WO2020172877A1 - 一种校正接收机的互调失真信号的方法及装置 - Google Patents

一种校正接收机的互调失真信号的方法及装置 Download PDF

Info

Publication number
WO2020172877A1
WO2020172877A1 PCT/CN2019/076570 CN2019076570W WO2020172877A1 WO 2020172877 A1 WO2020172877 A1 WO 2020172877A1 CN 2019076570 W CN2019076570 W CN 2019076570W WO 2020172877 A1 WO2020172877 A1 WO 2020172877A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermodulation distortion
compensation voltage
distortion signal
energy
branch
Prior art date
Application number
PCT/CN2019/076570
Other languages
English (en)
French (fr)
Inventor
赵兴山
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980092362.9A priority Critical patent/CN113439391B/zh
Priority to PCT/CN2019/076570 priority patent/WO2020172877A1/zh
Publication of WO2020172877A1 publication Critical patent/WO2020172877A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method and device for correcting intermodulation distortion signals of a receiver.
  • the output signal of the receiver may be distorted. To ensure that the signal output by the receiver is true and effective, the distorted signal needs to be corrected.
  • the signal distortion mainly comes from the mixer of the receiver, and the mixer has a second-order input intercept point (IIP2), thereby generating a second-order intermodulation distortion signal.
  • IIP2 second-order input intercept point
  • the two signals output by the mixer referred to as the in-phase signal and the quadrature-phase signal, denoted as the I signal and the Q signal
  • the compensation voltage corresponding to the I branch and the compensation voltage corresponding to the Q branch are obtained, and then input to the mixer of the receiver, so that the energy of the intermodulation distortion signal of the I branch and the Q branch can be reduced to a certain extent
  • the energy of the intermodulation distortion signal can realize the correction of the distortion signal.
  • the compensation voltage determined in the existing correction method may not be accurate enough, which results in a poor correction effect on the distorted signal.
  • the embodiments of the present application provide a method and device for correcting an intermodulation distortion signal of a receiver, which can reduce signal distortion more effectively.
  • an embodiment of the present application provides a method for correcting an intermodulation distortion signal of a receiver, wherein the receiver includes a first branch and a second branch, and the first branch and the second branch are in-phase and positive.
  • Cross branch the method includes: detecting the current energy of the first intermodulation distortion signal in the output signal of the first branch, and according to the current energy of the first intermodulation distortion signal and a pre-stored history of the first intermodulation distortion signal Energy determines the first compensation voltage, and uses the first compensation voltage to adjust the threshold voltage of the first mixer in the first branch; and detects the second intermodulation distortion signal in the output signal of the second branch Current energy; and determine the second compensation voltage according to the current energy of the second intermodulation distortion signal and the prestored history energy of the second intermodulation distortion signal, and use the second compensation voltage to mix the second frequency in the second branch
  • the threshold voltage of the device is adjusted.
  • the current energy of the first intermodulation distortion signal refers to the energy of the intermodulation distortion signal currently detected by the correction device from the output signal of the first branch of the receiver
  • the current energy of the second intermodulation distortion signal It refers to the energy of the intermodulation distortion signal currently detected by the correction device from the output signal of the second branch of the receiver.
  • the aforementioned adjustment of the threshold voltage of the first mixer in the first branch by using the first compensation voltage specifically refers to inputting the first compensation voltage to the first mixer, so that the threshold of the first mixer can be adjusted Voltage;
  • the above-mentioned use of the second compensation voltage to adjust the threshold voltage of the second mixer in the second branch specifically refers to inputting the second compensation voltage to the second mixer, so that the second mixing can be adjusted The threshold voltage of the device.
  • the input signal of the receiver is a useful signal
  • the input signal is processed by the receiver to obtain an output signal.
  • the output signal includes the useful signal and the intermodulation distortion signal.
  • the intermodulation distortion signal is mainly composed of The receiver’s mixer interferes with useful signals.
  • the energy of the intermodulation distortion signal is the power of the intermodulation distortion signal.
  • the output signal of the receiver includes the output signal of the first branch and the output signal of the second branch.
  • the output signal, so, the above-mentioned intermodulation distortion signal includes the intermodulation distortion signal in the output signal of the first branch (referred to as the first intermodulation distortion signal) and the intermodulation distortion signal in the output signal of the second branch (referred to as Is the second intermodulation distortion signal).
  • first branch and the second branch are mutually coupled, that is, the first branch and the second branch will affect each other, and a compensation voltage is input to the first mixer in the first branch.
  • the energy of the first intermodulation distortion signal in the output signal of the first branch will change, and at the same time the energy of the second intermodulation distortion signal in the output signal of the second branch will also change; the same goes for
  • the second mixer in the second branch inputs a compensation voltage, the energy of the second intermodulation distortion signal in the output signal of the second branch will change, and at the same time, the first branch in the output signal of the first branch The energy of the intermodulation distortion signal also changes.
  • the correction device detects the current energy of the first intermodulation distortion signal, and then according to the current energy of the first intermodulation distortion signal and the prestored first intermodulation distortion signal Determine the first compensation voltage, and use the first compensation voltage to adjust the threshold voltage of the first mixer in the first branch, and detect the current energy of the second intermodulation distortion signal, and then use the first compensation voltage to
  • the current energy of the modulation distortion signal and the pre-stored history energy of the second intermodulation distortion signal determine the second compensation voltage, and use the second compensation voltage to adjust the threshold voltage of the second mixer in the second branch, so, It can reduce the energy of the receiver's intermodulation distortion signal to a certain extent, thereby reducing signal distortion more effectively.
  • the correction device cyclically executes the method described in the first aspect above until the number of cycles reaches a preset number of cycles.
  • the correction device cyclically executes the method described in the first aspect above until the number of cycles reaches a preset number of cycles (for example, N times, where N is a positive integer greater than or equal to 2), compared to the previous N- 1 cycle, the first compensation voltage and the second compensation voltage obtained in the Nth cycle can minimize the distortion of the output signal of the receiver, that is, the energy of the intermodulation distortion signal in the signal output by the receiver can reach The smallest.
  • a preset number of cycles for example, N times, where N is a positive integer greater than or equal to 2
  • the method for correcting the intermodulation distortion signal of the receiver may also The method includes: detecting the current energy of the first intermodulation distortion signal; and using the current energy of the first intermodulation distortion signal as the historical energy of the first intermodulation distortion signal.
  • the first compensation voltage is used to adjust the threshold voltage of the first mixer of the first branch.
  • the first compensation voltage will affect the first compensation voltage.
  • the correction device detects the current energy of the first intermodulation distortion signal, and the correction device updates the aforementioned pre-stored historical energy of the first intermodulation distortion signal, specifically Yes, the correction device uses the current energy of the first intermodulation distortion signal detected under the first compensation voltage as the historical energy of the first intermodulation distortion signal. It is understandable that the historical energy of the first intermodulation distortion signal updated this time will be used to determine the first compensation voltage in the next cycle.
  • the method for correcting the intermodulation distortion signal of the receiver may also The method includes: detecting the current energy of the second intermodulation distortion signal; and using the current energy of the second intermodulation distortion signal as the historical energy of the second intermodulation distortion signal.
  • the second compensation voltage is used to adjust the threshold voltage of the second mixer of the second branch.
  • the second compensation voltage will affect the second branch.
  • the correction device detects the current energy of the second intermodulation distortion signal, and the correction device updates the aforementioned pre-stored historical energy of the second intermodulation distortion signal. Yes, the correction device uses the current energy of the second intermodulation distortion signal detected under the second compensation voltage as the historical energy of the second intermodulation distortion signal. It is understandable that the historical energy of the second intermodulation distortion signal updated this time will be used to determine the second compensation voltage in the next cycle.
  • the foregoing method of determining the first compensation voltage based on the current energy of the first intermodulation distortion signal and the prestored historical energy of the first intermodulation distortion signal may include: When the energy is less than the historical energy of the first intermodulation distortion signal, one half of the sum of the first compensation voltage obtained in the previous cycle and the first high compensation voltage obtained in the previous cycle is determined as the first compensation Voltage, where the first high compensation voltage obtained in the previous cycle is determined according to the current energy of the first intermodulation distortion signal in the previous cycle and the historical energy of the first intermodulation distortion signal.
  • Low compensation voltage ph_i is the first high compensation voltage obtained in this cycle
  • mid_pre1_i is the first compensation voltage obtained in the previous cycle
  • ph_pre1_i is the first high compensation voltage obtained in the previous cycle.
  • the first compensation voltage obtained in the previous cycle is compared with the first low compensation voltage obtained in the previous two cycles One half of the sum is determined as the first compensation voltage, where the first low compensation voltage obtained in the previous two cycles is based on the current energy of the first intermodulation distortion signal in the previous two cycles and the first intermodulation The historical energy of the distorted signal is determined.
  • Compensation voltage ph_i is the first high compensation voltage obtained in this cycle
  • mid_pre_i is the first compensation voltage obtained in the previous cycle
  • pl_pre2_i is the first low compensation voltage obtained in the previous two cycles.
  • the historical energy of the first intermodulation distortion signal refers to the energy of the intermodulation distortion signal detected by the correction device from the output signal of the first branch of the receiver last time.
  • the dichotomy method (or called the binary tree method) can be used to determine the first compensation voltage.
  • three compensation voltages can be designed, which are low compensation voltage, medium compensation voltage and high compensation voltage.
  • the three compensation voltages corresponding to this loop need to be determined according to the three compensation voltages obtained in the previous loop, so as to determine the first compensation input to the first mixer Voltage; or it is necessary to determine the three compensation voltages corresponding to this cycle according to the three compensation voltages obtained in the previous two cycles, so as to determine the first compensation voltage input to the first mixer.
  • the compensation voltage will affect the threshold voltage of the mixer, which will affect the output signal of the receiver. Specifically, the compensation voltage will affect the energy of the intermodulation distortion signal in the output signal. Therefore, the energy of the intermodulation distortion signal can be reduced by providing a compensation voltage to the mixer and the signal distortion can be improved.
  • the foregoing method of determining the second compensation voltage based on the current energy of the second intermodulation distortion signal and the prestored historical energy of the second intermodulation distortion signal may include: When the energy is less than the historical energy of the second intermodulation distortion signal, the second compensation is determined as the second compensation by half of the sum of the second compensation voltage obtained in the previous cycle and the second high compensation voltage obtained in the previous cycle Voltage, where the second high compensation voltage obtained in the previous cycle is determined according to the current energy of the second intermodulation distortion signal in the previous cycle and the historical energy of the second intermodulation distortion signal.
  • Compensation voltage ph_q is the second highest compensation voltage obtained in this cycle
  • mid_pre1_q is the second compensation voltage obtained in the previous cycle
  • ph_pre1_q is the second highest compensation voltage obtained in the previous cycle.
  • the current energy of the second intermodulation distortion signal is greater than or equal to the historical energy of the second intermodulation distortion signal
  • compare the second compensation voltage obtained in the previous cycle with the second low compensation voltage obtained in the previous two cycles One half of the sum is determined as the second compensation voltage, where the second low compensation voltage obtained in the first two cycles is based on the current energy of the second intermodulation distortion signal in the previous two cycles and the second intermodulation
  • the historical energy of the distorted signal is determined.
  • Compensation voltage ph_q is the second highest compensation voltage obtained in this cycle
  • mid_pre_q is the second compensation voltage obtained in the previous cycle
  • pl_pre2_q is the second low compensation voltage obtained in the previous two cycles.
  • the historical energy of the second intermodulation distortion signal refers to the energy of the intermodulation distortion signal detected by the correction device from the output signal of the second branch of the receiver last time.
  • the compensation voltage will affect the threshold voltage of the mixer, which in turn affects the output signal of the receiver.
  • the compensation voltage will affect the energy of the intermodulation distortion signal in the output signal. Therefore, the energy of the intermodulation distortion signal can be reduced by providing the compensation voltage to the mixer and the signal distortion can be improved.
  • the energy of the first intermodulation distortion signal and the energy of the second intermodulation distortion signal are constant under the action of the first compensation voltage.
  • the energy of the first intermodulation distortion signal and the energy of the second intermodulation distortion signal are also reduced to a certain extent under the action of the second compensation voltage.
  • the foregoing method for detecting the current energy of the first intermodulation distortion signal in the output signal of the first branch may include: performing frequency shift, filtering and energy calculation on the output signal of the first branch, Obtain the current energy of the first intermodulation distortion signal.
  • the output signal of the first branch includes the useful signal and the first intermodulation distortion signal.
  • the frequency of the first intermodulation distortion signal in the output signal of the first branch is moved to a low frequency (for example, 0 Hz), and the The frequency of the useful signal in the output signal is unchanged, and then the useful signal and the frequency-shifted first intermodulation distortion signal are low-pass filtered, and the useful signal is filtered out to obtain the frequency-shifted first intermodulation distortion signal, and then Calculate the power of the first intermodulation distortion signal and use it as the current energy of the first intermodulation distortion signal.
  • the current energy of the first intermodulation distortion signal is an average value of the current energy of the multiple intermodulation distortion signals.
  • the foregoing method for detecting the current energy of the second intermodulation distortion signal in the output signal of the second branch may include: performing frequency shift, filtering and energy calculation on the output signal of the second branch, Obtain the current energy of the second intermodulation distortion signal.
  • the method of detecting the current energy of the second intermodulation distortion signal is similar to the foregoing detecting the current energy of the first intermodulation distortion signal, and will not be repeated here.
  • the above-mentioned first compensation voltage is a digital voltage
  • the method for correcting the intermodulation distortion signal of a receiver provided in the embodiment of the present application may further include: converting the first compensation voltage into an analog voltage, thereby The analog voltage is input to the first mixer.
  • the above-mentioned second compensation voltage is a digital voltage.
  • the method for correcting the intermodulation distortion signal of a receiver provided in the embodiment of the present application may further include: converting the second compensation voltage into an analog voltage, thereby The analog voltage is input to the second mixer.
  • the enabling indication information is used to indicate the determination of the first compensation voltage or the second compensation voltage.
  • the enable indication information may include the enable indication information of the first branch and the enable indication information of the second branch.
  • an embodiment of the present application provides a communication device, including a receiver, a first energy detection circuit, a second energy detection circuit, and a compensation voltage calculation circuit.
  • the receiver includes a first branch and a second branch.
  • One branch and the second branch are in-phase orthogonal branches.
  • the first energy detection circuit is used to detect the current energy of the first intermodulation distortion signal in the output signal of the first branch;
  • the compensation voltage calculation circuit is used to detect the current energy of the first intermodulation distortion signal and the pre-stored first
  • the historical energy of the intermodulation distortion signal determines the first compensation voltage
  • the first compensation voltage is used to adjust the threshold voltage of the first mixer in the first branch;
  • the second energy detection circuit is used to detect the output of the second branch The current energy of the second intermodulation distortion signal in the signal;
  • the compensation voltage calculation circuit is also used to determine the second compensation voltage according to the current energy of the second intermodulation distortion signal and the prestored history energy of the second intermodulation distortion signal,
  • the two compensation voltages are used to adjust the threshold voltage of the second mixer in the second branch.
  • the above-mentioned first energy detection circuit is further configured to detect the current value of the first intermodulation distortion signal after the first compensation voltage adjusts the threshold voltage of the first mixer in the first branch. Energy; the above-mentioned compensation voltage calculation circuit is also used to use the current energy of the first intermodulation distortion signal as the historical energy of the first intermodulation distortion signal.
  • the above-mentioned second energy detection circuit is further configured to detect the current value of the second intermodulation distortion signal after the second compensation voltage adjusts the threshold voltage of the second mixer in the second branch. Energy; the above-mentioned compensation voltage calculation circuit is also used to use the current energy of the second intermodulation distortion signal as the historical energy of the second intermodulation distortion signal.
  • the aforementioned compensation voltage calculation circuit is specifically used to calculate the first compensation obtained in the previous cycle when the current energy of the first intermodulation distortion signal is less than the historical energy of the first intermodulation distortion signal.
  • One half of the sum of the voltage and the first high compensation voltage obtained in the previous cycle is determined as the first compensation voltage, where the first high compensation voltage obtained in the previous cycle is based on the first mutual compensation voltage in the previous cycle.
  • the current energy of the modulation distortion signal is determined from the historical energy of the first intermodulation distortion signal.
  • the aforementioned compensation voltage calculation circuit is specifically used to calculate the first intermodulation distortion signal obtained in the previous cycle when the current energy of the first intermodulation distortion signal is greater than or equal to the historical energy of the first intermodulation distortion signal.
  • One-half of the sum of a compensation voltage and the first low compensation voltage obtained in the previous two cycles is determined as the first compensation voltage, where the first low compensation voltage obtained in the previous two cycles is based on the first two cycles Is determined by the current energy of the first intermodulation distortion signal and the historical energy of the first intermodulation distortion signal.
  • the above compensation voltage calculation circuit is specifically used to calculate the second compensation obtained in the previous cycle when the current energy of the second intermodulation distortion signal is less than the historical energy of the second intermodulation distortion signal.
  • One half of the sum of the voltage and the second high compensation voltage obtained in the previous cycle is determined as the second compensation voltage, where the second high compensation voltage obtained in the previous cycle is based on the second mutual compensation voltage obtained in the previous cycle.
  • the current energy of the distortion signal and the historical energy of the second intermodulation signal are determined.
  • Compensation voltage ph_q is the second highest compensation voltage obtained in this cycle
  • mid_pre1_q is the second compensation voltage obtained in the previous cycle
  • ph_pre1_q is the second highest compensation voltage obtained in the previous cycle.
  • the second compensation voltage obtained in the previous cycle is compared with the previous two cycles.
  • One half of the sum of the second low compensation voltage obtained in the second cycle is determined as the second compensation voltage, where the second low compensation voltage obtained in the first two cycles is based on the second intermodulation distortion signal in the previous two cycles.
  • Compensation voltage ph_q is the second highest compensation voltage obtained in this cycle
  • mid_pre_q is the second compensation voltage obtained in the previous cycle
  • pl_pre2_q is the second low compensation voltage obtained in the previous two cycles.
  • the above-mentioned first energy detection circuit is specifically configured to perform frequency shift, filter, and energy calculation on the output signal of the first branch to obtain the current energy of the first intermodulation distortion signal.
