WO2020171351A1 - Sluice opening/closing apparatus and method for manufacturing rack bar thereof - Google Patents

Sluice opening/closing apparatus and method for manufacturing rack bar thereof Download PDF

Info

Publication number
WO2020171351A1
WO2020171351A1 PCT/KR2019/016175 KR2019016175W WO2020171351A1 WO 2020171351 A1 WO2020171351 A1 WO 2020171351A1 KR 2019016175 W KR2019016175 W KR 2019016175W WO 2020171351 A1 WO2020171351 A1 WO 2020171351A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
size
round
manufacturing
rack bar
Prior art date
Application number
PCT/KR2019/016175
Other languages
French (fr)
Korean (ko)
Inventor
장정수
김보옥
Original Assignee
(주)대도엔텍
장정수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)대도엔텍, 장정수 filed Critical (주)대도엔텍
Publication of WO2020171351A1 publication Critical patent/WO2020171351A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P11/00Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for 
    • B23P11/02Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for  by first expanding and then shrinking or vice versa, e.g. by using pressure fluids; by making force fits
    • B23P11/025Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for  by first expanding and then shrinking or vice versa, e.g. by using pressure fluids; by making force fits by using heat or cold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F1/00Devices, e.g. jacks, for lifting loads in predetermined steps
    • B66F1/02Devices, e.g. jacks, for lifting loads in predetermined steps with locking elements, e.g. washers, co-operating with posts
    • B66F1/04Devices, e.g. jacks, for lifting loads in predetermined steps with locking elements, e.g. washers, co-operating with posts the posts being toothed
    • B66F1/06Devices, e.g. jacks, for lifting loads in predetermined steps with locking elements, e.g. washers, co-operating with posts the posts being toothed and the devices being actuated mechanically
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/20Movable barrages; Lock or dry-dock gates
    • E02B7/26Vertical-lift gates
    • E02B7/36Elevating mechanisms for vertical-lift gates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B4/00Shrinkage connections, e.g. assembled with the parts at different temperature; Force fits; Non-releasable friction-grip fastenings
    • F16B4/004Press fits, force fits, interference fits, i.e. fits without heat or chemical treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B4/00Shrinkage connections, e.g. assembled with the parts at different temperature; Force fits; Non-releasable friction-grip fastenings
    • F16B4/006Shrinkage connections, e.g. assembled with the parts being at different temperature
    • F16B4/008Shrinkage connections, e.g. assembled with the parts being at different temperature using heat-recoverable, i.e. shrinkable, sleeves

Definitions

  • It relates to a sluice door opening and closing device and a method of manufacturing a rack bar thereof, and in particular, to a method of manufacturing a rack bar by combining a round bar with a flat steel, and to a sluice door opening and closing device to which the rack bar manufactured by the method is applied.
  • sluice gates are installed in dams, seawalls, reservoirs, or rivers for various purposes, such as controlling water flow or preventing backflow. It is composed of a frame installed in the sluice space, a sluice plate that opens and closes the waterway along the frame, and a device for raising and lowering the sluice plate, and the elevating device is driven by meshing with the gear box and gear box installed on the top of the sluice plate. It consists of a handle. The sluice plate is raised and lowered by a rack bar, so that the sluice gate is opened and closed.
  • the rack bar is moved up and down by meshing with the gear of the sluice opening and closing device, and the rack bar is manufactured in the form of a bar or a ladder with a protrusion so as to mesh with the gear of the sluice opening and closing device.
  • the ladder-shaped rack bar is composed of a pair of flat steel and a plurality of round bars inserted therebetween, and conventionally, the flat steel and the round bar have been welded to prevent separation from each other.
  • the rack bar of the sluice door opening and closing device when the rack bar of the sluice door opening and closing device is manufactured by welding, the rack bar is locally heated to a very high temperature. Depending on the work propensity and skill of the welder, the local heating of the rack bar may proceed at an excessively high temperature or may be performed for an excessively long time.In this process, the local thermal deformation of the rack bar occurs, which causes the surface of the rack bar to become finely uneven. If the degree of such thermal deformation is severe, the rack bar may bend. If the surface of the rack bar is finely uneven or bent, the rack bar cannot be lifted smoothly, and the gears of the rack bar and the gear box are not perfectly meshed, and the gearbox of the sluice door opening and closing device may fail.
  • the rack bar manufacturing method of the sluice door opening and closing device comprises the steps of: manufacturing a pair of flat steels having a plurality of grooves symmetrical to each other and arranged in a row; Including the step of manufacturing a plurality of round bars, the size of each groove of the pair of flat steels and the size of each round bar have a tolerance of force fit between each other, and evenly heated to the inside of the pair of flat steels.
  • the step of manufacturing the pair of flat steel is to prepare the pair of flat steel from the base material of stainless steel STS 304
  • the step of manufacturing the plurality of round bars is to prepare the plurality of round bars from the base material of stainless steel STS 304
  • the size of each groove of the pair of flat steels is 0mm to +( Has a tolerance of 0.372%)mm and the size of each round bar is +( 0.825%)mm to +( As it has 1.1%) mm of, the size of each groove of the pair of flat steels and the size of each round bar may have a tolerance of forcibly fitting each other.
  • the size of each groove is 0mm to 0mm to +( 0.372% of)mm tolerance from +(0.002768 ⁇ D)mm to +(( 0.372%)+(0.002768 ⁇ D) ⁇ mm or more, the size of each groove of the pair of flat steels and the size of each round bar can be transformed into a loose fit tolerance.
  • the plurality of round bars are cooled to at least -165° C. in a cooling atmosphere formed by evaporation of liquid nitrogen, so that the size of each round bar is +( 0.825%)mm to +( 1.1%)mm tolerance of ⁇ ( 0.825%)-(0.002788 ⁇ D) ⁇ mm to ⁇ ( 1.1%)-(0.002788 ⁇ D) ⁇ mm or less, the size of each groove of the pair of flat steels and the size of each round bar will be deformed into a loose fit tolerance. I can.
  • the hot working step by putting the pair of flat steel in oil of at least 100°C and heating it to at least 100°C, the size of each groove is 0mm to +( 0.372%)mm tolerance of +(0.001384 ⁇ D)mm to (( 0.372%)+(0.001384 ⁇ D) ⁇ mm or more, and the cold working step comprises cooling the plurality of round bars to a minimum of -70°C or less in a cooling atmosphere formed by evaporation of dry ice.
  • a sluice door opening and closing device is a sluice door opening and closing device to which a rack bar manufactured by a rack bar manufacturing method is applied, comprising: a frame formed in a rectangular frame shape and vertically installed on a water channel; A sluice plate that is sandwiched between both sides of the frame to open and close the waterway while elevating and descending; A rack bar manufactured by the manufacturing method, wherein a lower end is connected to the sluice plate to lift the sluice plate; And a gearbox for converting a rotational motion of a handle or a rotational motion of a motor due to an attractive force into an elevating motion of a rack bar using a combination of a plurality of gears.
