first state feedback signal and the second state feedback signal.
  • Status information is included in the first power distribution device.
  • the short-range wireless communication module receives the detection command in a short-range wireless communication manner, and generates and outputs a detection control signal according to the received detection command; the detection module receives the detection control from the short-range wireless communication module According to the received detection control signal, the contact state signal of the power distribution device is obtained.
  • a power distribution detection method includes: acquiring a contact state signal of a power distribution device and generating state information according to the contact state signal; and transmitting in a short-range wireless communication manner The status information.
  • the power distribution detection method according to the present disclosure may further include one or more of the following features, individually or in combination.
  • the power distribution device includes a first power distribution device, and obtaining a contact state signal of the power distribution device and generating state information according to the contact state signal includes: obtaining a contact state signal of the first power distribution device and A first state feedback signal is generated according to the contact state signal; and state information is generated according to the first state feedback signal.
  • the power distribution device further includes a second power distribution device, and obtaining the contact state signal of the power distribution device and generating state information according to the contact state signal further includes: obtaining the contact state of the second power distribution device Signal and generate a second state feedback signal according to the contact state signal; generate state information according to the second state feedback signal.
  • the first power distribution device includes a first contact and a second contact
  • said acquiring a contact state signal of the power distribution device and generating state information according to the contact state signal further includes: acquiring the first The contact state signal of the first contact of the power distribution device is generated and the first state feedback signal is generated according to the contact state signal; the contact state signal of the second contact of the first power distribution device is obtained and the contact state signal is obtained according to the contact state signal
  • the state signal generates a first state feedback signal; the state information is generated according to the first state feedback signal and the second state feedback signal.
  • the power distribution detection method further includes: receiving a detection command in a short-range wireless communication mode, and generating a detection control signal according to the detection command; and obtaining the contact state of the power distribution device according to the detection control signal signal.
  • a wireless power distribution detection system includes: a power distribution detection device, which obtains a contact state signal of the power distribution device, and according to the obtained contact The status signal is generated and the status information is output by the short-range wireless communication; the local gateway receives the status information from the power distribution detection device in the short-range wireless communication and outputs the status information; the user module receives the status from the local gateway information.
  • the wireless power distribution detection system according to the present disclosure may further include one or more of the following features, individually or in combination.
  • the power distribution detection device is connected to at least one power distribution device, each power distribution device has a contact, and the power distribution detection device includes: a detection module connected to the power distribution device to obtain power distribution The contact status signal of the device is generated and output status information according to the acquired contact status signal; a short-range wireless communication module, which is connected to the detection module, receives the status information from the detection module, and sends the status information through short-range wireless communication. ⁇ State information.
  • the short-range wireless communication module receives a detection command from the local gateway in a short-range wireless communication mode, and generates and outputs a detection control signal according to the received detection command; the detection module receives a detection control signal from the short-range wireless communication module The detection control signal is received, and the contact state signal of the power distribution device is obtained according to the received detection control signal.
  • a wireless power distribution detection method includes: a power distribution detection device obtains a contact state signal of the power distribution device, and generates and short-circuits the signal according to the obtained contact state signal.
  • the state information is output by the wireless communication mode; the local gateway receives the state information from the power distribution detection device and outputs the state information in the short-distance wireless communication mode; the user module receives the state information from the local gateway.
  • the wireless power distribution detection method according to the present disclosure may further include one or more of the following features, individually or in combination.
  • the power distribution detection device obtains the contact state signal of the power distribution device, and generates and outputs the state information in a short-range wireless communication mode according to the obtained contact state signal includes: The contact state signal of the electrical device generates state information according to the contact state signal; the power distribution detection device transmits the state information in a short-range wireless communication manner.
  • the wireless power distribution detection method further includes: the power distribution detection device receives a detection command from the local gateway in a short-range wireless communication mode, and generates a detection control signal according to the detection command; The detection control signal obtains the contact state signal of the power distribution device.
  • the state detection of the power distribution device can be well completed, and in particular, it can effectively reduce the power distribution. Detect the volume of the device and make it have a lower cost.
  • FIG. 1 shows a flowchart of a power distribution detection method 700 according to an embodiment of the present disclosure
  • Fig. 2A shows a flowchart of an exemplary process S701-1 of acquiring a contact state signal of a power distribution device and generating state information according to the contact state signal according to an embodiment of the present disclosure
  • FIG. 2B shows a flowchart of another exemplary process S701-2 of obtaining a contact state signal of a power distribution device and generating state information according to the contact state signal according to an embodiment of the present disclosure
  • 2C shows a flowchart of another exemplary process S701-3 of acquiring a contact state signal of a power distribution device and generating state information according to the contact state signal according to an embodiment of the present disclosure
  • FIG. 3 shows a flowchart of a variation 710 of the power distribution detection method according to an embodiment of the present disclosure
  • FIG. 4 shows a schematic diagram of a power distribution detection device 100 according to an embodiment of the present disclosure
  • FIG. 5 shows a schematic diagram of the detection module 110 according to an embodiment of the present disclosure
  • FIG. 6A shows a schematic diagram of a variant of the detection module 110 according to an embodiment of the present disclosure, which includes a second detection circuit 113;
  • FIG. 6B shows a schematic diagram of a variant of the detection module 110 according to an embodiment of the present disclosure, in which the first detection circuit 112 and the second detection circuit 113 are respectively connected to different power distribution devices;
  • FIG. 6C shows a schematic diagram of another variation of the power distribution detection device 100 according to an embodiment of the present disclosure
  • FIG. 7A shows a flowchart of a wireless power distribution detection method 950 according to an embodiment of the present disclosure
  • FIG. 7B shows a flowchart of the user module 400 receiving status information from the local gateway 300 according to an embodiment of the present disclosure
  • FIG. 8 shows a flowchart of a variant 960 of the wireless power distribution detection method according to an embodiment of the present disclosure
  • FIG. 9A shows a schematic diagram of a wireless power distribution detection system 800A according to an embodiment of the present disclosure
  • FIG. 9B shows a schematic diagram of a wireless power distribution detection system 800B according to an embodiment of the present disclosure
  • FIG. 9C shows a schematic diagram of a wireless power distribution detection system 800C according to an embodiment of the present disclosure
  • FIG. 10 shows a schematic diagram of a variant 900A of the wireless power distribution detection system according to an embodiment of the present disclosure.
  • any number of different modules may be used and run on the user terminal and/or server.
  • the modules are merely illustrative, and different modules may be used for different aspects of the system and method.
  • a flowchart is used in this application to illustrate the operations performed by the system according to the embodiments of the application. It should be understood that the preceding or following operations are not necessarily performed exactly in order. On the contrary, the various steps can be processed in reverse order or simultaneously as required. At the same time, you can also add other operations to these processes, or remove a step or several operations from these processes.
  • FIG. 1 shows a flowchart of a power distribution detection method 700 according to an embodiment of the present disclosure.
  • step S701 a contact state signal of the power distribution device is acquired and state information is generated according to the contact state signal.
  • the power distribution device can be, for example, a contactor (iCT), a pulse switch (iTL), or a circuit breaker, such as an air circuit breaker (ACB), a frame circuit breaker (MCCB) or a miniature circuit breaker (MCB).
  • the power distribution device can be installed in an industrial power distribution box or a household power distribution box, one end of its contact is connected to the power supply of the power distribution box, and the other end can be connected to an external load, which can be an industrial field device , Such as motors, sensors, which can also be household loads, such as building power supply circuits, household appliances.
  • the embodiments of the present disclosure are not limited by the specific type of the power distribution device and the type of external load connected to the power distribution device.
  • the contacts of the power distribution device can be in an open state and a closed state. For example, when the power distribution device is powered on or in an operating mode, the contacts of the power distribution device are in a closed state; when the power distribution device is powered off or not in an operating mode, the contacts of the power distribution device are in an open state.
  • the contact state signal may be a switch value signal, which identifies the on-off state of the contact. For example, it can use “1" to indicate that the contact is in the closed state, and "0" to indicate that the contact is in the open state, or it can also be other types of signals, such as voltage signals or current signals.
  • the embodiments of the present disclosure are not touched. Restrictions on the types of point status signals.
  • the status information of the power distribution device may be acquired regularly based on a preset time interval, or the status information of the power distribution device may also be acquired in response to a user's control command.
  • the trigger condition for acquiring the status information of the power distribution device and the restriction on the acquisition frequency may be acquired regularly based on a preset time interval, or the status information of the power distribution device may also be acquired in response to a user's control command.
  • the state information I may be, for example, preset text information, such as "distribution device contacts are in a closed state", “distribution device contacts are in an open state", or it may also be a preset character string or code,
  • preset text information such as "distribution device contacts are in a closed state", "distribution device contacts are in an open state", or it may also be a preset character string or code,
  • the embodiments of the present disclosure are not limited by the type of status information.
  • step S702 the status information is sent in a short-range wireless communication manner.
  • the short-range wireless communication method may be, for example, a short-range wireless communication method based on the Zigbee protocol, or it may also be a Bluetooth communication method.
  • the embodiments of the present disclosure are not limited by the specific type of the selected short-range wireless communication method.
  • the status information can be sent to the local gateway through short-range wireless communication to further upload it to the user end, or it can be sent to the master controller of the detection system for subsequent processing.
  • the embodiments of the present disclosure are not Restrictions on the sending object of status information.
  • FIG. 2A shows a flowchart of an exemplary process S701-1 of acquiring a contact state signal of a power distribution device and generating state information according to the contact state signal according to an embodiment of the present disclosure.
  • the power distribution device includes the first power distribution device 200.
