WO2020172904A1 - 一种反量化方法、系统、设备及计算机可读介质 - Google Patents

一种反量化方法、系统、设备及计算机可读介质 Download PDF

Info

Publication number
WO2020172904A1
WO2020172904A1 PCT/CN2019/077176 CN2019077176W WO2020172904A1 WO 2020172904 A1 WO2020172904 A1 WO 2020172904A1 CN 2019077176 W CN2019077176 W CN 2019077176W WO 2020172904 A1 WO2020172904 A1 WO 2020172904A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantization
block
inverse
coefficient
inverse transform
Prior art date
Application number
PCT/CN2019/077176
Other languages
English (en)
French (fr)
Inventor
王荣刚
王振宇
高文
Original Assignee
北京大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学深圳研究生院 filed Critical 北京大学深圳研究生院
Priority to US16/610,474 priority Critical patent/US20210409711A1/en
Publication of WO2020172904A1 publication Critical patent/WO2020172904A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • H04N19/126Details of normalisation or weighting functions, e.g. normalisation matrices or variable uniform quantisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • H04N19/45Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder performing compensation of the inverse transform mismatch, e.g. Inverse Discrete Cosine Transform [IDCT] mismatch
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • H04N19/82Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop

Definitions

  • This specification relates to the field of computer technology, in particular to an inverse quantization method, system, equipment and computer-readable medium.
  • inverse quantization and inverse transformation are the basic tools that need to be used in the encoding and decoding process.
  • the quantized block is inversely quantized to generate an inverse transform block
  • the inverse transform block is inversely transformed to generate a residual image block.
  • the embodiments of this specification provide an inverse quantization method, system, device, and computer readable medium, which are used to improve the problem of excessively high complexity of the inverse transformation process in the video encoding and decoding process in the prior art.
  • the embodiment of this specification provides an inverse quantization method, the method includes:
  • the quantization block Denote the quantization block as a two-dimensional array M.
  • M[x][y] in the two-dimensional array M if x is greater than or equal to the threshold Tx or y is greater than or equal to the threshold Ty, then M[x][y] corresponds to
  • the inverse transform coefficient of can be directly set to 0.
  • the thresholds Tx and Ty are determined according to the size of the quantization block, wherein, when the size of the quantization block is W ⁇ H:
  • Tx is W, or W/2, or W/4, or W/8;
  • Ty is H, or H/2, or H/4, or H/8.
  • the value of Tx or Ty is 32.
  • the thresholds Tx and Ty are determined, where the values of Tx and Ty are 32.
  • performing inverse quantization calculation on the quantized coefficients to obtain corresponding inverse transform coefficients includes:
  • the temporary inverse transform coefficient is calculated according to the weight coefficient and the quantization coefficient, wherein the temporary inverse transform coefficient is calculated using the following formula:
  • Coeff IT ′ Clip3(-32768,32767,((((((Coeff Q *w)>w s )*D)>>4)+2 S+S1-1 )>>(S+S1));
  • Coeff Q is the quantization coefficient
  • Coeff IT ′ is the temporary inverse transform coefficient
  • w is the weight coefficient of weighted inverse quantization
  • w s is the weighted inverse quantization shift value
  • D is a constant factor determined according to the quantization parameter QP;
  • S is the shift number determined according to the quantization parameter QP
  • S1 is the number of additional shifts calculated based on the current block size and coding sample accuracy.
  • the temporary inverse transform coefficient is modified based on the size of the quantization block to obtain the inverse transform coefficient, wherein:
  • Coeff IT (Coeff IT ′*181+128)>>8
  • Coeff IT Coeff IT ′
  • Coeff IT ′ is a temporary inverse transform coefficient
  • Coeff IT is an inverse transform coefficient
  • This application also proposes a video encoding method, which includes:
  • transform and quantize to generate a quantized block for writing into a bitstream
  • Deblocking filtering is performed on the reconstructed image formed by the reconstructed image blocks to obtain a reference image for reference in subsequent frames.
  • This application also proposes a video decoding method, which includes:
  • Deblocking filtering is performed on the reconstructed image formed by the reconstructed image blocks to obtain a reference image for reference in subsequent frames.
  • This application also proposes an inverse quantization system, which includes:
  • the zero setting determination module is configured to determine whether the inverse transform coefficient corresponding to the quantization coefficient in the quantization block can be directly set to 0 based on the size of the quantization block;
  • the inverse quantization calculation module is configured to perform inverse quantization calculation on the quantized coefficient when the inverse transform coefficient corresponding to the quantized coefficient cannot be directly set to 0 to obtain the corresponding inverse transform coefficient.
  • This application also proposes a computer-readable medium on which computer-readable instructions are stored, and the computer-readable instructions can be executed by a processor to implement the method described in the embodiments of this specification.
  • This application also proposes a device for information processing on the user equipment side.
  • the device includes a memory for storing computer program instructions and a processor for executing the program instructions.
  • the device executes, the device is triggered to execute the method described in the embodiment of this specification.
  • the inverse quantization method according to the embodiment of the present invention is determined by zeroing, and the inverse quantization is obtained before the inverse quantization calculation.
  • the non-zero coefficients in the inverse transform block are controlled in a suitable area, so as to control the complexity of the inverse transform block, thereby effectively controlling the complexity of the inverse transform process, and ultimately reducing the difficulty of implementing the software and hardware decoder.
