WO2020172853A1 - 触控面板及其驱动方法、以及显示装置 - Google Patents

触控面板及其驱动方法、以及显示装置 Download PDF

Info

Publication number
WO2020172853A1
WO2020172853A1 PCT/CN2019/076478 CN2019076478W WO2020172853A1 WO 2020172853 A1 WO2020172853 A1 WO 2020172853A1 CN 2019076478 W CN2019076478 W CN 2019076478W WO 2020172853 A1 WO2020172853 A1 WO 2020172853A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
ultrasonic
sub
detection
piezoelectric layer
Prior art date
Application number
PCT/CN2019/076478
Other languages
English (en)
French (fr)
Inventor
丁小梁
王海生
刘英明
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP19883336.0A priority Critical patent/EP3933663A4/en
Priority to CN201980000212.0A priority patent/CN111868735B/zh
Priority to PCT/CN2019/076478 priority patent/WO2020172853A1/zh
Priority to US16/650,551 priority patent/US11269461B2/en
Publication of WO2020172853A1 publication Critical patent/WO2020172853A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0688Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction with foil-type piezoelectric elements, e.g. PVDF
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • G06F3/0436Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves in which generating transducers and detecting transducers are attached to a single acoustic waves transmission substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04106Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection

Definitions

  • At least one embodiment of the present disclosure relates to a touch panel, a driving method thereof, and a display device.
  • the ultrasonic fingerprint recognition structure is a three-layered structure, including a driving electrode, a receiving electrode, and a piezoelectric layer located between the two.
  • a driving voltage is applied to the driving electrode and the receiving electrode, the piezoelectric layer is excited by the voltage to produce an inverse piezoelectric effect, and the first ultrasonic wave is emitted outward.
  • the first ultrasonic wave touches the finger, it is reflected by the finger back to the second ultrasonic wave. Since the finger includes valleys and ridges, the intensity of the second ultrasonic vibration reflected by the finger back to the piezoelectric layer is different.
  • a fixed voltage is applied to the driving electrode, and the piezoelectric layer converts the second ultrasonic wave into a voltage signal.
  • the signal is transmitted to the fingerprint recognition module through the receiving electrode, and the position of the valley and the ridge is determined according to the voltage signal.
  • At least one embodiment of the present disclosure provides a touch panel, a driving method thereof, and a display device.
  • At least one embodiment of the present disclosure provides a touch panel, including:
  • the stacked first electrodes, circuit structure and piezoelectric layer are configured to be used as a touch detection structure and a fingerprint recognition structure;
  • the piezoelectric layer is configured to emit and/or receive ultrasonic waves
  • the circuit structure is configured as an ultrasonic detection part of the fingerprint identification structure
  • the first electrode in a plane parallel to the main surface of the piezoelectric layer, includes a plurality of first sub-electrode strips arranged in a first direction and extending in a second direction, and the circuit structure includes A plurality of circuit substructures arranged in an array in the first direction and the second direction, each of the circuit substructures includes a detection electrode;
  • the orthographic projection of each of the first sub-electrode strips on the main surface of the piezoelectric layer covers at least two detection electrodes of the circuit sub-structure on the main surface of the piezoelectric layer. Orthographic projection.
  • the touch panel also includes:
  • the circuit substructure further includes a first thin film transistor
  • the gate line is connected to the gate of the first thin film transistor
  • the detection line is connected to one of the source and the drain of the first thin film transistor
  • the detection electrode of the circuit substructure is configured to be connected to the drain corresponding to the source connected to the detection line or the source corresponding to the drain connected to the detection line of the first thin film transistor.
  • the multiple circuit substructures serve as multiple touch detections arranged in an array along the first direction and the second direction. Area;
  • a row of the touch detection area arranged along the second direction is a touch detection area group, and the plurality of touch detection area groups arranged along the first direction and the plurality of first sub-electrode strips are one by one correspond.
  • any two adjacent detection lines of the plurality of detection lines connected to the plurality of circuit substructures in a row of the touch detection area arranged along the first direction are respectively connected to the second thin film transistor
  • the touch panel further includes a signal line extending in the second direction, and the signal line is connected to the gate of the second thin film transistor.
  • the touch detection structure is multiplexed as the fingerprint recognition structure, and the touch detection structure includes the first electrode, the circuit structure, and is located between the first electrode and the circuit structure The laminated structure of the piezoelectric layer.
  • the piezoelectric layer includes a first piezoelectric layer and a second piezoelectric layer
  • the touch detection structure and the fingerprint recognition structure include multiplexed ultrasonic excitation parts and ultrasonic detection parts
  • the ultrasonic excitation part includes the first electrode, the second electrode, and the first piezoelectric layer located between the first electrode and the second electrode, which are stacked and arranged;
  • the ultrasonic detection unit includes the circuit structure, a third electrode, and the second piezoelectric layer located between the circuit structure and the third electrode, which are stacked.
  • the touch panel further includes an operation surface for touch detection or fingerprint recognition, wherein the ultrasonic excitation part is located on a side of the ultrasonic detection part away from the operation surface.
  • the second electrode and the third electrode are plate-shaped electrodes and cover the plurality of touch detection areas, and are configured to apply a fixed voltage.
  • the second electrode and the third electrode are the same electrode.
  • the piezoelectric layer includes a first piezoelectric layer and a second piezoelectric layer
  • the touch detection structure and the fingerprint recognition structure include a common ultrasonic excitation part
  • the ultrasonic excitation part includes the first electrode, the second electrode, and the first piezoelectric layer located between the first electrode and the second electrode, which are laminated and arranged;
  • the second electrode includes a plurality of second sub-electrode strips arranged along the second direction and extending along the first direction.
  • the ultrasonic excitation part is multiplexed as the first ultrasonic detection part of the touch detection structure
  • the fingerprint recognition structure further includes a second ultrasonic detection unit
  • the second ultrasonic detection unit includes the circuit structure, the second electrode, and the second piezoelectric layer located between the circuit structure and the second electrode that are stacked; or, the second The ultrasonic detection unit includes the circuit structure, the first electrode, and the second piezoelectric layer located between the circuit structure and the first electrode, which are stacked.
  • the touch panel further includes an operation surface for touch detection or fingerprint recognition, wherein the second ultrasonic detection portion is located on a side of the ultrasonic excitation portion facing the operation surface.
  • Another embodiment of the present disclosure provides a display device including a display panel and the aforementioned touch panel, the touch panel being located on a non-display side of the display panel.
  • Another embodiment of the present disclosure provides a method for driving a touch panel, including a touch detection phase and a fingerprint recognition phase, including:
  • the piezoelectric layer converts the second ultrasonic signal reflected back from the operation surface side of the touch detection or fingerprint recognition of the touch panel into a second electrical signal, and the circuit structure outputs the second electrical signal, wherein: N is an integer greater than or equal to 1, and less than or equal to the total number of the first sub-electrode strips.
  • the touch detection structure is multiplexed as the fingerprint recognition structure, and the touch detection structure includes the first electrode, the circuit structure, and is located between the first electrode and the circuit structure
  • the plurality of circuit substructures are divided into a plurality of touch detection areas arranged in an array along the first direction and the second direction, and are arranged along the second direction
  • a row of the touch detection area is a touch detection area group, and a plurality of touch detection area groups arranged along the first direction correspond to the plurality of first sub-electrode strips one-to-one,
  • the touch detection phase includes a first ultrasonic emission phase and a first detection phase
  • the first ultrasonic emission stage includes: loading the first electrical signal on the first sub-electrode strip in the Nth row, and detecting the touch in the Nth row corresponding to the first sub-electrode strip in the Nth row
  • the plurality of circuit substructures included in the area are loaded with a fixed voltage to excite the piezoelectric layer to emit the first ultrasonic signal;
  • the first detection stage includes: applying a fixed voltage to the first sub-electrode strip in the Nth row, and outputting the second electrical signal through the plurality of circuit substructures included in the touch detection area in the Nth row to Perform touch detection.
  • the fingerprint recognition phase includes a second ultrasonic wave emission phase and a second detection phase;
  • the second ultrasonic emission stage includes: after judging that the position of the first sub-electrode strip in the Mth row is a touch area according to the touch detection stage, loading the first sub-electrode strip in the Mth row An electrical signal applies a fixed voltage to the plurality of circuit substructures included in the touch detection area in the Mth row corresponding to the first subelectrode strip in the Mth row to excite the piezoelectric layer to emit the second An ultrasonic signal;
  • the second detection stage includes: applying a fixed voltage to the first sub-electrode strip in the Mth row, and outputting the second electrical signal through each row of the circuit substructure in the Mth row of the touch detection area to perform Fingerprint recognition, where M is an integer greater than or equal to 1, and less than or equal to the total number of the first sub-electrode strips.
  • the piezoelectric layer includes a first piezoelectric layer and a second piezoelectric layer
  • the touch detection structure and the fingerprint recognition structure include a common ultrasonic excitation portion and an ultrasonic detection portion
  • the ultrasonic excitation portion includes a stack
  • the first electrode, the second electrode, and the first piezoelectric layer located between the first electrode and the second electrode are provided
  • the ultrasonic detection unit includes the circuit structure and the Three electrodes and the second piezoelectric layer located between the circuit structure and the third electrode
  • the plurality of circuit substructures are divided into arrays arranged in the first direction and the second direction
  • a plurality of touch detection areas a row of the touch detection area arranged along the second direction is a touch detection area group
  • the first sub-electrode has one-to-one correspondence
  • the touch detection phase includes a first ultrasonic emission phase and a first detection phase
  • the first ultrasonic emission stage includes: applying the first electrical signal to the first sub-electrode strip in the Nth row, and applying a fixed voltage to the second electrode to excite the first piezoelectric layer to emit the first An ultrasonic signal;
  • the first detection stage includes: applying a fixed voltage to the third electrode, and outputting the second electrical signal through the touch detection area in the Nth row corresponding to the first sub-electrode strip in the Nth row to perform Touch detection.
  • the fingerprint recognition stage includes a second ultrasonic emission stage and a second detection stage
  • the second ultrasonic emission stage includes: judging that the position of the first sub-electrode strip in the Mth row is a touch according to the touch detection stage. After the area is controlled, the first electrical signal is applied to the first sub-electrode strip in the Mth row, and a fixed voltage is applied to the second electrode to excite the first piezoelectric layer to emit the first ultrasonic signal; or Loading the first electrical signal on each first sub-electrode strip, and applying a fixed voltage on the second electrode to excite the first piezoelectric layer to emit the first ultrasonic signal;
  • the second detection stage includes: applying a fixed voltage to the third electrode, and outputting the circuit substructure in each row of the touch detection area in the Mth row corresponding to the first subelectrode strip in the Mth row
  • the second electrical signal is used for fingerprint identification, where M is an integer greater than or equal to 1, and less than or equal to the total number of the first sub-electrode strips.
  • a plurality of detection lines extending in the first direction, a plurality of gate lines extending in the second direction, and the gate lines are connected to the gate of the first thin film transistor included in the circuit substructure ,
  • the detection line is connected to one of the source and drain of the first thin film transistor included in the circuit substructure;
  • the strobe line is configured as a switching signal transmission line of the circuit substructure
  • the detection line is configured to detect an electrical signal
  • Any two adjacent detection lines of the plurality of detection lines connected to the plurality of circuit substructures in a row of the touch detection area arranged along the first direction are respectively connected to the source of the second thin film transistor Pole and drain connection;
  • the touch panel further includes a signal line extending in the second direction, the signal line is connected to the gate of the second thin film transistor and is configured to transmit a signal for turning on or off the second thin film transistor,
  • a first turn-on voltage is input to the gate line connected to the circuit substructure in the touch detection area of the Nth row to make the circuit substructure in a working state
  • the second thin film transistor is input with a second turn-on voltage by the signal line to turn on the plurality of detection lines connected to the plurality of circuit substructures in a row of the touch detection area;
  • the first turn-on voltage is input to the gate line connected to the circuit substructure in the touch detection area of the Mth row to sequentially make each row of the circuit substructure In the working state, and the second thin film transistor is in the off state.
  • the piezoelectric layer includes a first piezoelectric layer and a second piezoelectric layer
  • the touch detection structure and the fingerprint recognition structure include a common ultrasonic excitation portion
  • the ultrasonic excitation portion includes the laminated A first electrode, a second electrode, and the first piezoelectric layer located between the first electrode and the second electrode.
  • the second electrode includes an array along the second direction and along the first piezoelectric layer. A plurality of second sub-electrode strips extending in one direction,
  • the touch detection phase includes a first ultrasonic emission phase, including: applying the first electrical signal to the first sub-electrode strips in the Nth row, and applying a fixed voltage to each second sub-electrode strip to excite all The first piezoelectric layer emits the first ultrasonic signal;
  • the ultrasonic excitation part is multiplexed as the first ultrasonic detection part of the touch detection structure, and the touch detection phase further includes a first detection phase including: applying a fixed voltage to the first sub-electrode strip in the Nth row , Outputting the third electrical signal converted by the third ultrasonic signal reflected by the first piezoelectric layer into the second sub-electrode for touch detection.
  • the fingerprint recognition structure further includes a second ultrasonic detection unit, the second ultrasonic detection unit includes the circuit structure, the second electrode, and the circuit structure and the second electrode arranged in a stack.
  • the second piezoelectric layer includes the second piezoelectric layer,
  • the fingerprint recognition phase includes a second ultrasonic wave emission phase, including: after judging that the positions of the first sub-electrode strips in the Mth row and the second sub-electrode strips in the Mth column are the touch area according to the touch detection phase , Applying the first electrical signal to the first sub-electrode strip in the M-th row, and applying a fixed voltage to the second sub-electrode strip in the M-th column to excite the first piezoelectric layer to emit the first ultrasonic signal Or, load the first electrical signal on each of the first sub-electrode strips, and load a fixed voltage on each of the second sub-electrode strips to excite the first piezoelectric layer to emit the first ultrasonic signal ;
  • the fingerprint recognition stage also includes a second detection stage, including: applying a fixed voltage to the second sub-electrode strips in the M-th column, or applying a fixed voltage to each of the second sub-electrode strips, passing an edge perpendicular to the The main plane direction of the second piezoelectric layer corresponds to the first sub-electrode strip in the M-th row, and the circuit substructures in each row output the second ultrasonic signal that is reflected back by the second piezoelectric layer into the first Two electrical signals for fingerprint identification, where M is an integer greater than or equal to 1 and less than or equal to the total number of the first sub-electrode strips.
  • the fingerprint recognition structure further includes a second ultrasonic detection portion, the second ultrasonic detection portion includes the circuit structure, the first electrode, and the circuit structure and the first electrode arranged in a stack.
  • the second piezoelectric layer includes the second piezoelectric layer,
  • the fingerprint recognition stage further includes a second ultrasonic wave emission stage, including: judging according to the touch detection stage that the positions of the first sub-electrode strips in the Mth row and the second sub-electrode strips in the Mth column are the touch area After that, the first electrical signal is applied to the first sub-electrode strip in the M-th row, and a fixed voltage is applied to the second sub-electrode strip in the M-th column to excite the first piezoelectric layer to emit the first ultrasonic wave Signal, or, apply the first electrical signal to each of the first sub-electrode strips, and apply a fixed voltage to each of the second sub-electrode strips to excite the first piezoelectric layer to emit the first ultrasonic wave signal;
  • the fingerprint identification stage also includes a second detection stage, including: applying a fixed voltage to the first sub-electrode strips in the Mth row, or applying a fixed voltage to each of the first sub-electrode strips, passing an edge perpendicular to the
  • the main plane direction of the second piezoelectric layer corresponds to each row of the circuit substructure corresponding to the first sub-electrode strip in the Mth row.
  • the circuit substructure outputs the second piezoelectric layer generated by the reflected second ultrasonic signal.
  • the second electrical signal is used for fingerprint identification, where M is an integer greater than or equal to 1, and less than or equal to the total number of the first sub-electrode strips.
  • 1A is a display device including an ultrasonic fingerprint recognition structure and a mutual capacitive touch detection structure
  • 1B is another display device including an ultrasonic fingerprint recognition structure and a mutual capacitive touch detection structure
  • FIG. 1C is a schematic diagram of the working principle of the ultrasonic fingerprint identification structure shown in FIG. 1A;
  • FIG. 2A is a schematic diagram of a partial cross-sectional structure of a touch panel provided by an example of an embodiment of the present disclosure
  • FIG. 2B is a schematic partial plan view of the first electrode shown in FIG. 2A;
  • FIG. 2C is a schematic partial plan view of the circuit structure shown in FIG. 2A;
  • Figure 2D is a simplified schematic diagram of the structure shown in Figure 2C;
  • FIG. 2E is a timing diagram of the touch detection phase of the touch panel shown in FIG. 2A;
  • 2F is a timing diagram of the fingerprint recognition phase of the touch panel shown in FIG. 2A;
  • 2G is a schematic diagram of a partial structure of a touch panel provided by another example of an embodiment of the present disclosure.
  • FIG. 2H is a schematic diagram of the circuit substructure shown in FIG. 2C;
  • FIG. 3 is a schematic diagram of a partial cross-sectional structure of a touch panel provided by another embodiment of the present disclosure.
  • FIG. 4A is a schematic diagram of a partial cross-sectional structure of a touch panel provided by another embodiment of the present disclosure.
  • FIG. 4B is a schematic partial plan view of the first electrode and the second electrode shown in FIG. 4A;
  • FIG. 4C is a schematic partial plan view of the circuit structure shown in FIG. 4A;
  • FIG. 5 is a schematic diagram of a partial cross-sectional structure of a touch panel provided by another embodiment of the present disclosure.
  • 6A is a schematic diagram of a partial cross-sectional structure of a display device provided by an example of another embodiment of the present disclosure.
  • 6B is a schematic partial cross-sectional structure diagram of a display device provided by another example of another embodiment of the present disclosure.
  • 6C is a schematic partial cross-sectional structure diagram of a display device provided by another embodiment of the present disclosure.
  • 6D is a schematic partial cross-sectional structure diagram of a display device provided by another embodiment of the present disclosure.
  • FIG. 6E is a schematic partial cross-sectional structure diagram of a display device according to another embodiment of the present disclosure.
  • FIG. 1A is a display device including an ultrasonic fingerprint recognition structure and a mutual capacitive touch detection structure.
  • the display device shown in FIG. 1A is a highly integrated device.
  • the display device has an ultrasonic fingerprint recognition structure arranged in an organic light emitting diode display panel, so that the display panel integrates the functions of display, touch and fingerprint recognition.
  • the display device includes a cover glass 10, a touch structure 11, a first substrate 12, a cathode layer 13 of an organic light emitting diode, a light emitting layer 14 and pixels stacked in sequence (stacked in the Y direction as shown in FIG. 1A).
  • the array layer 15 is the piezoelectric layer 16, the driving electrode layer 17 and the second substrate 18 on the side of the pixel array layer 15 away from the light-emitting layer 14.
  • the ultrasonic fingerprint recognition structure includes a driving electrode layer 17, a pixel array layer 15 and a piezoelectric layer 16 located between the two layers.
  • the three-layer structure constitutes a piezoelectric sandwich structure of the fingerprint recognition structure.
  • the driving electrode layer 17 is a metal layer on the entire surface, and the pixel array layer 15 serves not only as a pixel circuit for organic light emitting diode display, but also as a receiving electrode for an ultrasonic fingerprint recognition structure.
  • the touch structure included in the display device is a general capacitive touch structure, and the touch structure is located on the side of the light-emitting layer 14 for display.
  • FIG. 1B shows another display device including an ultrasonic fingerprint recognition structure and a mutual capacitive touch detection structure.
  • the display device shown in FIG. 1B is a device with a lower level of integration.
  • the display device includes a cover glass 20, a touch structure 21, a first substrate 22, and a cathode layer 23 of an organic light emitting diode stacked in sequence (stacked along the Y direction as shown in FIG. 1B).
  • the ultrasonic fingerprint identification structure shown in FIG. 1B includes a driving electrode layer 27, a receiving circuit structure layer 29, and a piezoelectric layer 28 located between the two layers.
  • the three-layer structure constitutes a piezoelectric sandwich structure of the fingerprint identification structure.
  • the ultrasonic fingerprint identification structure is placed on the side of the organic light emitting diode display module away from the cover glass 20, that is, the ultrasonic fingerprint identification structure is implemented in a way that is externally attached.
  • FIG. 1C is a schematic diagram of the working principle of the ultrasonic fingerprint identification structure shown in FIG. 1A.
  • a high-voltage sinusoidal electrical signal 1 is applied to the driving electrode layer 17 and a fixed voltage is applied to the pixel array layer 15, the piezoelectric layer 16 is excited by the voltage to produce an inverse piezoelectric effect, and the first ultrasonic wave 2 is emitted outward. After the first ultrasonic wave 2 contacts the finger, it is reflected by the finger back to the second ultrasonic wave 5. Since the fingerprint of the finger includes valley 3 and ridge 4, the vibration intensity of the second ultrasonic wave 5 reflected back to the piezoelectric layer 16 by the valley 3 and ridge 4 at different positions of the finger fingerprint is different.
  • the piezoelectric layer 16 converts the second ultrasonic wave 5 into a voltage signal, which is transmitted to the integrated circuit through the pixel array layer 15, and the integrated circuit judges according to the voltage signal The position of the valley 3 and ridge 4 of the fingers.
  • Embodiments of the present disclosure provide a touch panel and a driving method thereof, and a display device.
  • the touch panel includes: stacked first electrodes, a circuit structure, and a piezoelectric layer; stacked first electrodes, a circuit structure, and a piezoelectric layer are configured to be used as a touch detection structure and a fingerprint recognition structure; and a piezoelectric layer Is configured to transmit and/or receive ultrasonic waves;
  • the circuit structure is configured as an ultrasonic detection part of a fingerprint recognition structure; wherein, in a plane parallel to the main surface of the piezoelectric layer, the first electrode includes a first electrode arranged in a first direction and a second A plurality of first sub-electrode strips extending in a direction, the circuit structure includes a plurality of circuit sub-structures arrayed in a first direction and a second direction, each circuit sub-structure includes a detection electrode; along the first direction, each first The orthographic projection of the sub-electrode strips on the main surface