  • the contact state signal of the first power distribution device 200 is acquired and the contact state is The signal generates the first state feedback signal.
  • the first state feedback signal may be, for example, a voltage feedback signal or a current feedback signal, which may be a continuous signal or a pulse signal, and may be an original signal or a pulse width modulation (PWM) wave signal after pulse width modulation. .
  • PWM pulse width modulation
  • the embodiment of the present disclosure is not limited by the type of the first state feedback signal.
  • the contact state signal of the first power distribution device 200 can be directly obtained through the detection terminal of the first power distribution device 200, or the current or voltage change inside the first power distribution device 200 can be detected through a detection circuit and further processed to Obtain the contact state signal.
  • the embodiments of the present disclosure are not limited by the way of acquiring the contact state signal of the first power distribution device.
  • step S7012 state information is generated according to the first state feedback signal.
  • the state information may be directly output based on only the first state feedback signal, or the state information may be generated on the basis of combining the first state feedback signal with other state signals or preset conditions.
  • the embodiments of the present disclosure are not limited by the way the state information is generated.
  • the contact status signal of the power distribution device can be obtained in time and corresponding status information can be output based on the contact status signal, so as to realize real-time detection of the status of the power distribution device.
  • FIG. 2B shows a flowchart of another exemplary process S701-2 of acquiring a contact state signal of a power distribution device and generating state information according to the contact state signal according to an embodiment of the present disclosure.
  • the power distribution device further has a second power distribution device.
  • a contact state signal of the second power distribution device is acquired and based on the contact state signal A second state feedback signal T 2 is generated.
  • the second state feedback signal can be, for example, a voltage feedback signal or a current feedback signal, which can be a continuous signal or a pulse signal, and can be an original signal or a pulse width modulation (PWM) wave signal after pulse width modulation. .
  • PWM pulse width modulation
  • the embodiment of the present disclosure is not limited by the type of the second state feedback signal.
  • step S7012' state information is generated according to the second state feedback signal.
  • the state information may be directly output based on only the second state feedback signal, or the state information may be generated on the basis of a combination of the second state feedback signal, the first state feedback signal, or a preset condition.
  • the embodiments of the present disclosure are not limited by the way the state information is generated.
  • steps S701-1 and S701-2 can be performed in parallel or in sequence, and no limitation is imposed on them here.
  • FIG. 2C shows a flowchart of another exemplary process S701-3 of acquiring a contact state signal of a power distribution device and generating state information according to the contact state signal according to an embodiment of the present disclosure.
  • the first power distribution device may have a first contact and a second contact.
  • step S7013 the contact of the first contact of the first power distribution device is obtained.
  • the state signal generates a first state feedback signal according to the contact state signal.
  • step S7014 the contact state signal of the second contact of the first power distribution device is acquired and a second state feedback signal is generated according to the contact state signal.
  • step S7015 state information is generated according to the first state feedback signal and the second state feedback signal.
  • steps S7013 and S7014 can be performed in parallel or in sequence, and no limitation is imposed on them here.
  • the state information may be output based on the first state feedback signal and the second state feedback signal, or the state information may be generated on the basis of integrating the second state feedback signal, the first state feedback signal, or a preset condition.
  • the embodiments of the present disclosure are not limited by the way the state information is generated.
  • multiple contact state signals of a power distribution device or multiple power distribution devices can be obtained at the same time, and corresponding state information is output based on the contact state signal, which is beneficial to improve Detection efficiency.
  • FIG. 3 shows a flowchart of a variation 710 of the power distribution detection method according to an embodiment of the present disclosure.
  • step S711 a detection command is received in a short-range wireless communication manner, and a detection control signal is generated according to the detection command.
  • the detection command may be a control command directly input by the user, or may also be a detection command generated by further processing the user's control command.
  • the embodiments of the present disclosure are not limited by the source of the detection command.
  • the generated detection control signal can be, for example, a voltage control signal or a current control signal, which can be a continuous signal or a pulse signal, and can adopt a high level or a low level as its effective level.
  • the embodiments of the present disclosure are not limited by the type of detection control signal.
  • step S712 the contact state signal of the power distribution device is obtained according to the detection control signal.
  • FIG. 4 shows a schematic diagram of a power distribution detection device 100 according to an embodiment of the present disclosure.
  • the power distribution detection device 100 is connected to at least one power distribution device, and each power distribution device has a contact.
  • the contacts of the power distribution device can be in an open state and a closed state. For example, when the power distribution device is powered on or in working mode, the contacts of the power distribution device are in the closed state; when the power distribution device is powered off or not in the working mode, the contacts of the power distribution device are in the open state .
  • the power distribution detection device 100 includes a short-range wireless communication module 120 and a detection module 110.
  • the detection module 110 is configured to be connected to a power distribution device, obtain a contact state signal of the power distribution device, and generate and output state information according to the obtained contact state signal.
  • the power distribution device may have one or more detection terminals, and the detection module 110 of the power distribution detection device 100 may be connected to the one or more detection terminals to realize the detection of the state of the contacts in the power distribution device. Detection.
  • the short-range wireless communication module 120 is connected to the detection module 110 and is configured to receive the status information I from the detection module 110 and send the status information I in a short-range wireless communication manner.
  • the short-range wireless communication module 120 may include a receiving terminal and a signal output terminal.
  • the receiving terminal is used to receive status information from the detection module 110, and the signal output terminal is used to transmit the status information in a short-range wireless communication manner.
  • the status information can be sent to the local gateway 300.
  • FIG. 5 shows a schematic diagram of the detection module 110 according to an embodiment of the present disclosure.
  • the power distribution device is the first power distribution device 200, and the detection module 110 includes a micro control unit 111.
  • the first detection circuit 112 is configured to obtain the contact state signal of the first power distribution device 200, and generate and output a corresponding first state feedback signal according to the contact state signal.
  • the first detection circuit may include a detection input terminal and a detection output terminal, which obtains the contact state signal S 1 of the power distribution device through the detection input terminal, and passes the corresponding first state feedback signal T 1 through the detection output terminal Output.
  • the first detection circuit 112 may directly obtain the contact state signal of the first power distribution device 200, or it may detect the current or voltage change inside the first power distribution device 200 and further process it to obtain The contact state signal.
  • the embodiments of the present disclosure are not limited by the manner in which the first detection circuit obtains the contact state signal.
  • the micro control unit 111 is configured to receive the first state feedback signal from the first detection circuit 112, and generate and output corresponding state information according to the received first state feedback signal.
  • the micro-control unit 111 may have a first feedback input terminal and a signal output terminal, the first feedback input terminal is used to receive the first state feedback signal T 1 from the first detection circuit 112, and the signal output terminal short range wireless communication module configured to generate an output corresponding state information I 1, for example, and outputs it to the micro control unit is connected.
  • the detection module can obtain the contact status signal of the power distribution device in time through the first detection module and output corresponding status information based on the contact status signal to realize the Real-time detection of electrical device status.
  • FIG. 6A shows a schematic diagram of a variant of the detection module 110 according to an embodiment of the present disclosure, which includes a second detection circuit 113.
  • the first power distribution device includes a first contact and a second contact
  • the detection module 110 further includes a second detection circuit 113.
  • the first detection circuit 112 is configured to obtain the contact state signal of the first contact of the first power distribution device and generate and output a corresponding first state feedback signal according to the contact state signal.
  • the second detection circuit 113 is configured to obtain a contact state signal of the power distribution device, and generate and output a corresponding second state feedback signal according to the contact state signal.
  • the second detection circuit may include a detection input terminal and a detection output terminal, which acquires the contact state signal S 2 of the power distribution device through the detection input terminal, and passes the corresponding second state feedback signal T 2 through the detection output terminal Output.
  • the second detection circuit 113 may directly obtain the contact state signal of the power distribution device, or it may detect the current or voltage change inside the power distribution device and further process to obtain the contact state signal .
  • the embodiments of the present disclosure are not limited by the detection manner of the second detection circuit.
  • the micro control unit 111 is configured to receive a first state feedback signal and a second state feedback signal, and generate and output corresponding state information according to the first state feedback signal and the second state feedback signal.
  • the micro control unit 111 may have a second feedback input terminal and a signal output terminal, the second feedback input terminal is used to receive the second state feedback signal T 2 from the second detection circuit 112, and the signal output terminal It is used to output the generated corresponding status information I 2 , for example, it can be output to a short-range wireless communication module connected to the micro-control unit.
  • the detection module can obtain the contact status signal of the power distribution device in time through the second detection module and output corresponding status information based on the contact status signal, so as to realize the status of the power distribution device. Real-time detection.
  • the power distribution device is a frame circuit breaker
  • the detection input terminal of the first detection circuit 112 may be connected to The auxiliary (OF) contact in the frame circuit breaker
  • the detection input end of the second detection circuit 113 can be connected to the trip indication (SD) contact in the frame circuit breaker or the dry contact in it.
  • SD trip indication
  • the micro-control The unit will make a comprehensive judgment based on the first state feedback signal T 1 received by the first feedback input terminal and the second state feedback signal T 2 received by the second feedback input terminal and generate corresponding state information I z .
  • FIG. 6B shows a schematic diagram of a variant of the detection module 110 according to an embodiment of the present disclosure, in which the first detection circuit 112 and the second detection circuit 113 are respectively connected to different power distribution devices.
  • the power distribution device includes a first power distribution device and a second power distribution device, and the first detection circuit 112 and the second detection circuit 113 are respectively connected to different power distribution devices. Device.
  • the first detection circuit 112 is connected to the first power distribution device 200 to obtain the contact state signal S 1 of the power distribution device 200
  • the second detection circuit 113 is connected to the second power distribution device 201 and is used to obtain the contact state signal S 2 of the power distribution device 201.
  • the micro control unit will be based on the first state feedback signal received by the first feedback input terminal. T 1 and the second state feedback signal T 2 received by the second feedback input terminal respectively generate corresponding state information I 1 and state information I 2 .
  • the detection module can obtain multiple contact state signals of the power distribution device or obtain the contact state signals of multiple power distribution devices at the same time, and based on all The contact status signal outputs corresponding status information, which is beneficial to improve the detection efficiency.
