WO2020171471A1 - Method for manufacturing plate-shaped alumina having excellent aspect ratio - Google Patents

Method for manufacturing plate-shaped alumina having excellent aspect ratio Download PDF

Info

Publication number
WO2020171471A1
WO2020171471A1 PCT/KR2020/001996 KR2020001996W WO2020171471A1 WO 2020171471 A1 WO2020171471 A1 WO 2020171471A1 KR 2020001996 W KR2020001996 W KR 2020001996W WO 2020171471 A1 WO2020171471 A1 WO 2020171471A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum hydroxide
plate
shaped alumina
solution
particles
Prior art date
Application number
PCT/KR2020/001996
Other languages
French (fr)
Korean (ko)
Inventor
김승우
Original Assignee
김승우
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김승우 filed Critical 김승우
Publication of WO2020171471A1 publication Critical patent/WO2020171471A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/023Grinding, deagglomeration or disintegration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/025Granulation or agglomeration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like

Definitions

  • the present invention relates to a method for producing a plate-shaped alumina having excellent squareness ratio and less aggregation.
  • Plate-shaped alumina is widely used as various ceramics, abrasives, functional cosmetics, pigments, paints, heat dissipation, separators, or additives for increasing strength.
  • alumina compound In the manufacture of such a plate-shaped alumina, conventionally, an aluminum compound, a transition alumina, or a heat-treated aluminum hydroxide after mechanical grinding has been used as the main raw material of the plate-shaped alumina.
  • the alumina compound is obtained by processing aluminum hydroxide in another form, and includes aluminum sulfate, aluminum nitrate, or aluminum chloride.
  • the alumina content of the raw material itself is lower than 30%, so the yield is low, and air pollutants such as sulfur, nitric acid, or hydrochloric acid are generated during the process.
  • the conventional plate-shaped alumina manufacturing process has a problem that a separate process of aging is required after the aluminum compound is completely dissolved in an aqueous solution and then gelled by hydrolysis in order to use the aluminum compound.
  • the process of manufacturing plate-shaped alumina using transitional alumina such as boehmite, delta, beta, or gamma alumina is inconvenient in that pretreatment such as heat treatment or pressurization of aluminum hydroxide is required.
  • Aluminum hydroxide particles have characteristics that are difficult to grow into thin plate-shaped particles with a good aspect ratio, and even if they are grown in a plate shape, aggregation becomes severe. For this reason, the thickness of the plate-shaped alumina becomes thick and does not have a uniform particle size, and there is a problem that it is insufficient to use the aluminum hydroxide particles as a pigment.
  • the aluminum hydroxide in order for aluminum hydroxide to grow into plate-shaped alumina, the aluminum hydroxide must be subjected to heat treatment and mechanically pulverized for a long time to separate the particle size. Thereafter, aluminum hydroxide can be grown into plate-shaped alumina by heat treatment with a fluorine compound and a large amount of flux by a mineralizing method.
  • the volume of the flux increases in proportion to the amount of flux during heat treatment. For this reason, a crucible used during heat treatment is often damaged due to an increase in the volume of the flux.
  • the plate-shaped alumina which has undergone natural cooling, forms hardly agglomerated crystals due to the melted flux, and is deposited on the crucible wall and is not separated.
  • An embodiment of the present invention is to provide a method for manufacturing a plate-shaped alumina having a uniform particle size distribution without separate particle size separation based on the simple manufacturing of aluminum hydroxide particles having a desired particle size by using aluminum hydroxide as a raw material. .
  • a high refractive index, high saturation and high luminance pearl luster can be provided when TiO2 is coated.
  • One purpose is to provide a method for manufacturing plate-shaped alumina.
  • one embodiment of the present invention by reducing the amount of flux added compared to the prior art, prevents crucible breakage in the heat treatment process in which the aluminum hydroxide particles grow in the form of plate-shaped alumina, and the plate-shaped alumina can be easily separated from the crucible.
  • the process of obtaining a solution by dissolving aluminum hydroxide in a caustic soda solution so that caustic soda and aluminum hydroxide are in a predetermined ratio (Al 2 O 3 /Na 2 CO 3 ), and seeding the solution (Seed) is added and stirred to precipitate aluminum hydroxide until the ratio of the caustic soda and aluminum hydroxide reaches a preset reference value to obtain a mixed solution, and a molten salt and a dispersant used as a flux are added to the mixed solution to mix.
  • a neutralization process of generating a neutralization solution by adding a neutralizing agent to the mixed solution a drying process of drying the neutralization solution to produce an aluminum hydroxide compound, heat treatment of the aluminum hydroxide compound, and cooling
  • a particle removal process of drying the slurry and removing the plate-shaped alumina particles having a predetermined particle size from the dried slurry It provides a plate-shaped alumina manufacturing method characterized by.
  • the process of obtaining the solution is characterized in that 200 to 300 g/L (Na 2 CO 3 ) of caustic soda and aluminum hydroxide having a purity of 95% or more are used.
  • a predetermined ratio (Al 2 O 3 /Na 2 CO 3 ) of the caustic soda and aluminum hydroxide is 0.6 to 0.8, and the aluminum hydroxide is supersaturated.
  • a predetermined reference value in the process of obtaining the mixed solution is less than 0.3.
  • the heat treatment process is characterized in that the aluminum hydroxide compound is maintained for 1 to 4 hours in the first temperature section, the second temperature section, and the third temperature section, respectively, without additional gas addition.
  • aluminum hydroxide particles having a desired particle size are easily manufactured using general aluminum hydroxide (Wet-Al(OH) 3 ) as a raw material, and based on this, a plate having a uniform particle size distribution There is an advantage that alumina can be produced.
  • aluminum hydroxide particles having a uniform size are deposited to grow into plate-shaped alumina particles having a uniform size, so that when TiO2 is coated, a high refractive index, high saturation, and high luminance pearl luster are obtained.
  • FIG. 1 is a flow chart showing a method for manufacturing a plate-like alumina according to an embodiment of the present invention.
  • FIG. 2 is a view showing a result of observation under a scanning electron microscope of a plate-shaped alumina powder according to an embodiment of the present invention.
  • FIG. 3 is a graph showing a particle size analysis result of a plate-shaped alumina powder according to an embodiment of the present invention.
  • FIG. 4 is a graph showing the results of XRD (X-Ray Diffraction) analysis of the plate-shaped alumina powder according to an embodiment of the present invention.
  • first, second, A, and B may be used to describe various elements, but the elements should not be limited by the terms. These terms are used only for the purpose of distinguishing one component from another component. For example, without departing from the scope of the present invention, a first element may be referred to as a second element, and similarly, a second element may be referred to as a first element.
  • the term and/or includes a combination of a plurality of related listed items or any of a plurality of related listed items.
  • each configuration, process, process, or method included in each embodiment of the present invention may be shared within a range not technically contradicting each other.
  • FIG. 1 is a flow chart showing a method for manufacturing a plate-like alumina according to an embodiment of the present invention.
  • A/C alumina and caustic soda
  • a mixture of caustic soda and general aluminum hydroxide (Wet-Al(OH) 3 ) is completely dissolved by airtight heating for 3 to 4 hours under a pressure of 4 to 6 atmospheres and the temperature of the solution is raised to 150°C.
  • Sodium aluminate supersaturated solution After that, the temperature of the sodium aluminate supersaturated solution is lowered to 60 to 70°C.
  • a seed is added to the sodium aluminate supersaturated solution (hereinafter referred to as'solution solution').
  • the seed includes aluminum sulfate, aluminum hydroxide of 0.1 to 1.0 ⁇ m, or alumina GEL (aluminum ammonium sulfate, sodium aluminum sulfate), but is not limited thereto.
  • alumina GEL aluminum ammonium sulfate, sodium aluminum sulfate
  • the seed serves as a nucleus of aluminum hydroxide particle growth. If the seeds are evenly dispersed in the solution and not mixed, aluminum hydroxide may aggregate and precipitate, so it is important to evenly disperse the seeds in the solution.
  • stirring is performed on the solution to which the seed is added so that the seeds are evenly dispersed in the solution to allow aluminum hydroxide having a size of 1 to 10 ⁇ m to precipitate.
  • Aluminum hydroxide adheres to the seed, grows into particles, and takes an average of 2 to 3 days to precipitate. In the case of precipitation for 2 to 3 days or longer, most of the aluminum hydroxide is precipitated and almost no precipitation occurs. Therefore, the stirring time is preferably 2 to 3 days.
  • the amount of the seed to be added is preferably 5 to 10% of the amount of aluminum hydroxide added. When the amount of seeds added is too small compared to the amount of aluminum hydroxide, the precipitation of aluminum hydroxide does not occur easily.
  • the amount of the seed exceeds 10% of the amount of aluminum hydroxide, the aluminum hydroxide particles to be precipitated become too fine, and there is a concern that plate-shaped alumina having a small particle size may be generated from the aluminum hydroxide particles later.
  • the A/C ratio of the solution is gradually lowered in proportion to the generated particles. At this time, the precipitation of aluminum hydroxide proceeds until the A/C ratio of the solution becomes less than 0.3. If the A/C ratio of the solution is 0.3 or more, aluminum hydroxide that can be precipitated in the solution remains, so that the A/C of the solution can be precipitated as much as possible from 1 to 10 ⁇ m in size. The precipitation of aluminum hydroxide proceeds until the ratio is less than 0.3. A mixed solution in which aluminum hydroxide particles are formed in the solution is obtained by precipitation of aluminum hydroxide.
  • a molten salt and a dispersion are sequentially added to the mixture in which aluminum hydroxide is deposited, and then mixed (S115).
  • Aluminum hydroxide precipitates and molten salt is added as a flux to the mixed liquid present as particles.
  • the molten salt plays a role in growing the aluminum hydroxide particles in a plate shape during the subsequent heat treatment process.
  • the molten salt includes at least one of sodium sulfate, sodium carbonate, sodium hydrogen carbonate, potassium sulfate, potassium carbonate, potassium chloride, magnesium sulfate, sodium chloride, calcium sulfate and calcium carbonate.
  • the molten salt is added in an amount of 40 to 80% based on the amount of aluminum hydroxide dissolved in the solution.
  • the molten salt when 100 g of aluminum hydroxide is dissolved in the solution, the molten salt may be added by 50 g of sodium sulfate, or 50 g and 25 g of sodium sulfate and sodium carbonate, respectively.
  • the dispersant is added by 0.5 to 2% based on the amount of aluminum hydroxide dissolved in the solution so that the aluminum hydroxide particles can be dispersed.
  • stirring is performed for 3 to 5 hours.
  • sodium hexametaphosphate, monosodium phosphate, dibasic sodium phosphate, and trisodium phosphate may be used.
  • the mixed solution to which the molten salt and dispersant are added has a strong alkali of pH 12-14 by the caustic soda in the mixed solution.
  • caustic soda which is a waste liquid
  • the present invention utilizes caustic soda as a mother liquor (Prognant Liquor) for dissolving molten salt.
  • the mother liquor Prognant Liquor
  • the flux may be added in an amount of 60 to 70% less than that of a conventional plate-shaped alumina manufacturing process that adds 3 to 7 times the flux compared to aluminum hydroxide.
  • a neutralizing agent is added to the flux mixture (S120).
  • a neutralizing agent is added to the flux mixture having a strong alkali of pH 12 including caustic soda to neutralize the pH of the flux mixture to 6-8.
  • the pH of the flux mixture is neutralized, thereby creating an environment in which particles can grow.
  • sulfuric acid, hydrochloric acid, or nitric acid having a high concentration of 90% or more may be used as the neutralizing agent. If the concentration of the neutralizing agent is too low, the production volume may increase and the drying time may increase.
  • the neutralized liquid is dried (S125).
  • the neutralization solution obtained by neutralizing the pH of the flux mixture is dried.
  • the flux mixture is produced from the aluminum hydroxide compound.
  • a hot air dryer or a distillation dryer may be used to dry the neutralized liquid within a temperature range of 110 to 200°C. Drying may proceed until the moisture in the neutralized solution is within 1%. If the neutralization liquid is not dried, moisture particles may cause agglomeration of plate-like alumina and may lead to abnormal particle growth. Thus, complete drying of the neutralized liquid proceeds.
  • the aluminum hydroxide compound is heat-treated (S130).
  • the aluminum hydroxide compound is pulverized into a powder having a diameter of 1 cm or less.
  • a roll mill or a ball mill may be used as a crusher.
  • Even if the aluminum hydroxide compound is not made into a powder there is no problem in heat treatment, but if the aluminum hydroxide compound is in a powder form, a large amount can be heat treated at once, so the operation becomes easy, and heat can be applied evenly to the aluminum hydroxide compound.
  • the powdered aluminum hydroxide compound is placed in a ceramic crucible and heat-treated in a general atmospheric atmosphere.
  • the volume of the flux contained in the aluminum hydroxide compound is increased by the heat treatment, and the ceramic crucible is often damaged.
  • the increasing flux volume is proportional to the amount of flux added to the aluminum hydroxide compound.
  • the plate-shaped alumina manufacturing process of the present invention adds 60 to 70% of the flux, so the volume of the flux Does not increase significantly. Accordingly, an embodiment of the present invention can prevent damage to a heat treatment vessel such as a ceramic crucible in the heat treatment process of the aluminum hydroxide compound.
  • the aluminum hydroxide compound is grown in the form of plate-shaped alumina.
  • the heat treatment may be performed for 1 to 4 hours by dividing a temperature section into a first temperature section, a second temperature section, and a third temperature section. And each temperature section can be formed by increasing the temperature by 3 ⁇ 5 °C. This is because the melting temperature of each of the fluxes contained in the aluminum hydroxide compound is different from each other, so that the heat treatment is divided into several temperature sections to melt each flux.
  • the first temperature section may be 200 to 300°C
  • the second temperature section may be 700 to 900°C
  • the third temperature section may be 1100 to 1300°C.
  • the flux adheres to the aluminum hydroxide particles as the flux melts.
  • aluminum hydroxide particles grow in the form of plate-shaped alumina by the flux. The flux is melted at each temperature section and adheres to the aluminum hydroxide particles, and the particle growth is controlled so that the aluminum hydroxide particles grow only in the horizontal axis direction so that the aluminum hydroxide can grow in the form of plate-shaped alumina.
  • the flux and fine particles are removed by filtration (S135).
  • a liquid such as hot water is added to the agglomerated powder including plate-shaped alumina particles, and the agglomerated plate-shaped alumina powder and the heat treatment vessel are separated.
  • the agglomerated powder is formed by heat-treating and cooling an aluminum hydroxide compound, and the agglomeration strength of the agglomerated powder including plate-shaped alumina particles is proportional to the amount of flux added to the aluminum hydroxide compound.
  • the sheet-shaped alumina manufacturing process of the present invention adds 60 to 70% less flux than the conventional sheet-shaped alumina manufacturing process, the cohesive strength of the agglomerated powder is weakened.
  • the agglomerated powder according to an embodiment of the present invention is more easily dissolved in a liquid such as hot water, the agglomerated powder can be easily separated from a heat treatment container such as a ceramic crucible.
  • the temperature of the hot water is preferably 60 to 100° C. that can dissolve the water-soluble flux.
  • the plate-shaped alumina powder to which the liquid is added is stirred for 2 to 3 hours, the plate-shaped alumina particles are dispersed in a mixed liquid state.
  • the plate-shaped alumina particles contain a water-soluble flux that is easily soluble in water and fine particles having a particle size of 5 ⁇ m or less, which have poor gloss among the plate-shaped alumina particles.
  • the mixed solution is filtered using a filtering device.
  • a filtering device As one of the filtering devices, a filter press having a porosity of 1 to 5 ⁇ m can be used.
  • the cake becomes slurry, and the plate-shaped alumina particles and twins agglomerated in the slurry are decomposed (S140).
  • the preset disintegration time may be suitable for 1 hour to 1 hour 30 minutes. This is because if the plate-shaped alumina particles of the slurry are decomposed for a predetermined time or longer, the plate-shaped alumina particles are broken, and if the plate-shaped alumina particles of the slurry are decomposed within a predetermined time or less, there is no effect of improving the aggregated particles and twin crystals.
  • twin crystals are grown by crossing plate-shaped alumina particles. Since twin crystal particles give a rough feeling when used as a pigment, it is preferable to separate the plate-shaped alumina particles grown by crossing the twin crystals.
  • a wet bead mill using a zirconia bead having a diameter of 0.3 to 1.0 ⁇ may be used. Wet bead mills can break down twins and some agglomerated particles.
  • the plate-shaped particles decomposed by a wet bead mill have significantly fewer twins, and the flowability and dispersibility of the particles are remarkably good.
  • the slurry is dried and plate-like particles of a predetermined particle size are removed (S145).
  • the slurry is dried and the water contained in the slurry may cause the plate-shaped alumina particles to reaggregate.
  • a commercial wet-dry cake dryer may be used. Wet and dry cake dryers dry the slurry at an outlet temperature of 130 ⁇ 250°C. When the slurry is dried with a wet-dry cake dryer, plate-shaped alumina having a certain particle size is produced.
  • the dryer is not limited to a wet-dry cake dryer.
  • plate-shaped alumina fine particles having a particle size of 5 ⁇ m or less are removed from the produced plate-shaped alumina by a filtration device.
  • a bag filter may be used as a filtering device, but is not limited thereto.
  • fine particles of 5 ⁇ m or less and large particles of 50 ⁇ m or more, which adversely affect pearl gloss are removed from the dried plate-shaped alumina product.
  • An air classifier may be used to remove fine particles of 5 ⁇ m or less and large particles of 50 ⁇ m or more. The air classifier puts air of a certain pressure to subside heavy things and floats light ones to collect each.
  • the air classifier can collect and remove fine particles of 5 ⁇ m or less and large particles of 50 ⁇ m or more, respectively.
  • the air classifier can be used by separately collecting only the products of the desired particle size from the plate-shaped alumina products having a particle size of 5-50 ⁇ m.
  • the temperature of the prepared sodium aluminate solution is lowered to 60°C or less. 6.62 g of aluminum hydroxide having a particle size of 0.3 ⁇ m was added to the sodium aluminate solution, followed by stirring, and precipitation proceeds for 3 days. A/C after the completion of precipitation was measured to be 0.25, and as a result of particle size analysis, aluminum hydroxide of 1 ⁇ m was deposited on the sodium aluminate solution.
  • the liquid neutralizing solution prepared by mixing the flux and neutralizing the pH is put in a stainless tray and put into a box-type general dryer. And the dryer heats the liquid neutralized liquid at 110°C for 48 hours. Accordingly, an aluminum hydroxide compound in which the liquid neutralization liquid is completely dried is produced.
  • the aluminum hydroxide compound is put into a roll mill and pulverized into small powders with a diameter of 1 cm or less.
  • the pulverized and powdered aluminum hydroxide compound is put in a 1L alumina crucible, and the alumina crucible is put in a box-type general electric furnace. Box-type general electric furnace heated up to 250°C for 3 hours and maintained for 3 hours, raised to 850°C for 5°C/min for 2 hours, increased to 1250°C for 5°C/min and maintained for 4 hours, and then aluminum hydroxide at room temperature Cool the compound naturally.
  • the powdered aluminum hydroxide compound is grown into plate-shaped alumina.
  • a liquid is added and the plate-shaped alumina is separated from the alumina crucible. Then, the separated plate-like alumina passes through a filter to remove the water-soluble flux mixed with the liquid.
  • the plate-shaped alumina from which the flux has been removed is dispersed by a sulfuric acid solution having a concentration of 10% to remove agglomerated plate-shaped alumina particles and salts remaining on the particle surface.
  • the plate-shaped alumina from which the flux and salt have been removed is dried at 110° C., 47 g of plate-shaped alumina having an excellent angle ratio of 50 to 200 and good dispersibility in water is produced.
  • the resulting plate-like alumina has a particle size of 5 to 50 ⁇ m and a thickness of 0.1 to 0.5 ⁇ m.
  • the plate-shaped alumina prepared according to Experimental Example 2 has an angle ratio of 50 to 190, and has good dispersibility in water.
  • the plate-shaped alumina of Example 2 has a particle size of 5 to 51 ⁇ m and a thickness of 0.1 to 0.5 ⁇ m.
  • Experimental Example 3 was changed to 20g of aluminum ammonium sulfate GEL prepared directly from the seed (SEED).
  • Aluminum ammonium sulfate GEL is prepared in a GEL state by completely dissolving aluminum hydroxide in sulfuric acid and neutralizing it with aqueous ammonia.
  • the plate-shaped alumina prepared by Experimental Example 3 had an angle ratio of 50 to 210, which was superior to Experimental Examples 1 and 2, and showed good dispersibility in water.
  • the table below shows the particle size and angle ratio of the plate-shaped alumina prepared by each of the experimental examples and comparative examples.
  • Comparative Example 1 when aluminum oxide having a particle size of 0.1 to 1.0 ⁇ m or more is used as a seed, plate-shaped alumina having an irregular particle size distribution and poor particles is produced. Therefore, when a seed is added to the sodium aluminate supersaturated solution, it is preferable to use aluminum hydroxide having a size of 0.1 to 1.0 ⁇ m as the seed.
  • the molten salt when the molten salt is excessively added to the mixed solution present as particles due to the precipitation of aluminum hydroxide, plate alumina having an irregular particle size distribution of 1 to 135 ⁇ m and poor particles is prepared. Therefore, when aluminum hydroxide is precipitated and molten salt is added to the mixed solution present as particles, the molten salt is preferably added to the sodium aluminate supersaturated solution by 40 to 80% based on the amount of dissolved aluminum hydroxide.
  • FIG. 2 is a view showing a result of observation with a scanning electron microscope of a plate-shaped alumina powder according to an embodiment of the present invention
  • FIG. 3 is a graph showing a particle size analysis result of a plate-shaped alumina powder according to an embodiment of the present invention
  • 4 is a graph showing the results of XRD (X-Ray Diffraction) analysis of the plate-shaped alumina powder according to an embodiment of the present invention.
  • the plate-shaped alumina prepared according to an embodiment of the present invention has a particle size in the range of 5 to 50 ⁇ m, and is shown to have an average particle size of 20 ⁇ m.
  • FIG. 1 each process is described as sequentially executing, but this is merely illustrative of the technical idea of an embodiment of the present invention.
  • a person of ordinary skill in the art to which an embodiment of the present invention belongs can change the order of the processes described in each drawing without departing from the essential characteristics of the embodiment of the present invention, or perform one or more of the processes. Since the process is executed in parallel and can be applied by various modifications and modifications, FIG. 1 is not limited to a time series order.
  • the processes shown in FIG. 1 can be implemented as computer-readable codes on a computer-readable recording medium.
  • the computer-readable recording medium includes all types of recording devices that store data that can be read by a computer system. That is, the computer-readable recording media include storage media such as magnetic storage media (eg, ROM, floppy disk, hard disk, etc.) and optical reading media (eg, CD-ROM, DVD, etc.).
  • the computer-readable recording medium can be distributed over a computer system connected through a network to store and execute computer-readable codes in a distributed manner.

