WO2020172868A1 - 充电方法和充电装置 - Google Patents

充电方法和充电装置 Download PDF

Info

Publication number
WO2020172868A1
WO2020172868A1 PCT/CN2019/076555 CN2019076555W WO2020172868A1 WO 2020172868 A1 WO2020172868 A1 WO 2020172868A1 CN 2019076555 W CN2019076555 W CN 2019076555W WO 2020172868 A1 WO2020172868 A1 WO 2020172868A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
charging
constant
stage
current
Prior art date
Application number
PCT/CN2019/076555
Other languages
English (en)
French (fr)
Inventor
杨鑫
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980003852.7A priority Critical patent/CN111886775B/zh
Priority to EP19916658.8A priority patent/EP3806279B1/en
Priority to PCT/CN2019/076555 priority patent/WO2020172868A1/zh
Priority to US16/983,742 priority patent/US11462931B2/en
Publication of WO2020172868A1 publication Critical patent/WO2020172868A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of charging, and more specifically, to a charging method and a charging device.
  • devices to be charged are increasingly favored by consumers, but the devices to be charged consume a lot of power and need to be charged frequently.
  • the most commonly used charging mode is the constant voltage and constant current charging mode. Although this method can increase the charging speed, it takes a long time for high-voltage charging. During long-term use, if the high-voltage time is too long, it will affect the use of the battery. life. Therefore, how to reduce the high-voltage charging time of the battery is a factor that needs to be considered in fast charging.
  • the present application provides a charging method and a charging device, which can reduce the high-voltage charging time of a battery.
  • a charging method including: charging a battery to a first voltage in a constant current phase, where the first voltage is a charging cut-off voltage corresponding to the constant current phase; and responding to the voltage of the battery reaching The first voltage enters a constant voltage stage, and the battery is charged with a second voltage, wherein the second voltage is less than the first voltage.
  • a charging method in a second aspect, includes at least two constant current and constant voltage stages, wherein any constant current and constant voltage stage includes a constant current stage and a constant voltage stage, and the first N constant voltage stages
  • the charging currents corresponding to the constant current phase in the constant current phase are equal, and N is an integer greater than or equal to 2.
  • the method includes: in the constant current phase, charging the battery to a first voltage, where the first voltage is The charge cut-off voltage corresponding to the constant current phase; in the constant voltage phase, in response to the voltage of the battery reaching the first voltage, the battery is charged with a second voltage, the second voltage being less than or equal to the First voltage.
  • a charging device including a charging management circuit, configured to perform the following operations: charging a battery to a first voltage in a constant current phase, where the first voltage is the charging cut-off voltage corresponding to the constant current phase In response to the voltage of the battery reaching the first voltage, enter a constant voltage stage, and charge the battery with a second voltage, wherein the second voltage is less than the first voltage.
  • a charging device in a fourth aspect, includes at least two constant current and constant voltage stages, wherein any constant current and constant voltage stage includes a constant current stage and a constant voltage stage, and the first N constant voltage stages
  • the charging currents corresponding to the constant current phase in the constant current phase are equal, and N is an integer greater than or equal to 2.
  • the charging device includes a charging management circuit for performing the following operations: in the constant current phase, the battery is charged to the first voltage, The first voltage is the charge cut-off voltage corresponding to the constant current stage; in the constant voltage stage, in response to the voltage of the battery reaching the first voltage, the battery is charged with a second voltage, and the first The second voltage is less than or equal to the first voltage.
  • the constant voltage stage in the constant current and constant voltage charging mode, does not directly use the charge cut-off voltage corresponding to the constant current stage, but uses a voltage less than the charge cut-off voltage for charging, so that the constant voltage stage is charged
  • the voltage is relatively small, and the voltage of the battery does not need to be charged to a larger charge cut-off voltage during the constant voltage stage, but only needs to be charged to a voltage less than the charge cut-off voltage. This can reduce the constant voltage charging process of the battery and help improve the battery Life.
  • Figure 1 is a schematic diagram of a constant current and constant voltage charging method.
  • Fig. 2 is a schematic flowchart of a charging method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a constant current and constant voltage charging method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a charging method provided by another embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a charging method provided by another embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a charging device provided by an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a charging device provided by another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a charging device provided by another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a wired charging system provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a wired charging system provided by another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a wireless charging system provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a wireless charging system provided by another embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a wireless charging system provided by another embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a wireless charging system provided by another embodiment of the present application.
  • the commonly used fast charging mode is a constant current and constant voltage (constant current constant voltage, CCCV) charging mode.
  • the constant current and constant voltage charging mode can include one constant current and constant voltage stage, or multiple constant current and constant voltage stages.
  • a constant current and constant voltage stage mentioned in the embodiment of the present application may include a constant current stage and a constant voltage stage. After the battery is charged to the charging cut-off voltage corresponding to the constant current stage in a constant current and constant voltage stage, the battery enters the constant voltage stage in the constant current and constant voltage stage. When the battery is charged to the charging cut-off current corresponding to the constant voltage stage in the constant voltage stage of a constant current and constant voltage stage, it enters the next constant current and constant voltage stage.
  • charge cut-off voltages corresponding to multiple constant current stages and charge cut-off currents corresponding to multiple constant voltage stages can be set.
  • the multiple charge cut-off voltages may be equal or unequal; the multiple charge cut-off currents may be equal or unequal.
  • the charging process can be, for example, as follows: in the constant current stage, the battery is first charged with a constant current at a certain current until it is charged to a certain cut-off voltage, the cut-off voltage can be, for example, 4.2V ; Then enter the constant voltage stage, and then charge with the cut-off voltage (such as 4.2V) until the current is reduced to a very small value, for example, the charge cut-off current (0.01C ⁇ 0.1C).
  • Figure 1 shows a schematic diagram of the charging process including two constant current and constant voltage stages.
  • the two constant current and constant voltage stages are the constant current and constant voltage stage M and the constant current and constant voltage stage N.
  • the constant current and constant voltage stage M may include a constant current stage a and a constant voltage stage b
  • the constant current and constant voltage stage N may include a constant current stage c and a constant voltage stage d.
  • set the corresponding cut-off current b for the constant voltage stage b set the corresponding cut-off voltage c for the constant current stage c
  • Cut-off current d Cut-off current d.
  • the battery can enter the constant voltage and constant current charging stage, for example, enter the constant current and constant voltage stage M.
  • the battery In the constant current phase a, the battery can be charged with the charging current I1.
  • the battery voltage gradually rises.
  • the battery voltage reaches the cut-off voltage a, it can enter the constant voltage stage b.
  • the battery In the constant voltage stage b, the battery can be charged at a constant voltage with the cut-off voltage a.
  • the voltage of the battery gradually approaches the cut-off voltage a, and the charging current of the battery continues to decrease.
  • the charging current of the battery When the charging current of the battery reaches the cut-off current b, it can enter the next constant current and constant voltage charging stage, that is, enter the constant Flow constant pressure stage N.
  • the charging process in the constant current and constant voltage stage N is similar to the charging process in the constant current and constant voltage stage M.
  • the battery in the constant current stage c, the battery can be charged with a constant current with the cut-off current b, so that the battery voltage reaches the cut-off voltage c, and then enters the constant voltage stage d.
  • the battery In the constant voltage stage d, the battery can be charged at a constant voltage with the cut-off voltage c, so that the charging current reaches the cut-off current d.
  • the battery's internal impedance will cause the battery to have a large floating voltage, and the final displayed cut-off voltage may be much larger than the actual voltage of the battery.
  • the voltage stage needs to charge the battery voltage from the actual voltage to the cut-off voltage, which will cause the constant voltage charging time to be very long. Because constant voltage charging uses high voltage for charging, during long-term use, if the battery is charged at high voltage for too long, it will cause the battery to stay in a high voltage state for a long time, which will accelerate the attenuation of the battery and affect the service life of the battery. Therefore, how to reduce the high-voltage charging time of the battery is a factor that needs to be considered in the subsequent fast charging.
  • the embodiments of the present application provide a charging method, which can increase the charging speed while ensuring the service life of the battery.
  • the method of the embodiment of the present application can be applied to a device to be charged to charge the device to be charged.
  • the equipment to be charged includes but is not limited to: is set to be connected via a wired line (such as via a public switched telephone network (PSTN), digital subscriber line (DSL), digital cable, direct cable connection, and /Or another data connection/network) and/or via (e.g., for cellular network, wireless local area network (WLAN), digital TV such as digital video broadcasting handheld (DVB-H) network Networks, satellite networks, amplitude modulation-frequency modulation (AM-FM) broadcast transmitters, and/or devices for receiving/transmitting communication signals via a wireless interface of another communication terminal.
  • PSTN public switched telephone network
  • DSL digital subscriber line
  • digital cable direct cable connection
  • WLAN wireless local area network
  • digital TV such as digital video broadcasting handheld (DVB-H) network Networks
  • satellite networks amplitude modulation-frequency modulation (AM-FM
  • a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” and/or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communication system (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal digital assistant (PDA) with intranet access, web browser, notebook, calendar, and/or global positioning system (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • PCS personal communication system
  • PDA Internet/ Personal digital assistant
  • GPS global positioning system
  • the device to be charged may refer to the mobile terminal being a device or a handheld terminal device, such as a mobile phone, a pad, and so on.
  • the device to be charged mentioned in the embodiments of the present application may refer to a chip system.
  • the battery of the device to be charged may or may not belong to the chip system. Service life.
  • the devices to be charged can also include other electronic devices that require charging, such as mobile phones, mobile power sources (such as power banks, travel chargers, etc.), electric cars, laptops, drones, tablets, e-books, e-cigarettes, Smart electronic equipment and small electronic products, etc.
  • Smart electronic devices can include, for example, watches, bracelets, smart glasses, and sweeping robots.
  • Small electronic products may include, for example, wireless headsets, Bluetooth speakers, electric toothbrushes, and rechargeable wireless mice.
  • the method provided by the embodiment of the present application may include steps S201-S202.
  • S201 In the constant current phase, charge the battery to a first voltage, where the first voltage is the charging cut-off voltage corresponding to the constant current phase.
  • the constant current stage and the constant voltage stage are adjacent charging stages, and the constant current stage and the constant voltage stage form a constant current and constant voltage stage.
  • the charge cut-off voltage of the constant current stage may be greater than the actual voltage of the battery.
  • the charging voltage corresponding to the constant voltage phase does not directly use the charge cut-off voltage corresponding to the constant current phase, but It uses a voltage lower than the charge cut-off voltage, that is, the voltage after the floating voltage is reduced for constant voltage charging.
  • the constant voltage can be performed at a lower voltage, which reduces the relatively high voltage charging.
  • the constant voltage stage only needs to charge the voltage of the battery from the first voltage (ie the actual voltage) to the second voltage (ie the corresponding charging voltage at this stage), without charging the battery voltage from the actual voltage to the constant current stage.
  • the charging cut-off voltage can reduce the constant voltage charging time of the battery, can slow down the decay speed of the battery, and help improve the service life of the battery.
  • the charging process of the battery may include a constant current and constant voltage stage, and the constant current and constant voltage stage includes a constant current stage and a constant voltage stage described above.
  • the battery charging process may also include at least two preset constant current and constant voltage stages, and any constant current and constant voltage stage includes a constant current stage and a constant voltage stage.
  • all the constant voltage stages can be charged with the voltage after falling and floating, or only part of the constant voltage stage is charged with the voltage after falling and floating ,
  • the charging voltage corresponding to the other part of the constant voltage phase can be equal to the charging cut-off voltage corresponding to the constant current phase.
  • the first few constant voltage stages may use the voltage after falling and floating to perform constant voltage charging, and in the latter few constant voltage stages, because the charging current is small, The floating voltage phenomenon is not obvious, so in the latter several constant voltage stages, the charging cut-off voltage of the constant current stage can be directly used for charging.
  • the charging process in the embodiment of the present application may include a constant current and constant voltage stage X and a constant current and constant voltage stage Y.
  • the constant current and constant pressure stage X includes a constant current stage e and a constant pressure stage f
  • the constant current and constant pressure stage Y includes a constant current stage g and a constant pressure stage h.
  • the battery In the constant current stage e, the battery can be charged with a constant current with the charging current I1. During the constant current charging process, the voltage of the battery gradually increases. When the voltage of the battery reaches the charging cut-off voltage V1 corresponding to the constant current stage e, the constant voltage stage f can be entered. In the constant voltage stage f, the battery is charged with the charging voltage V2, where V2 ⁇ V1. When the charging current is reduced to the charging cut-off current corresponding to the constant voltage stage (for example, I2), the constant current and constant voltage stage Y can be entered.
  • the battery In the constant current stage g, the battery can be charged with the charging current I2, so that the voltage of the battery reaches the charging cut-off voltage V3 corresponding to the constant current stage g. In response to the battery voltage reaching the charge cut-off voltage V3, the constant voltage phase h is entered. In the constant voltage stage h, the battery can be charged at a constant voltage with the charging voltage V4, where V4 ⁇ V3.
  • the embodiment of the present application does not limit the setting of the charging current corresponding to the at least two constant current stages.
  • the at least two constant current and constant voltage stages may include adjacent first and second constant current and constant voltage stages, wherein the second constant current and constant voltage stage is later than the first constant current and constant voltage stage.
  • the charging current corresponding to the constant current stage in the second constant current and constant voltage stage may be equal to the charging cut-off current corresponding to the constant voltage stage in the first constant current and constant voltage stage.
  • the charging current I2 corresponding to the constant current stage h may be equal to the charging cut-off current corresponding to the constant voltage stage f. In this way, during the charging process, the charging current changes continuously, which can ensure the continuity of the charging current, and there will be no jump changes, which can increase the charging speed.
  • the at least two constant current and constant voltage stages include a first constant current and constant voltage stage and a second constant current and constant voltage stage, wherein the charging current corresponding to the constant current stage in the first constant current and constant voltage stage is the same as The charging currents corresponding to the constant current phase in the second constant current phase are equal.
  • the charging currents corresponding to different constant current stages can be equal, and a larger charging current can be used to charge the battery with constant current, thereby improving the charging speed.
  • the charging currents corresponding to the constant current stages in the first N constant current and constant voltage stages in the at least two constant current and constant voltage stages may be equal, and N is an integer greater than or equal to 2.
  • the charging current I1 corresponding to the constant current stage e can be equal to the charging current corresponding to the constant current stage g.
  • the constant current stage g can be charged with a larger charging current, which can improve the constant current stage.
  • the above N constant current and constant voltage stages are preset in advance. For example, if the value of N is directly set to 2 or 3, the charging currents corresponding to the first 2 or 3 constant current stages are set to be equal. Alternatively, the determination of the N constant current and constant voltage stages may also be determined according to the capacity and/or voltage of the battery, and the size of N will also be different depending on the charging process of the battery.
  • the charging current corresponding to the constant current stage can be set to be equal.
  • the preset capacity may be 80% of the rated capacity or 85% of the rated capacity, for example.
  • the charging current can also be determined according to the voltage of the battery. In the case that the voltage of the battery is small, if the voltage of the battery is less than the preset voltage, the charging current in the constant current stage can be set equal.
  • the preset voltage may be 3.8V, 4.0V, 4.2V, etc., for example.
  • the magnitude of the charging current corresponding to the N constant current stages may all be equal to the magnitude of the charging current corresponding to the first constant current stage.
  • the charging current corresponding to the N constant current stages may be equal to the rated charging current of the battery.
  • the embodiment of the present application does not limit the setting manner of the charging voltage corresponding to the at least two constant voltage stages.
  • At least two constant current and constant voltage stages include a third constant current and constant voltage stage and a fourth constant current and constant voltage stage, where the fourth constant current and constant voltage stage is later than the third constant current and constant voltage stage.
  • the voltage difference between the charging cut-off voltage corresponding to the constant current stage in the third constant current and constant voltage stage and the charging voltage corresponding to the constant voltage stage in the third constant current and constant voltage stage is ⁇ V1
  • the fourth constant current and constant voltage stage The voltage difference between the charging cut-off voltage corresponding to the constant current phase in the constant current phase and the charging voltage corresponding to the constant voltage phase in the fourth constant current and constant voltage phase is ⁇ V2.
  • ⁇ V1 can be equal to ⁇ V2. That is, the ⁇ V of each of the at least two constant voltage stages can be set equal.
  • ⁇ V2 can be smaller than ⁇ V1. Since the charging current corresponding to the subsequent constant current stage is smaller than the corresponding charging current of the previous constant current stage, the float voltage generated in the subsequent constant current stage is smaller than the float voltage generated in the previous constant current stage, so you can set The ⁇ V of the subsequent constant voltage stage is smaller than the ⁇ V of the previous constant voltage stage, so that it matches the charging of the battery.
  • the charging current I2 corresponding to the constant current stage g is smaller than the charging current I1 corresponding to the constant current stage e
  • the floating voltage generated in the constant current stage g is smaller than the floating voltage generated in the constant current stage e.
  • the value of (V3-V4) in the constant voltage stage h may be smaller than the value of (V1-V2) in the constant voltage stage f.
  • the charging voltages corresponding to the at least two constant voltage stages can also be set in a combination of the above methods.
  • the ⁇ V of the first p constant voltage stages of at least two constant voltage stages is the same
  • the ⁇ V of the last q constant voltage stages of at least two constant voltage stages are the same
  • the ⁇ V of the first p constant voltage stages is greater than the latter ⁇ V of q constant voltage stages, where p and q are integers greater than or equal to 1.
  • the value of (V3-V4) can also be set to 0, that is, the charging voltage in the constant voltage stage h can also be directly charged using the charging cut-off voltage corresponding to the constant current stage g, that is, the charging voltage in the constant voltage stage h Can be equal to voltage V3.
  • the magnitude of the first voltage may be greater than the rated voltage of the battery.
  • the battery voltage can be charged to a voltage greater than the rated voltage.
  • the constant current stage can provide more power to the battery, which can reduce the constant voltage charging time of the battery in the following constant voltage stage.
  • the charging voltage corresponding to the constant voltage stage may be the rated voltage of the battery. After the constant current phase is over, the battery can be charged at a constant voltage with the battery's rated voltage. Since the constant current stage can charge the battery to a voltage greater than the rated voltage of the battery, the charging cut-off current corresponding to the constant voltage stage can be determined according to the rated capacity of the battery, so the time of the constant voltage charging process can be shortened, so that the constant voltage stage The corresponding charge cut-off current can be larger.
  • the charge cut-off current corresponding to the constant voltage stage may be greater than the recognized constant voltage cut-off charge current Ia. If Ia is 0.01C to 0.1C, the charge cut-off current corresponding to the constant voltage stage may be greater than 0.01C to 0.1C.
  • the time for constant voltage charging becomes shorter, which can further increase the charging speed of the battery.
  • the constant current phase may be the constant current phase in the last constant current and constant voltage phase of at least two preset constant current and constant voltage phases.
  • the battery voltage can be charged to a voltage greater than the rated voltage, so that a larger charging cut-off current can be set for the last constant voltage stage, and a shorter time can be used Fully charge the battery to increase the charging speed.
  • the constant current and constant voltage stage Y is the last constant current and constant voltage stage of at least two constant current and constant voltage stages.
  • the charge cut-off voltage V3 corresponding to the constant current stage g can be greater than the rated voltage of the battery, the charge voltage corresponding to the constant voltage stage g can be equal to the rated voltage of the battery, and the charge cut-off current I3 corresponding to the constant voltage stage h can be greater than Ia, such as I3. Greater than Ia.
  • the charge cut-off voltage corresponding to each of the at least two constant current and constant voltage stages can be greater than the rated voltage of the battery, or part of the constant current stage in the at least two constant current and constant voltage stages corresponds to The charge cut-off voltage is greater than the rated voltage of the battery.
  • the embodiment of the present application does not specifically limit the setting manner of the charging cut-off voltage corresponding to different constant current stages.
  • the charge cut-off voltages corresponding to different constant current stages may be equal.
