WO2020171467A1 - Deposition apparatus comprising metal block-coupled heater assembly for supplying precursor source - Google Patents

Deposition apparatus comprising metal block-coupled heater assembly for supplying precursor source Download PDF

Info

Publication number
WO2020171467A1
WO2020171467A1 PCT/KR2020/001956 KR2020001956W WO2020171467A1 WO 2020171467 A1 WO2020171467 A1 WO 2020171467A1 KR 2020001956 W KR2020001956 W KR 2020001956W WO 2020171467 A1 WO2020171467 A1 WO 2020171467A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal block
gas line
deposition apparatus
precursor
precursor source
Prior art date
Application number
PCT/KR2020/001956
Other languages
French (fr)
Korean (ko)
Inventor
심준형
최형종
한권덕
이재혁
김민식
윤성원
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2020171467A1 publication Critical patent/WO2020171467A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus

Definitions

  • the present invention relates to a deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source.
  • Atomic layer deposition is a method of depositing a thin film by supplying a precursor source made of a metal-organic compound to a substrate.
  • the precursor source Once the precursor source is adsorbed on the substrate, it has a self-limiting reaction characteristic that hinders the deposition of additional precursor sources until the oxidizing agent is supplied, so the thickness of the thin film can be controlled at the atomic layer level, so various fields such as semiconductor, energy and catalyst It is being used in
  • a typical ALD apparatus is composed of a reaction chamber in which a precursor source reacts, a gas line through which the precursor source moves to the reaction chamber, and a canister storing the precursor source.
  • the precursor source when the precursor source is transferred from the inside of the canister to the reaction chamber, if the temperature of all parts of the canister and the gas line is not maintained uniformly, a phenomenon in which the temperature-sensitive precursor source is aggregated occurs, and in general, the gas line and canister In order to prevent agglomeration of the precursor source, a band and jacket type heating system is used.
  • the gas lines and canisters that make up the ALD device contain complex-shaped vacuum metal gasket double-sided connection fittings (VCR fitting), bent pipes, manual and automatic valves, etc., so in the case of conventional band and jacket type heating systems Due to this non-uniformity, a temperature gradient is generated in the gas line and the canister, and thus the vaporized precursor source is again agglomerated into liquid and solid phases.
  • VCR fitting complex-shaped vacuum metal gasket double-sided connection fittings
  • bent pipes bent pipes
  • manual and automatic valves etc. Due to this non-uniformity, a temperature gradient is generated in the gas line and the canister, and thus the vaporized precursor source is again agglomerated into liquid and solid phases.
  • Embodiments of the present invention have been proposed to solve the above problems, and a deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source capable of simplifying the complicated shape of the conventional gas line unit and the precursor storage unit Want to provide.
  • a deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source that can uniformly transfer heat to the gas line unit and the precursor storage unit.
  • a deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source, which is a problem of a conventional heating system.
  • a deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source includes: a reaction chamber supporting a substrate and providing a space required for a deposition process; A precursor storage unit for storing a precursor source; A gas line part supplying a vaporized precursor source to the reaction chamber; And a heater assembly unit provided with a metal block to be coupled by receiving the precursor storage unit and the gas line unit therein, and a heating jacket for heating the metal block.
  • the gas line part of the deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source includes a gas line providing a flow path through which the vaporized precursor source moves; A pneumatic valve for controlling the vaporized precursor source to be supplied to the reaction chamber; A manual valve for controlling the vaporized precursor source to flow from the precursor storage unit; And a plurality of connecting portions connecting the gas line, the pneumatic valve, the manual valve, and the precursor storage unit.
  • the metal block of the deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source is divided symmetrically into a first metal block and a second metal block, and a fastening means is provided. It is combined to have a cylindrical shape through.
  • the metal block of the deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source according to an embodiment of the present invention has the gas line, the pneumatic valve, the manual valve, the connection part, and the precursor storage. It may further include a recessed groove so as to be detachable by engaging the part.
  • the metal block of the deposition apparatus including the metal block-coupled heater assembly for supplying a precursor source according to an embodiment of the present invention further includes a heat conductive layer disposed in the recessed groove.
  • the metal block of the deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source in an embodiment of the present invention may contain at least one or more from the group consisting of silver, copper, gold, aluminum, and magnesium. I can.
  • the heating jacket of the deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source according to an embodiment of the present invention includes a heating wire and a heat insulating material.
  • a deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source according to embodiments of the present invention can simplify the complicated shape of the conventional gas line unit and the precursor storage unit.
  • the deposition apparatus including the metal block-coupled heater assembly for supplying the precursor source according to the embodiments of the present invention may uniformly transfer heat to the gas line unit and the precursor storage unit. .
  • the deposition apparatus including the metal block-coupled heater assembly for supplying the precursor source according to the embodiments of the present invention can minimize the aggregation of the precursor source, which is a problem of the conventional heating system.
  • 1 is a diagram showing the structure of a general ALD device.
  • FIG. 2 is a diagram showing a state in which precursor sources are aggregated in an ALD apparatus to which a conventional band-type heating system is applied.
  • FIG 3 and 4 are views showing a deposition apparatus to which a metal block-coupled heater assembly is applied according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing a temperature test result of an ALD device to which a conventional band type heating system is applied.
  • FIG. 6 is a view showing a temperature test result of a deposition apparatus to which a metal block-coupled heater assembly according to an embodiment of the present invention is applied.
  • Embodiments of the present invention relate to a deposition apparatus, and in the present specification, the deposition apparatus has been exemplarily described for an ALD apparatus, but the deposition apparatus is not limited thereto, and any apparatus for mounting a predetermined thin film on a wafer or glass It is not limited thereto.
  • the deposition apparatus is interpreted as including a chemical vapor deposition (CVD) apparatus, a sputtering apparatus, a thermal evaporation deposition apparatus, and an E-beam evaporation apparatus.
  • FIG. 1 is a diagram showing the structure of a general ALD device
  • FIG. 2 is a diagram showing a state in which precursor sources are aggregated in an ALD device to which a conventional band-type heating system is applied.
  • FIG. 2(a) is a view showing a manual valve of an ALD device to which a conventional band-type heating system is applied
  • FIG. 2(b) is a view showing a canister and a gas line of an ALD device to which a conventional band-type heating system is applied
  • 2(c) is a view showing a pneumatic valve of an ALD device to which a conventional band-type heating system is applied
  • FIG. 2(d) is a view showing a valve and a gas line of an ALD device to which a conventional band-type heating system is applied. to be.
  • the ALD apparatus to which the conventional band type heating system is applied performs an atomic layer deposition process on a substrate.
  • a gas supply module including a reaction chamber, a pneumatic valve, a manual valve, a canister and a gas line, and a gas supply module in which the temperature of the gas supply module is maintained higher than the vaporization temperature of the precursor source so that the vaporized precursor source is supplied into the reaction chamber. It includes a band-type heating system that prevents phase change in the middle.
  • the band-type heating system has a problem in that it is difficult to uniformly transfer heat due to the complicated shape of the gas supply module, and a temperature gradient occurs throughout the gas supply module.
  • the vaporized precursor source is aggregated in a partial space between a pneumatic valve, a manual valve, a canister and a gas line, and a partial space between a valve and a gas line in which heat supply is insufficient.
  • FIG 3 and 4 are views showing a deposition apparatus to which a metal block-coupled heater assembly is applied according to an embodiment of the present invention.
