WO2020171738A1 - Устройство для обеззараживания жидкостей ультрафиолетовым излучением - Google Patents

Устройство для обеззараживания жидкостей ультрафиолетовым излучением Download PDF

Info

Publication number
WO2020171738A1
WO2020171738A1 PCT/RU2020/000020 RU2020000020W WO2020171738A1 WO 2020171738 A1 WO2020171738 A1 WO 2020171738A1 RU 2020000020 W RU2020000020 W RU 2020000020W WO 2020171738 A1 WO2020171738 A1 WO 2020171738A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamp
axis
flow
reactor vessel
radiation
Prior art date
Application number
PCT/RU2020/000020
Other languages
English (en)
French (fr)
Inventor
Павел Владимирович БОГУН
Original Assignee
Павел Владимирович БОГУН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Павел Владимирович БОГУН filed Critical Павел Владимирович БОГУН
Priority to EP20759049.8A priority Critical patent/EP3929162A4/en
Publication of WO2020171738A1 publication Critical patent/WO2020171738A1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3223Single elongated lamp located on the central axis of a turbular reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/328Having flow diverters (baffles)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the invention relates to the field of disinfection of liquids, including water, using ultraviolet (UV) radiation with a wavelength of the bactericidal range.
  • UV ultraviolet
  • a device for disinfecting liquids with ultraviolet radiation has a sealed cylindrical reactor vessel, inside of which a UV lamp made in the form of a straight tube is located along its axis, placed in a sealed protective quartz case, having at least on one side an open outlet through the end of the reactor vessel for connection lamp power supply.
  • the reactor vessel has inlet and outlet nozzles located at its ends.
  • One or more flow dividers are installed inside the reactor vessel between the inlet and outlet nozzles. The flow of the treated liquid enters through the inlet into the reactor vessel and moves along its axis to the outlet, while the splitters create and maintain the distribution of the flow rate such that it is maximum at the surface of the protective casing and gradually decreases with distance from the lamp axis.
  • the dependence of the longitudinal flow velocity on the distance from the lamp axis will be optimal if its form is close to the form of the dependence on this distance of the UV radiation intensity averaged over the lamp length.
  • a device for disinfecting liquids, in particular water, by exposure to UV radiation consisting of one or more UV lamps made in the form of long tubes with electrodes at the ends and placed in protective quartz covers, which are located inside a sealed reactor vessel having branch pipes for inlet and outlet of the liquid flow.
  • the reactor vessel is made, as a rule, in the form of a cylinder, lamps in protective covers are located parallel to its axis so that there is access to the lamp electrodes through holes in the ends of the housing for power supply, and the inlet and outlet pipes are located at the ends of the cylinder.
  • the processed liquid enters through the inlet pipe inside the reactor vessel and flows along it to the outlet pipe, being exposed to the bactericidal effect of UV radiation.
  • the disadvantage of the described device is the low efficiency of disinfection caused by uneven irradiation of the volume of the treated liquid.
  • the intensity of the radiation coming from each lamp depends on the distance to this lamp.
  • those parts of the flow that are far from the lamps can receive radiation doses several times smaller than the parts of the flow near the protective covers of the lamps.
  • the irregularity of the radiation intensity distribution inside the reactor vessel becomes even greater if there is absorption of UV radiation in the treated liquid, for example, due to the presence of dissolved substances or suspended solid impurities.
  • baffles and / or blades In order to mix the liquid with the help of baffles and / or blades, ensuring effective averaging of the radiation dose received by the liquid, they must be installed perpendicular or at an angle to the axis of the reactor vessel and close enough to each other, which creates significant obstacles to radiation. propagating at an angle to the axis of the lamps and reduces the radiation intensity. Manufacturing baffles and blades from materials that either transmit UV radiation (quartz) or effectively reflect it (anodized aluminum) is technologically difficult, and therefore does not find practical application.
  • FIG. 1, 2 and 3 The construction of the device is illustrated in FIG. 1, 2 and 3.
  • a device for disinfecting liquids with ultraviolet radiation has a sealed cylindrical reactor vessel 1, inside of which a UV lamp 2 made in the form of a straight tube is located along its axis, placed in a sealed protective quartz cover 3, having at least one side an open exit through the end of the reactor vessel 1 for connecting the power supply to the lamp 2.
  • the reactor housing has an input 4 and output 5 nozzles located at its ends.
  • one or more flow dividers 6 are installed, which create and maintain a distribution of the flow rate such that it is maximum at the surface of the protective casing and gradually decreases with distance from the lamp axis.
  • the dependence of the longitudinal flow velocity on the distance from the lamp axis will be optimal if its form is close to the form of the dependence on this distance of the UV radiation intensity averaged over the lamp length.
  • the technical result consists in increasing the uniformity of irradiation of the entire volume of the treated liquid and, as a consequence, increasing the degree of disinfection and / or productivity of the device.
  • the device works as follows.
  • the flow of the processed liquid enters the inside of the reactor vessel 1 through the inlet nozzle 4 and passes through the flow divider 6 closest to this nozzle. After that, the distribution of the flow velocity over the section of the reactor vessel becomes such that it is maximum at the surface of the protective lamp cover 3 and decreases as removal from it. If the dependence of the longitudinal flow velocity on the distance to the lamp axis is proportional to the UV radiation intensity averaged over the length of the lamp 2 for this distance, then the time of passage through the device of a part of the flow moving at any distance from the lamp will be inversely proportional to the average radiation intensity that falls on it. affects.
  • the received radiation dose which is equal to the product of the radiation intensity and the exposure time, will be approximately the same for all parts of the flow.
  • additional dividers installed 6.
  • the intensity of UV irradiation is maximum at the surface of the lamp's protective casing and decreases approximately in inverse proportion to the distance from the lamp axis.
  • the rate of decrease in the intensity of irradiation increases with distance. Therefore, to obtain the maximum effect, flow dividers must form and maintain the dependence of the longitudinal flow rate of the treated liquid close to inversely proportional to the distance from the lamp axis or with a faster decrease from this distance.
  • the specific type of optimal distribution of the flow rate will depend on the geometric dimensions of the reactor vessel and the absorption coefficient of UV radiation in the treated liquid.
  • the flow dividers can be made in the form of transverse baffles with openings for the passage of the processed liquid, as shown in Fig. 3.
  • the baffles are divided into concentric annular zones of equal width with a common center on the axis of the lamp.
  • the first zone which is formed by the surface of the protective casing of the lamp 3 and the edge of the partition-divider 6, is completely open for the passage of liquid, and the remaining zones have passage holes evenly distributed over them 7.
  • Part of the liquid flow passing through the holes of each of the zones 7, after the partition forms a cylindrical layer moving at a speed proportional to the ratio of the total area of the passage holes of this zone to the area of the zone.
  • the area of each zone is proportional to its average radius.
  • the flow rate in the cylindrical layers of the flow after the partition will be inversely proportional to the average radii of the corresponding zones. If the irradiation intensity averaged over the length of the lamp decreases with distance from the lamp axis faster than in an inversely proportional relationship, then the total area of the through holes in each zone should be less than this parameter for the zone closest to it from the lamp side.
  • the specific optimal dependence of the total area of the passage holes on the average radius of the zone will be determined by the length of the lamp, the transverse size of the reactor vessel and the absorption coefficient of UV radiation in the treated liquid.
  • FIG. 4 shows an example of comparing the dependence of the longitudinal velocity V for the water flow on the distance from the lamp axis R after passing through the splitter made in accordance with FIG. ⁇ , (curve Q) and the calculated optimal dependence of this speed, which is proportional to the UV radiation intensity averaged over the length of the lamp, on the same distance R (curve T).