  • FIG. 6C shows a schematic diagram of another variation of the power distribution detection device 100 according to an embodiment of the present disclosure.
  • the short-range wireless communication module 120 is configured to receive a detection command in a short-range wireless communication manner, and generate and output a detection control signal according to the received detection command.
  • the detection module 110 receives the detection control signal from the short-range wireless communication module 120, and obtains the contact state signal of the power distribution device according to the received detection control signal.
  • the power distribution detection device further includes a power supply circuit, which supplies power to various functional circuits in the power distribution detection device, such as a micro-control unit and a first detection circuit.
  • the power circuit can, for example, convert an external AC power source into a power supply circuit required by the power distribution detection device.
  • the power distribution detection device further includes an electromagnetic compatibility (EMC) protection circuit, which is connected to the power supply circuit, and is designed to suppress electromagnetic interference from the external environment and at the same time suppress electromagnetic radiation from the product.
  • EMC electromagnetic compatibility
  • the power distribution detection device further includes a button circuit, which is connected to the micro-control unit, which can convert the button signal input by the user into a control command that can be recognized by the micro-control unit, so that the user can realize through button operation For the functional control of power distribution detection devices.
  • the power distribution detection device further includes an external storage circuit and a debugging upgrade circuit, which are respectively connected to the micro-control unit for storing upgrade packages and implementing the upgrade process for the device.
  • FIG. 7A shows a flowchart of a wireless power distribution detection method 950 according to an embodiment of the present disclosure.
  • step S951 the power distribution detection device 100 obtains the contact state signal of the power distribution device, and generates and outputs the state information in a short-range wireless communication manner according to the obtained contact state signal.
  • the power distribution detection device 100 can execute the power distribution detection method described above, and has the structure and function of the power distribution detection device described above.
  • the local gateway 300 receives the status information from the power distribution detection device 100 in a short-range wireless communication mode and outputs the status information.
  • the output status information of the local gateway can be realized in a wired manner, such as Ethernet (Ethernet), or in a wireless manner, such as a mobile communication system, such as the third generation mobile communication system (3G) or the fourth generation mobile communication system ( 4G) or through general packet radio service technology (GPRS).
  • a wired manner such as Ethernet (Ethernet)
  • a wireless manner such as a mobile communication system, such as the third generation mobile communication system (3G) or the fourth generation mobile communication system ( 4G) or through general packet radio service technology (GPRS).
  • GPRS general packet radio service technology
  • step S953 the user module 400 receives the status information from the local gateway 300.
  • the user module 400 may be one or more dedicated or general computer system modules, such as a personal computer, a notebook computer, a tablet computer, a mobile phone, a personal digital assistant (PDA), and any smart portable device.
  • a personal computer such as a personal computer, a notebook computer, a tablet computer, a mobile phone, a personal digital assistant (PDA), and any smart portable device.
  • PDA personal digital assistant
  • the embodiments of the present disclosure are not limited by the specific types of user modules.
  • the user module can receive status information, for example, through wired means, such as Ethernet (Ethernet), or wireless means, for example, through a mobile communication system, such as the third-generation mobile communication system (3G) or the fourth-generation mobile communication system ( 4G) or through general packet radio service technology (GPRS).
  • a mobile communication system such as the third-generation mobile communication system (3G) or the fourth-generation mobile communication system ( 4G) or through general packet radio service technology (GPRS).
  • GPRS general packet radio service technology
  • the power distribution detection device can output status information to the user module in real time, which is beneficial for the user to view the status of the power distribution device and perform corresponding control. And because of the wireless communication method, there is no need to connect additional signal lines and communication lines, which simplifies the design of the wireless power distribution detection system.
  • FIG. 7B shows a flow chart of the user module 400 receiving the status information from the local gateway 300 according to an embodiment of the present disclosure.
  • a cloud gateway 500 is also provided between the user module 400 and the local gateway 300.
  • the above step S953 can be described in more detail.
  • the cloud gateway 500 receives status information from the local gateway 300, and then, in step S9532, the user module 400 receives status information from the cloud gateway 500.
  • the cloud gateway may be, for example, an Facebook Cloud gateway, an Amazon cloud gateway, a COM'X cloud gateway, or other types of cloud gateways.
  • the embodiments of the present disclosure are not limited by the specific cloud gateway type selected.
  • the cloud gateway receives and sends status information, for example, through wired means, such as Ethernet (Ethernet), or wireless means, for example, through mobile communication systems, such as third-generation mobile communication systems (3G) or fourth-generation mobile communications.
  • 3G third-generation mobile communication systems
  • 4G fourth-generation mobile communications.
  • System (4G) implementation or through general packet radio service technology (GPRS).
  • GPRS general packet radio service technology
  • the cloud gateway receives status information from the local gateway and sends the status information to the user module, so that the status information of power distribution devices from multiple local gateways can be sent to the user module, which increases the amount of status information that the user can receive , Improve the work efficiency of the power distribution detection system.
  • a cloud server 600 is further provided between the user module 400 and the cloud gateway 500. Then, in step S9532, the process of the user module 400 receiving status information from the cloud gateway 500 can be described in more detail.
  • step S9532-1 the cloud server 600 receives status information from the cloud gateway 500, and second, in step S9521-2, the cloud server 600 sends the status information to the user module 400.
  • the cloud server may be, for example, an Facebook Cloud server, a Tencent Cloud server, a Huawei Cloud server, or other types of cloud servers, and the embodiments of the present disclosure are not limited by the specific server type selected.
  • the cloud server receives and sends control commands, for example, through wired means, such as Ethernet (Ethernet), or wirelessly, for example, through mobile communication systems, such as third-generation mobile communication systems (3G) or fourth-generation mobile communications.
  • 3G third-generation mobile communication systems
  • 4G fourth-generation mobile communications
  • System (4G) implementation or through general packet radio service technology (GPRS).
  • GPRS general packet radio service technology
  • the cloud server receives status information from the cloud gateway and sends the status information to the user module, so that the status information of the power distribution devices from multiple cloud gateways can be sent to the user module, which increases the amount of status information that the user can receive. At the same time, it is beneficial to the backup and storage of the state information.
  • the power distribution detection device 100 obtains the contact state signal of the power distribution device, and generates and outputs the state information in a short-range wireless communication manner according to the obtained contact state signal includes: the power distribution detection device 100 The contact state signal of the power distribution device is acquired and the state information is generated according to the contact state signal. The power distribution detection device 100 transmits the state information in a short-range wireless communication manner.
  • FIG. 8 shows a flowchart of a variant 960 of the wireless power distribution detection method according to an embodiment of the present disclosure.
  • step S961 the power distribution detection device 100 receives a detection command from the local gateway 300 in a short-range wireless communication manner, and generates a detection control signal according to the detection command. After the detection control signal is generated, in step S962, the power distribution detection device 100 obtains a contact state signal of the power distribution device according to the detection control signal.
  • FIG. 9A shows a schematic diagram of a wireless power distribution detection system 800A according to an embodiment of the present disclosure.
  • the wireless power distribution detection system 800A includes: a user module 400, a local gateway 300, and a power distribution detection device 100.
  • the power distribution detection device 100 is configured to obtain a contact state signal of the power distribution device, and generate and output the state information in a short-range wireless communication manner according to the obtained contact state signal.
  • the power distribution detection device 100 can perform the power distribution detection method described above.
  • the local gateway 300 is configured to receive status information from the power distribution detection device 100 in a short-range wireless communication manner and output the status information.
  • the user module 400 is configured to receive status information from the local gateway 300.
  • the user module 400 may be one or more dedicated or general computer system modules, such as a personal computer, a notebook computer, a tablet computer, a mobile phone, a personal digital assistant (PDA) and any smart portable device.
  • PDA personal digital assistant
  • the embodiments of the present disclosure are not limited by the specific types of user modules.
  • the power distribution detection device can output status information to the user module in real time, which is beneficial for users to view the status of the power distribution device and perform corresponding control. And because of the wireless communication method, there is no need to connect additional signal lines and communication lines, which simplifies the system design.
  • At least one power distribution device is connected to the power distribution detection device 100 of the wireless power distribution detection system, and the power distribution device has contacts.
  • the power distribution detection device is configured to obtain a contact state signal of the power distribution device, generate state information according to the contact state signal, and the power distribution detection device transmits the state information in a short-range wireless communication manner.
  • FIG. 9B shows a schematic diagram of a wireless power distribution detection system 800B according to an embodiment of the present disclosure.
  • a cloud gateway 500 is further provided between the user module 400 and the local gateway 300, and the cloud gateway 500 is configured as Receive status information from the local gateway 300 and send the status information to the user module 400.
  • the cloud gateway receives status information from the local gateway and sends the status information to the user module, so that the status information of the power distribution devices from multiple local gateways can be sent to the user module, which improves the user's receivability
  • the quantity of received status information improves the work efficiency of the power distribution detection system.
  • FIG. 9C shows a schematic diagram of a wireless power distribution detection system 800C according to an embodiment of the present disclosure.
  • a cloud server 600 is further provided between the user module 400 and the cloud gateway 500, and the cloud server 600 receives data from the cloud The state information of the gateway 500 and sends the state information to the user module 400.
  • the cloud server receives the status information from the cloud gateway and sends the status information to the user module, so that the status information of the power distribution devices from multiple cloud gateways can be sent to the user module, which improves the status that the user can receive
  • the amount of information is also conducive to the backup and storage of the state information.
  • FIG. 10 shows a schematic diagram of a variant 900A of the wireless power distribution detection system according to an embodiment of the present disclosure.
  • the wireless power distribution device receives a detection command from the local gateway 300 in a short-range wireless communication manner, and generates a detection control signal according to the received detection command.
  • the wireless power distribution device obtains the contact state signal of the power distribution device according to the received detection control signal.
  • first/second embodiment means a certain feature, structure, or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “an embodiment” or “an embodiment” or “an alternative embodiment” mentioned twice or more in different positions in this specification does not necessarily refer to the same embodiment. . In addition, some features, structures, or characteristics in one or more embodiments of the present application can be appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