  • FIG. 2A is a schematic partial cross-sectional structure diagram of a touch panel provided by an embodiment of the present disclosure
  • FIG. 2B is a partial planar structure diagram of the first electrode shown in FIG. 2A
  • 2C is a partial plan structural diagram of the circuit structure shown in FIG. 2A
  • FIG. 2D is a simplified structural diagram of FIG. 2C
  • FIG. 2E is a timing diagram of the touch detection stage
  • FIG. 2F is a timing diagram of the fingerprint recognition stage
  • FIG. 2H is a diagram The schematic diagram of the circuit substructure shown in 2C.
  • the touch panel includes a touch detection structure 100 and a fingerprint recognition structure 200.
  • the touch detection structure 100 and the fingerprint recognition structure 200 include a first electrode 210, a circuit structure 220, and a piezoelectric layer 230 that are stacked, where the stacked configuration refers to the stacked configuration along the Y direction shown in FIG. 2A.
  • the first electrode 210 includes a first direction (ie, Z direction ) Are arranged and extend along the second direction (that is, the X direction) a plurality of first sub-electrode strips 211
  • the circuit structure 220 includes a plurality of circuit sub-structures 221 arranged in an array along the first direction and the second direction, each circuit The substructure 221 includes a detection electrode 2210.
  • the orthographic projection of each first sub-electrode strip 211 on the main surface of the piezoelectric layer 230 covers the orthographic projection of the detection electrodes 2210 of at least two circuit substructures 221 on the main surface of the piezoelectric layer 230, that is, Along the first direction, the size of each first sub-electrode strip 211 is at least more than twice the size of the detection electrode 2210 of each circuit sub-structure 221, and along the Y direction, the first sub-electrode strip 111 and the circuit sub-structure 221 There is overlap.
  • the orthographic projection of each first sub-electrode strip 211 on the main surface of the piezoelectric layer 230 may also cover the orthographic projection of at least two circuit substructures 221 on the main surface of the piezoelectric layer 230.
  • the piezoelectric layer 230 includes a first piezoelectric layer 231 and a second piezoelectric layer 232
  • the touch detection structure 100 and the fingerprint recognition structure 200 include a common ultrasonic excitation unit 2001 and ultrasonic detection
  • the part 2002 that is, the ultrasonic excitation part of the touch detection structure is multiplexed into the ultrasonic excitation part of the fingerprint identification structure, and the ultrasonic detection part of the touch detection structure is multiplexed into the ultrasonic detection part of the fingerprint identification structure.
  • the ultrasonic excitation unit 2001 includes a first electrode 210, a second electrode 240, and a first piezoelectric layer 231 located between the first electrode 210 and the second electrode 240.
  • the ultrasonic detection unit 2002 includes a circuit structure 220, The third electrode 250 and the second piezoelectric layer 232 located between the circuit structure 220 and the third electrode 250.
  • the touch panel provided in this embodiment can use ultrasonic technology to realize touch and fingerprint detection, and after the touch area is determined through touch detection, fingerprint recognition on the touch area can improve recognition accuracy and reduce recognition time.
  • the touch panel further includes a plurality of detection lines 201 extending in a first direction, and a plurality of gate lines 202 extending in a second direction.
  • the gate line 202 and the detection line 201 are respectively connected to each circuit substructure 221, the gate line 202 is connected to the gate of the first thin film transistor T3 included in the circuit substructure 221, and the detection line 201 is connected to the first thin film transistor T3 included in the circuit substructure 221.
  • the detection electrode 2210 of the circuit substructure 221 is configured as the drain corresponding to the source of the first thin film transistor T3 connected to the detection line 201 or the detection line 201
  • the connected drain corresponds to the source connection.
  • the connection between the detection electrode and the other of the source and drain of the first thin film transistor T3 can be a direct connection or an indirect connection through other components.
  • the detection electrode 2210 is connected through
  • the fourth thin film transistor T2 shown in 2H is connected to the other of the source and drain of the first thin film transistor T3.
  • the multiple detection lines 201 are all connected to an integrated circuit (IC) 206.
  • the gate line 202 is used as a switch signal input line of the circuit substructure 221 to input a switch signal for the first thin film transistor T3.
  • the detection line 201 is configured to transmit an electrical signal.
  • the circuit substructure 221 in this embodiment may include a plurality of thin film transistors (for example, T1-T3), detection electrodes 2210, and diodes.
  • T1-T3 thin film transistors
  • detection electrodes 2210 one of the source and drain of the third thin film transistor T1 is connected to the detection electrode 2210.
  • the driving voltage Vq can be transmitted to the detection electrode 2210, and the driving electrode is input with an AC voltage signal at this time ,
  • the piezoelectric layer located between the detection electrode and the drive electrode can emit ultrasonic waves.
  • the detection electrode 2210 is not input with a voltage signal.
  • the piezoelectric layer starts to receive ultrasonic waves and converts the ultrasonic signals into electrical signals.
  • the detection electrode 2210 is input to the gate of the fourth thin film transistor T2, and the voltage of the detection electrode 2210 input to the gate of the fourth thin film transistor T2 varies with the intensity of the ultrasonic signal.
  • the different potentials at point A can control the second electrode of the fourth thin film transistor T2 to output different currents.
  • the gate of the first thin film transistor T3 is connected to the gate line 202.
  • the gate line 202 is input with a turn-on electrical signal to turn on the thin film transistor
  • the different currents output by the second electrode of the fourth thin film transistor T2 are input to the first thin film transistor.
  • the first pole of the transistor T3 the current is transmitted to the integrated circuit 206 through the detection line 201 connected to the second pole of the first thin film transistor T3 for touch or fingerprint detection.
  • the gate line 202 is not input with the turn-on electrical signal, the first thin film transistor T3 is in the off state, and the circuit substructure 221 cannot transmit the electrical signal to the detection line 201.
  • the diode included in the circuit substructure is connected to the bias voltage source.
  • the bias voltage input to the diode is at a high level, it can play a role in selecting the ultrasonic echo signal.
  • the echo generated by the previous echo at point A can be selected.
  • the signal is eliminated and the echo is sampled.
  • the bias voltage is at a low level so that the subsequent echo signal will not affect the potential of point A. That is, the stage when the bias voltage is at a high level is the echo sampling stage to collect effective ultrasonic signals and eliminate interfering echo signals.
  • the multiple circuit substructures 221 are divided into multiple touch detection areas 2200 arranged in an array along the first direction and the second direction.
  • each touch detection area 2200 serves as a touch detection unit
  • each circuit substructure 221 serves as a fingerprint recognition detection unit
  • each touch detection area 2200 includes at least two rows and two columns of circuit substructures 221 .
  • two adjacent detection lines and one of the multiple detection lines 201 connected to the multiple circuit substructures 221 in the same column of the touch detection area 2200 arranged along the first direction The source 2041 and the drain 2042 of the second thin film transistor 204 are respectively connected; there is no connection relationship between the detection lines 201 connected to the multiple circuit substructures 221 in the two adjacent columns of touch detection regions 2200. That is, the multiple detection lines 201 connected to the multiple circuit substructures 221 included in each touch detection area 2200 are connected through the source and drain of the multiple second thin film transistors 204, and the multiple second thin film transistors 204 The gate is connected to the signal line 205.
  • the multiple detection lines 201 of each touch detection area 2200 are electrically connected; when the signal line 205 is not When strobing, when all the second thin film transistors 204 are in the off state, the detection lines 201 of each touch detection area 2200 are not connected to each other.
  • a plurality of gate lines 202 connected to a plurality of circuit substructures 221 in a row of touch detection areas 2200 arranged in the second direction are electrically connected to a row driving unit 207, that is, a row of touches arranged in the second direction
  • the control detection area 2200 is a touch detection area group, and a touch detection area group is electrically connected to a row driving unit 207; and the multiple gate lines 202 in the touch detection area 2200 of different rows are driven by different rows ( GOA, gate driver on array) unit 207 is electrically connected, that is, different touch detection area groups are electrically connected to different row driving units 207.
  • the first direction is the column direction of the touch detection area 2200 and the second direction is the row direction of the touch detection area 2200 as an example.
  • a row of touch detection areas 2200 is opposed to a first sub-electrode strip 211, that is, a row of touch detection areas 2200 is
  • the orthographic projection on the electrical layer 230 overlaps with the orthographic projection of a first sub-electrode strip 211 on the piezoelectric layer 230.
  • the number of rows of the touch detection area 2200 is equal to the number of the first sub-electrode strips 211, that is, the multi-row touch detection area 2200 corresponds to the plurality of first sub-electrode strips 211 one-to-one, that is, multiple touch detection area groups and The plurality of first sub-electrode strips correspond one to one.
  • the ultrasonic detection unit 2002 further includes a first substrate 2020 for carrying the circuit structure 220.
  • the ultrasonic excitation part 2001 is bonded to the ultrasonic detection part 2002 by the first colloid 2010.
  • the touch panel further includes an operation surface 260 for touch detection or fingerprint recognition.
  • the operation surface 260 for touch detection or fingerprint recognition is a touch panel for realizing touch detection or fingerprint recognition. surface.
  • the ultrasonic excitation unit 2001 is located on the side of the ultrasonic detection unit 2002 far away from the operation surface 260 for touch detection or fingerprint recognition to reduce the adverse effects of the ultrasonic excitation unit 2001 on the ultrasonic detection unit 2002 during touch detection and fingerprint recognition.
  • the operation surface may be the surface of the cover plate of the touch device.
  • the ultrasonic excitation part is located on the side of the ultrasonic detection part away from the cover plate.
  • the second electrode 240 and the third electrode 250 in this embodiment are plate-shaped electrodes, that is, in the XZ plane, the second electrode 240 and the third electrode 250 are electrodes covering the entire surface of the multiple touch detection areas 2200. And, the second electrode 240 and the third electrode 250 are configured to be applied with a fixed voltage. In this embodiment, the second electrode and the third electrode are set as full-surface electrodes to simplify debugging.
  • the material of the second electrode 240 and the third electrode 250 may be a metal material or other conductive materials, which is not limited in this embodiment.
  • the material of the piezoelectric layer 230 in this embodiment may include piezoelectric polymer materials such as polyvinylidene fluoride (PVDF), and this embodiment includes but is not limited to this.
  • the materials of the first piezoelectric layer 231 and the second piezoelectric layer 232 in this embodiment may be the same or different, as long as they can be excited to generate ultrasonic signals and can convert the received ultrasonic signals into electrical signals.
  • the material of the first electrode 210 in this embodiment may be a metal material or other conductive materials, which is not limited in this embodiment.
  • the driving method of the touch panel includes a touch detection stage and a fingerprint recognition stage, including: loading a first electrical signal on the first sub-electrode strip 211 in the Nth row to excite the piezoelectric layer 230 to emit a first ultrasonic wave Signal; the circuit structure 220 outputs a second electrical signal generated by the piezoelectric layer 230 being reflected back by the second ultrasonic signal, where N is an integer greater than or equal to 1, and less than or equal to the total number of the first sub-electrode strips.
  • the touch detection structure 100 and the fingerprint recognition structure 200 in this embodiment share the ultrasonic excitation part 2001 and the ultrasonic detection part 2002.
  • the touch detection stage includes the first ultrasonic emission stage, including: the first sub-electrode strip 211 in the Nth row (for example, the first sub-electrode in the first row)
  • the first sub-electrode strip 2111 or the second row of the first sub-electrode strip 2112) is loaded with a first electrical signal (such as a high-voltage sine wave signal), and a fixed voltage is applied to the second electrode 240 to cause the first piezoelectric layer 231 to produce an inverse piezoelectric effect, and emit the An ultrasonic signal.
  • a first electrical signal such as a high-voltage sine wave signal
  • the inverse piezoelectric effect here means that when an electric field is applied in the polarization direction of the piezoelectric layer material, the piezoelectric layer material produces mechanical deformation or mechanical stress in a certain direction, that is, the conversion between electrical energy and mechanical energy occurs. If the applied electrical signal is a high-frequency electrical signal, the material of the piezoelectric layer will generate a high-frequency acoustic signal, that is, an ultrasonic signal.
  • the touch detection phase also includes a first detection phase, including: applying a fixed voltage to the third electrode 250 and passing through the first sub-electrode strip in the Nth row.
  • the touch detection area 2200 in the Nth row corresponding to 211 outputs a second electrical signal generated by the second piezoelectric layer 232 under the action of the reflected second ultrasonic signal, so as to perform touch detection.
  • the first ultrasonic signal may be reflected by an object at the touched position, such as a finger, or it may be reflected by air at a non-touched position.
  • the finger at the touched position and the non-touched position The ultrasonic signals reflected by the air back to the second piezoelectric layer 232 are all called second ultrasonic signals.
  • a fixed voltage is input to the third electrode 250, the second piezoelectric layer 232 converts the second ultrasonic signal into a second electrical signal, and the circuit substructure 221 in the touch detection area 2200 of the Nth row converts the second electrical signal
  • the detection line 201 is transmitted to the integrated circuit 206 for touch detection.
  • the intensity of the second ultrasound signal reflected by the first ultrasound signal from the external object (eg finger) at the touch position is relatively small, and The air at the non-touch position has a large difference in the reflectivity of the ultrasonic waves reflected by the above-mentioned film. Therefore, the first ultrasonic signal is reflected by the air at the non-touch position.
  • the second ultrasonic signal has a greater intensity, and the second piezoelectric layer will The second ultrasonic signals with different intensities are converted into second electrical signals with different intensities, so the touch position can be distinguished according to the intensity of the second electrical signals.
  • the first piezoelectric layer 231 emits the first ultrasonic signal.
  • the first row driving unit 2071 corresponding to the first row of touch detection area 2200 inputs the first row of gate lines 202 connected to the circuit substructure 221 included in the row of touch detection area 2200.
  • a turn-on voltage (such as a high-level signal) to make all the circuit substructures 221 included in the row of touch detection area 2200 work, and the detection lines connected to the plurality of circuit substructures 221 included in the row of touch detection area 2200 201 may transmit the second electrical signal received by the circuit substructure 221 to the integrated circuit 206.
  • the first piezoelectric layer 231 emits the first ultrasonic signal.
  • the second row driving unit 2072 corresponding to the second row of touch detection area 2200 inputs the multiple gate lines 202 connected to the circuit substructure 221 included in the row of touch detection area 2200
  • the first turn-on voltage makes all the circuit substructures 221 included in the row of touch detection area 2200 work, and the detection lines 201 connected to the plurality of circuit substructures 221 included in the row of touch detection area 2200 can connect the circuit substructures
  • the second electrical signal received by 221 is transmitted to the integrated circuit 206. According to the above-mentioned driving process, the transmission of the first ultrasonic signal and the detection of the second ultrasonic signal are sequentially performed until the touch detection is completed.
  • the above-mentioned circuit substructure in the working state refers to the state in which the circuit substructure can transmit the second electrical signal generated by the second piezoelectric layer to the detection line.
  • the above-mentioned loading of the first electrical signal to the first sub-electrode strip may adopt a double-ended driving manner to reduce loading.
  • the second thin film transistor 204 is inputted with a second turn-on voltage (for example, a high-level signal) by the signal line 205 to make a contact with a column
  • a second turn-on voltage for example, a high-level signal
  • the multiple detection lines 201 connected to the multiple circuit substructures 221 in the detection area 2200 are connected, so that the electrical signals received by the circuit substructures 221 in each column of the touch detection area 2200 can be equivalent to outputting to the integrated circuit through one detection line 201 206 to judge the touch position. That is, each detection line 201 is connected to an interface (not shown in the figure) of the integrated circuit 206.
  • the second thin film transistor 204 When the second thin film transistor 204 is in the on state, it is connected to multiple circuit substructures in a column of touch detection areas 2200.
  • the multiple detection lines 201 connected by 221 are electrically connected. Therefore, the second electrical signal can be transmitted to the integrated circuit 206 through only one interface for touch detection, which can save power.
  • the signal line 205 In the first ultrasonic emission stage, the signal line 205 is input to a low level, and the second thin film transistor 204 is in the off state.
  • the fingerprint recognition phase includes a second ultrasonic wave emission phase and a second detection phase.
  • the second ultrasonic emission stage includes: judging the Mth (M is greater than or equal to 1, and less than or equal to the total of the first sub-electrode strips) according to the touch detection stage. Integer of the number) After the position of the first sub-electrode strip 211 in the row is the touch area, the first electrical signal is applied to the first sub-electrode strip 211 in the M-th row, and a fixed voltage is applied to the second electrode 220 to excite the first piezoelectric The layer 231 emits a first ultrasonic signal. This embodiment is not limited to this, and the first electrical signal may be applied to all the first sub-electrode strips.
  • the second detection stage includes: applying a fixed voltage to the third electrode 250, and touching the M-th row corresponding to the first sub-electrode strip 211 in the M-th row.
  • Each row circuit substructure 221 in the control detection area 2200 outputs a second electrical signal for fingerprint identification.
  • the second ultrasonic signal is reflected back to the second piezoelectric layer 232.
  • a fixed voltage is applied to the third electrode 250, and the second piezoelectric layer 232 converts the second ultrasonic signal into a second electrical signal, and the touch detection area in the Mth row corresponding to the first sub-electrode strip 211 in the Mth row
  • the circuit substructure 221 in 2200 transmits the second electrical signal to the integrated circuit 206 row by row for fingerprint identification.
  • the row driving unit 207 controls the plurality of gate lines 202 included in the row of touch detection area 2200 to input the second electrical signal into the circuit substructure 221 one by one.
  • a voltage is turned on to make the circuit substructures 221 work row by row, and the detection lines 201 connected to the plurality of circuit substructures 221 included in the touch detection area 2200 of the row output second electrical signals to the integrated circuit 206 one by one for fingerprint identification .
  • the second thin film transistor 204 connected to the adjacent detection line 201 is always in the off state so that the multiple detection lines 201 connected to each column of the circuit substructure 221 in a column of touch detection areas 2200 are not connected to each other .
  • M is 1.
  • a high-voltage sine wave signal is applied to the first sub-electrode strip 2111 in the first row so that the first piezoelectric layer 231 emits the first ultrasonic signal.
  • the second detection stage by sequentially inputting the first turn-on voltage to the multiple gate lines 202 connected to the first row circuit substructure 2211, the second row circuit substructure 2212, and other multiple row circuit substructures 221, the multiple rows of circuits
  • the substructure 2211 is in a working state row by row, and the detection line 201 connected to the circuit substructure 221 can transmit the second electrical signal received by the circuit substructure 221 to the integrated circuit 206.
  • the intensity of the second ultrasonic signal reflected by the valleys and ridges is different (the intensity of the second ultrasonic signal reflected by the valley is greater than the second ultrasonic signal reflected by the ridge)
  • the intensity of the ultrasonic signal the size of the second electrical signal converted into the second ultrasonic signal by the second piezoelectric layer is different, so the fingerprint identification module included in the integrated circuit can realize fingerprint identification according to the size of the second electrical signal.
  • the ultrasonic signal generated by the first piezoelectric layer is called the first ultrasonic signal
  • the reflected ultrasonic signal received by the second piezoelectric layer is called the second ultrasonic signal. signal.
  • FIG. 2G is a schematic diagram of a partial structure of a touch panel provided by another example of this embodiment.
  • the touch panel in this example is different from the touch panel in the example shown in Figure 2A.
  • the difference is that the second electrode and the third electrode in this example are the same electrode.
  • Both are called the second electrode 240, that is, the ultrasonic excitation part 2001 and the ultrasonic detection part 2002 in this example share the second electrode 240.
  • the second electrode 240 functions in the first ultrasonic emission stage, the second ultrasonic emission stage, and the second
  • the first detection phase and the second detection phase provide a fixed-value driving voltage for the first piezoelectric layer 231 and the second piezoelectric layer 232.
  • the driving method of the touch panel in this example is the same as the driving method of the touch panel in the example shown in FIG. 2A, and will not be repeated here.
  • FIG. 3 is a schematic diagram of a partial cross-sectional structure of a touch panel provided by another embodiment of the present disclosure.
  • the touch panel includes a touch detection structure 100 and a fingerprint recognition structure 200.
  • the touch detection structure 100 is multiplexed as a fingerprint recognition structure 200, and the touch detection structure 100 is a three-stack layer including a first electrode 110, a circuit structure 120, and a piezoelectric layer 130 between the first electrode 110 and the circuit structure 120 Structure (ie piezoelectric sandwich structure).
  • the thickness of the touch panel provided by this embodiment is relatively thin, which can achieve lightness and thinness.
  • the planar structure of the first electrode 110 and the circuit structure 120 in this embodiment is the same as the planar structure of the first electrode 210 and the circuit structure 220 in the embodiment shown in FIGS. 2B-2D.
  • the touch detection area formed by dividing the multiple circuit substructures included in the circuit structure 120 is the same as the touch detection area 2200 shown in FIG. 2C and FIG. 2D.
  • the specific structure of the circuit substructure in this embodiment is The specific structure of the circuit substructure of the embodiment shown in FIG. 2A is the same, and the connection relationship between the circuit substructure and the gate line and the detection line in this embodiment is also the same as the connection relationship shown in FIG. 2B and FIG. 2C. This will not be repeated here.
  • the method for driving the touch panel includes a touch detection phase and a fingerprint recognition phase.
  • the touch detection phase includes the first ultrasonic emission phase and the first detection phase.
  • the first ultrasonic emission stage includes: N (N is an integer greater than or equal to 1, and less than or equal to the total number of the first sub-electrode strips) row first sub-electrode strips are loaded with a first electrical signal (a high-voltage sine wave signal, such as a voltage above 100V).
  • N is an integer greater than or equal to 1, and less than or equal to the total number of the first sub-electrode strips
  • a plurality of circuit substructures included in the touch detection area in the Nth row corresponding to the first sub-electrode strip are applied with a fixed voltage so that the piezoelectric layer is excited by the voltage to generate an inverse piezoelectric effect, and the first ultrasonic signal is emitted outward.
  • applying a fixed voltage to the circuit substructure in the Nth row of the touch detection area includes: as shown in FIG. 2H, turning on the third thin film transistor T1, and inputting the fixed voltage from the third thin film transistor T1 to the detection electrode 2210.
  • the first detection stage includes: applying a fixed voltage to the first sub-electrode strip in the Nth row, and outputting the second electrical signal generated by the second ultrasonic signal reflected by the piezoelectric layer through the touch detection area in the Nth row. Perform touch detection.
  • the first ultrasonic signal may be reflected by an object at the touched position, such as a finger and the air at a non-touched position.
  • the ultrasonic signal reflected back to the piezoelectric layer 230 at the touched position and the non-touched position Both are called the second ultrasonic signal.