  • the charge cut-off voltages corresponding to the constant current stage e and the constant current stage g can be equal.
  • the charge cut-off voltages corresponding to different constant current stages may all be the rated voltage of the battery, or the charge cut-off voltages corresponding to different constant current stages may all be the limit voltages greater than the battery rated voltage.
  • the charge cut-off voltages corresponding to different constant current stages may be different. Assuming that the battery charging process includes the first constant current and constant voltage stage and the second constant current and constant voltage stage. The second constant current and constant voltage stage is later than the first constant current and constant voltage stage. The charge cut-off current corresponding to the current stage may be greater than the charge cut-off voltage corresponding to the constant current stage in the first constant current and constant voltage stage. In other words, the charge cut-off voltage corresponding to the subsequent constant current stage may be greater than the charge cut-off voltage corresponding to the previous constant current stage.
  • the setting method of the charging cut-off voltage corresponding to the constant current stage can also be set in combination with the above-mentioned multiple methods.
  • the charging cut-off voltages corresponding to the first few constant current stages are different, and the charging cut-off voltages corresponding to the last few constant current stages are the same.
  • the charge cut-off voltage corresponding to the last constant current stage can be determined according to the battery system, for example, it can be the highest voltage that the battery can withstand.
  • the charging current corresponding to the constant current stage can be greater than the rated maximum charging current of the battery, which is represented by Ic.
  • the charging current Ic may refer to the rated factory current of the battery, and the charging current Ic may be 3C, for example.
  • the constant current phase may be the constant current phase in the first constant current and constant voltage phase of the at least two preset constant current and constant voltage phases.
  • the battery in the initial constant current phase, can be charged with a constant current greater than the charging current Ic.
  • the battery can be charged with a current greater than 3C. Since the charging current is large, the charging speed can be increased.
  • the charging time for constant current charging with the charging current Ic can be shorter, which can ensure the safety of charging and control the heating of the battery.
  • the battery voltage and/or the temperature of the device to be charged can be detected first, and the constant current and constant voltage stage can be entered only after the battery voltage and/or temperature meet the preset conditions. For example, when the battery voltage is between 2.5V and 4.2V, and the temperature of the device to be charged is between 16°C and 41°C, the constant current and constant voltage stage can be entered.
  • the battery After entering the constant current and constant voltage stage, the battery can be charged with a current of 3C. During the charging process, the voltage of the battery gradually rises until the voltage of the battery reaches 3.8V, reaching the charging cut-off voltage of this stage, at which point the constant voltage stage can be entered.
  • the battery In the constant voltage stage, the battery can be charged at a constant voltage with a charging voltage of 3.4V (or 3.2V). During the charging process, the charging current of the battery gradually decreases until the charging current is reduced to 2C, reaching the charging cut-off current of this stage, at which time the next constant current and constant voltage stage can be entered.
  • the battery can be charged with constant current with a charging current of 2C.
  • the voltage of the battery gradually increases until the voltage of the battery reaches 4.0V, reaching the charging cut-off voltage of this stage, at which time it can enter the constant voltage stage.
  • the battery can be charged at a constant voltage with a charging voltage of 3.8V.
  • the charging current of the battery gradually decreases until the charging current is reduced to 1C, reaching the charging cut-off current of this stage, at which time the next constant current and constant voltage stage can be entered.
  • the voltage that can be charged to the battery with the charging current In is Vb
  • the charging voltage Vb is the charging cut-off current corresponding to the constant current stage
  • the charging voltage Vb is greater than the battery
  • the rated voltage can enter the constant current stage at this time.
  • the battery can be charged at the rated voltage of the battery until the charging voltage of the battery reaches the charging cut-off current corresponding to this stage, which can be greater than the recognized constant voltage cut-off charging current Ia.
  • Ia may be 0.01C to 0.1C, for example.
  • the charging voltage during the constant voltage charging stage is relatively low.
  • the charging time in the constant voltage charging stage can also be reduced, the decay speed of the battery can be slowed down, and the battery life can be improved.
  • the charging current corresponding to the constant current phase can be equal to the charging cut-off current corresponding to the constant voltage phase, and the charging current does not jump significantly, which can ensure the continuity of the current and help improve the charging speed of the battery.
  • the constant voltage stage is the last constant current and constant voltage stage of the at least two constant current and constant voltage stages
  • the charging current of the battery reaches the charging cut-off current corresponding to the constant voltage stage
  • the charge cut-off current corresponding to the constant voltage stage can be the minimum charging current of the battery, or it can be determined according to the rated capacity of the battery, that is, the minimum charging current can be the battery being charged The corresponding charging current when the rated capacity is reached.
  • the charging time corresponding to the last constant current phase can also be set. It is still assumed that the constant voltage phase is the latter constant voltage phase. When the charging time of the constant voltage phase reaches the preset charging time, it can indicate that the battery is fully charged. You can stop charging at this time.
  • the embodiment of the present application also provides a charging method, which can increase the charging speed of the battery.
  • the battery charging process includes at least two constant current and constant voltage stages, and the method includes step S410.
  • This method can still use the traditional constant current and constant voltage charging process, that is, the charging voltage corresponding to the constant voltage phase can be equal to the charging cut-off voltage corresponding to the constant current phase.
  • the charging current corresponding to the constant current stage can be greater than the rated maximum charging current of the battery, because in the first constant current stage The charging current in the stage is larger, so the charging speed is faster, which can increase the charging speed of the battery as a whole.
  • the method can also use the constant voltage charging method with reduced float voltage in the embodiment of the present application, which can reduce the charging time in the constant voltage stage, and can perform constant voltage at a lower voltage, which is beneficial to improve the service life of the battery.
  • the method may include: in the constant current phase, charging the battery to a first voltage, where the first voltage is the charging cut-off voltage corresponding to the constant current phase; and responding to the voltage of the battery reaching the first voltage , Enter the constant voltage phase, charge the battery with a second voltage, wherein the second voltage is less than the first voltage.
  • the method of the embodiment of the present application may adopt the method embodiment described above, and therefore, the part that is not described in detail can refer to the previous method embodiment.
  • the embodiment of the present application also provides another charging method, which can increase the charging speed of the battery.
  • the charging process of the battery includes at least two constant current and constant voltage stages, wherein the constant current stages of the first N constant current and constant voltage stages correspond to the same charging current, and N is an integer greater than or equal to 2.
  • the method includes steps S510 to S520.
  • S510 In the constant current phase, charge the battery to a first voltage, where the first voltage is the charging cut-off voltage corresponding to the constant current phase.
  • the charging process of the battery includes at least two constant current and constant voltage stages.
  • constant current charging is performed with a charging current greater than the rated maximum charging current of the battery.
  • the charging currents corresponding to the N constant current phases may be equal, for example, the charging currents corresponding to the N constant current phases may all be 3C. Since the charging current in the constant current stage is relatively large, the charging speed can be increased.
  • the second voltage may also be greater than the first voltage, which is not limited in the embodiment of the present application.
  • the charging method of the embodiment of the present application can be applied to different electronic devices.
  • the charging current and charging cut-off voltage corresponding to the constant current stage, and the charging voltage and charging cut-off current corresponding to the constant voltage stage can be adjusted adaptively.
  • the charging device shown in FIG. 6 includes a charging management circuit 610, which is used to charge the battery to a first voltage in the constant current phase, and the first voltage is the charging cut-off voltage corresponding to the constant current phase.
  • the charging management circuit 610 is also configured to enter a constant voltage phase in response to the voltage of the battery reaching the first voltage, and charge the battery with a second voltage, wherein the second voltage is less than the first voltage. Voltage.
  • the battery charging process includes at least two constant current and constant voltage stages, and any constant current and constant voltage stage includes one constant current stage and one constant voltage stage.
  • the at least two constant current and constant voltage stages include: adjacent first constant current and constant voltage stages and second constant current and constant voltage stages, and the constant current stage in the second constant current and constant voltage stages corresponds to The charging current of is equal to the charging cut-off current corresponding to the constant voltage stage in the first constant current and constant voltage stage.
  • the charging currents corresponding to the constant current stages of the first N constant current and constant voltage stages in the at least two constant current and constant voltage stages are equal, and N is an integer greater than or equal to 2.
  • the at least two constant current and constant voltage stages include: a third constant current and constant voltage stage and a fourth constant current and constant voltage stage, and the fourth constant current and constant voltage stage is later than the third constant current and constant voltage stage.
  • the voltage difference between the charging cut-off voltage corresponding to the constant current stage in the third constant current and constant voltage stage and the charging voltage in the constant voltage stage in the third constant current and constant voltage stage is ⁇ V1
  • the voltage difference between the charge cut-off voltage corresponding to the constant current stage in the fourth constant current and constant voltage stage and the charging voltage of the constant voltage stage in the fourth constant current and constant voltage stage is ⁇ V2, ⁇ V1> ⁇ V2 .
  • the charge cut-off voltage corresponding to the constant current phase is greater than the rated voltage of the battery.
  • the constant current phase is the last constant current and constant voltage phase of the at least two constant current and constant voltage phases.
  • the charging current corresponding to the constant current phase is greater than the rated maximum charging current of the battery.
  • the constant current phase is the first constant current and constant voltage phase of the at least two constant current and constant voltage phases.
  • the charging device 700 shown in FIG. 7 can be used to charge a battery.
  • the charging process of the battery includes at least two constant current and constant voltage stages.
  • the charging device 700 includes a charging management circuit 710 for the first constant current and constant voltage stage.
  • the battery is charged with a constant current with a first current that is greater than the rated maximum charging current of the battery.
  • the charging device provided by the embodiment of the present application can charge the battery with a current greater than the rated maximum charging current in the first constant current stage, thereby improving the charging speed.
  • the charging device 800 shown in FIG. 8 can be used to charge a battery.
  • the charging process of the battery includes at least two constant current and constant voltage stages, wherein any constant current and constant voltage stage includes a constant current stage and a constant voltage stage.
  • the charging currents corresponding to the constant current phases in the first N constant current and constant voltage phases are equal, and N is an integer greater than or equal to 2.
  • the charging device 800 includes a charging management circuit 810, which can be used to perform the following operations: charging the battery to a first voltage in the constant current phase, the first voltage being the charging cut-off voltage corresponding to the constant current phase In the constant voltage phase, in response to the voltage of the battery reaching the first voltage, the battery is charged with a second voltage, the second voltage being less than or equal to the first voltage.
  • other constant current and constant voltage stages except for the first N constant current and constant voltage stages include: adjacent first constant current and constant voltage stages and second constant current In the constant voltage phase, the charging current corresponding to the constant current phase in the second constant current and constant voltage phase is equal to the charging cut-off current corresponding to the constant voltage phase in the first constant current and constant voltage phase.
  • the charging current required by the multi-cell battery is 1/M of the charging current required by the single-cell battery.
  • the charging speed of the multi-cell battery is M times that of the single-cell battery. Therefore, in the case of using the same charging current, multiple battery cells can greatly increase the charging speed of the battery.
  • the multi-segment cells may be cells with the same or similar specifications and parameters. Cells with the same or similar specifications are convenient for unified management, and selecting cells with the same or similar specifications and parameters can increase the number of cells. The overall performance and service life of the battery cell. Alternatively, the specifications and parameters of the multiple battery cells may be different or inconsistent. During the charging and/or power supply process, the voltage between the multiple battery cells can be balanced by the equalization circuit.
  • an equalization circuit can also be used to balance the voltage of the multi-cell cells.
  • a step-down circuit can be used to step down the voltage of the multiple battery cells and then the device to be charged can be used for system power supply, or a single battery cell can also be used for system power supply.
  • a single battery cell can also be used for system power supply.
  • you need to supply power to the system you can directly divide a path to supply power to the system.
  • the multi-cell battery can be balanced by the balance circuit.
  • the equalization circuit may be a Cuk circuit.
  • the equalization circuit may be an equalization circuit based on an RLC series circuit, or an equalization circuit based on a buck-boost (Buck-Boost).
  • the battery when the battery includes multiple cells, in the constant current phase, it is necessary to monitor whether each cell reaches the charging cut-off voltage corresponding to the phase. When the voltage of any cell reaches the charging cut-off voltage corresponding to this stage, it enters the constant voltage stage.
  • the charging path of the cells that have been charged to the cut-off voltage can be disconnected, and the cells that are not fully charged are continued to be charged until the voltage of all the cells reaches the charge cut-off voltage, and then Enter the constant pressure stage.
  • the solution in the embodiment of the present application can be applied in a wired charging process or a wireless charging process, which is not specifically limited in the embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a charging system provided by an embodiment of the present application.
  • the charging system includes a power supply device 10, a battery management circuit 20, and a battery 30.
  • the battery management circuit 20 can be used to manage the battery 30.
  • the battery management circuit 20 can be understood as the charging management circuit described above, and can be used to manage the charging process of the battery.
  • the battery management circuit 20 can manage the charging process of the battery 30, such as selecting the charging channel, controlling the charging voltage and/or charging current, etc.; as another example, the battery management circuit 20 can perform the charging process on the battery 30 Management, such as balancing the voltage of the battery cells in the battery 30.
  • the battery management circuit 20 may include a first charging channel 21 and a communication control circuit 23.
  • the first charging channel 21 may be used to receive the charging voltage and/or charging current provided by the power supply device 10 and load the charging voltage and/or charging current on both ends of the battery 30 to charge the battery 30.
  • the first charging channel 21 may be, for example, a wire, and some other circuit devices that are not related to the conversion of the charging voltage and/or the charging current may also be provided on the first charging channel 21.
  • the power management circuit 20 includes a first charging channel 21 and a second charging channel, and a switching device for switching between the charging channels may be provided on the first charging channel 21 (see the description of FIG. 10 for details).
  • the power supply device 10 may be the power supply device with adjustable output voltage described above, but the embodiment of the present application does not specifically limit the type of the power supply device 20.
  • the power supply device 20 may be a device dedicated to charging, such as an adapter and a power bank, or may be a computer and other devices capable of providing power and data services.
  • the first charging channel 21 may be a direct charging channel, and the charging voltage and/or charging current provided by the power adapter 10 may be directly loaded on both ends of the battery 30.
  • the embodiment of the present application introduces a control circuit with a communication function, that is, the communication control circuit 23, into the battery management circuit 20.
  • the communication control circuit 23 can maintain communication with the power supply device 10 during the direct charging process to form a closed-loop feedback mechanism, so that the power supply device 10 can learn the status of the battery in real time, thereby continuously adjusting the charging voltage and the charging voltage injected into the first charging channel. /Or the charging current to ensure that the charging voltage and/or the charging current provided by the power supply device 10 match the current charging stage of the battery 30.
  • the communication control circuit 23 may communicate with the power supply device 10 when the voltage of the battery 30 reaches the charging cut-off voltage corresponding to the constant current stage, so that the power supply device 10 converts the charging process of the battery 30 from constant current charging to constant current charging. Pressure charging.
  • the communication control circuit 23 can communicate with the power supply device 10 when the charging current of the battery 30 reaches the charging cut-off current corresponding to the constant voltage stage, so that the power supply device 10 converts the charging process of the battery 30 from constant voltage charging Charge for constant current.
  • the battery management circuit provided in the embodiment of the present application can directly charge the battery.
  • the battery management circuit provided in the embodiment of the present application is a battery management circuit that supports a direct charge architecture. In the direct charge architecture, there is no need for a direct charge channel.
  • the conversion circuit is provided to reduce the heat generation of the device to be charged during the charging process.
  • the battery management circuit 20 may further include a second charging channel 24.
  • a boost circuit 25 is provided on the second charging channel 24.
  • the boost circuit 25 can be used to receive the initial voltage provided by the power supply device 10, boost the initial voltage to a target voltage, and provide the battery based on the target voltage.
  • the communication control circuit 23 can also be used to control the switching between the first charging channel 21 and the second charging channel 24.
  • the second charging channel 24 can be compatible with common power supply equipment to charge the battery 30, which solves the problem that common power supply equipment cannot charge multiple batteries.
  • the battery management circuit 20 may also include an equalization circuit 22, referring to the above description, the equalization circuit 22 can be used to balance the multiple cells during the charging process and/or discharging process of the battery The voltage of the core.
  • the embodiment of the present application does not limit the specific form of the boost circuit 25.
  • a Boost boost circuit can be used, or a charge pump can be used for boosting.
  • the second charging channel 24 may adopt a traditional charging channel design method, that is, a conversion circuit (such as a charging IC) is provided on the second charging channel 24.
  • the conversion circuit can perform constant voltage and constant current control on the charging process of the battery 30, and adjust the initial voltage provided by the power supply device 10 according to actual needs, such as step-up or step-down.
  • the embodiment of the present application can use the boost function of the conversion circuit to boost the initial voltage provided by the power supply device 10 to the target voltage.
  • the communication control circuit 23 can switch between the first charging channel 21 and the second charging channel 24 through a switching device. Specifically, as shown in FIG. 10, a switching tube Q5 may be provided on the first charging channel 21, and when the communication control circuit 23 controls the switching tube Q5 to turn on, the first charging channel 21 works to directly charge the battery 30; When the communication control circuit 23 controls the switching tube Q5 to be turned off, the second charging channel 24 works, and the second charging channel 24 is used to charge the battery 30.
  • a circuit or device for step-down can also be provided on the second charging channel 24, and when the voltage provided by the power supply device is higher than the required voltage of the battery 30, the step-down process can be performed.
  • the circuit or module included in the second charging channel 24 is not limited.
  • Traditional wireless charging technology generally connects the power supply device (such as an adapter) with a wireless charging device (such as a wireless charging base), and wirelessly transmits the output power of the power supply device (such as electromagnetic waves) to the waiting device through the wireless charging device. Charging equipment, charging equipment to be charged wirelessly.
  • wireless charging methods are mainly divided into three methods: magnetic coupling (or electromagnetic induction), magnetic resonance, and radio waves.
  • mainstream wireless charging standards include QI standard, power matters alliance (PMA) standard, and wireless power alliance (alliance for wireless power, A4WP). Both the QI standard and the PMA standard use magnetic coupling for wireless charging.
  • the A4WP standard uses magnetic resonance for wireless charging.
  • the wireless charging system includes a power supply device 110, a wireless charging signal transmitting device 120, and a charging control device 130.
  • the transmitting device 120 may be, for example, a wireless charging base
  • the charging control device 130 may refer to the device to be charged, such as It can be a terminal.
  • the output voltage and output current of the power supply device 110 are transmitted to the transmitting device 120.
  • the transmitting device 120 may convert the output voltage and output current of the power supply device 110 into a wireless charging signal (for example, an electromagnetic signal) through an internal wireless transmitting circuit 121 for transmission.
  • a wireless charging signal for example, an electromagnetic signal
  • the wireless transmitting circuit 121 can convert the output current of the power supply device 110 into alternating current, and convert the alternating current into a wireless charging signal through a transmitting coil or a transmitting antenna.
  • FIG. 11 only exemplarily shows a schematic structural diagram of the wireless charging system, but the embodiment of the present application is not limited thereto.
  • the transmitting device 120 may also be called a wireless charging signal transmitting device, and the charging control device 130 may also be called a wireless charging signal receiving device.
  • the wireless charging signal receiving device may be, for example, a chip with a wireless charging signal receiving function, which can receive the wireless charging signal transmitted by the transmitting device 120; the wireless charging signal receiving device may also be a device to be charged.
  • the charging control device 130 may receive the wireless charging signal transmitted by the wireless transmitting circuit 121 through the wireless receiving circuit 131, and convert the wireless charging signal into the output voltage and output current of the wireless receiving circuit 131.