  • Fig. 1 is a flowchart of a method according to an embodiment of the present specification
  • Fig. 3 is a schematic diagram of a quantization block matrix according to an embodiment of the present specification.
  • Fig. 5 is a block diagram of a system structure according to an embodiment of the present specification.
  • the new generation of video coding and decoding standards allows the use of larger transform blocks, such as a 64 ⁇ 64 size transform block.
  • larger transform blocks such as a 64 ⁇ 64 size transform block.
  • the increase in the size of the transform block will directly increase the complexity of the inverse transform process, thereby increasing the difficulty of implementing the software and hardware decoders.
  • the embodiment of this specification proposes an inverse quantization method.
  • the main reason for the excessively high complexity of the inverse transform process is that the size of the inverse transform block is too large and the inverse transform coefficients contained in it are too large. Then, if some inverse transform coefficients in the inverse transform block are set to zero, the calculation amount of the inverse transform process can be directly reduced, thereby reducing the complexity of the inverse transform process. Therefore, in an embodiment of this specification, a zeroing determination is made for each quantization parameter in the quantization block, and it is determined whether the corresponding inverse transform coefficient can be directly zeroed, and if it is possible, the inverse quantization calculation is not performed on the quantization parameter. Set the corresponding inverse transform coefficient to 0; if not possible, perform inverse quantization calculation on the quantization parameter, and calculate its corresponding inverse transform coefficient.
  • the method includes the following steps.
  • step S110 is completed for each quantized coefficient in the quantized block and step S111 or step S120 is executed correspondingly, all results of step S111 and step S120 can be combined to obtain the inverse transform block.
  • the inverse quantization method determines through zero setting, and controls the non-zero coefficients in the inverse transform block obtained after inverse quantization to a suitable area before the inverse quantization calculation, thereby controlling the inverse transform
  • the complexity of the block effectively controls the complexity of the inverse transformation process, and ultimately reduces the difficulty of implementing the hardware and software decoder.
  • the process of zeroing determination for each quantization coefficient in the quantization block based on the size of the quantization block includes:
  • S210 Determine thresholds Tx and Ty according to the size of the quantization block
  • the elements (quantization coefficients) of the quantization block M are denoted as M[x][y](M[0][0], M[0][1], M[0 ][2], M[1][0], M[1][1], M[2][0], etc.).
  • M1 is M[Tx-1][Ty-1], and its corresponding inverse transformation coefficient cannot be directly set to zero; M2 ⁇ M5, its corresponding inverse transformation coefficient can be directly set to zero.
  • Tx and Ty are adaptive thresholds calculated according to the size of the quantization block.
  • the size of the quantization block is W ⁇ H; the corresponding Tx and Ty are denoted as functions Tx(W,H) and Ty(W,H), respectively.
  • Tx is W, or W/2, or W/4, or W/8;
  • Ty is H, or H/2, or H/4, or H/8.
  • the calculation limits that need to be adopted can be determined according to actual needs of specific coding and decoding.
  • the values of Tx and Ty are 64 and 32, respectively.
  • Tx and Ty are set to 32. That is, for all quantized blocks whose size exceeds 32 ⁇ 32, Tx of 32 and Ty of 32 are used to determine the zeroing of the inverse transform coefficient. For quantized blocks whose size does not exceed 32 ⁇ 32, there is no need to make a determination of zeroing the inverse transform coefficients.
  • the process of performing weighted inverse quantization on the quantized coefficients in the quantization block to generate corresponding inverse transform coefficients includes:
  • the following formula is used to calculate the temporary inverse transform coefficient:
  • Coeff IT ′ Clip3(-32768,32767,((((((Coeff Q *w)>>w s )*D)>>4)+2 S+S1-1 )>>(S+S1); ( 1)
  • Coeff Q is the quantization coefficient
  • Coeff IT ′ is the temporary inverse transform coefficient
  • w is the weight coefficient of weighted inverse quantization
  • w s is the weighted inverse quantization shift value
  • D is a constant factor determined according to the quantization parameter QP;
  • S is the shift number determined according to the quantization parameter QP
  • S1 is the number of additional shifts calculated based on the current block size and coding sample accuracy.
  • D is a constant factor obtained by looking up the table according to the quantization parameter QP.
  • S is the shift number obtained by looking up the table according to the quantization parameter QP.
  • D and S can be obtained by checking the following table according to the QP value:
  • the weighted inverse quantization shift value w s is 2.
  • the additional shift number S1 is calculated according to the following formula:
  • bitdepth is the sample accuracy
  • m Log2(W ⁇ H)/2
  • W and H represent the width and height of the quantization block.
  • the process of correcting the temporary inverse transform coefficient based on the size of the quantization block, and obtaining the inverse transform coefficient includes:
  • Coeff IT (Coeff IT ′*181+128)>>8 (3)
  • Coeff IT ′ is a temporary inverse transform coefficient
  • Coeff IT is an inverse transform coefficient
  • the embodiment of this specification also proposes a video encoding method.
  • the encoding method includes:
  • the inverse transform block is generated by inverse quantization according to the quantized block
  • Deblocking filtering is performed on the reconstructed image composed of the reconstructed image blocks to obtain a reference image for reference in subsequent frames.
  • an image block composed of predicted pixels obtained through prediction technology is called a predicted image block; when encoding a frame of image, the image is divided into coding units of different sizes for encoding ;