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physical Water Treatments (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

Изобретение относится к области обеззараживания жидкостей, в том числе воды, ультрафиолетовым (УФ) излучением. Устройство для обеззараживания жидкостей ультрафиолетовым излучением имеет герметичный цилиндрический корпус-реактор (1), внутри которого вдоль его оси расположена выполненная в виде прямой трубки УФ-лампа (2), помещенная в герметичный защитный кварцевый чехол (3), имеющий хотя бы с одной стороны открытый выход через торец корпуса реактора (1) для подключения электропитания лампы (2). Корпус-реактор имеет входной (4) и выходной (5) патрубки, расположенные у его торцов. Внутри корпуса-реактора (1) между входным (4) и выходным (5) патрубками установлены один или несколько рассекателей потока (6). Поток обрабатываемой жидкости входит через входной патрубок (4) в корпус-реактор (1) и движется вдоль его оси к выходному патрубку (5), при этом рассекатели (6) создают и поддерживают распределение продольной скорости потока такое, что она максимальна у поверхности защитного кожуха (3) и постепенно убывает при удалении от оси лампы. Зависимость продольной скорости потока от расстояния от оси лампы будет оптимальной, если ее вид будет приближен к виду зависимости от этого расстояния средней по длине лампы интенсивности УФ-облучения. Технический результат заключается в увеличении равномерности облучения УФ-излучением всего объема обрабатываемой жидкости и, как следствие, увеличение степени обеззараживания и/или производительности устройства.