  • a plurality of round bars are cold-worked, and both ends of each round bar are loosely fitted into two facing grooves of a pair of flat steels and restored to room temperature. It is possible to manufacture a solid rack bar without welding flat steel and round bars, so that thermal deformation (bending) of the rack bar caused by welding when manufacturing the rack bar can be prevented.
  • the heating temperature of the flat steel can be lowered and the cooling temperature of the round bars can be lowered, thereby significantly reducing the assembly time of the rack bar.
  • very inexpensive dry ice can be used instead of liquid nitrogen to cool the plurality of round bars, which can significantly reduce the manufacturing cost of rack bars. have.
  • the rack bar of the sluice door opening and closing device is manufactured by welding
  • the rack bar is locally heated to a very high temperature.
  • the local heating of the rack bar may proceed at an excessively high temperature or may be performed for an excessively long time.
  • the local thermal deformation of the rack bar occurs, which causes the surface of the rack bar to become finely uneven. If the degree of such thermal deformation is severe, the rack bar may bend. If the surface of the rack bar is slightly uneven or bent, the rack bar cannot be lifted smoothly and the gearbox of the sluice door opening and closing device may be damaged.
  • the sluice door opening and closing device to which the rack bar manufactured according to the present invention is applied does not require such welding, so that the sluice door opening and closing can be made smoothly, and the gears of the rack bar and the sluice door opening and closing device are perfectly meshed, so that failure of the gear box can be prevented.
  • FIG. 1 is a perspective view of a sluice door opening and closing device according to an embodiment of the present invention.
  • FIG. 2 is a partially enlarged view of the sluice door opening and closing device shown in FIG. 1.
  • FIG. 3 is a view showing a comparison between the rack bar 30 shown in FIGS. 1 and 2 and the conventional rack bar 30'.
  • FIG. 4 is a structural diagram of a coupling structure between the flat steel 31 and the round bar 32 of the rack bar 30 shown in FIG. 2.
  • FIG. 5 is a cross-sectional view of each component of the rack bar 30 shown in FIG. 2.
  • FIG. 6 is a flowchart of a method of manufacturing a rack bar according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a method of manufacturing a rack bar according to another embodiment of the present invention.
  • FIG. 8 is a flowchart of a method of manufacturing a rack bar according to another embodiment of the present invention.
  • 10 is a graph of Test Example 2 in which a pulling force is applied to the flat steel 31 and the round bar 32 of the rack bar 30 of the sluice door opening and closing device according to an embodiment of the present invention.
  • the present invention in the best form, in a method for manufacturing a rack bar of a sluice door opening and closing device, the steps of manufacturing a pair of flat steel 31 having a plurality of grooves symmetrically arranged with each other; Including the step of manufacturing a plurality of round bars (32), the size of each groove of the pair of flat steel (31) and the size of each round bar (32) has a tolerance of force fit between each other, the pair of Hot working the pair of flat steels 31 by putting the pair of flat steels 31 in oil and heating them so that they can be evenly heated to the inside of the flat steels 31; And cold working the plurality of round bars 32 by cooling the plurality of round bars 32 in a cooling atmosphere formed by evaporation of the liquefied gas so that the inside of the plurality of round bars 32 can be evenly cooled.
  • the present invention in the best form, in the sluice door opening and closing device to which the manufactured rack bar 30 is applied, the frame 10 is formed in a rectangular frame shape and installed vertically on the water channel; A sluice plate 20 that is sandwiched between both sides of the frame 10 to open and close the waterway while elevating and descending; As a rack bar (30) manufactured by the manufacturing method of claim 1, the lower end is connected to the sluice plate (20) to lift the sluice plate (20); And a gearbox 40 for converting a rotational motion of a handle or a rotational motion of a motor by a manpower into a lifting motion of the rack bar 30 by using a combination of a plurality of gears.
  • the embodiment of the present invention to be described below not only allows the sluice gate to be opened and closed smoothly by manufacturing the rack bar in a way that the flat steel and the round bar are fitted and coupled without welding, thereby preventing thermal deformation caused by welding during the manufacture of the rack bar. It relates to a method for manufacturing a rack bar of a sluice door opening and closing device capable of preventing failure of a sluice door opening and closing device, and a sluice door opening and closing device to which a rack bar manufactured by the method is applied.
  • rack bar manufacturing method and “sluice door opening and closing device”.
  • FIG. 1 is a perspective view of a sluice door opening and closing device according to an embodiment of the present invention
  • FIG. 2 is a partial enlarged view of the sluice door opening and closing device shown in FIG. 1.
  • the sluice door opening and closing device according to the present embodiment includes a frame 10, a sluice plate 20, a rack bar 30, a gearbox 40, and a handle 50. Since the characteristics of the present invention are in the manufacturing method of the rack bar 30 as described below, a brief description will be given of a sluice door opening and closing device to which the rack bar 30 to be described below is applied.
  • the sluice door opening and closing device to which the rack bar 30 is applied may be implemented in various shapes and structures in addition to the shapes and structures shown in FIGS. 1 and 2.
  • a motor (not shown) may be added in addition to the handle 50 as a power source.
  • the frame 10 is formed in a rectangular frame shape and is vertically installed on the water channel surface. Both sides of the frame 10 have the shape of "[" and "]" in cross-sections so that the sluice plate 20 is fitted thereto and can be vertically slid.
  • the sluice plate 20 is sandwiched between both sides of the frame 10 and serves to open and close the waterway while ascending and descending.
  • the rack bar 30 is a rack bar 30 manufactured by a manufacturing method to be described below, and its lower end is connected to the sluice plate 20 to lift the sluice plate 20.
  • the rack bar 30 is raised and lowered by a gearbox 40 driven by a manpower or a motor power.
  • the gearbox 40 converts a rotational motion of a handle or a rotational motion of a motor by a manpower into a lifting motion of the rack bar 30 by using a combination of a plurality of gears.
  • the handle 50 is a member that is rotated by the force of a person, and transmits power for raising and lowering the sluice plate 20 to the gearbox 40.
  • the motor When a motor is added in addition to the handle as a power source, the motor generates a torque for raising and lowering the sluice plate 20, and the generated torque is transmitted to the gearbox 50. That is, the motor transmits a torque of a preset size to the gearbox 50 to raise and lower the sluice plate 20.
  • the motor and the handle 40 are connected in parallel to the gearbox 50, and the handle 40 does not rotate when the sluice opening and closing device is driven by the motor. Since this driving structure is not related to the features of the present embodiment, detailed descriptions are omitted.
  • FIG. 3 is a view showing a comparison between the rack bar 30 shown in FIGS. 1 and 2 and the conventional rack bar 30'.
  • 3A and 3B are perspective and side views illustrating the rack bar 30 shown in FIGS. 1 and 2.
  • 3(c) and (d) are perspective and side views showing a conventional rack bar 30'.