  • the coding unit is divided into one or more prediction units; the coding unit is also divided into one or more transformation units; the coding unit chooses to use the intra mode or the inter mode to predict the prediction unit to obtain the prediction image corresponding to the prediction unit Block; the original image block corresponding to the transform unit is subtracted from the corresponding predicted image block to obtain the residual image block Resi; the residual image block Resi is transformed and quantized to obtain the quantized block; the prediction unit and the transform unit division information, prediction mode, quantized block
  • the quantized block is written into the bitstream by entropy coding; the quantized block is inversely quantized to obtain the inverse transformed block based on the quantization parameter and the corresponding weighted inverse quantization matrix according to the inverse quantization method described in the embodiment of this
  • the embodiment of this specification also proposes a video decoding method.
  • the decoding method includes:
  • the inverse transform block is generated by inverse quantization according to the quantized block
  • Deblocking filtering is performed on the reconstructed image composed of the reconstructed image blocks to obtain a reference image for reference in subsequent frames.
  • the embodiment of this specification also proposes an inverse quantization system. Specifically, as shown in Figure 5, the system includes:
  • the zero-setting determination module 510 is configured to perform a zero-setting determination on each quantization coefficient in the quantization block based on the size of the quantization block, and determine whether the inverse transform coefficient corresponding to the quantization coefficient can be directly set to 0;
  • the inverse quantization calculation module 520 is configured to perform an inverse quantization calculation on the quantized coefficient when the inverse transform coefficient corresponding to the quantized coefficient cannot be directly set to 0 to obtain the corresponding inverse transform coefficient.
  • the embodiment of this specification also proposes a computer-readable medium on which computer-readable instructions are stored, and the computer-readable instructions can be executed by a processor to implement the method described in the embodiment of this specification .
  • the embodiment of this specification also proposes a device for information processing on the user equipment side.
  • the device includes a memory for storing computer program instructions and a processor for executing the program instructions, Wherein, when the computer program instruction is executed by the processor, the device is triggered to execute the method described in the embodiment of this specification.
  • a programmable logic device Programmable Logic Device, PLD
  • FPGA Field Programmable Gate Array
  • HDL Hardware Description Language
  • the controller can be implemented in any suitable manner.
  • the controller can take the form of, for example, a microprocessor or a processor and a computer-readable medium storing computer-readable program codes (such as software or firmware) executable by the (micro)processor. , Logic gates, switches, application specific integrated circuits (ASICs), programmable logic controllers and embedded microcontrollers.
  • controllers include but are not limited to the following microcontrollers: ARC 625D, Atmel AT91SAM, Microchip PIC18F26K20 and Silicon Labs C8051F320, the memory controller can also be implemented as a part of the memory control logic.
  • controller in addition to implementing the controller in a purely computer-readable program code manner, it is entirely possible to program the method steps to make the controller use logic gates, switches, application specific integrated circuits, programmable logic controllers and embedded The same function can be realized in the form of a microcontroller, etc. Therefore, such a controller can be regarded as a hardware component, and the devices included in it for implementing various functions can also be regarded as a structure within the hardware component. Or even, the device for realizing various functions can be regarded as both a software module for realizing the method and a structure within a hardware component.
  • a typical implementation device is a computer.
  • the computer may be, for example, a personal computer, a laptop computer, a cell phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or Any combination of these devices.
  • the embodiments of the present invention may be provided as methods, systems, or computer program products. Therefore, the present invention may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.
  • the computing device includes one or more processors (CPU), input/output interfaces, network interfaces, and memory.
  • processors CPU
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-permanent memory in computer readable media, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM). Memory is an example of computer readable media.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Computer-readable media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer readable instructions, data structures, program modules, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage, Magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices. According to the definition in this article, computer-readable media does not include transitory media, such as modulated data signals and carrier waves.
  • program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types.
  • This application can also be practiced in distributed computing environments. In these distributed computing environments, remote processing devices connected through a communication network perform tasks.
  • program modules can be located in local and remote computer storage media including storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本申请公开了一种反量化方法、系统、设备及计算机可读介质。本申请实施例的方法包括:基于量化块的尺寸对所述量化块中每个量化系数进行置零判定,判定所述量化系数对应的反变换系数是否可以直接置0;当所述量化系数对应的反变换系数不可以直接置0时,对所述量化系数进行反量化计算,获取对应的反变换系数。相较于现有技术,根据本发明实施例的反量化方法通过置零判定,在反量化计算前就将反量化后得到的反变换块中的非0系数控制在合适区域,从而控制反变换块的复杂程度,进而有效控制反变换过程的复杂程度,并最终降低软硬件解码器的实现难度。