Description

УСТРОЙСТВО ДЛЯ ОБЕЗЗАРАЖИВАНИЯ ЖИДКОСТЕЙ УЛЬТРАФИОЛЕТОВЫМ
ИЗЛУЧЕНИЕМ
ОПИСАНИЕ
Изобретение относится к области обеззараживания жидкостей, в том числе воды, с помощью обработки ультрафиолетовым (УФ) излучением с длиной волны бактерицидного диапазона.
Устройство для обеззараживания жидкостей ультрафиолетовым излучением имеет герметичный цилиндрический корпус-реактор, внутри которого вдоль его оси расположена выполненная в виде прямой трубки УФ-лампа, помещенная в герметичный защитный кварцевый чехол, имеющий хотя бы с одной стороны открытый выход через торец корпуса-реактора для подключения электропитания лампы. Корпус-реактор имеет входной и выходной патрубки, расположенные у его торцов. Внутри корпуса-реактора между входным и выходным патрубками установлены один или несколько рассекателей потока. Поток обрабатываемой жидкости входит через входной патрубок в корпус-реактор и движется вдоль его оси к выходному патрубку, при этом рассекатели создают и поддерживают распределение скорости потока такое, что она максимальна у поверхности защитного кожуха и постепенно убывает при удалении от оси лампы. Зависимость продольной скорости потока от расстояния от оси лампы будет оптимальной, если ее вид будет приближен к виду зависимости от этого расстояния средней по длине лампы интенсивности УФ-облучения.
Из существующего уровня техники известно устройство для обеззараживания жидкостей, в частности воды, воздействием УФ-излучения, состоящее из одной или нескольких ультрафиолетовых ламп, выполненных в виде длинных трубок с электродами на концах и помещенных в защитные кварцевые чехлы, которые находится внутри герметичного корпуса-реактора, имеющего патрубки для входа и выхода потока жидкости. Корпус-реактор выполнен, как правило, в виде цилиндра, лампы в защитных чехлах располагаются параллельно его оси так, что имеется доступ к электродам ламп через отверстия в торцах корпуса для подачи электропитания, а патрубки входа и выхода расположены у торцов цилиндра. Обрабатываемая жидкость поступает через входной патрубок внутрь корпуса-реактора и протекает вдоль его к выходному патрубку, подвергаясь бактерицидному воздействию УФ-излучения. Недостатком описанного устройства является невысокая эффективность обеззараживания, вызванная неравномерностью облучения объема обрабатываемой жидкости. В каждой точке объема корпуса-реактора даже при условии полной прозрачности жидкости для УФ-лучей интенсивность излучения, поступающего от каждой лампы, зависит от расстояния до этой лампы. При протекании вдоль корпуса-реактора те части потока, которые находятся вдали от ламп, могут получать дозы излучения в разы меньшие, чем части потока вблизи защитных чехлов ламп. Неравномерность распределения интенсивности излучения внутри корпуса-реактора становится еще больше, если имеет местр поглощение УФ-излучения в обрабатываемой жидкости, например, из-за наличия растворенных веществ или взвешенных твердых примесей.
Указанный недостаток можно устранить, если обеспечить перемешивание потока так, чтобы каждый микрообъем жидкости подвергался одинаковому воздействию излучения. Для этих целей в патентах US 5352359, US 2007/0012883 А1 , US 2009/0084734 А1 , RU 2027678 С 1, 1992, например, предлагались устройства с различными перегородками и лопастями внутри корпуса-реактора или же спиральные канавки на внутренней поверхности корпуса-реактора, как в RU 88345 U1, 2009. Однако спиральные канавки не дают должного перемешивания. С другой стороны, для перемешивания жидкости с помощью перегородок и/или лопастей, обеспечивающего эффективное усреднение получаемой жидкостью дозы облучения, они должны быть установлены перпендикулярно или под углом к оси корпуса-реактора и достаточно близко друг от друга, что создает значительные препятствия для излучения, распространяющегося под углом к оси ламп и снижает интенсивность облучения. Изготовление перегородок и лопастей из материалов, либо пропускающих УФ-излучение (кварц), либо эффективно отражающих его (анодированный алюминий), технологически сложно, поэтому не находит практического применения.