  • FIG. 4(a) is a diagram schematically illustrating a deposition apparatus to which a metal block-coupled heater assembly according to an embodiment of the present invention is applied
  • FIG. 4(b) is a metal according to an embodiment of the present invention.
  • FIG. 4(c) is a heating jacket of the deposition apparatus to which the metal block-coupled heater assembly according to an embodiment of the present invention is applied. It is a diagram showing the state.
  • the deposition apparatus 1 to which the metal block-coupled heater assembly according to an embodiment of the present invention is applied includes a reaction chamber 100, a gas line part 200, and a precursor storage part ( 300) and a heater assembly unit 400.
  • the reaction chamber 100 has a cylindrical tube shape, and a predetermined space for accommodating a substrate and stacking a thin film on the substrate is provided therein.
  • a susceptor for supporting the substrate is disposed inside the reaction chamber 100, and the susceptor (not shown) may include a heater for heating the substrate and raising it to a preset reaction temperature. have.
  • an atomic layer thin film may be deposited on the substrate of the precursor source vaporized in the reaction chamber 100.
  • the gas line part 200 provides a precursor source vaporized to form an atomic layer thin film on the substrate to the reaction chamber 100, and the gas line 210, the pneumatic valve 220, the manual valve 230, and the connection part 240 , 250, 260).
  • the gas line part 200 may be formed to supply the vaporized precursor source to the reaction chamber 100 in a pulsed manner, and may be provided with a plurality of gas line parts to supply different vaporized precursor sources, respectively.
  • gas line part 200 has one end connected to the precursor storage part 300 and the other end connected to the reaction chamber 100.
  • the gas line 210 is formed in the shape of a cylindrical pipe in which inlets and outlets are formed at both ends, and a flow path may be provided so that the vaporized precursor source is supplied to the reaction chamber 100.
  • gas line 210 is between the reaction chamber 100 and the pneumatic valve 220, between the pneumatic valve 220 and the manual valve 230, and between the manual valve 230 and the precursor storage unit 300 Is placed.
  • the pneumatic valve 220 is mounted on the upper end of the gas line part 200 and controls to open and close the flow path of the gas line 210 using pneumatic pressure. When the pneumatic valve 220 is opened and operated in a closed state, it vaporizes.
  • the precursor source may be supplied to the reaction chamber 100 through the gas line 210.
  • the manual valve 230 is mounted at the lower end of the gas line part 200 and controls the vaporized precursor source to flow from the precursor storage part 300.
  • the manual valve 240 is opened and operated in a closed state, the precursor The vaporized precursor source stored in the storage unit 300 flows into the gas line unit 200.
  • connection parts 240, 250, 260 connect the gas line 210, the pneumatic valve 220, and the manual valve 230 in series so that the gas line part 200 is integrally formed, and the gas line part 200 And the precursor storage unit 300 may be connected to each other.
  • connection parts 240, 250, 260 for example, a chamber connecting the reaction chamber 100 and the pneumatic valve 220-pneumatic valve metal gasket Double-sided connection fitting, pneumatic valve connecting the pneumatic valve 220 and the manual valve 230-Manual valve metal gasket Double-sided connection fitting, manual valve connecting the manual valve 230 and the precursor storage unit 300-Precursor storage unit It consists of a metal gasket double-sided connection fitting
  • the precursor storage unit 300 is connected to the reaction chamber 100 through the gas line unit 200 and stores a precursor source used in the atomic layer deposition process in a solid phase and a liquid phase. Metal-organic compounds may be selected as the precursor source.
  • the precursor source is preferably stored as a liquid in the precursor storage unit 300, and when the manual valve 240 is opened, it is vaporized in a gaseous state due to a rapid pressure change and high temperature.
  • the heater assembly unit 400 includes a metal block 410 and a heating jacket 420 disposed outside the metal block.
  • the metal block 410 is a constituent means for receiving the gas line part 200 and the precursor storage part 300, blocking them from the outside and heating them uniformly.
  • the metal block 410 is divided symmetrically into a first metal block 411 and a second metal block 412 to be coupled to have a cylindrical shape through a fastening means. I can.
  • first metal block 411 and the second metal block 412 of the metal block 410 are fastened through a bolt fastening method. That is, a nut groove is formed in the first metal block 411, and a bolt part is provided in the second metal block 412, so that the first metal block 411 and the second metal block 412 are coupled. I can.
  • the metal block 410 is freely detachable through fastening means provided on both sides.
  • the metal block 410 is provided with an insertion space inside, and on both sides of the gas line 210, the pneumatic valve 220, the manual valve 230, the connection parts 240, 250, 260, and the precursor storage unit 300 A recessed groove into which one end of) is inserted is formed.
  • the recessed groove of the metal block 410 is fitted with the gas line 210, the pneumatic valve 220, the manual valve 230, the connection parts 240, 250, 260, and the precursor storage part 300. It can be formed to be combined.
  • the recessed groove in the metal block 410 further includes a heat conductive layer (not shown), so that the gas line 210, the pneumatic valve 220, the manual valve 230, the connection part 240, 250, 260 ) And the separation phenomenon that occurs when combined with the precursor storage unit 300 may be compensated.
  • the heat conductive layer (not shown) is disposed on the inner circumferential surface of the metal block 410, and is preferably formed by applying thermal grease having high thermal conductivity.
  • the metal block 410 is preferably formed of a metal material having high thermal conductivity, and may be, for example, a metal and a metal alloy including at least one or more from the group consisting of silver, copper, gold, aluminum, and magnesium. have.
  • a heating jacket 420 is disposed outside the metal block 410 and heats the metal block 410.
  • the heated metal block 410 can uniformly transfer heat to the gas line unit 200 and the precursor storage unit 300, and the temperature of the gas line unit 200 and the precursor storage unit 300 is a precursor source. It can be maintained higher than the vaporization temperature of.
  • the heating jacket 420 includes a heating wire 421 and an insulating material 422, and the insulating material 422 may be composed of any one of silica fibers, fiberglass fibers, and composite fibers.
  • the heat insulating material 422 limits heat dissipation by blocking the metal block 410 from the outside, and a heating wire 421 may be provided therein.
  • the heating wire 421 heats the heat insulating material 422 and the metal block 410 to maintain the gas line part 200 and the precursor storage part 300 higher than the vaporization temperature of the precursor source.
  • the deposition apparatus 1 to which the metal block-coupled heater assembly according to an embodiment of the present invention is applied has a gap between the heating wires 421, a right angle structure of the precursor storage unit 300, Incomplete thermal contact caused by the complicated structure of the pneumatic valve 220 and the manual valve 230 can be prevented.
  • the gas line unit 200 and the precursor storage unit 300 since heat generated from the heating wire 421 can be uniformly transferred to the gas line unit 200 and the precursor storage unit 300 through the metal block 410, the gas line unit 200 and the precursor are stored.
  • the unit 300 may maintain a preset temperature.
  • FIG. 5 is a view showing a temperature test result of an ALD device to which a conventional band-type heating system is applied
  • FIG. 6 is a view showing a temperature test result of a deposition device to which a metal block-coupled heater assembly is applied according to an embodiment of the present invention. to be.
  • the heating temperature is set to 80 degrees Celsius, 100 degrees Celsius, and 120 degrees Celsius, and the lower end of the precursor storage unit 400 is positioned at 1, and the upper end of the precursor storage unit 400 is positioned at 2,
  • the temperature difference from the lower end of the precursor storage unit 400 to the pneumatic valve 220 is 10 to 20 degrees Celsius.
  • the temperature gradient between the gas line part 200 and the precursor storage part 300 occurs severely.
  • the heating temperature is set to 80 degrees Celsius, 120 degrees Celsius, and 150 degrees Celsius, and the lower end of the precursor storage unit 400 is positioned at No. 1, and the upper end of the precursor storing unit 400 is positioned at No. 2,
  • the temperature from the lower end of the precursor storage unit 400 to the pneumatic valve 220 has a uniform value. Confirmed.

Abstract

A deposition apparatus comprising a metal block-coupled heater assembly for supplying a precursor source, of the present invention, comprises: a reaction chamber for supporting a substrate and providing a space required for a deposition process; a precursor storage part for storing a precursor source; a gas line part for supplying a vaporized precursor source to the reaction chamber; and a heater assembly part comprising a metal block for accommodating the precursor storage part and the gas line part therein so as to be coupled thereto, and a heating jacket for heating the metal block.