  • stop driving the circuit sub-structure change the high-voltage sine wave signal loaded on the first sub-electrode strip into a fixed voltage, then the piezoelectric layer converts the second ultrasonic signal into a second electrical signal, and the touch detection area
  • the circuit substructure transmits the second electrical signal to the integrated circuit through the detection line.
  • the row drive unit corresponding to the touch detection area of the row is
  • the multiple gate lines connected to all the circuit substructures included in the touch detection area input the first turn-on voltage so that all the circuit substructures included in the row of touch detection area are in working state, which is the same as that of the row of touch detection areas.
  • the detection line connected to the circuit substructure can transmit the second electrical signal received by the circuit substructure to the integrated circuit.
  • the working state of the circuit substructure in this embodiment means that the circuit substructure can receive the driving voltage transmitted by the integrated circuit to the circuit substructure through the detection line, and the circuit substructure can transmit the second electrical signal generated by the piezoelectric layer to the detection line Of two states.
  • the signal line is the second thin film transistor connecting two adjacent detection lines inputting the second turn-on voltage
  • the circuit judges the touch position.
  • the second thin film transistor is in the off state.
  • the working principle of the circuit substructure in the first detection stage in this embodiment is the same as the working principle of the circuit substructure in the first detection stage in the embodiment shown in FIGS. 2A-2F.
  • the fingerprint recognition phase includes a second ultrasonic wave emission phase and a second detection phase.
  • the second ultrasonic emission stage includes : After judging that the position of the first sub-electrode strip in the Mth row is the touch area according to the touch detection stage, the first electrical signal (high voltage sine wave signal) is applied to the first sub-electrode strip in the Mth row, and the A plurality of circuit substructures included in the touch detection area in the Mth row corresponding to one sub-electrode strip are applied with a fixed voltage to make the piezoelectric layer emit a first ultrasonic signal.
  • the first electrical signal may be applied to all the first sub-electrode strips, and a fixed voltage may be applied to the circuit sub-structure.
  • the second detection stage includes: applying a fixed voltage to the first sub-electrode strips in the Mth row, and outputting second electrical signals through the circuit substructures in each row of the touch detection area in the Mth row to perform fingerprint recognition.
  • the second ultrasonic signal is reflected back to the piezoelectric layer.
  • the circuit substructure in transmits the second electrical signal to the integrated circuit through the detection line.
  • the row driving unit controls the multiple gate lines included in the row of touch detection areas to input the first turn on the row of circuit substructures.
  • the voltage is used to make the circuit substructures work row by row, and the detection lines connected to the multiple circuit substructures included in the touch detection area of the row output second electrical signals to the integrated circuit one by one to perform fingerprint identification.
  • the thin film transistors are always in the off state so that the multiple detection lines connected to the circuit substructures of each column in a row of touch detection areas are not connected to each other.
  • the ultrasonic signal generated by the piezoelectric layer is referred to as the first ultrasonic wave
  • the reflected ultrasonic signal received by the piezoelectric layer is referred to as the second ultrasonic signal.
  • FIG. 4A is a schematic diagram of a partial cross-sectional structure of the touch panel provided by an embodiment of the present disclosure
  • FIG. 4B is a partial planar structure of the first electrode and the second electrode shown in FIG. 4A
  • FIG. 4C is a partial planar structural diagram of the circuit structure shown in FIG. 4A.
  • the touch panel includes a touch detection structure 100 and a fingerprint recognition structure 200.
  • the touch detection structure 100 and the fingerprint recognition structure 200 include a first electrode 310, a circuit structure 320, and a piezoelectric layer 330 that are stacked.
  • the first electrodes 310 include arrays along the first direction (ie, the Z direction), And a plurality of first sub-electrode strips 311 extending in the second direction (ie, the X direction), the circuit structure 320 includes a plurality of circuit sub-structures 321 arranged in an array along the first direction and the second direction, and along the first direction,
  • the orthographic projection of each first sub-electrode strip 311 on the main surface of the piezoelectric layer 330 covers the orthographic projection of the detection electrodes of at least two circuit substructures 321 on the main surface of the piezoelectric layer 330, that is, along the first direction, each The size of the first sub-electrode strips 311 is at least twice the size of each circuit sub-structure 321, and along the Y direction, the first sub-electrode strips 311 and the circuit
  • the piezoelectric layer 330 includes a first piezoelectric layer 331 and a second piezoelectric layer 332, and the touch detection structure 100 and the fingerprint recognition structure 200 include a common ultrasonic excitation part 3001,
  • the portion 3001 includes a first electrode 310, a second electrode 340, and a first piezoelectric layer 331 located between the first electrode 310 and the second electrode 340, which are stacked and arranged.
  • the second electrode 340 includes a second electrode arranged along the second direction.
  • a plurality of second sub-electrode strips 341 extending in one direction.
  • the second sub-electrode 341 in this embodiment serves as a touch detection electrode for outputting a touch detection signal to the integrated circuit 306.
  • the touch detection stage includes the first ultrasonic emission stage, including: the Nth (N is greater than Equal to 1, and less than or equal to the integer of the total number of the first sub-electrode strips) rows of the first sub-electrode strips 311 input the first electrical signal (high voltage sine wave signal), and the second electrode 340 includes each of the first sub-electrode strips through the integrated circuit 306
  • the two sub-electrodes 341 are applied with a fixed voltage, so that the first piezoelectric layer 331 is excited by the voltage to generate an inverse piezoelectric effect, and emit the first ultrasonic signal outward.
  • the ultrasonic excitation part 3001 is multiplexed as the first ultrasonic detection part 3002 of the touch detection structure 100.
  • the touch detection stage also includes a first detection stage, including: applying a fixed voltage to the first sub-electrode strip 311 in the Nth row, and outputting the first piezoelectric layer 331 through the second sub-electrode 341 The third electrical signal generated by the reflected third ultrasonic signal is used for touch detection.
  • the first ultrasonic signal can be reflected by the object at the touched position, such as the finger and the air at the untouched position.
  • the finger at the touched position and the air at the untouched position are reflected back to the first pressure.
  • the ultrasonic signals of the electrical layer 331 are all called the third ultrasonic signals.
  • a fixed voltage is input to the first sub-electrode 311 in the Nth row, the first piezoelectric layer 331 converts the third ultrasonic signal into a third electrical signal, and the second sub-electrode 341 transmits the generated third electrical signal to the integrated circuit.
  • the circuit 306 realizes the detection of the touch position.
  • the fingerprint recognition structure 200 further includes a second ultrasonic detection unit 3003, and the second ultrasonic detection unit 3003 includes a circuit structure 320, a second electrode 340, and a layer located between the circuit structure 320 and the second electrode 340. Between the second piezoelectric layer 332.
  • the second ultrasonic detection part 3003 and the first ultrasonic detection part 3002 share the second electrode 340, which can reduce the thickness of the touch panel.
  • the touch panel further includes a plurality of detection lines 301 extending in a first direction, and a plurality of gate lines 302 extending in a second direction.
  • the gate line 302 and the detection line 301 are respectively connected to each circuit substructure 321, and the multiple detection lines 301 are all connected to an integrated circuit (IC) 306.
  • the gate line 302 serves as a switch signal input line of the circuit substructure 321.
  • the detection line 301 is configured to transmit electrical signals.
  • circuit substructure 321 in this embodiment may be the same as the structure of the circuit substructure 221 in the embodiment shown in FIG. 2A, and will not be repeated here.
  • the plurality of circuit substructures 321 may be divided into a plurality of circuit structure subregions 3200 arranged in an array along the first direction and the second direction.
  • a row of circuit structure sub-regions 3200 is opposed to a first sub-electrode strip 311, that is, the orthographic projection of a row of circuit structure sub-regions 3200 on the piezoelectric layer 330 is opposite to a first sub-electrode strip.
  • the orthographic projections of the electrode strips 311 on the piezoelectric layer 330 overlap.
  • the number of rows of the circuit structure sub-regions 3200 is equal to the number of the first sub-electrode strips 311, that is, the multi-row circuit structure sub-regions 3200 correspond to the plurality of first sub-electrode strips 311 one-to-one.
  • This embodiment is not limited to this, and the circuit substructure may not be divided into regions, but the corresponding relationship between the circuit substructure and the first sub-electrode strip is the same as above.
  • the fingerprint recognition phase includes the second ultrasonic emission phase, including: judging the Mth according to the touch detection phase (M is greater than or equal to 1, and less than or equal to the first Integer of the total number of sub-electrode strips) After the first sub-electrode strips 311 in the row and the second sub-electrode strips 341 in the M-th column are in the touch area, the first electrical signal is input to the first sub-electrode strips 311 in the M-th row, A fixed voltage is applied to the second sub-electrode strips 341 in the M-th column, so that the first piezoelectric layer 331 is excited by the voltage to generate an inverse piezoelectric effect, and the first ultrasonic signal is emitted outward.
  • a driving voltage may be applied to all the first sub-electrode strips and all the second sub-electrod
  • the fingerprint recognition stage also includes a second detection stage, including: applying a fixed voltage to the second sub-electrode strips 341 in the M-th column, passing along a line perpendicular to the main plane of the second piezoelectric layer 332
  • Each row of circuit substructures 321 whose direction corresponds to the first sub-electrode strip 311 of the Mth row outputs a second electrical signal generated by the second piezoelectric layer 332 under the action of the second ultrasonic signal reflected back to perform fingerprint recognition.
  • This embodiment is not limited to this.
  • each second sub-electrode strip 341 through each row of circuits corresponding to the M-th row of the first sub-electrode strip 311 along the direction perpendicular to the main plane of the second piezoelectric layer 332.
  • the sub-structure 321 outputs a second electrical signal generated by the second piezoelectric layer 332 under the action of the reflected second ultrasonic signal for fingerprint identification.
  • each row of circuit substructures 321 corresponding to the first sub-electrode strip 311 in the Mth row is the first sub-electrode strip 311 corresponding to the Mth row.
  • the second ultrasonic signal is reflected back to the second piezoelectric layer 332.
  • a fixed voltage is applied to the second electrode 340 (or the second sub-electrode 341 in the M-th column), and the second piezoelectric layer 332 converts the second ultrasonic signal into a second electrical signal, which is perpendicular to the second piezoelectric layer.
  • the circuit substructure 321 corresponding to the first sub-electrode strip 311 in the Mth row transmits the second electrical signal to the integrated circuit 306 through the detection line 301 row by row to realize fingerprint identification.
  • the circuit substructure 321 when the circuit substructure 321 outputs the second electrical signal generated by the second piezoelectric layer 332, multiple gates connected to the multiple circuit substructures 321 that transmit the second electrical signal
  • the line 302 is input with the first turn-on voltage row by row to make the circuit substructure 321 work row by row.
  • the detection line 301 connected to the circuit substructure 321 can transmit the second electrical signal received by the circuit substructure 321 to the integrated circuit one by one.
  • the circuit 306 performs fingerprint identification.
  • the second ultrasonic detection part 3003 is located on the side of the ultrasonic excitation part 3001 facing the operation surface 360 for touch detection or fingerprint recognition to reduce the occurrence of fingerprint recognition by the second ultrasonic detection part by the ultrasonic excitation part. influences.
  • the ultrasonic signal generated by the first piezoelectric layer is called the first ultrasonic signal.
  • the reflected ultrasonic signal received by the first piezoelectric layer is called the third ultrasonic signal, which is used for touch detection, and the reflected ultrasonic signal received by the second piezoelectric layer is all called the second ultrasonic signal, which is used for fingerprint identification.
  • FIG. 5 is a schematic partial cross-sectional view of the touch panel provided in this embodiment.
  • the touch panel provided in this embodiment includes a touch detection structure 100 and a fingerprint recognition structure 200.
  • the touch detection structure 100 and the fingerprint recognition structure 200 include a common ultrasonic excitation part 4001, which includes a first electrode 410, a second electrode 440, and a layer between the first electrode 410 and the second electrode 440.
  • the second electrode 440 includes a plurality of second sub-electrode strips 441 arranged along the second direction and extending along the first direction.
  • the second sub-electrode 441 in this embodiment serves as a touch detection electrode for outputting a touch detection signal to the integrated circuit.
  • the planar structure of the first sub-electrode strip included in the first electrode 410 and the second sub-electrode strip included in the second electrode 440 in this embodiment is the same as that of the first sub-electrode strip included in the first electrode 310 in the embodiment shown in FIG. 4B.
  • the electrode strip 311 has the same planar structure as the second sub-electrode strip 341 included in the second electrode 340, and will not be repeated here.
  • the ultrasonic excitation unit 4001 in this embodiment as the ultrasonic excitation unit of the touch detection structure 100 has the same working principle as the ultrasonic excitation unit 3001 of the embodiment shown in FIGS. 4A to 4C, that is, the touch in this embodiment
  • the driving method of the first ultrasonic emission stage of the control detection stage is the same as the driving method included in the embodiment shown in FIG. 4A to FIG. 4C, and will not be repeated here.
  • the ultrasonic excitation part 4001 is multiplexed as the first ultrasonic detection part 4002 of the touch detection structure 100.
  • the working principle of the first ultrasonic detection part 4002 in this embodiment is similar to that shown in FIGS. 4A-4C.
  • the working principle of the first ultrasonic detection unit 3002 of the embodiment of FIG. 4 is the same, that is, the driving method of the first detection phase included in the touch detection phase in this embodiment is the same as the driving method included in the embodiment shown in FIGS. 4A-4C The same, I won't repeat them here.
  • the fingerprint identification structure 200 further includes a second ultrasonic detection unit 4003, which includes a circuit structure 420, a first electrode 410, and a circuit structure 420 and a first electrode 410 that are stacked. Between the second piezoelectric layer 432.
  • the first electrode 410 is shared by the first ultrasonic detection portion 4002 and the second ultrasonic detection portion 4003, which can reduce the thickness of the touch panel.
  • the planar structure of the circuit structure 420 in this embodiment is the same as the square structure of the circuit structure 320 shown in FIG. 4C, and the specific structure of the multiple circuit substructures included in the circuit structure 420 is the same as the structure of the circuit substructure 321 shown in FIG. 4C The same, and the connection relationship between the circuit substructure and the gate line and the detection line in this embodiment is also the same as the connection relationship shown in FIG. 4C, and will not be repeated here.
  • the fingerprint recognition stage includes a second ultrasonic emission stage, including: judging the Mth row, the first sub-electrode strip and the Mth column according to the touch detection stage After the second sub-electrode strip is located in the touch area, the first electrical signal is applied to the first sub-electrode strip in the Mth row, and a fixed voltage is applied to the second sub-electrode strip in the M-th column so that the first piezoelectric layer 431 emits An ultrasonic signal; alternatively, the first electrical signal is applied to all the first sub-electrode strips, and a fixed voltage is applied to all the second sub-electrode strips to make the first piezoelectric layer 431 emit the first ultrasonic signal.
  • the fingerprint recognition stage also includes a second detection stage, including: applying a fixed voltage to the first sub-electrode strips in the Mth row, or applying a fixed voltage to each first sub-electrode strip, passing along the edge perpendicular to the second piezoelectric layer 432
  • the main plane direction of each row of circuit substructures corresponding to the first sub-electrode strip in the Mth row outputs a second electrical signal generated by the second piezoelectric layer being reflected by the second ultrasonic signal for fingerprint identification.
  • the multiple gate lines connected to the multiple circuit substructures that transmit the second electrical signal are input the first turn-on voltage row by row to make the circuit
  • the substructures are in the working state row by row, and the detection lines connected to the circuit substructure can transmit the second electrical signals received by the circuit substructure to the integrated circuit one by one for fingerprint identification.
  • FIG. 6A is a schematic partial cross-sectional structure diagram of the display device provided by an example of this embodiment.
  • the display device provided by this embodiment includes the touch panel 2000 shown in FIG. 2A, and the touch detection or fingerprint recognition operation surface 260 in the touch panel shown in FIG. 2A is the touch panel Used to realize touch detection or fingerprint recognition.
  • the display device further includes a display panel 270 located between the cover plate 261 and the touch panel 2000, that is, the display panel 270 is located on the side of the touch detection or fingerprint recognition operation surface of the touch panel away from the touch detection structure.
  • the display panel 270 and the touch panel 2000 are bonded by a second glue 280.
  • the touch panel 2000 that realizes the functions of touch detection and fingerprint recognition is located on the side of the display panel 270 away from the cover plate 261, the touch layer is arranged on the display panel compared to the general For the display device on the display side, the image displayed by the display panel provided in this embodiment has a higher transmittance and a better display quality.
  • the impedance, thickness, and Young's modulus of the materials of each film layer (including each film layer in the display panel) that the ultrasonic signal emitted by the piezoelectric layer experiences before contacting the cover plate needs to be matched to reduce The influence of each layer on the ultrasonic signal.
  • FIG. 6B shows a schematic partial cross-sectional structure diagram of a display device provided by another example of this embodiment.
  • the display device provided in this example includes the touch panel 2000 shown in FIG. 2G.
  • the touch panel 2000 in this embodiment further includes a second substrate 290 on the side of the circuit structure facing the display panel 270 for carrying the circuit structure.
  • an impedance matching layer (not shown in the figure) may be provided between the second substrate 290 and the circuit structure to reduce the impedance difference between the two, thereby reducing the impact of the impedance difference on the ultrasonic signal.
  • the positional relationship and connection relationship between the touch panel 2000 and the display panel 270 in this example are the same as those of the display device shown in FIG. 6A, and will not be repeated here.
  • FIG. 6C is a schematic partial cross-sectional structure diagram of the display device provided in this embodiment.
  • the display device provided by this embodiment includes the touch panel 1000 shown in FIG. 3, the display device includes a cover 161, and the touch detection or fingerprint recognition operation surface 160 of the touch panel 1000 is a touch panel 1000 is used to realize touch detection or fingerprint recognition.
  • the display device also includes a display panel 170 located between the cover 161 and the touch panel 1000. That is, the display panel 170 is located on the side of the touch detection or fingerprint recognition operation surface of the touch panel 1000 away from the touch detection structure. Located on the non-display side of the display panel.
  • the display panel 170 and the touch panel 1000 are bonded by a third glue 180.
  • the touch panel 1000 in this embodiment further includes a third substrate 191 on the side of the circuit structure 120 facing the display panel 170 for carrying the circuit structure 120.
  • a first impedance matching layer 190 may be further provided between the third substrate 191 and the circuit structure 120 to reduce the impedance difference between the two, thereby reducing the impact of the impedance difference on the ultrasonic signal.
  • the touch panel 1000 that realizes the functions of touch detection and fingerprint recognition is located on the side of the display panel 170 away from the cover plate 161
  • the touch layer is arranged on the display panel compared to the general
  • the image displayed by the display panel provided in this embodiment has a higher transmittance and a better display quality.
  • FIG. 6D is a schematic partial cross-sectional structure diagram of the display device provided in this embodiment.
  • the display device provided in this embodiment includes the touch panel 3000 shown in FIG. 4A, the display device includes a cover 361, and the touch detection or fingerprint recognition operation surface 360 of the touch panel is Used to realize touch detection or fingerprint recognition.
  • the display device also includes a display panel 370 located between the cover 361 and the touch panel 3000, that is, the display panel 370 is located on the side of the touch detection or fingerprint recognition operation surface of the touch panel, and the touch panel is located on the non-display side of the display panel. Side, and the display panel 370 and the touch panel 3000 are bonded by a fourth glue 380.
  • the touch panel 3000 in this embodiment further includes a fourth substrate 391 on the side of the circuit structure facing the display panel 370 for carrying the circuit structure.
  • a second impedance matching layer 390 may be further provided between the fourth substrate 391 and the circuit structure to reduce the impedance difference between the two, thereby reducing the impact of the impedance difference on the ultrasonic signal.
  • the touch panel 3000 that realizes the functions of touch detection and fingerprint recognition is located on the side of the display panel 370 far away from the cover plate 361, the touch layer is arranged on the display panel compared to the general For the display device on the display side, the image displayed by the display panel provided in this embodiment has a higher transmittance and a better display quality.
  • FIG. 6E is a schematic partial cross-sectional structure diagram of the display device provided by this embodiment.
  • the display device provided by this embodiment includes the touch panel 4000 shown in FIG. 5, the display device includes a cover plate 461, and the touch detection or fingerprint recognition operation surface of the touch panel is used for the touch panel. For realizing touch detection or fingerprint recognition.
  • the display device also includes a display panel 470 located between the cover plate 461 and the touch panel 4000, that is, the display panel 470 is located on the side of the touch detection or fingerprint recognition operation surface of the touch panel, and the touch panel is located on the non-display side of the display panel.
  • the display panel 470 and the touch panel 4000 are bonded by a fifth glue 480.
  • the touch panel 4000 in this embodiment further includes a fifth substrate 491 on the side of the circuit structure facing the display panel 470 for carrying the circuit structure.
  • a third impedance matching layer 490 may be further provided between the fifth substrate 491 and the circuit structure to reduce the impedance difference between the two, thereby reducing the impact of the impedance difference on the ultrasonic signal.
  • the touch panel 4000 that realizes the functions of touch detection and fingerprint recognition is located on the side of the display panel 470 away from the cover plate 461, the touch layer is arranged on the display panel compared to the general For the display device on the display side, the touch panel in this embodiment is located on the non-display side of the display panel, and the image displayed by the display panel has higher transmittance and better display quality.
  • the embodiments of the present disclosure are not limited to that the touch panel must be located on the non-display side of the display panel, and the touch panel may also be located on the display side of the display panel.
  • the display device provided by the embodiment of the present disclosure may be a display device such as a liquid crystal display device, an Organic Light-Emitting Diode (OLED) display device, and a TV, a digital camera, a mobile phone, a watch, and a tablet computer including the display device.
  • a display device such as a liquid crystal display device, an Organic Light-Emitting Diode (OLED) display device, and a TV, a digital camera, a mobile phone, a watch, and a tablet computer including the display device.
  • Any product or component with a display function, such as a notebook computer, a navigator, etc., is not limited to this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种触控面板及其驱动方法,以及显示装置。该触控面板包括:触控检测结构和指纹识别结构,包括层叠设置的第一电极、电路结构以及压电层。在平行于压电层的主表面的平面内,第一电极包括沿第一方向排列,且沿第二方向延伸的多个第一子电极条,电路结构包括沿第一方向和第二方向阵列排布的多个电路子结构,每个电路子结构包括检测电极;且沿第一方向,每个第一子电极条在压电层主表面上的正投影覆盖至少两个电路子结构的检测电极在压电层主表面上的正投影。本公开实施例提供的触控面板可以实现利用超声波既进行触控检测,又进行指纹的识别,并且可以通过触控检测确定触控区域以后,对触控区域进行指纹识别以提高识别精度和减少识别时间。