  • the conventional rack bar 30' is somewhat It is shown exaggeratedly curved.
  • the rack bar 30 is manufactured in the form of a bar or ladder having a plurality of protrusions so as to mesh with the gears of the gear box 40.
  • the ladder-shaped rack bar 30 is composed of a pair of flat steels 31 arranged parallel to each other and a plurality of round bars 32 that are inserted and connected between the pair of flat steels 31.
  • the gap between the hole of the pair of flat steel 31 and each round bar 32 is welded.
  • a plurality of round bars 32 were coupled between the pair of flat steels 31.
  • the rack bar 30 ′ of the sluice door opening and closing device is manufactured by welding, the rack bar 30 ′ is locally heated to a very high temperature.
  • the local heating of the rack bar 30 ′ may be performed at an excessively high temperature or may be performed for an excessively long time.
  • the rack bar 30 ′ In this process, the local thermal deformation of the rack bar 30 ′ occurs, and thus, the rack bar 30 The surface of') becomes finely uneven.
  • the rack bar 30 ′ may be bent enough to be confirmed with the naked eye. If the surface of the rack bar 30 ′ is finely uneven or bent, the rack bar 30 ′ cannot be lifted smoothly and the gear box 40 is broken.
  • FIG. 4 is a structural diagram of a coupling structure between the flat steel 31 and the round bar 32 of the rack bar 30 shown in FIG. 2.
  • 4A is an inner side view of the flat steel 31 of the rack bar 30 shown in FIG. 2.
  • Figure 4 (b) is a front view showing the coupling structure of the flat steel 31 and the round bar 32 of the rack bar 30 shown in Figures 1 and 2
  • Figure 4 (c) is a conventional rack bar (30) It is a front view to show the coupling structure of the flat steel 31' of') and the round bar 32'.
  • the material of the rack bar 30 to be described below may be rolled steel for general structure, carbon steel for machine structure, or stainless steel STS, among which stainless steel STS 304 is preferable as a high-strength corrosion-resistant material, and is specified as I will explain.
  • a plurality of circular grooves (A) are formed on the inner surface of each flat steel 31.
  • the groove (A) of each flat steel (31) and each round bar (32) are processed at room temperature to a tight fit tolerance, and then hot-worked or cold-worked to loose fit. Make it a state.
  • the pair of flat steels 31 are arranged so that the openings of the grooves A on both sides face each other, and both ends of each round bar 32 are placed in two facing grooves A of the pair of flat steels 31.
  • a plurality of round bars 32 are inserted between the pair of flat steels 31 in a manner of restoring to room temperature while applying pressure with a press in a loosely fitted state.
  • the hot working of this embodiment is performed by putting a pair of flat steels 31 into oil and heating them so that the insides of the pair of flat steels 31 are evenly heated.
  • Cold working is performed by cooling the plurality of round bars 32 in a cooling atmosphere formed by evaporation of the liquefied gas so that the inside of the plurality of round bars 32 can be evenly cooled.
  • Such hot working and cold working may be performed simultaneously.
  • a groove A' having a shape penetrating each of the flat steels 31' is formed in each of the pair of flat steels 31'.
  • the welding part (S) that is a gap between the hole of the pair of flat steels 31 and each round bar 32 )
  • a plurality of round bars (32') between the pair of flat steel (31) was coupled.
  • the surface of the rack bar 30 ′ is finely uneven or bent due to local thermal deformation.
  • FIG. 5 is a cross-sectional view of each component of the rack bar 30 of FIG. 2.
  • Figure 5 (a) is a cross-sectional view of the flat steel 31 of the rack bar 30
  • Figure 5 (b) is a longitudinal cross-sectional view of the round bar 32 of the rack bar 30.
  • Table 1 below lists the dimensions of the flat steel 31 and the round bar 32 of various standards.
  • “A” indicates the depth of the groove of the flat steel 31
  • B” indicates the thickness of the flat steel
  • “H” indicates the width of the flat steel
  • “L” indicates the round bar ( 32)
  • “D” indicates the standard dimensions of the diameter of the groove of the flat steel 31 and the diameter of the round bar 32.
  • D Pyeonggang (31) Round bar (32) A B H L Minimum tolerance Maximum tolerance Minimum tolerance Maximum tolerance 16 0.000 0.015 0.033 0.044 10 15 40 50 22 0.000 0.017 0.039 0.052 8 12 65 55 25 0.000 0.019 0.041 0.055 11 16 65 70 26 0.000 0.019 0.042 0.056 11 16 75 70 32 0.000 0.021 0.047 0.062 15 22 90 90 35 0.000 0.022 0.049 0.065 17 25 90 99 43 0.000 0.024 0.054 0.072 30 38 105 140 51 0.000 0.027 0.059 0.072 30 38 125 160 65 0.000 0.030 0.067 0.089 30 38 180 190
  • the rack bar manufacturing method according to an embodiment of the present invention consists of the following steps.
  • step 110 a pair of flat steels 31 having a plurality of grooves arranged in a line are symmetrical to each other from the base material of stainless steel STS 304 by cutting or the like.
  • step 120 a plurality of round bars 32 are manufactured from the base material of stainless steel STS 304 using a cutting process or the like.
  • the size of each groove of the pair of flat steels 31 and the size of each round bar 32 have a tolerance for force fitting.
  • the pair of flat steels 31 in step 110 At the time of manufacture, the diameter of each groove (A) at room temperature 20 °C is 16mm to 16.015mm for the reference dimension (D) 16mm [ ⁇ D+( 0.372%) ⁇ mm], and the depth of the groove (A) is formed to a depth of 10 mm when the thickness of each flat steel 31 is 15 mm, and the adjacent groove (A) on the inner surface of each flat steel 31 ) The spacing between them is formed equal to the spacing of the gear meshing with the rack bar.
  • the diameter of each round bar 32 at room temperature of 20° C. is 16.033mm to 16.044mm for the standard size 16mm [ ⁇ D+( 0.825%) ⁇ mm to ⁇ D+( 1.1%) ⁇ mm], and the length of the round bar 32 is formed to be 50mm.
  • each groove of the pair of flat steel 31 is 0mm to +0.015mm[+() at room temperature 20°C for the standard size of each groove of 16[D]mm. 0.372%)mm]
  • the size of each round bar (32) is +0.033mm to +0.044mm [+( 0.825%)mm to +( 1.1%) mm]
  • the size of each groove of the pair of flat steels 31 and the size of each round bar 32 have a tolerance of forcibly fitting each other.
  • the pair of flat steels 31 manufactured in step 110 are hot-processed by putting a pair of flat steels 31 in oil and heating them so that the inside of the pair of flat steels 31 can be evenly heated.
  • oils used in such hot processing include fatty oils, mixed oils, and mineral oils.
  • the coefficient of thermal expansion of stainless steel STS 304 is 17.3 ⁇ 10 -6 m/(m) at 0°C or higher. °C), so it can be calculated by the following equation (1).