  • the wireless receiving circuit 131 may convert the wireless charging signal transmitted by the wireless transmitting circuit 121 into alternating current through a receiving coil or a receiving antenna, and perform operations such as rectification and/or filtering on the alternating current to convert the alternating current into the wireless receiving circuit 131 The output voltage and output current.
  • the transmitting device 120 and the charging control device 130 negotiate the transmission power of the wireless transmitting circuit 121 in advance. Assuming that the power negotiated between the transmitting device 120 and the charging control device 130 is 5W, the output voltage and output current of the wireless receiving circuit 131 are generally 5V and 1A. Assuming that the power negotiated between the transmitting device 120 and the charging control device 130 is 10.8W, the output voltage and output current of the wireless receiving circuit 131 are generally 9V and 1.2A.
  • the output voltage of the wireless receiving circuit 131 is not suitable to be directly applied to both ends of the battery 133, it is necessary to perform constant voltage and/or constant current control through the conversion circuit 132 in the charging control device 130 to obtain the charging control device 130.
  • the expected charging voltage and/or charging current of the battery 133 is not suitable to be directly applied to both ends of the battery 133, it is necessary to perform constant voltage and/or constant current control through the conversion circuit 132 in the charging control device 130 to obtain the charging control device 130.
  • the expected charging voltage and/or charging current of the battery 133 is necessary to perform constant voltage and/or constant current control through the conversion circuit 132 in the charging control device 130 to obtain the charging control device 130.
  • the conversion circuit 132 may be used to convert the output voltage of the wireless receiving circuit 131 so that the output voltage and/or output current of the conversion circuit 132 meet the expected charging voltage and/or charging current requirements of the battery 133.
  • the conversion circuit 132 may be a charging integrated circuit (integrated circuit, IC), or may be a power management circuit. During the charging process of the battery 133, the conversion circuit 132 can be used to manage the charging voltage and/or charging current of the battery 133.
  • the conversion circuit 132 may include a voltage feedback function and/or a current feedback function to realize the management of the charging voltage and/or charging current of the battery 133.
  • the required charging voltage and/or charging current of the battery may be constantly changing in different charging stages.
  • the output voltage and/or output current of the wireless receiving circuit may need to be continuously adjusted to meet the current charging requirements of the battery. For example, in the constant current charging phase of the battery, during the charging process, the charging current of the battery remains unchanged, but the voltage of the battery is constantly increasing, so the charging voltage required by the battery is also constantly increasing. As the charging voltage required by the battery continues to increase, the charging power required by the battery is also increasing. When the charging power required by the battery increases, the wireless receiving circuit needs to increase the output power to meet the charging demand of the battery.
  • the communication control circuit may transmit instruction information to the transmitting device to instruct the transmitting device to increase the transmitting power to increase the output power of the wireless receiving circuit. Therefore, during the charging process, the communication control circuit can communicate with the transmitting device, so that the output power of the wireless receiving circuit can meet the charging requirements of the battery in different charging stages.
  • the embodiment of the present application does not specifically limit the communication mode between the communication control circuit 235 and the transmitting device 220.
  • the communication control circuit 235 and the transmitting device 220 may adopt Bluetooth (bluetooth) communication, wireless fidelity (Wi-Fi) communication, or backscatter modulation (or power Load modulation method) communication, short-range wireless communication based on high carrier frequency, optical communication, ultrasonic communication, ultra-wideband communication or mobile communication and other wireless communication methods for communication.
  • the short-range wireless communication module based on a high carrier frequency may include an integrated circuit (IC) chip with an extremely high frequency (EHF) antenna packaged inside.
  • the high carrier frequency may be 60 GHz.
  • the optical communication may use an optical communication module for communication.
  • the optical communication module may include an infrared communication module, and the infrared communication module may use infrared to transmit information.
  • mobile communication may be communication using a mobile communication module.
  • the mobile communication module can use mobile communication protocols such as 5G communication protocol, 4G communication protocol or 3G communication protocol for information transmission.
  • the reliability of communication can be improved, and the voltage ripple caused by signal coupling communication can be avoided. Wave affects the voltage processing process of the step-down circuit.
  • the communication control circuit 235 and the transmitting device 220 may also communicate in a wired communication manner of a data interface.
  • Fig. 12 is another schematic diagram of a charging system provided by an embodiment of the present application.
  • the wireless charging signal transmitting device 220 may further include a charging interface 223, and the charging interface 223 may be used to connect to an external power supply device 210.
  • the wireless transmitting circuit 221 can also be used to generate a wireless charging signal according to the output voltage and output current of the power supply device 210.
  • the first communication control circuit 222 can also adjust the amount of power that the wireless transmission circuit 221 extracts from the output power of the power supply device 210 during the wireless charging process to adjust the transmission power of the wireless transmission circuit 221 so that the wireless transmission circuit transmits
  • the power can meet the charging demand of the battery.
  • the power supply device 210 can also directly output a relatively large fixed power (for example, 40W), and the first communication control circuit 222 can directly adjust the amount of power drawn by the wireless transmitting circuit 221 from the fixed power provided by the power supply device 210.
  • the output power of the power supply device 210 may be fixed.
  • the power supply device 210 can directly output a relatively large fixed power (such as 40W), and the power supply device 210 can provide the wireless charging device 220 with output voltage and output current according to the fixed output power.
  • the first communication control circuit 222 may extract a certain amount of power from the fixed power of the power supply device for wireless charging according to actual needs. That is to say, the embodiment of the present application allocates the control right of the transmission power adjustment of the wireless transmission circuit 221 to the first communication control circuit 222, and the first communication control circuit 222 can receive the instruction information sent by the second communication control circuit 235.
  • the transmission power of the wireless transmission circuit 221 is adjusted immediately to meet the current charging requirements of the battery, which has the advantages of fast adjustment speed and high efficiency.
  • the embodiment of the present application does not specifically limit the manner in which the first communication control circuit 222 extracts the amount of power from the maximum output power provided by the power supply device 210.
  • a voltage conversion circuit 224 may be provided inside the transmitting device 220 of the wireless charging signal, and the voltage conversion circuit 224 may be connected to the transmitting coil or the transmitting antenna for adjusting the power received by the transmitting coil or the transmitting antenna.
  • the voltage conversion circuit 224 may include, for example, a pulse width modulation (PWM) controller and a switch unit.
  • PWM pulse width modulation
  • the first communication control circuit 222 can adjust the transmission power of the wireless transmission circuit 221 by adjusting the duty cycle of the control signal sent by the PWM controller.
  • the embodiment of the present application does not specifically limit the type of the power supply device 210.
  • the power supply device 210 may be a device such as an adapter, a power bank, a car charger, or a computer.
  • the charging interface 223 may be a USB interface.
  • the USB interface may be, for example, a USB 2.0 interface, a micro USB interface, or a USB TYPE-C interface.
  • the charging interface 223 may also be a lightning interface, or any other type of parallel port and/or serial port that can be used for charging.
  • the embodiment of the present application does not specifically limit the communication mode between the first communication control circuit 222 and the power supply device 210.
  • the first communication control circuit 222 may be connected to the power supply device 210 through a communication interface other than the charging interface, and communicate with the power supply device 210 through the communication interface.
  • the first communication control circuit 222 may communicate with the power supply device 210 in a wireless manner.
  • the first communication control circuit 222 may perform near field communication (NFC) with the power supply device 210.
  • NFC near field communication
  • the first communication control circuit 222 can communicate with the power supply device 210 through the charging interface 223 without setting an additional communication interface or other wireless communication module, which can simplify the implementation of the wireless charging device 220.
  • the charging interface 223 is a USB interface, and the first communication control circuit 222 can communicate with the power supply device 210 based on the data lines (such as D+ and/or D- lines) in the USB interface.
  • the charging interface 223 may be a USB interface (such as a USB TYPE-C interface) supporting a power delivery (PD) communication protocol, and the first communication control circuit 222 and the power supply device 210 may communicate based on the PD communication protocol.
  • PD power delivery
  • adjusting the transmission power of the wireless charging signal by the first communication control circuit 222 may mean that the first communication control circuit 222 adjusts the transmission power of the wireless charging signal by adjusting the input voltage and/or input current of the wireless transmission circuit 221.
  • the first communication control circuit may increase the transmission power of the wireless transmission circuit by increasing the input voltage of the wireless transmission circuit.
  • the device to be charged 230 further includes a first charging channel 233, through which the output voltage and/or output current of the wireless receiving circuit 231 can be provided to the battery 232, 232 for charging.
  • a voltage conversion circuit 239 may be further provided on the first charging channel 233, and the input end of the voltage conversion circuit 239 is electrically connected to the output end of the wireless receiving circuit 231, and is used to perform a constant voltage on the output voltage of the wireless receiving circuit 231. And/or constant current control to charge the battery 232 so that the output voltage and/or output current of the voltage conversion circuit 239 matches the current required charging voltage and/or charging current of the battery.
  • increasing the transmission power of the wireless transmission circuit 221 may refer to increasing the transmission voltage of the wireless transmission circuit 221, and increasing the transmission voltage of the wireless transmission circuit 221 may be achieved by increasing the output voltage of the voltage conversion circuit 224.
  • the first communication control circuit 222 receives the instruction to increase the transmission power sent by the second communication control circuit 235, it can increase the transmission power of the wireless transmission circuit 221 by increasing the output voltage of the voltage conversion circuit 224.
  • the embodiment of the present application does not specifically limit the manner in which the second communication control circuit 235 sends instruction information to the first communication control circuit 222.
  • the second communication control circuit 235 may periodically send instruction information to the first communication control circuit 222.
  • the second communication control circuit 235 may send the instruction information to the first communication control circuit 222 only when the voltage of the battery reaches the charge cut-off voltage or the charging current of the battery reaches the charge cut-off current.
  • the wireless charging signal receiving device may further include a detection circuit 234 that can detect the voltage and/or charging current of the battery 232, and the second communication control circuit 235 can be based on the voltage and/or charging current of the battery 232 , Sending instruction information to the first communication control circuit 222 to instruct the first communication control circuit 222 to adjust the output voltage and output current corresponding to the transmission power of the wireless transmission circuit 221.
  • the transmit power of the wireless charging signal needs to be increased to meet the current charging requirements of the battery.
  • the charging current of the battery may continue to decrease, and the charging power required by the battery will also decrease accordingly.
  • the transmit power of the wireless charging signal needs to be reduced to meet the current charging requirements of the battery.
  • the first communication control circuit 222 can adjust the transmission power of the wireless charging signal according to the instruction information. It can mean that the first communication control circuit 222 adjusts the transmission power of the wireless charging signal so that the transmission power of the wireless charging signal is equal to the current required charging voltage of the battery. And/or the charging current.
  • the matching of the transmission power of the wireless transmission circuit 221 with the charging voltage and/or charging current currently required by the battery 232 may refer to the configuration of the transmission power of the wireless charging signal by the first communication control circuit 222 such that the output voltage of the first charging channel 233 And/or the output current matches the charging voltage and/or charging current currently required by the battery 232 (or, the configuration of the transmission power of the wireless charging signal by the first communication control circuit 222 makes the output voltage of the first charging channel 233 and/or Or the output current meets the charging requirements of the battery 232 (including the requirements of the battery 232 for charging voltage and/or charging current)).
  • the output voltage and/or output current of the first charging channel 232 matches the charging voltage and/or charging current currently required by the battery 232” includes: the first charging channel 232
  • the voltage value and/or current value of the output direct current is equal to the charging voltage value and/or charging current value required by the battery 232 or within a floating preset range (for example, the voltage value fluctuates from 100 mV to 200 mV, the current value Floating from 0.001A to 0.005A, etc.).
  • the second communication control circuit 235 described above performs wireless communication with the first communication control circuit 222 according to the voltage and/or charging current of the battery 232 detected by the detection circuit 234, so that the first communication control circuit 222 can perform wireless communication according to the voltage and/or charging current of the battery 232
  • the charging current and adjusting the transmission power of the wireless transmission circuit 221 may include: during the constant current charging phase of the battery 232, the second communication control circuit 235 performs wireless communication with the first communication control circuit 222 according to the detected voltage of the battery, so as to A communication control circuit 222 adjusts the transmission power of the wireless transmission circuit 221 so that the output voltage of the first charging channel 233 matches the charging voltage required by the battery in the constant current charging stage (or, so that the output voltage of the first charging channel 233 meets The battery 232 needs charging voltage during the constant current charging stage).
  • Fig. 13 is another example of a charging system provided by an embodiment of the present application.
  • the wireless charging signal transmitting device 220 corresponding to the embodiment of FIG. 13 does not obtain electric energy from the power supply device 210, but directly converts the externally input AC power (such as commercial power) into the above-mentioned wireless charging signal.
  • the wireless charging signal transmitting device 220 may further include a voltage conversion circuit 224 and a power supply circuit 225.
  • the power supply circuit 225 can be used to receive external AC power (such as commercial power), and generate the output voltage and output current of the power supply circuit 225 according to the AC power.
  • the power supply circuit 225 may rectify and/or filter the alternating current to obtain direct current or pulsating direct current, and transmit the direct current or pulsating direct current to the voltage conversion circuit 224.
  • the voltage conversion circuit 224 can be used to receive the output voltage of the power supply circuit 225 and convert the output voltage of the power supply circuit 225 to obtain the output voltage and output current of the voltage conversion circuit 224.
  • the wireless transmission circuit 221 can also be used to generate a wireless charging signal according to the output voltage and output current of the voltage conversion circuit 224.
  • the embodiment of the present application integrates a function similar to an adapter inside the wireless charging signal transmitting device 220, so that the wireless charging signal transmitting device 220 does not need to obtain power from an external power supply device, which improves the integration of the wireless charging signal transmitting device 220 And reduce the number of devices required to realize the wireless charging process.
  • the wireless charging signal transmitting device 220 may support the first wireless charging mode and the second wireless charging mode, and the wireless charging signal transmitting device 220 charges the device to be charged in the first wireless charging mode.
  • the transmitting device 220 which is faster than the wireless charging signal, charges the device to be charged in the second wireless charging mode.
  • the wireless charging signal transmitting device 220 working in the first wireless charging mode is filled with devices to be charged with the same capacity The battery time is shorter.
  • the charging method provided in the embodiment of the present application may use the first charging mode for charging, and may also use the second charging mode for charging, which is not limited in the embodiment of the present application.
  • the second wireless charging mode may be a so-called normal wireless charging mode, for example, may be a traditional wireless charging mode based on the QI standard, the PMA standard, or the A4WP standard.
  • the first wireless charging mode may be a fast wireless charging mode.
  • the normal wireless charging mode may refer to a wireless charging mode in which the transmission power of the wireless charging signal transmitter 220 is relatively small (usually less than 15W, and the commonly used transmission power is 5W or 10W). In the normal wireless charging mode, you want to fully charge it. A large-capacity battery (such as a 3000 mAh battery) usually takes several hours.
  • the fast wireless charging mode the transmission power of the wireless charging signal transmitter 220 is relatively large (usually greater than or equal to 15W ).
  • the wireless charging signal transmitting device 220 in the fast wireless charging mode requires a charging time to fully charge a battery of the same capacity, which can be significantly shortened and the charging speed is faster.
  • the device to be charged 230 further includes: a second charging channel 236.
  • the second charging channel 236 may be a wire.
  • the second charging channel 236 can be provided with a conversion circuit 237 for voltage control of the direct current output by the wireless receiving circuit 231 to obtain the output voltage and output current of the second charging channel 236 to charge the battery 232.
  • the conversion circuit 237 can be used in a step-down circuit, and output constant current and/or constant voltage electric energy. In other words, the conversion circuit 237 can be used to perform constant voltage and/or constant current control on the battery charging process.
  • the wireless transmitting circuit 221 can use a constant transmitting power to transmit an electromagnetic signal. After the wireless receiving circuit 231 receives the electromagnetic signal, it is processed by the conversion circuit 237 into a voltage sum that meets the charging requirements of the battery 232. The current is also input to the battery 232 to charge the battery 232. It should be understood that, in some embodiments, the constant transmission power does not necessarily mean that the transmission power remains completely unchanged, and it can vary within a certain range, for example, the transmission power is 7.5W and fluctuates 0.5W.
  • the charging method for charging the battery 232 through the first charging channel 233 is the first wireless charging mode
  • the charging method for charging the battery 232 through the second charging channel 236 is called the second wireless charging mode.
  • the wireless charging signal transmitter and the device to be charged can determine whether to use the first wireless charging mode or the second wireless charging mode to charge the battery 232 through handshake communication.
  • the maximum transmitting power of the wireless transmitting circuit 221 when the device to be charged is charged in the first wireless charging mode, the maximum transmitting power of the wireless transmitting circuit 221 may be the first transmitting power value.
  • the maximum transmission power of the wireless transmission circuit 221 may be the second transmission power value.
  • the first transmission power value is greater than the second transmission power value, and thus, the charging speed of the device to be charged in the first wireless charging mode is greater than the second wireless charging mode.
  • the second communication control circuit 235 can also be used to control the switching between the first charging channel 233 and the second charging channel 236.
  • a switch 238 can be provided on the first charging channel 233, and the second communication control circuit 235 can control the first charging channel 233 and the second charging channel 236 by controlling the on and off of the switch 238. Switch between.
  • the wireless charging signal transmitting device 220 may include a first wireless charging mode and a second wireless charging mode, and the wireless charging signal transmitting device 220 is to be charged in the first wireless charging mode.
  • the charging speed of 230 is faster than that of the wireless charging signal transmitting device 220 in the second wireless charging mode.
  • the device to be charged 230 can control the operation of the first charging channel 233; when the transmitting device 220 of the wireless charging signal uses the second wireless When the charging mode is that the battery in the device to be charged 230 is charged, the device to be charged 230 can control the second charging channel 236 to work.
  • the second communication control circuit 235 can switch between the first charging channel 233 and the second charging channel 236 according to the charging mode.
  • the second communication control circuit 235 controls the voltage conversion circuit 239 on the first charging channel 233 to work.
  • the second communication control circuit 235 controls the conversion circuit 237 on the second charging channel 236 to work.
  • the wireless charging signal transmitting device 220 may communicate with the device to be charged 230 to negotiate a charging mode between the wireless charging signal transmitting device 220 and the device to be charged 230.
  • the first communication control circuit 222 in the wireless charging signal transmitting device 220 and the second communication control circuit 235 in the device to be charged 230 can also exchange many other communication information.
  • the first communication control circuit 222 and the second communication control circuit 235 can exchange information for safety protection, anomaly detection or fault handling, such as the temperature information of the battery 232, enter the overvoltage protection or overcurrent Information such as protection indication information, power transmission efficiency information (the power transmission efficiency information can be used to indicate the power transmission efficiency between the wireless transmitting circuit 221 and the wireless receiving circuit 231).
  • the communication between the second communication control circuit 235 and the first communication control circuit 222 may be one-way communication or two-way communication, which is not specifically limited in the embodiment of the present application.
  • the function of the second communication control circuit can be implemented by the application processor of the device to be charged 230, thus, the hardware cost can be saved.
  • it can also be implemented by an independent control chip, which can improve the reliability of control.
  • the embodiment of the present application may integrate the wireless receiving circuit 232 and the voltage conversion circuit 239 in the same wireless charging chip, which can improve the integration of the device to be charged and simplify the implementation of the device to be charged.
  • the functions of traditional wireless charging chips can be expanded to support charging management functions.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)), etc.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