Description

一种反量化方法、系统、设备及计算机可读介质
本申请要求享有2019年2月26日提交的名称为“一种反量化方法、系统、设备及计算机可读介质”的中国专利申请CN 201910141265.6的优先权,其全部内容通过引用并入本文中。
技术领域
本说明书涉及计算机技术领域,尤其涉及一种反量化方法、系统、设备及计算机可读介质。
背景技术
在视频编解码领域,反量化以及反变换是编解码过程中需要用到的基本工具。一般的,量化块经反量化生成反变换块,反变换块经反变换生成残差图像块。
目前,4K电视技术和相关应用正在快速发展,伴随着4K电视技术和相关应用的发展,对应的新一代视频编解码标准也被提出。在现有技术中,相较于前序视频编解码标准,在新一代视频编解码标准中,允许使用更大的变换块,例如64×64尺寸的变换块。然而,在实际的视频编解码应用场景中,变换块尺寸的增大会直接提升反变换过程的复杂程度,从而加大软硬件解码器的实现难度。
发明内容
有鉴于此,本说明书实施例提供了一种反量化方法、系统、设备及计算机可读介质,用于改善现有技术中视频编解码过程中反变换过程复杂程度过高的问题。
本说明书实施例采用下述技术方案:
本说明书实施例提供一种反量化方法,所述方法包括:
基于量化块的尺寸,判定量化块中的量化系数对应的反变换系数是否可以直接置0;
当所述量化系数对应的反变换系数不可以直接置0时,对所述量化系数进行反量化计算,获取对应的反变换系数。
在一实施例中,基于量化块的尺寸对所述量化块中每个量化系数进行置零判定,其中:
根据所述量化块的尺寸确定阈值Tx以及Ty;
将所述量化块记为二维数组M,针对二维数组M中的元素M[x][y],如果x大于等于阈值Tx或y大于等于阈值Ty,则M[x][y]对应的反变换系数可以直接置0。
在一实施例中,根据所述量化块的尺寸确定阈值Tx以及Ty,其中,当所述量化块尺寸为W×H时:
Tx为W、或者W/2、或者W/4、或者W/8;
和/或,
Ty为H、或者H/2,或者H/4,或者H/8。
在一实施例中,当W或H小于等于32时,Tx或Ty取值为32。
在一实施例中,确定阈值Tx以及Ty,其中,Tx以及Ty取值为32。
在一实施例中,对所述量化系数进行反量化计算,获取对应的反变换系数,包括:
根据所述权重系数以及所述量化系数计算临时反变换系数;
基于所述量化块的尺寸修正所述临时反变换系数,获取反变换系数。
在一实施例中,根据所述权重系数以及所述量化系数计算临时反变换系数,其中,使用下式计算所述临时反变换系数:
Coeff IT′=Clip3(-32768,32767,(((((Coeff Q*w)>w s)*D)>>4)+2 S+S1-1)>>(S+S1));
式中:
Coeff Q为量化系数;
Coeff IT′为临时反变换系数;
w为加权反量化的权重系数;
w s为加权反量化移位值;
D为根据量化参数QP确定的常数因子;
S为根据量化参数QP确定的移位数;
S1是根据当前块大小和编码样本精度计算得到的附加移位数。
在一实施例中,基于所述量化块的尺寸修正所述临时反变换系数,获取反变换系数,其中:
当所述量化块的尺寸为W×H时,如果W是H的两倍,或H是W的两倍,根据公式
Coeff IT=(Coeff IT′*181+128)>>8
计算Coeff IT
否则,根据公式
Coeff IT=Coeff IT
计算Coeff IT
其中,Coeff IT′为临时反变换系数,Coeff IT为反变换系数。
本申请还提出了一种视频编码方法,所述方法包括:
获取预测图像块;
根据所述预测图像块以及原始图像块获取第一残差图像块;
根据所述第一残差图像块,经过变换和量化生成用于写入码流的量化块;
采用如本说明书实施例所述的反量化方法,根据所述量化块经反量化生成反变换块;
根据所述反变换块经反变换生成第二残差图像块;
根据所述第二残差图像块以及所述预测图像块获取重建图像块;
对所述重建图像块构成的重建图像进行去块效应滤波,获取用于后续帧参考的参考图像。
本申请还提出了一种视频解码方法,所述方法包括:
解析码流获取量化块以及预测信息;
根据所述预测信息获取预测图像块;
采用如本说明书实施例所述的反量化方法,根据所述量化块经反量化生成反变换块;
根据所述反变换块经反变换生成残差图像块;
根据所述残差图像块以及所述预测图像块获取重建图像块;
对所述重建图像块构成的重建图像进行去块效应滤波,获取用于后续帧参考的参考图像。
本申请还提出了一种反量化系统,所述系统包括:
置零判定模块,其配置为基于量化块的尺寸,判定量化块中的量化系数对应的反变换系数是否可以直接置0;
反量化计算模块,其配置为当所述量化系数对应的反变换系数不可以直接置0时,对所述量化系数进行反量化计算,获取对应的反变换系数。
本申请还提出了一种计算机可读介质,其上存储有计算机可读指令,所述计算机可读指令可被处理器执行以实现本说明书实施例所述的方法。
本申请还提出了一种用于在用户设备端进行信息处理的设备,该设备包括用于存储计算机程序指令的存储器和用于执行程序指令的处理器,其中,当该计算机程序指令被该处理器执行时,触发该设备执行本说明书实施例所述的方法。
本说明书实施例采用的上述至少一个技术方案能够达到以下有益效果:相较于现有技术,根据本发明实施例的反量化方法通过置零判定,在反量化计算前就将反量化后得到的反变换块中的非0系数控制在合适区域,从而控制反变换块的复杂程度,进而有效控制反变换过程的复杂程度,并最终降低软硬件解 码器的实现难度。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为根据本说明书一实施例的方法执行流程图;
图2以及图4为根据本说明书实施例的方法部分执行流程图;
图3为根据本说明书一实施例的量化块矩阵示意图;
图5为根据本说明书一实施例的系统结构框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
相较于前序视频编解码标准,在新一代视频编解码标准中,允许使用更大的变换块,例如64×64尺寸的变换块。然而,在实际的视频编解码应用场景中,变换块尺寸的增大会直接提升反变换过程的复杂程度,从而加大软硬件解码器的实现难度。
针对上述问题,本说明书实施例提出了一种反量化方法。具体的,在现有技术中,反变换过程的复杂程度过高的主要原因是反变换块的尺寸过大,其包含的反变换系数过多。那么,如果将反变换块中的某些反变换系数置零,就可以直接降低反变换过程的计算量,从而降低反变换过程的复杂程度。因此,在本说明书一实施例中,针对量化块中的每一个量化参数进行置零判定,判断其 对应的反变换系数是否可以直接置零,如果可以,则不对该量化参数进行反量化计算,将其对应的反变换系数设置为0;如果不可以,则对该量化参数进行反量化计算,计算其对应的反变换系数。