  • the foregoing second energy detection circuit is specifically configured to perform frequency shift, filtering, and energy calculation on the output signal of the second branch to obtain the current energy of the second intermodulation distortion signal.
  • the communication device provided in the embodiment of the present application may further include a first digital-to-analog converter and a second digital-to-analog converter.
  • the first digital-to-analog converter is used to convert the first compensation voltage into an analog voltage when the first compensation voltage is a digital voltage
  • the second digital-to-analog converter is used to convert the first compensation voltage into an analog voltage when the second compensation voltage is a digital voltage, Convert the second compensation voltage to an analog voltage.
  • an embodiment of the present application provides a calibration device including a first energy detection module, a second energy detection module, and a compensation voltage determination module.
  • the first energy detection module is used to detect the current energy of the first intermodulation distortion signal in the output signal of the first branch; the compensation voltage determination module is used to detect the current energy of the first intermodulation distortion signal and the pre-stored first
  • the historical energy of the intermodulation distortion signal determines the first compensation voltage.
  • the first intermodulation distortion signal is the intermodulation distortion signal detected on the first branch of the mixer in the receiver.
  • the first compensation voltage is used to adjust the first compensation voltage.
  • the threshold voltage of the first mixer in the branch; the second energy detection module is used to detect the current energy of the second intermodulation distortion signal in the output signal of the second branch;
  • the compensation voltage determination module is also used to determine the The current energy of the intermodulation distortion signal and the pre-stored historical energy of the second intermodulation distortion signal determine a second compensation voltage, and the second compensation voltage is used to adjust the threshold voltage of the second mixer in the second branch.
  • the aforementioned first energy detection module is further configured to detect the current value of the first intermodulation distortion signal after the first compensation voltage adjusts the threshold voltage of the first mixer in the first branch. Energy; the above-mentioned compensation voltage determination module is also used to use the current energy of the first intermodulation distortion signal as the historical energy of the first intermodulation distortion signal.
  • the above-mentioned second energy detection module is further configured to detect the current value of the second intermodulation distortion signal after the second compensation voltage adjusts the threshold voltage of the second mixer in the second branch. Energy; the above-mentioned compensation voltage determination module is also used to use the current energy of the second intermodulation distortion signal as the historical energy of the second intermodulation distortion signal.
  • the aforementioned compensation voltage determination module is specifically configured to compensate the first compensation obtained in the previous cycle when the current energy of the first intermodulation distortion signal is less than the historical energy of the first intermodulation distortion signal.
  • One half of the sum of the voltage and the first high compensation voltage obtained in the previous cycle is determined as the first compensation voltage, where the first high compensation voltage obtained in the previous cycle is based on the first mutual compensation voltage in the previous cycle.
  • the current energy of the modulation distortion signal is determined from the historical energy of the first intermodulation distortion signal.
  • the aforementioned compensation voltage determination module is specifically configured to: when the current energy of the first intermodulation distortion signal is greater than or equal to the historical energy of the first intermodulation distortion signal, compare the first intermodulation distortion signal obtained in the previous cycle. One-half of the sum of a compensation voltage and the first low compensation voltage obtained in the previous two cycles is determined as the first compensation voltage, where the first low compensation voltage obtained in the previous two cycles is based on the first two cycles Is determined by the current energy of the first intermodulation distortion signal and the historical energy of the first intermodulation distortion signal.
  • the aforementioned compensation voltage determining module is specifically configured to compensate the second compensation obtained in the previous cycle when the current energy of the second intermodulation distortion signal is less than the historical energy of the second intermodulation distortion signal.
  • One half of the sum of the voltage and the second high compensation voltage obtained in the previous cycle is determined as the second compensation voltage, where the second high compensation voltage obtained in the previous cycle is based on the second mutual compensation voltage obtained in the previous cycle.
  • the current energy of the distortion signal and the historical energy of the second intermodulation signal are determined.
  • Compensation voltage ph_q is the second highest compensation voltage obtained in this cycle
  • mid_pre1_q is the second compensation voltage obtained in the previous cycle
  • ph_pre1_q is the second highest compensation voltage obtained in the previous cycle.
  • the aforementioned compensation voltage determination module is specifically configured to: when the current energy of the second intermodulation distortion signal is greater than or equal to the historical energy of the second intermodulation distortion signal, compare the first obtained in the previous cycle One half of the sum of the second compensation voltage and the second low compensation voltage obtained in the first two cycles is determined as the second compensation voltage, where the second low compensation voltage obtained in the first two cycles is based on the previous two cycles Is determined by the current energy of the second intermodulation distortion signal and the historical energy of the second intermodulation distortion signal.
  • Compensation voltage ph_q is the second highest compensation voltage obtained in this cycle
  • mid_pre_q is the second compensation voltage obtained in the previous cycle
  • pl_pre2_q is the second low compensation voltage obtained in the previous two cycles.
  • the above-mentioned first energy detection module is specifically configured to perform frequency shift, filtering and energy calculation on the output signal of the first branch to obtain the current energy of the first intermodulation distortion signal.
  • the above-mentioned second energy detection module is specifically configured to perform frequency shift, filter and energy calculation on the output signal of the second branch to obtain the current energy of the second intermodulation distortion signal.
  • the correction device provided in the embodiment of the present application further includes a first digital-to-analog conversion module and a second digital-to-analog conversion module.
  • the first digital-to-analog conversion module is used for converting the first compensation voltage into an analog voltage when the first compensation voltage is a digital voltage
  • the second digital-to-analog conversion module is used for when the second compensation voltage is a digital voltage
  • convert the second compensation voltage into an analog voltage converts the second compensation voltage into an analog voltage.
  • an embodiment of the present application provides a communication device including a processor and a memory coupled to the processor; the memory is used to store computer instructions.
  • the processor executes the computer instructions stored in the memory to The communication device is caused to execute the method for correcting the intermodulation distortion signal of the receiver described in any one of the first aspect and its possible implementation manners.
  • inventions of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium may include computer instructions.
  • the communication device executes the first aspect and possible implementations thereof.
  • the method for correcting the intermodulation distortion signal of the receiver described in any of the manners.
  • the embodiments of the present application provide a computer program product including computer instructions.
  • the communication device causes the communication device to execute the first aspect and any one of its possible implementations.
  • FIG. 1 is a schematic structural diagram of a receiver provided by an embodiment of the application.
  • FIG. 2 is a first structural diagram of a detection device provided by an embodiment of the application.
  • FIG. 3 is a second structural diagram of a detection device provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram 1 of a method for correcting an intermodulation distortion signal of a receiver according to an embodiment of this application;
  • FIG. 5 is a second schematic diagram of a method for correcting intermodulation distortion signals of a receiver according to an embodiment of this application;
  • FIG. 6 is a first structural diagram of a calibration device provided by an example of this application.
  • FIG. 7 is a second structural diagram of a calibration device provided by an example of this application.
  • first and second in the description and claims of the embodiments of the present application are used to distinguish different objects, rather than to describe a specific order of objects.
  • first intermodulation distortion signal and the second intermodulation distortion signal are used to distinguish different intermodulation distortion signals, rather than to describe the specific order of the intermodulation distortion signals.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • multiple means two or more.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.
  • the intermodulation distortion signal in the process of correcting the intermodulation distortion signal in the output signal of the receiver, can be corrected by the method of alternately determining the compensation voltage by the I branch and the Q branch.
  • the compensation voltage corresponding to the I branch is determined according to the low compensation voltage, the middle compensation voltage, and the high compensation voltage corresponding to the I branch.
  • the middle compensation voltage in this iteration is taken as the high compensation voltage in the next iteration, and the low compensation voltage in this iteration is taken as the low compensation voltage in the next iteration.
  • Low compensation voltage use (medium compensation voltage + low compensation voltage)/2 as the middle compensation voltage of the next iteration; when the energy of the intermodulation distortion signal under the low compensation voltage is greater than or equal to the energy of the intermodulation distortion signal under the high compensation voltage , Regard the middle compensation voltage in this iteration as the low compensation voltage in the next iteration, and the high compensation voltage in this iteration as the high compensation voltage in the next iteration.
  • Set (medium compensation voltage + low compensation voltage)/ 2 As the middle compensation voltage of the next iteration, after N iterations are completed in sequence, (medium compensation voltage + low compensation voltage)/2 determined in the Nth iteration is used as the final compensation voltage corresponding to the I branch.
  • the compensation voltage corresponding to the Q branch is similar to the compensation voltage corresponding to the I branch.
  • the compensation voltage obtained in this method may be the local optimal value instead of the global optimal value. The correction effect of intermodulation distortion signals may be poor.
  • the embodiment of the application provides a method and device for correcting the intermodulation distortion signal of a receiver.
  • the correction device detects the current energy of the first intermodulation distortion signal, and then according to the current energy of the first intermodulation distortion signal and the prestored first mutual
  • the historical energy of the modulation distortion signal determines the first compensation voltage, and uses the first compensation voltage to adjust the threshold voltage of the first mixer in the first branch, and detects the current energy of the second intermodulation distortion signal, and then according to
  • the current energy of the second intermodulation distortion signal and the pre-stored historical energy of the second intermodulation distortion signal determine the second compensation voltage, and use the second compensation voltage to adjust the threshold voltage of the second mixer in the second branch
  • the energy of the intermodulation distortion signal of the receiver can be reduced to a certain extent, thereby more effectively reducing signal distortion.
  • FIG. 1 is a schematic structural diagram of a receiver provided by an embodiment of the application.
  • the receiver 10 includes a radio frequency amplifier 11, an analog filter 12, a mixing device 13, and a transimpedance amplifier.
  • TIA TIA 14a
  • TIA 14b analog to digital converter 15a
  • analog to digital converter 15b analog to digital converter 15b
  • decimation filter 16a decimation filter 16b.
  • the radio frequency amplifier 11 is used to adjust the gain of the input signal
  • the analog filter 12 may be a low-noise amplifier, which is used to further adjust the gain of the input signal
  • the mixing device 13 may include a phase-locked loop, a splitter A division (DIV) and two mixers. After the signal passes through the two mixers, it can be divided into two quadrature mixed signals with a phase difference of 90 degrees, denoted as the I signal and the Q signal.
  • DIV splitter A division
  • the I signal corresponds to the I branch
  • the Q signal corresponds to the Q branch
  • the I branch and the Q branch are in-phase quadrature branches
  • the I branch includes the first mixer, TIA 14a, analog-to-digital converter 15a and extraction Filter 16a
  • the Q branch includes a second mixer, TIA 14b, analog-to-digital converter 15b, and decimation filter 16b.
  • the two mixers connected to the mixing device 13 are then divided into I signal and Q signal, and then The I signal is then processed by TIA 14a, the analog-to-digital converter 15a and the decimation filter 16a to obtain the output signal of the I branch.
  • the Q signal is processed by the TIA 14b, the analog-to-digital converter 15b and the decimation filter 16b to obtain Q The output signal of the branch.
  • the distortion of the output signal of the receiver mainly comes from the aforementioned mixers (including two mixers, which can be referred to as the first mixer and the second mixer). Therefore, the embodiments of the present application provide The method of correcting the intermodulation distortion signal of the receiver mainly corrects the second-order intermodulation distortion signal output by the mixer.
  • FIG. 2 is a schematic structural diagram of a correction device provided by an embodiment of the application.
  • the correction device 100 includes the above-mentioned receiver 10, a first energy detection circuit 20, a second energy detection circuit 30, and a compensation voltage calculation The circuit 40, the first digital-to-analog converter 50, and the second digital-to-analog converter 60.
  • the output end of the I branch (referred to as the first branch) of the receiver 10 is connected to the input end of the first energy detection circuit 20, and the output end of the Q branch (referred to as the second branch) of the receiver 10
  • the input terminal of the second energy detection circuit 30 is connected
  • the output terminal of the first energy detection circuit 20 is connected to the input terminal of the compensation voltage calculation circuit 40
  • the output terminal of the second energy detection circuit 30 is connected to the input terminal of the compensation voltage calculation circuit 40.
  • the output terminal of the voltage calculation circuit 40 is respectively connected to the input terminal of the first digital-to-analog converter 50 and the input terminal of the second digital-to-analog converter 60
  • the output terminal of the first digital-to-analog converter 50 is connected to the receiver 10 and the first mixer.
  • the input end of the frequency converter and the output end of the second digital-to-analog converter 60 are connected to the input end of the receiver 10 and the second mixer.
  • the first energy detection circuit 20 is used to detect the energy of the intermodulation distortion signal in the output signal of the first branch
  • the second energy detection circuit 30 is used to detect the interference in the output signal of the second branch. Adjust the energy of the distorted signal.
  • first energy detection circuit 20 and the second energy detection circuit 30 are the structure shown in FIG. 2.
  • the first energy detection circuit 20 and the second energy detection circuit 30 have similar structures, and the first energy detection circuit
  • the circuit 20 includes a digital down converter (DDC) frequency shifter, a filter, and a power calculation module (including a single signal power calculation module and an average power calculation module), and the second energy detection circuit 30 also includes a DDC frequency shifter , Filter and power calculation module (including single signal power calculation module and average power calculation module), DDC frequency shifter is used to shift the frequency of the intermodulation distortion signal to low frequency (for example, 0 Hz);
  • the filter is a low pass filter, It is used to filter out signals other than the low-frequency intermodulation distortion signal after frequency shift in the input signal to obtain the low-frequency intermodulation distortion signal; the power calculation module is used to calculate the energy of the intermodulation distortion signal.
  • the first energy detection circuit 20 and the second energy detection circuit 30 may also have the structure shown in FIG. 3, and the structure of the first energy detection circuit 20 in FIG.
  • the structure of the energy detection circuit 30 is similar.
  • the first energy detection circuit 20 includes a numerically controlled oscillator (NCO) and related calculation modules
  • the second energy detection module 30 also includes an NCO and related calculation modules.
  • NCO numerically controlled oscillator
  • the NCO is used to generate a reference signal
  • the frequency of the energy of the reference signal is the same as the frequency of the energy of the tone signal output by the receiver
  • the reference signal and the output signal of the receiver are both connected to the correlation calculation module, and the correlation calculation The module is used to calculate the reference signal and the output signal of the receiver to obtain the energy of the intermodulation distortion signal.
  • the above-mentioned compensation voltage calculation circuit 40 is used for adopting related algorithms according to the energy of the intermodulation distortion signal in the output signal of the first branch and the energy of the intermodulation distortion signal in the output signal of the second branch (specifically will be implemented in the following Detailed introduction in the example), determine the first compensation voltage and the second compensation voltage. It should be noted that the first compensation voltage and the second compensation voltage output by the compensation voltage calculation circuit 40 are both digital voltages (N bits represent the code value of the voltage).
  • the compensation voltage calculation circuit 40 may include a search algorithm module, and an LUT table for storing the first compensation voltage and the second compensation voltage (used to store the first compensation voltage and the second compensation voltage).
  • the LUT table of the two compensation voltages can be the same LUT table or an independent LUT table), the correction device cyclically executes the method for correcting the intermodulation distortion signal of the receiver provided in the embodiment of this application, and it can be obtained in each cycle A first compensation voltage and a second compensation voltage.
  • the correction device may not save the first compensation voltage and the second compensation voltage determined during the cycle (ie intermediate results), but only the first compensation voltage determined at the end of the cycle. The compensation voltage and the second compensation voltage (ie the final result).
  • the aforementioned first digital-to-analog converter 50 is used to convert the first compensation voltage from a digital voltage to an analog voltage
  • the second digital-to-analog converter 60 is used to convert the second compensation voltage from a digital voltage to an analog voltage.
  • the signal source input to the receiver 10 may be an external signal source, that is, the input signal is generated by other instruments or equipment, and the signal source may also be received
  • the internal wireless transceiver of the receiver 10 generates, that is, multiplexes the signals generated by the internal devices of the receiver 10.
  • the wireless transceiver of the receiver 10 contains a transmission link (such as a dual-tone transmitter module), which can transmit a dual-tone signal. After the dual-tone signal passes through a digital channel and an analog channel, the dual-tone signal is input through a radio frequency loop. To the input end of the RF amplifier, see Figure 3 for details.
  • the first branch may be the branch of the in-phase signal, denoted as the I branch
  • the second branch is the branch of the quadrature-phase signal, denoted as the Q branch
  • the first branch is also It can be the Q branch
  • the second branch is the I branch.
  • an embodiment of the present application provides a method for correcting an intermodulation distortion signal of a receiver by providing compensation to the mixer of the receiver. Voltage is used to reduce the energy of the intermodulation distortion signal.
  • the receiver includes a first branch and a second branch. The first branch and the second branch are in-phase orthogonal branches.
  • the method includes S101-S104:
  • the correction device detects the current energy of the first intermodulation distortion signal in the output signal of the first branch.
  • the current energy of the first intermodulation distortion signal refers to the energy of the intermodulation distortion signal currently detected by the correction device from the output signal of the first branch of the receiver.
  • the input signal of the receiver is called the useful signal
  • the output signal is obtained by processing the input signal by the receiver.
  • the output signal includes the useful signal and the intermodulation distortion signal
  • the intermodulation distortion signal is mainly Produced by the receiver's mixer interfering with useful signals, the energy of the intermodulation distortion signal is the power of the intermodulation distortion signal.
  • the intermodulation distortion signal in the output signal of the first branch is the first intermodulation distortion signal
  • the intermodulation distortion signal in the output signal of the second branch is the second intermodulation distortion signal.
  • the input signal received by the above-mentioned receiver is a dual-tone signal
  • the dual-tone signal includes two single-tone signals with different frequency points.
  • the frequency of one single-tone signal is f1 and the frequency of the other single-tone signal is f2 (assuming f1 ⁇ f2)
  • the frequency of the intermodulation distortion signal may be f2-f1 or f1+f2.
  • the current energy of the first intermodulation distortion signal can be detected by the first energy detection circuit 20 described above.
  • the compensation voltage currently input to the mixer can be set to 0, and under the 0 compensation voltage,
  • the correction device detects the current energy of the first intermodulation distortion signal.
  • S101 may be specifically implemented by S1011:
  • the correction device performs frequency shift, filtering and energy calculation on the output signal of the first branch to obtain the current energy of the first intermodulation distortion signal.
  • the current energy of the first intermodulation distortion signal can be detected by the first energy detection circuit 20 in the correction device shown in FIG. 2, or the first energy detection circuit in the correction device shown in FIG.
  • the circuit 20 detects the current energy of the first intermodulation distortion signal. Exemplarily, taking the first energy detection circuit 20 in FIG.