Наиболее близким к заявляемому техническому решению является устройство (патент US 2009/00884734 А1, опубл. 2.04.06.2009 г.), содержащее закрытый цилиндрический корпус-реактор с входным и выходным патрубками у его торцов, внутри которого имеется ультрафиолетовая лампа в виде прямой трубки, установленной параллельно оси корпуса-реактора, и ряд поперечных перегородок с отверстиями. Отверстия служат для создания турбулентности в потоке жидкости, обеспечивающей его перемешивание. Увеличение равномерности облучения УФ-излучением всего объема обрабатываемой жидкости и, как следствие, увеличение степени обеззараживания и/или производительности в предлагаемом устройстве может быть достигнуто за счет действия рассекателей потока, при котором части потока, движущиеся вблизи лампы и подвергающиеся более интенсивному УФ-облучению, проходят обработку менее длительное время, чем части потока, движущиеся на расстоянии от лампы в областях меньших интенсивностей облучения.
Конструкция устройства поясняется на фиг. 1 , 2 и 3.
Устройство для обеззараживания жидкостей ультрафиолетовым излучением имеет герметичный цилиндрический корпус-реактор 1 , внутри которого вдоль его оси расположена выполненная в виде прямой трубки УФ-лампа 2, помещенная в герметичный защитный кварцевый чехол 3, имеющий хотя бы с одной стороны открытый выход через торец корпуса реактора 1 для подключения электропитания лампы 2. Корпус-реактор имеет входной 4 и выходной 5 патрубки, расположенные у его торцов. Внутри корпуса- реактора 1 между входным 4 и выходным 5 патрубками установлены один или несколько рассекателей потока 6, которые создают и поддерживают распределение скорости потока такое, что она максимальна у поверхности защитного кожуха и постепенно убывает при удалении от оси лампы. Зависимость продольной скорости потока от расстояния от оси лампы будет оптимальной, если ее вид будет приближен к виду зависимости от этого расстояния средней по длине лампы интенсивности УФ-облучения. Технический результат заключается в увеличении равномерности облучения всего объема обрабатываемой жидкости и, как следствие, увеличение степени обеззараживания и/или производительности устройства.
Работает устройство следующим образом. Поток обрабатываемой жидкости попадает внутрь корпуса-реактора 1 через входной патрубок 4 и проходит через ближний к этому патрубку рассекатель потока 6. После этого распределение скорости потока по сечению корпуса-реактора становится таким, что она максимальна у поверхности защитного чехла лампы 3 и убывает по мере удаления от него. Если зависимость продольной скорости потока от расстояния до оси лампы пропорциональна средней по длине лампы 2 интенсивности УФ-облучения для этого расстояния, то время прохождения через устройство части потока, движущейся на любом расстоянии от лампы, будет обратно пропорционально средней интенсивности облучения, которое на него воздействует. А это значит, что получаемая доза облучения, которая равна произведению интенсивности облучения на время облучения, для всех частей потока будет примерно одинаковой. Распределение скорости потока по сечению корпуса-реактора, полученное после прохождения жидкости через рассекатель 6, сохраняется на достаточно большом расстоянии после него. Поэтому для поддержания близкого к оптимальному распределения скорости потока по всей дилне корпуса-реактора может быть достаточно одного рассекателя, установленного вблизи входного патрубка 4. В зависимости от вязкости жидкости, размеров корпуса-реактора 1 и требуемой для обеззараживания дозы облучения на пути потока жидкости могут быть установлены дополнительные рассекатели 6.
Если расстояние от лампы значительно меньше ее длиныи расстояния до ее концов, то интенсивность УФ-облучения максимальна у поверхности защитного кожуха лампы и убывает приблизительно обратно пропорционально расстоянию от оси лампы, При увеличении расстояния от кожуха до значений, сравнимых с длиной лампы и/или расстоянием до ее концов, и при наличии поглощения УФ-излучения в обрабатываемой жидкости скорость убывания интенсивности облучения с расстоянием увеличивается. Поэтому для получения максимального эффекта рассекатели потока должны формировать и поддерживать зависимость продольной скорости потока обрабатываемой жидкости близкое к обратно пропорциональной от расстояния от оси лампы или с более быстрым убыванием от этого расстояния. Конкретный вид оптимального распределения скорости потока будет зависеть от геометрических размеров корпуса-реактора и коэффициента поглощения УФ-излучения в обрабатываемой жидкости.