Abstract

Disclosed is a method for manufacturing plate-shaped alumina having an excellent aspect ratio. According to one aspect of the present example, provided is a method for manufacturing plate-shaped alumina having a uniform particle size distribution, whereby aluminum hydroxide particles of a desired particle size are easily manufactured and, based thereon, plate-shaped alumina having a uniform particle size distribution is manufactured.

Description

각형비가 우수한 판상 알루미나 제조 방법Plate-shaped alumina manufacturing method with excellent angle ratio
본 발명은 각형비가 우수하고 응집이 적은 판상 알루미나 제조 방법에 관한 것이다. The present invention relates to a method for producing a plate-shaped alumina having excellent squareness ratio and less aggregation.
이 부분에 기술된 내용은 단순히 본 발명의 일 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.The content described in this section merely provides background information on an embodiment of the present invention and does not constitute the prior art.
판상 알루미나는 각종 세라믹, 연마재, 기능성 화장품, 안료, 도료, 방열, 분리막 또는 강도 증가용 첨가제 등으로 폭넓게 사용된다.Plate-shaped alumina is widely used as various ceramics, abrasives, functional cosmetics, pigments, paints, heat dissipation, separators, or additives for increasing strength.
이러한 판상 알루미나 제조 시, 기존에는 판상 알루미나의 주원료로서 알루미늄 화합물, 전이 알루미나 또는 기계적 분쇄 후 열처리한 수산화알루미늄이 사용되었다. 알루미나 화합물은 수산화알루미늄을 다른 형태로 가공한 것으로, 황산알루미늄, 질산알루미늄 또는 염화알루미늄 등이 있다. 종래의 판상 알루미나를 제조하는 공정은 원재료 자체의 알루미나 함량이 30% 이하로 낮아 수율이 적고, 공정상에서 황, 질산 또는 염산 등의 대기오염 물질이 발생하는 문제를 갖는다. 그리고 종래의 판상 알루미나 제조 공정은 알루미늄 화합물을 사용하기 위해 알루미늄 화합물을 수용액 상에 완전히 녹여 가수분해로 GEL화 시킨 후, 숙성하는 공정이 별도로 필요하다는 문제점을 갖는다.In the manufacture of such a plate-shaped alumina, conventionally, an aluminum compound, a transition alumina, or a heat-treated aluminum hydroxide after mechanical grinding has been used as the main raw material of the plate-shaped alumina. The alumina compound is obtained by processing aluminum hydroxide in another form, and includes aluminum sulfate, aluminum nitrate, or aluminum chloride. In the conventional process of manufacturing plate-shaped alumina, the alumina content of the raw material itself is lower than 30%, so the yield is low, and air pollutants such as sulfur, nitric acid, or hydrochloric acid are generated during the process. In addition, the conventional plate-shaped alumina manufacturing process has a problem that a separate process of aging is required after the aluminum compound is completely dissolved in an aqueous solution and then gelled by hydrolysis in order to use the aluminum compound.
전이알루미나인 보헤마이트나 델타, 베타 또는 감마 알루미나를 사용하여 판상 알루미나를 제조하는 공정은 수산화알루미늄을 별도로 열처리 하거나 가압하는 등의 전처리가 필요하다는 불편함이 있다.The process of manufacturing plate-shaped alumina using transitional alumina such as boehmite, delta, beta, or gamma alumina is inconvenient in that pretreatment such as heat treatment or pressurization of aluminum hydroxide is required.
수산화알루미늄 입자는 각형비가 좋은 얇은 판상 입자로 성장시키기 힘든 특성을 가지고 있으며, 판상으로 성장시키더라도 응집이 심해진다. 이 때문에, 판상 알루미나의 두께가 두꺼워지며 균일한 입도를 가지지 못하게 되어, 수산화알루미늄 입자를 안료로 쓰기에는 부족하다는 문제점이 있다. 또한, 수산화알루미늄이 판상 알루미나로 성장하기 위해서는, 수산화알루미늄에 열처리가 수행되고 기계적으로 장시간 분쇄되어 입도가 분리되어야 한다. 그 후, 광화제 첨가법에 의해 수산화알루미늄은 불소 화합물 및 많은 양의 융제와 함께 열처리됨으로써, 판상 알루미나로 성장할 수 있다. Aluminum hydroxide particles have characteristics that are difficult to grow into thin plate-shaped particles with a good aspect ratio, and even if they are grown in a plate shape, aggregation becomes severe. For this reason, the thickness of the plate-shaped alumina becomes thick and does not have a uniform particle size, and there is a problem that it is insufficient to use the aluminum hydroxide particles as a pigment. In addition, in order for aluminum hydroxide to grow into plate-shaped alumina, the aluminum hydroxide must be subjected to heat treatment and mechanically pulverized for a long time to separate the particle size. Thereafter, aluminum hydroxide can be grown into plate-shaped alumina by heat treatment with a fluorine compound and a large amount of flux by a mineralizing method.
이때, 수산화알루미늄의 분쇄 및 열처리과정에서, 많은 양의 융제가 첨가됨에 따라, 열처리 시 융제의 양에 비례하여 융제의 부피가 상승한다. 이 때문에, 융제의 부피 상승에 의해 열처리 시 사용되는 도가니가 파손되는 일이 많이 발생된다. 게다가 열처리 반응 후, 자연냉각을 거친 판상 알루미나는 녹은 융제로 인해 단단하게 응집된 결정을 형성하면서 도가니 벽에 증착되어 분리되지 않는 문제점이 발생한다.At this time, during the pulverization and heat treatment of aluminum hydroxide, as a large amount of flux is added, the volume of the flux increases in proportion to the amount of flux during heat treatment. For this reason, a crucible used during heat treatment is often damaged due to an increase in the volume of the flux. In addition, after the heat treatment reaction, the plate-shaped alumina, which has undergone natural cooling, forms hardly agglomerated crystals due to the melted flux, and is deposited on the crucible wall and is not separated.
본 발명의 일 실시예는, 수산화알루미늄을 원료로 사용하여 원하는 입도의 수산화알루미늄 입자를 간편하게 제조하고, 이를 기반으로 별도의 입도 분리 없이 입도 분포가 균일한 판상 알루미나 제조방법을 제공하는데 일 목적이 있다. An embodiment of the present invention is to provide a method for manufacturing a plate-shaped alumina having a uniform particle size distribution without separate particle size separation based on the simple manufacturing of aluminum hydroxide particles having a desired particle size by using aluminum hydroxide as a raw material. .
본 발명의 일 실시예는, 가성소다 용액 내에서 균일한 크기의 수산화알루미늄 입자를 석출하여 균일한 크기의 판상 알루미나 입자로 성장시킴으로서, TiO2 코팅 시 높은 굴절률, 고채도 및 고휘도 진주 광택을 제공할 수 있는 판상 알루미나 제조방븝을 제공하는데 일 목적이 있다.In one embodiment of the present invention, by depositing aluminum hydroxide particles having a uniform size in a caustic soda solution and growing them into plate-shaped alumina particles having a uniform size, a high refractive index, high saturation and high luminance pearl luster can be provided when TiO2 is coated. One purpose is to provide a method for manufacturing plate-shaped alumina.
또한, 본 발명의 일 실시예는, 종래에 비해 첨가되는 융제의 양을 줄임으로서, 수산화알루미늄 입자가 판상 알루미나 형태로 성장하는 열처리과정에서의 도가니 파손을 방지하고 판상 알루미나를 도가니로부터 쉽게 분리할 수 있는 판상 알루미나 제조방법을 제공하는데 일 목적이 있다.In addition, one embodiment of the present invention, by reducing the amount of flux added compared to the prior art, prevents crucible breakage in the heat treatment process in which the aluminum hydroxide particles grow in the form of plate-shaped alumina, and the plate-shaped alumina can be easily separated from the crucible. There is one object to provide a method for manufacturing alumina plate.
본 실시예의 일 측면에 의하면, 가성소다와 수산화알루미늄을 소정의 비율(Al2O3/Na2CO3)이 되도록 가성소다 액에 수산화알루미늄을 용해시켜 용해액을 얻는 과정과 상기 용해액에 시드(Seed)를 첨가하고 교반하여 상기 가성소다와 수산화알루미늄 비율이 기 설정된 기준치가 될 때까지 수산화알루미늄을 석출하여 혼합액을 얻는 과정과 상기 혼합액에 융제로 사용하는 용융염과 분산제를 첨가하여 혼합하는 융제 혼합 과정과 상기 융제 혼합 과정 후, 상기 혼합액에 중화제를 첨가하여 중화액을 생성하는 중화 과정과 상기 중화액을 건조하여 수산화알루미늄 화합물을 생성하는 건조 과정과 상기 수산화알루미늄 화합물을 열처리한 후, 냉각하여 판상 알루미나 입자를 포함하는 분말을 생성하는 열처리 과정과 판상 알루미나 입자에 포함되어 있는 소정의 크기를 갖는 입자와 융제를 여과시켜 케이크를 생성하는 여과 과정과 상기 케이크를 슬러리(Slurry)화 하고, 슬러리(Slurry)에서 응집된 판상 알루미나 입자 또는 판상 알루미나 쌍정을 적어도 하나 분해하는 분해 과정 및 상기 슬러리(Slurry)를 건조하고, 건조된 슬러리(Slurry)에서 소정의 입도를 갖는 판상 알루미나 입자를 제거하는 입자 제거 과정을 특징으로 하는 판상 알루미나 제조방법을 제공한다.According to one aspect of this embodiment, the process of obtaining a solution by dissolving aluminum hydroxide in a caustic soda solution so that caustic soda and aluminum hydroxide are in a predetermined ratio (Al 2 O 3 /Na 2 CO 3 ), and seeding the solution (Seed) is added and stirred to precipitate aluminum hydroxide until the ratio of the caustic soda and aluminum hydroxide reaches a preset reference value to obtain a mixed solution, and a molten salt and a dispersant used as a flux are added to the mixed solution to mix. After the mixing process and the flux mixing process, a neutralization process of generating a neutralization solution by adding a neutralizing agent to the mixed solution, a drying process of drying the neutralization solution to produce an aluminum hydroxide compound, heat treatment of the aluminum hydroxide compound, and cooling A heat treatment process for generating a powder including plate-shaped alumina particles, a filtration process for producing a cake by filtering particles and fluxes having a predetermined size included in the plate-shaped alumina particles, and a filtration process for forming a cake, and converting the cake into a slurry, A decomposition process of decomposing at least one plate-shaped alumina particle or plate-shaped alumina twin aggregated in a slurry), and a particle removal process of drying the slurry and removing the plate-shaped alumina particles having a predetermined particle size from the dried slurry. It provides a plate-shaped alumina manufacturing method characterized by.
본 실시예의 일 측면에 의하면, 상기 용해액을 얻는 과정은 200~300g/L(Na2CO3)의 가성소다와 95% 이상의 순도를 갖는 수산화알루미늄을 사용하는 것을 특징으로 한다.According to an aspect of this embodiment, the process of obtaining the solution is characterized in that 200 to 300 g/L (Na 2 CO 3 ) of caustic soda and aluminum hydroxide having a purity of 95% or more are used.
본 실시예의 일 측면에 의하면, 상기 가성소다와 수산화알루미늄의 소정의 비율(Al2O3/Na2CO3)이 0.6~0.8이며, 수산화알루미늄 과포화 상태인 것을 특징으로 한다.According to an aspect of the present embodiment, a predetermined ratio (Al 2 O 3 /Na 2 CO 3 ) of the caustic soda and aluminum hydroxide is 0.6 to 0.8, and the aluminum hydroxide is supersaturated.
본 실시예의 일 측면에 의하면, 상기 혼합액을 얻는 과정의 기 설정된 기준치가 0.3 미만인 것을 특징으로 한다.According to an aspect of the present embodiment, a predetermined reference value in the process of obtaining the mixed solution is less than 0.3.
본 실시예의 일 측면에 의하면, 상기 열처리 과정은 수산화알루미늄 화합물을 별도의 가스 첨가 없이 제1온도구간, 제2온도구간, 제3온도구간에서 각각 1~4시간 유지하는 것을 특징으로 한다.According to an aspect of the present embodiment, the heat treatment process is characterized in that the aluminum hydroxide compound is maintained for 1 to 4 hours in the first temperature section, the second temperature section, and the third temperature section, respectively, without additional gas addition.
이상에서 설명한 바와 같이 본 발명의 일 측면에 따르면, 일반 수산화알루미늄(Wet-Al(OH)3)을 원료로 사용하여 원하는 입도의 수산화알루미늄 입자를 간편하게 제조하고, 이를 기반으로 입도 분포가 균일한 판상 알루미나를 제조할 수 있다는 장점이 있다.As described above, according to one aspect of the present invention, aluminum hydroxide particles having a desired particle size are easily manufactured using general aluminum hydroxide (Wet-Al(OH) 3 ) as a raw material, and based on this, a plate having a uniform particle size distribution There is an advantage that alumina can be produced.