  • the first energy detection circuit 20 obtains the output signal of the first branch of the receiver, and the output signal includes the useful signal and the first intermodulation distortion signal
  • First through the DDC frequency shifter in the first energy detection circuit 20, the frequency of the first intermodulation distortion signal in the output signal is shifted to a low frequency (for example, 0 Hz), and the frequency of the useful signal in the output signal remains unchanged, and then The useful signal and the frequency-shifted first intermodulation distortion signal pass through the low-pass filter in the first energy detection circuit 20 to filter out the useful signal to obtain the frequency-shifted first intermodulation distortion signal, which is then calculated by power
  • the module calculates the power of the first intermodulation distortion signal as the current energy of the first intermodulation distortion signal. It can be understood that the current energy of the first intermodulation distortion signal is an average value of the current energy of the multiple intermodulation distortion signals.
  • the correction device determines the first compensation voltage according to the current energy of the first intermodulation distortion signal and the pre-stored historical energy of the first intermodulation distortion signal, and uses the first compensation voltage to correct the first mixer in the first branch.
  • the threshold voltage is adjusted.
  • the first compensation voltage can be calculated by the compensation voltage determination circuit 40 described above.
  • the historical energy of the first intermodulation distortion signal refers to the last time the correction device detects the intermodulation distortion signal from the output signal of the first branch of the receiver. energy.
  • the historical energy of the first intermodulation distortion signal can be a pre-stored value, that is, an initial configured value (set to any value that meets actual use requirements)
  • the historical energy of the first intermodulation distortion signal can be set to a maximum value (such as 2 ⁇ 28).
  • the aforementioned adjustment of the threshold voltage of the second mixer in the second branch by using the second compensation voltage refers to: inputting the first compensation voltage into the first mixer of the first branch, so that the second When a compensation voltage is applied to the first mixer, the threshold voltage of the first mixer can be changed, thereby affecting the output signal of the first branch.
  • the first branch and the second branch are coupled with each other, that is, the first branch and the second branch will affect each other, and the current through the first intermodulation distortion signal
  • the first compensation voltage is determined by the energy and the pre-stored history energy of the first intermodulation distortion signal
  • the first compensation voltage is input to the first mixer of the receiver. The first compensation voltage will not only affect the first compensation voltage of the receiver.
  • the output signal of the branch and will affect the output signal of the second branch
  • the first compensation voltage will affect the energy of the first intermodulation distortion signal in the output signal of the first branch, and also affect the The energy of the second intermodulation distortion signal in the output signal of the two branches, therefore, the energy of the intermodulation distortion signal can be reduced by providing a compensation voltage to the mixer and the signal distortion can be improved.
  • the correction device may compare the current energy of the first intermodulation distortion signal with the historical energy of the first intermodulation distortion signal, and then use a corresponding method to determine the first compensation voltage.
  • the above S102 may include S1021 or S1022:
  • the first high compensation voltage obtained in the previous cycle is determined according to the current energy of the first intermodulation distortion signal in the previous cycle and the historical energy of the first intermodulation distortion signal.
  • the dichotomy method (or called the binary tree method) can be used to determine the first compensation voltage.
  • three compensation voltages can be designed, which are low compensation voltage, medium compensation voltage, and high compensation voltage, for example, respectively. Is pl, mid, ph, and the final compensation voltage input to the mixer is determined according to the low compensation voltage and the high compensation voltage.
  • the first compensation voltage, ph_pre1_i is the first high compensation voltage obtained in the previous cycle.
  • the first low compensation voltage obtained in the first two cycles is determined according to the current energy of the first intermodulation distortion signal and the historical energy of the first intermodulation distortion signal in the previous two cycles.
  • the obtained first compensation voltage, pl_pre2_i is the first low compensation voltage obtained in the previous two cycles.
  • the three compensation voltages corresponding to this cycle need to be determined according to the three compensation voltages obtained in the previous cycle, so as to determine the first compensation voltage ; Or it is necessary to determine the three compensation voltages corresponding to this cycle according to the three compensation voltages obtained in the previous two cycles to determine the first compensation voltage.
  • a search direction can be defined.
  • the search direction is denoted as dir.
  • the search direction is denoted as dir_i, and the current energy of the first intermodulation distortion signal is less than the first intermodulation distortion signal.
  • the initial value of each variable involved in S1021 and S1022 can be set.
  • Table 1 is an example of initial setting.
  • n-2th, n-1th, and nth cycles as an example, these three consecutive cycles obtain a low compensation voltage, a high compensation voltage, and a middle compensation voltage, that is, the first low compensation voltage, the first A high compensation voltage and the first compensation voltage are shown in Table 2 below.
  • the first low compensation voltage in the nth cycle is the first compensation voltage in the n-1th cycle
  • the first high compensation voltage in the n cycles is the first high compensation voltage in the n-1th cycle.
  • the first low compensation voltage in the nth cycle is the first compensation voltage in the n-1th cycle
  • the first high compensation voltage in the nth cycle is the first low compensation voltage in the n-2th cycle.
  • the correction device detects the current energy of the second intermodulation distortion signal in the signal output by the second branch.
  • the second energy detection circuit 30 can detect the current energy of the second intermodulation distortion signal.
  • the frequency of the second intermodulation distortion signal may be f2-f1 or f1+f2.
  • the second intermodulation distortion signal please refer to the above-mentioned related description of the first intermodulation distortion signal, which will not be repeated here. .
  • a compensation voltage is input to the first mixer in the first branch. Under the compensation voltage, the first intermodulation in the output signal of the first branch The energy of the distorted signal will change, and the energy of the second intermodulation distortion signal in the output signal of the second branch will also change; similarly, input a compensation voltage to the second mixer in the second branch Under the compensation voltage, the energy of the second intermodulation distortion signal in the output signal of the second branch will change, and the energy of the first intermodulation distortion signal in the output signal of the first branch will also change .
  • the first compensation voltage is used to adjust the threshold voltage of the first mixer in the first branch, that is, the first compensation voltage is input to the first mixer Under the action of the first compensation voltage, the energy of the second intermodulation distortion signal will change. In this way, the correction device further detects the current energy of the second intermodulation distortion signal.
  • the above-mentioned first compensation voltage is a digital voltage.
  • the first compensation voltage is converted from a digital voltage to an analog voltage by the first digital-to-analog converter 50 in the correction device. Voltage, and input the analog voltage to the first mixer.
  • S1031 may be specifically implemented by S1031:
  • the correction device performs frequency shift, filtering and energy calculation on the output signal of the second branch to obtain the current energy of the second intermodulation distortion signal.
  • the current energy of the second intermodulation distortion signal refers to the energy of the intermodulation distortion signal currently detected by the correction device from the output signal of the second branch of the receiver.
  • the current energy of the second intermodulation distortion signal can be detected by the second energy detection circuit 30 in the correction device shown in FIG. 2, or the second energy detection in the correction device shown in FIG.
  • the circuit 20 detects the current energy of the second intermodulation distortion signal, and the method for detecting the current energy of the second intermodulation distortion signal is similar to the foregoing method for detecting the current energy of the first intermodulation distortion signal. For details, refer to the correlation in S101. Description, not repeat them here.
  • the correction device determines the second compensation voltage according to the current energy of the second intermodulation distortion signal and the pre-stored historical energy of the second intermodulation distortion signal, and uses the second compensation voltage to correct the second mixer in the second branch.
  • the threshold voltage is adjusted.
  • the historical energy of the second intermodulation distortion signal refers to the energy of the intermodulation distortion signal detected by the correction device from the output signal of the second branch of the receiver last time.
  • the current energy of the second intermodulation distortion signal is the energy of the second intermodulation distortion signal detected by the correction device in S103; the history of the second intermodulation distortion signal The energy may be the energy of the second intermodulation distortion signal detected by the correction device when the compensation voltage input by the mixer is 0.
  • the second compensation voltage is input to the second mixer of the receiver, and the second compensation
  • the voltage will not only affect the output signal of the second branch of the receiver, but also affect the output signal of the first branch), specifically, the second compensation voltage will affect the second intermodulation in the output signal of the second branch
  • the energy of the distortion signal will also affect the energy of the first intermodulation distortion signal in the output signal of the first branch. Therefore, the energy of the intermodulation distortion signal can be reduced by providing a compensation voltage to the mixer and the signal distortion can be improved.
  • the correction device may compare the current energy of the second intermodulation distortion signal with the historical energy of the second intermodulation distortion signal, and then use a corresponding method to determine the second compensation voltage, specifically ,
  • the above S104 may include S1041 or S1042:
  • the second high compensation voltage obtained in the previous cycle is determined according to the current energy of the second intermodulation distortion signal in the previous cycle and the historical energy of the second intermodulation distortion signal.
  • the dichotomy method may also be used to determine the second compensation voltage.
  • three compensation voltages are designed, which are low compensation voltage, medium compensation voltage, and high compensation voltage.
  • the second high compensation voltage obtained in, and pl_q mid_pre_q
  • ph_q ph_pre1_q
  • mid_pre1_q is the second compensation voltage obtained in the previous cycle
  • ph_pre1_q is the second high compensation voltage obtained in the previous cycle.
  • the second low compensation voltage obtained in the first two cycles is determined according to the current energy of the second intermodulation distortion signal and the historical energy of the second intermodulation distortion signal in the previous two cycles.
  • the three compensation voltages corresponding to this cycle need to be determined according to the three compensation voltages obtained in the previous cycle, so as to determine the second compensation voltage ; Or it is necessary to determine the three compensation voltages corresponding to this cycle according to the three compensations obtained in the previous two cycles to determine the second compensation voltage.
  • the search direction can also be defined, denoted as dir_q.
  • the initial value of each variable involved in S1041 and S1042 can be set.
  • Table 6 is an example of initial setting.
  • the initialized values in Table 6 above are not directly used in S1041 or S1042 above. Since the first branch and the second branch are coupled with each other, after the execution of S102 After the first compensation voltage is determined, when the first compensation voltage is used to adjust the threshold voltage of the first mixer of the first branch, it will affect the energy of the second intermodulation distortion signal.
  • the second The current energy of the intermodulation distortion signal needs to be updated once, that is, the current energy of the second intermodulation distortion signal is updated from the current energy initialized in Table 6 above (that is, the energy corresponding to zero voltage) to the one determined under the action of the first compensation voltage
  • the energy of the second intermodulation distortion signal; and the historical energy of the second intermodulation distortion signal will also be updated once, that is, the historical energy of the second intermodulation distortion signal is updated from the historical energy (ie the maximum value) initialized in Table 6 above
  • updating the current energy of the second intermodulation distortion signal and updating the historical energy of the second intermodulation distortion signal may specifically include: inputting the first compensation voltage to the first mixer, and the second energy detection circuit detects When the second intermodulation distortion signal is energy, the second energy detection circuit may send a detection completion flag to the compensation voltage calculation circuit. After the compensation voltage calculation circuit receives the detection completion flag, it first updates the history energy of the second intermodulation distortion signal , And then update the current energy of the second intermodulation distortion signal.
  • the above-mentioned second compensation voltage is a digital voltage.
  • the second compensation voltage is converted from a digital voltage to an analog voltage by the second digital-to-analog converter 60 in the correction device. Voltage and input the analog voltage to the second mixer.
  • the correction device executes the foregoing S101-S104 repeatedly until the number of cycles reaches a preset number of cycles (for example, N times, where N is a positive integer greater than or equal to 2), compared to the previous N-1 cycles, the Nth cycle
  • a preset number of cycles for example, N times, where N is a positive integer greater than or equal to 2
  • the first compensation voltage and the second compensation voltage obtained in the cycle can minimize the distortion of the output signal of the receiver, that is, minimize the energy of the intermodulation distortion signal in the signal output by the receiver.
  • S101-S102 and S103-S104 are executed alternately, that is, it can be understood as: first execute S101-S102 to determine the first compensation voltage obtained in this cycle, and perform the first compensation voltage on the first mixing When the threshold voltage of the filter is adjusted, the current energy of the second intermodulation distortion signal is re-determined; then S103-S104 is executed to determine the second compensation voltage obtained in this cycle, so in the next iteration process, the second compensation voltage When the threshold voltage of the second mixer is adjusted, the current energy of the first intermodulation distortion signal is re-determined, and the steps such as S101 are executed again.
  • the enable indication information is used to indicate to determine the first compensation voltage or to indicate to determine the second compensation voltage.
  • the enable indication information may include the enable indication information of the first branch and the enable indication information of the second branch.
  • the method for correcting the intermodulation distortion signal of the receiver may further include S102a -S102b:
  • the correction device detects the current energy of the first intermodulation distortion signal.
  • the correction device uses the current energy of the first intermodulation distortion signal as the historical energy of the first intermodulation distortion signal.
  • the correction device when the correction device determines the first compensation voltage, the first compensation voltage will affect the energy of the first intermodulation distortion signal in the output signal of the first branch. In this way, the correction device also detects The current energy of the first intermodulation distortion signal, and the correction device updates the historical energy of the first intermodulation distortion signal. Specifically, the correction device uses the current energy of the first intermodulation distortion signal detected by it as the current energy of the first intermodulation distortion signal Historical energy. It is understandable that the historical energy of the first intermodulation distortion signal updated this time will be used to determine the first compensation voltage in the next cycle (ie, the next time S102 is executed).
  • the method for correcting the intermodulation distortion signal of the receiver provided in the embodiment of the present application further Can include S104a-S104b:
  • the correction device detects the current energy of the second intermodulation distortion signal.
  • the correction device uses the current energy of the second intermodulation distortion signal as the historical energy of the second intermodulation distortion signal.
  • the correction device when the correction device determines the second compensation voltage, the second compensation voltage will affect the energy of the second intermodulation distortion signal in the output signal of the second branch.
  • the correction device also detects The current energy of the second intermodulation distortion signal, and the correction device updates the historical energy of the second intermodulation distortion signal.
  • the correction device uses the current energy of the second intermodulation distortion signal detected under the second compensation voltage as the second intermodulation distortion signal.
  • the historical energy of the distorted signal It can be understood that the historical energy of the second intermodulation distortion signal updated this time will be used to determine the second compensation voltage in the next cycle (that is, the next time S104 is executed).
  • the embodiment of the application provides a method for correcting an intermodulation distortion signal of a receiver.
  • the correction device detects the current energy of the first intermodulation distortion signal, and then according to the current energy of the first intermodulation distortion signal and the prestored first intermodulation distortion
  • the historical energy of the signal determines the first compensation voltage, and uses the first compensation voltage to adjust the threshold voltage of the first mixer in the first branch, and detects the current energy of the second intermodulation distortion signal, and then according to the second
  • the current energy of the intermodulation distortion signal and the pre-stored historical energy of the second intermodulation distortion signal determine the second compensation voltage, and use the second compensation voltage to adjust the threshold voltage of the second mixer in the second branch.
  • the correction device includes hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the correction device into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 6 shows a possible structural schematic diagram of the correction device involved in the foregoing embodiment.
  • the correction device 1000 may include: a first energy The detection module 1001, the second energy detection module 1002, and the compensation voltage determination module 1003.
  • the first energy detection module 1001 can be used to support the correction device 1000 to perform S101 (including S1011) and S102a in the above method embodiment;
  • the second energy detection module 1002 can be used to support the correction device 1000 to perform S103 in the above method embodiment ( Including S1031) and S104a.
  • the compensation voltage determination module 1003 may be used to support the correction device 1000 to execute S102 (including S1021 or S1022), S102b, S104 (including S1041 or S1042), and S104b in the foregoing method embodiment.
  • the correction device 1000 provided by the embodiment of the present application may further include a first digital-to-analog conversion module 1004 and a second digital-to-analog conversion module 1005.
  • the first digital-to-analog conversion module 1004 is used for When a compensation voltage is a digital voltage, the first compensation voltage is converted into an analog voltage;
  • the second digital-to-analog conversion module 1005 is used to convert the second compensation voltage into an analog voltage when the second compensation voltage is a digital voltage Voltage.
  • all relevant content of each step involved in the above method embodiment can be cited in the function description of the corresponding function module, and will not be repeated here.
  • FIG. 7 shows a schematic diagram of a possible structure of the correction device involved in the foregoing embodiment.
  • the correction device 2000 may include: a processing module 2001 and a communication module 2002.
  • the processing module 2001 can be used to control and manage the actions of the correction device 2000.
  • the processing module 2001 supports the correction device 2000 to execute S101 (including S1011), S102 ((including S1021 or S1022)), S103 (including S1031), S104 (including S1041 or S1042), S102a, S102b, S104a, S104b.
  • the communication module 2002 may be used to support the communication between the correction apparatus 2000 and other network entities.
  • the correction device 2000 may further include a storage module 2003 for storing program codes and data of the correction device 2000.
  • the processing module 2001 may be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (digital signal processor, DSP), or an application-specific integrated circuit (application-specific integrated circuit). integrated circuit, ASIC), field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of the embodiments of the present application.
  • the foregoing processor may also be a combination that implements computing functions, for example, including a combination of one or more microprocessors, a combination of DSP and microprocessor, and so on.
  • the communication module 2002 may be a transceiver, a transceiver circuit, or a communication interface.
  • the storage module 2003 may be a memory.
  • the processing module 2001 is a processor
  • the communication module 2002 is a transceiver
  • the storage module 2003 is a memory
  • the processor, the transceiver, and the memory may be connected by a bus.
  • the bus may be a peripheral component interconnect standard (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect standard
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus, etc.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instruction can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instruction can be transmitted from a website, computer, server, or data center through a cable.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium can be a magnetic medium (for example, floppy disk, magnetic disk, tape), optical medium (for example, digital video disc (DVD)), or semiconductor medium (for example, solid state drives (SSD)), etc. .
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be Combined or can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: flash memory, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Superheterodyne Receivers (AREA)
  • Amplifiers (AREA)
  • Noise Elimination (AREA)