Рассекатели потока могут быть выполнены в виде поперечных перегородок с отверстиями для прохода обрабатываемой жидкости, как это показано на фиг. 3. Перегородки разделены на концентрические кольцевые зоны равной ширины с общим центром на оси лампы. При этом первая зона, которая образована поверхностью защитного кожуха лампы 3 и краем перегородки-рассекателя 6, является полностью открытой для прохода жидкости, а остальные зоны имеют равномерно распределенные по ним проходные отверстия 7. Часть потока жидкости, проходящая через отверстия каждой из зон 7, образует после перегородки цилиндрический слой, движущийся со скоростью, пропорциональной отношению суммарной площади проходных отверстий этой зоны к площади зоны. Площадь каждой зоны пропорциональна ее среднему радиусу. Если при этом суммарная площадь проходных отверстий для всех зон одинаковая, то скорость потока в цилиндрических слоях потока после перегородки будет обратно пропорциональной средним радиусам соответствующих зон. Если средняя по длине лампы интенсивность облучения убывает с расстоянием от оси лампы быстрее, чем по обратно пропорциональной зависимости, то суммарная площадь проходных отверстий в каждой зоне должна быть меньше, чем этот параметр для зоны, ближней к ней со стороны лампы. Конкретная оптимальная зависимость суммарной площади проходных отверстий от среднего радиуса зоны будет определяться длиной лампы, поперечным размером корпуса- реактора и коэффициентом поглощения УФ-излучения в обрабатываемой жидкости.
На фиг.4 показан пример сравнения зависимости продольной скорости V для потока воды от расстояния от оси лампы R после прохождения рассекателя, выполненного в соответствии с фиг. ЗБ, (кривая Q) и расчетной оптимальной зависимости этой скорости, пропорциональной средней по длине лампы интенсивности УФ-облучения, от того же расстояния R (кривая Т). Расчеты выполнены для следующих параметров: общий поток воды - 1,8 л/сек.; температура воды - 20° С; внешний диаметр защитного чехла лампы 3 - 4 см; внутренний диаметр корпуса-реактора 1 - 18 см; количество зон расположения проходных отверстий рассекателя - 7; суммарные площади проходных отверстий всех зон равны между собой; расстояние, проходимое водой после рассекателя - 40 см.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
Устройство для обеззараживания жидкостей ультрафиолетовым излучением, имеющее герметичный цилиндрический корпус-реактор, расположенную внутри вдоль его оси выполненную в виде прямой трубки УФ-лампу, помещенную в герметичный защитный кварцевый чехол, имеющий хотя бы с одной стороны открытый выход через торец корпуса-реактора для подключения электропитания лампы, входной и выходной патрубки, расположенные у торцов корпуса-реактора, расположенные внутри него между входным и выходным патрубками один или несколько рассекателей потока, отличающееся тем, что рассекатели потока выполнены в виде поперечных оси лампы перегородок, имеющих несколько кольцевых зон равной ширины с общим центром на оси лампы с равномерно расположенными по этим зонам отверстиями для прохода жидкости, причем суммарная площадь проходных отверстий каждой зоны не превышает этого показателя для зоны, ближайшей к ней со стороны общего центра, с возможностью создания и поддержания рассекателями такого распределения потока жидкости, что его скорость вдоль оси корпуса-реактора максимальна у поверхности защитного чехла и постепенно убывает при удалении от него.
б
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)
PCT/RU2020/000020 2019-02-19 2020-01-17 Устройство для обеззараживания жидкостей ультрафиолетовым излучением WO2020171738A1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20759049.8A EP3929162A4 (en) 2019-02-19 2020-01-17 PROCESS FOR THE DECONTAMINATION OF LIQUIDS BY ULTRAVIOLET RADIATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2019104556A RU2706613C1 (ru) 2019-02-19 2019-02-19 Устройство для обеззараживания жидкостей ультрафиолетовым излучением
RU2019104556 2019-02-19