본 발명의 일 측면에 따르면, 균일한 크기의 수산화알루미늄 입자를 석출하여 균일한 크기의 판상 알루미나 입자로 성장시킴으로서, TiO2 코팅 시 높은 굴절률, 고채도 및 고휘도 진주 광택을 갖게 된다는 장점이 있다.According to an aspect of the present invention, aluminum hydroxide particles having a uniform size are deposited to grow into plate-shaped alumina particles having a uniform size, so that when TiO2 is coated, a high refractive index, high saturation, and high luminance pearl luster are obtained.
또한, 본 발명의 일 측면에 따르면, 종래에 비해 첨가되는 융제의 양을 줄임으로서, 수산화알루미늄 입자가 판상 알루미나 형태로 성장되는 열처리 과정에서의, 도가니 파손이 방지되고 판상 알루미나가 도가니로부터 쉽게 분리된다는 장점이 있다. In addition, according to an aspect of the present invention, by reducing the amount of flux added compared to the prior art, breakage of the crucible is prevented and the plate-shaped alumina is easily separated from the crucible in the heat treatment process in which the aluminum hydroxide particles are grown in the form of plate-shaped alumina. There is an advantage.
도 1은 본 발명의 일 실시예에 따른 판상 알루미나 제조방법을 도시한 순서도이다.1 is a flow chart showing a method for manufacturing a plate-like alumina according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 판상 알루미나 분말의 주사전자 현미경 관찰 결과를 도시한 도면이다.2 is a view showing a result of observation under a scanning electron microscope of a plate-shaped alumina powder according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 판상 알루미나 분말의 입도 분석 결과를 도시한 그래프이다. 3 is a graph showing a particle size analysis result of a plate-shaped alumina powder according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 판상 알루미나 분말을 XRD(X-Ray Diffraction) 분석한 결과를 도시한 그래프이다.4 is a graph showing the results of XRD (X-Ray Diffraction) analysis of the plate-shaped alumina powder according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.In the present invention, various changes may be made and various embodiments may be provided, and specific embodiments will be illustrated in the drawings and described in detail. However, this is not intended to limit the present invention to a specific embodiment, it is to be understood to include all changes, equivalents, or substitutes included in the spirit and scope of the present invention. In describing each drawing, similar reference numerals have been used for similar elements.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.Terms such as first, second, A, and B may be used to describe various elements, but the elements should not be limited by the terms. These terms are used only for the purpose of distinguishing one component from another component. For example, without departing from the scope of the present invention, a first element may be referred to as a second element, and similarly, a second element may be referred to as a first element. The term and/or includes a combination of a plurality of related listed items or any of a plurality of related listed items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에서, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is referred to as being "connected" or "connected" to another component, it is understood that it may be directly connected or connected to the other component, but other components may exist in the middle. Should be. On the other hand, when a component is referred to as being "directly connected" or "directly connected" to another component, it should be understood that there is no other component in the middle.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are used only to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present application, terms such as "include" or "have" should be understood as not precluding the possibility of existence or addition of features, numbers, steps, actions, components, parts, or combinations thereof described in the specification. .
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해서 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.Unless otherwise defined, all terms, including technical or scientific terms, used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Terms as defined in a commonly used dictionary should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and should not be interpreted as an ideal or excessively formal meaning unless explicitly defined in this application. Does not.
또한, 본 발명의 각 실시예에 포함된 각 구성, 과정, 공정 또는 방법 등은 기술적으로 상호 간 모순되지 않는 범위 내에서 공유될 수 있다.In addition, each configuration, process, process, or method included in each embodiment of the present invention may be shared within a range not technically contradicting each other.
도 1은 본 발명의 일 실시예에 따른 판상 알루미나 제조방법을 도시한 순서도이다.1 is a flow chart showing a method for manufacturing a plate-like alumina according to an embodiment of the present invention.
수산화 알루미늄이 가성소다에 용해된다(S105).Aluminum hydroxide is dissolved in caustic soda (S105).
수산화알루미늄이 과포화 상태가 되도록 200~300g/L의 가성소다 액과 95% 이상 순도를 갖는 일반 수산화알루미늄(Wet-Al(OH)3)이 혼합된다. 수산화알루미늄 과포화 상태에서 향후 시드(Seed)가 첨가된다면, 수산화알루미늄 입자 석출이 잘 일어나므로, 알루미나와 가성소다의 비율(Al2O3/Na2CO3, 이하 A/C라 약칭함)이 0.6~0.8이 되도록 수산화알루미늄과 가성소다가 혼합되는 것이 바람직하다. 가성소다와 수산화알루미늄이 0.8 이상의 A/C 비율로 혼합되면, 수산화알루미늄이 가성소다에 잘 녹지 않기 때문에 수산화알루미늄 입자의 낭비가 발생된다. 반대로, 가성소다와 수산화알루미늄이 0.6 이하의 A/C 비율로 혼합되면, 수산화알루미늄 포화도가 낮아지므로 수산화알루미늄 석출이 잘 일어나지 않는다.200~300g/L of caustic soda solution and general aluminum hydroxide (Wet-Al(OH) 3 ) having a purity of 95% or more are mixed so that aluminum hydroxide becomes supersaturated. If seeds are added in the future in the state of aluminum hydroxide supersaturation, aluminum hydroxide particles easily precipitate, so the ratio of alumina and caustic soda (Al 2 O 3 /Na 2 CO 3 , hereinafter abbreviated as A/C) is 0.6 It is preferable that aluminum hydroxide and caustic soda are mixed so that it is ~0.8. When caustic soda and aluminum hydroxide are mixed at an A/C ratio of 0.8 or more, aluminum hydroxide particles are wasted because aluminum hydroxide is not easily dissolved in caustic soda. On the contrary, when caustic soda and aluminum hydroxide are mixed at an A/C ratio of 0.6 or less, aluminum hydroxide saturation is lowered, so that aluminum hydroxide does not precipitate easily.
4~6 기압의 압력이 가해지고 용액의 온도가 150℃로 승온된 상태 하에서 3~4시간 동안 밀폐 가열됨으로서, 가성소다와 일반 수산화알루미늄(Wet-Al(OH)3)의 혼합 용액은 완전 용해된 소듐알루미네이트 과포화 용액 상태로 된다. 그 후, 소듐알루미네이트 과포화 용액의 온도는 60~70℃까지 하강한다.A mixture of caustic soda and general aluminum hydroxide (Wet-Al(OH) 3 ) is completely dissolved by airtight heating for 3 to 4 hours under a pressure of 4 to 6 atmospheres and the temperature of the solution is raised to 150°C. Sodium aluminate supersaturated solution. After that, the temperature of the sodium aluminate supersaturated solution is lowered to 60 to 70°C.
소듐알루미네이트 과포화 용액에 시드(Seed)가 첨가됨으로써, 수산화알루미늄이 용액으로부터 석출된다(S110).As a seed is added to the sodium aluminate supersaturated solution, aluminum hydroxide is precipitated from the solution (S110).
소듐알루미네이트 과포화 용액(이하 '용해액'이라 칭함)에 시드가 첨가된다. 시드(Seed)로는 황산알루미늄 또는 0.1~1.0μm의 수산화알루미늄 또는 알루미나 GEL(황산알루미늄암모늄, 황산알루미늄나트륨) 등이 있으나, 이에 한정되지 않는다. 시드가 용해액에 첨가되어 혼합되면, 용해되어 있던 수산화알루미늄은 시드에 달라붙어 입자로 성장하여 석출된다. 이 때, 시드는 수산화알루미늄 입자성장의 핵 역할을 한다. 시드가 용해액에 고르게 분산되어 혼합되지 않으면, 수산화알루미늄이 응집되어 석출될 수 있으므로 시드를 용해액에 고르게 분산시키는 것이 중요하다. 따라서, 시드가 용해액에 고르게 분산되어 1~10㎛ 크기의 수산화알루미늄이 석출될 수 있도록, 시드가 첨가된 용해액에 교반이 수행된다. 시드에 수산화알루미늄이 달라붙어 입자로 성장하여 석출되는데 평균 2~3일이 소요되고, 2~3일 이상 석출시킬 경우에는 대부분의 수산화알루미늄이 석출되어 거의 석출이 일어나지 않는 상태가 된다. 따라서, 교반시간은 2~3일이 바람직하다. 그리고 첨가되는 시드의 양은 투입된 수산화알루미늄양의 5~10%가 바람직하다. 첨가되는 시드의 양이 수산화알루미늄 양에 비해 너무 적을 경우, 수산화알루미늄의 석출이 잘 일어나지 않는다. 반대로, 시드의 양이 수산화알루미늄 양의 10%를 초과하면, 석출되는 수산화알루미늄 입자가 너무 미세해져, 추후에 수산화알루미늄 입자로부터 작은 입도의 판상 알루미나가 생성될 우려가 있다.A seed is added to the sodium aluminate supersaturated solution (hereinafter referred to as'solution solution'). The seed includes aluminum sulfate, aluminum hydroxide of 0.1 to 1.0 μm, or alumina GEL (aluminum ammonium sulfate, sodium aluminum sulfate), but is not limited thereto. When the seed is added to the solution and mixed, the dissolved aluminum hydroxide adheres to the seed, grows into particles, and precipitates. At this time, the seed serves as a nucleus of aluminum hydroxide particle growth. If the seeds are evenly dispersed in the solution and not mixed, aluminum hydroxide may aggregate and precipitate, so it is important to evenly disperse the seeds in the solution. Accordingly, stirring is performed on the solution to which the seed is added so that the seeds are evenly dispersed in the solution to allow aluminum hydroxide having a size of 1 to 10 μm to precipitate. Aluminum hydroxide adheres to the seed, grows into particles, and takes an average of 2 to 3 days to precipitate. In the case of precipitation for 2 to 3 days or longer, most of the aluminum hydroxide is precipitated and almost no precipitation occurs. Therefore, the stirring time is preferably 2 to 3 days. And the amount of the seed to be added is preferably 5 to 10% of the amount of aluminum hydroxide added. When the amount of seeds added is too small compared to the amount of aluminum hydroxide, the precipitation of aluminum hydroxide does not occur easily. Conversely, when the amount of the seed exceeds 10% of the amount of aluminum hydroxide, the aluminum hydroxide particles to be precipitated become too fine, and there is a concern that plate-shaped alumina having a small particle size may be generated from the aluminum hydroxide particles later.
1~10㎛ 크기의 수산화알루미늄이 석출되어 입자가 생성되면, 생성된 입자에 비례하여 용해액의 A/C 비율은 점점 낮아진다. 이 때, 용해액의 A/C 비율이 0.3 미만이 될 때까지 수산화알루미늄의 석출이 진행된다. 용해액의 A/C 비율이 0.3 이상이면 용해액 내에서 석출될 수 있는 수산화알루미늄이 남아있는 상태이므로, 용해액에서 1~10㎛ 크기의 수산화알루미늄이 최대한 석출될 수 있도록 용해액의 A/C 비율이 0.3 미만이 될 때까지 수산화알루미늄의 석출이 진행된다. 수산화알루미늄의 석출로 용해액에 수산화알루미늄 입자가 생성된 혼합액이 얻어진다. When aluminum hydroxide having a size of 1 to 10 μm is precipitated to form particles, the A/C ratio of the solution is gradually lowered in proportion to the generated particles. At this time, the precipitation of aluminum hydroxide proceeds until the A/C ratio of the solution becomes less than 0.3. If the A/C ratio of the solution is 0.3 or more, aluminum hydroxide that can be precipitated in the solution remains, so that the A/C of the solution can be precipitated as much as possible from 1 to 10 μm in size. The precipitation of aluminum hydroxide proceeds until the ratio is less than 0.3. A mixed solution in which aluminum hydroxide particles are formed in the solution is obtained by precipitation of aluminum hydroxide.
융제로서 용융염과 분산체가 차례로 수산화알루미늄이 석출된 혼합액에 첨가된 후 혼합된다(S115).As a flux, a molten salt and a dispersion are sequentially added to the mixture in which aluminum hydroxide is deposited, and then mixed (S115).