一种配电检测装置、配电检测方法、无线配电检测系统及无线配电检测方法,所述配电检测装置(100)连接有至少一个配电装置,每个配电装置具有触点,所述配电检测装置(100)包括:检测模块(110),其与配电装置连接,获取配电装置的触点状态信号并根据所获取的触点状态信号产生并输出状态信息;短距无线通信模块(120),其与检测模块(110)连接,从检测模块(110)接收所述状态信息并以短距无线通信方式发送所述状态信息。

Description

配电检测装置、配电检测方法、无线配电检测系统及方法
相关申请的交叉引用
本申请要求于2019年02月28日提交的中国专利申请第201910151344.5号的优先权,该中国专利申请的全文通过引用的方式结合于此以作为本申请的一部分。
技术领域
本公开涉及自动化控制及配电领域,更具体地涉及一种配电检测装置、配电检测方法、无线配电检测系统及无线配电检测方法。
背景技术
随着自动化控制在民用和商用领域的广泛应用,配电检测装置在楼宇配电箱/配电柜和家用配电箱中起到日益重要的作用,因此配电检测装置也面临着更高的要求。在目前的配电检测中,配电检测装置与总控制器及配电装置(例如接触器或脉冲开关)采取有线连接,其检测配电装置的状态并将状态信息输出至总控制器。
然而,采用有线连接的方式实现检测时,需要连接较多的信号线、通信线,易造成电磁干扰,且增加了配电检测装置的体积及成本;且当同一个总控制器需要控制较多的配电检测装置时,在总控制器侧将需要诸多接口,增加了其制造成本且难于工程实现。
因此,需要一种在实现良好对于配电装置的状态检测的前提下,具有较低成本及较高可靠性的配电检测装置。
发明内容
针对以上问题,本公开提供了一种配电检测装置、配电检测方法、无线配电检测系统及无线配电检测方法。利用本公开提供的配电检测装置、配电检测方法、无线配电检测系统及无线配电检测方法,可以在实现良好配电检测的基础上,有效减小配电检测装置的体积并使其具有较低的成本。
根据本公开的一方面,提出了一种配电检测装置,所述配电检测装置连接有至少一个配电装置,每个配电装置具有触点,所述配电检测装置包括:检测模块,其与配电装置连接,获取配电装置的触点状态信号并根据所获取的触点状态信号产生并输出状态信息;短距无线通信模块,其与检测模块连接,从检测模块接收所述状态信息并以短距无线通信方式发送所述状态信息。
根据本公开的配电检测装置还可包括以下一个或多个特征,单独地或结合地。
在一些实施例中,配电装置中包括第一配电装置,所述检测模块包括:第一检测电路,其获取第一配电装置的触点状态信号,并根据所述触点状态信号产生并输出相应的第一状态反馈信号;微控制单元,其从第一检测电路接收所述第一状态反馈信号,并根据所接收的第一状态反馈信号产生并输出相应的状态信息。
在一些实施例中,配电装置中还包括第二配电装置,所述检测模块还具有第二检测电路,第二检测电路获取第二配电装置的触点状态信号,并根据所述触点状态信号产生并输出相应的第二状态反馈信号;微控制单元从第二检测电路接收所述第二状态反馈信号,并根据所接收的第二状态反馈信号产生并输出相应的状态信息。
在一些实施例中,第一配电装置包括第一触点和第二触点,所述检测模块还具有第二检测电路,第一检测电路获取第一配电装置的第一触点的触点状态信号,并根据所述触点状态信号产生并输出相应的第一状态反馈信号;第二检测电路获取第一配电装置的第二触点的触点状态信号,并根据所述触点状态信号产生并输出相应的第二状态反馈信号;微控制单元接收第一状态反馈信号和第二状态反馈信号,并根据所述第一状态反馈信号和所述第二状态反馈信号产生并输出相应的状态信息。
在一些实施例中,所述短距无线通信模块以短距无线通信方式接收检测命令,并根据所接收的检测命令产生并输出检测控制信号;所述检测模块从短距无线通信模块接收检测控制信号,并根据所接收的检测控制信号,获取配电装置的触点状态信号。
根据本公开的另一方面,提供了一种配电检测方法,所述方法包括:获取配电装置的触点状态信号并根据所述触点状态信号产生状态信息;以短距 无线通信方式发送所述状态信息。
根据本公开的配电检测方法还可包括以下一个或多个特征,单独地或结合地。
在一些实施例中,配电装置包括第一配电装置,获取配电装置的触点状态信号并根据所述触点状态信号产生状态信息包括:获取第一配电装置的触点状态信号并根据所述触点状态信号产生第一状态反馈信号;根据所述第一状态反馈信号产生状态信息。
在一些实施例中,配电装置还包括第二配电装置,获取配电装置的触点状态信号并根据所述触点状态信号产生状态信息还包括:获取第二配电装置的触点状态信号并根据所述触点状态信号产生第二状态反馈信号;根据所述第二状态反馈信号产生状态信息。
在一些实施例中,第一配电装置包括第一触点和第二触点,所述获取配电装置的触点状态信号并根据所述触点状态信号产生状态信息还包括:获取第一配电装置的第一触点的触点状态信号并根据所述触点状态信号产生第一状态反馈信号;获取第一配电装置的第二触点的触点状态信号并根据所述触点状态信号产生第一状态反馈信号;根据所述第一状态反馈信号和第二状态反馈信号产生状态信息。
在一些实施例中,所述配电检测方法还包括:以短距无线通信方式接收检测命令,根据所述检测命令产生检测控制信号;根据所述检测控制信号,获取配电装置的触点状态信号。
根据本公开的另一方面,提供了一种无线配电检测系统,所述无线配电检测系统包括:配电检测装置,其获取配电装置的触点状态信号,并根据所获取的触点状态信号产生并以短距无线通信方式输出状态信息;本地网关,其以短距无线通信方式从配电检测装置接收状态信息并将所述状态信息输出;用户模块,其接收来自本地网关的状态信息。
根据本公开的无线配电检测系统还可包括以下一个或多个特征,单独地或结合地。
在一些实施例中,所述配电检测装置连接有至少一个配电装置,每个配电装置具有触点,所述配电检测装置包括:检测模块,其与配电装置连接,获取配电装置的触点状态信号并根据所获取的触点状态信号产生并输出状态 信息;短距无线通信模块,其与检测模块连接,从检测模块接收所述状态信息并以短距无线通信方式发送所述状态信息。
在一些实施例中,所述短距无线通信模块以短距无线通信方式从本地网关接收检测命令,并根据所接收的检测命令产生并输出检测控制信号;所述检测模块从短距无线通信模块接收检测控制信号,并根据所接收的检测控制信号获取配电装置的触点状态信号。
根据本公开的另一方面,提供了一种无线配电检测方法,所述方法包括:配电检测装置获取配电装置的触点状态信号,并根据所获取的触点状态信号产生并以短距无线通信方式输出状态信息;本地网关以短距无线通信方式从配电检测装置接收状态信息并将所述状态信息输出;用户模块接收来自本地网关的状态信息。
根据本公开的无线配电检测方法还可包括以下一个或多个特征,单独地或结合地。
在一些实施例中,所述配电检测装置获取配电装置的触点状态信号,并根据所获取的触点状态信号产生并以短距无线通信方式输出状态信息包括:配电检测装置获取配电装置的触点状态信号并根据所述触点状态信号产生状态信息;配电检测装置以短距无线通信方式发送所述状态信息。
在一些实施例中,所述的无线配电检测方法还包括:配电检测装置以短距无线通信方式从本地网关接收检测命令,并根据所述检测命令产生检测控制信号;配电检测装置根据所述检测控制信号,获取配电装置触点状态信号。
利用本公开提供的配电检测装置、配电检测方法、无线配电检测系统及无线配电检测方法,可以很好的完成对于配电装置的状态检测,特别地,其可以有效减小配电检测装置的体积并使其具有较低的成本。
附图说明
为了更清楚地说明本公开的实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1示出了根据本公开实施例的配电检测方法700的流程图;
图2A示出了根据本公开实施例的获取配电装置的触点状态信号并根据 所述触点状态信号产生状态信息的一个示例性过程S701-1的流程图;
图2B示出了根据本公开实施例的获取配电装置的触点状态信号并根据所述触点状态信号产生状态信息另一个示例性过程S701-2的流程图;
图2C示出根据本公开实施例的获取配电装置的触点状态信号并根据所述触点状态信号产生状态信息的另一个示例性过程S701-3的流程图;
图3示出了根据本公开实施例的配电检测方法的一个变体710的流程图;
图4示出了根据本公开实施例的配电检测装置100的示意图;
图5示出了根据本公开实施例的检测模块110的示意图;
图6A示出了根据本公开实施例的检测模块110的一个变体的示意图,其包括第二检测电路113;
图6B示出了根据本公开实施例的检测模块110的一个变体的示意图,其中第一检测电路112和第二检测电路113分别连接至不同的配电装置;
图6C示出了根据本公开实施例的配电检测装置100的另一个变体的示意图;
图7A示出了根据本公开实施例的无线配电检测方法950的流程图;
图7B示出了根据本公开实施例的用户模块400接收来自本地网关300的状态信息的流程图;
图8示出了本公开实施例的无线配电检测方法的一个变体960的流程图;
图9A示出了根据本公开实施例的无线配电检测系统800A的示意图;
图9B示出了根据本公开实施例的无线配电检测系统800B的示意图;
图9C示出了根据本公开实施例的无线配电检测系统800C的示意图;
图10示出了根据本公开实施例的无线配电检测系统的一个变体900A的示意图。
具体实施方式
将参照附图详细描述根据本公开的各个实施例。这里,需要注意的是,在附图中,将相同的附图标记赋予基本上具有相同或类似结构和功能的组成部分,并且将省略关于它们的重复描述。
为使本公开的实施例的目的、技术方案和优点更加清楚,下面将结合本公开的实施例的附图,对本公开的实施例的技术方案进行清楚、完整地描述。 显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。
虽然本申请对根据本申请的实施例的系统中的某些模块做出了各种引用,然而,任何数量的不同模块可以被使用并运行在用户终端和/或服务器上。所述模块仅是说明性的,并且所述系统和方法的不同方面可以使用不同模块。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或下面操作不一定按照顺序来精确地执行。相反,根据需要,可以按照倒序或同时处理各种步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
图1示出了根据本公开实施例的配电检测方法700的流程图。
参照图1,首先,在步骤S701中,获取配电装置的触点状态信号并根据所述触点状态信号产生状态信息。
所述配电装置例如可以是接触器(iCT),也可以是脉冲开关(iTL),或者是断路器,例如空气断路器(ACB)、框架断路器(MCCB)或微型断路器(MCB)。所述配电装置可安装于工业配电箱或家用配电箱中,其触点 的一端连接至配电箱的供电电源,另一端可连接至外部负载,所述外部负载可以是工业现场设备,例如电机、传感器,其也可以是家用负载,例如楼宇供电电路、家用电器。本公开的实施例不受配电装置的具体类型及配电装置所连接的外部负载的种类的限制。