Publications (1)

Publication Number Publication Date
WO2020171738A1 true WO2020171738A1 (ru) 2020-08-27

Family

ID=68580085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2020/000020 WO2020171738A1 (ru) 2019-02-19 2020-01-17 Устройство для обеззараживания жидкостей ультрафиолетовым излучением

Country Status (3)

Country Link
EP (1) EP3929162A4 (ru)
RU (1) RU2706613C1 (ru)
WO (1) WO2020171738A1 (ru)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352359A (en) 1992-02-05 1994-10-04 Ebara Corporation Ultraviolet reactor with mixing baffle plates
RU2027678C1 (ru) 1992-02-27 1995-01-27 Лидия Михайловна Женевская Устройство для бактерицидной обработки жидкости
RU94023806A (ru) * 1994-06-23 1996-05-20 Товарищество с ограниченной ответственностью "Лаборатория импульсной техники" Установка для дезинфекции жидкости
RU13209U1 (ru) * 1999-10-21 2000-03-27 Закрытое акционерное общество "Лаборатория импульсной техники" Устройство для обработки воды ультрафиолетовым излучением
US20070012883A1 (en) 2005-07-15 2007-01-18 Lam Ka D Ultraviolet water sterilizer
US20090084734A1 (en) 2007-09-27 2009-04-02 Yencho Stephen A Ultraviolet water purification system
RU88345U1 (ru) 2009-07-14 2009-11-10 Государственное образовательное учреждение высшего профессионального образования Омский государственный университет путей сообщения Устройство для обработки воды ультрафиолетовым излучением
US20110024365A1 (en) * 2009-07-30 2011-02-03 Zhee Min Jimmy Yong Baffle plates for an ultraviolet reactor
US20130119266A1 (en) * 2010-07-26 2013-05-16 Koninklijke Philips Electronics N.V. Device for subjecting a fluid to a disinfecting treatment by exposing the fluid to ultraviolet light
RU2627368C1 (ru) * 2016-02-12 2017-08-08 Павел Владимирович Богун Устройство для обработки жидкостей ультрафиолетовым излучением

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6951617B2 (en) * 2003-09-16 2005-10-04 Purepise Technologies, Inc. Method and apparatus for controlling flow profile to match lamp fluence profile

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352359A (en) 1992-02-05 1994-10-04 Ebara Corporation Ultraviolet reactor with mixing baffle plates
RU2027678C1 (ru) 1992-02-27 1995-01-27 Лидия Михайловна Женевская Устройство для бактерицидной обработки жидкости
RU94023806A (ru) * 1994-06-23 1996-05-20 Товарищество с ограниченной ответственностью "Лаборатория импульсной техники" Установка для дезинфекции жидкости
RU13209U1 (ru) * 1999-10-21 2000-03-27 Закрытое акционерное общество "Лаборатория импульсной техники" Устройство для обработки воды ультрафиолетовым излучением
US20070012883A1 (en) 2005-07-15 2007-01-18 Lam Ka D Ultraviolet water sterilizer
US20090084734A1 (en) 2007-09-27 2009-04-02 Yencho Stephen A Ultraviolet water purification system
RU88345U1 (ru) 2009-07-14 2009-11-10 Государственное образовательное учреждение высшего профессионального образования Омский государственный университет путей сообщения Устройство для обработки воды ультрафиолетовым излучением
US20110024365A1 (en) * 2009-07-30 2011-02-03 Zhee Min Jimmy Yong Baffle plates for an ultraviolet reactor
US20130119266A1 (en) * 2010-07-26 2013-05-16 Koninklijke Philips Electronics N.V. Device for subjecting a fluid to a disinfecting treatment by exposing the fluid to ultraviolet light
RU2627368C1 (ru) * 2016-02-12 2017-08-08 Павел Владимирович Богун Устройство для обработки жидкостей ультрафиолетовым излучением