수산화알루미늄이 석출되어 입자로 존재하는 혼합액에 융제로 용융염이 첨가된다. 용융염은 뒤에 있을 열처리 과정에서 수산화알루미늄 입자를 판상형태로 성장시키는 역할을 한다. 용융염은 황산나트륨, 탄산나트륨, 탄산수소나트륨, 황산칼륨, 탄산칼륨, 염화칼륨, 황산마그네슘, 염화나트륨, 황산칼슘 및 탄산칼슘 중 적어도 하나를 포함한다. 용융염은 용해액에 용해된 수산화알루미늄 양을 기준으로 40~80%만큼 첨가된다. 예를 들어, 수산화알루미늄 100g이 용해액에 용해되어 있을 때, 용융염은 황산나트륨으로 50g만큼 첨가되거나, 황산나트륨과 탄산나트륨으로 각각 50g과 25g만큼 첨가될 수 있다. 위와 같이 용해액에 용윰염이 첨가된 후, 수산화알루미늄 입자가 분산될수 있도록 분산제가 용해액에 용해시킨 수산화알루미늄 양을 기준으로 0.5~2%만큼 첨가된다. 분산제가 해당 용해액에 첨가된 후, 3~5시간 동안 교반이 진행된다. 분산제로는 헥사메타인산나트륨, 제1인산나트륨, 제2인산나트륨, 제3인산나트륨이 사용될 수 있다. 용융염과 분산제가 첨가된 혼합액은 혼합액에 있는 가성소다에 의해 pH 12~14의 강 알칼리를 띈다.Aluminum hydroxide precipitates and molten salt is added as a flux to the mixed liquid present as particles. The molten salt plays a role in growing the aluminum hydroxide particles in a plate shape during the subsequent heat treatment process. The molten salt includes at least one of sodium sulfate, sodium carbonate, sodium hydrogen carbonate, potassium sulfate, potassium carbonate, potassium chloride, magnesium sulfate, sodium chloride, calcium sulfate and calcium carbonate. The molten salt is added in an amount of 40 to 80% based on the amount of aluminum hydroxide dissolved in the solution. For example, when 100 g of aluminum hydroxide is dissolved in the solution, the molten salt may be added by 50 g of sodium sulfate, or 50 g and 25 g of sodium sulfate and sodium carbonate, respectively. After the dissolved salt is added to the solution as above, the dispersant is added by 0.5 to 2% based on the amount of aluminum hydroxide dissolved in the solution so that the aluminum hydroxide particles can be dispersed. After the dispersant is added to the solution, stirring is performed for 3 to 5 hours. As the dispersant, sodium hexametaphosphate, monosodium phosphate, dibasic sodium phosphate, and trisodium phosphate may be used. The mixed solution to which the molten salt and dispersant are added has a strong alkali of pH 12-14 by the caustic soda in the mixed solution.
일반 수산화알루미늄을 사용하는 종래의 수산화알루미늄 제조 공정은 수산화알루미늄을 석출한 후 폐액인 가성소다를 분리하여 버리지만, 본 발명은 가성소다를 용융염을 녹이기 위한 모액(Prognant Liquor)으로 활용한다. 이처럼 가성소다를 모액으로 활용하면, 용융염을 녹이기 위한 별도의 물이 첨가될 필요가 없다. 또한, 첨가된 융제가 용액 내에서 수산화알루미늄 표면에 잘 증착되므로, 수산화알루미늄 대비 3~7배의 융제를 첨가하는 종래의 판상 알루미나 제조공정보다 60~70% 적은 양의 융제가 첨가될 수 있다.In the conventional aluminum hydroxide manufacturing process using general aluminum hydroxide, after depositing aluminum hydroxide, caustic soda, which is a waste liquid, is separated and discarded, but the present invention utilizes caustic soda as a mother liquor (Prognant Liquor) for dissolving molten salt. When caustic soda is used as the mother liquor, there is no need to add additional water to dissolve the molten salt. In addition, since the added flux is well deposited on the surface of aluminum hydroxide in the solution, the flux may be added in an amount of 60 to 70% less than that of a conventional plate-shaped alumina manufacturing process that adds 3 to 7 times the flux compared to aluminum hydroxide.
융제가 혼합된 혼합액(이하 융제 혼합액이라 약칭한다)의 pH를 중화시키기 위해, 중화제가 융제 혼합액에 첨가된다(S120).In order to neutralize the pH of the mixture in which the flux is mixed (hereinafter abbreviated as a flux mixture), a neutralizing agent is added to the flux mixture (S120).
전술한 대로, 가성소다를 포함하여 pH 12의 강 알칼리를 띄는 융제 혼합액에 중화제가 첨가되어 융제 혼합액의 pH를 6~8로 중화시킨다. 이와 같이, 융제 혼합액의 pH가 중화됨으로서, 입자가 성장 가능한 환경이 조성된다. 이때, 중화제로 90% 이상의 고농도를 갖는 황산, 염산 또는 질산이 사용될 수 있다. 중화제의 농도가 너무 낮을 경우는 제조 부피가 커지고 건조시간이 증가할 수 있다. As described above, a neutralizing agent is added to the flux mixture having a strong alkali of pH 12 including caustic soda to neutralize the pH of the flux mixture to 6-8. In this way, the pH of the flux mixture is neutralized, thereby creating an environment in which particles can grow. At this time, sulfuric acid, hydrochloric acid, or nitric acid having a high concentration of 90% or more may be used as the neutralizing agent. If the concentration of the neutralizing agent is too low, the production volume may increase and the drying time may increase.
중화액이 건조된다(S125).The neutralized liquid is dried (S125).
융제 혼합액의 pH를 중화한 중화액이 건조된다. 이에, 융제 혼합액이 수산화알루미늄 화합물로 생성된다. 중화액의 건조를 위해, 열풍건조기 또는 증류건조기 등이 이용되어 중화액을 온도 110~200℃ 범위 내에서 건조시킬 수 있다. 건조는 중화액 내 수분이 1% 이내로 될 때까지 진행될 수 있다. 중화액이 건조되지 않으면 수분 입자가 판상 알루미나의 응집을 유발하고 비정상 입자의 성장을 초래할 수 있다. 이에, 중화액의 완전한 건조가 진행된다.The neutralization solution obtained by neutralizing the pH of the flux mixture is dried. Thus, the flux mixture is produced from the aluminum hydroxide compound. For drying the neutralized liquid, a hot air dryer or a distillation dryer may be used to dry the neutralized liquid within a temperature range of 110 to 200°C. Drying may proceed until the moisture in the neutralized solution is within 1%. If the neutralization liquid is not dried, moisture particles may cause agglomeration of plate-like alumina and may lead to abnormal particle growth. Thus, complete drying of the neutralized liquid proceeds.
수산화알루미늄 화합물이 열처리된다(S130).The aluminum hydroxide compound is heat-treated (S130).
수산화알루미늄 화합물이 지름 1cm 이하 크기의 분말형태로 분쇄된다. 분쇄 시, 분쇄기로 롤 밀(Roll Mill) 또는 볼밀(Ball Mill) 등이 사용될 수 있다. 수산화알루미늄 화합물을 분말형태로 만들지 않아도 열처리에는 문제가 없지만, 수산화알루미늄 화합물이 분말형태로 되면 많은 양이 한번에 열처리될 수 있기 때문에 작업이 용이해지고, 수산화알루미늄 화합물에 골고루 열이 가해질 수 있다. 분말형태의 수산화알루미늄 화합물은 세라믹 도가니에 담겨 일반 대기 분위기에서 열처리된다. 수산화알루미늄 화합물의 열처리 과정에서, 수산화알루미늄 화합물에 포함되어 있는 융제의 부피가 열처리에 의해 증가하여 세라믹 도가니가 파손되는 일이 많이 발생한다. 증가하는 융제의 부피는 수산화알루미늄 화합물에 첨가된 융제의 양에 비례한다. 이 때, 수산화알루미늄 100g 당 300g~700g의 융제를 첨가하여 열처리하는 종래의 판상 알루미나 제조 공정에 비해, 본 발명의 판상 알루미나 제조 공정은 60~70% 적은 양의 융제가 첨가되기 때문에, 융제의 부피는 크게 증가하지 않는다. 따라서, 본 발명의 일 실시예는 수산화알루미늄 화합물 열처리 과정에서, 세라믹 도가니와 같은 열처리 용기의 파손을 막을 수 있다. The aluminum hydroxide compound is pulverized into a powder having a diameter of 1 cm or less. During pulverization, a roll mill or a ball mill may be used as a crusher. Even if the aluminum hydroxide compound is not made into a powder, there is no problem in heat treatment, but if the aluminum hydroxide compound is in a powder form, a large amount can be heat treated at once, so the operation becomes easy, and heat can be applied evenly to the aluminum hydroxide compound. The powdered aluminum hydroxide compound is placed in a ceramic crucible and heat-treated in a general atmospheric atmosphere. In the heat treatment process of the aluminum hydroxide compound, the volume of the flux contained in the aluminum hydroxide compound is increased by the heat treatment, and the ceramic crucible is often damaged. The increasing flux volume is proportional to the amount of flux added to the aluminum hydroxide compound. At this time, compared to the conventional plate-shaped alumina manufacturing process in which a flux of 300 g to 700 g is added and heat-treated per 100 g of aluminum hydroxide, the plate-shaped alumina manufacturing process of the present invention adds 60 to 70% of the flux, so the volume of the flux Does not increase significantly. Accordingly, an embodiment of the present invention can prevent damage to a heat treatment vessel such as a ceramic crucible in the heat treatment process of the aluminum hydroxide compound.
분말형태의 수산화알루미늄 화합물이 열처리 되면, 수산화알루미늄 화합물은 판상 알루미나 형태로 성장된다. 이 때, 열처리는 온도구간이 제1온도구간, 제2온도구간, 제3온도구간으로 나뉘어 1~4시간 진행될 수 있다. 그리고 각각의 온도구간은 3~5℃씩 승온되어 형성될 수 있다. 이는 수산화알루미늄 화합물에 포함되어 있는 각각의 융제의 녹는 온도가 서로 다르기 때문에, 각 융제를 녹이기 위해 열처리가 여러 온도구간으로 나뉘어 진행된다. 여기서, 제1온도구간은 200~300℃, 제2온도구간은 700~900℃, 제3온도구간은 1100~1300℃ 일 수 있다. 좀 더 구체적으로 살펴보면, 제1온도구간에서는 수산화알루미늄 화합물에 포함되어 있는 수산화알루미늄 내부 결정수 및 물 분자를 증발시키고, 제2온도구간에서는 융제가 녹으면서 수산화알루미늄 입자에 융제가 달라붙는다. 그리고 제3온도구간에서는 수산화알루미늄 입자가 융제에 의해 판상 알루미나 형태로 성장한다. 융제는 각 온도구간에서 용융되어 수산화알루미늄 입자에 달라붙음으로서, 수산화알루미늄 입자가 횡축 방향으로만 성장하도록 입자 성장을 조절해 수산화알루미늄이 판상 알루미나 형태로 성장할 수 있도록 한다. When the powdered aluminum hydroxide compound is heat-treated, the aluminum hydroxide compound is grown in the form of plate-shaped alumina. In this case, the heat treatment may be performed for 1 to 4 hours by dividing a temperature section into a first temperature section, a second temperature section, and a third temperature section. And each temperature section can be formed by increasing the temperature by 3 ~ 5 ℃. This is because the melting temperature of each of the fluxes contained in the aluminum hydroxide compound is different from each other, so that the heat treatment is divided into several temperature sections to melt each flux. Here, the first temperature section may be 200 to 300°C, the second temperature section may be 700 to 900°C, and the third temperature section may be 1100 to 1300°C. In more detail, in the first temperature section, crystal water and water molecules inside the aluminum hydroxide contained in the aluminum hydroxide compound are evaporated, and in the second temperature section, the flux adheres to the aluminum hydroxide particles as the flux melts. And in the third temperature section, aluminum hydroxide particles grow in the form of plate-shaped alumina by the flux. The flux is melted at each temperature section and adheres to the aluminum hydroxide particles, and the particle growth is controlled so that the aluminum hydroxide particles grow only in the horizontal axis direction so that the aluminum hydroxide can grow in the form of plate-shaped alumina.
성장한 판상 알루미나가 냉각되면, 판상 알루미나 입자를 포함하는 응집된 분말이 형성된다.When the grown plate-shaped alumina is cooled, agglomerated powder containing plate-shaped alumina particles is formed.
융제 및 미세입자가 여과되어 제거된다(S135).The flux and fine particles are removed by filtration (S135).