Description

전구체 소스 공급을 위한 금속블록 결합형 히터 어셈블리를 포함하는 증착 장치Deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source
본 발명은 전구체 소스 공급을 위한 금속블록 결합형 히터 어셈블리를 포함하는 증착 장치에 관한 것이다.The present invention relates to a deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source.
화학기상증착법의 일종인 원자층 증착법(Atomic layer deposition, 이하 ALD)은 금속-유기화합물로 이루어진 전구체 소스를 기판에 공급하여 박막을 증착하는 방법이다. Atomic layer deposition (ALD), a type of chemical vapor deposition method, is a method of depositing a thin film by supplying a precursor source made of a metal-organic compound to a substrate.
전구체 소스는 한번 기판에 흡착되고 나면 산화제가 공급되기 전까지 추가적인 전구체 소스의 증착을 방해하는 자기제한적 반응특성을 가지고 있어 박막의 두께를 원자층 수준으로 제어할 수 있기 때문에 반도체, 에너지 및 촉매 등 다양한 분야에서 활용되고 있다.Once the precursor source is adsorbed on the substrate, it has a self-limiting reaction characteristic that hinders the deposition of additional precursor sources until the oxidizing agent is supplied, so the thickness of the thin film can be controlled at the atomic layer level, so various fields such as semiconductor, energy and catalyst It is being used in
일반적인 ALD 장치는 전구체 소스가 반응하는 반응챔버, 전구체 소스가 반응챔버로 이동하는 가스라인 및 전구체 소스를 보관하는 캐니스터로 구성되어 있다.A typical ALD apparatus is composed of a reaction chamber in which a precursor source reacts, a gas line through which the precursor source moves to the reaction chamber, and a canister storing the precursor source.
또한, 상기 전구체 소스를 캐니스터 내부에서 반응챔버로 이송시킬 때 캐니스터 및 가스라인의 모든 부분의 온도가 균일하게 유지되지 않으면 온도에 민감한 전구체 소스가 응집되는 현상이 발생하게 되어, 일반적으로 가스라인 및 캐니스터에 전구체 소스의 응집을 방지하기 위한 밴드 및 자켓 타입의 히팅시스템을 사용하고 있다.In addition, when the precursor source is transferred from the inside of the canister to the reaction chamber, if the temperature of all parts of the canister and the gas line is not maintained uniformly, a phenomenon in which the temperature-sensitive precursor source is aggregated occurs, and in general, the gas line and canister In order to prevent agglomeration of the precursor source, a band and jacket type heating system is used.
그런데, 상기와 같은 밴드 및 자켓 타입의 히팅시스템은 다음과 같은 문제가 있다.However, the band and jacket type heating system as described above has the following problems.
ALD 장치를 구성하는 가스라인 및 캐니스터는 복잡한 형상의 진공용 금속가스켓 양면 접속 피팅(VCR Fitting), 굴곡관, 수동 및 자동밸브 등을 포함하고 있어 종래의 밴드 및 자켓 타입의 히팅시스템의 경우 접촉면적이 불균일하여 가스라인 및 캐니스터에 온도구배를 발생시키고, 이에 따라 기화된 전구체 소스가 다시 액체 및 고체상으로 응집하는 문제점이 있다.The gas lines and canisters that make up the ALD device contain complex-shaped vacuum metal gasket double-sided connection fittings (VCR fitting), bent pipes, manual and automatic valves, etc., so in the case of conventional band and jacket type heating systems Due to this non-uniformity, a temperature gradient is generated in the gas line and the canister, and thus the vaporized precursor source is again agglomerated into liquid and solid phases.
본 발명의 실시예들은 상기와 같은 문제를 해결하기 위해 제안된 것으로서, 종래의 가스라인부 및 전구체 저장부의 복잡한 형상을 단순화할 수 있는 전구체 소스 공급을 위한 금속블록 결합형 히터 어셈블리를 포함하는 증착 장치를 제공하고자 한다.Embodiments of the present invention have been proposed to solve the above problems, and a deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source capable of simplifying the complicated shape of the conventional gas line unit and the precursor storage unit Want to provide.
또한, 가스라인부 및 전구체 저장부에 균일하게 열을 전달할 수 있는 전구체 소스 공급을 위한 금속블록 결합형 히터 어셈블리를 포함하는 증착 장치를 제공하고자 한다.In addition, to provide a deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source that can uniformly transfer heat to the gas line unit and the precursor storage unit.
또한, 종래 히팅시스템의 문제점인 전구체 소스 공급을 위한 금속블록 결합형 히터 어셈블리를 포함하는 증착 장치를 제공하고자 한다.In addition, it is intended to provide a deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source, which is a problem of a conventional heating system.
본 발명의 일 실시예에 전구체 소스 공급을 위한 금속블록 결합형 히터 어셈블리를 포함하는 증착 장치는 기판을 지지하고 증착공정에 필요한 공간을 제공하는 반응챔버; 전구체 소스를 저장하는 전구체 저장부; 상기 반응챔버에 기화된 전구체 소스를 공급하는 가스 라인부; 및 상기 전구체 저장부 및 상기 가스 라인부를 내측에 수용하여 결합되는 금속블록 및 상기 금속블록을 가열하는 히팅 재킷이 구비되는 히터 어셈블리부를 포함할 수 있다.In an embodiment of the present invention, a deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source includes: a reaction chamber supporting a substrate and providing a space required for a deposition process; A precursor storage unit for storing a precursor source; A gas line part supplying a vaporized precursor source to the reaction chamber; And a heater assembly unit provided with a metal block to be coupled by receiving the precursor storage unit and the gas line unit therein, and a heating jacket for heating the metal block.
또한, 본 발명의 일 실시예에 전구체 소스 공급을 위한 금속블록 결합형 히터 어셈블리를 포함하는 증착 장치의 상기 가스 라인부는 상기 기화된 전구체 소스가 이동하는 유로를 제공하는 가스라인; 상기 기화된 전구체 소스가 상기 반응챔버로 공급되도록 제어하는 공압밸브; 상기 전구체 저장부로부터 상기 기화된 전구체 소스를 유입하도록 제어하는 매뉴얼밸브; 및 상기 가스라인, 상기 공압밸브, 상기 매뉴얼밸브 및 상기 전구체 저장부를 연결시키는 다수의 연결부를 포함한다.In addition, in an embodiment of the present invention, the gas line part of the deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source includes a gas line providing a flow path through which the vaporized precursor source moves; A pneumatic valve for controlling the vaporized precursor source to be supplied to the reaction chamber; A manual valve for controlling the vaporized precursor source to flow from the precursor storage unit; And a plurality of connecting portions connecting the gas line, the pneumatic valve, the manual valve, and the precursor storage unit.
또한, 본 발명의 일 실시예에 전구체 소스 공급을 위한 금속블록 결합형 히터 어셈블리를 포함하는 증착 장치의 상기 금속블록은 제1 금속블록 및 제2 금속블록으로 서로 대칭되게 이분할되고, 체결수단을 통해 원기둥 형상을 가지도록 결합된다.In addition, in an embodiment of the present invention, the metal block of the deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source is divided symmetrically into a first metal block and a second metal block, and a fastening means is provided. It is combined to have a cylindrical shape through.
또한, 본 발명의 일 실시예에 전구체 소스 공급을 위한 금속블록 결합형 히터 어셈블리를 포함하는 증착 장치의 상기 금속블록은 내측에 상기 가스라인, 상기 공압밸브, 상기 매뉴얼밸브, 상기 연결부 및 상기 전구체 저장부와 맞물려 탈부착 가능하도록 만입된 홈을 더 포함할 수 있다.In addition, the metal block of the deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source according to an embodiment of the present invention has the gas line, the pneumatic valve, the manual valve, the connection part, and the precursor storage. It may further include a recessed groove so as to be detachable by engaging the part.
또한, 본 발명의 일 실시예에 전구체 소스 공급을 위한 금속블록 결합형 히터 어셈블리를 포함하는 증착 장치의 상기 금속블록은 상기 만입된 홈에 배치되는 열전도층을 더 포함한다.In addition, the metal block of the deposition apparatus including the metal block-coupled heater assembly for supplying a precursor source according to an embodiment of the present invention further includes a heat conductive layer disposed in the recessed groove.
또한, 본 발명의 일 실시예에 전구체 소스 공급을 위한 금속블록 결합형 히터 어셈블리를 포함하는 증착 장치의 상기 금속블록은 은, 구리, 금, 알루미늄 및 마그네슘으로 이루어진 군에서 적어도 어느 하나 이상을 포함할 수 있다.In addition, the metal block of the deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source in an embodiment of the present invention may contain at least one or more from the group consisting of silver, copper, gold, aluminum, and magnesium. I can.
또한, 본 발명의 일 실시예에 전구체 소스 공급을 위한 금속블록 결합형 히터 어셈블리를 포함하는 증착 장치의 상기 히팅 재킷은 열선 및 단열재를 포함한다.In addition, the heating jacket of the deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source according to an embodiment of the present invention includes a heating wire and a heat insulating material.
본 발명의 실시예들에 따른 전구체 소스 공급을 위한 금속블록 결합형 히터 어셈블리를 포함하는 증착 장치는 종래의 가스라인부 및 전구체 저장부의 복잡한 형상을 단순화할 수 있다.A deposition apparatus including a metal block-coupled heater assembly for supplying a precursor source according to embodiments of the present invention can simplify the complicated shape of the conventional gas line unit and the precursor storage unit.