Description

触控面板及其驱动方法、以及显示装置 技术领域
本公开至少一个实施例涉及一种触控面板及其驱动方法、以及显示装置。
背景技术
目前,超声波技术应用于指纹识别是热门的研究方向。超声波指纹识别结构为三叠层结构,包括驱动电极、接收电极以及位于两者之间的压电层。对驱动电极和接收电极加载驱动电压时,压电层受到电压激发产生逆压电效应,向外发射第一超声波。该第一超声波接触手指后,被手指反射回第二超声波。由于手指包括谷和脊,所以被手指反射回到压电层的第二超声波震动强度有差异,此时,对驱动电极加载固定电压,则压电层将第二超声波转换成电压信号,该电压信号通过接收电极传输给指纹识别模块,根据该电压信号判断谷和脊的位置。
发明内容
本公开的至少一实施例提供一种触控面板及其驱动方法、以及显示装置。
本公开的至少一实施例提供一种触控面板,包括:
层叠设置的第一电极、电路结构以及压电层;
所述层叠设置的第一电极、电路结构以及压电层被配置为用作触控检测结构和指纹识别结构;
所述压电层被配置发射和/或接收超声波;
所述电路结构被配置为所述指纹识别结构的超声检测部;
其中,在平行于所述压电层的主表面的平面内,所述第一电极包括沿第一方向排列且沿第二方向延伸的多个第一子电极条,所述电路结构包括沿所述第一方向和所述第二方向阵列排布的多个电路子结构,每个所述电路子结构包括检测电极;
沿所述第一方向,每个所述第一子电极条在所述压电层主表面上的正投影覆盖至少两个所述电路子结构的检测电极在所述压电层主表面上的正投影。
例如,触控面板还包括:
沿所述第一方向延伸的多条检测线,沿所述第二方向延伸的多条选通线;
所述电路子结构还包括第一薄膜晶体管;
所述选通线与所述第一薄膜晶体管的栅极连接;
所述检测线与所述第一薄膜晶体管的源极和漏极之一连接;
所述电路子结构的检测电极被配置为与所述第一薄膜晶体管的与所述检测线连接的源极相对应的漏极或与所述检测线连接的漏极相对应的源极连接。
例如,所述电路结构被配置为所述触控检测结构的超声检测部时,所述多个电路子结构作为沿所述第一方向和所述第二方向阵列排布的多个触控检测区;
沿所述第二方向排列的一行所述触控检测区为一触控检测区组,沿所述第一方向排列的多个触控检测区组与所述多个第一子电极条一一对应。
例如,与沿所述第一方向排列的一列所述触控检测区中的所述多个电路子结构连接的所述多条检测线中的任意相邻两条检测线分别与第二薄膜晶体管的源极和漏极连接;
所述触控面板还包括沿所述第二方向延伸的信号线,所述信号线与所述第二薄膜晶体管的栅极连接。
例如,所述触控检测结构复用为所述指纹识别结构,且所述触控检测结构为包括所述第一电极、所述电路结构以及位于所述第一电极和所述电路结构之间的所述压电层的叠层结构。
例如,所述压电层包括第一压电层和第二压电层,所述触控检测结构和所述指纹识别结构包括复用的超声波激发部和超声波检测部;
所述超声波激发部包括层叠设置的所述第一电极、第二电极以及位于所述第一电极和所述第二电极之间的所述第一压电层;
所述超声波检测部包括层叠设置的所述电路结构、第三电极以及位于所述电路结构和所述第三电极之间的所述第二压电层。
例如,触控面板还包括触控检测或指纹识别的操作面,其中,所述超声波激发部位于所述超声波检测部远离所述操作面的一侧。
例如,所述第二电极和所述第三电极为板状电极且覆盖所述多个触控检测区,且被配置为加载固定电压。
例如,所述第二电极和所述第三电极为同一电极。
例如,所述压电层包括第一压电层和第二压电层;
所述触控检测结构和所述指纹识别结构包括共用的超声波激发部;
所述超声波激发部包括层叠设置的所述第一电极、第二电极以及位于所述第一电极与所述第二电极之间的所述第一压电层;
所述第二电极包括沿所述第二方向排列,且沿所述第一方向延伸的多个第二子电极条。
例如,所述超声波激发部复用为所述触控检测结构的第一超声波检测部;
所述指纹识别结构还包括第二超声波检测部;
所述第二超声波检测部包括层叠设置的所述电路结构、所述第二电极以及位于所述电路结构和所述第二电极之间的所述第二压电层;或者,所述第二超声波检测部包括层叠设置的所述电路结构、所述第一电极以及位于所述电路结构和所述第一电极之间的所述第二压电层。
例如,触控面板还包括触控检测或指纹识别的操作面,其中,所述第二超声波检测部位于所述超声波激发部面向所述操作面的一侧。
本公开另一实施例提供一种显示装置,包括显示面板以及上述触控面板,所述触控面板位于所述显示面板的非显示侧。
本公开另一实施例提供一种触控面板的驱动方法,包括触控检测阶段和指纹识别阶段,包括:
对第N行所述第一子电极条加载第一电信号以激发所述压电层发射第一超声波信号;
所述压电层将所述触控面板的触控检测或指纹识别的操作面侧反射回的第二超声波信号转化为第二电信号,所述电路结构输出所述第二电信号,其中,N为大于等于1,小于等于所述第一子电极条总条数的整数。
例如,所述触控检测结构复用为所述指纹识别结构,且所述触控检测结构为包括所述第一电极、所述电路结构以及位于所述第一电极和所述电路结构之间的所述压电层的叠层结构,所述多个电路子结构划分为沿所述第一方向和所述第二方向阵列排布的多个触控检测区,沿所述第二方向排列的一行所述触控检测区为一触控检测区组,沿所述第一方向排列的多个触控检测区组与所述多个第一子电极条一一对应,
所述触控检测阶段包括第一超声波发射阶段和第一检测阶段;
所述第一超声波发射阶段包括:对第N行所述第一子电极条加载所述第一电信号,对与第N行所述第一子电极条对应的第N行所述触控检测区包括的所述多个电路子结构加载固定电压以激发所述压电层发射所述第一超声波信 号;
所述第一检测阶段包括:对第N行所述第一子电极条加载固定电压,通过第N行所述触控检测区包括的所述多个电路子结构输出所述第二电信号以进行触控检测。
例如,所述指纹识别阶段包括第二超声波发射阶段和第二检测阶段;
所述第二超声波发射阶段包括:根据所述触控检测阶段判断第M行所述第一子电极条所在位置为触控区域后,对第M行所述第一子电极条加载所述第一电信号,对与第M行所述第一子电极条对应的第M行所述触控检测区包括的所述多个电路子结构加载固定电压以激发所述压电层发射所述第一超声波信号;
或者,对每个所述第一子电极条加载所述第一电信号,对与每个电路子结构加载固定电压以激发所述压电层发射所述第一超声波信号;
所述第二检测阶段包括:对第M行所述第一子电极条加载固定电压,通过第M行所述触控检测区中的各行所述电路子结构输出所述第二电信号以进行指纹识别,其中,M为大于等于1,小于等于所述第一子电极条总条数的整数。
例如,所述压电层包括第一压电层和第二压电层,所述触控检测结构和所述指纹识别结构包括共用的超声波激发部和超声波检测部,所述超声波激发部包括层叠设置的所述第一电极、第二电极以及位于所述第一电极和所述第二电极之间的所述第一压电层,所述超声波检测部包括层叠设置的所述电路结构、第三电极以及位于所述电路结构和所述第三电极之间的所述第二压电层,所述多个电路子结构划分为沿所述第一方向和所述第二方向阵列排布的多个触控检测区,沿所述第二方向排列的一行所述触控检测区为一触控检测区组,沿所述第一方向排列的多个触控检测区组与所述多个第一子电极条一一对应,
所述触控检测阶段包括第一超声波发射阶段和第一检测阶段;
所述第一超声波发射阶段包括:对第N行所述第一子电极条加载所述第一电信号,对所述第二电极加载固定电压以激发所述第一压电层发射所述第一超声波信号;
所述第一检测阶段包括:对所述第三电极加载固定电压,通过与第N行所述第一子电极条对应的第N行所述触控检测区输出所述第二电信号以进行触控检测。
例如,所述指纹识别阶段包括第二超声波发射阶段和第二检测阶段,所述第二超声波发射阶段包括:根据所述触控检测阶段判断第M行所述第一子电极条所在位置为触控区域后,对第M行所述第一子电极条加载所述第一电信号,对所述第二电极加载固定电压以激发所述第一压电层发射所述第一超声波信号;或者,对每个第一子电极条加载所述第一电信号,对所述第二电极加载固定电压以激发所述第一压电层发射所述第一超声波信号;
所述第二检测阶段包括:对所述第三电极加载固定电压,通过与第M行所述第一子电极条对应的第M行所述触控检测区中的各行所述电路子结构输出所述第二电信号以进行指纹识别,其中,M为大于等于1,小于等于所述第一子电极条总条数的整数。
例如,沿所述第一方向延伸的多条检测线,沿所述第二方向延伸的多条选通线,所述选通线与所述电路子结构包括的第一薄膜晶体管的栅极相连,所述检测线与所述电路子结构包括的第一薄膜晶体管的源极和漏极之一相连;
所述选通线被配置为作为所述电路子结构的开关信号传输线;
在所述第一薄膜晶体管处于开启状态时,所述检测线被配置为检测电信号;
与沿所述第一方向排列的一列所述触控检测区中的所述多个电路子结构连接的所述多条检测线中的任意相邻两条检测线分别与第二薄膜晶体管的源极和漏极连接;
所述触控面板还包括沿所述第二方向延伸的信号线,所述信号线与所述第二薄膜晶体管的栅极连接,被配置为传输打开或关闭所述第二薄膜晶体管的信号,
在所述第一检测阶段,对与第N行所述触控检测区内的所述电路子结构连接的所述选通线输入第一开启电压以使所述电路子结构处于工作状态,且所述第二薄膜晶体管被所述信号线输入第二开启电压以使与一列所述触控检测区中的所述多个电路子结构连接的所述多条检测线导通;
在所述第二检测阶段,对与第M行所述触控检测区内的所述电路子结构连接的所述选通线输入所述第一开启电压以依次使每行所述电路子结构处于工作状态,且所述第二薄膜晶体管处于关闭状态。
例如,所述压电层包括第一压电层和第二压电层,所述触控检测结构和所述指纹识别结构包括共用的超声波激发部,所述超声波激发部包括层叠设置的 所述第一电极、第二电极以及位于所述第一电极与所述第二电极之间的所述第一压电层,所述第二电极包括沿所述第二方向排列,且沿所述第一方向延伸的多个第二子电极条,
所述触控检测阶段包括第一超声波发射阶段,包括:对第N行所述第一子电极条加载所述第一电信号,对每个所述第二子电极条加载固定电压以激发所述第一压电层发射所述第一超声波信号;
所述超声波激发部复用为所述触控检测结构的第一超声波检测部,所述触控检测阶段还包括第一检测阶段,包括:对第N行所述第一子电极条加载固定电压,通过所述第二子电极输出所述第一压电层将反射回的第三超声波信号转化为的第三电信号以进行触控检测。
例如,所述指纹识别结构还包括第二超声波检测部,所述第二超声波检测部包括层叠设置的所述电路结构、所述第二电极以及位于所述电路结构和所述第二电极之间的所述第二压电层,
所述指纹识别阶段包括第二超声波发射阶段,包括:根据所述触控检测阶段判断第M行所述第一子电极条以及第M列所述第二子电极条所在位置为触控区域后,对第M行所述第一子电极条加载所述第一电信号,对第M列所述第二子电极条加载固定电压以激发所述第一压电层发射所述第一超声波信号;或者,对每个所述第一子电极条加载所述第一电信号,对每个所述第二子电极条加载固定电压以激发所述第一压电层发射所述第一超声波信号;
所述指纹识别阶段还包括第二检测阶段,包括:对第M列所述第二子电极条加载固定电压,或者对每个所述第二子电极条加载固定电压,通过沿垂直于所述第二压电层的主平面方向与第M行所述第一子电极条对应的各行所述电路子结构输出所述第二压电层将反射回的第二超声波信号转化为的所述第二电信号以进行指纹识别,其中,M为大于等于1,小于等于所述第一子电极条总条数的整数。
例如,所述指纹识别结构还包括第二超声波检测部,所述第二超声波检测部包括层叠设置的所述电路结构、所述第一电极以及位于所述电路结构和所述第一电极之间的所述第二压电层,
所述指纹识别阶段还包括第二超声波发射阶段,包括:根据所述触控检测阶段判断第M行所述第一子电极条以及第M列所述第二子电极条所在位置为触控区域后,对第M行所述第一子电极条加载所述第一电信号,对第M列所 述第二子电极条加载固定电压以激发所述第一压电层发射所述第一超声波信号,或者,对每个所述第一子电极条加载所述第一电信号,对每个所述第二子电极条加载固定电压以激发所述第一压电层发射所述第一超声波信号;
所述指纹识别阶段还包括第二检测阶段,包括:对第M行所述第一子电极条加载固定电压,或者对每个所述第一子电极条加载固定电压,通过沿垂直于所述第二压电层的主平面方向与第M行所述第一子电极条对应的各行所述电路子结构输出所述第二压电层受到反射回的第二超声波信号作用而产生的所述第二电信号以进行指纹识别,其中,M为大于等于1,小于等于所述第一子电极条总条数的整数。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为一种包括超声波指纹识别结构以及互容式触控检测结构的显示装置;
图1B为另一种包括超声波指纹识别结构以及互容式触控检测结构的显示装置;
图1C为图1A所示的超声波指纹识别结构的工作原理示意图;
图2A为本公开一实施例的一示例提供的触控面板的局部剖面结构示意图;
图2B为图2A所示的第一电极的局部平面结构示意图;
图2C为图2A所示的电路结构的局部平面结构示意图;
图2D为图2C所示的简化结构示意图;
图2E为图2A所示的触控面板的触控检测阶段的时序图;
图2F为图2A所示的触控面板的指纹识别阶段的时序图;
图2G为本公开一实施例的另一示例提供的触控面板的局部结构示意图;
图2H为图2C所示的电路子结构的示意图;
图3为本公开另一实施例提供的触控面板的局部剖面结构示意图;
图4A为本公开另一实施例提供的触控面板的局部剖面结构示意图;
图4B为图4A所示的第一电极与第二电极的局部平面结构示意图;
图4C为图4A所示的电路结构的局部平面结构示意图;
图5为本公开另一实施例提供的触控面板的局部剖面结构示意图;
图6A为本公开另一实施例的一示例提供的显示装置的局部剖面结构示意图;
图6B为本公开另一实施例的另一示例提供的显示装置的局部剖面结构示意图;
图6C为本公开另一实施例提供的显示装置的局部剖面结构示意图;
图6D为本公开另一实施例提供的显示装置的局部剖面结构示意图;以及
图6E为本公开另一实施例提供的显示装置的局部剖面结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
图1A为一种包括超声波指纹识别结构以及互容式触控检测结构的显示装置。图1A所示的显示装置为集成度较高的装置。如图1A所示,该显示装置将超声波指纹识别结构设置在有机发光二极管显示面板中,以使该显示面板集成了显示、触控以及指纹识别的功能。该显示装置包括依次层叠(沿如图1A所示的Y方向层叠设置)的盖板玻璃10、触控结构11、第一衬底基板12,有机发光二极管的阴极层13、发光层14以及像素阵列层15,位于像素阵列层15远离发光层14的一侧的压电层16、驱动电极层17以及第二基板18。超声波指纹识别结构包括驱动电极层17、像素阵列层15以及位于两层之间的压电层16,该三层结构构成了指纹识别结构的压电三明治结构。驱动电极层17为整 面金属层,像素阵列层15既作为有机发光二极管显示所用的像素电路,又作为超声波指纹识别结构的接收电极。该显示装置包括的触控结构为一般的电容式触控结构,且触控结构位于发光层14用于显示的一侧。
图1B为另一种包括超声波指纹识别结构以及互容式触控检测结构的显示装置。与图1A所示的显示装置相比,图1B所示的显示装置为集成度较低的装置。如图1B所示,该显示装置包括依次层叠(沿如图1B所示的Y方向层叠设置)的盖板玻璃20、触控结构21、第一衬底基板22,有机发光二极管的阴极层23、发光层24以及像素阵列层25,第二衬底基板26,位于第二衬底基板26远离像素阵列层25的一侧的超声波指纹识别结构,以及超声波识别结构远离第二衬底基板26一侧的第三衬底基板30。图1B所示的超声波指纹识别结构包括驱动电极层27、接收电路结构层29以及位于两层之间的压电层28,该三层结构构成了指纹识别结构的压电三明治结构。图1B所示的显示装置将超声波指纹识别结构放置于有机发光二极管显示模组远离盖板玻璃20的一侧,即将超声波指纹识别结构以外挂的方式实现。
图1C为图1A所示的超声波指纹识别结构的工作原理示意图。如图1C所示,对驱动电极层17加载高压正弦电信号1,对像素阵列层15加载固定电压时,压电层16受到电压激发产生逆压电效应,向外发射第一超声波2。该第一超声波2接触手指后,被手指反射回第二超声波5。由于手指的指纹包括谷3和脊4,所以被手指指纹不同位置的谷3和脊4反射回到压电层16的第二超声波5震动强度有差异,此时,停止对像素阵列层15的驱动,将对驱动电极层17的驱动变为固定电压,则压电层16将第二超声波5转化成电压信号,该电压信号通过像素阵列层15传输给集成电路,集成电路根据该电压信号判断手指的谷3和脊4的位置。
本公开的实施例提供一种触控面板及其驱动方法,以及显示装置。该触控面板包括:层叠设置的第一电极、电路结构以及压电层;层叠设置的第一电极、电路结构以及压电层被配置为用作触控检测结构和指纹识别结构;压电层被配置发射和/或接收超声波;电路结构被配置为指纹识别结构的超声检测部;其中,在平行于压电层的主表面的平面内,第一电极包括沿第一方向排列且沿第二方向延伸的多个第一子电极条,电路结构包括沿第一方向和第二方向阵列排布的多个电路子结构,每个电路子结构包括检测电极;沿第一方向,每个第一子电极条在压电层主表面上的正投影覆盖至少两个电路子结构的检测电极在压电 层主表面上的正投影。本公开实施例提供的触控面板可以实现用超声波既进行触控检测,又进行指纹的识别,并且可以通过触控检测确定触控区域以后,对触控区域进行指纹识别以提高识别精度和减少识别时间。
下面结合附图对本公开实施例提供的触控面板及其驱动方法,以及显示装置进行描述。
本公开至少一实施例提供一种触控面板,图2A为本公开一实施例提供的触控面板的局部剖面结构示意图,图2B为图2A所示的第一电极的局部平面结构示意图,图2C为图2A所示的电路结构的局部平面结构示意图,图2D为图2C的简化结构示意图,图2E为触控检测阶段的时序图,图2F为指纹识别阶段的时序图,图2H为图2C所示的电路子结构的示意图。
如图2A-图2C所示,触控面板包括触控检测结构100和指纹识别结构200。触控检测结构100和指纹识别结构200包括层叠设置的第一电极210、电路结构220以及压电层230,这里的层叠设置指沿图2A中所示的Y方向层叠设置。
如图2A-图2C和图2H所示,在平行于压电层230的主表面的平面内,即在图中所示的XZ平面内,第一电极210包括沿第一方向(即Z方向)排列,且沿第二方向(即X方向)延伸的多个第一子电极条211,电路结构220包括沿第一方向和第二方向阵列排布的多个电路子结构221,每个电路子结构221包括检测电极2210。沿第一方向,每个第一子电极条211在压电层230主表面上的正投影覆盖至少两个电路子结构221的检测电极2210在压电层230主表面上的正投影,即,沿第一方向,每个第一子电极条211的尺寸至少是每个电路子结构221的检测电极2210的尺寸的两倍以上,且沿Y方向,第一子电极条111与电路子结构221有交叠。例如,每个第一子电极条211在压电层230主表面上的正投影也可以覆盖至少两个电路子结构221在压电层230主表面上的正投影。