온수 등의 액체가 판상 알루미나 입자를 포함하는 응집된 분말에 첨가되며, 응집된 판상 알루미나 분말와 열처리 용기가 분리된다. 응집된 분말은 수산화알루미늄 화합물을 열처리하고 냉각하여 형성되는데, 판상 알루미나 입자를 포함하는 응집된 분말의 응집강도는 수산화알루미늄 화합물에 첨가된 융제의 양에 비례한다. 이때, 본 발명의 판상 알루미나 제조 공정은 종래의 판상 알루미나 제조 공정에 비해 60~70% 적은 양의 융제가 첨가되기 때문에, 응집된 분말의 응집 강도가 약해진다. 따라서, 본 발명의 일 실시예에 따른 응집된 분말은 온수 등의 액체에 보다 쉽게 풀어지므로, 응집된 분말은 세라믹 도가니와 같은 열처리 용기로부터 쉽게 분리될 수 있다. 이때, 액체로 온수가 사용될 경우, 온수의 온도는 수용성 융제를 녹일 수 있는 60~100℃가 바람직하다. 액체가 첨가된 판상 알루미나 분말이 2~3시간 교반되면, 판상 알루미나 입자가 분산된 혼합액 상태로 만들어진다. 판상 알루미나 입자에는 물에 쉽게 용해되는 수용성 융제와 판상 알루미나 입자 중 광택감이 좋지 않은 5㎛ 이하의 입도를 갖는 미세입자가 포함되어 있다. 이와 같은 수용성 융제와 미세입자를 제거하기 위해 여과장치를 사용하여 혼합액을 여과시킨다. 여과장치로 혼합액을 여과하면 수용성 융제와 미세입자가 제거된 케이크(Cake)가 생성된다. 여과장치 중 하나로 1~5㎛의 기공도를 가진 필터프레스 등을 사용할 수 있다.A liquid such as hot water is added to the agglomerated powder including plate-shaped alumina particles, and the agglomerated plate-shaped alumina powder and the heat treatment vessel are separated. The agglomerated powder is formed by heat-treating and cooling an aluminum hydroxide compound, and the agglomeration strength of the agglomerated powder including plate-shaped alumina particles is proportional to the amount of flux added to the aluminum hydroxide compound. At this time, since the sheet-shaped alumina manufacturing process of the present invention adds 60 to 70% less flux than the conventional sheet-shaped alumina manufacturing process, the cohesive strength of the agglomerated powder is weakened. Therefore, since the agglomerated powder according to an embodiment of the present invention is more easily dissolved in a liquid such as hot water, the agglomerated powder can be easily separated from a heat treatment container such as a ceramic crucible. In this case, when hot water is used as a liquid, the temperature of the hot water is preferably 60 to 100° C. that can dissolve the water-soluble flux. When the plate-shaped alumina powder to which the liquid is added is stirred for 2 to 3 hours, the plate-shaped alumina particles are dispersed in a mixed liquid state. The plate-shaped alumina particles contain a water-soluble flux that is easily soluble in water and fine particles having a particle size of 5 μm or less, which have poor gloss among the plate-shaped alumina particles. In order to remove such water-soluble flux and fine particles, the mixed solution is filtered using a filtering device. When the mixed solution is filtered with a filtration device, a cake from which water-soluble flux and fine particles are removed is produced. As one of the filtering devices, a filter press having a porosity of 1 to 5 μm can be used.
케이크가 슬러리(Slurry)화되고, 슬러리에서 응집된 판상 알루미나 입자와 쌍정이 분해딘다(S140).The cake becomes slurry, and the plate-shaped alumina particles and twins agglomerated in the slurry are decomposed (S140).
케이크에 약간의 물이 첨가되고 교반되어, 케이크가 슬러리화된다. 그 후, 슬러리는 분쇄기에 넣어지고, 분쇄기는 슬러리에 있는 판상 알루미나의 쌍정 및 응집된 판상 알루미나 입자를 기 설정된 시간동안 분해한다. 기 설정된 분해 시간은 1시간~1시간 30분이 적합할 수 있다. 이는 기 설정된 시간 이상 슬러리의 판상 알루미나 입자가 분해되면 판상 알루미나 입자의 깨짐이 발생하고, 기 설정된 시간 이하로 슬러리의 판상 알루미나 입자가 분해되면 응집된 입자와 쌍정의 개선 효과가 없기 때문이다.Some water is added to the cake and stirred, so that the cake is slurried. Thereafter, the slurry is put into a grinder, and the grinder decomposes the twin and agglomerated platy alumina particles in the slurry for a predetermined time. The preset disintegration time may be suitable for 1 hour to 1 hour 30 minutes. This is because if the plate-shaped alumina particles of the slurry are decomposed for a predetermined time or longer, the plate-shaped alumina particles are broken, and if the plate-shaped alumina particles of the slurry are decomposed within a predetermined time or less, there is no effect of improving the aggregated particles and twin crystals.
여기서, 쌍정은 판상 알루미나 입자가 교차되어 성장된 것을 말한다. 쌍정 입자는 안료로 사용될 시 거친 느낌을 주기 때문에, 쌍정의 교차되어 성장된 판상 알루미나 입자를 분리시키는 것이 바람직하다. 분쇄기로는 0.3~1.0Φ 지름의 지르코니아 비드(Bead)를 사용하는 습식 비드밀(Bead Mill)이 사용될 수 있다. 습식 비드밀은 쌍정과 일부 응집된 입자들을 분해할 수 있다. 또한, 습식 비드밀로 분해된 판상 입자는 쌍정이 현저히 적고, 입자의 흐름성이나 분산성이 현저히 좋다.Here, twin crystals are grown by crossing plate-shaped alumina particles. Since twin crystal particles give a rough feeling when used as a pigment, it is preferable to separate the plate-shaped alumina particles grown by crossing the twin crystals. As the grinder, a wet bead mill using a zirconia bead having a diameter of 0.3 to 1.0 Φ may be used. Wet bead mills can break down twins and some agglomerated particles. In addition, the plate-shaped particles decomposed by a wet bead mill have significantly fewer twins, and the flowability and dispersibility of the particles are remarkably good.
슬러리가 건조되고 일정 입도의 판상 입자가 제거된다(S145).The slurry is dried and plate-like particles of a predetermined particle size are removed (S145).
슬러리가 건조되며 슬러리에 포함된 물 때문에 판상 알루미나 입자가 다시 응집이 될 수 있다. 이를 방지하기 위해, 상용화된 습건식용 케이크 드라이어(Cake Dryer)가 사용될 수 있다. 습건식용 케이크 드라이어는 출구 온도 130~250℃로 슬러리를 건조시킨다. 습건식용 케이크 드라이어로 슬러리를 건조시키면, 일정한 입자크기를 갖는 판상 알루미나가 제조된다. 슬러리를 건조시킬 때, 슬러리의 응집을 방지할 수 있는 다양한 건조기가 사용될 수 있으므로, 건조기는 습건식용 케이크 드라이어로 한정되지 않는다.The slurry is dried and the water contained in the slurry may cause the plate-shaped alumina particles to reaggregate. To prevent this, a commercial wet-dry cake dryer may be used. Wet and dry cake dryers dry the slurry at an outlet temperature of 130~250℃. When the slurry is dried with a wet-dry cake dryer, plate-shaped alumina having a certain particle size is produced. When drying the slurry, since various dryers capable of preventing agglomeration of the slurry can be used, the dryer is not limited to a wet-dry cake dryer.
슬러리 건조 후, 생성된 판상 알루미나로부터 5㎛ 이하의 입도 크기를 갖는 판상 알루미나 미세입자가 여과장치에 의해 제거된다. 여과장치로 백 필터(Bag Filter)가 사용될 수 있으나, 이로 한정되지 않는다. 이렇게 여과장치로 미세입자가 제거된 뒤, 건조된 판상 알루미나 제품에서 펄(Pearl) 광택감에 악영향을 미치는 5㎛ 이하의 미세입자와 50㎛ 이상의 거대 입자가 제거된다. 5㎛ 이하의 미세입자와 50㎛ 이상의 거대 입자를 제거하기 위해 기류식 분급기가 이용될 수 있다. 기류식 분급기는 일정한 압력의 공기를 넣어 낙차에 의해 무거운 것은 가라 앉히고 가벼운 것은 띄워 각각 포집할 수 있다. 따라서, 기류식 분급기는 5㎛ 이하의 미세입자와 50㎛ 이상의 거대 입자를 각각 포집해 제거할 수 있다. 또한, 기류식 분급기는 5~50㎛ 입도의 판상 알루미나 제품에서 원하는 입도의 제품만 따로 포집해 사용할 수 있다.After drying the slurry, plate-shaped alumina fine particles having a particle size of 5 μm or less are removed from the produced plate-shaped alumina by a filtration device. A bag filter may be used as a filtering device, but is not limited thereto. After the fine particles are removed by the filtration device, fine particles of 5 μm or less and large particles of 50 μm or more, which adversely affect pearl gloss, are removed from the dried plate-shaped alumina product. An air classifier may be used to remove fine particles of 5 μm or less and large particles of 50 μm or more. The air classifier puts air of a certain pressure to subside heavy things and floats light ones to collect each. Therefore, the air classifier can collect and remove fine particles of 5 μm or less and large particles of 50 μm or more, respectively. In addition, the air classifier can be used by separately collecting only the products of the desired particle size from the plate-shaped alumina products having a particle size of 5-50㎛.
위와 같은 과정의 제조방법을 거치며 5~50㎛의 좁은 입도 분포와 두께가 0.1~0.5μm, 각형비 50~200인 우수한 품질의 판상 알루미나가 제조될 수 있다.Through the manufacturing method of the above process, excellent quality plate-shaped alumina having a narrow particle size distribution of 5 to 50 μm, a thickness of 0.1 to 0.5 μm, and an angle ratio of 50 to 200 can be manufactured.
<실험예 1><Experimental Example 1>
(1) 소듐알루미네이트 용액의 제조(1) Preparation of sodium aluminate solution
일반 수산화알루미늄(Wet-Al(OH)3) 66.2g, 가성소다 50% 수용액 84.5g 및 초순수 94.5ml가 500ml 압력 용기에서 교반된다, 용기는 150℃의 온도 및 5기압의 압력 하에서 2~3시간 동안 노출된다. 이에 따라, 수산화알루미늄은 가성소다에 완전히 용해되어 가성소다(Na2CO3) 농도 280g/L, A/C 0.75의 200ml 소듐알루미네이트 용액이 제조된다.66.2 g of general aluminum hydroxide (Wet-Al(OH) 3 ), 84.5 g of 50% caustic soda aqueous solution, and 94.5 ml of ultrapure water are stirred in a 500 ml pressure vessel, the vessel is 2 to 3 hours under a temperature of 150°C and a pressure of 5 atmospheres While exposed. Accordingly, aluminum hydroxide is completely dissolved in caustic soda to prepare a 200 ml sodium aluminate solution having a caustic soda (Na 2 CO 3 ) concentration of 280 g/L and A/C of 0.75.
(2) SEED 첨가 및 수산화알루미늄 석출(2) SEED addition and aluminum hydroxide precipitation
제조된 소듐알루미네이트 용액의 온도가 60℃ 이하로 낮아진다. 소듐알루미네이트 용액으로 0.3㎛의 입도를 갖는 수산화알루미늄이 6.62g 투입된 후 교반되어 3일간 석출이 진행된다. 석출 종료 후의 A/C는 0.25로 측정되었으며, 입도 분석 결과, 소듐알루미네이트 용액상에는 1μm 의 수산화알루미늄이 석출되었다.The temperature of the prepared sodium aluminate solution is lowered to 60°C or less. 6.62 g of aluminum hydroxide having a particle size of 0.3 μm was added to the sodium aluminate solution, followed by stirring, and precipitation proceeds for 3 days. A/C after the completion of precipitation was measured to be 0.25, and as a result of particle size analysis, aluminum hydroxide of 1 μm was deposited on the sodium aluminate solution.
(3) 융제혼합 및 중화액 제조(3) Flux mixing and neutralization solution preparation
수산화알루미늄이 석출된 소듐알루미네이트 용액에 황산나트륨 20g 및 탄산나트륨 15g이 투입되고, 0.5g의 헥사메타인산나트륨이 추가되어 1시간 동안 교반된다. 해당 용액 14의 pH를 가지므로, 95%의 고농도를 갖는 황산이 첨가되며 pH가 7로 중화된다. 20 g of sodium sulfate and 15 g of sodium carbonate were added to the sodium aluminate solution in which aluminum hydroxide was deposited, and 0.5 g of sodium hexametaphosphate was added, followed by stirring for 1 hour. Since it has the pH of the solution 14, sulfuric acid having a high concentration of 95% is added and the pH is neutralized to 7.
(4) 중화액 건조(4) Drying of neutralization liquid
융제를 혼합하고 pH를 중화하여 제조된 액상 중화액이 스테인리스 트레이(Stainless Tray)에 담겨 박스형 일반 건조기에 투입된다. 그리고 건조기는 액상 중화액을 110℃로 48시간 동안 가열한다. 따라서, 액상 중화액이 완전 건조된 수산화알루미늄 화합물이 생성된다. The liquid neutralizing solution prepared by mixing the flux and neutralizing the pH is put in a stainless tray and put into a box-type general dryer. And the dryer heats the liquid neutralized liquid at 110°C for 48 hours. Accordingly, an aluminum hydroxide compound in which the liquid neutralization liquid is completely dried is produced.
(5) 분쇄 및 열처리 (5) grinding and heat treatment
수산화알루미늄 화합물이 롤밀(Roll Mill)에 투입되어 지름 1cm 이하의 작은 분말로 분쇄된다. 분쇄되어 분말형태가 된 수산화알루미늄 화합물은 1L의 알루미나 도가니에 담기고, 알루미나 도가니가 박스형 일반 전기로에 담긴다. 박스형 일반 전기로는 250℃까지 3℃/min 승온하여 3시간 유지하고, 850℃ 까지 5℃/min 승온하여 2시간 유지하고, 1250℃까지 5℃/min 상승하여 4시간 유지한 후 상온에서 수산화알루미늄 화합물을 자연 냉각시킨다. The aluminum hydroxide compound is put into a roll mill and pulverized into small powders with a diameter of 1 cm or less. The pulverized and powdered aluminum hydroxide compound is put in a 1L alumina crucible, and the alumina crucible is put in a box-type general electric furnace. Box-type general electric furnace heated up to 250℃ for 3 hours and maintained for 3 hours, raised to 850℃ for 5℃/min for 2 hours, increased to 1250℃ for 5℃/min and maintained for 4 hours, and then aluminum hydroxide at room temperature Cool the compound naturally.
(6) 판상 알루미나의 수득(6) Obtaining plate-shaped alumina