所述配电装置的触点可以处于开启状态和闭合状态。例如,当配电装置被上电或其处于工作模式时,配电装置的触点处于闭合状态;当配电装置断电或其不处于工作模式时,配电装置的触点处于开启状态。
所述触点状态信号可以为开关量信号,标识触点的通断状态。例如其可以采用“1”表示触点处于闭合状态,采用“0”表示触点处于开启状态,或者其也可以为其他类型的信号,例如电压信号或者电流信号,本公开的实施例不受触点状态信号的类型的限制。
例如可以基于预设时间间隔定时获取配电装置的状态信息,或者也可以响应于用户的控制命令而获取配电装置的状态信息。本公开的实施例获取配电装置的状态信息的触发条件和获取频次的限制。
所述状态信息I例如可以是预设的文本信息,例如“配电装置触点处于闭合状态”、“配电装置触点处于开启状态”,或者其也可以是预设的字符串或代码,本公开的实施例不受状态信息的类型的限制。
产生状态信息后,在步骤S702中,以短距无线通信方式发送所述状态信息。
所述短距无线通信方式例如可以是基于Zigbee协议的短距无线通信方式,或者其也可以是蓝牙通信方式,本公开的实施例不受所选择的短距无线通信方式的具体类型的限制。
例如可通过短距无线通信方式将所述状态信息发送至本地网关以将其进一步上传至用户端,或者可以将其发送至检测系统的总控器以进行后续处理,本公开的实施例不受状态信息发送对象的限制。
通过上述配电检测方法,可以良好实现对于配电装置的触点状态的实时检测并将检测结果传输,且由于其采用无线通信方式与外部进行数据指令交互,无需再连接额外的信号线及通信线,也无需再设置通信线路及内部电源线路间的安全隔离电路,简化了配电检测装置的电路设计,减小了配电检测装置的体积和制造成本,降低了电磁干扰。
图2A示出了根据本公开实施例的获取配电装置的触点状态信号并根据所述触点状态信号产生状态信息的一个示例性过程S701-1的流程图。
在一些实施例中,如图2A所示,配电装置中包括第一配电装置200,首先,在步骤S7011中,获取第一配电装置200的触点状态信号并根据所述触点状态信号产生第一状态反馈信号。
所述第一状态反馈信号例如可以为电压反馈信号,或者也可以为电流反馈信号,其可为持续信号或脉冲信号,可以为原始信号或经过脉冲宽度调制后的脉冲宽度调制(PWM)波信号。本公开的实施例不受第一状态反馈信号的类型的限制。
例如,可以通过第一配电装置200的检测端直接获取该第一配电装置200的触点状态信号,或者可以通过检测电路检测第一配电装置200内部的电流或电压变化并进一步处理以得到所述触点状态信号。本公开的实施例不受获取第一配电装置的触点状态信号的方式的限制。
其次,在步骤S7012中,根据所述第一状态反馈信号产生状态信息。
例如,可以仅基于第一状态反馈信号直接输出状态信息,或者可以在综合第一状态反馈信号与其他状态信号或预设条件的基础上生成状态信息。本公开实施例不受状态信息生成方式的限制。
通过上述方法,可以及时获取配电装置的触点状态信号并基于所述触点状态信号输出相应的状态信息,实现对于配电装置状态的实时检测。
图2B示出根据本公开实施例的获取配电装置的触点状态信号并根据所述触点状态信号产生状态信息的另一个示例性过程S701-2的流程图。
在一些实施例中,如图2B所示,配电装置还具有第二配电装置,首先,在步骤S7011’中,获取第二配电装置的触点状态信号并根据所述触点状态信号产生第二状态反馈信号T 2
所述第二状态反馈信号例如可以为电压反馈信号,或者也可以为电流反馈信号,其可为持续信号或脉冲信号,可以为原始信号或经过脉冲宽度调制后的脉冲宽度调制(PWM)波信号。本公开的实施例不受第二状态反馈信号的类型的限制。
其次,在步骤S7012’中,根据所述第二状态反馈信号产生状态信息。
例如,可以仅基于第二状态反馈信号直接输出状态信息,或者可以在综 合第二状态反馈信号、第一状态反馈信号或预设条件的基础上生成状态信息。本公开实施例不受状态信息生成方式的限制。
应了解,步骤S701-1和S701-2的操作可以并行进行,或者按照顺序执行,在此不对其作出任何限制。
图2C示出根据本公开实施例的获取配电装置的触点状态信号并根据所述触点状态信号产生状态信息的另一个示例性过程S701-3的流程图。
在一些实施例中,如图2C所示,第一配电装置可具有第一触点和第二触点,首先,在步骤S7013中,获取第一配电装置的第一触点的触点状态信号并根据所述触点状态信号产生第一状态反馈信号。
其次,在步骤S7014中,获取第一配电装置的第二触点的触点状态信号并根据所述触点状态信号产生第二状态反馈信号。
最后,在步骤S7015中,根据所述第一状态反馈信号和第二状态反馈信号产生状态信息。
应了解,步骤S7013和S7014的操作可以并行进行,或者按照顺序执行,在此不对其作出任何限制。
例如,可以基于第一状态反馈信号、第二状态反馈信号分别输出状态信息,或者可以在综合第二状态反馈信号、第一状态反馈信号或预设条件的基础上生成状态信息。本公开实施例不受状态信息生成方式的限制。
通过上述方法,可以在同一时间内获取配电装置的多个触点状态信号或获取多个配电装置的触点状态信号,并基于所述触点状态信号输出相应的状态信息,有利于提高检测效率。
图3示出了根据本公开实施例的配电检测方法的一个变体710的流程图。
在一些实施例中,如图3所示,首先,在步骤S711中,以短距无线通信方式接收检测命令,根据所述检测命令产生检测控制信号。
所述检测命令可以是用户直接输入的控制命令,或者也可以是对用户的控制指令进行进一步处理而生成的检测命令。本公开的实施例不受所述检测命令的来源的限制。
所生成的检测控制信号例如可以为电压控制信号,或者也可以为电流控制信号,其可为持续信号或脉冲信号,并且可以采用高电平或低电平为其有效电平。本公开的实施例不受检测控制信号的类型的限制。
产生检测控制信号后,在步骤S712中,根据所述检测控制信号,获取配电装置的触点状态信号。
通过上述方法,使得可以基于外部的控制命令,实现对于配电装置的状态的实时监测,并且进一步地可向外输出检测到的状态信息,有利于配电检测装置实现可靠的检测过程。
图4示出了根据本公开实施例的配电检测装置100的示意图。
参照图4,所述配电检测装置100连接有至少一个配电装置,每个配电装置具有触点。
所述配电装置的触点可以处于开启状态和闭合状态。例如,当配电装置被上电或其处于工作模式时,配电装置的触点处于闭合状态;当配电装置断电或其不处于工作模式时,配电装置的触点处于断开状态。
所述配电检测装置100包括短距无线通信模块120以及检测模块110。
所述检测模块110被配置为与配电装置连接,获取配电装置的触点状态信号并根据所获取的触点状态信号产生并输出状态信息。
例如,所述配电装置可以具有一个或多个检测端,所述配电检测装置100的检测模块110可以与所述一个或多个检测端相连接以实现对于配电装置中触点状态的检测。
所述短距无线通信模块120与检测模块110连接,被配置为从检测模块110接收所述状态信息I并以短距无线通信方式发送所述状态信息I。
例如,所述短距无线通信模块120可包括接收端及信号输出端,所述接收端用于接收来自检测模块110的状态信息,并且信号输出端用于以短距无线通信方式发送该状态信息,例如可将所述状态信息发送至本地网关300。
通过设置具有短距无线通信模块的配电检测装置,可以良好实现对于配电装置的触点状态的实时检测并将检测结果远程传输,且由于其采用无线的通信方式与外部进行数据指令交互,无需再连接额外的信号线及通信线,也无需再设置通信线路及内部电源线路间的安全隔离电路,简化了配电检测装置的电路设计,减小了配电检测装置的体积和制造成本,降低了电磁干扰。
图5示出了根据本公开实施例的检测模块110的示意图。
如图5所示,配电装置为第一配电装置200,所述检测模块110包括微控制单元111。
其中,所述第一检测电路112被配置为获取第一配电装置200的触点状态信号,并根据所述触点状态信号产生并输出相应的第一状态反馈信号。
例如,所述第一检测电路可以包括检测输入端和检测输出端,其通过检测输入端获取配电装置的触点状态信号S 1,并将相应的第一状态反馈信号T 1通过检测输出端输出。
在一些实施例中,所述第一检测电路112可直接获取第一配电装置200的触点状态信号,或者其可以通过检测第一配电装置200内部的电流或电压变化并进一步处理以得到所述触点状态信号。本公开的实施例不受第一检测电路获取触点状态信号的方式的限制。
所述微控制单元111被配置为从第一检测电路112接收所述第一状态反馈信号,并根据所接收的第一状态反馈信号产生并输出相应的状态信息。
例如,所述微控制单元111可具有第一反馈输入端和信号输出端,所述第一反馈输入端用于接收来自第一检测电路112的第一状态反馈信号T 1,所述信号输出端用于将生成的相应状态信息I 1输出,例如可将其输出至与微控制单元连接的短距无线通信模块。
通过在检测模块中设置微控制单元和第一检测电路,检测模块可以通过第一检测模块及时获取配电装置的触点状态信号并基于所述触点状态信号输出相应的状态信息,实现对于配电装置状态的实时检测。
图6A示出了根据本公开实施例的检测模块110的一个变体的示意图,其包括第二检测电路113。
在一些实施例中,如图6A所示,第一配电装置包括第一触点和第二触点,检测模块110还包括第二检测电路113。
所述第一检测电路112被配置为获取第一配电装置的第一触点的触点状态信号并根据所述触点状态信号产生并输出相应的第一状态反馈信号。
所述第二检测电路113被配置为获取配电装置的触点状态信号,并根据所述触点状态信号产生并输出相应的第二状态反馈信号。
例如,所述第二检测电路可以包括检测输入端和检测输出端,其通过检测输入端获取配电装置的触点状态信号S 2,并将相应的第二状态反馈信号T 2通过检测输出端输出。
在一些实施例中,所述第二检测电路113可直接获取配电装置的触点状 态信号,或者其可以通过检测配电装置内部的电流或电压变化并进一步处理以得到所述触点状态信号。本公开的实施例不受第二检测电路的检测方式的限制。
所述微控制单元111被配置为接收第一状态反馈信号和第二状态反馈信号,并根据所述第一状态反馈信号和所述第二状态反馈信号产生并输出相应的状态信息。
例如,所述微控制单元111可具有第二反馈输入端和信号输出端,所述第二反馈输入端用于接收来自第二检测电路112的第二状态反馈信号T 2,所述信号输出端用于将生成的相应状态信息I 2输出,例如可将其输出至与微控制单元连接的短距无线通信模块。
通过在检测模块中设置第二检测电路,检测模块可以通过第二检测模块及时获取配电装置的触点状态信号并基于所述触点状态信号输出相应的状态信息,实现对于配电装置状态的实时检测。
例如,当配电装置为框架断路器时,在一些情况下,需要检测框架断路器中的多个触点状态以确定其工作模式或工作状态,第一检测电路112的检测输入端可以连接至框架断路器中的辅助(OF)触点,第二检测电路113的检测输入端可以连接至框架断路器中的脱扣指示(SD)触点或者连接至其中的干接点,此时,微控制单元将基于第一反馈输入端所接收的第一状态反馈信号T 1和第二反馈输入端所接收的第二状态反馈信号T 2进行综合判断并生成相应的状态信息I z