例如,如图2A-图2D所示,压电层230包括第一压电层231和第二压电层232,触控检测结构100和指纹识别结构200包括共用的超声波激发部2001和超声波检测部2002,即触控检测结构的超声波激发部复用为指纹识别结构的超声波激发部,触控检测结构的超声波检测部复用为指纹识别结构的超声波检测部。超声波激发部2001包括层叠设置的第一电极210、第二电极240以及位于第一电极210和第二电极240之间的第一压电层231,超声波检测部2002包括层叠设置的电路结构220、第三电极250以及位于电路结构220和第三电 极250之间的第二压电层232。本实施例提供的触控面板可以采用超声波技术实现触控和指纹的检测,且通过触控检测确定触控区域以后,对触控区域进行指纹识别可以提高识别精度和减少识别时间。
例如,如图2C和图2H所示,触控面板还包括沿第一方向延伸的多条检测线201,沿第二方向延伸的多条选通线202。选通线202和检测线201分别与每个电路子结构221相连,选通线202与电路子结构221包括的第一薄膜晶体管T3的栅极相连,检测线201与电路子结构221包括的第一薄膜晶体管T3的源极和漏极之一相连,电路子结构221的检测电极2210被配置为与第一薄膜晶体管T3的与检测线201连接的源极相对应的漏极或与检测线201连接的漏极相对应的源极连接,这里检测电极与第一薄膜晶体管T3的源极和漏极的另一个的连接可以是直接连接,也可以通过其他部件间接连接,例如检测电极2210通过图2H所示的第四薄膜晶体管T2与第一薄膜晶体管T3的源极和漏极的另一个的连接。多条检测线201均与集成电路(IC)206连接。选通线202作为电路子结构221的开关信号输入线,为第一薄膜晶体管T3输入开关信号,在第一薄膜晶体管T3处于开启状态下,检测线201被配置为传输电信号。
例如,如图2H所示,本实施例中的电路子结构221可以包括多个薄膜晶体管(例如T1-T3)、检测电极2210以及二极管。例如,第三薄膜晶体管T1的源漏极之一与检测电极2210连接,在第三薄膜晶体管T1处于开启状态时,可以将驱动电压Vq传输给检测电极2210,此时驱动电极被输入交流电压信号,位于检测电极和驱动电极之间的压电层可以发射超声波。在第三薄膜晶体管T1处于关闭状态时,检测电极2210不被输入电压信号,此时驱动电极被输入固定电压信号后,压电层开始接收超声波,并将超声波信号转换为电信号,电信号从检测电极2210输入到第四薄膜晶体管T2的栅极,检测电极2210输入到第四薄膜晶体管T2的栅极的电压随超声波信号强度而变化。第四薄膜晶体管T2的第一极被输入固定电位时,A点处的不同电位可以控制第四薄膜晶体管T2的第二极输出不同电流。第一薄膜晶体管T3的栅极与选通线202连接,在选通线202被输入开启电信号以打开该薄膜晶体管以后,第四薄膜晶体管T2的第二极输出的不同电流输入到第一薄膜晶体管T3的第一极,该电流通过与第一薄膜晶体管T3的第二极连接的检测线201传输给集成电路206以进行触控或指纹的检测。
然而,在选通线202没有被输入开启电信号时,第一薄膜晶体管T3处于 关闭状态,电路子结构221不能将电信号传输给检测线201。电路子结构包括的二极管与偏置电压源连接,输入到二极管的偏置电压处于高电平时,可以起到选择超声回波信号的作用,此时可以将前期回波在A点产生的回波信号消除,并开始采样回波,在采样结束后,偏置电压处于低电平以使后面的回波信号不会对A点电位造成影响。也就是偏置电压处于高电平阶段就是回波采样阶段,以采集有效的超声波信号,并消除干扰的回波信号。
例如,如图2C-图2D所示,多个电路子结构221划分为沿第一方向和第二方向阵列排布的多个触控检测区2200。
本公开实施例中的每个触控检测区2200作为一个触控检测单元,每个电路子结构221作为一个指纹识别检测单元,每个触控检测区2200包括至少两行两列电路子结构221。
例如,如图2C-图2D所示,与沿第一方向排列的同一列触控检测区2200中的多个电路子结构221连接的多条检测线201中的相邻两条检测线与一个第二薄膜晶体管204的源极2041和漏极2042分别连接;相邻的两列触控检测区2200中的多个电路子结构221连接的检测线201之间无连接关系。即,与每个触控检测区2200中包括的多个电路子结构221连接的多个检测线201之间通过多个第二薄膜晶体管204的源漏极连接,而多个第二薄膜晶体管204的栅极与信号线205连接。当信号线205选通时,每个触控检测区2200对应的所有第二薄膜晶体管204都处于打开状态时,每个触控检测区2200的多条检测线201电连接;当信号线205未选通时,所有第二薄膜晶体管204处于关闭状态时,每个触控检测区2200的检测线201彼此不导通。
例如,与沿第二方向排列的一行触控检测区2200中的多个电路子结构221连接的多条选通线202与一个行驱动单元207电连接,即,沿第二方向排列的一行触控检测区2200为一触控检测区组,一个触控检测区组与一个行驱动单元207电连接;且不同行的触控检测区2200中的多条选通线202与不同的行驱动(GOA,gate driver on array)单元207电连接,即不同触控检测区组与不同行驱动单元207电连接。本实施例以第一方向为触控检测区2200排列的列方向,第二方向为触控检测区2200排列的行方向为例进行描述。
例如,如图2A-图2D所示,沿垂直于压电层230的主平面的方向,一行触控检测区2200与一条第一子电极条211相对,即,一行触控检测区2200在压电层230上的正投影与一条第一子电极条211在压电层230上的正投影交叠。 触控检测区2200的行数与第一子电极条211的数量相等,即多行触控检测区2200与多条第一子电极条211一一对应,也就是多个触控检测区组与多个第一子电极条一一对应。
例如,如图2A所示,超声波检测部2002还包括第一衬底2020,用于承载电路结构220。
例如,如图2A所示,超声波激发部2001通过第一胶体2010与超声波检测部2002粘结。
例如,如图2A所示,触控面板还包括触控检测或指纹识别的操作面260,该触控检测或指纹识别的操作面260为触控面板的用于实现触控检测或者指纹识别的面。超声波激发部2001位于超声波检测部2002远离触控检测或指纹识别的操作面260的一侧以降低超声波激发部2001对超声波检测部2002在触控检测以及指纹识别过程中产生的不良影响。在包括上述触控面板的触控装置中,操作面可以为触控装置的盖板的表面,此时超声波激发部位于超声波检测部远离盖板的一侧。
例如,本实施例中的第二电极240和第三电极250为板状电极,即在XZ平面内,第二电极240和第三电极250为覆盖多个触控检测区2200的整面电极。并且,第二电极240和第三电极250被配置为加载固定电压。本实施例中的第二电极与第三电极设置为整面电极可以简化调试。
例如,第二电极240和第三电极250的材料可以为金属材料,也可以为其他导电材料,本实施例对此不作限制。
例如,本实施例中的压电层230的材料可以包括聚偏氟乙烯(PVDF)等压电聚合物材料,本实施例包括但不限于此。本实施例中的第一压电层231和第二压电层232的材料可以相同,也可以不同,只要能被激发产生超声波信号,又能将接收的超声波信号转化为电信号即可。
例如,本实施例中的第一电极210的材料可以是金属材料,也可以是其他导电材料,本实施例在此不做限制。
例如,本实施例提供的触控面板的驱动方法包括触控检测阶段和指纹识别阶段,包括:对第N行第一子电极条211加载第一电信号以激发压电层230发射第一超声波信号;电路结构220输出压电层230受到反射回的第二超声波信号作用而产生的第二电信号,其中,N为大于等于1,小于等于所述第一子电极条总条数的整数。
如图2A-图2F所示,本实施例中的触控检测结构100和指纹识别结构200共用超声波激发部2001和超声波检测部2002。
例如,超声波激发部2001作为触控检测结构100的超声波激发部时,触控检测阶段包括第一超声波发射阶段,包括:对第N行第一子电极条211(例如第一行第一子电极条2111或第二行第一子电极条2112)加载第一电信号(例如高压正弦波信号),对第二电极240加载固定电压以使第一压电层231产生逆压电效应,发射第一超声波信号。
这里的逆压电效应指在压电层的材料的极化方向施加电场时,压电层的材料就在一定方向上产生机械变形或者机械应力,即电能与机械能之间发生转换。如果施加的电信号为高频电信号,则压电层的材料会产生高频声信号,也就是超声波信号。
例如,超声波检测部2002作为触控检测结构100的超声波检测部时,触控检测阶段还包括第一检测阶段,包括:对第三电极250加载固定电压,通过与第N行第一子电极条211对应的第N行触控检测区2200输出第二压电层232受到反射回的第二超声波信号的作用而产生的第二电信号,从而进行触控检测。
例如,第一超声波信号可以被触控位置处的物体,例如手指反射,还可以被无触控位置处的空气反射,本实施例中,被触控位置处的手指以及无触控位置处的空气反射回第二压电层232的超声波信号均称为第二超声波信号。此时,对第三电极250输入固定电压,则第二压电层232将第二超声波信号转换为第二电信号,第N行触控检测区2200中的电路子结构221将第二电信号通过检测线201传输至集成电路206以进行触控检测。
由于手指与例如触控面板中其他膜层反射超声波的反射率差异较小,所以第一超声波信号被触控位置处的外界物体(例如手指)反射回的第二超声波信号的强度较小,而无触控位置处的空气与上述膜层反射超声波的反射率差异大,所以第一超声波信号被无触控位置处的空气反射回的第二超声波信号的强度较大,第二压电层将强度不同的第二超声波信号转化为强度不同的第二电信号,因此根据第二电信号的强度可以分辨触控位置。
例如,在第一超声波发射阶段,对第一行第一子电极条2111加载第一电信号后,第一压电层231发射第一超声波信号。在第一检测阶段,通过与第一行触控检测区2200对应的第一个行驱动单元2071为与该行触控检测区2200 包括的电路子结构221连接的多条选通线202输入第一开启电压(例如高电平信号)以使该行触控检测区2200包括的所有电路子结构221处于工作状态,与该行触控检测区2200包括的多个电路子结构221连接的检测线201可以将电路子结构221接收的第二电信号传输至集成电路206。检测完成后,在下一个第一超声波发射阶段,对第二行第一子电极条2112加载第一电信号后,第一压电层231发射第一超声波信号。在下一个第一检测阶段,通过与第二行触控检测区2200对应的第二个行驱动单元2072为与该行触控检测区2200包括的电路子结构221连接的多条选通线202输入第一开启电压以使该行触控检测区2200包括的所有电路子结构221处于工作状态,与该行触控检测区2200包括的多个电路子结构221连接的检测线201可以将电路子结构221接收的第二电信号传输至集成电路206。依照上述驱动过程,依次进行第一超声波信号的发射,与第二超声波信号的检测直至完成触控检测。
上述的电路子结构处于工作状态指电路子结构可以将第二压电层产生的第二电信号传输给检测线的状态。
上述对第一子电极条加载第一电信号可以采用双端驱动的方式以降低负载(loading)。
例如,在电路子结构221输出第二电信号时(也即在第一检测阶段),第二薄膜晶体管204被信号线205输入第二开启电压(例如高电平信号)以使与一列触控检测区2200中的多个电路子结构221连接的多条检测线201连接,从而每列触控检测区2200中的电路子结构221接收的电信号可以相当于通过一条检测线201输出至集成电路206以对触控位置进行判断。也就是,每条检测线201与集成电路206的一个接口(图中未示出)连接,在第二薄膜晶体管204处于开启状态时,由于与一列触控检测区2200中的多个电路子结构221连接的多条检测线201电连接,因此,可以仅通过一个接口将第二电信号传输至集成电路206以进行触控检测,可以节省电量。而在第一超声波发射阶段,信号线205被输入低电平,第二薄膜晶体管204处于关闭状态。
例如,指纹识别阶段包括第二超声波发射阶段和第二检测阶段。
例如,在超声波激发部2001作为指纹识别结构200的超声波激发部时,第二超声波发射阶段包括:根据触控检测阶段判断第M(M为大于等于1,小于等于所述第一子电极条总条数的整数)行第一子电极条211所在位置为触控区域后,对第M行第一子电极条211加载第一电信号,对第二电极220加载 固定电压以激发第一压电层231发射第一超声波信号。本实施例不限于此,还可以是对所有第一子电极条均加载第一电信号。
例如,在超声波检测部2002作为指纹识别结构200的超声波检测部时,第二检测阶段包括:对第三电极250加载固定电压,通过与第M行第一子电极条211对应的第M行触控检测区2200中的各行电路子结构221输出第二电信号以进行指纹识别。
例如,第一超声波信号接触到手指以后,向第二压电层232反射回第二超声波信号。此时,对第三电极250加载固定电压,则第二压电层232将第二超声波信号转化为第二电信号,与第M行第一子电极条211对应的第M行触控检测区2200中的电路子结构221逐行将第二电信号传输给集成电路206以进行指纹识别。
例如,在电路子结构221输出第二压电层232产生的第二电信号时,行驱动单元207控制该行触控检测区2200包括的多条选通线202逐行为电路子结构221输入第一开启电压以使电路子结构221逐行处于工作状态,与该行触控检测区2200包括的多个电路子结构221连接的检测线201逐条向集成电路206输出第二电信号以进行指纹识别。
在指纹识别阶段,连接相邻的检测线201的第二薄膜晶体管204始终处于关闭状态以使一列触控检测区2200中的与每列电路子结构221连接的多条检测线201彼此不导通。
例如,如图2F所示,M为1,在第二超声波发射阶段,对第一行第一子电极条2111加载高压正弦波信号以使第一压电层231发射第一超声波信号。在第二检测阶段,通过依次对与第一行电路子结构2211、第二行电路子结构2212等多行电路子结构221连接的多条选通线202输入第一开启电压以使多行电路子结构2211逐行处于工作状态,与电路子结构221连接的检测线201可以将电路子结构221接收的第二电信号传输至集成电路206。
第一超声波信号接触到手指后,由于手指包括谷和脊,被谷和脊反射回的第二超声波信号的强度不同(被谷反射回的第二超声波信号的强度大于被脊反射回的第二超声波信号的强度),第二压电层将第二超声波信号转换成的第二电信号的大小就不同,因此集成电路包括的指纹识别模块根据第二电信号的大小可以实现指纹的识别。
本实施例中,无论在触控检测还是指纹识别阶段,第一压电层产生的超声 波信号均称为第一超声波信号,第二压电层接收的反射回的超声波信号均称为第二超声波信号。
图2G为本实施例的另一示例提供的触控面板的局部结构示意图。如图2G所示,与图2A所示的示例中的触控面板不同的是本示例中的触控面板不同的是:本示例中的第二电极和第三电极为同一个电极,本示例均称为第二电极240,也就是本示例中的超声波激发部2001和超声波检测部2002共用第二电极240,该第二电极240起到了在第一超声波发射阶段、第二超声波发射阶段、第一检测阶段以及第二检测阶段为第一压电层231和第二压电层232提供固定值的驱动电压的作用。本示例中的触控面板的驱动方法与图2A所示的示例中的触控面板的驱动方法相同,在此不再赘述。
图3为本公开另一实施例提供的触控面板的局部剖面结构示意图。例如,如图3所示,触控面板包括触控检测结构100和指纹识别结构200。触控检测结构100复用为指纹识别结构200,且触控检测结构100为包括第一电极110、电路结构120以及位于第一电极110和电路结构120之间的压电层130的三叠层结构(即压电三明治结构)。本实施例提供的触控面板的厚度较薄,可以实现轻薄化。
本实施例中的第一电极110和电路结构120的平面结构与图2B-图2D所示的实施例中的第一电极210和电路结构220的平面结构相同。本实施例中对电路结构120包括的多个电路子结构划分区域形成的触控检测区与图2C和图2D所示的触控检测区2200相同,本实施例中的电路子结构的具体结构与图2A所示实施例的电路子结构的具体结构相同,且本实施例中的电路子结构与选通线以及检测线的连接关系也与图2B和图2C所示的连接关系相同,在此不再赘述。
例如,本实施例提供的触控面板的驱动方法包括触控检测阶段和指纹识别阶段。触控检测阶段包括第一超声波发射阶段和第一检测阶段。
例如,如图3所示,在第一电极110、电路结构120以及压电层130作为触控检测结构100的压电三明治结构用于进行触控检测时,第一超声波发射阶段包括:对第N(N为大于等于1,小于等于所述第一子电极条总条数的整数)行第一子电极条加载第一电信号(高压正弦波信号,例如100V以上电压),对与第N行第一子电极条对应的第N行触控检测区包括的多个电路子结构加载固定电压以使压电层受到电压激发而产生逆压电效应,向外发射第一超声波信 号。
例如,对第N行触控检测区中的电路子结构加载固定电压包括:如图2H所示,打开第三薄膜晶体管T1,固定电压从第三薄膜晶体管T1输入到检测电极2210。
例如,第一检测阶段包括:对第N行第一子电极条加载固定电压,通过第N行触控检测区输出压电层受到反射回的第二超声波信号作用而产生的第二电信号以进行触控检测。
例如,第一超声波信号可以被触控位置处的物体,例如手指以及无触控位置处的空气反射,本实施例中,被触控位置以及无触控位置反射回压电层230的超声波信号均称为第二超声波信号。此时,停止对电路子结构的驱动,将加载到第一子电极条的高压正弦波信号变为固定电压,则压电层将第二超声波信号转换成第二电信号,触控检测区中的电路子结构将第二电信号通过检测线传输给集成电路。
例如,根据图2C和图2D所示的电路,第N行触控检测区中的电路子结构在接收第二电信号时,通过与该行触控检测区对应的行驱动单元为与该行触控检测区包括的所有电路子结构连接的多条选通线输入第一开启电压以使该行触控检测区包括的所有电路子结构处于工作状态,与该行触控检测区包括的多个电路子结构连接的检测线可以将电路子结构接收的第二电信号传输至集成电路。
本实施例中的电路子结构处于工作状态指电路子结构可以接收集成电路通过检测线传输至电路子结构的驱动电压,以及电路子结构可以将压电层产生的第二电信号传输给检测线的两种状态。