열처리에 의해 분말형태의 수산화알루미늄 화합물은 판상 알루미나로 성장된다. 이때, 판상 알루미나는 아직 알루미나 도가니에 붙어 있으므로, 액체가 첨가되며 판상 알루미나가 알루미나 도가니에서 분리된다. 그리고 분리된 판상 알루미나는 여과기를 거치며 액체에 섞여있는 수용성 융제가 제거된다. 융제가 제거된 판상 알루미나는 10% 농도의 황산액에 의해 분산되어 응집된 판상 알루미나 입자 및 입자표면에 남아있는 염이 제거된다. 그 후, 융제와 염이 제거된 판상 알루미나가 110℃로 건조되면, 각형비가 50~200으로 우수하고, 물에서 좋은 분산성을 갖는 판상 알루미나 47g이 생성된다. 생성된 판상 알루미나는 5~50㎛ 입도와 0.1~0.5㎛ 두께를 갖는다. By heat treatment, the powdered aluminum hydroxide compound is grown into plate-shaped alumina. At this time, since the plate-shaped alumina is still attached to the alumina crucible, a liquid is added and the plate-shaped alumina is separated from the alumina crucible. Then, the separated plate-like alumina passes through a filter to remove the water-soluble flux mixed with the liquid. The plate-shaped alumina from which the flux has been removed is dispersed by a sulfuric acid solution having a concentration of 10% to remove agglomerated plate-shaped alumina particles and salts remaining on the particle surface. Thereafter, when the plate-shaped alumina from which the flux and salt have been removed is dried at 110° C., 47 g of plate-shaped alumina having an excellent angle ratio of 50 to 200 and good dispersibility in water is produced. The resulting plate-like alumina has a particle size of 5 to 50 μm and a thickness of 0.1 to 0.5 μm.
<실험예 2> <Experimental Example 2>
(1) SEED 첨가(1) SEED addition
실험예 1과 동일한 방법으로 제조한다. 다만, 실험예 1과 다르게 실험예 2는 시드(SEED)를 황산 알루미늄 25.4g으로 변경 투입한다. 실험예 2에 의해 제조된 판상 알루미나는 50~190의 각형비를 가지며, 물에서 좋은 분산성을 갖는다. 실시예2의 판상 알루미나는 5~51㎛ 입도크기와 0.1~0.5㎛ 두께를 갖는다.It was prepared in the same manner as in Experimental Example 1. However, unlike Experimental Example 1, in Experimental Example 2, the seed (SEED) was changed to 25.4 g of aluminum sulfate and added. The plate-shaped alumina prepared according to Experimental Example 2 has an angle ratio of 50 to 190, and has good dispersibility in water. The plate-shaped alumina of Example 2 has a particle size of 5 to 51 μm and a thickness of 0.1 to 0.5 μm.
<실험예 3> <Experimental Example 3>
(1) SEED 첨가(1) SEED addition
실험예 1과 동일한 방법으로 제조한다. 다만, 실험예 1과 다르게 실험예 3은 시드(SEED)를 직접 제조한 황산 알루미늄 암모늄 GEL 20g으로 변경 투입한다. 황산 알루미늄 암모늄 GEL은 수산화알루미늄을 황산에 완전 용해하고 암모니아수로 중화시켜 GEL 상태로 제조한다. 실험예 3에 의해 제조된 판상 알루미나는 각형비가 50~210으로 실험예 1과 실험예 2보다 우수했으며, 물에서 좋은 분산성이 나타났다. It was prepared in the same manner as in Experimental Example 1. However, unlike Experimental Example 1, Experimental Example 3 was changed to 20g of aluminum ammonium sulfate GEL prepared directly from the seed (SEED). Aluminum ammonium sulfate GEL is prepared in a GEL state by completely dissolving aluminum hydroxide in sulfuric acid and neutralizing it with aqueous ammonia. The plate-shaped alumina prepared by Experimental Example 3 had an angle ratio of 50 to 210, which was superior to Experimental Examples 1 and 2, and showed good dispersibility in water.
<실험예 4><Experimental Example 4>
(1) 융제혼합 및 중화액 제조(1) Flux mixing and neutralization solution preparation
실험예1과 동일한 방법으로 제조한다. 다만, 실험예1과 다르게 실험예4는 수산화알루미늄이 석출된 소듐알루미네이트 용액에 탄산칼륨 20g, 탄산나트륨 15g을 투입하고, 0.5g의 헥사메타인산나트륨을 넣어 1시간 동안 교반한다. 실험예 4에 의해 제조된 판상 알루미나는 각형비가 45~180으로 우수했으며, 물에서 좋은 분산성이 나타났다. It was prepared in the same manner as in Experimental Example 1. However, unlike Experimental Example 1, in Experimental Example 4, 20 g of potassium carbonate and 15 g of sodium carbonate were added to the sodium aluminate solution in which aluminum hydroxide was deposited, and 0.5 g of sodium hexametaphosphate was added and stirred for 1 hour. The plate-shaped alumina prepared according to Experimental Example 4 had an excellent angle ratio of 45 to 180, and showed good dispersibility in water.
<비교예 1><Comparative Example 1>
(1) SEED 첨가(1) SEED addition
실험예 1과 동일한 방법으로 제조한다. 다만, 실험예 1과 다르게 비교예 1은 SEED를 20㎛ 수산화알루미늄 6.62g으로 변경 투입한다. 비교예 1에 의해 제조된 판상 알루미나는 입자의 두께가 두꺼워 각형비가 10~130으로 좋지 않았으며, 불량한 분산성이 나타났다. It was prepared in the same manner as in Experimental Example 1. However, unlike Experimental Example 1, in Comparative Example 1, the SEED was changed to 6.62g of 20㎛ aluminum hydroxide. The plate-shaped alumina prepared according to Comparative Example 1 had a thick particle thickness, which was not good at an angle ratio of 10 to 130, and showed poor dispersibility.
<비교예 2><Comparative Example 2>
(1) 융제혼합 및 중화액 제조(1) Flux mixing and neutralization solution preparation
실험예 1과 동일한 방법으로 제조한다. 다만, 실험예 1과 다르게 비교예 2는 수산화알루미늄이 석출된 소듐알루미네이트 용액에 황산나트륨 200g, 탄산나트륨 100g을 투입하고 0.5g의 헥사메타인산나트륨을 넣어 1시간 동안 교반한다. 비교예 2에 의해 제조된 판상 알루미나는 응집이 심해서 도가니에서 잘 분리되지 않았으며, 쌍정 및 100㎛ 이상의 대형 입자가 다량 발생하여 불량한 분산성이 나타났다.It was prepared in the same manner as in Experimental Example 1. However, unlike Experimental Example 1, in Comparative Example 2, 200 g of sodium sulfate and 100 g of sodium carbonate were added to the sodium aluminate solution in which aluminum hydroxide was deposited, and 0.5 g of sodium hexametaphosphate was added and stirred for 1 hour. The plate-shaped alumina prepared by Comparative Example 2 had severe aggregation and was not well separated from the crucible, and a large amount of twin crystals and large particles of 100 μm or more were generated, resulting in poor dispersibility.
아래의 표는 각 실험예와 비교예에 의해 제조된 판상 알루미나의 입도와 각형비를 나타낸 것이다. The table below shows the particle size and angle ratio of the plate-shaped alumina prepared by each of the experimental examples and comparative examples.
Figure PCTKR2020001996-appb-I000001
Figure PCTKR2020001996-appb-I000001
위의 표를 참조하면, 비교예 1과 같이 0.1~1.0㎛ 이상의 입도 크기를 갖는 산화알루미늄을 시드로 사용하면, 입도 분포가 불규칙하고 입자가 불량한 판상 알루미나가 제조된다. 따라서, 소듐알루미네이트 과포화 용액에 시드(Seed)가 첨가될 때는 0.1~1.0㎛ 크기의 수산화알루미늄을 시드로 사용하는 것이 바람직하다.Referring to the table above, as in Comparative Example 1, when aluminum oxide having a particle size of 0.1 to 1.0 μm or more is used as a seed, plate-shaped alumina having an irregular particle size distribution and poor particles is produced. Therefore, when a seed is added to the sodium aluminate supersaturated solution, it is preferable to use aluminum hydroxide having a size of 0.1 to 1.0 μm as the seed.
위의 표를 참조하면, 비교예 2와 같이 수산화알루미늄이 석출되어 입자로 존재하는 혼합액에 용융염이 과도하게 첨가되면, 입도 분포가 1~135㎛로 불규칙하고 입자가 불량한 판상 알루미나가 제조된다. 따라서, 수산화알루미늄이 석출되어 입자로 존재하는 혼합액에 용융염이 첨가될 때, 용융염은 용해시킨 수산화알루미늄 양을 기준으로 40~80%만큼 소듐알루미네이트 과포화 용액에 첨가되는 것이 바람직하다. Referring to the table above, as in Comparative Example 2, when the molten salt is excessively added to the mixed solution present as particles due to the precipitation of aluminum hydroxide, plate alumina having an irregular particle size distribution of 1 to 135 μm and poor particles is prepared. Therefore, when aluminum hydroxide is precipitated and molten salt is added to the mixed solution present as particles, the molten salt is preferably added to the sodium aluminate supersaturated solution by 40 to 80% based on the amount of dissolved aluminum hydroxide.
도 2는 본 발명의 일 실시예에 따른 판상 알루미나 분말의 주사전자 현미경 관찰 결과를 도시한 도면이고, 도 3은 본 발명의 일 실시예에 따른 판상 알루미나 분말의 입도 분석 결과를 도시한 그래프이며, 도 4는 본 발명의 일 실시예에 따른 판상 알루미나 분말을 XRD(X-Ray Diffraction) 분석한 결과를 도시한 그래프이다.FIG. 2 is a view showing a result of observation with a scanning electron microscope of a plate-shaped alumina powder according to an embodiment of the present invention, and FIG. 3 is a graph showing a particle size analysis result of a plate-shaped alumina powder according to an embodiment of the present invention. 4 is a graph showing the results of XRD (X-Ray Diffraction) analysis of the plate-shaped alumina powder according to an embodiment of the present invention.
도 2 내지 도 4를 참조하면, 본 발명의 일 실시예에 따라 제조된 판상 알루미나는 5~50μm 범위의 입도를 가지며, 평균적으로 20μm의 입도를 갖는 것으로 나타난다.2 to 4, the plate-shaped alumina prepared according to an embodiment of the present invention has a particle size in the range of 5 to 50 μm, and is shown to have an average particle size of 20 μm.
도 1에서는 각각의 과정을 순차적으로 실행하는 것으로 기재하고 있으나, 이는 본 발명의 일 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것이다. 다시 말해, 본 발명의 일 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 일 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 각각의 도면에 기재된 과정의 순서를 변경하여 실행하거나 과정 중 하나 이상의 과정을 병렬적으로 실행하는 것으로 다양하게 수정 및 변형하여 적용 가능할 것이므로, 도 1은 시계열적인 순서로 한정되는 것은 아니다.In FIG. 1, each process is described as sequentially executing, but this is merely illustrative of the technical idea of an embodiment of the present invention. In other words, a person of ordinary skill in the art to which an embodiment of the present invention belongs can change the order of the processes described in each drawing without departing from the essential characteristics of the embodiment of the present invention, or perform one or more of the processes. Since the process is executed in parallel and can be applied by various modifications and modifications, FIG. 1 is not limited to a time series order.
한편, 도 1에 도시된 과정들은 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 즉, 컴퓨터가 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등) 및 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.Meanwhile, the processes shown in FIG. 1 can be implemented as computer-readable codes on a computer-readable recording medium. The computer-readable recording medium includes all types of recording devices that store data that can be read by a computer system. That is, the computer-readable recording media include storage media such as magnetic storage media (eg, ROM, floppy disk, hard disk, etc.) and optical reading media (eg, CD-ROM, DVD, etc.). In addition, the computer-readable recording medium can be distributed over a computer system connected through a network to store and execute computer-readable codes in a distributed manner.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present embodiment, and those of ordinary skill in the technical field to which the present embodiment belongs will be able to make various modifications and variations without departing from the essential characteristics of the present embodiment. Accordingly, the present exemplary embodiments are not intended to limit the technical idea of the present exemplary embodiment, but are illustrative, and the scope of the technical idea of the present exemplary embodiment is not limited by these exemplary embodiments. The scope of protection of this embodiment should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present embodiment.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
*본 특허출원은 2019년 2월 22일 한국에 출원한 특허출원번호 제 10-2019-0021024호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.*This patent application claims priority in accordance with Article 119(a) of the U.S. Patent Law (35 USC § 119(a)) for patent application No. 10-2019-0021024 filed in Korea on February 22, 2019, All of its contents are incorporated by reference into this patent application. In addition, if this patent application claims priority for countries other than the United States for the same reason as above, all the contents are incorporated into this patent application as references.