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
BAŁDYGA JERZY, ORCIUCH WOJCIECH: "Barium sulphate precipitation in a pipe — an experimental study and CFD modelling", CHEMICAL ENGINEERING SCIENCE, OXFORD, GB, vol. 56, no. 7, 1 April 2001 (2001-04-01), GB , pages 2435 - 2444, XP055917088, ISSN: 0009-2509, DOI: 10.1016/S0009-2509(00)00449-8
BLATCHLEY, E.R. III: "Numerical modelling of UV intensity: application to collimated-beam reactors and continuous flow systems", WATER RESEARCH, ELSEVIER, AMSTERDAM, NL, vol. 31, no. 9, 1 September 1997 (1997-09-01), AMSTERDAM, NL, pages 2205 - 2218, XP004085756, ISSN: 0043-1354, DOI: 10.1016/S0043-1354(97)82238-5
BOLTON R. J.: "Calculation of ultraviolet fluence rate distributions in an annular reactor: significance of refraction and reflection", WAT. RES., vol. 34, no. 13, 2000, pages 3315 - 3324, XP004228609, DOI: 10.1016/S0043-1354(00)00087-7
CHEN, J.DENG, B.KIM, C.N.: "Computational fluid dynamics (CFD) modeling of UV disinfection in a closed-conduit reactor", CHEMICAL ENGINEERING SCIENCE, vol. 66, 2011, pages 4983 - 4990, XP028271928, DOI: 10.1016/j.ces.2011.06.043
CHIU, K.LYN, D. A.SAVOYE, P.BLATCHLEY, E. R. III: "Integrated UV disinfection model based on particle tracking", JOURNAL OF ENVIRONMENTAL ENGINEERING, ASCE, vol. 125, no. 1, 1999, pages 7 - 16, XP008050313
CIMDATA: "CFD for Mechanical Design Engineers ''A Paradigm Shift for Better Design''", MENTOR GRAPHICS CORPORATION, 2009
DECK SÉBASTIEN, PHILIPPE DUVEAU, PAULO D'ESPINEY, PHILIPPEGUILLEN: "Development and application of Spalart-Allmaras one equation turbulence model to three-dimensional supersonic complex configurations", AEROSPACE SCIENCE AND TECHNOLOGY, vol. 6, no. 3, 1 March 2002 (2002-03-01), pages 171 - 183, XP055917077
DUCOSTE JOEL J., LIU DONG, LINDEN KARL: "Alternative Approaches to Modeling Fluence Distribution and Microbial Inactivation in Ultraviolet Reactors: Lagrangian versus Eulerian", JOURNAL OF ENVIRONMENTAL ENGINEERING, AMERICAN SOCIETY OF CIVIL ENGINEERS, US, vol. 131, no. 10, 1 October 2005 (2005-10-01), US , pages 1393 - 1403, XP055917109, ISSN: 0733-9372, DOI: 10.1061/(ASCE)0733-9372(2005)131:10(1393)
FERRETTI, G., MONTANARI, R., SOLAN, E: "A new approach for the optimization of UV-reactor design by mean of CFD simulation", PROCEEDINGS OF THE 6TH CIGR SECTION VI INTERNATIONAL SYMPOSIUM, ''TOWARDS A S'USTAINABLE FOOD CHAIN. NANTES, FRANCE - APRIL 18-20, 2011, 18 April 2011 (2011-04-18) - 20 April 2011 (2011-04-20)
HEERING WOLFGANG: "UV SOURCES – Basics, Properties and Applications", IUVANEWS, vol. 6, no. 4, 1 December 2004 (2004-12-01), pages 7 - 13, XP055917115
JACOB SOLOMON M., JOSHUA S. DRANOFF: "Light intensity profiles in a perfectly mixed photoreactor", AICHE JOURNAL, vol. 16, no. 3, 1 May 1970 (1970-05-01), pages 359 - 363, XP055917123
KALITZIN, G. MEDIC, G. IACCARINO, G. DURBIN, P.: "Near-wall behavior of RANS turbulence models and implications for wall functions", JOURNAL OF COMPUTATIONAL PHYSICS., LONDON, GB, vol. 204, no. 1, 20 March 2005 (2005-03-20), GB , pages 265 - 291, XP004762442, ISSN: 0021-9991, DOI: 10.1016/j.jcp.2004.10.018
LIU D.WU C.LINDEN K.DUCOSTE J.: "Numerical simulation of UV disinfection reactors: evaluation of alternative turbulence models", APPL. MATH. MODELL., vol. 31, 2007, pages 1753 - 1769, XP022023917, DOI: 10.1016/j.apm.2006.06.004
LYN D. A.: "Steady and Unsteady Simulations of Turbulent Flow and Transport in Ultraviolet Disinfection Channels", JOURNAL OF HYDRAULIC ENGINEERING, AMERICAN SOCIETY OF CIVIL ENGINEERS, NEW YORK, NY, US, vol. 130, no. 8, 1 August 2004 (2004-08-01), US , pages 762 - 770, XP055917126, ISSN: 0733-9429, DOI: 10.1061/(ASCE)0733-9429(2004)130:8(762)
LYN, D. A.CHIU, K.SAVOYE, P.BLATCHLEY, E. R. III: "Numerical modeling of flow and disinfection in UV disinfection channels", JOURNAL OF ENVIRONMENTAL ENGINEERING, ASCE, vol. 125, no. 1, 1999, pages 17, XP008050311
QUALLS R G, JOHNSON J D: "Bioassay and dose measurement in UV disinfection", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 45, no. 3, 1 March 1983 (1983-03-01), US , pages 872 - 877, XP055917065, ISSN: 0099-2240, DOI: 10.1128/aem.45.3.872-877.1983
QUAN YANG, PEHKONEN SIMO O., RAY MADHUMITA B.: "Evaluation of Three Different Lamp Emission Models Using Novel Application of Potassium Ferrioxalate Actinometry", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, AMERICAN CHEMICAL SOCIETY, vol. 43, no. 4, 1 February 2004 (2004-02-01), pages 948 - 955, XP055917071, ISSN: 0888-5885, DOI: 10.1021/ie0304210
See also references of EP3929162A4
SOLARI F., AMONTANARI R., AMARCHINI D., AARMENZONI M.A, DEPARTMENT OF INDUSTRIA L ENGINEERING - UNIVERSITY OF PARMA VIALE DEIIE SCIENZE, vol. 181, pages 43100
USEPA, ULTRAVIOLET DISINFECTION GUIDANCE MANUAL, 2006
WOLS, B.A. ; UIJTTEWAAL, W.S.J. ; HOFMAN, J.A.M.H. ; RIETVELD, L.C. ; VAN DIJK, J.C.: "The weaknesses of a k-@? model compared to a large-eddy simulation for the prediction of UV dose distributions and disinfection", CHEMICAL ENGENEERING JOURNAL, ELSEVIER, AMSTERDAM, NL, vol. 162, no. 2, 15 August 2010 (2010-08-15), AMSTERDAM, NL , pages 528 - 536, XP027190202, ISSN: 1385-8947
WOLS, B.A.HOFLMAN, J.A.M.HBEERENDONK, E.F.UIJTTEWAAL, W.S.J.DIJK, J.C.: "A systematic approach for the design of UV reactors using computational fluid dynamics", AICHE JOURNAL, vol. 67, no. 1, 2011, pages 193 - 207, XP055024326, DOI: 10.1002/aic.12255
WRIGHT N. G., HARGREAVES D. M.: "The use of CFD in the evaluation of UV treatment systems", JOURNAL OF HYDROINFORMATICS, vol. 3, no. 2, 1 March 2001 (2001-03-01), pages 59 - 70, XP055917080, ISSN: 1464-7141, DOI: 10.2166/hydro.2001.0008