또한, 본 발명의 실시예들에 따른 본 발명의 실시예들에 따른 전구체 소스 공급을 위한 금속블록 결합형 히터 어셈블리를 포함하는 증착 장치는 가스라인부 및 전구체 저장부에 균일하게 열을 전달할 수 있다.In addition, the deposition apparatus including the metal block-coupled heater assembly for supplying the precursor source according to the embodiments of the present invention may uniformly transfer heat to the gas line unit and the precursor storage unit. .
또한, 본 발명의 실시예들에 따른 전구체 소스 공급을 위한 금속블록 결합형 히터 어셈블리를 포함하는 증착 장치는 종래 히팅시스템의 문제점인 전구체 소스의 응집현상을 최소화할 수 있다.In addition, the deposition apparatus including the metal block-coupled heater assembly for supplying the precursor source according to the embodiments of the present invention can minimize the aggregation of the precursor source, which is a problem of the conventional heating system.
도 1은 일반적인 ALD 장치의 구조를 도시한 도면이다.1 is a diagram showing the structure of a general ALD device.
도 2는 종래의 밴드타입 히팅 시스템이 적용된 ALD 장치에서 전구체 소스가 응집된 모습을 도시한 도면이다. 2 is a diagram showing a state in which precursor sources are aggregated in an ALD apparatus to which a conventional band-type heating system is applied.
도 3 및 도 4는 본 발명의 일실시예에 따른 금속블록 결합형 히터 어셈블리를 적용한 증착 장치를 도시한 도면이다.3 and 4 are views showing a deposition apparatus to which a metal block-coupled heater assembly is applied according to an embodiment of the present invention.
도 5는 종래의 밴드타입 히팅 시스템을 적용한 ALD 장치의 온도 테스트 결과를 보여주는 도면이다.5 is a diagram showing a temperature test result of an ALD device to which a conventional band type heating system is applied.
도 6은 본 발명의 일실시예에 따른 금속블록 결합형 히터 어셈블리를 적용한 증착 장치의 온도 테스트 결과를 보여주는 도면이다.6 is a view showing a temperature test result of a deposition apparatus to which a metal block-coupled heater assembly according to an embodiment of the present invention is applied.
이하, 본 발명의 실시 예를 첨부된 도면들을 참조하여 더욱 상세하게 설명한다. 본 발명의 실시 예는 여러 가지 형태로 변형할 수 있으며, 본 발명의 범위가 아래의 실시 예들로 한정되는 것으로 해석되어서는 안 된다. 본 실시 예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해 제공되는 것이다. 따라서 도면에서의 요소의 형상은 보다 명확한 설명을 강조하기 위해 과장되었다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. The embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the following embodiments. This embodiment is provided to more completely describe the present invention to those with average knowledge in the art. Therefore, the shape of the element in the drawings has been exaggerated to emphasize a clearer description.
본 발명이 해결하고자 하는 과제의 해결 방안을 명확하게 하기 위한 발명의 구성을 본 발명의 바람직한 실시 예에 근거하여 첨부 도면을 참조하여 상세히 설명하되, 도면의 구성요소들에 참조번호를 부여함에 있어서 동일 구성요소에 대해서는 비록 다른 도면상에 있더라도 동일 참조번호를 부여하였으며 당해 도면에 대한 설명 시 필요한 경우 다른 도면의 구성요소를 인용할 수 있음을 미리 밝혀둔다.The configuration of the invention for clarifying the solution to the problem to be solved by the present invention will be described in detail with reference to the accompanying drawings based on a preferred embodiment of the present invention, but the same in assigning reference numerals to the components of the drawings For the components, even if they are on different drawings, the same reference numerals are given, and it should be noted in advance that components of other drawings may be referred to when necessary when describing the drawings.
본 발명의 실시예는 증착 장치에 관한 것으로, 본 명세서에서 증착 장치는 예시적으로 ALD 장치에 대해 설명을 하였으나, 상기 증착 장치는 이에 한정되지 않고 웨이퍼나 글래스 상에 소정의 박막을 장착시키는 장치이면 이에 제한되지 않는다. 예를들어, 상기 증착 장치는 CVD(Chemical Vapor Deposition) 장치 스퍼터링(sputtering) 장치, 열 진공 증착(Thermal evaporation deposition) 장치 및 전자 빔(E-beam evaporation) 장치 등을 포함하는 것으로 해석된다.Embodiments of the present invention relate to a deposition apparatus, and in the present specification, the deposition apparatus has been exemplarily described for an ALD apparatus, but the deposition apparatus is not limited thereto, and any apparatus for mounting a predetermined thin film on a wafer or glass It is not limited thereto. For example, the deposition apparatus is interpreted as including a chemical vapor deposition (CVD) apparatus, a sputtering apparatus, a thermal evaporation deposition apparatus, and an E-beam evaporation apparatus.
도 1은 일반적인 ALD 장치의 구조를 도시한 도면이고, 도 2는 종래의 밴드타입 히팅 시스템이 적용된 ALD 장치에서 전구체 소스가 응집된 모습을 도시한 도면이다.1 is a diagram showing the structure of a general ALD device, and FIG. 2 is a diagram showing a state in which precursor sources are aggregated in an ALD device to which a conventional band-type heating system is applied.
더하여, 도 2(a)는 종래의 밴드타입 히팅 시스템이 적용된 ALD 장치의 매뉴얼밸브를 나타낸 도면이고, 도 2(b)는 종래의 밴드타입 히팅 시스템이 적용된 ALD 장치의 캐니스터 및 가스라인을 나타낸 도면이고, 도 2(c)는 종래의 밴드타입 히팅 시스템이 적용된 ALD 장치의 공압밸브를 나타낸 도면이고, 도 2(d)는 종래의 밴드타입 히팅 시스템이 적용된 ALD 장치의 밸브 및 가스라인을 나타낸 도면이다.In addition, FIG. 2(a) is a view showing a manual valve of an ALD device to which a conventional band-type heating system is applied, and FIG. 2(b) is a view showing a canister and a gas line of an ALD device to which a conventional band-type heating system is applied. 2(c) is a view showing a pneumatic valve of an ALD device to which a conventional band-type heating system is applied, and FIG. 2(d) is a view showing a valve and a gas line of an ALD device to which a conventional band-type heating system is applied. to be.
도 1, 도 2(a), 도 2(b), 도 2(c) 및 도 2(d)를 참조하면, 종래의 밴드타입 히팅 시스템을 적용한 ALD 장치는 기판 상에 원자층 증착 공정을 수행하기 위한 반응챔버와, 공압밸브, 매뉴얼밸브, 캐니스터 및 가스라인을 포함하는 가스 공급 모듈과, 가스 공급 모듈의 온도를 전구체 소스의 기화 온도보다 높게 유지하여 기화된 전구체 소스가 반응챔버 내부에 공급되는 도중 상전이 되는 것을 방지하는 밴드타입 히팅시스템을 포함하여 구성된다.1, 2(a), 2(b), 2(c), and 2(d), the ALD apparatus to which the conventional band type heating system is applied performs an atomic layer deposition process on a substrate. A gas supply module including a reaction chamber, a pneumatic valve, a manual valve, a canister and a gas line, and a gas supply module in which the temperature of the gas supply module is maintained higher than the vaporization temperature of the precursor source so that the vaporized precursor source is supplied into the reaction chamber. It includes a band-type heating system that prevents phase change in the middle.
그러나, 밴드타입 히팅시스템을 적용한 ALD 장치에서 밴드타입 히팅시스템은 가스 공급 모듈의 복잡한 형상으로 인하여 균일하게 열을 전달하기 어려운 문제점이 있어, 가스 공급 모듈의 전반에 걸쳐 온도구배가 발생하게 된다.However, in the ALD apparatus to which the band-type heating system is applied, the band-type heating system has a problem in that it is difficult to uniformly transfer heat due to the complicated shape of the gas supply module, and a temperature gradient occurs throughout the gas supply module.
이에 따라, 열공급이 충분하지 않은 공압밸브, 매뉴얼밸브, 캐니스터와 가스라인 사이의 일부공간 및 밸브와 가스라인 사이의 일부공간에 기화된 전구체 소스가 응집하는 문제가 발생한다.Accordingly, there is a problem that the vaporized precursor source is aggregated in a partial space between a pneumatic valve, a manual valve, a canister and a gas line, and a partial space between a valve and a gas line in which heat supply is insufficient.
도 3 및 도 4는 본 발명의 일실시예에 따른 금속블록 결합형 히터 어셈블리를 적용한 증착 장치를 도시한 도면이다.3 and 4 are views showing a deposition apparatus to which a metal block-coupled heater assembly is applied according to an embodiment of the present invention.
더하여, 도 4(a)는 본 발명의 일실시예에 따른 금속블록 결합형 히터 어셈블리를 적용한 증착 장치를 개략적으로 설명하기 위한 도면이고, 도 4(b)는 본 발명의 일실시예에 따른 금속블록 결합형 히터 어셈블리를 적용한 증착 장치의 금속블록이 결합된 상태를 나타낸 도면이고, 도 4(c)는 본 발명의 일실시예에 따른 금속블록 결합형 히터 어셈블리를 적용한 증착 장치의 히팅 재킷이 결합된 상태를 나타낸 도면이다.In addition, FIG. 4(a) is a diagram schematically illustrating a deposition apparatus to which a metal block-coupled heater assembly according to an embodiment of the present invention is applied, and FIG. 4(b) is a metal according to an embodiment of the present invention. A diagram showing a state in which the metal blocks of the deposition apparatus to which the block-coupled heater assembly is applied, and FIG. 4(c) is a heating jacket of the deposition apparatus to which the metal block-coupled heater assembly according to an embodiment of the present invention is applied. It is a diagram showing the state.