提供一种充电方法及装置,该方法包括:在恒流阶段,将电池充电至第一电压,所述第一电压为所述恒流阶段对应的充电截止电压;响应于所述电池的电压达到所述第一电压,进入恒压阶段,以第二电压对所述电池进行充电,其中,所述第二电压小于所述第一电压。上述技术方案,恒压阶段对应的充电电压小于恒流阶段对应的充电截止电压,从而能够采用较小的电压进行恒压充电;另外,恒压阶段的充电电压减小后,也能够减小恒压充电的充电时间,减小电池的恒压充电过程,有利于提高电池的使用寿命。

Description

充电方法和充电装置 技术领域
本申请涉及充电领域,更为具体地,涉及一种充电方法和充电装置。
背景技术
目前,待充电设备(例如智能手机)越来越受到消费者的青睐,但是待充电设备耗电量大,需要经常充电。
应用较多的充电模式是恒压恒流充电模式,这种方式虽然能够提高充电速度,但是该方式在高压充电的时间较长,长期使用过程中,如果高压时间过长会影响到电池的使用寿命。因此,如何降低电池的高压充电时间是快充中需要考虑的因素。
发明内容
本申请提供一种充电方法和充电装置,能够降低电池的高压充电时间。
第一方面,提供一种充电方法,包括:在恒流阶段,将电池充电至第一电压,所述第一电压为所述恒流阶段对应的充电截止电压;响应于所述电池的电压达到所述第一电压,进入恒压阶段,以第二电压对所述电池进行充电,其中,所述第二电压小于所述第一电压。
第二方面,提供一种充电方法,电池的充电过程包括至少两个恒流恒压阶段,其中,任一个恒流恒压阶段均包括一个恒流阶段和一个恒压阶段,且前N个恒流恒压阶段中的恒流阶段对应的充电电流相等,N为大于等于2的整数,该方法,该方法包括:在恒流阶段,将电池充电至第一电压,所述第一电压为所述恒流阶段对应的充电截止电压;在恒压阶段,响应于所述电池的电压达到所述第一电压,以第二电压对所述电池进行充电,所述第二电压小于或等于所述第一电压。
第三方面,提供一种充电装置,包括充电管理电路,用于执行以下操作:在恒流阶段,将电池充电至第一电压,所述第一电压为所述恒流阶段对应的充电截止电压;响应于所述电池的电压达到所述第一电压,进入恒压阶段,以第二电压对所述电池进行充电,其中,所述第二电压小于所述第一电压。
第四方面,提供一种充电装置,电池的充电过程包括至少两个恒流恒压阶段,其中,任一个恒流恒压阶段均包括一个恒流阶段和一个恒压阶段,且前N个恒流恒压阶段中的恒流阶段对应的充电电流相等,N为大于等于2的整数,该充电装置包括充电管理电路,用于执行以下操作:在恒流阶段,将电池充电至第一电压,所述第一电压为所述恒流阶段对应的充电截止电压;在恒压阶段,响应于所述电池的电压达到所述第一电压,以第二电压对所述电池进行充电,所述第二电压小于或等于所述第一电压。
本申请提供的技术方案,在恒流恒压充电模式中,恒压阶段并不是直接采用恒流阶段对应的充电截止电压,而是采用小于充电截止电压的电压进行充电,这样恒压阶段的充电电压就比较小,且恒压阶段不需要将电池的电压充电至较大的充电截止电压,仅需充电至小于充电截止电压的电压,这样能够减小电池的恒压充电过程,有利于提高电池的使用寿命。
附图说明
图1是一种一种恒流恒压充电方式的示意图。
图2是本申请一个实施例提供的充电方法的示意性流程图。
图3是本申请一个实施例提供的恒流恒压充电方法的示意图。
图4是本申请另一实施例提供的充电方法的示意性流程图。
图5是本申请又一实施例提供的充电方法的示意性流程图。
图6是本申请一实施例提供的充电装置的示意性结构图。
图7是本申请另一实施例提供的充电装置的示意性结构图。
图8是本申请又一实施例提供的充电装置的示意性结构图。
图9是本申请一实施例提供的有线充电系统的示意性结构图。
图10是本申请又一实施例提供的有线充电系统的示意性结构图。
图11是本申请一实施例提供的无线充电系统的示意性结构图。
图12是本申请另一实施例提供的无线充电系统的示意性结构图。
图13是本申请又一实施例提供的无线充电系统的示意性结构图。
图14是本申请又一实施例提供的无线充电系统的示意性结构图。
具体实施方式
随着电子设备的不断发展,越来越多的电子设备都需要进行充电,并且用户对电子设备的充电速度要求也越来越高,希望得到越来越快的充电速度,以节省电子设备的充电时间。
目前,常用的快速充电模式为恒流恒压(constant current constant voltage,CCCV)充电模式。恒流恒压充电模式可以包括一个恒流恒压阶段,也可以包括多个恒流恒压阶段。
本申请实施例提及的一个恒流恒压阶段可以包括一个恒流阶段和一个恒压阶段。当电池在一个恒流恒压阶段中的恒流阶段被充电至该恒流阶段对应的充电截止电压后,进入该恒流恒压阶段中的恒压阶段。当电池在一个恒流恒压阶段中的恒压阶段被充电至该恒压阶段对应的充电截止电流后,进入下一个恒流恒压阶段。
对于多个恒流恒压阶段,可以设置多个恒流阶段对应的充电截止电压和多个恒压阶段对应的充电截止电流。该多个充电截止电压可以相等,也可以以不相等;该多个充电截止电流可以相等,也可以不相等。
对于一个恒流恒压阶段来说,该充电过程例如可以为:在恒流阶段,先以某一电流对电池进行恒流充电,直至充电至某一截止电压,该截止电压例如可以为4.2V;然后进入恒压阶段,再以该截止电压(如4.2V)充电到电流减小到很小值,例如为充电截止电流(0.01C~0.1C)。
图1示出了包括两个恒流恒压阶段的充电过程示意图。这两个恒流恒压阶段分别为恒流恒压阶段M和恒流恒压阶段N。恒流恒压阶段M可以包括恒流阶段a和恒压阶段b,恒流恒压阶段N可以包括恒流阶段c和恒压阶段d。其中,可以为恒流阶段a设置对应的截止电压a,如V1,为恒压阶段b设置对应的截止电流b,为恒流阶段c设置对应的截止电压c,为恒压阶段d设置对应的截止电流d。
当电池的电压和/或温度满足一定条件后,电池可以进入恒压恒流充电阶段,例如进入恒流恒压阶段M。在恒流阶段a,可以以充电电流I1对电池进行充电。在恒流充电过程中,电池的电压逐渐上升,当电池的电压达到截止电压a之后,可以进入恒压阶段b。在恒压阶段b,可以以截止电压a对电池进行恒压充电。在恒压充电过程中,电池的电压逐渐接近于截止电压a,电池的充电电流不断减小,当电池的充电电流达到截止电流b之后,可以进入下一个恒流恒压充电阶段,即进入恒流恒压阶段N。恒流恒压阶段N的充电过程与恒流恒压阶段M的充电过程类似。如在恒流阶段c,可以以截止电流b对电池进行恒流充电,使得电池的电压达到截止电压c,然后进入恒压阶段d。在恒压阶段d,可以以截止电压c对电池进行恒压充电,使得充电电流达到截止电流d。
在恒流阶段,在充电电流较大的情况下(比如3C),由于电池内部阻抗的存在,会导致电池的浮压很大,最终显示的截止电压可能远大于电池的实际电压,这样在恒压阶段需要将电池的电压从实际电压充电到截止电压,这会导致恒压充电时间会非常长。因为恒压充电是以高电压进行充电,在长期使用过程中,如果电池在高压充电的时间过长,会导致电池长时间处于高压状态,会加速电池的衰减,影响到电池的使用寿命。因此,如何降低 电池的高电压充电时间是后续快充中需要考虑的因素。
因此,本申请实施例提供了一种充电方法,能够在提高充电速度的同时,保证电池的使用寿命。
本申请实施例的方法可以应用在待充电设备中,为待充电设备进行充电。待充电设备包括但不限于:被设置成经由有线线路连接(如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(amplitude modulation-frequency modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。在某些实施例中,待充电设备可指移动终端是设备或手持终端设备,如手机、pad等。在某些实施例中,本申请实施例提及的待充电设备可以是指芯片系统,在该实施例中,待充电设备的电池可以属于或也可以不属于该芯片系统。使用寿命。
另外,待充电设备还可以包括其他有充电需求的电子设备,例如手机、移动电源(如充电宝、旅充等)、电动汽车、笔记本电脑、无人机、平板电脑、电子书、电子烟、智能电子设备和小型电子产品等。智能电子设备例如可以包括手表、手环、智能眼镜和扫地机器人等。小型电子产品例如可以包括无线耳机、蓝牙音响、电动牙刷和可充电无线鼠标等。
如图2所示,本申请实施例提供的方法可以包括步骤S201-S202。
S201、在恒流阶段,将电池充电至第一电压,该第一电压为恒流阶段对应的充电截止电压。
S202、响应于电池的电压达到第一电压,进入恒压阶段,以第二电压对电池进行充电,其中,第二电压小于第一电压。
该恒流阶段和恒压阶段为相邻的充电阶段,且该恒流阶段和恒压阶段形成一个恒流恒压阶段。
根据上文的描述,在恒流阶段,由于电池阻抗的存在,恒流阶段的充电截止电压可能大于电池的实际电压,我们可以将充电截止电压与电池实际电压之间的电压差称为浮压。浮压越大,会导致恒压阶段的充电时间越长。
本申请实施例提供的技术方案,在充电过程中,当电池的充电阶段从恒流阶段进入恒压阶段时,恒压阶段对应的充电电压并不是直接采用恒流阶段对应的充电截止电压,而是采用小于充电截止电压的电压,即降浮压之后的电压进行恒压充电。这样,在恒压阶段,能够以较低的电压进行恒压,减少了相对高压充电。其次,恒压阶段只需将电池的电压从第一电压(即实际电压)充电至第二电压(即该阶段对应的充电电压),而无需将电池的电压从实际电压充电至恒流阶段对应的充电截止电压,从而能够减小电池的恒压充电时间,能够减慢电池的衰减速度,有利于提高电池的使用寿命。
电池的充电过程可以包括一个恒流恒压阶段,该恒流恒压阶段包括上文描述的一个恒流阶段和一个恒压阶段。
电池的充电过程也可以包括预设的至少两个恒流恒压阶段,任一个恒流恒压阶段均包括一个恒流阶段和一个恒压阶段。
在预设的至少两个恒流恒压阶段,可以是所有的恒压阶段都采用降浮压之后的电压进行恒压充电,也可以是只有部分恒压阶段采用降浮压之后的电压进行充电,另外一部分的恒压阶段对应的充电电压可以与恒流阶段对应的充电截止电压相等。
例如,在预设的至少两个恒流恒压阶段中,可以是前几个恒压阶段采用降浮压之后的电压进行恒压充电,在后几个恒压阶段,由于充电电流较小,浮压现象不明显,因此在后几个恒压阶段可以直接采用恒流阶段的充电截止电压进行充电。
下面结合图3,对本申请实施例的技术方案进行详细描述。
本申请实施例的充电过程可以包括恒流恒压阶段X和恒流恒压阶段Y。恒流恒压阶段X包括恒流阶段e和恒压阶段f,恒流恒压阶段Y包括恒流阶段g和恒压阶段h。
在恒流阶段e,可以以充电电流I1对电池进行恒流充电,在恒流充电过程中,电池的电压逐渐升高。当电池的电压达到恒流阶段e对应的充电截止电压V1时,可以进入恒压阶段f。在恒压阶段f,以充电电压V2对电池进行充电,其中,V2<V1。当充电电流减小到恒压阶段对应的充电截止电流(例如I2)时,可以进入恒流恒压阶段Y。
在恒流阶段g,可以以充电电流I2对电池进行充电,使得电池的电压达到恒流阶段g对应的充电截止电压V3。响应于电池的电压达到充电截止电压V3,进入恒压阶段h。在恒压阶段h,可以以充电电压V4对电池进行恒压充电,其中,V4<V3。
对于至少两个恒流恒压阶段来说,本申请实施例对该至少两个恒流阶段对应的充电电流的设置不做限定。
作为一个示例,该至少两个恒流恒压阶段可以包括相邻的第一恒流恒压阶段和第二恒流恒压阶段,其中,第二恒流恒压阶段晚于第一恒流恒压阶段。第二恒流恒压阶段中的恒流阶段对应的充电电流可以与第一恒流恒压阶段中的恒压阶段对应的充电截止电流相等。
以图3为例,恒流阶段h对应的充电电流I2可以与恒压阶段f对应的充电截止电流相等。这样,在充电过程中,充电电流是连续变化的,能够保证充电电流的持续性,不会出现跳跃式的变化,这样能够提高充电速度。
作为又一示例,该至少两个恒流恒压阶段包括第一恒流恒压阶段和第二恒流恒压阶段,其中,第一恒流恒压阶段中的恒流阶段对应的充电电流与第二恒流阶段中的恒流阶段对应的充电电流相等。也就是说,不同恒流阶段对应的充电电流可以相等,都可以采用较大的充电电流对电池进行恒流充电,从而能够提高充电速度。
作为一种实现方式,至少两个恒流恒压阶段中的前N个恒流恒压阶段中的恒流阶段对应的充电电流可以相等,N为大于等于2的整数。以图3为例,恒流阶段e对应的充电电流I1可以与恒流阶段g对应的充电的电流相等,这样,恒流阶段g能够以较大的充电的电流进行充电,能够提高恒流阶段g的充电速度。
上述N个恒流恒压阶段是提前预设好的,如直接设定N的值为2或3,将前2个或3个恒流阶段对应的充电电流设置为相等。或者,该N个恒流恒压阶段的确定也可以是根据电池的容量和/或电压确定的,根据电池的充电过程的不同,N的大小也会不相同。
可选地,在电池的容量较小的情况下,如电池的容量小于预设容量的情况下,可以将恒流阶段对应的充电电流设置为相等。该预设容量例如可以是80%的额定容量,也可以是85%的额定容量。
可选地,也可以根据电池的电压确定充电电流。在电池的电压较小的情况下,如电池的电压小于预设电压,可以将恒流阶段的充电电流设置为相等。该预设电压例如可以为3.8V、4.0V、4.2V等。
该N个恒流阶段对应的充电电流的大小可以均与第一个恒流阶段对应的充电电流的大小相等。例如,该N个恒流阶段对应的充电电流可以与电池的额定充电电流相等。
对于至少两个恒流恒压阶段来说,本申请实施例对至少两个恒压阶段对应的充电电压的设置方式不做限定。
假设至少两个恒流恒压阶段包括第三恒流恒压阶段和第四恒流恒压阶段,其中,第四恒流恒压阶段晚于第三恒流恒压阶段。第三恒流恒压阶段中的恒流阶段对应的充电截止电压与第三恒流恒压阶段中的恒压阶段对应的充电电压之间的电压差为△V1,第四恒流恒压阶段中的恒流阶段对应的充电截止电压与第四恒流恒压阶段中的恒压阶段对应的充电电压之间的电压差为△V2。
作为一种实现方式,△V1可以与△V2相等。也就是说,可以将至少两个恒压阶段中的每个恒压阶段的△V设置为相等。
作为另一种实现方式,△V2可以小于△V1。由于在后的恒流阶段对应的充电电流小于在前的恒流阶段对应的充电电流,因此,在后的恒流阶段产生的浮压小于在前的恒流阶段产生的浮压,因此可以设置在后的恒压阶段的△V小于在前的恒压阶段的△V,使得与电池的充电相匹配。
仍以图3为例,由于恒流阶段g对应的充电电流I2小于恒流阶段e对应的充电的电流I1,因此,恒流阶段g产生的浮压小于恒流阶段e产生的浮压,因此,恒压阶段h的(V3-V4)的值可以小于恒压阶段f的(V1-V2)的值。
至少两个恒压阶段对应的充电电压的设置方式也可以是上述方式的结合。例如,至少两个恒压阶段的前p个恒压阶段的△V相等,至少两个恒压阶段的后q个恒压阶段的△V相等,且前p个恒压阶段的△V大于后q个恒压阶段的△V,其中,p、q均为大于等于1的整数。
可选地,也可以将(V3-V4)的值设置为0,即恒压阶段h的充电电压也可以直接采用恒流阶段g对应的充电截止电压进行充电,即恒压阶段h的充电电压可以等于电压V3。
在恒流阶段,第一电压的大小可以大于电池的额定电压。也就是说,在恒流阶段,可以将电池的电压充电至大于额定电压的电压。这样,恒流阶段可以为电池提供更多的电量,能够减小电池在接下来的恒压阶段的恒压充电时间。
恒压阶段对应的充电电压可以是电池的额定电压。在恒流阶段结束后,可以以电池的额定电压对电池进行恒压充电。由于恒流阶段可以将电池充电至大于电池额定电压的电压,该恒压阶段对应的充电截止电流可以根据电池的额定容量来确定,因此恒压充电过程的时间可以变短,从而该恒压阶段对应的充电截止电流可以较大。该恒压阶段对应的充电截止电流可以大于公认的恒压截止充电电流Ia,假设Ia为0.01C~0.1C,则该恒压阶段对应的充电截止电流可以大于0.01C~0.1C。