图6B示出了根据本公开实施例的检测模块110的一个变体的示意图,其中第一检测电路112和第二检测电路113分别连接至不同的配电装置。
在一些实施例中,如图6B所示,所述配电装置包括第一配电装置及第二配电装置,所述第一检测电路112和第二检测电路113分别连接至不同的配电装置。
例如,当需要同时检测及监控多个配电装置200、201的工作状态时,第一检测电路112连接至第一配电装置200,用于获取配电装置200的触点状态信号S 1,第二检测电路113连接至第二配电装置201,用于获取配电装置201的触点状态信号S 2,此时,微控制单元将基于第一反馈输入端所接收的第一状态反馈信号T 1和第二反馈输入端所接收的第二状态反馈信号T 2分别 生成相应的状态信息I 1和状态信息I 2
通过检测模块中设置的第一检测电路及第二检测电路,检测模块可以在同一时间内获取配电装置的多个触点状态信号或获取多个配电装置的触点状态信号,并基于所述触点状态信号输出相应的状态信息,有利于提高检测效率。
图6C示出了根据本公开实施例的配电检测装置100的另一个变体的示意图。
在一些实施例中,如图6C所示,所述短距无线通信模块120被配置为以短距无线通信方式接收检测命令,并根据所接收的检测命令产生并输出检测控制信号。所述检测模块110从短距无线通信模块120接收检测控制信号,并根据所接收的检测控制信号,获取配电装置的触点状态信号。
在一些实施例中,所述配电检测装置还包括电源电路,其为配电检测装置中各功能电路,如微控制单元、第一检测电路供电。所述电源电路例如可将外部的交流电源转换为配电检测装置所需的供电回路。
在一些实施例中,所述配电检测装置还包括电磁兼容(EMC)保护电路,其与电源电路连接,其旨在抑制外部环境的电磁干扰,并同时抑制产品对外的电磁辐射。
在一些实施例中,所述配电检测装置还包括按钮电路,其与微控制单元相连接,其可将用户输入的按钮信号转换为微控制单元可识别的控制指令,使得用户经由按钮操作实现对于配电检测装置的功能控制。
在一些实施例中,所述配电检测装置还包括外部存储电路和调试升级电路,其分别与微控制单元相连接,用于存储升级包并实现对于装置的升级过程。
图7A示出了根据本公开实施例的无线配电检测方法950的流程图。
如图7A所示,首先,在步骤S951中,配电检测装置100获取配电装置的触点状态信号,并根据所获取的触点状态信号产生并以短距无线通信方式输出状态信息。
所述配电检测装置100可以执行如前所述的配电检测方法,并具有如前所述的配电检测装置的结构和功能。
配电检测装置输出状态信息后,在步骤S952中,本地网关300以短距 无线通信方式从配电检测装置100接收状态信息并将所述状态信息输出。
本地网关输出状态信息例如可以通过有线方式,例如通过以太网(Ethernet)实现,也可以通过无线方式,例如通过移动通信系统,如第三代移动通信系统(3G)或第四代移动通信系统(4G)实现,或者通过通用分组无线服务技术(GPRS)实现。本公开的实施例不受所选取的具体的通信方式的限制。
在本地网关输出状态信息后,在步骤S953中,用户模块400接收来自本地网关300的状态信息。
所述用户模块400可以为一个或多个专用或通用的计算机系统模块,例如个人电脑、笔记本电脑、平板电脑、手机、个人数码助理(personal digital assistance,PDA)及任何智能便携设备。本公开的实施例不受用户模块的具体类型的限制。
用户模块接收状态信息例如可以通过有线方式,例如通过以太网(Ethernet)实现,也可以通过无线方式,例如通过移动通信系统,如第三代移动通信系统(3G)或第四代移动通信系统(4G)实现,或者通过通用分组无线服务技术(GPRS)实现。本公开的实施例不受所选取的具体的通信方式的限制。
通过上述无线配电检测方法,配电检测装置可以将状态信息实时输出至用户模块,有利于用户查看配电装置状态并进行相应控制。且由于采用无线通信方式,无需再连接额外的信号线及通信线,简化了无线配电检测系统的设计。
图7B示出了根据本公开实施例的用户模块400接收来自本地网关300的状态信息的流程图。
在一些实施例中,如图7B所示,所述用户模块400与本地网关300之间还设置有云网关500。上述步骤S953可以更具体地描述。首先,在步骤S9531中,所述云网关500接收来自本地网关300的状态信息,其后,在步骤S9532中,用户模块400接收来自云网关500的状态信息。
所述云网关例如可以为阿里云网关、亚马逊云网关、COM’X云网关或其他类型的云网关,本公开的实施例不受所选取的具体云网关的类型的限制。
云网关接收和发送状态信息例如可以通过有线方式,例如通过以太网 (Ethernet)实现,也可以通过无线方式,例如通过移动通信系统,如第三代移动通信系统(3G)或第四代移动通信系统(4G)实现,或者通过通用分组无线服务技术(GPRS)实现。本公开的实施例不受所选取的具体的通信方式的限制。
通过云网关从本地网关接收状态信息并将该状态信息发送至用户模块,使得来自多个本地网关的配电装置的状态信息都可以发送至用户模块,提高了用户可接收到的状态信息的数量,提高了配电检测系统的工作效率。
在一些实施例中,所述用户模块400和云网关500之间还设置有云服务器600,则在步骤S9532中,用户模块400接收来自云网关500的状态信息的过程可以更具体地描述。
如图7B所示,首先,在步骤S9532-1中,所述云服务器600接收来自云网关500的状态信息,其次,在步骤S9521-2中,云服务器600将所述状态信息发送至用户模块400。
所述云服务器例如可以为阿里云服务器、腾讯云服务器、华为云服务器或其他类型的云服务器,本公开的实施例不受所选取的具体服务器的类型的限制。
云服务器接收和发送控制命令例如可以通过有线方式,例如通过以太网(Ethernet)实现,也可以通过无线方式,例如通过移动通信系统,如第三代移动通信系统(3G)或第四代移动通信系统(4G)实现,或者通过通用分组无线服务技术(GPRS)实现。本公开的实施例不受所选取的具体的通信方式的限制。
通过云服务器从云网关接收状态信息并将该状态信息发送至用户模块,使得来自多个云网关的配电装置的状态信息可以发送至用户模块,提高了用户可接收到的状态信息的数量,同时有利于对所述状态信息的备份及存储。
在一些实施例中,所述配电检测装置100获取配电装置的触点状态信号,并根据所获取的触点状态信号产生并以短距无线通信方式输出状态信息包括:配电检测装置100获取配电装置的触点状态信号并根据所述触点状态信号产生状态信息,所述配电检测装置100以短距无线通信方式发送所述状态信息。
图8示出了本公开实施例的无线配电检测方法的一个变体960的流程图。
在一些实施例中,如图8所示,在步骤S961中,所述配电检测装置100以短距无线通信方式从本地网关300接收检测命令,并根据所述检测命令产生检测控制信号。产生检测控制信号后,在步骤S962中,所述配电检测装置100根据所述检测控制信号,获取配电装置触点状态信号。
图9A示出了根据本公开实施例的无线配电检测系统800A的示意图。
参照图9A,所述无线配电检测系统800A包括:用户模块400、本地网关300及配电检测装置100。
所述配电检测装置100被配置为获取配电装置的触点状态信号,并根据所获取的触点状态信号产生并以短距无线通信方式输出状态信息。所述配电检测装置100可执行如上所述的配电检测方法。
本地网关300被配置为以短距无线通信方式从配电检测装置100接收状态信息并将所述状态信息输出。
用户模块400被配置为接收来自本地网关300的状态信息。其中,所述用户模块400可以为一个或多个专用或通用的计算机系统模块,例如个人电脑、笔记本电脑、平板电脑、手机、个人数码助理(personal digital assistance,PDA)及任何智能便携设备。本公开的实施例不受用户模块的具体类型的限制。
通过设置无线配电检测系统,配电检测装置可以将状态信息实时输出至用户模块,有利于用户查看配电装置状态并进行相应控制。且由于采用无线通信方式,无需再连接额外的信号线及通信线,简化了系统设计。
在一些实施例中,无线配电检测系统的配电检测装置100连接有至少一个配电装置,所述配电装置具有触点。所述配电检测装置被配置为获取配电装置的触点状态信号,根据所述触点状态信号产生状态信息,并且配电检测装置以短距无线通信方式发送所述状态信息。
图9B示出了根据本公开实施例的无线配电检测系统800B的示意图。
如图9B所示,在一些实施例中,在前述无线配电检测系统800A的基础上,所述用户模块400与本地网关300之间还设置有云网关500,所述云网关500被配置为接收来自本地网关300的状态信息并将所述状态信息发送至用户模块400。
通过设置云网关,所述云网关从本地网关接收状态信息并将该状态信息 发送至用户模块,使得来自多个本地网关的配电装置的状态信息都可以发送至用户模块,提高了用户可接收到的状态信息的数量,提高了配电检测系统的工作效率。
图9C示出了根据本公开实施例的无线配电检测系统800C的示意图。
如图9C所示,在一些实施例中,在前述无线配电检测系统800B的基础上,所述用户模块400和云网关500之间还设置有云服务器600,所述云服务器600接收来自云网关500的状态信息并将所述状态信息发送至用户模块400。
通过设置云服务器,云服务器从云网关接收状态信息并将该状态信息发送至用户模块,使得来自多个云网关的配电装置的状态信息可以发送至用户模块,提高了用户可接收到的状态信息的数量,同时有利于对所述状态信息的备份及存储。
图10示出了根据本公开实施例的无线配电检测系统的一个变体900A的示意图。
在一些实施例中,如图10所示,所述无线配电装置以短距无线通信方式从本地网关300接收检测命令,并根据所接收的检测命令产生检测控制信号。无线配电装置根据所接收的检测控制信号获取配电装置的触点状态信号。
本申请使用了特定词语来描述本申请的实施例。如“第一/第二实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
除非另有定义,这里使用的所有术语(包括技术和科学术语)具有与本公开所属领域的普通技术人员共同理解的相同含义。还应当理解,诸如在通常字典里定义的那些术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
上面是对本公开的说明,而不应被认为是对其的限制。尽管描述了本公开的若干示例性实施例,但本领域技术人员将容易地理解,在不背离本公开 的新颖教学和优点的前提下可以对示例性实施例进行许多修改。因此,所有这些修改都意图包含在权利要求书所限定的本公开范围内。应当理解,上面是对本公开的说明,而不应被认为是限于所公开的特定实施例,并且对所公开的实施例以及其他实施例的修改意图包含在所附权利要求书的范围内。本公开由权利要求书及其等效物限定。