Abstract

本申请实施例提供一种校正接收机的互调失真信号的方法及装置,涉及通信技术领域,能够更加有效地减小信号失真。该方法包括:检测第一支路的输出信号中的第一互调失真信号的当前能量,并且根据第一互调失真信号的当前能量和预存的第一互调失真信号的历史能量确定第一补偿电压,并利用第一补偿电压对第一支路中的第一混频器的阈值电压进行调整,以及检测第二支路的输出信号中的第二互调失真信号的当前能量,并且根据第二互调失真信号的当前能量和预存的第二互调失真信号的历史能量确定第二补偿电压,并利用第二补偿电压对所述第二支路中的第二混频器的阈值电压进行调整。

Description

一种校正接收机的互调失真信号的方法及装置 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种校正接收机的互调失真信号的方法及装置。
背景技术
接收机处理输入信号的过程中,如果接收机有调制干扰输入时,可能会使得接收机的输出信号失真,为了保证接收机输出的信号真实有效,需要对失真信号进行校正。
对于二阶信号失真现象,信号失真主要来自于接收机的混频器,混频器存在二阶输入拦截点(second order input intercept point,IIP2),从而产生二阶互调失真信号。目前,在对二阶互调失真信号进行校正时,可以对混频器输出的两路信号(分别称为同相信号和正交相信号,记为I路信号和Q路信号)分别进行校正,得到I支路对应的补偿电压和Q支路对应的补偿电压,进而输入至接收机的混频器中,如此在一定程度上可以降低I支路的互调失真信号的能量和Q支路的互调失真信号的能量,实现对失真信号的校正。
然而,现有的校正方法中确定的补偿电压可能不够准确,如此导致对失真信号的校正效果较差。
发明内容
本申请实施例提供一种校正接收机的互调失真信号的方法及装置,能够更加有效地减小信号失真。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种校正接收机的互调失真信号的方法,其中,接收机的包括第一支路和第二支路,第一支路与第二支路为同相正交支路,该方法包括:检测第一支路的输出信号中的第一互调失真信号的当前能量,并且根据第一互调失真信号的当前能量和预存的第一互调失真信号的历史能量确定第一补偿电压,并利用该第一补偿电压对第一支路中的第一混频器的阈值电压进行调整;以及检测第二支路的输出信号中的第二互调失真信号的当前能量;并且根据第二互调失真信号的当前能量和预存的第二互调失真信号的历史能量确定第二补偿电压,并利用该第二补偿电压对第二支路中的第二混频器的阈值电压进行调整。
其中,上述第一互调失真信号的当前能量指的是校正装置当前从接收机的第一支路的输出信号中检测到的互调失真信号的能量,上述第二互调失真信号的当前能量指的是校正装置当前从接收机的第二支路的输出信号中检测到的互调失真信号的能量。
上述利用第一补偿电压对第一支路中的第一混频器的阈值电压进行调整具体指的是将第一补偿电压输入至第一混频器,从而可以调整第一混频器的阈值电压;上述利用该第二补偿电压对第二支路中的第二混频器的阈值电压进行调整具体指的是将第二补偿电压输入至第二混频器,从而可以调整第二混频器的阈值电压。
本申请实施例中,接收机的输入信号为有用信号,通过接收机对该输入信号进行 处理得到输出信号,该输出信号中包括有用信号和互调失真信号,其中,该互调失真信号主要由接收机的混频器对有用信号干扰而产生的,互调失真信号的能量为互调失真信号的功率,具体的,接收机的输出信号包括第一支路的输出信号和第二支路的输出信号,如此,上述互调失真信号包括第一支路的输出信号中的互调失真信号(称为第一互调失真信号)和第二支路的输出信号中的互调失真信号(称为第二互调失真信号)。
需要说明的是,上述第一支路与第二支路是互相耦合的,即第一支路与第二支路会互相影响,对第一支路中的第一混频器输入一个补偿电压,则第一支路的输出信号中的第一互调失真信号的能量会发生变化,同时第二支路的输出信号中的第二互调失真信号的能量也会发生变化;同理,对第二支路中的第二混频器输入一个补偿电压,则第二支路的输出信号中的第二互调失真信号的能量会发生变化,同时第一支路的输出信号中的第一互调失真信号的能量也会发生变化。
本申请实施例提供的校正接收机的互调失真信号的方法,校正装置检测第一互调失真信号的当前能量,然后根据第一互调失真信号的当前能量和预存的第一互调失真信号的历史能量确定第一补偿电压,并利用第一补偿电压对第一支路中的第一混频器的阈值电压进行调整,以及检测第二互调失真信号的当前能量,然后根据第二互调失真信号的当前能量和预存的第二互调失真信号的历史能量确定第二补偿电压,并利用第二补偿电压对第二支路中的第二混频器的阈值电压进行调整,如此,能够在一定程度上降低接收机的互调失真信号的能量,从而更加有效地减小信号失真。
一种可能的实现方式中,校正装置循环执行上述第一方面所述的方法,直至循环次数达到预配置循环次数。
本申请实施例中,校正装置通过循环执行上述第一方面所述的方法,直至循环次数达到预配置循环次数(例如N次,N为大于或者等于2的正整数),相比于前N-1次循环,第N次循环中得到的第一补偿电压和第二补偿电压可以以使得接收机的输出信号的失真程度达到最小,即使得接收机输出的信号中的互调失真信号的能量达到最小。
一种可能的实现方式中,利用第一补偿电压对第一支路中的第一混频器的阈值电压进行调整之后,本申请实施例提供的校正接收机的互调失真信号的方法还可以包括:检测第一互调失真信号的当前能量;并且将第一互调失真信号的当前能量作为第一互调失真信号的历史能量。
本申请实施例中,校正装置确定出第一补偿电压之后,利用该第一补偿电压对第一支路的第一混频器的阈值电压进行调整,该第一补偿电压会影响该第一支路的输出信号中的第一互调失真信号的能量,此时,校正装置检测出第一互调失真信号的当前能量,并且校正装置更新上述预存的第一互调失真信号的历史能量,具体的,校正装置将第一补偿电压下检测的第一互调失真信号的当前能量作为第一互调失真信号的历史能量。可以理解的是,本次更新的第一互调失真信号的历史能量将用于在下一次循环时确定第一补偿电压。
一种可能的实现方式中,利用第二补偿电压对第二支路中的第二混频器的阈值电压进行调整之后,本申请实施例提供的校正接收机的互调失真信号的方法还可以包括: 检测第二互调失真信号的当前能量;并且将第二互调失真信号的当前能量作为第二互调失真信号的历史能量。
本申请实施例中,校正装置确定出第二补偿电压之后,利用该第二补偿电压对第二支路的第二混频器的阈值电压进行调整,该第二补偿电压会影响该第二支路的输出信号中的第二互调失真信号的能量,此时,校正装置检测出第二互调失真信号的当前能量,并且校正装置更新上述预存的第二互调失真信号的历史能量,具体的,校正装置将第二补偿电压下检测的第二互调失真信号的当前能量作为第二互调失真信号的历史能量。可以理解的是,本次更新的第二互调失真信号的历史能量将用于在下一次循环时确定第二补偿电压。
一种可能的实现方式中,上述根据第一互调失真信号的当前能量和预存的第一互调失真信号的历史能量确定第一补偿电压的方法可以包括:在第一互调失真信号的当前能量小于第一互调失真信号的历史能量的情况下,将前一次循环中得到的第一补偿电压与前一次循环中得到的第一高补偿电压之和的二分之一确定为第一补偿电压,其中,前一次循环中得到的第一高补偿电压是根据前一次循环中的第一互调失真信号的当前能量与第一互调失真信号的历史能量确定的。具体的,可以采用公式mid_i=(pl_i+ph_i)/2,确定该第一补偿电压,其中,pl_i=mid_pre_i,ph_i=ph_pre1_i,mid_i为第一补偿电压,pl_i为本次循环中得到的第一低补偿电压,ph_i为本次循环中得到的第一高补偿电压,mid_pre1_i为前一次循环中得到的第一补偿电压,ph_pre1_i为前一次循环中得到的第一高补偿电压。
在第一互调失真信号的当前能量大于或者等于第一互调失真信号的历史能量的情况下,将前一次循环中得到的第一补偿电压与前两次循环中得到的第一低补偿电压之和的二分之一确定为第一补偿电压,其中,前两次循环中得到的第一低补偿电压是根据前两次循环中的第一互调失真信号的当前能量与第一互调失真信号的历史能量确定的。具体的,可以采用公式mid_i=(pl_i+ph_i)/2,确定第一补偿电压,其中,pl_i=mid_pre_i,ph_i=pl_pre2_i,mid_i为第一补偿电压,pl_i为本次循环中得到的第一低补偿电压,ph_i为本次循环中得到的第一高补偿电压,mid_pre_i为前一次循环中得到的第一补偿电压,pl_pre2_i为前两次循环中得到的第一低补偿电压。其中,第一互调失真信号的历史能量指的是校正装置上一次从接收机的第一支路的输出信号中检测到的互调失真信号的能量。
本申请实施例中,可以采用二分法(或者称为二叉树法)确定第一补偿电压,具体的,可以设计三种补偿电压,分别为低补偿电压,中补偿电压和高补偿电压,在本次循环中(即在当前所执行的循环中),需根据前一次循环中得到的三种补偿电压确定本次循环对应的三种补偿电压,从而确定输入到第一混频器中的第一补偿电压;或者需根据前两次循环中得到的三种补偿电压确定本次循环对应的三种补偿电压,从而确定输入到第一混频器中的第一补偿电压。
由于接收机的混频器输入补偿电压后,该补偿电压会影响混频器的阈值电压,进而会影响接收机的输出信号,具体的,补偿电压会影响输出信号中的互调失真信号的能量,因此,可以通过向混频器提供补偿电压来降低互调失真信号的能量,改善信号失真。
一种可能的实现方式中,上述根据第二互调失真信号的当前能量和预存的第二互调失真信号的历史能量确定第二补偿电压的方法可以包括:在第二互调失真信号的当前能量小于第二互调失真信号的历史能量的情况下,将前一次循环中得到的第二补偿电压与前一次循环中得到的第二高补偿电压之和的二分之一确定为第二补偿电压,其中,前一次循环中得到的第二高补偿电压是根据前一次循环中的第二互调失真信号的当前能量与第二互调失真信号的历史能量确定的。具体的,可以采用公式mid_q=(pl_q+ph_q)/2,确定第二补偿电压,其中,pl_q=mid_pre_q,ph_q=ph_pre1_q,mid_q为第二补偿电压,pl_q为本次循环中得到的第二低补偿电压,ph_q为本次循环中得到的第二高补偿电压,mid_pre1_q为前一次循环中得到的第二补偿电压,ph_pre1_q为前一次循环中得到的第二高补偿电压。
在第二互调失真信号的当前能量大于或者等于第二互调失真信号的历史能量的情况下,将前一次循环中得到的第二补偿电压与前两次循环中得到的第二低补偿电压之和的二分之一确定为第二补偿电压,其中,前两次循环中得到的第二低补偿电压是根据前两次循环中的第二互调失真信号的当前能量与第二互调失真信号的历史能量确定的。具体的,可以采用公式mid_q=(pl_q+ph_q)/2,确定第二补偿电压,其中,pl_q=mid_pre_q,ph_q=pl_pre2_q,mid_q为第二补偿电压,pl_q为本次循环中得到的第二低补偿电压,ph_q为本次循环中得到的第二高补偿电压,mid_pre_q为前一次循环中得到的第二补偿电压,pl_pre2_q为前两次循环中得到的第二低补偿电压。其中,第二互调失真信号的历史能量指的是校正装置上一次从接收机的第二支路的输出信号中检测到的互调失真信号的能量。
本申请实施例中,与上述第一支路类似的是,由于接收机的混频器输入补偿电压后,该补偿电压会影响混频器的阈值电压,进而影响接收机的输出信号,具体的,补偿电压会影响输出信号中的互调失真信号的能量,因此,可以通过向混频器提供补偿电压来降低互调失真信号的能量,改善信号失真。
可以理解的是,由于第一支路与第二支路是互相耦合的,因此,在上述第一补偿电压的作用下第一互调失真信号的能量以及第二互调失真信号的能量在一定程度上降低;并且上述第二补偿电压的作用下第一互调失真信号的能量以及第二互调失真信号的能量也在一定程度上降低。
一种可能的实现方式中,上述检测第一支路的输出信号中的第一互调失真信号的当前能量的方法可以包括:对第一支路的输出信号进行移频、滤波以及能量计算,得到第一互调失真信号的当前能量。
上述第一支路的输出信号中包括有用信号和第一互调失真信号,首先将第一支路的输出信号中的第一互调失真信号的频率移至低频(例如0赫兹),而该输出信号中的有用信号的频率不变,然后对有用信号和移频后的第一互调失真信号进行低通滤波,将有用信号滤除,得到移频后的第一互调失真信号,进而计算第一互调失真信号的功率,并将其作为第一互调失真信号的当前能量。可以理解的是,该第一互调失真信号的当前能量为多个互调失真信号的当前能量的平均值。
一种可能的实现方式中,上述检测第二支路的输出信号中的第二互调失真信号的当前能量的方法可以包括:对第二支路的输出信号进行移频、滤波以及能量计算,得 到第二互调失真信号的当前能量。
同理,检测第二互调失真信号的当前能量的方法与上述检测第一互调失真信号的当前能量类似,此处不再赘述。
一种可能的实现方式中,上述第一补偿电压为数字电压,本申请实施例提供的校正接收机的互调失真信号的方法还可以包括:将第一补偿电压转换为模拟电压,从而将该模拟电压输入至第一混频器。
一种可能的实现方式中,上述第二补偿电压为数字电压,本申请实施例提供的校正接收机的互调失真信号的方法还可以包括:将第二补偿电压转换为模拟电压,从而将该模拟电压输入至第二混频器。
一种可能的实现方式中,为便于编程实现本申请实施例提供的校正接收机的互调失真信号的方法,在循环执行该校正接收机的互调失真信号的方法的过程中,可以设置使能指示信息,该使能指示信息用于指示确定第一补偿电压或者用于指示确定第二补偿电压。该使能指示信息可以包括第一支路的使能指示信息和第二支路的使能指示信息,例如第一支路的使能指示信息记为I_EN,当I_EN=1时,指示第一支路被使能,当I_EN=0时,指示第一支路未被使能;第二支路的使能指示信息记为Q_EN,当Q_EN=1时,指示第二支路被使能,当Q_EN=0时,指示第二支路未被使能。
第二方面,本申请实施例提供一种通信设备,包括接收机,第一能量检测电路、第二能量检测电路以及补偿电压计算电路,该接收机包括第一支路和第二支路,第一支路与第二支路为同相正交支路。其中,第一能量检测电路用于检测第一支路的输出信号中的第一互调失真信号的当前能量;补偿电压计算电路用于根据第一互调失真信号的当前能量和预存的第一互调失真信号的历史能量确定第一补偿电压,该第一补偿电压用于调整第一支路中的第一混频器的阈值电压;第二能量检测电路用于检测第二支路的输出信号中的第二互调失真信号的当前能量;补偿电压计算电路还用于根据第二互调失真信号的当前能量和预存的第二互调失真信号的历史能量确定第二补偿电压,该第二补偿电压用于调整第二支路中的第二混频器的阈值电压。
一种可能的实现方式中,上述第一能量检测电路还用于在第一补偿电压对第一支路中的第一混频器的阈值电压进行调整之后,检测第一互调失真信号的当前能量;上述补偿电压计算电路还用于将第一互调失真信号的当前能量作为第一互调失真信号的历史能量。
一种可能的实现方式中,上述第二能量检测电路还用于在第二补偿电压对第二支路中的第二混频器的阈值电压进行调整之后,检测第二互调失真信号的当前能量;上述补偿电压计算电路还用于将第二互调失真信号的当前能量作为第二互调失真信号的历史能量。
一种可能的实现方式中,上述补偿电压计算电路具体用于在第一互调失真信号的当前能量小于第一互调失真信号的历史能量的情况下,将前一次循环中得到的第一补偿电压与前一次循环中得到的第一高补偿电压之和的二分之一确定为第一补偿电压,其中,前一次循环中得到的第一高补偿电压是根据前一次循环中的第一互调失真信号的当前能量与第一互调失真信号的历史能量确定的。具体的,可以采用公式mid_i=(pl_i+ph_i)/2,确定第一补偿电压,其中,pl_i=mid_pre_i,ph_i=ph_pre1_i,mid_i 为第一补偿电压,pl_i为本次循环中得到的第一低补偿电压,ph_i为本次循环中得到的第一高补偿电压,mid_pre1_i为前一次循环中得到的第一补偿电压,ph_pre1_i为前一次循环中得到的第一高补偿电压。
一种可能的实现方式中,上述补偿电压计算电路具体用于在第一互调失真信号的当前能量大于或者等于第一互调失真信号的历史能量的情况下,将前一次循环中得到的第一补偿电压与前两次循环中得到的第一低补偿电压之和的二分之一确定为第一补偿电压,其中,前两次循环中得到的第一低补偿电压是根据前两次循环中的第一互调失真信号的当前能量与第一互调失真信号的历史能量确定的。具体的,可以采用公式mid_i=(pl_i+ph_i)/2,确定第一补偿电压,其中,pl_i=mid_pre_i,ph_i=pl_pre2_i,mid_i为第一补偿电压,pl_i为本次循环中得到的第一低补偿电压,ph_i为本次循环中得到的第一高补偿电压,mid_pre_i为前一次循环中得到的第一补偿电压,pl_pre2_i为前两次循环中得到的第一低补偿电压。
一种可能的实现方式中,上述补偿电压计算电路具体用于在第二互调失真信号的当前能量小于第二互调失真信号的历史能量的情况下,将前一次循环中得到的第二补偿电压与前一次循环中得到的第二高补偿电压之和的二分之一确定为第二补偿电压,其中,前一次循环中得到的第二高补偿电压是根据前一次循环中的第二互调失真信号的当前能量与第二互调失真信号的历史能量确定的。具体的,可以采用公式mid_q=(pl_q+ph_q)/2,确定第二补偿电压,其中,pl_q=mid_pre_q,ph_q=ph_pre1_q,mid_q为第二补偿电压,pl_q为本次循环中得到的第二低补偿电压,ph_q为本次循环中得到的第二高补偿电压,mid_pre1_q为前一次循环中得到的第二补偿电压,ph_pre1_q为前一次循环中得到的第二高补偿电压。