例如,根据图2C和图2D所示的电路,在电路子结构输出压电层产生的第二电信号时,信号线为连接相邻的两个检测线的第二薄膜晶体管输入第二开启电压以使与一列触控检测区中的多个电路子结构连接的多条检测线导通,从而每列触控检测区中的电路子结构接收的电信号可以相当于通过一条检测线输出至集成电路以对触控位置进行判断。在第一超声波发射阶段,第二薄膜晶体管处于关闭状态。本实施例中的第一检测阶段中的电路子结构的工作原理与图2A-图2F所示的实施例中的第一检测阶段中的电路子结构的工作原理相同。
例如,指纹识别阶段包括第二超声波发射阶段和第二检测阶段。
例如,在第一电极110、电路结构120以及压电层130作为指纹识别结构 200的压电三明治结构用于进行指纹识别时,根据图2C和图2D所示的电路,第二超声波发射阶段包括:根据触控检测阶段判断第M行第一子电极条所在位置为触控区域后,对第M行第一子电极条加载第一电信号(高压正弦波信号),对与第M行第一子电极条对应的第M行触控检测区包括的多个电路子结构加载固定电压以使压电层发射第一超声波信号。本实施例不限于此,还可以是对所有第一子电极条均加载第一电信号,并对所述电路子结构加载固定电压。
例如,第二检测阶段包括:对第M行所述第一子电极条加载固定电压,通过第M行触控检测区中的各行电路子结构输出第二电信号以进行指纹识别。
例如,第一超声波信号接触到手指以后,向压电层反射回第二超声波信号。此时,停止对电路子结构的驱动,将输入到第一子电极条输入的高压正弦波信号变为固定电压,则压电层将第二超声波信号转换成第二电信号,触控检测区中的电路子结构将第二电信号通过检测线传输给集成电路。
例如,根据图2C和图2D所示电路,在各行电路子结构输出第二电信号时,行驱动单元控制该行触控检测区包括的多条选通线逐行为电路子结构输入第一开启电压以使电路子结构逐行处于工作状态,与该行触控检测区包括的多个电路子结构连接的检测线逐条向集成电路输出第二电信号以进行指纹识别。
在指纹识别阶段,薄膜晶体管始终处于关闭状态以使一列触控检测区中的与每列电路子结构连接的多条检测线彼此不导通。
本实施例中,无论在触控检测还是指纹识别阶段,压电层产生的超声波信号均称为第一超声波,压电层接收的反射回的超声波信号均称为第二超声波信号。
本公开另一实施例提供一种触控面板,图4A为本公开实施例提供的触控面板的局部剖面结构示意图,图4B为图4A所示的第一电极与第二电极的局部平面结构示意图,图4C为图4A所示的电路结构局部平面结构示意图。如图4A-图4C所示,触控面板包括触控检测结构100和指纹识别结构200。触控检测结构100和指纹识别结构200包括层叠设置的第一电极310、电路结构320以及压电层330。
如图4A-图4C所示,在平行于压电层330的主表面的平面内,即在图中所示的XZ平面内,第一电极310包括沿第一方向(即Z方向)排列,且沿第二方向(即X方向)延伸的多个第一子电极条311,电路结构320包括沿第一 方向和第二方向阵列排布的多个电路子结构321,且沿第一方向,每个第一子电极条311在压电层330主表面上的正投影覆盖至少两个电路子结构321的检测电极在压电层330主表面上的正投影,即,沿第一方向,每个第一子电极条311的尺寸至少是每个电路子结构321的尺寸的两倍以上,且沿Y方向,第一子电极条311与电路子结构321有交叠,即第一子电极条在压电层主表面上的正投影与电路子结构在压电层主表面上的正投影有交叠。
例如,如图4A-图4C所示,压电层330包括第一压电层331和第二压电层332,触控检测结构100和指纹识别结构200包括共用的超声波激发部3001,超声波激发部3001包括层叠设置的第一电极310、第二电极340以及位于第一电极310与第二电极340之间的第一压电层331,第二电极340包括沿第二方向排列,且沿第一方向延伸的多个第二子电极条341。本实施例中的第二子电极341作为触控检测电极,用于向集成电路306输出触控检测信号。
例如,如图4B所示,超声波激发部3001作为触控检测结构100的超声波激发部时,触控检测阶段包括第一超声波发射阶段,包括:对第一电极310包括的第N(N为大于等于1,小于等于所述第一子电极条总条数的整数)行第一子电极条311输入第一电信号(高压正弦波信号),通过集成电路306对第二电极340包括每个第二子电极341加载固定电压,以使第一压电层331受到电压激发而产生逆压电效应,向外发射第一超声波信号。
例如,如图4A所示,超声波激发部3001复用为触控检测结构100的第一超声波检测部3002。根据如图4B所示的电路结构,触控检测阶段还包括第一检测阶段,包括:对第N行第一子电极条311加载固定电压,通过第二子电极341输出第一压电层331受到反射回的第三超声波信号作用而产生的第三电信号以进行触控检测。
第一超声波信号可以被触控位置处的物体,例如手指以及无触控位置处的空气反射,本实施例中,被触控位置处的手指以及无触控位置处的空气反射回第一压电层331的超声波信号均称为第三超声波信号。此时,对第N行第一子电极311输入固定电压,则第一压电层331将第三超声波信号转化为第三电信号,第二子电极341将产生的第三电信号传输至集成电路306以实现触控位置的检测。
例如,如图4A所示,指纹识别结构200还包括第二超声波检测部3003,第二超声波检测部3003包括层叠设置的电路结构320、第二电极340以及位于 电路结构320和第二电极340之间的第二压电层332。本实施例中的第二超声波检测部3003与第一超声波检测部3002共用第二电极340,可以减小触控面板的厚度。
例如,如图4A和图4C所示,触控面板还包括沿第一方向延伸的多条检测线301,沿第二方向延伸的多条选通线302。选通线302和检测线301分别与每个电路子结构321相连,多条检测线301均与集成电路(IC)306连接。选通线302作为电路子结构321的开关信号输入线,在选通线302处于选通状态下,检测线301被配置为传输电信号。
例如,本实施例中的电路子结构321的具体结构可以与图2A所示的实施例中的电路子结构221的结构相同,在此不再赘述。
例如,如图4B和4C所示,多个电路子结构321可以划分为沿第一方向和第二方向阵列排布的多个电路结构子区3200。沿垂直于第二压电层332的方向,一行电路结构子区3200与一条第一子电极条311相对,即,一行电路结构子区3200在压电层330上的正投影与一条第一子电极条311在压电层330上的正投影交叠。电路结构子区3200的行数与第一子电极条311的数量相等,即多行电路结构子区3200与多条第一子电极条311一一对应。本实施例不限于此,也可以不对电路子结构划分区域,但电路子结构与第一子电极条的对应关系同上。
例如,超声波激发部3001作为指纹识别结构200的超声波激发部时,指纹识别阶段包括第二超声波发射阶段,包括:根据触控检测阶段判断第M(M为大于等于1,小于等于所述第一子电极条总条数的整数)行第一子电极条311以及第M列第二子电极条341所在位置为触控区域后,对第M行第一子电极条311输入第一电信号,对于第M列第二子电极条341加载固定电压,以使第一压电层331受到电压激发而产生逆压电效应,向外发射第一超声波信号。本实施例不限于此,也可以对所有第一子电极条和所有第二子电极条均加载驱动电压以使第一压电层发射第一超声波信号。
例如,如图4A-图4C所示,指纹识别阶段还包括第二检测阶段,包括:对第M列第二子电极条341加载固定电压,通过沿垂直于第二压电层332主平面的方向与第M行第一子电极条311对应的各行电路子结构321输出第二压电层332受到反射回的第二超声波信号的作用而产生的第二电信号以进行指纹识别。本实施例不限于此,还可以对每个第二子电极条341加载固定电压, 通过沿垂直于第二压电层332主平面的方向与第M行第一子电极条311对应的各行电路子结构321输出第二压电层332受到反射回的第二超声波信号的作用而产生的第二电信号以进行指纹识别。本实施例中的沿垂直于第二压电层332主平面的方向与第M行第一子电极条311对应的各行电路子结构321即为与第M行第一子电极条311对应的第M行电路结构子区3200包括的各行电路子结构321。
例如,第一超声波信号接触到手指以后,向第二压电层332反射回第二超声波信号。此时,对第二电极340(或者第M列第二子电极341)加载固定电压,则第二压电层332将第二超声波信号转化为第二电信号,沿垂直于第二压电层332主平面的方向,与第M行第一子电极条311对应的电路子结构321逐行将第二电信号通过检测线301传输至集成电路306以实现指纹的识别。
例如,如图4A-图4C所示,在电路子结构321输出第二压电层332产生的第二电信号时,与传输第二电信号的多个电路子结构321连接的多条选通线302被逐行输入第一开启电压以使该电路子结构321逐行处于工作状态,与该电路子结构321连接的检测线301可以逐条将电路子结构321接收的第二电信号传输至集成电路306以进行指纹识别。
例如,如图4A所示,第二超声波检测部3003位于超声波激发部3001面向触控检测或指纹识别的操作面360的一侧以降低超声波激发部对第二超声波检测部进行指纹识别时产生的影响。
本实施例中,无论在触控检测还是指纹识别阶段,第一压电层产生的超声波信号均称为第一超声波信号。第一压电层接收的反射回超声波信号称为第三超声波信号,用于触控检测,第二压电层接收的反射回的超声波信号均称为第二超声波信号,用于指纹识别。
本公开另一实施例提供一种触控面板,图5为本实施例提供的触控面板的局部剖面示意图。如图5所示,本实施例提供的触控面板包括触控检测结构100和指纹识别结构200。触控检测结构100和指纹识别结构200包括共用的超声波激发部4001,该超声波激发部4001包括层叠设置的第一电极410、第二电极440以及位于第一电极410与第二电极440之间的第一压电层431。第二电极440包括沿第二方向排列,且沿第一方向延伸的多个第二子电极条441。本实施例中的第二子电极441作为触控检测电极,用于向集成电路输出触控检测信号。本实施例中的第一电极410包括的第一子电极条与第二电极440包括的 第二子电极条的平面结构与图4B所示的实施例中的第一电极310包括的第一子电极条311与第二电极340包括的第二子电极条341的平面结构相同,在此不再赘述。
例如,本实施例中的超声波激发部4001作为触控检测结构100的超声波激发部与图4A-图4C所示的实施例的超声波激发部3001的工作原理相同,即,本实施例中的触控检测阶段的第一超声波发射阶段的驱动方法与图4A-图4C所示的实施例包括的驱动方法相同,在此不再赘述。
例如,如图5所示,超声波激发部4001复用为触控检测结构100的第一超声波检测部4002,本实施例中的第一超声波检测部4002的工作原理与图4A-图4C所示的实施例的第一超声波检测部3002的工作原理相同,即,本实施例中的触控检测阶段包括的第一检测阶段的驱动方法与图4A-图4C所示的实施例包括的驱动方法相同,在此不再赘述。
例如,如图5所示,指纹识别结构200还包括第二超声波检测部4003,第二超声波检测部4003包括层叠设置的电路结构420、第一电极410以及位于电路结构420和第一电极410之间的第二压电层432。本实施例中的第一超声波检测部4002与第二超声波检测部4003共用第一电极410,可以减小触控面板的厚度。
本实施例中的电路结构420的平面结构与图4C所示的电路结构320的平米结构相同,电路结构420包括的多个电路子结构的具体结构与图4C所示的电路子结构321的结构相同,且本实施例中的电路子结构与选通线以及检测线的连接关系也与图4C所示的连接关系相同,在此不再赘述。
例如,如图5所示,第二超声波检测部4003用于指纹识别时,指纹识别阶段包括第二超声波发射阶段,包括:根据触控检测阶段判断第M行第一子电极条以及第M列第二子电极条所在位置为触控区域后,对第M行第一子电极条加载第一电信号,对第M列第二子电极条加载固定电压以使第一压电层431发射第一超声波信号;或者,对所有第一子电极条加载第一电信号,对所有第二子电极条加载固定电压以使第一压电层431发射所述第一超声波信号。
例如,指纹识别阶段还包括第二检测阶段,包括:对第M行第一子电极条加载固定电压,或者对每个第一子电极条加载固定电压,通过沿垂直于第二压电层432的主平面方向与第M行第一子电极条对应的各行电路子结构输出第二压电层受到反射回的第二超声波信号作用而产生的第二电信号以进行指 纹识别。
例如,如图5所示,在电路子结构输出第二电信号时,与传输第二电信号的多个电路子结构连接的多条选通线被逐行输入第一开启电压以使该电路子结构逐行处于工作状态,与该电路子结构连接的检测线可以逐条将电路子结构接收的第二电信号传输至集成电路以进行指纹识别。
图5所示的实施例与图4A-图4C所示的实施例的区别在于第一电极与第二电极的位置互换。
本公开另一实施例提供一种显示装置,图6A为本实施例的一示例提供的显示装置的局部剖面结构示意图。如图6A所示,本实施例提供的显示装置包括图2A所示的触控面板2000,且图2A所示的触控面板中的触控检测或指纹识别的操作面260为触控面板的用于实现触控检测或者指纹识别的面。显示装置还包括位于盖板261和触控面板2000之间的显示面板270,即显示面板270位于触控面板的触控检测或指纹识别的操作面远离触控检测结构的一侧。显示面板270与触控面板2000之间通过第二胶体280粘结。本实施例提供的显示装置中,由于实现触控检测和指纹识别功能的触控面板2000位于显示面板270远离盖板261的一侧,由此,相对于一般的将触控层设置在显示面板用于显示的一侧的显示装置,本实施例提供的显示面板显示的图像的透过率更高,且具有更好的显示质量。
在实际工艺中,压电层发射的超声波信号在接触到盖板之前经历的各膜层(包括显示面板中的各膜层)的材料的阻抗、厚度以及杨氏模量等需要进行匹配以降低各膜层对超声波信号的影响。
图6B示出了本实施例的另一示例提供的显示装置的局部剖面结构示意图。如图6B所示,本示例提供的显示装置包括图2G所示的触控面板2000。本实施例中的触控面板2000还包括位于电路结构面向显示面板270一侧的第二衬底290,用于承载电路结构。本示例中的第二衬底290与电路结构之间还可以设置阻抗匹配层(图中未示出)以降低两者之间的阻抗差异,进而降低阻抗差异对于超声波信号的影响。本示例中的触控面板2000与显示面板270之间的位置关系以及连接关系与图6A所示的显示装置相同,这里不再赘述。
本公开另一实施例提供一种显示装置,图6C为本实施例提供的显示装置的局部剖面结构示意图。如图6C所示,本实施例提供的显示装置包括图3所示的触控面板1000,显示装置包括盖板161,触控面板1000的触控检测或指 纹识别的操作面160为触控面板1000的用于实现触控检测或者指纹识别的面。显示装置还包括位于盖板161和触控面板1000之间的显示面板170,即显示面板170位于触控面板1000的触控检测或指纹识别的操作面远离触控检测结构一侧,触控面板位于显示面板的非显示侧。且显示面板170与触控面板1000之间通过第三胶体180粘结。
本实施例中的触控面板1000还包括位于电路结构120面向显示面板170一侧的第三衬底191,用于承载电路结构120。本示例中的第三衬底191与电路结构120之间还可以设置第一阻抗匹配层190以降低两者之间的阻抗差异,进而降低阻抗差异对于超声波信号的影响。
本实施例提供的显示装置中,由于实现触控检测和指纹识别功能的触控面板1000位于显示面板170远离盖板161的一侧,由此,相对于一般的将触控层设置在显示面板用于显示的一侧的显示装置,本实施例提供的显示面板显示的图像的透过率更高,且具有更好的显示质量。
本公开另一实施例提供一种显示装置,图6D为本实施例提供的显示装置的局部剖面结构示意图。如图6D所示,本实施例提供的显示装置包括图4A所示的触控面板3000,显示装置包括盖板361,触控面板的触控检测或指纹识别的操作面360为触控面板的用于实现触控检测或者指纹识别的面。显示装置还包括位于盖板361和触控面板3000之间的显示面板370,即显示面板370位于触控面板的触控检测或指纹识别的操作面一侧,触控面板位于显示面板的非显示侧,且显示面板370与触控面板3000之间通过第四胶体380粘结。
本实施例中的触控面板3000还包括位于电路结构面向显示面板370一侧的第四衬底391,用于承载电路结构。本示例中的第四衬底391与电路结构之间还可以设置第二阻抗匹配层390以降低两者之间的阻抗差异,进而降低阻抗差异对于超声波信号的影响。
本实施例提供的显示装置中,由于实现触控检测和指纹识别功能的触控面板3000位于显示面板370远离盖板361的一侧,由此,相对于一般的将触控层设置在显示面板用于显示的一侧的显示装置,本实施例提供的显示面板显示的图像的透过率更高,且具有更好的显示质量。
本公开另一实施例提供一种显示装置,图6E为本实施例提供的显示装置的局部剖面结构示意图。如图6E所示,本实施例提供的显示装置包括图5所示的触控面板4000,显示装置包括盖板461,触控面板的触控检测或指纹识别 的操作面为触控面板的用于实现触控检测或者指纹识别的面。显示装置还包括位于盖板461和触控面板4000之间的显示面板470,即显示面板470位于触控面板的触控检测或指纹识别的操作面一侧,触控面板位于显示面板的非显示侧,且显示面板470与触控面板4000之间通过第五胶体480粘结。
本实施例中的触控面板4000还包括位于电路结构面向显示面板470一侧的第五衬底491,用于承载电路结构。本示例中的第五衬底491与电路结构之间还可以设置第三阻抗匹配层490以降低两者之间的阻抗差异,进而降低阻抗差异对于超声波信号的影响。
本实施例提供的显示装置中,由于实现触控检测和指纹识别功能的触控面板4000位于显示面板470远离盖板461的一侧,由此,相对于一般的将触控层设置在显示面板用于显示的一侧的显示装置,本实施例中的触控面板位于显示面板的非显示侧,显示面板显示的图像的透过率更高,且具有更好的显示质量。当然,本公开实施例不限于触控面板一定位于显示面板的非显示侧,触控面板还可以位于显示面板的显示侧。
例如,本公开实施例提供的显示装置可以为液晶显示装置、有机显示二极管(Organic Light-Emitting Diode,OLED)显示装置等显示器件以及包括该显示器件的电视、数码相机、手机、手表、平板电脑、笔记本电脑、导航仪等任何具有显示功能的产品或者部件,本实施例不限于此。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (22)