以下结合附图,详细说明本说明书各实施例提供的技术方案。如图1所示,在一实施例中,方法包括以下步骤。
S110,基于量化块的尺寸,判定量化块中的量化系数对应的反变换系数是否可以直接置0;
S111,当量化系数对应的反变换系数可以直接置0时,将其对应的反变换系数设置为0;
S120,当量化系数对应的反变换系数不可以直接置0时,对量化系数进行反量化计算,获取对应的反变换系数。
当针对量化块中每个量化系数完成步骤S110并对应执行步骤S111或步骤S120后,就可以结合步骤S111以及步骤S120的所有结果,获取反变换块。
相较于现有技术,根据本发明实施例的反量化方法通过置零判定,在反量化计算前就将反量化后得到的反变换块中的非0系数控制在合适区域,从而控制反变换块的复杂程度,进而有效控制反变换过程的复杂程度,并最终降低软硬件解码器的实现难度。
进一步的,在本说明书一实施例中,如图2所示,基于量化块的尺寸对量化块中每个量化系数进行置零判定的过程包括:
S210,根据量化块的尺寸确定阈值Tx以及Ty;
S220,将量化块记为二维数组M,针对二维数组M中的元素M[x][y],如果x大于等于阈值Tx或y大于等于阈值Ty,则M[x][y]对应的反变换系数可以直接置0。
如图3所示,在一应用场景中,量化块M的元素(量化系数)记为M[x][y](M[0][0]、M[0][1]、M[0][2]、M[1][0]、M[1][1]、M[2][0]等等)。M1为M[Tx-1][Ty-1],其对应的反变换系数不可直接置零;M2~M5,其对应的反变 换系数可直接置零。
进一步的,在本说明书一实施例中,Tx以及Ty是根据量化块的尺寸计算得到的自适应阈值。具体的,量化块尺寸为W×H;对应的Tx以及Ty分别记为函数Tx(W,H)和Ty(W,H)。
具体的,在本说明书一实施例中,当量化块尺寸为W×H时:
Tx为W、或者W/2、或者W/4、或者W/8;
和/或,
Ty为H、或者H/2、或者H/4、或者H/8。
在实际应用场景中,针对上述针对Tx以及Ty的计算限定,可以根据具体编解码实际需要确定需要采用的计算限定。
进一步的,在本说明书一实施例中,考虑到针对通常的应用标准(例如avs3标准),当变换块有效数据低于32×32时,其计算复杂程度不需要进一步降低,因此,当W或H小于等于32时,Tx或Ty取值为32。
具体的,例如,在一应用场景中,针对128×32的量化块,Tx以及Ty的取值分别为64以及32。
进一步的,在本说明书一实施例中,考虑到针对通常的应用标准(例如avs3标准),只需要限制变换块有效数据不超过32,因此,将Tx以及Ty取值定为32。即,针对所有尺寸超过32×32的量化块,均采用Tx为32以及Ty为32进行反变换系数的置零判定。而针对尺寸不超过32×32的量化块,则不需要进行反变换系数的置零判定。
进一步的,在本说明书一实施例中,如图4所示,对量化块中的量化系数进行加权反量化,生成对应的反变换系数的过程包括:
S410,根据权重系数以及量化系数计算临时反变换系数;
S420,基于量化块的尺寸修正临时反变换系数,获取反变换系数。
具体的,在本说明书一实施例中,在根据权重系数以及量化系数计算临时反变换系数的过程中,使用下式计算所述临时反变换系数:
Coeff IT′=Clip3(-32768,32767,(((((Coeff Q*w)>>w s)*D)>>4)+2 S+S1-1)>>(S+S1);(1)
式1中:
Coeff Q为量化系数;
Coeff IT′为临时反变换系数;
w为加权反量化的权重系数;
w s为加权反量化移位值;
D为根据量化参数QP确定的常数因子;
S为根据量化参数QP确定的移位数;
S1是根据当前块大小和编码样本精度计算得到的附加移位数。
具体的,在本说明书一实施例中,D为根据量化参数QP查表得到的常数因子。
具体的,在本说明书一实施例中,S为根据量化参数QP查表得到的移位数。
具体的,在本说明书一实施例中,D和S跟据QP值查下表可以得到:
QP的值 D的值 S的值
0 32768 14
1 36061 14
2 38968 14
3 42495 14
4 46341 14
5 50535 14
6 55437 14
7 60424 14
8 32932 13
9 35734 13
10 38968 13
11 42495 13
12 46177 13
13 50535 13
14 55109 13
15 59933 13
16 65535 13
17 35734 12
18 38968 12
19 42577 12
20 46341 12
21 50617 12
22 55027 12
23 60097 12
24 32809 11
25 35734 11
26 38968 11
27 42454 11
28 46382 11
29 50576 11
30 55109 11
31 60056 11
32 65535 11
33 35734 10
34 38968 10
35 42495 10
36 46320 10
37 50515 10
38 55109 10
39 60076 10
40 65535 10
41 35744 9
42 38968 9
43 42495 9
44 46341 9
45 50535 9
46 55099 9
47 60087 9
48 65535 9
49 35734 8
50 38973 8
51 42500 8
52 46341 8
53 50535 8
54 55109 8
55 60097 8
56 32771 7
57 35734 7
58 38965 7
59 42497 7
60 46341 7
61 50535 7
62 55109 7
63 60099 7
64 32768 6
65 36061 6
66 38968 6
67 42495 6
68 46341 6
69 50535 6
70 55437 6
71 60424 6
72 32932 5
73 35734 5
74 38968 5
75 42495 5
76 46177 5
77 50535 5
78 55109 5
79 59933 5
表1
具体的,在本说明书一实施例中,加权反量化移位值w s为2。
具体的,在本说明书一实施例中,根据下式计算附加移位数S1:
S1=m+bitdepth-14; (2)
式2中:
bitdepth是样本精度;