一种可能的实现方式中,在第二互调失真信号的当前能量大于或者等于第二互调失真信号的历史能量的情况下,将前一次循环中得到的第二补偿电压与前两次循环中得到的第二低补偿电压之和的二分之一确定为第二补偿电压,其中,前两次循环中得到的第二低补偿电压是根据前两次循环中的第二互调失真信号的当前能量与第二互调失真信号的历史能量确定的。具体的,可以采用公式mid_q=(pl_q+ph_q)/2,确定第二补偿电压,其中,pl_q=mid_pre_q,ph_q=pl_pre2_q,mid_q为第二补偿电压,pl_q为本次循环中得到的第二低补偿电压,ph_q为本次循环中得到的第二高补偿电压,mid_pre_q为前一次循环中得到的第二补偿电压,pl_pre2_q为前两次循环中得到的第二低补偿电压。
一种可能的实现方式中,上述第一能量检测电路具体用于对第一支路的输出信号进行移频、滤波以及能量计算,得到第一互调失真信号的当前能量。
一种可能的实现方式中,上述第二能量检测电路具体用于对第二支路的输出信号进行移频、滤波以及能量计算,得到第二互调失真信号的当前能量。
一种可能的实现方式中,本申请实施例提供的通信设备还可以包括第一数模转换器和第二数模转换器。该第一数模转换器用于在第一补偿电压为数字电压的情况下,将第一补偿电压转换为模拟电压;该第二数模转换器用于在第二补偿电压为数字电压的情况下,将第二补偿电压转换为模拟电压。
第三方面,本申请实施例提供一种校正装置,包括第一能量检测模块、第二能量 检测模块以及补偿电压确定模块。其中,第一能量检测模块用于检测第一支路的输出信号中的第一互调失真信号的当前能量;补偿电压确定模块用于根据第一互调失真信号的当前能量和预存的第一互调失真信号的历史能量确定第一补偿电压,该第一互调失真信号是接收机中混频器的第一支路上检测到的互调失真信号,该第一补偿电压用于调整第一支路中的第一混频器的阈值电压;第二能量检测模块用于检测第二支路的输出信号中的第二互调失真信号的当前能量;补偿电压确定模块还用于根据第二互调失真信号的当前能量和预存的第二互调失真信号的历史能量确定第二补偿电压,该第二补偿电压用于调整第二支路中的第二混频器的阈值电压。
一种可能的实现方式中,上述第一能量检测模块还用于在第一补偿电压对第一支路中的第一混频器的阈值电压进行调整之后,检测第一互调失真信号的当前能量;上述补偿电压确定模块还用于将第一互调失真信号的当前能量作为第一互调失真信号的历史能量。
一种可能的实现方式中,上述第二能量检测模块还用于在第二补偿电压对第二支路中的第二混频器的阈值电压进行调整之后,检测第二互调失真信号的当前能量;上述补偿电压确定模块还用于将第二互调失真信号的当前能量作为第二互调失真信号的历史能量。
一种可能的实现方式中,上述补偿电压确定模块具体用于在第一互调失真信号的当前能量小于第一互调失真信号的历史能量的情况下,将前一次循环中得到的第一补偿电压与前一次循环中得到的第一高补偿电压之和的二分之一确定为第一补偿电压,其中,前一次循环中得到的第一高补偿电压是根据前一次循环中的第一互调失真信号的当前能量与第一互调失真信号的历史能量确定的。具体的,可以采用公式mid_i=(pl_i+ph_i)/2,确定第一补偿电压,其中,pl_i=mid_pre_i,ph_i=ph_pre1_i,mid_i为第一补偿电压,pl_i为本次循环中得到的第一低补偿电压,ph_i为本次循环中得到的第一高补偿电压,mid_pre1_i为前一次循环中得到的第一补偿电压,ph_pre1_i为前一次循环中得到的第一高补偿电压。
一种可能的实现方式中,上述补偿电压确定模块具体用于在第一互调失真信号的当前能量大于或者等于第一互调失真信号的历史能量的情况下,将前一次循环中得到的第一补偿电压与前两次循环中得到的第一低补偿电压之和的二分之一确定为第一补偿电压,其中,前两次循环中得到的第一低补偿电压是根据前两次循环中的第一互调失真信号的当前能量与第一互调失真信号的历史能量确定的。具体的,可以采用公式mid_i=(pl_i+ph_i)/2,确定第一补偿电压,其中,pl_i=mid_pre_i,ph_i=pl_pre2_i,mid_i为第一补偿电压,pl_i为本次循环中得到的第一低补偿电压,ph_i为本次循环中得到的第一高补偿电压,mid_pre_i为前一次循环中得到的第一补偿电压,pl_pre2_i为前两次循环中得到的第一低补偿电压。
一种可能的实现方式中,上述补偿电压确定模块具体用于在第二互调失真信号的当前能量小于第二互调失真信号的历史能量的情况下,将前一次循环中得到的第二补偿电压与前一次循环中得到的第二高补偿电压之和的二分之一确定为第二补偿电压,其中,前一次循环中得到的第二高补偿电压是根据前一次循环中的第二互调失真信号的当前能量与第二互调失真信号的历史能量确定的。具体的,可以采用公式mid_q= (pl_q+ph_q)/2,确定第二补偿电压,其中,pl_q=mid_pre_q,ph_q=ph_pre1_q,mid_q为第二补偿电压,pl_q为本次循环中得到的第二低补偿电压,ph_q为本次循环中得到的第二高补偿电压,mid_pre1_q为前一次循环中得到的第二补偿电压,ph_pre1_q为前一次循环中得到的第二高补偿电压。
一种可能的实现方式中,上述补偿电压确定模块具体用于在第二互调失真信号的当前能量大于或者等于第二互调失真信号的历史能量的情况下,将前一次循环中得到的第二补偿电压与前两次循环中得到的第二低补偿电压之和的二分之一确定为第二补偿电压,其中,前两次循环中得到的第二低补偿电压是根据前两次循环中的第二互调失真信号的当前能量与第二互调失真信号的历史能量确定的。具体的,可以采用公式mid_q=(pl_q+ph_q)/2,确定第二补偿电压,其中,pl_q=mid_pre_q,ph_q=pl_pre2_q,mid_q为第二补偿电压,pl_q为本次循环中得到的第二低补偿电压,ph_q为本次循环中得到的第二高补偿电压,mid_pre_q为前一次循环中得到的第二补偿电压,pl_pre2_q为前两次循环中得到的第二低补偿电压。
一种可能的实现方式中,上述第一能量检测模块具体用于对第一支路的输出信号进行移频、滤波以及能量计算,得到第一互调失真信号的当前能量。
一种可能的实现方式中,上述第二能量检测模块具体用于对第二支路的输出信号进行移频、滤波以及能量计算,得到第二互调失真信号的当前能量。
一种可能的实现方式中,本申请实施例提供的校正装置还包括第一数模转换模块和第二数模转换模块。其中,第一数模转换模块用于在第一补偿电压为数字电压的情况下,将第一补偿电压转换为模拟电压;第二数模转换模块用于在第二补偿电压为数字电压的情况下,将第二补偿电压转换为模拟电压。
第四方面,本申请实施例提供一种通信设备,包括处理器和与处理器耦合连接的存储器;该存储器用于存储计算机指令,当通信设备运行时,处理器执行存储器存储的计算机指令,以使得通信设备执行上述第一方面及其可能的实现方式中任意之一所述的校正接收机的互调失真信号的方法。
第五方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质可以包括计算机指令,当计算机指令在计算机上运行时,使得通信设备执行上述第一方面及其可能的实现方式中任意之一所述的校正接收机的互调失真信号的方法。
第六方面,本申请实施例提供一种包括计算机指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得通信设备执行第一方面及其可能的实现方式中任意之一所述的校正接收机的互调失真信号的方法。
应当理解的是,本申请实施例的第二方面至第六方面技术方案及对应的可行实施方式所取得的有益效果可以参见上述对第一方面及其对应的可选实施方式的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种接收机的结构示意图;
图2为本申请实施例提供的一种检测装置的结构示意图一;
图3为本申请实施例提供的一种检测装置的结构示意图二;
图4为本申请实施例提供的一种校正接收机的互调失真信号的方法示意图一;
图5为本申请实施例提供的一种校正接收机的互调失真信号的方法示意图二;
图6为本申请实例提供的一种校正装置的结构示意图一;
图7为本申请实例提供的一种校正装置的结构示意图二。
具体实施方式
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一互调失真信号和第二互调失真信号等是用于区别不同的互调失真信号,而不是用于描述互调失真信号的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
在一种实现方式中,对接收机的输出信号中的互调失真信号进行校正的过程中,可以通过I支路与Q支路交替迭代确定补偿电压的方法,对互调失真信号进行校正。具体的,以I支路为例,本次迭代过程中,根据I支路对应的低补偿电压、中补偿电压和高补偿电压确定I支路对应的补偿电压,当低补偿电压下互调失真信号的能量小于高补偿电压下互调失真信号的能量时,将本次迭代中的中补偿电压作为下一次迭代中的高补偿电压,将本次迭代中的低补偿电压作为下一次迭代中的低补偿电压,将(中补偿电压+低补偿电压)/2作为下一次迭代的中补偿电压;当低补偿电压下互调失真信号的能量大于或者等于高补偿电压下互调失真信号的能量时,将本次迭代中的中补偿电压作为下一次迭代中的低补偿电压,将本次迭代中的高补偿电压作为下一次迭代中的高补偿电压,将(中补偿电压+低补偿电压)/2作为下一次迭代的中补偿电压,依次完成N此迭代后,将第N次迭代确定的(中补偿电压+低补偿电压)/2作为最终的I支路对应的补偿电压。同理,Q支路对应的补偿电压与I支路对应的补偿电压的确定方法类似,然而该方法中得到的补偿电压可能是局部的最优值,而不是全局的最优值,如此,对互调失真信号的校正效果可能比较差。
本申请实施例提供一种校正接收机的互调失真信号的方法及装置,校正装置检测第一互调失真信号的当前能量,然后根据第一互调失真信号的当前能量和预存的第一互调失真信号的历史能量确定第一补偿电压,并利用第一补偿电压对第一支路中的第一混频器的阈值电压进行调整,以及检测第二互调失真信号的当前能量,然后根据第二互调失真信号的当前能量和预存的第二互调失真信号的历史能量确定第二补偿电压,并利用第二补偿电压对第二支路中的第二混频器的阈值电压进行调整,如此,能够在一定程度上降低接收机的互调失真信号的能量,从而更加有效地减小信号失真。
本申请实施例提供的校正接收机的互调失真信号的方法可以用于对接收机互调失真信号进行校正,具体指的是将接收机的输出信号中的互调失真信号的能量尽量减小。图1为本申请实施例提供的一种接收机的结构示意图,如图1所示,该接收机10包括射频放大器11、模拟滤波器12、混频设备13、跨阻放大器(trans impedance amplifier,TIA)14a、TIA 14b、模数转换器15a、模数转换器15b、抽取滤波器16a以及抽取滤波器16b。其中,射频放大器11用于对输入信号进行增益调整,模拟滤波器12可以为低噪声放大器,该低噪声放大器用于对输入信号进行进一步的增益调整,混频设备13可以包括锁相环、分频器(division,DIV)以及2个混频器,信号通过2个混频器之后可以分为两路相位相差90度的正交的混频信号,分别记为I路信号和Q路信号,I路信号对应I支路,Q路信号对应Q支路,I支路与Q支路为同相正交支路,I支路上包括第一混频器、TIA 14a、模数转换器15a以及抽取滤波器16a;Q支路上包括第二混频器、TIA 14b、模数转换器15b以及抽取滤波器16b。示例性的,信号源输入至接收机10之后,通过上述射频放大器11和模拟滤波器之后,接入到混频设备13的2个混频器之后被分为I路信号和Q路信号,然后I路信号再依次经过TIA 14a、模数转换器15a以及抽取滤波器16a的处理得到I支路的输出信号,Q路信号依次经过TIA14b、模数转换器15b以及抽取滤波器16b的处理得到Q支路的输出信号。
可以理解的是,接收机的输出信号的失真主要来自于上述混频器(包括两个混频器,可以分别称为第一混频器和第二混频器),因此本申请实施例提供的校正接收机的互调失真信号的方法主要针对混频器输出的二阶互调失真信号进行校正。
图2为本申请实施例提供的校正装置的一种结构示意图,如图2所示,该校正装置100包括上述接收机10、第一能量检测电路20、第二能量检测电路30、补偿电压计算电路40、第一数模转换器50以及第二数模转换器60。其中,接收机10的I支路(称为第一支路)的输出端连接第一能量检测电路20的输入端,接收机的10的Q支路(称为第二支路)的输出端连接第二能量检测电路30的输入端,第一能量检测电路20的输出端连接补偿电压计算电路40的输入端,第二能量检测电路30的输出端连接补偿电压计算电路40的输入端,补偿电压计算电路40的输出端分别连接第一数模转换器50的输入端和第二数模转换器60的输入端,第一数模转换器50的输出端连接接收机10中与第一混频器的输入端,第二数模转换器60的输出端连接接收机10中与第二混频器的输入端,上述各个部件的连接关系示意图具体参见图2。
在图2中,上述第一能量检测电路20用于检测第一支路的输出信号中的互调失真信号的能量,第二能量检测电路30用于检测第二支路的输出信号中的互调失真信号的能量。
可选的,第一能量检测电路20和第二能量检测电路30的一种结构为图2所示的结构,第一能量检测电路20与第二能量检测电路30的结构类似,第一能量检测电路20包括数字下变频(digital down converter,DDC)移频器、滤波器以及功率计算模块(包括单个信号的功率计算模块和平均功率计算模块),第二能量检测电路30也包括DDC移频器、滤波器以及功率计算模块(包括单个信号的功率计算模块和平均功率计算模块),DDC移频器用于将互调失真信号的频率移到低频(例如0赫兹);滤波器为低通滤器,用于将输入信号中移频后的低频的互调失真信号之外的其他信号 滤除,得到低频的互调失真信号;功率计算模块用于计算互调失真信号的能量。
关于第一能量检测电路20和第二能量检测电路30检测互调失真信号的能量的过程将结合下述方法实施例进行详细的描述。
可选的,本申请实施例中,上述第一能量检测电路20和第二能量检测电路30还可以为图3所示的结构,并且图3中的第一能量检测电路20的结构与第二能量检测电路30的结构类似,第一能量检测电路20包括数字控制振荡器(numerically controlled oscillator,NCO)和相关计算模块,第二能量检测模块30也包括NCO和相关计算模块。其中,NCO用于产生参考信号,该参考信号的能量的频点与接收机输出的单音信号的能量的频点相同;参考信号和接收机的输出信号均接入相关计算模块,该相关计算模块用于对参考信号和接收机的输出信号进行相关计算,得到互调失真信号的能量。
上述补偿电压计算电路40用于根据第一支路的输出信号中的互调失真信号的能量和第二支路的输出信号中的互调失真信号的能量,采用相关算法(具体将在下述实施例中进行详细介绍),确定出第一补偿电压和第二补偿电压。需要说明的是,补偿电压计算电路40输出的第一补偿电压和第二补偿电压均为数字电压(N位比特表示电压的码值)。
可选的,本申请实施例中,上述补偿电压计算电路40中可以包括搜索算法模快,以及用于存储第一补偿电压和第二补偿电压的LUT表(用于存储第一补偿电压和第二补偿电压的LUT表可以为同一个LUT表,也可以为独立的LUT表),校正装置循环执行本申请实施例提供的校正接收机的互调失真信号的方法,在每一次循环中可以得到一个第一补偿电压和一个第二补偿电压,可选的,校正装置可以不保存循环过程中确定的第一补偿电压和第二补偿电压(即中间结果),只保存循环结束时确定的第一补偿电压和第二补偿电压(即最终结果)。
上述第一数模转换器50用于将第一补偿电压从数字电压转换为模拟电压,第二数模转换器60用于将第二补偿电压从数字电压转换为模拟电压。
可选的,本申请实施例中,输入至接收机10的信号源(该信号源为双音信号)可以为外接信号源,即由其他仪器或设备产生输入信号,该信号源也可以由接收机10的内部的无线收发信机产生,即复用该接收机10内部器件产生的信号。具体的,接收机10的无线收发信机内部包含发射链路(例如双音发射模块),可以发射双音信号,该双音信号经过数字通道和模拟通道之后,通过射频回环将双音信号输入到射频放大器的输入端,具体可参见图3。
本申请实施例中,第一支路可以为同相信号的支路,记为I支路,第二支路为正交相信号的支路,记为Q支路;当然第一支路也可以为Q支路,则第二支路为I支路。在下述实施例中,以第一支路为I支路,第二支路为Q支路为例对本申请实施例提供的校正接收机的互调失真信号的方法进行详细描述。
结合上述图2或图3所示的校正装置的结构示意图,如图4所示,本申请实施例提供一种校正接收机的互调失真信号的方法,通过向接收机的混频器提供补偿电压以降低互调失真信号的能量,该接收机包括第一支路和第二支路,该第一支路与第二支路为同相正交支路,该方法包括S101-S104:
S101、校正装置检测第一支路的输出信号中的第一互调失真信号的当前能量。
其中,第一互调失真信号的当前能量指的是校正装置当前从接收机的第一支路的输出信号中检测到的互调失真信号的能量。