  1. 一种触控面板,包括:
    层叠设置的第一电极、电路结构以及压电层;
    所述层叠设置的第一电极、电路结构以及压电层被配置为用作触控检测结构和指纹识别结构;
    所述压电层被配置发射和/或接收超声波;
    所述电路结构被配置为所述指纹识别结构的超声检测部;
    其中,在平行于所述压电层的主表面的平面内,所述第一电极包括沿第一方向排列且沿第二方向延伸的多个第一子电极条,所述电路结构包括沿所述第一方向和所述第二方向阵列排布的多个电路子结构,每个所述电路子结构包括检测电极;
    沿所述第一方向,每个所述第一子电极条在所述压电层主表面上的正投影覆盖至少两个所述电路子结构的检测电极在所述压电层主表面上的正投影。
  2. 根据权利要求1所述的触控面板,还包括:
    沿所述第一方向延伸的多条检测线,沿所述第二方向延伸的多条选通线;
    所述电路子结构还包括第一薄膜晶体管;
    所述选通线与所述第一薄膜晶体管的栅极连接;
    所述检测线与所述第一薄膜晶体管的源极和漏极之一连接;
    所述电路子结构的检测电极被配置为与所述第一薄膜晶体管的与所述检测线连接的源极相对应的漏极或与所述检测线连接的漏极相对应的源极连接。
  3. 根据权利要求2所述的触控面板,其中,所述电路结构被配置为所述触控检测结构的超声检测部时,所述多个电路子结构作为沿所述第一方向和所述第二方向阵列排布的多个触控检测区;
    沿所述第二方向排列的一行所述触控检测区为一触控检测区组,沿所述第一方向排列的多个触控检测区组与所述多个第一子电极条一一对应。
  4. 根据权利要求3所述的触控面板,其中,与沿所述第一方向排列的一列所述触控检测区中的所述多个电路子结构连接的所述多条检测线中的任意相邻两条检测线分别与第二薄膜晶体管的源极和漏极连接;
    所述触控面板还包括沿所述第二方向延伸的信号线,所述信号线与所述第二薄膜晶体管的栅极连接。
  5. 根据权利要求4所述的触控面板,其中,所述触控检测结构复用为所述指纹识别结构,且所述触控检测结构为包括所述第一电极、所述电路结构以及位于所述第一电极和所述电路结构之间的所述压电层的叠层结构。
  6. 根据权利要求4所述的触控面板,其中,所述压电层包括第一压电层和第二压电层,所述触控检测结构和所述指纹识别结构包括复用的超声波激发部和超声波检测部;
    所述超声波激发部包括层叠设置的所述第一电极、第二电极以及位于所述第一电极和所述第二电极之间的所述第一压电层;
    所述超声波检测部包括层叠设置的所述电路结构、第三电极以及位于所述电路结构和所述第三电极之间的所述第二压电层。
  7. 根据权利要求6所述的触控面板,还包括触控检测或指纹识别的操作面,其中,所述超声波激发部位于所述超声波检测部远离所述操作面的一侧。
  8. 根据权利要求6或7所述的触控面板,其中,所述第二电极和所述第三电极为板状电极且覆盖所述多个触控检测区,且被配置为加载固定电压。
  9. 根据权利要求6-8任一项所述的触控面板,其中,所述第二电极和所述第三电极为同一电极。
  10. 根据权利要求2所述的触控面板,其中,所述压电层包括第一压电层和第二压电层;
    所述触控检测结构和所述指纹识别结构包括共用的超声波激发部;
    所述超声波激发部包括层叠设置的所述第一电极、第二电极以及位于所述第一电极与所述第二电极之间的所述第一压电层;
    所述第二电极包括沿所述第二方向排列,且沿所述第一方向延伸的多个第二子电极条。
  11. 根据权利要求10所述的触控面板,其中,所述超声波激发部复用为所述触控检测结构的第一超声波检测部;
    所述指纹识别结构还包括第二超声波检测部;
    所述第二超声波检测部包括层叠设置的所述电路结构、所述第二电极以及位于所述电路结构和所述第二电极之间的所述第二压电层;或者,所述第二超声波检测部包括层叠设置的所述电路结构、所述第一电极以及位于所述电路结构和所述第一电极之间的所述第二压电层。
  12. 根据权利要求11所述的触控面板,还包括触控检测或指纹识别的操 作面,其中,所述第二超声波检测部位于所述超声波激发部面向所述操作面的一侧。
  13. 一种显示装置,包括显示面板以及权利要求1-12任一项所述的触控面板,所述触控面板位于所述显示面板的非显示侧。
  14. 一种如权利要求1所述的触控面板的驱动方法,包括触控检测阶段和指纹识别阶段,包括:
    对第N行所述第一子电极条加载第一电信号以激发所述压电层发射第一超声波信号;
    所述压电层将所述触控面板的触控检测或指纹识别的操作面侧反射回的第二超声波信号转化为第二电信号,所述电路结构输出所述第二电信号,其中,N为大于等于1,小于等于所述第一子电极条总条数的整数。
  15. 根据权利要求14所述的驱动方法,其中,所述触控检测结构复用为所述指纹识别结构,且所述触控检测结构为包括所述第一电极、所述电路结构以及位于所述第一电极和所述电路结构之间的所述压电层的叠层结构,所述多个电路子结构划分为沿所述第一方向和所述第二方向阵列排布的多个触控检测区,沿所述第二方向排列的一行所述触控检测区为一触控检测区组,沿所述第一方向排列的多个触控检测区组与所述多个第一子电极条一一对应,
    所述触控检测阶段包括第一超声波发射阶段和第一检测阶段;
    所述第一超声波发射阶段包括:对第N行所述第一子电极条加载所述第一电信号,对与第N行所述第一子电极条对应的第N行所述触控检测区包括的所述多个电路子结构加载固定电压以激发所述压电层发射所述第一超声波信号;
    所述第一检测阶段包括:对第N行所述第一子电极条加载固定电压,通过第N行所述触控检测区包括的所述多个电路子结构输出所述第二电信号以进行触控检测。
  16. 根据权利要求15所述的驱动方法,其中,所述指纹识别阶段包括第二超声波发射阶段和第二检测阶段;
    所述第二超声波发射阶段包括:根据所述触控检测阶段判断第M行所述第一子电极条所在位置为触控区域后,对第M行所述第一子电极条加载所述第一电信号,对与第M行所述第一子电极条对应的第M行所述触控检测区包括的所述多个电路子结构加载固定电压以激发所述压电层发射所述第一超声 波信号;
    或者,对每个所述第一子电极条加载所述第一电信号,对与每个电路子结构加载固定电压以激发所述压电层发射所述第一超声波信号;
    所述第二检测阶段包括:对第M行所述第一子电极条加载固定电压,通过第M行所述触控检测区中的各行所述电路子结构输出所述第二电信号以进行指纹识别,其中,M为大于等于1,小于等于所述第一子电极条总条数的整数。
  17. 根据权利要求14所述的驱动方法,其中,所述压电层包括第一压电层和第二压电层,所述触控检测结构和所述指纹识别结构包括共用的超声波激发部和超声波检测部,所述超声波激发部包括层叠设置的所述第一电极、第二电极以及位于所述第一电极和所述第二电极之间的所述第一压电层,所述超声波检测部包括层叠设置的所述电路结构、第三电极以及位于所述电路结构和所述第三电极之间的所述第二压电层,所述多个电路子结构划分为沿所述第一方向和所述第二方向阵列排布的多个触控检测区,沿所述第二方向排列的一行所述触控检测区为一触控检测区组,沿所述第一方向排列的多个触控检测区组与所述多个第一子电极条一一对应,
    所述触控检测阶段包括第一超声波发射阶段和第一检测阶段;
    所述第一超声波发射阶段包括:对第N行所述第一子电极条加载所述第一电信号,对所述第二电极加载固定电压以激发所述第一压电层发射所述第一超声波信号;
    所述第一检测阶段包括:对所述第三电极加载固定电压,通过与第N行所述第一子电极条对应的第N行所述触控检测区输出所述第二电信号以进行触控检测。
  18. 根据权利要求17所述的驱动方法,其中,所述指纹识别阶段包括第二超声波发射阶段和第二检测阶段,所述第二超声波发射阶段包括:根据所述触控检测阶段判断第M行所述第一子电极条所在位置为触控区域后,对第M行所述第一子电极条加载所述第一电信号,对所述第二电极加载固定电压以激发所述第一压电层发射所述第一超声波信号;或者,对每个第一子电极条加载所述第一电信号,对所述第二电极加载固定电压以激发所述第一压电层发射所述第一超声波信号;
    所述第二检测阶段包括:对所述第三电极加载固定电压,通过与第M行 所述第一子电极条对应的第M行所述触控检测区中的各行所述电路子结构输出所述第二电信号以进行指纹识别,其中,M为大于等于1,小于等于所述第一子电极条总条数的整数。
  19. 根据权利要求16或18所述的驱动方法,其中,沿所述第一方向延伸的多条检测线,沿所述第二方向延伸的多条选通线,所述选通线与所述电路子结构包括的第一薄膜晶体管的栅极相连,所述检测线与所述电路子结构包括的第一薄膜晶体管的源极和漏极之一相连;
    所述选通线被配置为作为所述电路子结构的开关信号传输线;
    在所述第一薄膜晶体管处于开启状态时,所述检测线被配置为检测电信号;
    与沿所述第一方向排列的一列所述触控检测区中的所述多个电路子结构连接的所述多条检测线中的任意相邻两条检测线分别与第二薄膜晶体管的源极和漏极连接;
    所述触控面板还包括沿所述第二方向延伸的信号线,所述信号线与所述第二薄膜晶体管的栅极连接,被配置为传输打开或关闭所述第二薄膜晶体管的信号,
    在所述第一检测阶段,对与第N行所述触控检测区内的所述电路子结构连接的所述选通线输入第一开启电压以使所述电路子结构处于工作状态,且所述第二薄膜晶体管被所述信号线输入第二开启电压以使与一列所述触控检测区中的所述多个电路子结构连接的所述多条检测线导通;
    在所述第二检测阶段,对与第M行所述触控检测区内的所述电路子结构连接的所述选通线输入所述第一开启电压以依次使每行所述电路子结构处于工作状态,且所述第二薄膜晶体管处于关闭状态。
  20. 根据权利要求14所述的驱动方法,其中,所述压电层包括第一压电层和第二压电层,所述触控检测结构和所述指纹识别结构包括共用的超声波激发部,所述超声波激发部包括层叠设置的所述第一电极、第二电极以及位于所述第一电极与所述第二电极之间的所述第一压电层,所述第二电极包括沿所述第二方向排列,且沿所述第一方向延伸的多个第二子电极条,
    所述触控检测阶段包括第一超声波发射阶段,包括:对第N行所述第一子电极条加载所述第一电信号,对每个所述第二子电极条加载固定电压以激发所述第一压电层发射所述第一超声波信号;
    所述超声波激发部复用为所述触控检测结构的第一超声波检测部,所述触控检测阶段还包括第一检测阶段,包括:对第N行所述第一子电极条加载固定电压,通过所述第二子电极输出所述第一压电层将反射回的第三超声波信号转化为的第三电信号以进行触控检测。
  21. 根据权利要求20所述的驱动方法,其中,所述指纹识别结构还包括第二超声波检测部,所述第二超声波检测部包括层叠设置的所述电路结构、所述第二电极以及位于所述电路结构和所述第二电极之间的所述第二压电层,
    所述指纹识别阶段包括第二超声波发射阶段,包括:根据所述触控检测阶段判断第M行所述第一子电极条以及第M列所述第二子电极条所在位置为触控区域后,对第M行所述第一子电极条加载所述第一电信号,对第M列所述第二子电极条加载固定电压以激发所述第一压电层发射所述第一超声波信号;或者,对每个所述第一子电极条加载所述第一电信号,对每个所述第二子电极条加载固定电压以激发所述第一压电层发射所述第一超声波信号;
    所述指纹识别阶段还包括第二检测阶段,包括:对第M列所述第二子电极条加载固定电压,或者对每个所述第二子电极条加载固定电压,通过沿垂直于所述第二压电层的主平面方向与第M行所述第一子电极条对应的各行所述电路子结构输出所述第二压电层将反射回的第二超声波信号转化为的所述第二电信号以进行指纹识别,其中,M为大于等于1,小于等于所述第一子电极条总条数的整数。
  22. 根据权利要求20所述的驱动方法,其中,所述指纹识别结构还包括第二超声波检测部,所述第二超声波检测部包括层叠设置的所述电路结构、所述第一电极以及位于所述电路结构和所述第一电极之间的所述第二压电层,
    所述指纹识别阶段还包括第二超声波发射阶段,包括:根据所述触控检测阶段判断第M行所述第一子电极条以及第M列所述第二子电极条所在位置为触控区域后,对第M行所述第一子电极条加载所述第一电信号,对第M列所述第二子电极条加载固定电压以激发所述第一压电层发射所述第一超声波信号,或者,对每个所述第一子电极条加载所述第一电信号,对每个所述第二子电极条加载固定电压以激发所述第一压电层发射所述第一超声波信号;
    所述指纹识别阶段还包括第二检测阶段,包括:对第M行所述第一子电极条加载固定电压,或者对每个所述第一子电极条加载固定电压,通过沿垂直于所述第二压电层的主平面方向与第M行所述第一子电极条对应的各行所述 电路子结构输出所述第二压电层受到反射回的第二超声波信号作用而产生的所述第二电信号以进行指纹识别,其中,M为大于等于1,小于等于所述第一子电极条总条数的整数。
PCT/CN2019/076478 2019-02-28 2019-02-28 触控面板及其驱动方法、以及显示装置 WO2020172853A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19883336.0A EP3933663A4 (en) 2019-02-28 2019-02-28 TOUCH SCREEN AND ASSOCIATED CONTROL METHOD, AND DISPLAY DEVICE
CN201980000212.0A CN111868735B (zh) 2019-02-28 2019-02-28 触控面板及其驱动方法、以及显示装置
PCT/CN2019/076478 WO2020172853A1 (zh) 2019-02-28 2019-02-28 触控面板及其驱动方法、以及显示装置
US16/650,551 US11269461B2 (en) 2019-02-28 2019-02-28 Touch panel, driving method thereof, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/076478 WO2020172853A1 (zh) 2019-02-28 2019-02-28 触控面板及其驱动方法、以及显示装置