m=Log2(W×H)/2,W和H表示量化块的宽高。
进一步的,在本说明书一实施例中,基于所述量化块的尺寸修正所述临时反变换系数,获取反变换系数的过程包括:
当量化块的尺寸为W×H时,如果W是H的两倍,或H是W的两倍,根据公式
Coeff IT=(Coeff IT′*181+128)>>8 (3)
计算Coeff IT
否则,根据公式
Coeff IT=Coeff IT′ (4)
计算Coeff IT
式3以及式4中,Coeff IT′为临时反变换系数,Coeff IT为反变换系数。
进一步的,基于本说明书实施例的反量化方法,本说明书实施例还提出了一种视频编码方法。具体的,在本说明书一实施例中,编码方法包括:
获取预测图像块;
根据预测图像块以及原始图像块获取第一残差图像块;
根据第一残差图像块,经过变换和量化生成用于写入码流的量化块;
采用如本说明书实施例所述的反量化方法,根据量化块经反量化生成反变换块;
根据反变换块经反变换生成第二残差图像块;
根据第二残差图像块以及预测图像块获取重建图像块;
对重建图像块构成的重建图像进行去块效应滤波,获取用于后续帧参考的参考图像。
具体的,在一具体应用场景中,在视频编码过程中,通过预测技术得到的预测像素组成的图像块称作预测图像块;编码一帧图像时,将图像划分为不同大小的编码单元进行编码;编码单元又划分成一个或多个预测单元;编码单元同时也划分成一个或多个变换单元;编码单元选择使用帧内模式或帧间模式对预测单元进行预测,得到预测单元对应的预测图像块;变换单元对应的原始图像块减去对应的预测图像块得到残差图像块Resi;残差图像块Resi经过变换和量化操作得到量化块;预测单元和变换单元划分信息、预测模式、量化块等通过熵编码写入码流;量化块根据本说明书实施例所述的反量化方法,基于量化参数和对应的加权反量化矩阵,经过反量化得到反变换块;反变换块经过反变换得到的残差图像块Resi’,残差图像块Resi’同对应的预测图像块相加得到重建图像块;重建图像块组成的重建图像经过环路滤波之后,提供给后续帧参考。
进一步的,基于本说明书实施例的反量化方法,本说明书实施例还提出了一种视频解码方法。具体的,在本说明书一实施例中,解码方法包括:
解析码流获取量化块以及预测信息;
根据预测信息获取预测图像块;
采用如本说明书实施例所述的反量化方法,根据量化块经反量化生成反变换块;
根据反变换块经反变换生成残差图像块;
根据残差图像块以及预测图像块获取重建图像块;
对重建图像块构成的重建图像进行去块效应滤波,获取用于后续帧参考的参考图像。
进一步的,基于本说明书实施例的反量化方法,本说明书实施例还提出了一种反量化系统。具体的,如图5所示,系统包括:
置零判定模块510,其配置为基于量化块的尺寸对量化块中每个量化系数进行置零判定,判定量化系数对应的反变换系数是否可以直接置0;
反量化计算模块520,其配置为当量化系数对应的反变换系数不可以直接置0时,对量化系数进行反量化计算,获取对应的反变换系数。
基于本说明书实施例的方法,本说明书实施例还提出了一种计算机可读介质,其上存储有计算机可读指令,计算机可读指令可被处理器执行以实现本说明书实施例所述的方法。
基于本说明书实施例的方法,本说明书实施例还提出了一种用于在用户设备端进行信息处理的设备,该设备包括用于存储计算机程序指令的存储器和用于执行程序指令的处理器,其中,当该计算机程序指令被该处理器执行时,触发该设备执行本说明书实施例所述的方法。
在20世纪90年代,对于一个技术的改进可以很明显地区分是硬件上的改进(例如,对二极管、晶体管、开关等电路结构的改进)还是软件上的改进(对于方法流程的改进)。然而,随着技术的发展,当今的很多方法流程的改进已经可以视为硬件电路结构的直接改进。设计人员几乎都通过将改进的方法流程编程到硬件电路中来得到相应的硬件电路结构。因此,不能说一个方法流程的 改进就不能用硬件实体模块来实现。例如,可编程逻辑器件(Programmable Logic Device,PLD)(例如现场可编程门阵列(Field Programmable Gate Array,FPGA))就是这样一种集成电路,其逻辑功能由用户对器件编程来确定。由设计人员自行编程来把一个数字系统“集成”在一片PLD上,而不需要请芯片制造厂商来设计和制作专用的集成电路芯片。而且,如今,取代手工地制作集成电路芯片,这种编程也多半改用“逻辑编译器(logic compiler)”软件来实现,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码也得用特定的编程语言来撰写,此称之为硬件描述语言(Hardware Description Language,HDL),而HDL也并非仅有一种,而是有许多种,如ABEL(Advanced Boolean Expression Language)、AHDL(Altera Hardware Description Language)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL(Java Hardware Description Language)、Lava、Lola、MyHDL、PALASM、RHDL(Ruby Hardware Description Language)等,目前最普遍使用的是VHDL(Very-High-Speed Integrated Circuit Hardware Description Language)与Verilog。本领域技术人员也应该清楚,只需要将方法流程用上述几种硬件描述语言稍作逻辑编程并编程到集成电路中,就可以很容易得到实现该逻辑方法流程的硬件电路。
控制器可以按任何适当的方式实现,例如,控制器可以采取例如微处理器或处理器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式,控制器的例子包括但不限于以下微控制器:ARC 625D、Atmel AT91SAM、Microchip PIC18F26K20以及Silicone Labs C8051F320,存储器控制器还可以被实现为存储器的控制逻辑的一部分。本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形 式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个 流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (13)