本申请实施例中,接收机的输入信号称为有用信号,通过接收机对该输入信号进行处理得到输出信号,该输出信号中包括有用信号和互调失真信号,其中,该互调失真信号主要由接收机的混频器对有用信号干扰而产生的,互调失真信号的能量为互调失真信号的功率。其中,第一支路的输出信号中的互调失真信号为第一互调失真信号,第二支路的输出信号中的互调失真信号为第二互调失真信号。
可选的,上述接收机接收到的输入信号为双音信号,该双音信号包括两个不同频点的单音信号,假设一单音信号的频率为f1,另一单音信号的频率为f2(假设f1<f2),那么互调失真信号的频率可能为f2-f1或者f1+f2。
结合上述图2或图3,可以理解的是,上述可以由上述第一能量检测电路20检测第一互调失真信号的当前能量。
可选的,校正装置第一次执行S101时,在混频器(包括第一混频器和\或第二混频器)当前输入的补偿电压可以设置为0,在该0补偿电压下,校正装置检测到第一互调失真信号的当前能量。
可选的,结合图4,如图5所示,上述S101具体可以通过S1011实现:
S1011、校正装置对第一支路的输出信号进行移频、滤波以及能量计算,得到第一互调失真信号的当前能量。
本申请实施例中,可以通过图2所示的校正装置中的第一能量检测电路20检测第一互调失真信号的当前能量,也可以通过图3所示的校正装置中的第一能量检测电路20检测第一互调失真信号的当前能量。示例性的,以图2中的第一能量检测电路20为例,第一能量检测电路20获取接收机的第一支路输出信号,该输出信号中包括有用信号和第一互调失真信号,首先通过第一能量检测电路20中的DDC移频器,将输出信号中第一互调失真信号的频率移至低频(例如0赫兹),而该输出信号中的有用信号的频率不变,然后该有用信号和移频后的第一互调失真信号通过第一能量检测电路20中的低通滤波器,将有用信号滤除,得到移频后的第一互调失真信号,进而通过功率计算模块计算该第一互调失真信号的功率,作为第一互调失真信号的当前能量。可以理解的是,该第一互调失真信号的当前能量为多个互调失真信号的当前能量的平均值。
S102、校正装置根据第一互调失真信号的当前能量和预存的第一互调失真信号的历史能量确定第一补偿电压,并利用第一补偿电压对第一支路中的第一混频器的阈值电压进行调整。
结合图2或图3,可以理解的是,上述可以由补偿电压确定电路40计算出第一补偿电压。
相对于第一互调失真信号的当前能量的定义,第一互调失真信号的历史能量指的是校正装置上一次从接收机的第一支路的输出信号中检测到的互调失真信号的能量。可选的,校正装置第一次执行S102时,该第一互调失真信号的历史能量可以为一个预存的值,即可以为一个初始配置的值(设置为任意一个满足实际使用需求的值),例如可以将该第一互调失真信号的历史能量设置成一个最大值(如2^28)。
上述利用第二补偿电压对第二支路中的第二混频器的阈值电压进行调整指的是:将该第一补偿电压输入至第一支路的第一混频器中,从而该第一补偿电压作用于该第一混频器时可以改变第一混频器的阈值电压,从而影响第一支路的输出信号。
需要说明的是,本申请实施例中,上述第一支路与第二支路是互相耦合的,即第一支路与第二支路会互相影响,上述通过第一互调失真信号的当前能量和预存的第一互调失真信号的历史能量确定第一补偿电压之后,将该第一补偿电压输入至接收机的第一混频器,该第一补偿电压不但会影响接收机的第一支路的输出信号,而且会影响第二支路的输出信号),具体的,该第一补偿电压会影响第一支路的输出信号中的第一互调失真信号的能量,也会影响第二支路的输出信号中的第二互调失真信号的能量,因此,可以通过向混频器提供补偿电压来降低互调失真信号的能量,改善信号失真。
可选的,本申请实施例中,校正装置可以通过比较第一互调失真信号的当前能量与第一互调失真信号的历史能量的大小,进而采用相应的方法确定第一补偿电压,具体的,上述S102可以包括S1021或S1022:
S1021、在第一互调失真信号的当前能量小于第一互调失真信号的历史能量的情况下,将前一次循环中得到的第一补偿电压与前一次循环中得到的第一高补偿电压之和的二分之一确定为第一补偿电压。
其中,前一次循环中得到的第一高补偿电压是根据前一次循环中的第一互调失真信号的当前能量与第一互调失真信号的历史能量确定的。
本申请实施例中,可以采用二分法(或者称为二叉树法)确定第一补偿电压,具体的,可以设计三种补偿电压,分别为低补偿电压,中补偿电压和高补偿电压,例如分别记为pl,mid,ph,并且根据低补偿电压和高补偿电压确定最终的输入到混频器中的补偿电压,该补偿电压为:mid=(pl+ph)/2,这三种补偿电压可以为电压的码值,即通过有限个比特(例如M个比特)表示的数字电压。在每一次循环中均可以得到这三种补偿电压,对应于第一支路,这三种补偿电压分别记为pl_i,mid_i,ph_i,则mid_i=(pl_i+ph_i)/2。
具体的,在第一互调失真信号的当前能量小于第一互调失真信号的历史能量的情况下,可以采用公式mid_i=(pl_i+ph_i)/2,确定第一补偿电压,其中,mid_i为第一补偿电压,pl_i为本次循环中得到的第一低补偿电压,ph_i为本次循环中得到的第一高补偿电压,并且pl_i=mid_pre_i,ph_i=ph_pre1_i,mid_pre1_i为前一次循环中得到的第一补偿电压,ph_pre1_i为前一次循环中得到的第一高补偿电压。
S1022、在第一互调失真信号的当前能量大于或者等于第一互调失真信号的历史能量的情况下,将前一次循环中得到的第一补偿电压与前两次循环中得到的第一低补偿电压之和的二分之一确定为第一补偿电压。
其中,前两次循环中得到的第一低补偿电压是根据前两次循环中的第一互调失真信号的当前能量与第一互调失真信号的历史能量确定的。
具体的,在第一互调失真信号的当前能量大于或者等于第一互调失真信号的历史能量的情况下,可以采用公式mid_i=(pl_i+ph_i)/2,确定第一补偿电压,其中,mid_i为第一补偿电压,pl_i为本次循环中得到的第一低补偿电压,ph_i为本次循环中得到的第一高补偿电压,并且pl_i=mid_pre_i,ph_i=pl_pre2_i,mid_pre_i为前 一次循环中得到的第一补偿电压,pl_pre2_i为前两次循环中得到的第一低补偿电压。
需要说明的是,在本次循环中(即在当前所执行的循环中),需根据前一次循环中得到的三种补偿电压确定本次循环对应的三种补偿电压,从而确定第一补偿电压;或者需根据前两次循环中得到的三种补偿电压确定本次循环对应的三种补偿电压,从而确定第一补偿电压。
可选的,在具体实现过程中,可以定义搜索方向,该搜索方向记为dir,具体的,对于第一支路,搜索方向记为dir_i,第一互调失真信号的当前能量小于第一互调失真信号的历史能量时,搜索方向为正,即dir_i=1;第一互调失真信号的当前能量大于或者等于第一互调失真信号的历史能量时,定义搜索方向为负,即dir_i=-1。可选的,为了便于编程实现,可以进一步定义搜索方向指示信息,记为Pi,具体的,dir_i=1对应Pi=0;dir_i=-1对应Pi=1,从而在编程实现时,可以根据搜索方向指示信息确定搜索方向。
本申请实施例中,初始状态下,可以设置上述S1021和S1022中涉及到的各个变量的初始值,如下表1为一种初始化设置的示例。
表1
Figure PCTCN2019076570-appb-000001
示例性的,以第n-2次,第n-1次以及第n次循环为例,这三次连续的循环得到低补偿电压、高补偿电压以及中补偿电压,即第一低补偿电压,第一高补偿电压以及第一补偿电压分别如下表2所示。
表2
Figure PCTCN2019076570-appb-000002
结合表2,对于第n次循环,在dir_i=1(或Pi=0)的情况下,第n次循环中的第一低补偿电压为第n-1次循环中的第一补偿电压,第n次循环中的第一高补偿电压为第n-1次的第一高补偿电压。具体的,若第n-1次循环中dir_i=1,则第n次循环中的第一低补偿电压a5=(a3+b3)/2,第n次循环中的第一高补偿电压为b5=b3,进而结合上述S1011中的公式mid_q=(pl_q+ph_q)/2,确定第n次循环中的第一补偿电压;若第n-1次循环中dir_i=-1,则第n次循环中的第一低补偿电压a5=(a4+b4) /2,进而结合上述S1011中的公式mid_q=(pl_q+ph_q)/2,确定第n次循环中的第一补偿电压第n次循环中的第一高补偿电压为b5=b4。
为了便于理解,在表2的基础上,参见如下表3为第n次循环中dir_i=1(或Pi=0)的情况下得到的三种补偿电压的结果。
表3
Figure PCTCN2019076570-appb-000003
结合表2,对于第n次循环,在dir_i=-1(或Pi=0)的情况下,第n次循环中的第一低补偿电压为第n-1次循环中的第一补偿电压,第n次循环中的第一高补偿电压为第n-2次的第一低补偿电压。在第n次循环中dir_i=-1的情况下,以第n-1次循环中dir_i=1为例进行示例性的说明,如下表4为第n-1次循环中dir_i=1的情况下,得到的第n-1次的三种补偿电压的结果。
表4
Figure PCTCN2019076570-appb-000004
结合表4,表5为第n次循环中dir_i=-1的情况下,且第n-1次循环中dir_i=1时,得到的第n次的三种补偿电压的结果。
表5
Figure PCTCN2019076570-appb-000005
S103、校正装置检测第二支路输出的信号中的第二互调失真信号的当前能量。
结合图2或图3,可以理解的是,上述可以由第二能量检测电路30检测第二互调失真信号的当前能量。
同理,第二互调失真信号的频率可能为f2-f1或者f1+f2,对于第二互调失真信号的其他描述可以参见上述对于第一互调失真信号的相关描述,此处不再赘述。
由于第一支路与第二支路是互相耦合,对第一支路中的第一混频器输入一个补偿电压,在该补偿电压下,第一支路的输出信号中的第一互调失真信号的能量会发生变化,同时第二支路的输出信号中的第二互调失真信号的能量也会发生变化;同理,对第二支路中的第二混频器输入一个补偿电压,在该补偿电压下,第二支路的输出信号中的第二互调失真信号的能量会发生变化,同时第一支路的输出信号中的第一互调失 真信号的能量也会发生变化。
上述S102中,校正装置确定出第一补偿电压之后,利用该第一补偿电压对第一支路中的第一混频器的阈值电压进行调整,即将第一补偿电压输入至第一混频器,该第一补偿电压的作用下,第二互调失真信号的能量会发生变化,如此,校正装置进一步检测第二互调失真信号的当前能量。
需要说明的是,本申请实施例中,上述第一补偿电压为数字电压,结合图2或图3,通过校正装置中的第一数模转换器50将第一补偿电压从数字电压转换为模拟电压,并且将该模拟电压输入至第一混频器。
可选的,结合图4,如图5所示,上述S103具体可以通过S1031实现:
S1031、校正装置对第二支路的输出信号进行移频、滤波以及能量计算,得到第二互调失真信号的当前能量。
与第一互调失真信号类似,该第二互调失真信号的当前能量指的是校正装置当前从接收机的第二支路的输出信号中检测到的互调失真信号的能量。
本申请实施例中,可以通过图2所示的校正装置中的第二能量检测电路30检测第二互调失真信号的当前能量,也可以通过图3所示的校正装置中的第二能量检测电路20检测第二互调失真信号的当前能量,且检测第二互调失真信号的当前能量的方法与上述检测第一互调失真信号的当前能量的方法类似,具体可以参考上述S101中的相关描述,此处不再赘述。
S104、校正装置根据第二互调失真信号的当前能量和预存的第二互调失真信号的历史能量确定第二补偿电压,并利用第二补偿电压对第二支路中的第二混频器的阈值电压进行调整。
与第一互调失真信号类似,第二互调失真信号的历史能量指的是校正装置上一次从接收机的第二支路的输出信号中检测到的互调失真信号的能量。
可以理解的是,校正装置第一次执行S104时,第二互调失真信号的当前能量即为上述S103中校正装置检测到的第二互调失真信号的能量;第二互调失真信号的历史能量可以为混频器输入的补偿电压为0时,校正装置检测到第二互调失真信号的能量。
通过第二互调失真信号的当前能量和预存的第二互调失真信号的历史能量确定第二补偿电之后,将该第二补偿电压输入至接收机的第二混频器,该第二补偿电压不但会影响接收机的第二支路的输出信号,而且会影响第一支路的输出信号),具体的,该第二补偿电压会影响第二支路的输出信号中的第二互调失真信号的能量,也会影响第一支路的输出信号中的第一互调失真信号的能量,因此,可以通过向混频器提供补偿电压来降低互调失真信号的能量,改善信号失真。
可以理解的是,在S102中,在第一混频器输入第一补偿电压时,第一互调失真信号的能量以及第二互调失真信号的能量可以在一定程度上降低;同理,在S104中,在第二混频器中输入第二补偿电压时,第一互调失真信号的能量以及第二互调失真信号的能量可以在一定程度上降低。
可选的,本申请实施例中,校正装置可以通过比较第二互调失真信号的当前能量与第二互调失真信号的历史能量的大小,进而采用相应的方法确定第二补偿电压,具体的,上述S104可以包括S1041或S1042:
S1041、在第二互调失真信号的当前能量小于第二互调失真信号的历史能量的情况下,将前一次循环中得到的第二补偿电压与前一次循环中得到的第二高补偿电压之和的二分之一确定为第二补偿电压。
其中,前一次循环中得到的第二高补偿电压是根据前一次循环中的第二互调失真信号的当前能量与第二互调失真信号的历史能量确定的。
本申请实施例中,也可以采用二分法(或者称为二叉树法)确定第二补偿电压,具体的,设计三种补偿电压,分别为低补偿电压,中补偿电压和高补偿电压,参见上述对于S1021和S1022的相关描述,对应于第二支路,这三种补偿电压分别记为pl_q,mid_q,ph_q,则mid_q=(pl_q+ph_q)/2。
具体的,可以采用公式mid_q=(pl_q+ph_q)/2,确定第二补偿电压,其中,mid_q为第二补偿电压,pl_q为本次循环中得到的第二低补偿电压,ph_q为本次循环中得到的第二高补偿电压,并且pl_q=mid_pre_q,ph_q=ph_pre1_q,mid_pre1_q为前一次循环中得到的第二补偿电压,ph_pre1_q为前一次循环中得到的第二高补偿电压。
S1042、在第二互调失真信号的当前能量大于或者等于第二互调失真信号的历史能量的情况下,将前一次循环中得到的第二补偿电压与前两次循环中得到的第二低补偿电压之和的二分之一确定为第二补偿电压。
其中,前两次循环中得到的第二低补偿电压是根据前两次循环中的第二互调失真信号的当前能量与第二互调失真信号的历史能量确定的。
具体的,可以采用公式mid_q=(pl_q+ph_q)/2,确定第二补偿电压,其中,上述mid_q为第二补偿电压,pl_q为本次循环中得到的第二低补偿电压,ph_q为本次循环中得到的第二高补偿电压,并且pl_q=mid_pre_q,ph_q=pl_pre2_q,mid_pre_q为前一次循环中得到的第二补偿电压,pl_pre2_q为前两次循环中得到的第二低补偿电压。
需要说明的是,在本次循环中(即在当前所执行的循环中),需根据前一次循环中得到的三种补偿电压确定本次循环对应的三种补偿电压,从而确定第二补偿电压;或者需根据前两次循环中得到的三种补偿确定本次循环对应的三种补偿电压,从而确定第二补偿电压。
可选的,在具体实现过程中,对于第二支路,也可以定义搜索方向,记为dir_q,第二互调失真信号的当前能量小于第二互调失真信号的历史能量时,搜索方向为正,即dir_q=1;第二互调失真信号的当前能量大于或者等于第二互调失真信号的历史能量时,定义搜索方向为负,即dir_q=-1。可选的,为了便于编程实现,可以进一步定义搜索方向指示信息,记为Pq,具体的,dir_q=1对应Pq=0,dir_q=-1对应Pq=1,从而在编程实现时,可以根据搜索方向指示信息确定搜索方向。
本申请实施例中,初始状态下,可以设置上述S1041和S1042中涉及到的各个变量的初始值,如下表6为一种初始化设置的示例。
表6
Figure PCTCN2019076570-appb-000006
需要说明的是,本申请实施例中,上述表6中的初始化的值并不是直接用于上述S1041或S1042,由于第一支路与第二支路之间互相耦合,因此,在执行完S102确定第一补偿电压之后,利用第一补偿电压对第一支路的第一混频器的阈值电压进行调整时,会影响第二互调失真信号的能量,因此在执行完S103之后,第二互调失真信号的当前能量需经过一次更新,即将第二互调失真信号的当前能量从上述表6中初始化的当前能量(即零电压对应的能量)更新为第一补偿电压的作用下确定的第二互调失真信号的能量;并且第二互调失真信号的历史能量也会经过一次更新,即将第二互调失真信号的历史能量从上述表6中初始化的历史能量(即最大值)更新为上一次确定的第二互调失真信号的当前能量(即上述表6中初始化的当前能量,也就是上述零电压对应的能量)。
可选的,上述更新第二互调失真信号的当前能量以及更新第二互调失真信号的历史能量具体可以包括:将第一补偿电压输入至第一混频器,第二能量检测电路检测到第二互调失真信号的能量时,第二能量检测电路可以向补偿电压计算电路发送检测完成标志,在补偿电压计算电路接收到该检测完成标志之后,首先更新第二互调失真信号的历史能量,然后再更新第二互调失真信号的当前能量。
需要说明的是,本申请实施例中,上述第二补偿电压为数字电压,结合图2或图3,通过校正装置中的第二数模转换器60将第二补偿电压从数字电压转换为模拟电压,并且将该模拟电压输入至第二混频器。