恒压充电的时间变短,能够进一步提高电池的充电速度。
可选地,该恒流阶段可以是预设的至少两个恒流恒压阶段中的最后一个恒流恒压阶段中的恒流阶段。在最后一个恒流恒压阶段中的恒流阶段,可以将电池的电压充电至大于额定电压的电压,这样可以为最后一个恒压阶段设置更大的充电截止电流,采用较短的时间就可以将电池充满,能够提高充电速度。
以图3为例,假设恒流恒压阶段Y为至少两个恒流恒压阶段中的最后一个恒流恒压阶段。恒流阶段g对应的充电截止电压V3可以大于电池的额定电压,恒压阶段g对应的充电电压可以等于电池的额定电压,且恒压阶段h对应的充电截止电流I3可以大于Ia,如I3可以大于Ia。
当然,也可以是至少两个恒流恒压阶段中的每个恒流阶段对应的充电截止电压均可以大于电池的额定电压,或者至少两个恒流恒压阶段中的部分恒流阶段对应的充电截止电压大于电池的额定电压。
本申请实施例对不同恒流阶段对应的充电截止电压的设置方式不做具体限定。
作为一个示例,不同恒流阶段对应的充电截止电压可以相等。以图3为例,恒流阶段e和恒流阶段g对应的充电截止电压可以相等。例如,不同恒流阶段对应的充电截止电压可以均为电池的额定电压,或者不同恒流阶段对应的充电截止电压可以均为大于电池额定 电压的限制电压。
作为又一示例,不同恒流阶段对应的充电截止电压可以不同。假设电池的充电过程包括第一恒流恒压阶段和第二恒流恒压阶段,第二恒流恒压阶段晚于第一恒流恒压阶段,则第二恒流恒压阶段中的恒流阶段对应的充电截止电流可以大于第一恒流恒压阶段中的恒流阶段对应的充电截止电压。也就是说,在后的恒流阶段对应的充电截止电压可以大于在前的恒流阶段对应的充电截止电压。
当然,恒流阶段对应的充电截止电压的设置方式也可以结合上述多种方式进行设置。例如,前几个恒流阶段对应的充电截止电压不同,后几个恒流阶段对应的充电截止电压相同。
对于最后一个恒流恒压阶段,最后一个恒流阶段对应的充电截止电压可以根据电池的体系进行确定,例如可以为电池可承受的最高电压。
恒流阶段对应的充电电流可以大于电池的额定最大充电电流,用Ic表示。该充电电流Ic可以指电池的额定出厂电流,该充电电流Ic例如可以为3C。
可选地,该恒流阶段可以为预设的至少两个恒流恒压阶段中的第一个恒流恒压阶段中的恒流阶段。
也就是说,在刚开始的恒流阶段,可以以大于充电电流Ic的电流对电池进行恒流充电,例如,可以以大于3C的电流进行充电,由于充电电流较大,因此能够提高充电速度。
以充电电流Ic进行恒流充电的充电时间可以较短,这样能够保证充电的安全性,以及控制电池的发热等。
下面结合具体的充电截止电压和充电截止电流,对本申请实施例的方案进行详细描述,但是需要说明的是,这些具体的数值只是一种示例,并不会对本申请造成限定。
在进入恒流恒压充电之前,可以先检测电池的电压和/或待充电设备的温度,当电池的电压和/或温度满足预设的条件后,才可以进入恒流恒压阶段。例如,当电池的电压满足在2.5V~4.2V之间,待充电设备的温度在16℃~41℃之间时,可以进入恒流恒压阶段。
(1)、进入恒流恒压阶段后,可以以电流3C对电池进行充电。在该充电过程中,电池的电压逐渐升高,直至电池的电压达到3.8V,达到该阶段的充电截止电压,此时可以进入恒压阶段。
(2)、在恒压阶段,可以以充电电压3.4V(或3.2V)对电池进行恒压充电。在该充电过程中,电池的充电电流逐渐减小,直至充电电流减小到2C,达到该阶段的充电截止电流,此时可以进入下一个恒流恒压阶段。
(3)、在恒流阶段,可以以充电电流2C对电池进行恒流充电。在该充电过程中,电池的电压逐渐升高,直至电池的电压达到4.0V,达到该阶段的充电截止电压,此时可以进入恒压阶段。
(4)、在恒压阶段,可以以充电电压3.8V对电池进行恒压充电。在该充电过程中,电池的充电电流逐渐减小,直至充电的电流减小到1C,达到该阶段的充电截止电流,此时可以进入下一个恒流恒压阶段。
(5)、重复恒流恒压充电过程,中间的重复次数可以根据实际情况确定。
(6)、最后一个恒流恒压阶段,在恒流阶段,可以以充电电流In充电至电池的电压为Vb,充电电压Vb为该恒流阶段对应的充电截止电流,且充电电压Vb大于电池的额定电压,此时可以进入恒流阶段。
(7)、在恒流阶段,可以以电池的额定电压对电池进行充电,直至电池的充电电压达到该阶段对应的充电截止电流,该充电截止电流可以大于公认的恒压截止充电电流Ia,该Ia例如可以为0.01C~0.1C。
本申请实施例提供的技术方案,在恒压充电阶段的充电电压相对较低。其次,恒压充电阶段的充电电压降低之后,也能够减小恒压充电阶段的充电时间,能够减慢电池的衰减 速度,有利于提高电池的使用寿命。另外,恒流阶段对应的充电电流可以于恒压阶段对应的充电截止电流相等,充电电流没有大幅度跳跃,能够保证电流的持续性,有利于提高电池的充电速度。
在执行完最后一个恒流恒压阶段的充电过程,可以表示充电完成,电池已充满,可以结束充电。或者还可以有其他的充电阶段,然后进入该充电阶段对电池进行充电。
可选地,若恒压阶段为至少两个恒流恒压阶段中的最后一个恒流恒压阶段中的恒压阶段,当电池的充电电流达到该恒压阶段对应的充电截止电流时,可以表示电池已充满,此时可以通知充电,其中,该恒压阶段对应的充电截止电流可以是电池的最小充电电流,或者可以是根据电池的额定容量确定的,即最小充电电流可以是电池被充电到额定容量时对应的充电电流。
可选地,还可以设置最后一个恒流阶段对应的充电时间,仍假设恒压阶段为后一个恒压阶段,当恒压阶段的充电时间达到预设的充电时间时,可以表示电池已充满,此时可以停止充电。
本申请实施例还提供一种充电方法,该方法能够提高电池的充电速度。如图4所示,电池的充电过程包括至少两个恒流恒压阶段,该方法包括步骤S410。
S410、在第一个恒流恒压阶段中的恒流阶段,以第一电流对电池进行恒流充电,该第一电流大于电池的额定最大充电电流。
该方法仍然可以沿用传统的恒流恒压充电过程,即恒压阶段对应的充电电压可以与恒流阶段对应的充电截止电压相等。只不过在至少两个恒流恒压阶段的第一个恒流恒压阶段中的恒流阶段,该恒流阶段对应的充电电流可以大于电池的额定最大充电电流,由于在第一个恒流阶段的充电电流较大,因此充电速度较快,能够在整体上提高电池的充电速度。
此外,该方法也可以采用本申请实施例中的降浮压的恒压充电方式,能够降低恒压阶段的充电时间,并且能够以较低的电压进行恒压,有利于提高电池的使用寿命。
例如,该方法可以包括:在恒流阶段,将电池充电至第一电压,所述第一电压为所述恒流阶段对应的充电截止电压;响应于所述电池的电压达到所述第一电压,进入恒压阶段,以第二电压对所述电池进行充电,其中,所述第二电压小于所述第一电压。
本申请实施例的方法可以采用上文描述的方法实施例,因此未详细描述的部分可参见前面方法实施例。
本申请实施例还提供另一种充电方法,能够提高电池的充电速度。如图5所示,电池的充电过程包括至少两个恒流恒压阶段,其中,前N个恒流恒压阶段中的恒流阶段对应的充电电流相等,N为大于等于2的整数。该方法包括步骤S510~S520。
S510、在恒流阶段,将电池充电至第一电压,所述第一电压为所述恒流阶段对应的充电截止电压。
S520、响应于所述电池的电压达到所述第一电压,进入恒压阶段,以第二电压对所述电池进行充电,所述第二电压小于或等于所述第一电压。
当然,图5的方法也可以与图4所示的方法相结合。例如,电池的充电过程包括至少两个恒流恒压阶段,在第一个恒流恒压阶段中的恒流阶段,采用大于电池的额定最大充电电流进行恒流充电。在之后的N个恒流恒压阶段中的恒流阶段,该N个恒流阶段对应的充电电流可以相等,例如,该N个恒流阶段对应的充电电流可以均为3C。由于恒流阶段的充电电流较大,因此可以提高充电速度。
当然,图5所示的方法中,第二电压也可以大于第一电压,本申请实施例对此并不限定。
本申请实施例的充电方法可应用在不同的电子设备中。针对不同的电子设备,恒流阶段对应的充电电流和充电截止电压,以及恒压阶段对应的充电电压和充电截止电流可以适应性地进行调整。
上文详细描述了本申请实施例提供的充电方法,下面结合图6-图14,对本申请实施例的充电装置进行描述。应理解,方法实施例的特征同样适用于装置实施例。装置实施例与方法实施例相互对应,因此未详细描述的部分可以参见前面各方法实施例。
图6所示的充电装置包括充电管理电路610,该充电管理电路610用于在恒流阶段,将电池充电至第一电压,所述第一电压为所述恒流阶段对应的充电截止电压。该充电管理电路610还用于响应于所述电池的电压达到所述第一电压,进入恒压阶段,以第二电压对所述电池进行充电,其中,所述第二电压小于所述第一电压。
可选地,电池的充电过程包括至少两个恒流恒压阶段,任一个恒流恒压阶段均包括一个所述恒流阶段和一个所述恒压阶段。
可选地,所述至少两个恒流恒压阶段包括:相邻的第一恒流恒压阶段和第二恒流恒压阶段,所述第二恒流恒压阶段中的恒流阶段对应的充电电流与所述第一恒流恒压阶段中的恒压阶段对应的充电截止电流相等。
可选地,所述至少两个恒流恒压阶段中的前N个恒流恒压阶段中的恒流阶段对应的充电电流相等,N为大于等于2的整数。
可选地,所述至少两个恒流恒压阶段包括:第三恒流恒压阶段和第四恒流恒压阶段,所述第四恒流恒压阶段晚于所述第三恒流恒压阶段,所述第三恒流恒压阶段中的恒流阶段对应的充电截止电压与所述第三恒流恒压阶段中的恒压阶段的充电电压之间的电压差为△V1,所述第四恒流恒压阶段中的恒流阶段对应的充电截止电压与所述第四恒流恒压阶段中的恒压阶段的充电电压之间的电压差为△V2,△V1>△V2。
可选地,所述恒流阶段对应的充电截止电压大于所述电池的额定电压。
可选地,所述恒流阶段为至少两个恒流恒压阶段中的最后一个恒流恒压阶段中的恒流阶段。
可选地,所述恒流阶段对应的充电电流大于所述电池的额定最大充电电流。
可选地,所述恒流阶段为至少两个恒流恒压阶段中的第一个恒流恒压阶段中的恒流阶段。
图7所示的充电装置700可用于对电池进行充电,电池的充电过程包括至少两个恒流恒压阶段,该充电装置700包括充电管理电路710,用于在第一个恒流恒压阶段中的恒流阶段,以第一电流对电池进行恒流充电,该第一电流大于电池的额定最大充电电流。
本申请实施例提供的充电装置,可以在第一个恒流阶段采用大于额定最大充电电流的电流对电池进行充电,从而能够提高充电速度。
图8所示的充电装置800可用于对电池进行充电,电池的充电过程包括至少两个恒流恒压阶段,其中,任一个恒流恒压阶段均包括一个恒流阶段和一个恒压阶段,前N个恒流恒压阶段中的恒流阶段对应的充电电流相等,N为大于等于2的整数。
该充电装置800包括充电管理电路810,该充电管理电路810可用于执行以下操作:在恒流阶段,将电池充电至第一电压,所述第一电压为所述恒流阶段对应的充电截止电压;在恒压阶段,响应于所述电池的电压达到所述第一电压,以第二电压对所述电池进行充电,所述第二电压小于或等于所述第一电压。
可选地,所述至少两个恒流恒压阶段中除所述前N个恒流恒压阶段的其他恒流恒压阶段包括:相邻的第一恒流恒压阶段和第二恒流恒压阶段,所述第二恒流恒压阶段中的恒流阶段对应的充电电流与所述第一恒流恒压阶段中的恒压阶段对应的充电截止电流相等。
本申请实施例中的电池可以包括一节电芯,也可以包括相互串联的M节电芯(M为大于1的正整数)。以M=2为例,电池可以包括第一电芯和第二电芯,且第一电芯和第二电芯相互串联。
多节电芯与单节电芯方案相比,如果要达到同等的充电速度,多节电芯所需的充电电流为单节电芯所需充电电流的1/M,同样地,如果采用相同的充电电流进行充电,多节电 芯的充电速度为单节电芯的M倍。因此,在采用相同的充电电流的情况下,多节电芯能够大大提高电池的充电速度。
本申请的一实施例中的多节电芯可以是规格、参数相同或相近的电芯,规格相同或相近的电芯便于统一管理,且选取规格、参数相同或相近的电芯能够提高多节电芯的整体性能和使用寿命。或者,多节电芯的规格和参数可以不相同或不一致,在充电和/或供电过程中,可以通过均衡电路来均衡多节电芯之间的电压。
当然,即使多节电芯的规格和参数均相同,也会存在电芯电压不一致的情况,在这种情况下,也可以使用均衡电路来均衡多节电芯的电压。
对于包含多节电芯的待充电设备,在供电过程中,可采用降压电路将多节电芯的电压降压后对待充电设备进行系统供电,或者也可采用单节电芯进行系统供电。此外,在充电过程中,如果需要对系统供电,可直接分一条通路,对系统进行供电。
为了保持多节电芯的电量均衡,在充放电过程中,可通过均衡电路对多节电芯进行电量均衡。均衡电路的实现方式很多,例如,可以在电芯两端连接负载,消耗电芯的电量,使其与其它电芯的电量保持一致,从而使得各个电芯的电压保持一致。或者,可以采用电量高的电芯为电量低的电芯充电的方式进行均衡,直到各个电芯的电压一致为止。又例如,该均衡电路可以为Cuk电路。在例如,该均衡电路可以为基于RLC串联电路的均衡电路,或基于降压-升压(Buck-Boost)的均衡电路。
本申请实施例提供的技术方案,当电池包括多节电芯时,在恒流阶段,需要监测每一电芯是都达到该阶段对应的充电截止电压。当有任一电芯的电压达到该阶段对应的充电截止电压时,进入到恒压阶段。或者,在一些实施例中,也可以将已经充电至截止电压的电芯的充电通路断开,而继续对未充满的电芯执行充电,直至所有的电芯的电压均达到充电截止电压,然后进入恒压阶段。
本申请实施例的方案可以应用在有线充电过程中,也可以应用在无线充电过程中,本申请实施例对此不做具体限定。
下面结合图9-图10,对本申请实施例应用的有线充电过程进行描述。
图9是本申请实施例提供的一种充电系统的示意性结构图。该充电系统包括电源提供设备10、电池管理电路20和电池30。电池管理电路20可用于对电池30进行管理。该电池管理电路20可以理解为上文描述的充电管理电路,可用于对电池的充电过程进行管理。
作为一个示例,电池管理电路20可以对电池30的充电过程进行管理,比如选择充电通道、控制充电电压和/或充电电流等;作为另一个示例,电池管理电路20可以对电池30的电芯进行管理,如均衡电池30中的电芯的电压等。
电池管理电路20可以包括第一充电通道21和通信控制电路23。
第一充电通道21可用于接收电源提供设备10提供的充电电压和/或充电电流,并将充电电压和/或充电电流加载在电池30的两端,为电池30进行充电。
第一充电通道21例如可以是一根导线,也可以在第一充电通道21上设置一些与充电电压和/或充电电流变换无关的其他电路器件。例如,电源管理电路20包括第一充电通道21和第二充电通道,第一充电通道21上可以设置用于充电通道间切换的开关器件(具体参见图10的描述)。
电源提供设备10可以是上文描述的输出电压可调的电源提供设备,但本申请实施例对电源提供设备20的类型不做具体限定。例如,该电源提供设备20可以是适配器和移动电源(power bank)等专门用于充电的设备,也可以是电脑等能够提供电源和数据服务的其他设备。
第一充电通道21可以为直充通道,可以将电源适配器10提供的充电电压和/或充电电流直接加载在电池30的两端。为了实现直充充电方式,本申请实施例在电池管理电路20中引入了具有通信功能的控制电路,即通信控制电路23。该通信控制电路23可以在直充 过程中与电源提供设备10保持通信,以形成闭环反馈机制,使得电源提供设备10能够实时获知电池的状态,从而不断调整向第一充电通道注入的充电电压和/或充电电流,以保证电源提供设备10提供的充电电压和/或充电电流的大小与电池30当前所处的充电阶段相匹配。
例如,该通信控制电路23可以在电池30的电压达到恒流阶段对应的充电截止电压时,与电源提供设备10进行通信,使得电源提供设备10对电池30的充电过程从恒流充电转换为恒压充电。又例如,该通信控制电路23可以在电池30的充电电流达到恒压阶段对应的充电截止电流时,与电源提供设备10进行通信,使得电源提供设备10对电池30的充电过程从恒压充电转换为恒流充电。