  1. 一种反量化方法,其特征在于,所述方法包括:
    基于量化块的尺寸,判定量化块中的量化系数对应的反变换系数是否可以直接置0;
    当所述量化系数对应的反变换系数不可以直接置0时,对所述量化系数进行反量化计算,获取对应的反变换系数。
  2. 根据权利要求1所述的方法,其特征在于,基于量化块的尺寸对所述量化块中每个量化系数进行置零判定,其中:
    根据所述量化块的尺寸确定阈值Tx以及Ty;
    将所述量化块记为二维数组M,针对二维数组M中的元素M[x][y],如果x大于等于阈值Tx或y大于等于阈值Ty,则M[x][y]对应的反变换系数可以直接置0。
  3. 根据权利要求2所述的方法,其特征在于,根据所述量化块的尺寸确定阈值Tx以及Ty,其中,当所述量化块尺寸为W×H时:
    Tx为W、或者W/2、或者W/4、或者W/8;
    和/或,
    Ty为H、或者H/2,或者H/4,或者H/8。
  4. 根据权利要求3所述的方法,其特征在于,当W或H小于等于32时,Tx或Ty取值为32。
  5. 根据权利要求2~4中任一项所述的方法,其特征在于,确定阈值Tx以及Ty,其中,Tx以及Ty取值为32。
  6. 根据权利要求1~5中任一项所述的方法,其特征在于,对所述量化系数进行反量化计算,获取对应的反变换系数,包括:
    根据所述权重系数以及所述量化系数计算临时反变换系数;
    基于所述量化块的尺寸修正所述临时反变换系数,获取反变换系数。
  7. 根据权利要求6所述的方法,其特征在于,根据所述权重系数以及所 述量化系数计算临时反变换系数,其中,使用下式计算所述临时反变换系数:
    Figure PCTCN2019077176-appb-100001
    式中:
    Coeff Q为量化系数;
    Coeff IT′为临时反变换系数;
    w为加权反量化的权重系数;
    w s为加权反量化移位值;
    D为根据量化参数QP确定的常数因子;
    S为根据量化参数QP确定的移位数;
    S1是根据当前块大小和编码样本精度计算得到的附加移位数。
  8. 根据权利要求6所述的方法,其特征在于,基于所述量化块的尺寸修正所述临时反变换系数,获取反变换系数,其中:
    当所述量化块的尺寸为W×H时,如果W是H的两倍,或H是W的两倍,根据公式
    Coeff IT=(Coeff IT′*181+128)>>8
    计算Coeff IT
    否则,根据公式
    Coeff IT=Coeff IT
    计算Coeff IT
    其中,Coeff IT′为临时反变换系数,Coeff IT为反变换系数。
  9. 一种视频编码方法,其特征在于,所述方法包括:
    获取预测图像块;
    根据所述预测图像块以及原始图像块获取第一残差图像块;
    根据所述第一残差图像块,经过变换和量化生成用于写入码流的量化块;
    采用如权利要求1~8中任一项所述的反量化方法,根据所述量化块经反量化生成反变换块;
    根据所述反变换块经反变换生成第二残差图像块;
    根据所述第二残差图像块以及所述预测图像块获取重建图像块;
    对所述重建图像块构成的重建图像进行去块效应滤波,获取用于后续帧参考的参考图像。
  10. 一种视频解码方法,其特征在于,所述方法包括:
    解析码流获取量化块以及预测信息;
    根据所述预测信息获取预测图像块;
    采用如权利要求1~8中任一项所述的反量化方法,根据所述量化块经反量化生成反变换块;
    根据所述反变换块经反变换生成残差图像块;
    根据所述残差图像块以及所述预测图像块获取重建图像块;
    对所述重建图像块构成的重建图像进行去块效应滤波,获取用于后续帧参考的参考图像。
  11. 一种反量化系统,其特征在于,所述系统包括:
    置零判定模块,其配置为基于量化块的尺寸,判定量化块中的量化系数对应的反变换系数是否可以直接置0;
    反量化计算模块,其配置为当所述量化系数对应的反变换系数不可以直接置0时,对所述量化系数进行反量化计算,获取对应的反变换系数。
  12. 一种计算机可读介质,其上存储有计算机可读指令,所述计算机可读指令可被处理器执行以实现权利要求1至10中任一项所述的方法。
  13. 一种用于在用户设备端进行信息处理的设备,该设备包括用于存储计算机程序指令的存储器和用于执行程序指令的处理器,其中,当该计算机程序指令被该处理器执行时,触发该设备执行权利要求1至10中任一项所述的方法。
PCT/CN2019/077176 2019-02-26 2019-03-06 一种反量化方法、系统、设备及计算机可读介质 WO2020172904A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/610,474 US20210409711A1 (en) 2019-02-26 2019-03-06 Method, system, device, and computer-readable storage medium for inverse quantization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910141265.6 2019-02-26
CN201910141265.6A CN109831670B (zh) 2019-02-26 2019-02-26 一种反量化方法、系统、设备及计算机可读介质