  • Thermal expansion amount length ⁇ coefficient of thermal expansion ⁇ temperature change
  • each groove diameter of the flat steel 31 heated at 180°C is +0.044mm to +0.059mm [+(0.002768 ⁇ D)mm to + ⁇ ( 0.372%)+(0.002768 ⁇ D) ⁇ mm]
  • the diameter tolerance of each round bar 32 at room temperature of 20°C is +0.033mm to +0.044mm [+( 0.825%)mm to +( 1.1%)mm]
  • the minimum clearance between each groove of the pair of flat steel 31 and the round bar 32 is 0.0000mm
  • the maximum clearance is 0.026mm, which is a loose fit tolerance. Accordingly, insertion of both ends of the round bar 32 into the facing groove of the pair of flat steels 110 can be made very easily.
  • step 130 by putting the pair of flat steels 31 in oil of at least 180°C and heating them to at least 180°C, the size of each groove is 0mm to +0.015mm[+( 0.372%)mm] tolerance of +0.044mm to +0.059mm [+(0.002768 ⁇ D)mm to + ⁇ ( Of 0.372%)+(0.002768 ⁇ D) ⁇ mm ], the tolerance of force fit between the size of each groove of the pair of flat steels (31) and the size of each round bar (32) is loose fit Transformed into tolerance.
  • step 140 pressure is applied with a press while both sides of each round bar (32) manufactured in step 120 are loosely fitted into the two grooves (A) facing each other of the pair of flat steels (31) hot-machined in step 130.
  • the plurality of round bars 32 are coupled between the pair of flat steels 31 while leaving them in an environment at room temperature of 20°C.
  • the pressure of the press is a pair of flat steels 31 and a pair of flat steels 31 in the room temperature restoration process as the room temperature restoration process takes a considerable amount of time in a state in which a plurality of round bars 32 are loosely fitted between the pair of flat steels 31 It is used to prevent the assembly shape between the plurality of round bars 32 from being distorted.
  • each groove of the pair of flat steels 31 is less than 16mm[Dmm]
  • the diameter of each round bar 32 is 16.044mm[ ⁇ D+( If it exceeds 1.1%) ⁇ mm]
  • cracks may occur around the grooves of the flat steels 31 as the diameter of each round bar 32 is too large than the diameters of each groove of the pair of flat steels 31.
  • each groove of the pair of flat steel 31 is 16.015mm [ ⁇ D+( 0.372%) ⁇ mm] and the diameter of each round bar 32 is 16.033mm[ ⁇ D+( If it is less than 0.825%) ⁇ mm], the surface of each round bar 32 cannot be firmly pressed into the inner surface of each groove of a pair of flat steels 31, so a pair of flat steels ( The round bar 32 can be easily separated from 31).
  • Room temperature 20 °C above is only an example of the environmental temperature in which the rack bar 30 of the present embodiment is used, and the environmental temperature is within the range of -40 °C to 40 °C, a pair of the same numerical value as the example shown in FIG.
  • the flat steel 31 and the plurality of round bars 32 are manufactured, there is no cracking around the groove of the flat steel 31, and the surface of each round bar 32 is hard on the inner surface of each groove of the pair of flat steel 31 Can be squeezed together.
  • step 210 a pair of flat steels 31 having a plurality of grooves arranged in a row are symmetrical to each other from the base material of stainless steel STS 304 by cutting or the like.
  • step 220 a plurality of round bars 32 are manufactured from the base material of stainless steel STS 304 using a cutting process or the like.
  • the size of each groove of the pair of flat steels 31 and the size of each round bar 32 have a tolerance of force fitting.
  • steps 210 and 220 a pair of flat steels 31 and a plurality of round bars 32 are manufactured in the same size as the example shown in FIG. 5 as in the embodiment shown in FIG. 6. Therefore, a detailed description of this will be replaced with the above description with respect to FIG. 5.
  • step 230 the plurality of round bars 32 manufactured in step 220 are cooled in a cooling atmosphere formed by evaporation of liquid nitrogen so that the inside of the plurality of round bars 32 can be evenly cooled.
  • Cold work The shrinkage during cold working of each round bar 32 is as shown in FIG. 7.
  • the coefficient of thermal expansion of stainless steel STS 304 is 17.3 ⁇ 10 -6 m/(m) at 0°C or higher. °C)
  • the coefficient of thermal expansion of 0°C to -73°C is 14.8 ⁇ 10 -6 m/(m°C), so it can be calculated by Equation 1 as follows.
  • the diameter tolerance of the round bar 32 in the -165°C cooling state is -0.012mm to -0.001mm [ ⁇ ( 0.825%)-(0.002788 ⁇ D) ⁇ mm to ⁇ ( 1.1%)-(0.002788 ⁇ D) ⁇ mm], and the tolerance of each groove diameter of the flat steel 31 at room temperature of 20°C is 0mm to +0.015mm[+( 0.372%) mm], so the minimum clearance between each groove of the pair of flat steels 31 and the round bar 32 is 0.001mm, and the maximum clearance is 0.027mm, which is a loose fit tolerance. Accordingly, insertion of both ends of the round bar 32 into the facing groove of the pair of flat steels 110 can be made very easily.
  • the plurality of round bars 32 are cooled to at least -165° C. in a cooling atmosphere formed by evaporation of liquid nitrogen, so that the size of each round bar 32 is +0.033mm to +0.044mm [+( 0.825%)mm to +( 1.1%)mm] tolerance of -0.012mm to -0.001mm [ ⁇ ( 0.825%)-(0.002788 ⁇ D) ⁇ mm to ⁇ ( 1.1%)-(0.002788 ⁇ D) ⁇ mm] or less, the size of each groove of the pair of flat steels 31 and the size of each round bar 32 Deformed to fit tolerance.
  • step 240 pressure is applied with a press while loosely fitting both sides of each round bar (32) cold-worked in step 230 into two grooves (A) facing each other of the pair of flat steels (31) manufactured in step 210.
  • the plurality of round bars 32 are coupled between the pair of flat steels 31 while leaving them in an environment at room temperature of 20°C.
  • the pressure of the press is a pair of flat steels 31 and a pair of flat steels 31 in the room temperature restoration process as the room temperature restoration process takes a considerable amount of time in a state in which a plurality of round bars 32 are loosely fitted between the pair of flat steels 31 It is used to prevent the assembly shape between the plurality of round bars 32 from being distorted.
  • each groove of the pair of flat steels 31 and the size of each round bar 32 are loosely fitted.
  • the tolerance of the force-fitting is restored to the tolerance.
  • the diameter of each groove of the pair of flat steel 31 is less than 16mm[Dmm]
  • the diameter of each round bar 32 is 16.044mm[ ⁇ D+( If it exceeds 1.1%) ⁇ mm]
  • cracks may occur around the grooves of the flat steels 31 as the diameter of each round bar 32 is too large than the diameters of each groove of the pair of flat steels 31.