Claims (16)

  1. 一种配电检测装置(100),所述配电检测装置(100)连接有至少一个配电装置,每个配电装置具有触点,所述配电检测装置(100)包括:
    检测模块(110),其与配电装置连接,获取配电装置的触点状态信号并根据所获取的触点状态信号产生并输出状态信息;
    短距无线通信模块(120),其与检测模块(110)连接,从检测模块(110)接收所述状态信息并以短距无线通信方式发送所述状态信息。
  2. 如权利要求1所述的配电检测装置(100),其中,配电装置中包括第一配电装置,所述检测模块(110)包括:
    第一检测电路(112),其获取第一配电装置的触点状态信号,并根据所述触点状态信号产生并输出相应的第一状态反馈信号;
    微控制单元(111),其从第一检测电路(112)接收所述第一状态反馈信号,并根据所接收的第一状态反馈信号产生并输出相应的状态信息。
  3. 根据权利要求2所述的配电检测装置(100),配电装置中还包括第二配电装置,检测模块(110)还具有第二检测电路(113),其中,
    第二检测电路(113)获取第二配电装置的触点状态信号,并根据所述触点状态信号产生并输出相应的第二状态反馈信号;
    微控制单元(111)从第二检测电路(112)接收所述第二状态反馈信号,并根据所接收的第二状态反馈信号产生并输出相应的状态信息。
  4. 根据权利要求2所述的配电检测装置(100),第一配电装置包括第一触点和第二触点,所述检测模块(110)还具有第二检测电路(113),其中,
    第一检测电路(112)获取第一配电装置的第一触点的触点状态信号,并根据所述触点状态信号产生并输出相应的第一状态反馈信号;
    第二检测电路(113)获取第一配电装置的第二触点的触点状态信号,并根据所述触点状态信号产生并输出相应的第二状态反馈信号;
    微控制单元(111)接收第一状态反馈信号和第二状态反馈信号,并根据所述第一状态反馈信号和所述第二状态反馈信号产生并输出相应的状态信息。
  5. 根据权利要求1所述的配电检测装置(100),其中,
    所述短距无线通信模块(120)以短距无线通信方式接收检测命令,并根据所接收的检测命令产生并输出检测控制信号;
    所述检测模块(110)从短距无线通信模块(120)接收检测控制信号,并根据所接收的检测控制信号,获取配电装置的触点状态信号。
  6. 一种配电检测方法,包括:
    获取配电装置的触点状态信号并根据所述触点状态信号产生状态信息;
    以短距无线通信方式发送所述状态信息。
  7. 如权利要求6所述的配电检测方法,配电装置包括第一配电装置,所述获取配电装置的触点状态信号并根据所述触点状态信号产生状态信息包括:
    获取第一配电装置的触点状态信号并根据所述触点状态信号产生第一状态反馈信号;
    根据所述第一状态反馈信号产生状态信息。
  8. 根据权利要求6所述的配电检测方法,配电装置还包括第二配电装置,所述获取配电装置的触点状态信号并根据所述触点状态信号产生状态信息还包括:
    获取第二配电装置的触点状态信号并根据所述触点状态信号产生第二状态反馈信号;
    根据所述第二状态反馈信号产生状态信息。
  9. 根据权利要求6所述的配电检测方法,第一配电装置包括第一触点和第二触点,所述获取配电装置的触点状态信号并根据所述触点状态信号产生状态信息还包括:
    获取第一配电装置的第一触点的触点状态信号并根据所述触点状态信号产生第一状态反馈信号;
    获取第一配电装置的第二触点的触点状态信号并根据所述触点状态信号产生第二状态反馈信号;
    根据所述第一状态反馈信号和第二状态反馈信号产生状态信息。
  10. 根据权利要求6所述的配电检测方法,还包括:
    以短距无线通信方式接收检测命令,根据所述检测命令产生检测控制信号;
    根据所述检测控制信号,获取配电装置的触点状态信号。
  11. 一种无线配电检测系统(800),所述无线配电检测系统(800)包括:
    配电检测装置(100),其获取配电装置的触点状态信号,并根据所获取的触点状态信号产生并以短距无线通信方式输出状态信息;
    本地网关(300),其以短距无线通信方式从配电检测装置(100)接收状态信息并将所述状态信息输出;
    用户模块(400),其接收来自本地网关(300)的状态信息。
  12. 如权利要求11所述的无线配电检测系统(800),所述配电检测装置(100)连接有至少一个配电装置,每个配电装置具有触点,所述配电检测装置(100)包括:
    检测模块(110),其与配电装置连接,获取配电装置的触点状态信号并根据所获取的触点状态信号产生并输出状态信息;
    短距无线通信模块(120),其与检测模块(110)连接,从检测模块(110)接收所述状态信息并以短距无线通信方式发送所述状态信息。
  13. 如权利要求11所述的无线配电检测系统(800),其中,
    所述短距无线通信模块(120)以短距无线通信方式从本地网关(300)接收检测命令,并根据所接收的检测命令产生并输出检测控制信号;
    所述检测模块(110)从短距无线通信模块(120)接收检测控制信号,并根据所接收的检测控制信号获取配电装置的触点状态信号。
  14. 一种无线配电检测方法,包括:
    配电检测装置(100)获取配电装置的触点状态信号,并根据所获取的触点状态信号产生并以短距无线通信方式输出状态信息;
    本地网关(300)以短距无线通信方式从配电检测装置(100)接收状态信息并将所述状态信息输出;
    用户模块(400)接收来自本地网关(300)的状态信息。
  15. 如权利要求14所述的无线配电检测方法,其中,所述配电检测装置(100)获取配电装置的触点状态信号,并根据所获取的触点状态信号产生并以短距无线通信方式输出状态信息包括:
    配电检测装置(100)获取配电装置的触点状态信号并根据所述触点状态信号产生状态信息;
    配电检测装置(100)以短距无线通信方式发送所述状态信息。
  16. 如权利要求14所述的无线配电检测方法,还包括:
    配电检测装置(100)以短距无线通信方式从本地网关(300)接收检测命令,并根据所述检测命令产生检测控制信号;
    配电检测装置(100)根据所述检测控制信号,获取配电装置触点状态信号。
PCT/CN2019/078729 2019-02-28 2019-03-19 配电检测装置、配电检测方法、无线配电检测系统及方法 WO2020172926A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910151344.5A CN111628569A (zh) 2019-02-28 2019-02-28 配电检测装置、配电检测方法、无线配电检测系统及方法
CN201910151344.5 2019-02-28