Publications (1)

Publication Number Publication Date
WO2020172904A1 true WO2020172904A1 (zh) 2020-09-03

Family

ID=66864508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077176 WO2020172904A1 (zh) 2019-02-26 2019-03-06 一种反量化方法、系统、设备及计算机可读介质

Country Status (3)

Country Link
US (1) US20210409711A1 (zh)
CN (1) CN109831670B (zh)
WO (1) WO2020172904A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113824957B (zh) * 2020-09-27 2022-10-28 腾讯科技(深圳)有限公司 视频编解码方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103181169A (zh) * 2010-10-01 2013-06-26 高通股份有限公司 使用联合上下文模型对系数进行熵译码
CN104270641A (zh) * 2014-09-30 2015-01-07 杭州华为数字技术有限公司 变换系数的处理方法和装置
US9432676B2 (en) * 2013-10-29 2016-08-30 Broadcom Corporation RDO-based small transform coefficients suppression algorithm for HEVC
CN106105206A (zh) * 2014-03-17 2016-11-09 高通股份有限公司 用于使用置零系数的低复杂度正变换的系统和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7190723B2 (en) * 2002-03-27 2007-03-13 Scientific-Atlanta, Inc. Digital stream transcoder with a hybrid-rate controller
KR101375668B1 (ko) * 2008-03-17 2014-03-18 삼성전자주식회사 변환 계수의 부호화, 복호화 방법 및 장치
US9106913B2 (en) * 2011-03-08 2015-08-11 Qualcomm Incorporated Coding of transform coefficients for video coding
KR20130049523A (ko) * 2011-11-04 2013-05-14 오수미 인트라 예측 블록 생성 장치
EP3139609B1 (en) * 2012-01-03 2021-01-06 HFI Innovation Inc. Method and apparatus for block-based significance map and significance group flag context selection
EP3293975A4 (en) * 2015-09-08 2018-10-10 Samsung Electronics Co., Ltd. Device and method for entropy encoding and decoding
CN105704498A (zh) * 2016-03-17 2016-06-22 北京大学深圳研究生院 逆离散余弦变换的方法及装置、视频编/解码方法及框架

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103181169A (zh) * 2010-10-01 2013-06-26 高通股份有限公司 使用联合上下文模型对系数进行熵译码
US9432676B2 (en) * 2013-10-29 2016-08-30 Broadcom Corporation RDO-based small transform coefficients suppression algorithm for HEVC
CN106105206A (zh) * 2014-03-17 2016-11-09 高通股份有限公司 用于使用置零系数的低复杂度正变换的系统和方法
CN104270641A (zh) * 2014-09-30 2015-01-07 杭州华为数字技术有限公司 变换系数的处理方法和装置

Also Published As

Publication number Publication date
CN109831670A (zh) 2019-05-31
CN109831670B (zh) 2020-04-24
US20210409711A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
US20190387234A1 (en) Encoding method, decoding method, encoder, and decoder
WO2020172902A1 (zh) 一种去块效应滤波方法、系统、设备及计算机可读介质
US10158864B2 (en) Method, apparatus and coder for selecting optimal reference frame in HEVC coding
AU2017317847B2 (en) Intra-prediction video coding method and device
US20190373281A1 (en) Encoding method, decoding method, encoder, and decoder
CN105847819B (zh) 图像处理设备和半导体设备
TWI736525B (zh) 修正運動補償資訊的資料處理系統及包含運動補償資訊的視訊資料的解碼方法
CN105763879B (zh) 包括用于图像处理的编码器的方法、系统和设备
WO2020172904A1 (zh) 一种反量化方法、系统、设备及计算机可读介质
WO2020172903A1 (zh) 一种反量化方法、系统、设备及计算机可读介质
US11350128B2 (en) Methods, systems, devices and computer-readable mediums for encoding and decoding transform matrices matching residual characteristics of prediction residual block
US10009617B2 (en) Method of operating encoder and method of operating system on chip including the encoder
KR102503900B1 (ko) 양자화 파라미터를 적응적으로 결정하는 인코더 및 이를 포함하는 애플리케이션 프로세서
US10412386B2 (en) System on chip and data processing system including the same
WO2020181579A1 (zh) 一种基于帧内预测的编解码方法、装置及滤波器
US20200154111A1 (en) Image mapping methods, apparatuses, device, and computer-readable memory medium
CN112752101B (zh) 一种视频质量优化方法、装置及存储介质
US20170070747A1 (en) Image processing device for adjusting computational complexity of interpolation filter, image interpolation method, and image encoding method
CN112511838A (zh) 一种降低视频转码延时的方法、装置、设备和可读介质
US20150049801A1 (en) Intra refresh method for video encoding and a video encoder for performing the same
US10440363B2 (en) Encoder performing quantization based on deadzone, and video processing system comprising the same
US10944967B2 (en) Encoder and decoder and methods thereof
KR102366524B1 (ko) 영상 처리 방법, 영상 처리 장치, 및 프로그램

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916612

Country of ref document: EP

Kind code of ref document: A1