도 3 및 도 4에 도시된 바와 같이, 본 발명의 일실시예에 따른 금속블록 결합형 히터 어셈블리를 적용한 증착 장치(1)는 반응챔버(100), 가스 라인부(200), 전구체 저장부(300) 및 히터 어셈블리부(400)을 포함하여 구성된다.3 and 4, the deposition apparatus 1 to which the metal block-coupled heater assembly according to an embodiment of the present invention is applied includes a reaction chamber 100, a gas line part 200, and a precursor storage part ( 300) and a heater assembly unit 400.
도 4(a)를 참조하면, 반응챔버(100)는 원통관 형상으로 이루어지며, 내부에는 기판을 수용하고 기판 상에 박막을 적층하기 위한 소정의 공간이 마련된다. Referring to FIG. 4A, the reaction chamber 100 has a cylindrical tube shape, and a predetermined space for accommodating a substrate and stacking a thin film on the substrate is provided therein.
또한, 반응챔버(100)의 내부에는 기판을 지지하기 위한 서셉터(미도시)가 배치되며, 상기 서셉터(미도시)에는 기판의 가열하여 기 설정된 반응 온도로 상승시키기 위한 히터를 포함할 수 있다.In addition, a susceptor (not shown) for supporting the substrate is disposed inside the reaction chamber 100, and the susceptor (not shown) may include a heater for heating the substrate and raising it to a preset reaction temperature. have.
이로써, 반응챔버(100)에서 기화된 전구체 소스가 기판 상에 원자층 박막이 증착될 수 있다.Accordingly, an atomic layer thin film may be deposited on the substrate of the precursor source vaporized in the reaction chamber 100.
가스 라인부(200)는 기판 상에 원자층 박막 형성을 위해 기화된 전구체 소스를 반응챔버(100)로 제공하며 가스라인(210), 공압밸브(220), 매뉴얼밸브(230) 및 연결부(240, 250, 260)를 포함하여 구성된다.The gas line part 200 provides a precursor source vaporized to form an atomic layer thin film on the substrate to the reaction chamber 100, and the gas line 210, the pneumatic valve 220, the manual valve 230, and the connection part 240 , 250, 260).
또한, 가스 라인부(200)는 반응챔버(100)로 펄스 방식으로 기화된 전구체 소스를 공급할 수 있도록 형성되고, 각각 서로 다른 기화된 전구체 소스를 공급할 수 있도록 복수 개가 구비될 수 있다.In addition, the gas line part 200 may be formed to supply the vaporized precursor source to the reaction chamber 100 in a pulsed manner, and may be provided with a plurality of gas line parts to supply different vaporized precursor sources, respectively.
또한, 가스 라인부(200)는 일단이 전구체 저장부(300)에 연결되고, 타단이 반응챔버(100)에 연결된다. In addition, the gas line part 200 has one end connected to the precursor storage part 300 and the other end connected to the reaction chamber 100.
가스라인(210)은 양단부에 유입구 및 유출구가 형성되는 원통형 파이프 형태로 형성되고, 기화된 전구체 소스가 반응챔버(100)로 공급되도록 유로를 제공할 수 있다.The gas line 210 is formed in the shape of a cylindrical pipe in which inlets and outlets are formed at both ends, and a flow path may be provided so that the vaporized precursor source is supplied to the reaction chamber 100.
또한, 가스라인(210)은 반응챔버(100)와 공압밸브(220)의 사이, 공압밸브(220)와 매뉴얼밸브(230)의 사이 및 매뉴얼밸브(230)와 전구체 저장부(300) 사이에 배치된다.In addition, the gas line 210 is between the reaction chamber 100 and the pneumatic valve 220, between the pneumatic valve 220 and the manual valve 230, and between the manual valve 230 and the precursor storage unit 300 Is placed.
공압밸브(220)는 가스 라인부(200)의 상단부에 장착되고, 공압을 이용하여 가스라인(210)의 유로를 개폐하도록 제어하는데, 공압밸브(220)가 폐쇄된 상태에서 개방 작동하면, 기화된 전구체 소스를 가스라인(210)을 통해 반응챔버(100)로 공급할 수 있다.The pneumatic valve 220 is mounted on the upper end of the gas line part 200 and controls to open and close the flow path of the gas line 210 using pneumatic pressure. When the pneumatic valve 220 is opened and operated in a closed state, it vaporizes. The precursor source may be supplied to the reaction chamber 100 through the gas line 210.
매뉴얼밸브(230)는 가스 라인부(200)의 하단부에 장착되고, 전구체 저장부(300)로부터 기화된 전구체 소스를 유입하도록 제어하는데, 매뉴얼밸브(240)가 폐쇄된 상태에서 개방 작동하면, 전구체 저장부(300)에 저장되어 있는 기화된 전구체 소스가 가스 라인부(200)로 유입된다.The manual valve 230 is mounted at the lower end of the gas line part 200 and controls the vaporized precursor source to flow from the precursor storage part 300. When the manual valve 240 is opened and operated in a closed state, the precursor The vaporized precursor source stored in the storage unit 300 flows into the gas line unit 200.
연결부(240, 250, 260)는 가스라인(210), 공압밸브(220) 및 매뉴얼밸브(230)를 직렬 연결하여 가스 라인부(200)가 일체형으로 형성되도록 하고, 상기 가스 라인부(200)와 전구체 저장부(300)가 연결되도록 구성될 수 있다.The connection parts 240, 250, 260 connect the gas line 210, the pneumatic valve 220, and the manual valve 230 in series so that the gas line part 200 is integrally formed, and the gas line part 200 And the precursor storage unit 300 may be connected to each other.
또한, 연결부(240, 250, 260)는 금속가스켓 양면 접속 피팅(VCR fitting)을 사용하는 것이 바람직하며, 예를들어 반응챔버(100)와 공압밸브(220)를 연결하는 챔버-공압밸브 금속가스켓 양면 접속 피팅, 공압밸브(220)와 매뉴얼밸브(230)를 연결하는 공압밸브-매뉴얼밸브 금속가스켓 양면 접속 피팅, 매뉴얼밸브(230)와 전구체 저장부(300)를 연결하는 매뉴얼밸브-전구체 저장부 금속가스켓 양면 접속 피팅으로 구성된다.In addition, it is preferable to use a metal gasket double-sided connection fitting (VCR fitting) for the connection parts 240, 250, 260, for example, a chamber connecting the reaction chamber 100 and the pneumatic valve 220-pneumatic valve metal gasket Double-sided connection fitting, pneumatic valve connecting the pneumatic valve 220 and the manual valve 230-Manual valve metal gasket Double-sided connection fitting, manual valve connecting the manual valve 230 and the precursor storage unit 300-Precursor storage unit It consists of a metal gasket double-sided connection fitting
전구체 저장부(300)는 가스 라인부(200)를 통하여 반응챔버(100)에 연결되고, 원자층 증착 공정에 사용되는 전구체 소스를 고상 및 액상으로 저장한다. 전구체 소스로서는 금속-유기화합물이 선택될 수 있다.The precursor storage unit 300 is connected to the reaction chamber 100 through the gas line unit 200 and stores a precursor source used in the atomic layer deposition process in a solid phase and a liquid phase. Metal-organic compounds may be selected as the precursor source.
또한, 전구체 소스는 전구체 저장부(300)에 액상으로 저장되는 것이 바람직하며, 매뉴얼밸브(240)가 개방 작동하는 경우 급격한 압력변화와 높은 온도로 인하여 기체 상태로 기화된다.In addition, the precursor source is preferably stored as a liquid in the precursor storage unit 300, and when the manual valve 240 is opened, it is vaporized in a gaseous state due to a rapid pressure change and high temperature.
히터 어셈블리부(400)는 금속블록(410)와 상기 금속블록 외측에 배치되는 히팅 재킷(420)을 포함하여 구성된다.The heater assembly unit 400 includes a metal block 410 and a heating jacket 420 disposed outside the metal block.
금속블록(410)은 가스 라인부(200)와 전구체 저장부(300)를 수용하여 이들을 외부로부터 차단하고 균일하게 가열하기 위한 구성수단이다.The metal block 410 is a constituent means for receiving the gas line part 200 and the precursor storage part 300, blocking them from the outside and heating them uniformly.
또한, 도 4(b)를 참조하면, 금속블록(410)은 제1 금속블록(411) 및 제2 금속블록(412)으로 서로 대칭되게 이분할되어 체결수단을 통해 원기둥 형상을 가지도록 결합될 수 있다.In addition, referring to FIG. 4(b), the metal block 410 is divided symmetrically into a first metal block 411 and a second metal block 412 to be coupled to have a cylindrical shape through a fastening means. I can.
또한, 금속블록(410)의 제 1금속블록(411) 및 제2 금속블록(412)은 볼트체결방식을 통해 체결되는 것이 바람직하다. 즉, 상기 제1 금속블록(411)에는 너트홈이 형성되고, 상기 제2 금속블록(412)에는 볼트부가 마련되어, 상기 제1 금속블록(411)과 상기 제2 금속블록(412)가 결합될 수 있다.In addition, it is preferable that the first metal block 411 and the second metal block 412 of the metal block 410 are fastened through a bolt fastening method. That is, a nut groove is formed in the first metal block 411, and a bolt part is provided in the second metal block 412, so that the first metal block 411 and the second metal block 412 are coupled. I can.
이에 따라, 금속블록(410)은 양측에 마련된 체결수단을 통해 자유롭게 탈부착 가능하다.Accordingly, the metal block 410 is freely detachable through fastening means provided on both sides.
또한, 금속블록(410)은 내측에 삽입공간이 마련되고, 양측에 가스라인(210), 공압밸브(220), 매뉴얼밸브(230), 연결부(240, 250, 260) 및 전구체 저장부(300)의 일단이 삽입되는 만입된 홈이 형성된다.In addition, the metal block 410 is provided with an insertion space inside, and on both sides of the gas line 210, the pneumatic valve 220, the manual valve 230, the connection parts 240, 250, 260, and the precursor storage unit 300 A recessed groove into which one end of) is inserted is formed.
또한, 금속블록(410)의 상기 만입된 홈은 가스라인(210), 공압밸브(220), 매뉴얼밸브(230), 연결부(240, 250, 260) 및 전구체 저장부(300)와 맞물려 끼워맞춤 결합되도록 형성될 수 있다.In addition, the recessed groove of the metal block 410 is fitted with the gas line 210, the pneumatic valve 220, the manual valve 230, the connection parts 240, 250, 260, and the precursor storage part 300. It can be formed to be combined.