  • each groove of the pair of flat steel 31 is 16.015mm [ ⁇ D+( 0.372%) ⁇ mm] and the diameter of each round bar 32 is 16.033mm[ ⁇ D+( If it is less than 0.825%) ⁇ mm], the surface of each round bar 32 cannot be firmly pressed into the inner surface of each groove of the pair of flat steel 31, and thus a pair of flat steel ( The round bar 32 can be easily separated from 31).
  • step 310 a pair of flat steels 31 having a plurality of grooves arranged in a row are symmetrical to each other from the base material of stainless steel STS 304 by cutting or the like.
  • step 320 a plurality of round bars 32 are manufactured from the base material of stainless steel STS 304 using a cutting process or the like.
  • the size of each groove of the pair of flat steels 31 and the size of each round bar 32 have a tolerance of force fitting.
  • steps 310 and 320 the pair of flat steels 31 and the plurality of round bars 32 are manufactured in the same size as the example shown in FIG. 5 as in the embodiment shown in FIG. 5. Therefore, a detailed description of this will be replaced with the above description with respect to FIG. 5.
  • step 330 the pair of flat steels 31 manufactured in step 310 are hot-processed by putting a pair of flat steels 31 in oil and heating them so that the inside of the pair of flat steels 31 is evenly heated.
  • the diameter of the groove (A) increases by 0.022 mm. That is, the tolerance of each groove diameter of the flat steel 31 heated at 100°C is +0.022mm to +0.037mm [+(0.001384 ⁇ D)mm to + ⁇ ( 0.372%) + (0.001384 ⁇ D) ⁇ mm].
  • step 340 the plurality of round bars 32 manufactured in step 320 are cooled in a cooling atmosphere formed by evaporation of dry ice so that the inside of the plurality of round bars 32 can be evenly cooled.
  • the diameter tolerance of the round bar 32 in the -70°C cooling state is 0.011mm to +0.022mm [ ⁇ ( 0.825%)-(0.001382 ⁇ D) ⁇ mm to ⁇ ( 1.1%)-(0.001382 ⁇ D) ⁇ mm].
  • Each groove diameter tolerance of the flat steel 31 heated at 100°C by hot working in step 330 is +0.022mm to +0.037mm [+(0.001384 ⁇ D)mm to + ⁇ ( 0.372%)+(0.001384 ⁇ D) ⁇ mm], and the diameter tolerance of the round bar 32 in the -70°C cooled state by cold working in step 440 is 0.011mm to +0.022mm [ ⁇ ( 0.825%)-(0.001382 ⁇ D) ⁇ mm to ⁇ ( 1.1%)-(0.001382 ⁇ D) ⁇ mm], so the minimum clearance between each groove of the pair of flat steels 31 and the round bar 32 is 0.000mm, and the maximum clearance is 0.026mm, which is a loose fit tolerance. . Accordingly, insertion of both ends of the round bar 32 into the facing groove of the pair of flat steel 31 can be made very easily.
  • step 330 the pair of flat steels 31 are put in oil of at least 100°C and heated to at least 100°C, so that the size of each groove is 0mm to +0.015mm[+( 0.372%)mm] tolerance of +0.022mm to +0.037mm [+(0.001384 ⁇ D)mm to + ⁇ ( 0.372%) + (0.001384 ⁇ D) ⁇ mm] or more of the tolerance, and in step 340, the plurality of round bars 32 are cooled to at least -70°C in a cooling atmosphere formed by evaporation of dry ice.
  • step 350 the two sides of each round bar 32 cold-worked in step 340 are loosely fitted into two grooves (A) facing each other of the pair of flat steels 31 hot-worked in step 330, and pressure is applied with a press.
  • a plurality of round bars 32 are coupled between the pair of flat steels 31 in a manner that is allowed to stand in an environment at room temperature of 20° C.
  • the pressure of the press is a pair of flat steels 31 and a pair of flat steels 31 in the room temperature restoration process as the room temperature restoration process takes a considerable amount of time in a state in which a plurality of round bars 32 are loosely fitted between the pair of flat steels 31 It is used to prevent the assembly shape between the plurality of round bars 32 from being distorted.
  • each groove of the pair of flat steel 31 is less than 16mm [Dmm]
  • the diameter of each round bar 32 is 16.044mm [ ⁇ D+( If it exceeds 1.1%) ⁇ mm]
  • cracks may occur around the grooves of the flat steels 31 as the diameter of each round bar 32 is too large than the diameters of each groove of the pair of flat steels 31.
  • each groove of the pair of flat steel 31 is 16.015mm [ ⁇ D+( 0.372%) ⁇ mm] and the diameter of each round bar 32 is 16.033mm[ ⁇ D+( If it is less than 0.825%) ⁇ mm], the surface of each round bar 32 cannot be firmly pressed into the inner surface of each groove of the pair of flat steel 31, and thus a pair of flat steel ( The round bar 32 can be easily separated from 31).
  • the heating temperature of the flat steel 31 is lowered and the cooling temperature of the round bar 32 by simultaneously performing hot working on the pair of flat steels 31 and cold working on the plurality of round bars 32 It is possible to lower the assembly time of the rack bar 30 can be significantly reduced. Since the boiling point of nitrogen is -196°C and the boiling point of carbon dioxide is -78°C, dry ice cannot be used when only cold working is performed on the plurality of round bars 32. As described above, in the embodiment shown in FIG. 8, since very inexpensive dry ice can be used instead of liquid nitrogen for cooling the plurality of round bars 32, the manufacturing cost of the rack bar 30 can be significantly reduced.
  • each groove (A) of the flat steel 31 is 16.015 mm
  • the diameter of the round bar 32 is 16.033 mm
  • the remaining dimensions are the same as the example shown in FIG. 5, so that the flat steel 31 and the round bar ( After manufacturing 32), the rack bar of Example 1 was manufactured according to the manufacturing method shown in FIG. 6 by hot working the flat steel 31 at 180°C.
  • Example 1 is a case where the groove diameter of the flat steel 31 is processed to the maximum allowable dimension and the diameter of the round bar 32 is processed to the minimum allowable dimension.
  • each groove (A) of the flat steel 31 is 16.008 mm
  • the diameter of the round bar 32 is 16.039 mm
  • the remaining dimensions are the same as the example shown in FIG. 5, so that the flat steel 31 and the round bar ( After manufacturing 32), the rack bar of Example 2 was manufactured according to the manufacturing method shown in FIG. 7 in a manner of cold working the round bar 32 at -165°C.
  • Example 2 is a case in which the diameter of the groove of the flat steel 31 and the diameter of the round bar 32 are processed to an intermediate value between the maximum and minimum allowable dimensions.
  • Example 3 was manufactured according to the manufacturing method shown in FIG. 8 by hot working the flat steel 31 at 100°C and cold working the round bar 32 at -70°C. As such, Example 3 is a case where the groove diameter of the flat steel 31 is processed to the minimum allowable dimension, and the diameter of the round bar 32 is processed to the maximum allowable dimension.