进一步的,校正装置通过循环执行上述S101-S104,直至循环次数达到预配置循环次数(例如N次,N为大于或者等于2的正整数),相比于前N-1次循环,第N次循环中得到的第一补偿电压和第二补偿电压可以以使得接收机的输出信号的失真程度达到最小,即使得接收机输出的信号中的互调失真信号的能量达到最小。
具体的,上述S101-S102与S103-S104是交替执行的,即可以理解为:先执行S101-S102以确定本次循环中得到的第一补偿电压,并在第一补偿电压对第一混频器的阈值电压进行调整时重新确定第二互调失真信号的当前能量;然后执行S103-S104以确定本次循环中得到的第二补偿电压,如此在下一次迭代过程中,在第二补偿电压对第二混频器的阈值电压进行调整时重新确定第一互调失真信号的当前能量,进而再一次执行S101等步骤。
可选的,本申请实施例中,为便于编程实现本申请实施例提供的校正接收机的互调失真信号的方法,在循环执行该校正接收机的互调失真信号的方法的过程中,可以设置使能指示信息,该使能指示信息用于指示确定第一补偿电压或者用于指示确定第 二补偿电压。该使能指示信息可以包括第一支路的使能指示信息和第二支路的使能指示信息,例如第一支路的使能指示信息记为I_EN,当I_EN=1时,指示第一支路被使能,当I_EN=0时,指示第一支路未被使能;第二支路的使能指示信息记为Q_EN,当Q_EN=1时,指示第二支路被使能,当Q_EN=0时,指示第二支路未被使能。本申请实施例中,若I_EN=1,Q_EN=0,则校正装置执行上述S101-S102;若I_EN=0,Q_EN=1,则校正装置执行上述S103-S104。
可选的,校正装置利用第一补偿电压对第一支路中的第一混频器的阈值电压进行调整之后,本申请实施例提供的校正接收机的互调失真信号的方法还可以包括S102a-S102b:
S102a、校正装置检测第一互调失真信号的当前能量。
S102b、校正装置将第一互调失真信号的当前能量作为第一互调失真信号的历史能量。
本申请实施例中,校正装置确定出第一补偿电压时,该第一补偿电压会影响该第一支路的输出信号中的第一互调失真信号的能量,如此,校正装置同时也检测出第一互调失真信号的当前能量,并且校正装置更新第一互调失真信号的历史能量,具体的,校正装置将其检测的第一互调失真信号的当前能量作为第一互调失真信号的历史能量。可以理解的是,本次更新的第一互调失真信号的历史能量将用于在下一次循环时(即下一次执行S102)确定第一补偿电压。
同理,可选的,校正装置利用第二补偿电压对第二支路中的第二混频器的阈值电压进行调整之后,本申请实施例提供的校正接收机的互调失真信号的方法还可以包括S104a-S104b:
S104a、校正装置检测第二互调失真信号的当前能量。
S104b、校正装置将第二互调失真信号的当前能量作为第二互调失真信号的历史能量。
本申请实施例中,校正装置确定出第二补偿电压时,该第二补偿电压会影响该第二支路的输出信号中的第二互调失真信号的能量,如此,校正装置同时也检测出第二互调失真信号的当前能量,并且校正装置更新第二互调失真信号的历史能量,具体的,校正装置将第二补偿电压下检测的第二互调失真信号的当前能量作为第二互调失真信号的历史能量。可以理解的是,本次更新的第二互调失真信号的历史能量将用于在下一次循环时(即下一次执行S104)确定第二补偿电压。
本申请实施例提供一种校正接收机的互调失真信号的方法,校正装置检测第一互调失真信号的当前能量,然后根据第一互调失真信号的当前能量和预存的第一互调失真信号的历史能量确定第一补偿电压,并利用第一补偿电压对第一支路中的第一混频器的阈值电压进行调整,以及检测第二互调失真信号的当前能量,然后根据第二互调失真信号的当前能量和预存的第二互调失真信号的历史能量确定第二补偿电压,并利用第二补偿电压对第二支路中的第二混频器的阈值电压进行调整,如此,能够在一定程度上降低接收机的互调失真信号的能量,从而更加有效地减小信号失真。
上述主要从校正装置的角度对本申请实施例提供的方案进行了介绍。可以理解的是,校正装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模 块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对校正装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图6示出了上述实施例中所涉及的校正装置的一种可能的结构示意图,如图6所示,校正装置1000可以包括:第一能量检测模块1001、第二能量检测模块1002以及补偿电压确定模块1003。第一能量检测模块1001可以用于支持校正装置1000执行上述方法实施例中的S101(包括S1011)、S102a;第二能量检测模块1002可以用于支持校正装置1000执行上述方法实施例中的S103(包括S1031)和S104a。补偿电压确定模块1003可以用于支持校正装置1000执行上述方法实施例中的S102(包括S1021或S1022)、S102b、S104(包括S1041或S1042)以及S104b。
可选的,如图6所示,本申请实施例提供的校正装置1000还可以包括第一数模转换模块1004和第二数模转换模块1005,该第一数模转换模块1004用于在第一补偿电压为数字电压的情况下,将第一补偿电压转换为模拟电压;该第二数模转换模块1005用于在第二补偿电压为数字电压的情况下,将第二补偿电压转换为模拟电压。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图7示出了上述实施例中所涉及的校正装置的一种可能的结构示意图。如图7所示,校正装置2000可以包括:处理模块2001和通信模块2002。处理模块2001可以用于对校正装置2000的动作进行控制管理,例如处理模块2001支持校正装置2000执行上述方法实施例中的S101(包括S1011)、S102((包括S1021或S1022))、S103(包括S1031)、S104(包括S1041或S1042)、S102a、S102b、S104a、S104b。通信模块2002可以用于支持校正装置2000与其他网络实体的通信。可选的,如图7所示,该校正装置2000还可以包括存储模块2003,用于存储校正装置2000的程序代码和数据。
其中,处理模块2001可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU)、通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请实施例公开内容所描述的各种示例性的逻辑方框、模块和电路。上述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信 模块2002可以是收发器、收发电路或通信接口等。存储模块2003可以是存储器。
当处理模块2001为处理器,通信模块2002为收发器,存储模块2003为存储器时,处理器、收发器和存储器可以通过总线连接。总线可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended Industry standard architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))方式或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、磁盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state drives,SSD))等。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质 上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种校正接收机的互调失真信号的方法,其特征在于,所述接收机包括第一支路和第二支路,所述第一支路与所述第二支路为同相正交支路,所述方法包括:
    检测所述第一支路的输出信号中的第一互调失真信号的当前能量;
    根据所述第一互调失真信号的当前能量和预存的所述第一互调失真信号的历史能量确定第一补偿电压,并利用所述第一补偿电压对所述第一支路中的第一混频器的阈值电压进行调整;
    检测所述第二支路的输出信号中的第二互调失真信号的当前能量;
    根据所述第二互调失真信号的当前能量和预存的所述第二互调失真信号的历史能量确定第二补偿电压,并利用所述第二补偿电压对所述第二支路中的第二混频器的阈值电压进行调整。
  2. 根据权利要求1所述的方法,其特征在于,
    循环执行权利要求1所述的方法,直至循环次数达到预配置循环次数。
  3. 根据权利要求1或2所述的方法,其特征在于,利用所述第一补偿电压对所述第一支路中的第一混频器的阈值电压进行调整之后,所述方法还包括:
    检测所述第一互调失真信号的当前能量;
    将所述第一互调失真信号的当前能量作为所述第一互调失真信号的历史能量。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,利用所述第二补偿电压对所述第二支路中的第二混频器的阈值电压进行调整之后,所述方法还包括:
    检测所述第二互调失真信号的当前能量;
    将所述第二互调失真信号的当前能量作为所述第二互调失真信号的历史能量。
  5. 根据权利要求2至4任一项所述的方法,其特征在于,所述根据所述第一互调失真信号的当前能量和预存的所述第一互调失真信号的历史能量确定第一补偿电压,包括:
    在所述第一互调失真信号的当前能量小于所述第一互调失真信号的历史能量的情况下,将前一次循环中得到的第一补偿电压与前一次循环中得到的第一高补偿电压之和的二分之一确定为所述第一补偿电压,其中,所述前一次循环中得到的第一高补偿电压是根据所述前一次循环中的所述第一互调失真信号的当前能量与所述第一互调失真信号的历史能量确定的;
    在所述第一互调失真信号的当前能量大于或者等于所述第一互调失真信号的历史能量的情况下,将前一次循环中得到的第一补偿电压与前两次循环中得到的第一低补偿电压之和的二分之一确定为所述第一补偿电压,其中,所述前两次循环中得到的第一低补偿电压是根据所述前两次循环中的所述第一互调失真信号的当前能量与第一互调失真信号的历史能量确定的。
  6. 根据权利要求2至5任一项所述的方法,其特征在于,所述根据所述第二互调失真信号的当前能量和预存的所述第二互调失真信号的历史能量确定所述第二补偿电压,包括:
    在所述第二互调失真信号的当前能量小于所述第二互调失真信号的历史能量的情况下,将前一次循环中得到的第二补偿电压与前一次循环中得到的第二高补偿电压之 和的二分之一确定为所述第二补偿电压,其中,所述前一次循环中得到的第二高补偿电压是根据所述前一次循环中的所述第二互调失真信号的当前能量与所述第二互调失真信号的历史能量确定的;
    在所述第二互调失真信号的当前能量大于或者等于所述第二互调失真信号的历史能量的情况下,将前一次循环中得到的第二补偿电压与前两次循环中得到的第二低补偿电压之和的二分之一确定为所述第二补偿电压,其中,所述前两次循环中得到的第二低补偿电压是根据所述前两次循环中的所述第二互调失真信号的当前能量与第二互调失真信号的历史能量确定的。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,
    所述检测所述第一支路的输出信号中的第一互调失真信号的当前能量,包括:
    对所述第一支路的输出信号进行移频、滤波以及能量计算,得到所述第一互调失真信号的当前能量;
    所述检测所述第二支路的输出信号中的第二互调失真信号的当前能量,包括:
    对所述第二支路的输出信号进行移频、滤波以及能量计算,得到所述第二互调失真信号的当前能量。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,
    所述第一补偿电压为数字电压,所述方法还包括:将所述第一补偿电压转换为模拟电压;
    所述第二补偿电压为数字电压,所述方法还包括:将所述第二补偿电压转换为模拟电压。
  9. 一种通信设备,其特征在于,包括接收机,第一能量检测电路、第二能量检测电路以及补偿电压计算电路,所述接收机包括第一支路和第二支路,所述第一支路与所述第二支路为同相正交支路;
    所述第一能量检测电路,用于检测所述第一支路的输出信号中的第一互调失真信号的当前能量;
    所述补偿电压计算电路,用于根据所述第一互调失真信号的当前能量和预存的所述第一互调失真信号的历史能量确定第一补偿电压,所述第一补偿电压用于调整所述第一支路中的第一混频器的阈值电压;
    所述第二能量检测电路,用于检测所述第二支路的输出信号中的第二互调失真信号的当前能量;
    所述补偿电压计算电路,还用于根据所述第二互调失真信号的当前能量和预存的所述第二互调失真信号的历史能量确定第二补偿电压,所述第二补偿电压用于调整所述第二支路中的第二混频器的阈值电压。
  10. 根据权利要求9所述的通信设备,其特征在于,
    所述第一能量检测电路,还用于在所述第一补偿电压对所述第一支路中的第一混频器的阈值电压进行调整之后,检测所述第一互调失真信号的当前能量;
    所述补偿电压计算电路,还用于将所述第一互调失真信号的当前能量作为所述第一互调失真信号的历史能量。
  11. 根据权利要求9或10所述的通信设备,其特征在于,
    所述第二能量检测电路,还用于在所述第二补偿电压对所述第二支路中的第二混频器的阈值电压进行调整之后,检测所述第二互调失真信号的当前能量;
    所述补偿电压计算电路,还用于将所述第二互调失真信号的当前能量作为所述第二互调失真信号的历史能量。
  12. 根据权利要求10或11项所述的通信设备,其特征在于,
    所述补偿电压计算电路,具体用于在所述第一互调失真信号的当前能量小于所述第一互调失真信号的历史能量的情况下,将前一次循环中得到的第一补偿电压与前一次循环中得到的第一高补偿电压之和的二分之一确定为所述第一补偿电压,其中,所述前一次循环中得到的第一高补偿电压是根据所述前一次循环中的所述第一互调失真信号的当前能量与所述第一互调失真信号的历史能量确定的;在所述第一互调失真信号的当前能量大于或者等于所述第一互调失真信号的历史能量的情况下,将前一次循环中得到的第一补偿电压与前两次循环中得到的第一低补偿电压之和的二分之一确定为所述第一补偿电压,其中,所述前两次循环中得到的第一低补偿电压是根据所述前两次循环中的所述第一互调失真信号的当前能量与第一互调失真信号的历史能量确定的。
  13. 根据权利要求10至12任一项所述的通信设备,其特征在于,
    所述补偿电压计算电路,具体用于在所述第二互调失真信号的当前能量小于所述第二互调失真信号的历史能量的情况下,将前一次循环中得到的第二补偿电压与前一次循环中得到的第二高补偿电压之和的二分之一确定为所述第二补偿电压,其中,所述前一次循环中得到的第二高补偿电压是根据所述前一次循环中的所述第二互调失真信号的当前能量与所述第二互调失真信号的历史能量确定的;在所述第二互调失真信号的当前能量大于或者等于所述第二互调失真信号的历史能量的情况下,将前一次循环中得到的第二补偿电压与前两次循环中得到的第二低补偿电压之和的二分之一确定为所述第二补偿电压,其中,所述前两次循环中得到的第二低补偿电压是根据所述前两次循环中的所述第二互调失真信号的当前能量与第二互调失真信号的历史能量确定的。
  14. 根据权利要求9至13任一项所述的通信设备,其特征在于,
    所述第一能量检测电路,具体用于对所述第一支路的输出信号进行移频、滤波以及能量计算,得到所述第一互调失真信号的当前能量;
    所述第二能量检测电路,具体用于对所述第二支路的输出信号进行移频、滤波以及能量计算,得到所述第二互调失真信号的当前能量。
  15. 根据权利要求9至14任一项所述的通信设备,其特征在于,所述通信设备还包括第一数模转换器和第二数模转换器;
    所述第一数模转换器,用于在所述第一补偿电压为数字电压的情况下,将所述第一补偿电压转换为模拟电压;
    所述第二数模转换器,用于在所述第二补偿电压为数字电压的情况下,将所述第二补偿电压转换为模拟电压。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质可以包括计算机指令,当所述计算机指令在计算机上运行时,使得通信设备执行如权利要求1 至8任意一项所述的校正接收机的互调失真信号的方法。
PCT/CN2019/076570 2019-02-28 2019-02-28 一种校正接收机的互调失真信号的方法及装置 WO2020172877A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980092362.9A CN113439391B (zh) 2019-02-28 2019-02-28 一种校正接收机的互调失真信号的方法及装置
PCT/CN2019/076570 WO2020172877A1 (zh) 2019-02-28 2019-02-28 一种校正接收机的互调失真信号的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/076570 WO2020172877A1 (zh) 2019-02-28 2019-02-28 一种校正接收机的互调失真信号的方法及装置