Publications (1)

Publication Number Publication Date
WO2020172853A1 true WO2020172853A1 (zh) 2020-09-03

Family

ID=72238815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076478 WO2020172853A1 (zh) 2019-02-28 2019-02-28 触控面板及其驱动方法、以及显示装置

Country Status (4)

Country Link
US (1) US11269461B2 (zh)
EP (1) EP3933663A4 (zh)
CN (1) CN111868735B (zh)
WO (1) WO2020172853A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113486831A (zh) * 2021-07-15 2021-10-08 维沃移动通信有限公司 显示模组和电子设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11076225B2 (en) * 2019-12-28 2021-07-27 Intel Corporation Haptics and microphone display integration
CN111326564B (zh) * 2020-03-31 2023-08-08 京东方科技集团股份有限公司 显示装置、显示设备及其控制方法、计算机可读存储介质
CN113486832B (zh) * 2021-07-15 2024-05-28 维沃移动通信有限公司 显示模组和电子设备
US11580770B1 (en) 2021-07-28 2023-02-14 Qualcomm Incorporated Ultrasonic fingerprint sensor technologies and methods for bi-directional fingerprint sensing
WO2023121885A1 (en) * 2021-12-22 2023-06-29 Apple Inc. Touch input devices
CN116708612A (zh) * 2022-02-28 2023-09-05 华为技术有限公司 触控组件、触控芯片和终端设备
CN116978077A (zh) * 2023-08-24 2023-10-31 深圳市汇顶科技股份有限公司 超声波指纹识别装置和电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107798300A (zh) * 2017-10-10 2018-03-13 成都安瑞芯科技有限公司 超声波指纹识别模组、器件及电子设备
CN107977602A (zh) * 2017-10-10 2018-05-01 成都安瑞芯科技有限公司 超声波指纹识别模块、模组、器件及电子设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196359A1 (ja) * 2013-06-04 2014-12-11 日本写真印刷株式会社 圧電センサおよび圧力検出装置
CN104281328A (zh) * 2014-10-31 2015-01-14 合肥鑫晟光电科技有限公司 一种触摸屏和显示面板
CN105631402B (zh) * 2015-12-18 2019-02-19 业成科技(成都)有限公司 指纹识别装置及方法
CN105843446B (zh) * 2016-03-18 2019-10-25 京东方科技集团股份有限公司 检测组件、触控显示装置、触摸定位方法及压力检测方法
US20180080839A1 (en) * 2016-09-21 2018-03-22 Qualcomm Incorporated Piezoelectric material test probe and method
CN108268816A (zh) * 2016-12-30 2018-07-10 南昌欧菲生物识别技术有限公司 具有指纹识别功能的触摸屏及电子装置
CN108268156A (zh) * 2016-12-30 2018-07-10 南昌欧菲生物识别技术有限公司 具有指纹识别功能的触摸屏及电子装置
KR102264431B1 (ko) * 2017-03-16 2021-06-15 삼성전자 주식회사 복수의 압전 소자를 구비하는 전자 장치
US10846501B2 (en) * 2017-04-28 2020-11-24 The Board Of Trustees Of The Leland Stanford Junior University Acoustic biometric touch scanner
CN108171183B (zh) * 2018-01-02 2021-01-22 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置和指纹识别方法
CN208126414U (zh) * 2018-05-24 2018-11-20 京东方科技集团股份有限公司 超声波指纹识别模组和显示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107798300A (zh) * 2017-10-10 2018-03-13 成都安瑞芯科技有限公司 超声波指纹识别模组、器件及电子设备
CN107977602A (zh) * 2017-10-10 2018-05-01 成都安瑞芯科技有限公司 超声波指纹识别模块、模组、器件及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3933663A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113486831A (zh) * 2021-07-15 2021-10-08 维沃移动通信有限公司 显示模组和电子设备

Also Published As

Publication number Publication date
CN111868735B (zh) 2024-06-28
EP3933663A1 (en) 2022-01-05
US11269461B2 (en) 2022-03-08
CN111868735A (zh) 2020-10-30
EP3933663A4 (en) 2022-10-26
US20210223882A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
WO2020172853A1 (zh) 触控面板及其驱动方法、以及显示装置
US11120243B2 (en) Fingerprint identification module, manufacturing method and driving method thereof, display device
US10796127B2 (en) Ultrasonic transducers embedded in organic light emitting diode panel and display devices including the same
US20200134281A1 (en) Display panel, display device, and method for driving the same
US20200401227A1 (en) Display device and method of driving the same
WO2020248677A1 (zh) 一种显示面板、其控制方法及显示装置
TW201702843A (zh) 一種具有壓力偵測的觸控顯示模組及其驅 動方法
CN110097043B (zh) 传感器像素、超声传感器、oled显示面板和oled显示装置
US11398105B2 (en) Ultrasonic recognition module, driving method thereof, and display device
WO2018040233A1 (zh) 具有触控感测器的液晶显示装置及其驱动方法
KR102486154B1 (ko) 초음파 센서, 초음파 센싱 장치 및 디스플레이 장치
US20180292903A1 (en) Touch Display Panel and Display Device
CN110716355A (zh) 显示面板和显示装置
CN112117303B (zh) 显示面板和显示装置
CN110705429A (zh) 指纹识别基板及显示装置的驱动方法
JP2018132850A (ja) 表示装置、および携帯情報端末
US20230005290A1 (en) Fingerprint identification structure, driving method thereof and electronic device
US11216634B2 (en) Ultrasonic sensor and display device
CN109037284B (zh) 显示装置及其控制方法、制造方法
US10488930B2 (en) Display device and method for providing haptic feedback using the same
US11823482B2 (en) Ultrasonic sensor, display panel and display apparatus
KR102690617B1 (ko) 초음파 센서 및 디스플레이 장치
US11653570B2 (en) Display device and piezoelectric sensor
US11875594B2 (en) Detection device and method for manufacturing same
WO2021159392A1 (zh) 指纹识别模组及其驱动方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019883336

Country of ref document: EP

Effective date: 20210928