  • each groove (A) of the flat steel 31 is 16.024 mm
  • the diameter of the round bar 32 is 16.024 mm
  • the remaining dimensions are the same as the example shown in FIG. 5, so that the flat steel 31 and the round bar ( After manufacturing 32), the rack bar of Comparative Example 1 was manufactured according to the manufacturing method shown in FIG. 6 by hot working the flat steel 31 at 180°C.
  • Comparative Example 1 is a case where the flaw diameter of the flat steel 31 is processed larger than the maximum allowable dimension, and the diameter of the round bar 32 is processed smaller than the minimum allowable dimension.
  • each groove (A) of the flat steel 31 is 16.020 mm
  • the diameter of the round bar 32 is 16.028 mm
  • the remaining dimensions are the same as the example shown in FIG. 5, so that the flat steel 31 and the round bar ( After manufacturing 32), the rack bar of Comparative Example 2 was manufactured according to the manufacturing method shown in FIG. 7 by cold working the round bar 32 at -165°C.
  • Comparative Example 2 is a case where the flaw diameter of the flat steel 31 is processed larger than the maximum allowable dimension, and the diameter of the round bar 32 is processed smaller than the minimum allowable dimension.
  • each groove (A) of the flat steel 31 is 15.985 mm
  • the diameter of the round bar 32 is 16.059 mm
  • the remaining dimensions are the same as the example shown in FIG. 5, so that the flat steel 31 and the round bar ( After manufacturing 32), the rack bar of Comparative Example 3 was manufactured according to the manufacturing method shown in FIG. 6 by hot working the flat steel 31 at 180°C.
  • Comparative Example 3 is a case where the groove diameter of the flat steel 31 is processed smaller than the minimum allowable dimension, and the diameter of the round bar 32 is processed larger than the maximum allowable dimension.
  • each groove (A) of the flat steel 31 is 15.970 mm
  • the diameter of the round bar 32 is 16.074 mm
  • the remaining dimensions are the same as the example shown in FIG. 5, and the flat steel 31 and the round bar ( After manufacturing 32), the rack bar of Comparative Example 4 was manufactured according to the manufacturing method shown in FIG. 7 by cold working the round bar 32 at -120°C.
  • Comparative Example 4 is a case where the groove diameter of the flat steel 31 is processed smaller than the minimum allowable dimension, and the diameter of the round bar 32 is processed larger than the maximum allowable dimension.
  • Examples 1 to 3 have higher pulling force than Comparative Examples 1 to 4.
  • Comparative Examples 1 and 2 it can be seen that the diameter of the round bar 32 is too small than the groove diameter of the flat steel 31 compared to Examples 1 to 3, so that the pulling force of the rack bar 30 is very low.
  • Comparative Example 1 and Comparative Example 2 are applied to the sluice door opening and closing device, it can be seen that the round bar 32 can be easily separated from the pair of flat steels 31 in the process of using the sluice opening and closing device.
  • Example 4 it can be seen that the pulling force of the rack bar 30 is relatively low, although the diameter of the round bar 32 is larger than the groove diameter of the flat steel 31 compared to Examples 1 to 3.
  • FIG. 9 is a graph of Test Example 1 in which a pulling force is applied to the flat steel 31 and the round bar 32 of the rack bar 30 of the sluice door opening and closing device according to an embodiment of the present invention.
  • Examples 1 to 3 and Comparative Examples 1 to 4 are arranged on the X-axis in the order in which the groove diameter of the flat steel 31 is gradually decreased and the diameter of the round bar 32 is gradually increased.
  • the results of the pulling force test shown in Table 2 are shown on the Y-axis. Referring to FIG.
  • Test Example 2 is a graph of Test Example 2 in which a pulling force is applied to the flat steel 31 and the round bar 32 of the rack bar 30 of the sluice door opening and closing device according to an embodiment of the present invention.
  • Test Example 2 also shows the same results as Test Example 1.
  • D 22mm, 25mm, 26mm, 32mm, 35mm, 43mm, 51mm
  • the description of the test examples for the standards is omitted, but it can be seen that the same results as those of Test Examples 1 and 2.

Abstract

Provided are a sluice opening/closing apparatus and a method for manufacturing a rack bar of the sluice opening/closing apparatus, the method comprising the steps of: manufacturing a pair of flat steel bars (31) having a plurality of grooves that are symmetrical to each other and aligned in a line; and manufacturing a plurality of round bars (32), further comprising the steps: of hot-working the pair of flat steel bars (31) by putting the pair of flat steel bars (31) into oil and heating same, so that the size of each groove of the pair of flat steel bars (31) and the size of each round bar (32) have an interference fit tolerance therebetween and the pair of flat steel bars (31) can be equally heated up to the inside thereof; and/or cold-working the plurality of round bars (32) by cooling the plurality of round bars (32) in a cooling atmosphere formed by the evaporation of liquefied gas, so that the plurality of round bars (32) can be equally heated up to the inside thereof, and further comprising a step of coupling the plurality of round bars (32) between the pair of flat steel bars (31) by restoring same to room temperature in a state in which both ends of each round bar (32) are fitted with a clearance between the two facing grooves (A) of the pair of flat steel bars (31).

Description

수문 개폐 장치 및 그것의 랙바 제조 방법Hydrogate opening and closing device and its manufacturing method of rack bar
수문 개폐 장치 및 그것의 랙바 제조방법에 관한 것으로서, 특히 평강에 환봉을 결합하여 랙바를 제조하는 방법 및 그 방법에 의해 제조된 랙바가 적용된 수문 개폐 장치에 관한 것이다.It relates to a sluice door opening and closing device and a method of manufacturing a rack bar thereof, and in particular, to a method of manufacturing a rack bar by combining a round bar with a flat steel, and to a sluice door opening and closing device to which the rack bar manufactured by the method is applied.
일반적으로 댐, 방조제, 저수지 또는 하천 등에는 수량 조절이나 역류 방지 등 여러 목적을 위해 수문이 설치되고 있다. 수문 공간에 설치되는 프레임, 프레임을 따라 승하강하면서 수로를 개폐하는 수문판 및 수문판을 승강시키기 위한 장치로 구성되고, 승강 장치는 수문판의 상단에 설치되는 기어 박스와 기어 박스에 맞물려 구동하는 핸들로 구성된다. 수문판은 랙바(Rack bar)에 의해 승강되게 하여 수문이 개패된다. 랙바는 수문 개폐 장치의 기어와 맞물려 상하 이동되며, 랙바는 수문 개폐 장치의 기어와 맞물리도록 돌기를 가진 바 형태로 제작되거나 사다리 형태로 제작된다. 사다리 형태의 랙바는 한 쌍의 평강과 그것 사이에 삽입되는 복수 개의 환봉으로 구성되고, 종래에는 평강과 환봉이 서로 이탈되지 않도록 용접되어 결합되었다.In general, sluice gates are installed in dams, seawalls, reservoirs, or rivers for various purposes, such as controlling water flow or preventing backflow. It is composed of a frame installed in the sluice space, a sluice plate that opens and closes the waterway along the frame, and a device for raising and lowering the sluice plate, and the elevating device is driven by meshing with the gear box and gear box installed on the top of the sluice plate. It consists of a handle. The sluice plate is raised and lowered by a rack bar, so that the sluice gate is opened and closed. The rack bar is moved up and down by meshing with the gear of the sluice opening and closing device, and the rack bar is manufactured in the form of a bar or a ladder with a protrusion so as to mesh with the gear of the sluice opening and closing device. The ladder-shaped rack bar is composed of a pair of flat steel and a plurality of round bars inserted therebetween, and conventionally, the flat steel and the round bar have been welded to prevent separation from each other.