Publications (1)

Publication Number Publication Date
WO2020172877A1 true WO2020172877A1 (zh) 2020-09-03

Family

ID=72240057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076570 WO2020172877A1 (zh) 2019-02-28 2019-02-28 一种校正接收机的互调失真信号的方法及装置

Country Status (2)

Country Link
CN (1) CN113439391B (zh)
WO (1) WO2020172877A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090325529A1 (en) * 2008-06-26 2009-12-31 Xuebin Yang Calibrating receive chain to reduce second order intermodulation distortion
CN103125076A (zh) * 2010-09-28 2013-05-29 高通股份有限公司 使用校准来减小混频器之前的差分接收机路径中的非线性
CN103580609A (zh) * 2012-08-07 2014-02-12 晨星软件研发(深圳)有限公司 二阶互调调制失真的校正装置、系统与校正方法
CN106664108A (zh) * 2014-07-10 2017-05-10 瑞典爱立信有限公司 消除互调干扰

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2052896C1 (ru) * 1991-04-26 1996-01-20 Богачев Сергей Васильевич Радиоприемник амплитудно-модулированных сигналов с подавлением интермодуляционных помех
GB2423427A (en) * 2004-07-06 2006-08-23 Qiuting Huang Double balanced mixer with improved even-order intercept points
KR100720643B1 (ko) * 2005-10-20 2007-05-21 삼성전자주식회사 2차 혼변조 왜곡 보정 회로
US7554380B2 (en) * 2005-12-12 2009-06-30 Icera Canada ULC System for reducing second order intermodulation products from differential circuits
JP5034319B2 (ja) * 2006-05-26 2012-09-26 富士通株式会社 歪補償装置及び歪補償方法
KR100897770B1 (ko) * 2007-01-30 2009-05-15 삼성전자주식회사 전송 엔벌로프 검출기의 문턱 전압들 조절 방법들과 상기방법들을 이용한 장치들
CN101765969A (zh) * 2007-07-31 2010-06-30 富士通株式会社 失真补偿装置和方法
US8045943B2 (en) * 2008-01-29 2011-10-25 Freescale Semiconductor, Inc. High performance CMOS radio frequency receiver
US8060043B2 (en) * 2008-10-09 2011-11-15 Freescale Semiconductor Adaptive IIP2 calibration
ES2406705T3 (es) * 2008-12-12 2013-06-07 St-Ericsson Sa Método y sistema de calibración de un punto de interceptación de intermodulación de segundo orden de un transceptor de radio
CN101540640B (zh) * 2009-04-28 2013-08-21 北京朗波芯微技术有限公司 用于发射前端的载波泄漏校正电路和方法
US9154079B2 (en) * 2012-10-24 2015-10-06 Qualcomm Incorporated Threshold tracking bias voltage for mixers
US9136889B2 (en) * 2013-09-09 2015-09-15 Mstar Semiconductor, Inc. Mixer biasing for intermodulation distortion compensation
US8958512B1 (en) * 2013-10-18 2015-02-17 Altera Corporation System and method for receiver equalization adaptation
CN103731391B (zh) * 2013-12-31 2017-11-14 天津朗波微电子有限公司 射频收发机中发射机的正交失配校正方法及校正电路
US9961632B2 (en) * 2014-09-26 2018-05-01 Apple Inc. DSP assisted and on demand RF and analog domain processing for low power wireless transceivers
US10277381B2 (en) * 2016-01-09 2019-04-30 Huawei Technologies Co., Ltd. Receiver path distortion mitigation using adaptive filter feedback

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090325529A1 (en) * 2008-06-26 2009-12-31 Xuebin Yang Calibrating receive chain to reduce second order intermodulation distortion
CN103125076A (zh) * 2010-09-28 2013-05-29 高通股份有限公司 使用校准来减小混频器之前的差分接收机路径中的非线性
CN103580609A (zh) * 2012-08-07 2014-02-12 晨星软件研发(深圳)有限公司 二阶互调调制失真的校正装置、系统与校正方法
CN106664108A (zh) * 2014-07-10 2017-05-10 瑞典爱立信有限公司 消除互调干扰

Also Published As

Publication number Publication date
CN113439391A (zh) 2021-09-24
CN113439391B (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
US8451969B2 (en) Apparatus, system, and method for timing recovery
JP5788373B2 (ja) 受動ミキサのためのオフセット訂正
US8885692B2 (en) Estimation of intentional phase shift in a calibration apparatus
CN112514265B (zh) 利用移相估计进行的发射器镜像校准
KR20180097112A (ko) Iq 불일치 보상 및 보정을 위한 시스템 및 방법
US9367385B2 (en) High speed serial data receiver architecture with dual error comparators
WO2019137253A1 (zh) 接收机iq两路不平衡的补偿方法、装置及设备
US11671131B2 (en) Transmitter circuit, compensation value calibration device and method for calibrating IQ imbalance compensation values
CN104158552A (zh) 零中频发射机、接收机及相关方法和系统
TW201545513A (zh) 校正傳送器/接收器的第一、第二訊號路徑之間的不匹配的寬頻校正方法與寬頻校正裝置
CN105471779A (zh) 校正方法及校正电路
CN114726702B (zh) 信道频偏的估计和补偿方法及装置
US20180212804A1 (en) Transmission device, reception device, and communication system
CN110943748B (zh) 一种自动失配校准电路、射频接收机系统及方法
US9806877B2 (en) Calibration method and calibration circuit
WO2020172877A1 (zh) 一种校正接收机的互调失真信号的方法及装置
US20140018029A1 (en) Method of Compensating Signal Imbalance of Wireless Communication System
WO2021155681A1 (zh) 边带抑制方法、装置、计算机设备和存储介质
JP5128682B2 (ja) パスバンド通信システムのための効率的なキャリアリカバリ技術
US9923586B2 (en) Apparatus and method for estimating carrier frequency offset for multipath signals
CN106209721A (zh) 无线通信装置和无线通信方法
TW202222048A (zh) 校正傳送器的方法
US10491198B1 (en) Methods and apparatus for phase imbalance correction
US9876660B2 (en) Apparatus and method for estimating carrier frequency offset
US9407425B1 (en) Method and device for compensating phase imbalance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917444

Country of ref document: EP

Kind code of ref document: A1