本申请实施例提供的电池管理电路能够对电池进行直充,换句话说,本申请实施例提供的电池管理电路是支持直充架构的电池管理电路,在直充架构中,直充通道上无需设置变换电路,从而能够降低待充电设备在充电过程的发热量。可选地,在一些实施例中,如图10所示,电池管理电路20还可包括第二充电通道24。第二充电通道24上设置有升压电路25。在电源提供设备10通过第二充电通道24为电池30充电的过程中,升压电路25可用于接收电源提供设备10提供的初始电压,将初始电压升压至目标电压,并基于目标电压为电池30充电,其中初始电压小于电池30的总电压,目标电压大于电池30的总电压;通信控制电路23还可用于控制第一充电通道21和第二充电通道24之间的切换。
假设该电池30包括多节电芯,该第二充电通道24能够兼容普通的电源提供设备为该电池30进行充电,解决了普通电源提供设备无法为多节电池进行充电的问题。
对于包含多节电芯的电池30来说,电池管理电路20还可以包括均衡电路22,参见上文的描述,该均衡电路22可用于在电池的充电过程和/或放电过程中均衡多节电芯的电压。
本申请实施例对升压电路25的具体形式不作限定。例如,可以采用Boost升压电路,还可以采用电荷泵进行升压。可选地,在一些实施例中,第二充电通道24可以采用传统的充电通道设计方式,即在第二充电通道24上设置变换电路(如充电IC)。该变换电路可以对电池30的充电过程进行恒压、恒流控制,并根据实际需要对电源提供设备10提供的初始电压进行调整,如升压或降压。本申请实施例可以利用该变换电路的升压功能,将电源提供设备10提供的初始电压升压至目标电压。
通信控制电路23可以通过开关器件实现第一充电通道21和第二充电通道24之间的切换。具体地,如图10所示,第一充电通道21上可以设置有开关管Q5,当通信控制电路23控制开关管Q5导通时,第一充电通道21工作,对电池30进行直充;当通信控制电路23控制开关管Q5关断时,第二充电通道24工作,采用第二充电通道24对电池30进行充电。
在另外一些实施例中,也可在第二充电通道24上设置用于降压的电路或器件,当电源提供设备提供的电压高于电池30的需求电压时,可进行降压处理。本申请实施例,对第二充电通道24包含的电路或模块不进行限制。
下面结合图11-图14,对本申请实施例应用的无线充电过程进行描述。
传统的无线充电技术一般将电源提供设备(如适配器)与无线充电装置(如无线充电底座)相连,并通过该无线充电装置将电源提供设备的输出功率以无线的方式(如电磁波)传输至待充电设备,对待充电设备进行无线充电。
按照无线充电原理不同,无线充电方式主要分为磁耦合(或电磁感应)、磁共振以及无线电波三种方式。目前,主流的无线充电标准包括QI标准、电源实物联盟(power matters alliance,PMA)标准、无线电源联盟(alliance for wireless power,A4WP)。QI标准和PMA标准均采用磁耦合方式进行无线充电。A4WP标准采用磁共振方式进行无线充电。
下面结合图11,对一实施例的无线充电方式进行介绍。
如图11所示,无线充电系统包括电源提供设备110、无线充电信号的发射装置120以 及充电控制装置130,其中发射装置120例如可以是无线充电底座,充电控制装置130可以指待充电设备,例如可以是终端。
电源提供设备110与发射装置120连接之后,会将电源提供设备110的输出电压和输出电流传输至发射装置120。
发射装置120可以通过内部的无线发射电路121将电源提供设备110的输出电压和输出电流转换成无线充电信号(例如,电磁信号)进行发射。例如,该无线发射电路121可以将电源提供设备110的输出电流转换成交流电,并通过发射线圈或发射天线将该交流电转换成无线充电信号。
图11只是示例性地给出了无线充电系统的示意性结构图,但本申请实施例并不限于此。例如,发射装置120也可以称为无线充电信号的发射装置,充电控制装置130也可以称为无线充电信号的接收装置。无线充电信号的接收装置例如可以是具有无线充电信号接收功能的芯片,可以接收发射装置120发射的无线充电信号;该无线充电信号的接收装置也可以是待充电设备。
充电控制装置130可以通过无线接收电路131接收无线发射电路121发射的无线充电信号,并将该无线充电信号转换成无线接收电路131的输出电压和输出电流。例如,该无线接收电路131可以通过接收线圈或接收天线将无线发射电路121发射的无线充电信号转换成交流电,并对该交流电进行整流和/或滤波等操作,将该交流电转换成无线接收电路131的输出电压和输出电流。
在一些实施例中,在无线充电之前,发射装置120与充电控制装置130会预先协商无线发射电路121的发射功率。假设发射装置120与充电控制装置130之间协商的功率为5W,则无线接收电路131的输出电压和输出电流一般为5V和1A。假设发射装置120可与充电控制装置130之间协商的功率为10.8W,则无线接收电路131的输出电压和输出电流一般为9V和1.2A。
若无线接收电路131的输出电压并不适合直接加载到电池133两端,则是需要先经过充电控制装置130内的变换电路132进行恒压和/或恒流控制,以得到充电控制装置130内的电池133所预期的充电电压和/或充电电流。
变换电路132可用于对无线接收电路131的输出电压进行变换,以使得变换电路132的输出电压和/或输出电流满足电池133所预期的充电电压和/或充电电流的需求。
作为一种示例,该变换电路132例如可以是充电集成电路(integrated circuit,IC),或者可以为电源管理电路。在电池133的充电过程中,变换电路132可用于对电池133的充电电压和/或充电电流进行管理。该变换电路132可以包含电压反馈功能,和/或,电流反馈功能,以实现对电池133的充电电压和/或充电电流的管理。
在正常的充电过程中,电池所需的充电电压和/或充电电流在不同的充电阶段可能在不断发生变化。无线接收电路的输出电压和/或输出电流可能就需要不断地调整,以满足电池当前的充电需求。例如,在电池的恒流充电阶段,在充电过程中,电池的充电电流保持不变,但是电池的电压在不断升高,因此电池所需的充电电压也在不断升高。随着电池所需的充电电压的不断增大,电池所需的充电功率也在不断增大。当电池所需的充电功率增大时,无线接收电路需要增大输出功率,以满足电池的充电需求。
当无线接收电路的输出功率小于电池当前所需的充电功率时,通信控制电路可以向发射装置发射指示信息以指示发射装置提升发射功率,以增大无线接收电路的输出功率。因此,在充电过程中,通信控制电路可以与发射装置通信,使得无线接收电路的输出功率能够满足电池不同充电阶段的充电需求。
本申请实施例对通信控制电路235与发射装置220的通信方式不做具体限定。可选地,在一些实施例中,通信控制电路235与发射装置220可以采用蓝牙(bluetooth)通信、无线保真(wireless fidelity,Wi-Fi)通信或反向散射(backscatter)调制方式(或功率负载调 制方式)通信、基于高载波频率的近距离无线通信、光通信、超声波通信、超宽带通信或移动通信等无线通信方式进行通信。
在一实施例中,基于高载波频率的近距离无线通信模块可以包括内部封装有极高频(extremely high frequency,EHF)天线的集成电路(integrated circuit,IC)芯片。可选地,高载波频率可以为60GHz。
在一实施例中,光通信可以是利用光通信模块进行通信。光通信模块可以包括红外通信模块,红外通信模块可利用红外线传输信息。
在一实施例中,移动通信可以是利用移动通信模块进行通信。移动通信模块可利用5G通信协议、4G通信协议或3G通信协议等移动通信协议进行信息传输。
采用上述的无线通信方式,相比于Qi标准中通过信号调制的方式耦合到无线接收电路的线圈进行通信的方式,可提高通信的可靠性,且可避免采用信号耦合方式通信带来的电压纹波,影响降压电路的电压处理过程。
可选地,通信控制电路235与发射装置220也可以采用数据接口的有线通信方式进行通信。
图12是本申请实施例提供的充电系统的另一示意图。请参见图12,无线充电信号的发射装置220还可以包括充电接口223,充电接口223可用于与外部的电源提供设备210相连。无线发射电路221还可用于根据电源提供设备210的输出电压和输出电流,生成无线充电信号。
第一通信控制电路222还可以在无线充电的过程中,调整无线发射电路221从电源提供设备210的输出功率中抽取的功率量,以调整无线发射电路221的发射功率,使得无线发射电路发射的功率能够满足电池的充电需求。例如,电源提供设备210也可以直接输出较大的固定功率(如40W),第一通信控制电路222可以直接调整无线发射电路221从电源提供设备210提供的固定功率中抽取的功率量。
本申请实施例中,电源提供设备210的输出功率可以是固定的。例如,电源提供设备210可以直接输出较大的固定功率(如40W),电源提供设备210可以按照该固定的输出功率向无线充电装置220提供输出电压和输出电流。在充电过程中,第一通信控制电路222可以根据实际需要从该电源提供设备的固定功率中抽取一定的功率量用于无线充电。也就是说,本申请实施例将无线发射电路221的发射功率调整的控制权分配给第一通信控制电路222,第一通信控制电路222能够在接收到第二通信控制电路235发送的指示信息之后立刻对无线发射电路221的发射功率进行调整,以满足电池当前的充电需求,具有调节速度快、效率高的优点。
本申请实施例对第一通信控制电路222从电源提供设备210提供的最大输出功率中抽取功率量的方式不做具体限定。例如,可以在无线充电信号的发射装置220内部设置电压转换电路224,该电压转换电路224可以与发射线圈或发射天线相连,用于调整发射线圈或发射天线接收到的功率。该电压转换电路224例如可以包括脉冲宽度调制(pulse width modulation,PWM)控制器和开关单元。第一通信控制电路222可以通过调整PWM控制器发出的控制信号的占空比调整无线发射电路221的发射功率。
本申请实施例对电源提供设备210的类型不做具体限定。例如,电源提供设备210可以为适配器、移动电源(power bank)、车载充电器或电脑等设备。
本申请实施例对充电接口223的类型不做具体限定。可选地,在一些实施例中,该充电接口223可以为USB接口。该USB接口例如可以是USB 2.0接口,micro USB接口,或USB TYPE-C接口。可选地,在另一些实施例中,该充电接口223还可以是lightning接口,或者其他任意类型的能够用于充电的并口和/或串口。
本申请实施例对第一通信控制电路222与电源提供设备210之间的通信方式不做具体限定。作为一个示例,第一通信控制电路222可以通过除充电接口之外的其他通信接口与 电源提供设备210相连,并通过该通信接口与电源提供设备210通信。作为另一个示例,第一通信控制电路222可以以无线的方式与电源提供设备210进行通信。例如,第一通信控制电路222可以与电源提供设备210进行近场通信(near field communication,NFC)。作为又一个示例,第一通信控制电路222可以通过充电接口223与电源提供设备210进行通信,而无需设置额外的通信接口或其他无线通信模块,这样可以简化无线充电装置220的实现。例如,充电接口223为USB接口,第一通信控制电路222可以与电源提供设备210基于该USB接口中的数据线(如D+和/或D-线)进行通信。又如,充电接口223可以为支持功率传输(power delivery,PD)通信协议的USB接口(如USB TYPE-C接口),第一通信控制电路222与电源提供设备210可以基于PD通信协议进行通信。
可选地,第一通信控制电路222调整无线充电信号的发射功率可以指,第一通信控制电路222通过调整无线发射电路221的输入电压和/或输入电流来调整无线充电信号的发射功率。例如,第一通信控制电路可以通过增大无线发射电路的输入电压来增大无线发射电路的发射功率。
可选地,如图14所示,待充电设备230还包括第一充电通道233,通过该第一充电通道233可将无线接收电路231的输出电压和/或输出电流提供给电池232,对电池232进行充电。
可选地,第一充电通道233上还可以设置电压转换电路239,该电压转换电路239的输入端与无线接收电路231的输出端电连接,用于对无线接收电路231的输出电压进行恒压和/或恒流控制,以对电池232进行充电,使得电压转换电路239的输出电压和/或输出电流与电池当前所需的充电电压和/或充电电流相匹配。
可选地,增大无线发射电路221的发射功率可以指增大无线发射电路221的发射电压,增大无线发射电路221的发射电压可以通过增大电压转换电路224的输出电压来实现。例如,第一通信控制电路222接收到第二通信控制电路235发送的指示增大发射功率的指示信息后,可以通过增大电压转换电路224的输出电压来增大无线发射电路221的发射功率。
本申请实施例对第二通信控制电路235向第一通信控制电路222发送指示信息的方式不做具体限定。
例如,第二通信控制电路235可以定期向第一通信控制电路222发送指示信息。或者,第二通信控制电路235可以仅在电池的电压达到充电截止电压,或者电池的充电电流达到充电截止电流的情况下,再向第一通信控制电路222发送指示信息。
可选地,无线充电信号的接收装置还可包括检测电路234,该检测电路234可以检测电池232的电压和/或充电电流,第二通信控制电路235可以根据电池232的电压和/或充电电流,向第一通信控制电路222发送指示信息,以指示第一通信控制电路222调整无线发射电路221的发射功率对应的输出电压和输出电流。
在一实施例中,对待充电设备而言,在恒流充电的过程中,电池的电压会不断上升,电池所需的充电功率也会随之增大。此时,需要增大无线充电信号的发射功率,以满足电池当前的充电需求。在恒压充电的过程中,电池的充电电流可能会不断减小,电池所需的充电功率也会随之减小。此时,需要减小无线充电信号的发射功率,以满足电池当前的充电需求。
第一通信控制电路222可以根据指示信息调整无线充电信号的发射功率,可以指第一通信控制电路222调整无线充电信号的发射功率,使得无线充电信号的发射功率与电池的当前所需的充电电压和/或充电电流相匹配。
无线发射电路221的发射功率与电池232当前所需的充电电压和/或充电电流相匹配可以指:第一通信控制电路222对无线充电信号的发射功率的配置使得第一充电通道233的输出电压和/或输出电流与电池232当前所需的充电电压和/或充电电流相匹配(或者,第一通信控制电路222对无线充电信号的发射功率的配置使得第一充电通道233的输出电压 和/或输出电流满足电池232的充电需求(包括电池232对充电电压和/或充电电流的需求))。
应理解,在本公开的一实施例中,“第一充电通道232的输出电压和/或输出电流与电池232当前所需的充电电压和/或充电电流相匹配”包括:第一充电通道232输出的直流电的电压值和/或电流值与电池232所需的充电电压值和/或充电电流值相等或在浮动预设范围(例如,电压值上下浮动100毫伏~200毫伏,电流值上下浮动0.001A~0.005A等)。
上述第二通信控制电路235根据检测电路234检测到的电池232的电压和/或充电电流,与第一通信控制电路222进行无线通信,以便第一通信控制电路222根据电池232的电压和/或充电电流,调整无线发射电路221的发射功率可以包括:在电池232的恒流充电阶段,第二通信控制电路235根据检测到的电池的电压,与第一通信控制电路222进行无线通信,以便第一通信控制电路222调整无线发射电路221的发射功率,使得第一充电通道233的输出电压与该恒流充电阶段电池所需的充电电压相匹配(或者,使得第一充电通道233的输出电压满足电池232在恒流充电阶段对充电电压的需求)。