종래와 같이, 수문 개폐 장치의 랙바를 용접에 의해 제작하는 경우에는 랙바가 국부적으로 매우 높은 온도로 가열된다. 용접사의 작업 성향, 숙련도에 따라 랙바의 국부적 가열이 지나치게 높은 온도로 진행되거나 지나치게 오랫동안 진행될 수 있는데, 이 과정에서 랙바의 국부적인 열 변형이 발생되고 이로 인해 랙바의 표면이 미세하게 울퉁불퉁하게 된다. 이러한 열 변형의 정도가 심한 경우에는 랙바가 휘어질 수도 있다. 랙바의 표면이 미세하게 울퉁불퉁하거나 휘어지게 되면 랙바의 승강이 원활하게 이루어질 수 없고 랙바와 기어박스의 기어가 완벽하게 맞물리지 않게 되어 수문 개폐 장치의 기어박스가 고장날 수 있다.As in the prior art, when the rack bar of the sluice door opening and closing device is manufactured by welding, the rack bar is locally heated to a very high temperature. Depending on the work propensity and skill of the welder, the local heating of the rack bar may proceed at an excessively high temperature or may be performed for an excessively long time.In this process, the local thermal deformation of the rack bar occurs, which causes the surface of the rack bar to become finely uneven. If the degree of such thermal deformation is severe, the rack bar may bend. If the surface of the rack bar is finely uneven or bent, the rack bar cannot be lifted smoothly, and the gears of the rack bar and the gear box are not perfectly meshed, and the gearbox of the sluice door opening and closing device may fail.
랙바 제조 시 용접으로 인해 발생하는 열 변형을 방지함으로써 원활하게 수문이 개폐되도록 하면서 수문 개폐 장치의 고장을 방지할 수 있는 수문 개폐 장치의 랙바 제조방법을 제공하는 데에 있다. 상기된 바와 같은 기술적 과제로 한정되지 않으며, 이하의 설명으로부터 또 다른 기술적 과제가 도출될 수 있다.It is intended to provide a method for manufacturing a rack bar of a sluice door opening and closing device that can prevent failure of the sluice door opening and closing device while preventing the thermal deformation caused by welding during the manufacture of the rack bar. It is not limited to the above-described technical problem, and another technical problem may be derived from the following description.
본 발명에 따른 수문 개폐 장치의 랙바 제조방법은 수문 개폐 장치의 랙바 제조방법에 있어서, 서로 대칭되어 일렬로 나열된 다수의 홈을 갖는 한 쌍의 평강을 제조하는 단계; 복수 개의 환봉을 제조하는 단계를 포함하고, 상기 한 쌍의 평강의 각 홈의 크기와 상기 각 환봉의 크기 상호간에는 억지 끼워 맞춤의 공차를 갖고, 상기 한 쌍의 평강의 내부까지 균등하게 가열될 수 있도록 상기 한 쌍의 평강을 기름에 넣어 가열하는 방식으로 상기 한 쌍의 평강을 열간 가공하는 단계; 및 상기 복수 개의 환봉의 내부까지 균등하게 냉각될 수 있도록 액화기체의 증발에 의해 형성된 냉각 분위기에서 상기 복수 개의 환봉을 냉각하는 방식으로 상기 복수 개의 환봉을 냉간 가공하는 단계 중에서 적어도 하나의 단계를 더 포함하고, 상기 각 환봉의 양단을 상기 한 쌍의 평강의 서로 마주 보는 두 개의 홈에 헐겁게 끼워 맞춘 상태에서 상온으로 복원시키는 방식으로 상기 한 쌍의 평강 사이에 상기 복수 개의 환봉을 결합시키는 단계를 더 포함할 수 있다.In the rack bar manufacturing method of the sluice door opening and closing device according to the present invention, the rack bar manufacturing method of the sluice door opening and closing device comprises the steps of: manufacturing a pair of flat steels having a plurality of grooves symmetrical to each other and arranged in a row; Including the step of manufacturing a plurality of round bars, the size of each groove of the pair of flat steels and the size of each round bar have a tolerance of force fit between each other, and evenly heated to the inside of the pair of flat steels. Hot working the pair of flat steels by putting the pair of flat steels in oil and heating them; And cold working the plurality of round bars by cooling the plurality of round bars in a cooling atmosphere formed by evaporation of a liquefied gas so that the inside of the plurality of round bars can be evenly cooled. And, the step of coupling the plurality of round bars between the pair of flat bars in a manner of restoring to room temperature in a state in which both ends of each round bar are loosely fitted into two facing grooves of the pair of flat steels. can do.
상기 한 쌍의 평강을 제조하는 단계는 스테인리스강 STS 304의 모재로부터 상기 한 쌍의 평강을 제조하고, 상기 복수 개의 환봉을 제조하는 단계는 스테인리스강 STS 304의 모재로부터 상기 복수 개의 환봉을 제조하고, 상기 한 쌍의 평강의 각 홈의 크기는 기준 치수(D)에 대해 상온 20℃에서 0mm 내지 +(
Figure PCTKR2019016175-appb-I000001
의 0.372%)mm의 공차를 갖고 상기 각 환봉의 크기는 기준 치수(D)에 대해 상온 20℃에서 +(
Figure PCTKR2019016175-appb-I000002
의 0.825%)mm 내지 +(
Figure PCTKR2019016175-appb-I000003
의 1.1%)mm를 가짐에 따라 상기 한 쌍의 평강의 각 홈의 크기와 상기 각 환봉의 크기는 상호간에 억지 끼워 맞춤의 공차를 가질 수 있다.
The step of manufacturing the pair of flat steel is to prepare the pair of flat steel from the base material of stainless steel STS 304, and the step of manufacturing the plurality of round bars is to prepare the plurality of round bars from the base material of stainless steel STS 304, The size of each groove of the pair of flat steels is 0mm to +(
Figure PCTKR2019016175-appb-I000001
Has a tolerance of 0.372%)mm and the size of each round bar is +(
Figure PCTKR2019016175-appb-I000002
0.825%)mm to +(
Figure PCTKR2019016175-appb-I000003
As it has 1.1%) mm of, the size of each groove of the pair of flat steels and the size of each round bar may have a tolerance of forcibly fitting each other.