또한, 금속블록(410)에 상기 만입된 홈은 열전도층(미도시)을 더 포함하고 있어, 가스라인(210), 공압밸브(220), 매뉴얼밸브(230), 연결부(240, 250, 260) 및 전구체 저장부(300)와 결합될 시 발생하는 이격현상을 보완할 수 있다.In addition, the recessed groove in the metal block 410 further includes a heat conductive layer (not shown), so that the gas line 210, the pneumatic valve 220, the manual valve 230, the connection part 240, 250, 260 ) And the separation phenomenon that occurs when combined with the precursor storage unit 300 may be compensated.
상기 열전도층(미도시)은 상기 금속블록(410)의 내주면에 배치되며, 열전도도가 높은 써멀 구리스를 도포하여 형성되는 것이 바람직하다.The heat conductive layer (not shown) is disposed on the inner circumferential surface of the metal block 410, and is preferably formed by applying thermal grease having high thermal conductivity.
또한, 금속블록(410)은 열전도도가 높은 금속재질로 형성되는 것이 바람직하며, 예를 들어 은, 구리, 금, 알루미늄 및 마그네슘으로 이루어진 군에서 적어도 어느 하나 이상을 포함하는 금속 및 금속합금일 수 있다.In addition, the metal block 410 is preferably formed of a metal material having high thermal conductivity, and may be, for example, a metal and a metal alloy including at least one or more from the group consisting of silver, copper, gold, aluminum, and magnesium. have.
도 4(c)를 참조하면, 히팅 재킷(420)은 금속블록(410) 외측에 배치되고, 상기 금속블록(410)을 가열한다.Referring to FIG. 4C, a heating jacket 420 is disposed outside the metal block 410 and heats the metal block 410.
이로써, 가열된 금속블록(410)은 가스 라인부(200)와 전구체 저장부(300)로 균일하게 열을 전달할 수 있고, 가스 라인부(200)와 전구체 저장부(300)의 온도를 전구체 소스의 기화 온도보다 높게 유지시킬 수 있다.Accordingly, the heated metal block 410 can uniformly transfer heat to the gas line unit 200 and the precursor storage unit 300, and the temperature of the gas line unit 200 and the precursor storage unit 300 is a precursor source. It can be maintained higher than the vaporization temperature of.
또한, 히팅 재킷(420)은 열선(421)과 단열재(422)를 포함하며, 단열재(422)는 실리카 섬유, 파이버 글라스 섬유, 복합섬유 중 어느 하나로 구성될 수 있다.In addition, the heating jacket 420 includes a heating wire 421 and an insulating material 422, and the insulating material 422 may be composed of any one of silica fibers, fiberglass fibers, and composite fibers.
또한, 단열재(422)는 금속블록(410)을 외부와 차단하여 열발산을 제한하고, 내부에 열선(421)이 구비될 수 있다.In addition, the heat insulating material 422 limits heat dissipation by blocking the metal block 410 from the outside, and a heating wire 421 may be provided therein.
열선(421)은 단열재(422)와 금속블록(410)을 가열하여 가스 라인부(200)와 전구체 저장부(300)를 전구체 소스의 기화 온도보다 높게 유지할 수 있도록 한다.The heating wire 421 heats the heat insulating material 422 and the metal block 410 to maintain the gas line part 200 and the precursor storage part 300 higher than the vaporization temperature of the precursor source.
이에 따라, 종래의 ALD 장치와 달리, 본 발명의 일실시예에 따른 금속블록 결합형 히터 어셈블리를 적용한 증착 장치(1)는 열선(421) 사이의 간격, 전구체 저장부(300)의 직각 구조, 공압밸브(220) 및 매뉴얼밸브(230)의 복잡한 구조로 인하여 발생되는 불완전한 열접촉을 방지할 수 있다.Accordingly, unlike the conventional ALD apparatus, the deposition apparatus 1 to which the metal block-coupled heater assembly according to an embodiment of the present invention is applied has a gap between the heating wires 421, a right angle structure of the precursor storage unit 300, Incomplete thermal contact caused by the complicated structure of the pneumatic valve 220 and the manual valve 230 can be prevented.
더하여, 열선(421)에서 발생하는 열이 금속블록(410)을 통과하여 가스 라인부(200)와 전구체 저장부(300)에 균일하게 전달될 수 있으므로 상기 가스 라인부(200)와 상기 전구체 저장부(300)가 기 설정된 온도를 유지할 수 있다.In addition, since heat generated from the heating wire 421 can be uniformly transferred to the gas line unit 200 and the precursor storage unit 300 through the metal block 410, the gas line unit 200 and the precursor are stored. The unit 300 may maintain a preset temperature.
따라서, 공압밸브(220), 매뉴얼밸브(230), 전구체 저장부(300)와 가스라인(210)의 일부공간에 기화된 전구체 소스가 응집하는 현상을 방지할 수 있다.Accordingly, it is possible to prevent a phenomenon in which the vaporized precursor source is aggregated in a partial space of the pneumatic valve 220, the manual valve 230, the precursor storage unit 300 and the gas line 210.
또한, 기화된 전구체 소스의 응집현상으로 인하여 유로가 막혀 증착 장치의 성능이 저하됨에 따라 기판 상에 원자층이 불량하게 형성되는 문제를 방지할 수 있다.In addition, it is possible to prevent the problem that the atomic layer is poorly formed on the substrate as the performance of the deposition apparatus is deteriorated due to the condensation of the vaporized precursor source.
도 5는 종래의 밴드타입 히팅 시스템을 적용한 ALD 장치의 온도 테스트 결과를 보여주는 도면이고, 도 6은 본 발명의 일실시예에 따른 금속블록 결합형 히터 어셈블리를 적용한 증착 장치의 온도 테스트 결과를 보여주는 도면이다. 5 is a view showing a temperature test result of an ALD device to which a conventional band-type heating system is applied, and FIG. 6 is a view showing a temperature test result of a deposition device to which a metal block-coupled heater assembly is applied according to an embodiment of the present invention. to be.
도 5에 도시된 바와 같이, 가열 온도를 섭씨 80도, 섭씨 100도, 섭씨 120도로 설정하고 전구체 저장부(400)의 하단을 1번위치, 전구체 저장부(400)의 상단을 2번위치, 매뉴얼밸브(230)를 3번위치 및 공압밸브(220)를 4번위치로 선정하여 실험한 결과, 전구체 저장부(400)의 하단에서 공압밸브(220)까지의 온도 차이가 섭씨 10 내지 20도 인 것으로 확인되었다. 즉, 종래의 밴드타입 히팅 시스템을 적용할 시, 가스 라인부(200)와 전구체 저장부(300)의 온도구배가 심하게 발생한다.As shown in Figure 5, the heating temperature is set to 80 degrees Celsius, 100 degrees Celsius, and 120 degrees Celsius, and the lower end of the precursor storage unit 400 is positioned at 1, and the upper end of the precursor storage unit 400 is positioned at 2, As a result of the experiment by selecting the manual valve 230 at the 3rd position and the pneumatic valve 220 at the 4th position, the temperature difference from the lower end of the precursor storage unit 400 to the pneumatic valve 220 is 10 to 20 degrees Celsius. Was confirmed to be. That is, when the conventional band-type heating system is applied, the temperature gradient between the gas line part 200 and the precursor storage part 300 occurs severely.
도 6에 도시된 바와 같이, 가열 온도를 섭씨 80도, 섭씨 120도, 섭씨 150도로 설정하고 전구체 저장부(400)의 하단을 1번위치, 전구체 저장부(400)의 상단을 2번위치, 매뉴얼밸브(230)를 3번위치 및 공압밸브(220)를 4번위치로 선정하여 실험한 결과, 전구체 저장부(400)의 하단에서 공압밸브(220)까지의 온도가 균일한 값을 가지는 것으로 확인되었다. 6, the heating temperature is set to 80 degrees Celsius, 120 degrees Celsius, and 150 degrees Celsius, and the lower end of the precursor storage unit 400 is positioned at No. 1, and the upper end of the precursor storing unit 400 is positioned at No. 2, As a result of the experiment by selecting the manual valve 230 at the 3rd position and the pneumatic valve 220 at the 4th position, the temperature from the lower end of the precursor storage unit 400 to the pneumatic valve 220 has a uniform value. Confirmed.
이상의 상세한 설명은 본 발명을 예시하는 것이다. 또한 전술한 내용은 본 발명의 바람직한 실시 형태를 나타내어 설명하는 것이며, 본 발명은 다양한 다른 조합, 변경 및 환경에서 사용할 수 있다. 즉 본 명세서에 개시된 발명의 개념의 범위, 저술한 개시 내용과 균등한 범위 및/또는 당업계의 기술 또는 지식의 범위내에서 변경 또는 수정이 가능하다. 저술한 실시예는 본 발명의 기술적 사상을 구현하기 위한 최선의 상태를 설명하는 것이며, 본 발명의 구체적인 적용 분야 및 용도에서 요구되는 다양한 변경도 가능하다. 따라서 이상의 발명의 상세한 설명은 개시된 실시 상태로 본 발명을 제한하려는 의도가 아니다. 또한 첨부된 청구범위는 다른 실시 상태도 포함하는 것으로 해석되어야 한다.The detailed description above is to illustrate the present invention. In addition, the above description shows and describes preferred embodiments of the present invention, and the present invention can be used in various other combinations, modifications and environments. That is, changes or modifications may be made within the scope of the concept of the invention disclosed in the present specification, the scope equivalent to the disclosed contents, and/or the skill or knowledge of the art. The above-described embodiments describe the best state for implementing the technical idea of the present invention, and various changes required in the specific application fields and uses of the present invention are possible. Therefore, the detailed description of the invention is not intended to limit the invention to the disclosed embodiment. In addition, the appended claims should be construed as including other embodiments.