图13是本申请实施例提供的充电系统的的另一示例。图13的实施例对应的无线充电信号的发射装置220并非从电源提供设备210获取电能,而是直接将外部输入的交流电(如市电)转换成上述无线充电信号。
如图13所示,无线充电信号的发射装置220还可包括电压转换电路224和电源提供电路225。电源提供电路225可用于接收外部输入的交流电(如市电),并根据交流电生成电源提供电路225的输出电压和输出电流。例如,电源提供电路225可以对交流电进行整流和/或滤波,得到直流电或脉动直流电,并将该直流电或脉动直流电传输至电压转换电路224。
电压转换电路224可用于接收电源提供电路225的输出电压,并对电源提供电路225的输出电压进行转换,得到电压转换电路224的输出电压和输出电流。无线发射电路221还可用于根据电压转换电路224的输出电压和输出电流,生成无线充电信号。
本申请实施例在无线充电信号的发射装置220内部集成了类似适配器的功能,使得该无线充电信号的发射装置220无需从外部的电源提供设备获取功率,提高了无线充电信号的发射装置220的集成度,并减少了实现无线充电过程所需的器件的数量。
可选地,在一些实施例中,无线充电信号的发射装置220可以支持第一无线充电模式和第二无线充电模式,无线充电信号的发射装置220在第一无线充电模式下对待充电设备的充电速度快于无线充电信号的发射装置220在第二无线充电模式下对待充电设备的充电速度。换句话说,相较于工作在第二无线充电模式下的无线充电信号的发射装置220来说,工作在第一无线充电模式下的无线充电信号的发射装置220充满相同容量的待充电设备中的电池的耗时更短。
本申请实施例提供的充电方法可以使采用第一充电模式进行充电,也可以使采用第二充电模式进行充电,本申请实施例对此不做限定。
第二无线充电模式可为称为普通无线充电模式,例如可以是传统的基于QI标准、PMA标准或A4WP标准的无线充电模式。第一无线充电模式可为快速无线充电模式。该普通无线充电模式可以指无线充电信号的发射装置220的发射功率较小(通常小于15W,常用的发射功率为5W或10W)的无线充电模式,在普通无线充电模式下想要完全充满一较大容量电池(如3000毫安时容量的电池),通常需要花费数个小时的时间;而在快速无线充电模式下,无线充电信号的发射装置220的发射功率相对较大(通常大于或等于15W)。相较于普通无线充电模式而言,无线充电信号的发射装置220在快速无线充电模式下完全充满相同容量电池所需要的充电时间能够明显缩短、充电速度更快。
参见图14,在本公开的一实施例中,待充电设备230还包括:第二充电通道236。第二充电通道236可为导线。在第二充电通道236上可设置变换电路237,用于对无线接收 电路231输出的直流电进行电压控制,得到第二充电通道236的输出电压和输出电流,以对电池232进行充电。
在一个实施例中,变换电路237可用于降压电路,并且输出恒流和/或恒压的电能。换句话说,该变换电路237可用于对电池的充电过程进行恒压和/或恒流控制。
当采用第二充电通道236对电池232进行充电时,无线发射电路221可采用恒定发射功率发射电磁信号,无线接收电路231接收电磁信号后,由变换电路237处理为满足电池232充电需求的电压和电流并输入电池232,实现对电池232的充电。应理解,在一些实施例中,恒定发射功率不一定是发射功率完全保持不变,其可在一定的范围内变动,例如,发射功率为7.5W上下浮动0.5W。
在本公开的实施例中,通过第一充电通道233对电池232进行充电的充电方式为第一无线充电模式,通过第二充电通道236对电池232进行充电的方式称为第二无线充电模式。无线充电信号的发射装置和待充电设备可通过握手通信确定采用第一无线充电模式还是第二无线充电模式对电池232进行充电。
本公开实施例中,对于无线充电信号的发射装置,当通过第一无线充电模式对待充电设备充电时,无线发射电路221的最大发射功率可为第一发射功率值。而通过第二无线充电模式对待充电设备进行充电时,无线发射电路221的最大发射功率可为第二发射功率值。其中,第一发射功率值大于第二发射功率值,由此,采用第一无线充电模式对待充电设备的充电速度大于第二无线充电模式。
可选地,第二通信控制电路235还可用于控制第一充电通道233和第二充电通道236之间的切换。例如,如图14所示,第一充电通道233上可以设置开关238,第二通信控制电路235可以通过控制该开关238的导通与关断控制第一充电通道233和第二充电通道236之间的切换。上文指出,在某些实施例中,无线充电信号的发射装置220可以包括第一无线充电模式和第二无线充电模式,且无线充电信号的发射装置220在第一无线充电模式下对待充电设备230的充电速度快于无线充电信号的发射装置220在第二无线充电模式下对待充电设备230的充电速度。当无线充电信号的发射装置220使用第一无线充电模式为待充电设备230内的电池充电时,待充电设备230可以控制第一充电通道233工作;当无线充电信号的发射装置220使用第二无线充电模式为待充电设备230内的电池充电时,待充电设备230可以控制第二充电通道236工作。
在待充电设备侧,第二通信控制电路235可以根据充电模式,在第一充电通道233和第二充电通道236之间进行切换。当采用第一无线充电模式时,第二通信控制电路235控制第一充电通道233上的电压转换电路239工作。当采用第二无线充电模式时,第二通信控制电路235控制第二充电通道236上的变换电路237工作。
可选地,无线充电信号的发射装置220可以与待充电设备230之间进行通信,以协商无线充电信号的发射装置220与待充电设备230之间的充电模式。
除了上文描述的通信内容外,无线充电信号的发射装置220中的第一通信控制电路222与待充电设备230中的第二通信控制电路235之间还可以交互许多其他通信信息。在一些实施例中,第一通信控制电路222和第二通信控制电路235之间可以交互用于安全保护、异常检测或故障处理的信息,如电池232的温度信息,进入过压保护或过流保护的指示信息等信息,功率传输效率信息(该功率传输效率信息可用于指示无线发射电路221和无线接收电路231之间的功率传输效率)。
可选地,第二通信控制电路235与第一通信控制电路222之间的通信可以为单向通信,也可以为双向通信,本申请实施例对此不做具体限定。
在本申请的实施例中,第二通信控制电路的功能可由待充电设备230的应用处理器实现,由此,可以节省硬件成本。或者,也可由独立的控制芯片实现,由独立的控制芯片实现可提高控制的可靠性。
可选地,本申请实施例可以将无线接收电路232与电压转换电路239均集成在同一无线充电芯片中,这样可以提高待充电设备集成度,简化待充电设备的实现。例如,可以对传统无线充电芯片的功能进行扩展,使其支持充电管理功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其他任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种充电方法,其特征在于,包括:
    在恒流阶段,将电池充电至第一电压,所述第一电压为所述恒流阶段对应的充电截止电压;
    响应于所述电池的电压达到所述第一电压,进入恒压阶段,以第二电压对所述电池进行充电,其中,所述第二电压小于所述第一电压。
  2. 根据权利要求1所述的充电方法,其特征在于,所述电池的充电过程包括至少两个恒流恒压阶段,任一个恒流恒压阶段均包括一个所述恒流阶段和一个所述恒压阶段。
  3. 根据权利要求2所述的充电方法,其特征在于,所述至少两个恒流恒压阶段包括:相邻的第一恒流恒压阶段和第二恒流恒压阶段,所述第二恒流恒压阶段中的恒流阶段对应的充电电流与所述第一恒流恒压阶段中的恒压阶段对应的充电截止电流相等。
  4. 根据权利要求2所述的充电方法,其特征在于,所述至少两个恒流恒压阶段中的前N个恒流恒压阶段中的恒流阶段对应的充电电流相等,N为大于等于2的整数。
  5. 根据权利要求2-4中任一项所述的充电方法,其特征在于,所述至少两个恒流恒压阶段包括:第三恒流恒压阶段和第四恒流恒压阶段,所述第四恒流恒压阶段晚于所述第三恒流恒压阶段,所述第三恒流恒压阶段中的恒流阶段对应的充电截止电压与所述第三恒流恒压阶段中的恒压阶段的充电电压之间的电压差为△V1,所述第四恒流恒压阶段中的恒流阶段对应的充电截止电压与所述第四恒流恒压阶段中的恒压阶段的充电电压之间的电压差为△V2,△V1>△V2。
  6. 根据权利要求1-5中任一项所述的充电方法,其特征在于,所述恒流阶段的充电截止电压大于所述电池的额定电压。
  7. 根据权利要求6所述的充电方法,其特征在于,所述恒流阶段为至少两个恒流恒压阶段中的最后一个恒流恒压阶段中的恒流阶段。
  8. 根据权利要求1-5中任一项所述的充电方法,其特征在于,所述恒流阶段对应的充电电流大于所述电池的额定最大充电电流。
  9. 根据权利要求8所述的充电方法,其特征在于,所述恒流阶段为至少两个恒流恒压阶段中的第一个恒流恒压阶段中的恒流阶段。
  10. 根据权利要求2-9中任一项所述的充电方法,其特征在于,所述恒压阶段为所述至少两个恒流恒压阶段中的最后一个恒流恒压阶段中的恒压阶段,所述方法还包括:
    当所述电池的充电电流达到所述恒压阶段对应的充电截止电流时,停止充电,所述恒压阶段对应的充电截止电流是根据所述电池的额定容量确定的;或者,
    当所述恒压阶段的充电时间达到预设的充电时间时,停止充电。
  11. 一种充电方法,其特征在于,电池的充电过程包括至少两个恒流恒压阶段,其中,任一个恒流恒压阶段均包括一个恒流阶段和一个恒压阶段,且前N个恒流恒压阶段中的恒流阶段对应的充电电流相等,N为大于等于2的整数,所述方法包括:
    在恒流阶段,将电池充电至第一电压,所述第一电压为所述恒流阶段对应的充电截止电压;
    响应于所述电池的电压达到所述第一电压,进入恒压阶段,以第二电压对所述电池进行充电,所述第二电压小于或等于所述第一电压。
  12. 根据权利要求11所述的充电方法,其特征在于,所述至少两个恒流恒压阶段中除所述前N个恒流恒压阶段的其他恒流恒压阶段包括:相邻的第一恒流恒压阶段和第二恒流恒压阶段,所述第二恒流恒压阶段中的恒流阶段对应的充电电流与所述第一恒流恒压阶段中的恒压阶段对应的充电截止电流相等。
  13. 一种充电装置,其特征在于,包括充电管理电路,用于执行以下操作:
    在恒流阶段,将电池充电至第一电压,所述第一电压为所述恒流阶段对应的充电截止 电压;
    响应于所述电池的电压达到所述第一电压,进入恒压阶段,以第二电压对所述电池进行充电,其中,所述第二电压小于所述第一电压。
  14. 根据权利要求13所述的充电装置,其特征在于,所述电池的充电过程包括至少两个恒流恒压阶段,任一个恒流恒压阶段均包括一个所述恒流阶段和一个所述恒压阶段。
  15. 根据权利要求14所述的充电装置,其特征在于,所述至少两个恒流恒压阶段包括:相邻的第一恒流恒压阶段和第二恒流恒压阶段,所述第二恒流恒压阶段中的恒流阶段对应的充电电流与所述第一恒流恒压阶段中的恒压阶段对应的充电截止电流相等。
  16. 根据权利要求14所述的充电装置,其特征在于,所述至少两个恒流恒压阶段中的前N个恒流恒压阶段中的恒流阶段对应的充电电流相等,N为大于等于2的整数。
  17. 根据权利要求14-16中任一项所述的充电装置,其特征在于,所述至少两个恒流恒压阶段包括:第三恒流恒压阶段和第四恒流恒压阶段,所述第四恒流恒压阶段晚于所述第三恒流恒压阶段,所述第三恒流恒压阶段中的恒流阶段对应的充电截止电压与所述第三恒流恒压阶段中的恒压阶段的充电电压之间的电压差为△V1,所述第四恒流恒压阶段中的恒流阶段对应的充电截止电压与所述第四恒流恒压阶段中的恒压阶段的充电电压之间的电压差为△V2,△V1>△V2。
  18. 根据权利要求13-17中任一项所述的充电装置,其特征在于,所述恒流阶段对应的充电截止电压大于所述电池的额定电压。
  19. 根据权利要求18所述的充电装置,其特征在于,所述恒流阶段为至少两个恒流恒压阶段中的最后一个恒流恒压阶段中的恒流阶段。
  20. 根据权利要求13-17中任一项所述的充电装置,其特征在于,所述恒流阶段对应的充电电流大于所述电池的额定最大充电电流。
  21. 根据权利要求20所述的充电装置,其特征在于,所述恒流阶段为至少两个恒流恒压阶段中的第一个恒流恒压阶段中的恒流阶段。
  22. 根据权利要求13-21中任一项所述的充电装置,其特征在于,所述恒压阶段为所述至少两个恒流恒压阶段中的最后一个恒流恒压阶段中的恒压阶段,所述充电管理电路还用于:
    当所述电池的充电电流达到所述恒压阶段对应的充电截止电流时,停止充电,所述恒压阶段对应的充电截止电流是根据所述电池的额定容量确定的;或者,
    当所述恒压阶段的充电时间达到预设的充电时间时,停止充电。
  23. 一种充电装置,其特征在于,电池的充电过程包括至少两个恒流恒压阶段,其中,任一个恒流恒压阶段均包括一个恒流阶段和一个恒压阶段,且前N个恒流恒压阶段中的恒流阶段对应的充电电流相等,N为大于等于2的整数,所述充电装置包括充电管理电路,用于执行以下操作:
    在恒流阶段,将电池充电至第一电压,所述第一电压为所述恒流阶段对应的充电截止电压;
    响应于所述电池的电压达到所述第一电压,进入恒压阶段,以第二电压对所述电池进行充电,所述第二电压小于或等于所述第一电压。
  24. 根据权利要求23所述的充电装置,其特征在于,所述至少两个恒流恒压阶段中除所述前N个恒流恒压阶段的其他恒流恒压阶段包括:相邻的第一恒流恒压阶段和第二恒流恒压阶段,所述第二恒流恒压阶段中的恒流阶段对应的充电电流与所述第一恒流恒压阶段中的恒压阶段对应的充电截止电流相等。
PCT/CN2019/076555 2019-02-28 2019-02-28 充电方法和充电装置 WO2020172868A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980003852.7A CN111886775B (zh) 2019-02-28 2019-02-28 充电方法和充电装置
EP19916658.8A EP3806279B1 (en) 2019-02-28 2019-02-28 Charging method and charging apparatus
PCT/CN2019/076555 WO2020172868A1 (zh) 2019-02-28 2019-02-28 充电方法和充电装置
US16/983,742 US11462931B2 (en) 2019-02-28 2020-08-03 Charging method and charging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/076555 WO2020172868A1 (zh) 2019-02-28 2019-02-28 充电方法和充电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/983,742 Continuation US11462931B2 (en) 2019-02-28 2020-08-03 Charging method and charging apparatus