Publications (1)

Publication Number Publication Date
WO2020172926A1 true WO2020172926A1 (zh) 2020-09-03

Family

ID=72238873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078729 WO2020172926A1 (zh) 2019-02-28 2019-03-19 配电检测装置、配电检测方法、无线配电检测系统及方法

Country Status (2)

Country Link
CN (1) CN111628569A (zh)
WO (1) WO2020172926A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353895A (zh) * 2011-06-08 2012-02-15 河北工业大学 低压断路器寿命自动试验装置
CN204272159U (zh) * 2014-08-21 2015-04-15 上海欧忆智能网络有限公司 一种实现故障电弧检测的能源网关
CN204694794U (zh) * 2015-06-10 2015-10-07 江苏新溢光电科技有限公司 一种用电设备监控系统
CN105098995A (zh) * 2015-09-22 2015-11-25 国网山东省电力公司滨州供电公司 一种变电站柜内开关状态监控装置
CN105788975A (zh) * 2016-02-26 2016-07-20 电卫士智能电器(北京)有限公司 断路器监测装置、断路器以及断路器监测方法
US20160209454A1 (en) * 2015-01-19 2016-07-21 Patrick McCammon Wireless Power Line Sensor
WO2018059623A1 (de) * 2016-09-27 2018-04-05 un gerätebau gmbh Systemanordnung für sicherheitsüberprüfungen sowie verfahren
CN109100601A (zh) * 2018-09-29 2018-12-28 江苏微能电子科技有限公司 一种家居电力安全智能监控系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101339229A (zh) * 2008-08-18 2009-01-07 江西省电力科学研究院 基于同步采样的高压断路器状态在线监测方法
US10175299B2 (en) * 2016-03-01 2019-01-08 Eaton Intelligent Power Limited Apparatus and methods for monitoring auxiliary contact status
CN106443434A (zh) * 2016-10-21 2017-02-22 宁波市艾霖信息科技有限公司 一种智能断路器状态监测电子设备
CN108683257A (zh) * 2018-05-29 2018-10-19 合肥工业大学 一种多特征参数融合的断路器状态监测装置及其监测方法
CN109066986A (zh) * 2018-09-03 2018-12-21 南京永为科技有限公司 智能配电控制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353895A (zh) * 2011-06-08 2012-02-15 河北工业大学 低压断路器寿命自动试验装置
CN204272159U (zh) * 2014-08-21 2015-04-15 上海欧忆智能网络有限公司 一种实现故障电弧检测的能源网关
US20160209454A1 (en) * 2015-01-19 2016-07-21 Patrick McCammon Wireless Power Line Sensor
CN204694794U (zh) * 2015-06-10 2015-10-07 江苏新溢光电科技有限公司 一种用电设备监控系统
CN105098995A (zh) * 2015-09-22 2015-11-25 国网山东省电力公司滨州供电公司 一种变电站柜内开关状态监控装置
CN105788975A (zh) * 2016-02-26 2016-07-20 电卫士智能电器(北京)有限公司 断路器监测装置、断路器以及断路器监测方法
WO2018059623A1 (de) * 2016-09-27 2018-04-05 un gerätebau gmbh Systemanordnung für sicherheitsüberprüfungen sowie verfahren
CN109100601A (zh) * 2018-09-29 2018-12-28 江苏微能电子科技有限公司 一种家居电力安全智能监控系统

Also Published As

Publication number Publication date
CN111628569A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
CN204392276U (zh) 一种基于云计算的智能家居平台
CN202159234U (zh) 一种无线控制电源开关装置
CN103019208A (zh) 智能家居的电子设备双控模块
CN103762719A (zh) 一种智能开关柜
CN104852227A (zh) 一种智能插座和控制系统
CN103941617A (zh) 通过网络的远程控制装置及设备
CN103296540A (zh) 一种插座、终端及控制插座开关的方法
WO2020172926A1 (zh) 配电检测装置、配电检测方法、无线配电检测系统及方法
WO2020172923A1 (zh) 配电控制装置、配电控制方法、无线配电控制系统及方法
CN204697088U (zh) 家庭智能网关
WO2021098714A1 (zh) 具有显示模块的配电终端、无线配电显示系统及方法
CN106161221A (zh) 一种具有主从控制器的智能网关
JP3211607U (ja) 待機回路、該待機回路を有するソケット、プラグ及び装置
CN203368520U (zh) 家电监控设备和系统
US20150005909A1 (en) Communication Device, Communication Method, and Management Device
CN109301613A (zh) 一种家电转换设备和系统
Leite et al. A ZigBee wireless domotic system with Bluetooth interface
CN214791786U (zh) 空调和电器系统
CN107454612A (zh) 基于无线通信的控制装置和系统及其应用
KR20230133302A (ko) 애널리틱스를 사용하여 스마트 전기 스위치 및 관련장치를 원격으로 제어하는 방법 및 시스템
KR101596945B1 (ko) Tcp/ip 기반 스마트 나노―그리드에 적용을 위한 범용 통신 모듈 장치 및 그 방법
CN203151536U (zh) 一种利用电力线进行数据传输的物联网关装置
CN201919011U (zh) 智能电源控制装置
CN219802593U (zh) 一种无线传感器和无线传感网络系统
CN207753740U (zh) 一种wifi转换盒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917091

Country of ref document: EP

Kind code of ref document: A1