Claims (7)

  1. 기판을 지지하고 증착공정에 필요한 공간을 제공하는 반응챔버;A reaction chamber supporting the substrate and providing a space required for the deposition process;
    전구체 소스를 저장하는 전구체 저장부;A precursor storage unit for storing a precursor source;
    상기 반응챔버에 기화된 전구체 소스를 공급하는 가스 라인부; 및A gas line part supplying a vaporized precursor source to the reaction chamber; And
    상기 전구체 저장부 및 상기 가스 라인부를 내측에 수용하여 결합되는 금속블록 및 상기 금속블록을 가열하는 히팅 재킷이 구비되는 히터 어셈블리부를 포함하는 증착 장치.A deposition apparatus including a heater assembly unit including a metal block to be coupled by receiving the precursor storage unit and the gas line unit therein, and a heating jacket for heating the metal block.
  2. 제 1항에 있어서,The method of claim 1,
    상기 가스 라인부는,The gas line part,
    상기 기화된 전구체 소스가 이동하는 유로를 제공하는 가스라인; A gas line providing a flow path through which the vaporized precursor source moves;
    상기 기화된 전구체 소스가 상기 반응챔버로 공급되도록 제어하는 공압밸브;A pneumatic valve for controlling the vaporized precursor source to be supplied to the reaction chamber;
    상기 전구체 저장부로부터 상기 기화된 전구체 소스를 유입하도록 제어하는 매뉴얼밸브; 및 A manual valve for controlling the vaporized precursor source to flow from the precursor storage unit; And
    상기 가스라인, 상기 공압밸브, 상기 매뉴얼밸브 및 상기 전구체 저장부를 연결시키는 다수의 연결부를 포함하는 증착 장치.A deposition apparatus comprising a plurality of connecting portions connecting the gas line, the pneumatic valve, the manual valve, and the precursor storage unit.
  3. 제 1항에 있어서,The method of claim 1,
    상기 금속블록은,The metal block,
    제1 금속블록 및 제2 금속블록으로 서로 대칭되게 이분할되고,Divided symmetrically into a first metal block and a second metal block,
    체결수단을 통해 원기둥 형상을 가지도록 결합되는 증착 장치.A deposition apparatus coupled to have a cylindrical shape through a fastening means.
  4. 제 1항에 있어서,The method of claim 1,
    상기 금속블록은,The metal block,
    내측에 상기 가스라인, 상기 공압밸브, 상기 매뉴얼밸브, 상기 연결부 및상기 전구체 저장부와 맞물려 탈부착 가능하도록 만입된 홈을 더 포함하는 증착 장치.The vapor deposition apparatus further comprises a groove on the inside of the gas line, the pneumatic valve, the manual valve, the connection part and the precursor storage part and the recessed recessed so as to be detachable.
  5. 제 4항에 있어서,The method of claim 4,
    상기 금속블록은,The metal block,
    상기 만입된 홈에 배치되는 열전도층을 더 포함하는 증착 장치.A deposition apparatus further comprising a heat conductive layer disposed in the recessed groove.
  6. 제 1항에 있어서,The method of claim 1,
    상기 금속블록은,The metal block,
    은, 구리, 금, 알루미늄 및 마그네슘으로 이루어진 군에서 적어도 어느 하나 이상을 포함하는 증착 장치.A vapor deposition apparatus comprising at least one or more from the group consisting of silver, copper, gold, aluminum, and magnesium.
  7. 제 1항에 있어서,The method of claim 1,
    상기 히팅 재킷은 열선 및 단열재를 포함하는 증착 장치.The heating jacket is a vapor deposition apparatus comprising a heating wire and a heat insulating material.
PCT/KR2020/001956 2019-02-19 2020-02-12 Deposition apparatus comprising metal block-coupled heater assembly for supplying precursor source WO2020171467A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0019395 2019-02-19
KR1020190019395A KR20200101141A (en) 2019-02-19 2019-02-19 Deposition apparatus comprising metal-block combined heater assembly for supplying precursor