Claims (5)

  1. 가성소다와 수산화알루미늄을 소정의 비율(Al2O3/Na2CO3)이 되도록 가성소다 액에 수산화알루미늄을 용해시켜 용해액을 얻는 과정;A process of dissolving aluminum hydroxide in a caustic soda solution so that the caustic soda and aluminum hydroxide have a predetermined ratio (Al 2 O 3 /Na 2 CO 3 ) to obtain a solution;
    상기 용해액에 시드(Seed)를 첨가하고 교반하여 상기 가성소다와 수산화알루미늄 비율(Al2O3/Na2CO3)이 기 설정된 기준치가 될 때까지 수산화알루미늄을 석출하여 혼합액을 얻는 과정;Adding a seed to the solution and stirring to obtain a mixture solution by depositing aluminum hydroxide until the caustic soda and aluminum hydroxide ratio (Al 2 O 3 /Na 2 CO 3 ) reaches a preset reference value;
    상기 혼합액에 융제로 사용하는 용융염과 분산제를 첨가하여 혼합하는 융제 혼합 과정;A flux mixing process of adding and mixing a molten salt used as a flux and a dispersant to the mixed solution;
    상기 융제 혼합 과정 후, 상기 혼합액에 중화제를 첨가하여 중화액을 생성하는 중화 과정;After the flux mixing process, a neutralization process of adding a neutralizing agent to the mixed solution to generate a neutralizing solution;
    상기 중화액을 건조하여 수산화알루미늄 화합물을 생성하는 건조 과정;A drying process of drying the neutralized liquid to produce an aluminum hydroxide compound;
    상기 수산화알루미늄 화합물을 열처리한 후, 냉각하여 판상 알루미나 입자를 포함하는 분말을 생성하는 열처리 과정;A heat treatment process of heat-treating the aluminum hydroxide compound and then cooling to generate a powder including plate-shaped alumina particles;
    판상 알루미나 입자에 포함되어 있는 소정의 크기를 갖는 입자와 융제를 여과시켜 케이크를 생성하는 여과 과정;A filtration process of forming a cake by filtering particles having a predetermined size and a flux contained in the plate-shaped alumina particles;
    상기 케이크를 슬러리(Slurry)화 하고, 슬러리(Slurry)에서 응집된 판상 알루미나 입자 또는 판상 알루미나 쌍정을 적어도 하나 분해하는 분해 과정; 및A decomposition process of converting the cake into a slurry and decomposing at least one plate-shaped alumina particle or plate-shaped alumina twin aggregated in the slurry; And
    상기 슬러리(Slurry)를 건조하고, 건조된 슬러리(Slurry)에서 소정의 입도를 갖는 판상 알루미나 입자를 제거하는 입자 제거 과정Particle removal process of drying the slurry and removing plate-shaped alumina particles having a predetermined particle size from the dried slurry
    을 특징으로 하는 판상 알루미나 제조방법.Plate-shaped alumina manufacturing method, characterized in that.
  2. 제1항에 있어서,The method of claim 1,
    상기 용해액을 얻는 과정은,The process of obtaining the solution,
    200~300g/L의 가성소다와 95% 이상의 순도를 갖는 수산화알루미늄을 사용하는 것을 특징으로 하는 판상 알루미나 제조방법.Plate-shaped alumina manufacturing method, characterized in that using 200-300 g/L of caustic soda and aluminum hydroxide having a purity of 95% or more.
  3. 제1항에 있어서,The method of claim 1,
    상기 가성소다와 수산화알루미늄의 소정의 비율(Al2O3/Na2CO3)이 0.6~0.8인 것을 특징으로 하는 판상 알루미나 제조방법.Plate-shaped alumina manufacturing method, characterized in that a predetermined ratio of the caustic soda and aluminum hydroxide (Al 2 O 3 /Na 2 CO 3 ) is 0.6 to 0.8.
  4. 제1항에 있어서,The method of claim 1,
    상기 혼합액을 얻는 과정의 기 설정된 기준치가 0.3 미만인 것을 특징으로 하는 판상 알루미나 제조방법Plate-shaped alumina manufacturing method, characterized in that the preset reference value in the process of obtaining the mixed solution is less than 0.3
  5. 제1항에 있어서,The method of claim 1,
    상기 열처리 과정은,The heat treatment process,
    수산화알루미늄 화합물을 별도의 가스 첨가 없이 제1온도구간, 제2온도구간, 제3온도구간에서 각각 1~4시간 유지시키는 것을 특징으로 하는 판상 알루미나 제조방법.Plate-shaped alumina manufacturing method, characterized in that the aluminum hydroxide compound is maintained for 1 to 4 hours in the first temperature section, the second temperature section, and the third temperature section, respectively, without adding a separate gas.
PCT/KR2020/001996 2019-02-22 2020-02-13 Method for manufacturing plate-shaped alumina having excellent aspect ratio WO2020171471A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0021024 2019-02-22
KR1020190021024A KR102124124B1 (en) 2019-02-22 2019-02-22 Method for producing plate-like Alumina with excellent aspect ratio