Publications (1)

Publication Number Publication Date
WO2020172868A1 true WO2020172868A1 (zh) 2020-09-03

Family

ID=72238245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076555 WO2020172868A1 (zh) 2019-02-28 2019-02-28 充电方法和充电装置

Country Status (4)

Country Link
US (1) US11462931B2 (zh)
EP (1) EP3806279B1 (zh)
CN (1) CN111886775B (zh)
WO (1) WO2020172868A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417308B (zh) 2017-04-07 2023-06-20 Oppo广东移动通信有限公司 无线充电系统、装置、方法及待充电设备
CN109314396B (zh) * 2017-04-07 2022-07-19 Oppo广东移动通信有限公司 无线充电系统、装置、方法及待充电设备
AU2018423071B2 (en) * 2018-05-31 2021-03-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging method and charging apparatus
US11251645B2 (en) * 2020-01-24 2022-02-15 Dell Products, L.P. Multimode USB-C power transmission and conversion supporting improved battery charging
CN113711459A (zh) * 2020-12-25 2021-11-26 宁德新能源科技有限公司 充电方法、电子装置以及存储介质
CN112952223B (zh) * 2021-03-17 2022-08-30 深圳市安仕新能源科技有限公司 一种电池的充电方法、装置及电池管理系统
CN113675926B (zh) * 2021-08-30 2024-05-24 广东小天才科技有限公司 一种充放电电路、充放电方法以及终端
CN114530909A (zh) * 2022-02-24 2022-05-24 广州菲利斯太阳能科技有限公司 一种储能系统锂电池包充电控制方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200204A (zh) * 1995-10-24 1998-11-25 松下电器产业株式会社 恒流和恒压充电器
CN1819398A (zh) * 2005-02-09 2006-08-16 恩益禧电子股份有限公司 充电控制电路和充电器
CN104467095A (zh) * 2014-12-09 2015-03-25 芯荣半导体有限公司 基于acot架构的恒流恒压充电器芯片
CN105221942A (zh) * 2015-10-28 2016-01-06 欧普照明股份有限公司 一种照明灯具

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193857B2 (ja) * 2006-03-23 2008-12-10 ソニー株式会社 リチウムイオン2次電池の充電装置及び充電方法
JP5020530B2 (ja) * 2006-04-14 2012-09-05 パナソニック株式会社 充電方法ならびに電池パックおよびその充電器
JP2009022078A (ja) * 2007-07-10 2009-01-29 Sanyo Electric Co Ltd リチウムイオン二次電池の充電方法
JP2009033843A (ja) * 2007-07-26 2009-02-12 Panasonic Electric Works Co Ltd 充電装置および充電方法
US8305045B2 (en) * 2009-11-20 2012-11-06 Panasonic Corporation Charge control circuit, battery pack, and charging system
TW201601416A (zh) * 2014-06-18 2016-01-01 陳恩良 充電電池及充電電池的管理方法
US10211659B2 (en) * 2015-09-24 2019-02-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging method and apparatus for rechargeable battery
CN107768757B (zh) * 2017-10-20 2019-06-04 西北工业大学 一种单节锂电池内阻补偿的快速充电方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200204A (zh) * 1995-10-24 1998-11-25 松下电器产业株式会社 恒流和恒压充电器
CN1819398A (zh) * 2005-02-09 2006-08-16 恩益禧电子股份有限公司 充电控制电路和充电器
CN104467095A (zh) * 2014-12-09 2015-03-25 芯荣半导体有限公司 基于acot架构的恒流恒压充电器芯片
CN105221942A (zh) * 2015-10-28 2016-01-06 欧普照明股份有限公司 一种照明灯具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3806279A4 *

Also Published As

Publication number Publication date
EP3806279A1 (en) 2021-04-14
EP3806279A4 (en) 2021-11-17
CN111886775A (zh) 2020-11-03
CN111886775B (zh) 2021-06-15
EP3806279B1 (en) 2023-04-05
US20200366116A1 (en) 2020-11-19
US11462931B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2020172868A1 (zh) 充电方法和充电装置
WO2018184569A1 (zh) 无线充电方法、装置、系统和待充电设备
CN113544929B (zh) 充电方法和充电装置
WO2018184285A1 (zh) 无线充电系统、装置、方法及待充电设备
WO2021077933A1 (zh) 充电控制方法、充电控制设备和电子设备
US11735941B2 (en) Charging method and charging device
US11722062B2 (en) Power supply device, electronic device and power supply method
WO2020124582A1 (zh) 接收装置和无线充电方法
US12034329B2 (en) Device to be charged, and charging and discharging control method
US12027888B2 (en) Transmitting apparatus, receiving apparatus, power supply device and wireless charging method
US11502557B2 (en) Wireless charging control method and charging control device
WO2020133081A1 (zh) 充电方法和装置、待充电设备、存储介质及芯片系统
WO2021017770A1 (zh) 无线充电方法和待充电设备
WO2021012951A1 (zh) 无线充电装置、方法及系统
WO2021013259A1 (zh) 待充电设备、无线充电方法及系统
WO2021052346A1 (zh) 充电方法、充电设备和电子设备
US20220263351A1 (en) Wireless receiving device, wireless charging system, wireless charging method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019916658

Country of ref document: EP

Effective date: 20210108

NENP Non-entry into the national phase

Ref country code: DE