Publications (1)

Publication Number Publication Date
WO2020171467A1 true WO2020171467A1 (en) 2020-08-27

Family

ID=72144084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001956 WO2020171467A1 (en) 2019-02-19 2020-02-12 Deposition apparatus comprising metal block-coupled heater assembly for supplying precursor source

Country Status (2)

Country Link
KR (1) KR20200101141A (en)
WO (1) WO2020171467A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114875384A (en) * 2022-04-26 2022-08-09 江苏微导纳米科技股份有限公司 Semiconductor processing equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060006349A (en) * 2004-07-15 2006-01-19 주식회사 에이디피엔지니어링 Apparatus for depositing organic material and method thereof
JP2006111961A (en) * 2004-09-17 2006-04-27 Nippon Seiki Co Ltd Vapor deposition source system
KR20060111321A (en) * 2005-04-23 2006-10-27 삼성에스디아이 주식회사 Source unit for deposition methode, depositing apparatus therewith, and manufacturing method of organic light emitting diode thereused
KR20120002140A (en) * 2010-06-30 2012-01-05 삼성모바일디스플레이주식회사 Canister for deposition apparatus and deposition apparatus using same
KR20130055703A (en) * 2008-04-22 2013-05-28 피코순 오와이 Apparatus and methods for deposition reactors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060006349A (en) * 2004-07-15 2006-01-19 주식회사 에이디피엔지니어링 Apparatus for depositing organic material and method thereof
JP2006111961A (en) * 2004-09-17 2006-04-27 Nippon Seiki Co Ltd Vapor deposition source system
KR20060111321A (en) * 2005-04-23 2006-10-27 삼성에스디아이 주식회사 Source unit for deposition methode, depositing apparatus therewith, and manufacturing method of organic light emitting diode thereused
KR20130055703A (en) * 2008-04-22 2013-05-28 피코순 오와이 Apparatus and methods for deposition reactors
KR20120002140A (en) * 2010-06-30 2012-01-05 삼성모바일디스플레이주식회사 Canister for deposition apparatus and deposition apparatus using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114875384A (en) * 2022-04-26 2022-08-09 江苏微导纳米科技股份有限公司 Semiconductor processing equipment

Also Published As

Publication number Publication date
KR20200101141A (en) 2020-08-27

Similar Documents

Publication Publication Date Title
JP5179179B2 (en) Vapor deposition system and vapor deposition method
CN100523289C (en) Method and apparatus for the delivery of precursor materials
US7674352B2 (en) System and method for depositing a gaseous mixture onto a substrate surface using a showerhead apparatus
US5451258A (en) Apparatus and method for improved delivery of vaporized reactant gases to a reaction chamber
WO2020171467A1 (en) Deposition apparatus comprising metal block-coupled heater assembly for supplying precursor source
WO2013105730A1 (en) Cooling type showerhead and substrate processing apparatus having same
TWI825173B (en) A showerhead assembly and a method of introducing precursors through a segmented showerhead
US20200048767A1 (en) Showerhead for providing multiple materials to a process chamber
WO2018196113A1 (en) Vapour deposition device
CN115747768A (en) Atomic layer and molecular layer deposition equipment and deposition method
WO2014098486A1 (en) Substrate treatment apparatus, and method for controlling temperature of heater
JP2020002443A (en) Evaporation source and vapor deposition apparatus
WO2019013465A1 (en) Device and method for coating surface of porous substrate
WO2013191414A1 (en) Substrate processing apparatus
WO2017222348A1 (en) Organic-inorganic thin film deposition apparatus and organic-inorganic thin film deposition method
KR100342207B1 (en) A method for transporting at least one vapour substance through a vacuum chamber wall in a vacuum chamber and an apparatus for performing the method and the use thereof
WO2021172746A1 (en) System for stagnating flow in atomic layer deposition process by using retention valve
KR102376367B1 (en) Substrate carrier that carries a substrate on each of two broad sides of the substrate carrier that face away from each other
WO2021025498A1 (en) Gas inflow device and substrate processing device using same
WO2022211394A1 (en) Metal organic chemical vapor deposition apparatus
US20230128048A1 (en) Canister of semiconductor product device
KR100243520B1 (en) Chemical va-por deposition
US20230089167A1 (en) Gas-phase reactor system and method of cleaning same
KR100311672B1 (en) Reaction gas delivery device and method
WO2016028012A1 (en) Precursor supplying device for forming thin film and thin film forming device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759831

Country of ref document: EP

Kind code of ref document: A1