Publications (1)

Publication Number Publication Date
WO2020171471A1 true WO2020171471A1 (en) 2020-08-27

Family

ID=71405786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001996 WO2020171471A1 (en) 2019-02-22 2020-02-13 Method for manufacturing plate-shaped alumina having excellent aspect ratio

Country Status (2)

Country Link
KR (1) KR102124124B1 (en)
WO (1) WO2020171471A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102599442B1 (en) * 2021-04-01 2023-11-07 포세라주식회사 Alpha alumina with excellent aspect ratio and free of heavy metals and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100619248B1 (en) * 2005-03-25 2006-09-01 한국화학연구원 FLAKY alpha;-ALUMINA CRYSTALS AND PREPARATION METHOD OF THEM
KR100679611B1 (en) * 2005-07-20 2007-02-08 주식회사 코델 Preparing Method for Platey ?- Alumina
KR101147047B1 (en) * 2010-04-16 2012-05-17 주식회사 에이치엠알(Hmr) Method for manufacturing high purity alumina
KR101440473B1 (en) * 2012-10-12 2014-09-17 주식회사 씨아이에스 Method for preparing plate-shaped alumina

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100619248B1 (en) * 2005-03-25 2006-09-01 한국화학연구원 FLAKY alpha;-ALUMINA CRYSTALS AND PREPARATION METHOD OF THEM
KR100679611B1 (en) * 2005-07-20 2007-02-08 주식회사 코델 Preparing Method for Platey ?- Alumina
KR101147047B1 (en) * 2010-04-16 2012-05-17 주식회사 에이치엠알(Hmr) Method for manufacturing high purity alumina
KR101440473B1 (en) * 2012-10-12 2014-09-17 주식회사 씨아이에스 Method for preparing plate-shaped alumina

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, SUNG OH ET AL.: "Precipitation of fine aluminium hydroxide from Bayer liquors", HYDROMETALLURGY, vol. 98, 2009, pages 156 - 161, XP026172173, DOI: 10.1016/j.hydromet.2009.04.014 *

Also Published As

Publication number Publication date
KR102124124B1 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
JP5415215B2 (en) Magnesium oxide powder having excellent dispersibility and method for producing the same
WO2022154227A1 (en) Plate type α-alumina and manufacturing method therefor
US20180155206A1 (en) Method of producing high-purity nano alumina
JPS63274663A (en) Composition for zirconia ceramic material
HU216730B (en) Process for producing alfa-alumina
CZ188492A3 (en) Process for producing a sintered material based on alpha-aluminium oxide
US5989510A (en) Method of producing granular amorphous silica
WO2014025125A1 (en) Method for preparing lithium metal phosphor oxide
WO2020171471A1 (en) Method for manufacturing plate-shaped alumina having excellent aspect ratio
US20180162739A1 (en) Method of manufacturing high-density beads of high-purity alumina
WO2015142035A1 (en) Plate-like aluminum oxide and preparation method therefor
EP1064225A1 (en) Process for preparing and modifying synthetic calcium carbonate
KR100803048B1 (en) Manufacture method of flake aluminum oxide
CN114715925A (en) Flaky alpha alumina and preparation method thereof
KR101173728B1 (en) Cubic magnesium oxide powder and method for producing the same
KR100679611B1 (en) Preparing Method for Platey ?- Alumina
WO2020040353A1 (en) Method for producing tungsten and titanium composite carbide powder
JP3132077B2 (en) Aluminum hydroxide having low content of aggregated particles and narrow particle distribution and method for producing the same
GB2037267A (en) Process for the manufacture of zirconium oxide from technical grade calcium zirconate
US3653937A (en) Alumina trihydrate pigment and process for the preparation thereof
RU2782933C1 (en) Method for producing calcium borate powders
JPS58213633A (en) Production of aluminum oxide
JPH04231310A (en) Manufacture of aluminum nitride
WO2023075484A1 (en) NANO-SIZED POLYHEDRAL α-ALUMINA PARTICLE AND METHOD FOR PRODUCING SAME
WO2014157832A1 (en) Method for manufacturing plate α-alumina pearlescent pigments and nano-metal coating pearlescent pigments with large aspect ratio

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759701

Country of ref document: EP

Kind code of ref document: A1