Also Published As

Publication number Publication date
EP3929162A4 (en) 2022-11-09
EP3929162A1 (en) 2021-12-29
RU2706613C1 (ru) 2019-11-19

Similar Documents

Publication Publication Date Title
US20170217791A1 (en) Method, System and Apparatus for Treatment of Fluids
US20110318237A1 (en) Ultraviolet reactor baffle design for advanced oxidation process and ultraviolet disinfection
AU2002335007A1 (en) Apparatus for disinfecting water using ultraviolet radiation
JP7270371B2 (ja) 流体殺菌装置
EP2911981B1 (en) A radiation reactor
SE540413C2 (en) A UV light liquid treatment system
US20180334400A1 (en) Uv apparatus
US10427955B2 (en) Irradiation chamber for liquid purification apparatus, purification apparatus and beverage dispenser
US8766211B2 (en) Fluid treatment system
RU2706613C1 (ru) Устройство для обеззараживания жидкостей ультрафиолетовым излучением
RU2627368C1 (ru) Устройство для обработки жидкостей ультрафиолетовым излучением
EP3386629B1 (en) Fluid treatment system
RU2397146C2 (ru) Способ обеззараживания воды ультрафиолетовым излучением и устройство для его реализации
US7648684B2 (en) Pre-chamber reactor
DK201800178A1 (en) Method and device for improving the efficiency of treating fluids applied to a UV reactor.
JPH1043753A (ja) 液体浄化装置
KR102172198B1 (ko) 마이크로웨이브 및 자외선 확산 구조를 갖는 석영관을 구비한 멸균수 제조장치
WO2023091062A1 (en) A fluid treatment system with an uv lamp in a reactor
RU2057719C1 (ru) Камера стерилизации
JP2021159864A (ja) 紫外線照射装置
SE1250221A1 (sv) Processvattenbehandlingsreaktor
KR101498353B1 (ko) 살균 효율이 개선된 발라스트수 처리장치용 자외선 리액터
KR20030013752A (ko) 자외선 수처리기
KR20150046538A (ko) 살균 효율이 개선된 발라스트수 처리장치용 자외선 리액터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020759049

Country of ref document: EP

Effective date: 20210920