상기 열간 가공하는 단계는 상기 한 쌍의 평강을 최소 180℃ 이상의 기름에 넣어 최소 180℃ 이상으로 가열함으로써 상기 각 홈의 크기의 0mm 내지 0mm 내지 +(
Figure PCTKR2019016175-appb-I000004
의 0.372%)mm 공차를 +(0.002768×D)mm 내지 +{(
Figure PCTKR2019016175-appb-I000005
의 0.372%)+(0.002768×D)}mm 이상의 공차로 변형함에 따라 상기 한 쌍의 평강의 각 홈의 크기와 상기 각 환봉의 크기 상호간의 억지 끼워 맞춤의 공차는 헐거운 끼워 맞춤 공차로 변형될 수 있다.
In the hot working step, by putting the pair of flat steels in oil of at least 180° C. and heating at least 180° C., the size of each groove is 0mm to 0mm to +(
Figure PCTKR2019016175-appb-I000004
0.372% of)mm tolerance from +(0.002768×D)mm to +((
Figure PCTKR2019016175-appb-I000005
0.372%)+(0.002768×D)}mm or more, the size of each groove of the pair of flat steels and the size of each round bar can be transformed into a loose fit tolerance. have.
상기 냉간 가공하는 단계는 상기 복수 개의 환봉을 액화질소의 증발에 의해 형성된 냉각 분위기에서 최소 -165℃ 이하로 냉각함으로써 상기 각 환봉의 크기의 +(
Figure PCTKR2019016175-appb-I000006
의 0.825%)mm 내지 +(
Figure PCTKR2019016175-appb-I000007
의 1.1%)mm 공차를 {(
Figure PCTKR2019016175-appb-I000008
의 0.825%)-(0.002788×D)}mm 내지 {(
Figure PCTKR2019016175-appb-I000009
의 1.1%)-(0.002788×D)}mm 이하의 공차로 변형함에 따라 상기 한 쌍의 평강의 각 홈의 크기와 상기 각 환봉의 크기 상호간의 억지 끼워 맞춤의 공차는 헐거운 끼워 맞춤 공차로 변형될 수 있다.
In the cold working step, the plurality of round bars are cooled to at least -165° C. in a cooling atmosphere formed by evaporation of liquid nitrogen, so that the size of each round bar is +(
Figure PCTKR2019016175-appb-I000006
0.825%)mm to +(
Figure PCTKR2019016175-appb-I000007
1.1%)mm tolerance of {(
Figure PCTKR2019016175-appb-I000008
0.825%)-(0.002788×D)}mm to {(
Figure PCTKR2019016175-appb-I000009
1.1%)-(0.002788×D)}mm or less, the size of each groove of the pair of flat steels and the size of each round bar will be deformed into a loose fit tolerance. I can.
상기 열간 가공하는 단계는 상기 한 쌍의 평강을 최소 100℃ 이상의 기름에 넣어 최소 100℃ 이상으로 가열함으로써 상기 각 홈의 크기의 0mm 내지 +(
Figure PCTKR2019016175-appb-I000010
의 0.372%)mm 공차를 +(0.001384×D)mm 내지 {(
Figure PCTKR2019016175-appb-I000011
의 0.372%)+(0.001384×D)}mm 이상의 공차로 변형하고, 상기 냉간 가공하는 단계는 상기 복수 개의 환봉을 드라이아이스의 증발에 의해 형성된 냉각 분위기에서 최소 -70℃ 이하로 냉각함으로써 상기 각 환봉(32)의 크기의 +(
Figure PCTKR2019016175-appb-I000012
의 0.825%)mm 내지 +(
Figure PCTKR2019016175-appb-I000013
의 1.1%)mm공차를 {(
Figure PCTKR2019016175-appb-I000014
의 0.825%)-(0.001382×D)}mm 내지 (
Figure PCTKR2019016175-appb-I000015
의 1.1%)-(0.001382×D)}mm 이하의 공차로 변형함에 따라 상기 한 쌍의 평강의 각 홈의 크기와 상기 각 환봉의 크기 상호간의 억지 끼워 맞춤의 공차는 헐거운 끼워 맞춤 공차로 변형될 수 있다.
In the hot working step, by putting the pair of flat steel in oil of at least 100°C and heating it to at least 100°C, the size of each groove is 0mm to +(
Figure PCTKR2019016175-appb-I000010
0.372%)mm tolerance of +(0.001384×D)mm to ((
Figure PCTKR2019016175-appb-I000011
0.372%)+(0.001384×D)}mm or more, and the cold working step comprises cooling the plurality of round bars to a minimum of -70°C or less in a cooling atmosphere formed by evaporation of dry ice. +( of the size of 32)
Figure PCTKR2019016175-appb-I000012
0.825%)mm to +(
Figure PCTKR2019016175-appb-I000013
1.1% of) mm tolerance ((
Figure PCTKR2019016175-appb-I000014
0.825%)-(0.001382×D)}mm to (
Figure PCTKR2019016175-appb-I000015
1.1%)-(0.001382×D)}mm or less, the tolerance of the forced fit between the size of each groove of the pair of flat steels and the size of each round bar will be transformed into a loose fit tolerance. I can.
본 발명의 다른 측면에 따른 수문 개폐 장치는 랙바 제조방법에 의해 제조된 랙바가 적용된 수문 개폐 장치에 있어서, 사각 틀 형태로 형성되어 수로면에 연직으로 설치되는 프레임; 상기 프레임의 양측부에 끼어져 승하강하면서 수로를 개폐하는 수문판; 상기 제조방법에 의해 제조된 랙바로서 하단이 상기 수문판에 연결되어 상기 수문판을 승강시키는 랙바; 및 다수의 기어 조합을 이용하여 인력에 의한 핸들의 회전 운동 또는 모터의 회전 운동을 랙바의 승강 운동으로 변환하는 기어박스를 포함할 수 있다.A sluice door opening and closing device according to another aspect of the present invention is a sluice door opening and closing device to which a rack bar manufactured by a rack bar manufacturing method is applied, comprising: a frame formed in a rectangular frame shape and vertically installed on a water channel; A sluice plate that is sandwiched between both sides of the frame to open and close the waterway while elevating and descending; A rack bar manufactured by the manufacturing method, wherein a lower end is connected to the sluice plate to lift the sluice plate; And a gearbox for converting a rotational motion of a handle or a rotational motion of a motor due to an attractive force into an elevating motion of a rack bar using a combination of a plurality of gears.
한 쌍의 평강의 각 홈의 크기와 각 환봉의 크기 상호간에 억지 끼워 맞춤의 공차를 갖도록 제조된 한 쌍의 평강과 복수 개의 환봉에 대해, 한 쌍의 평강을 기름에 넣어 가열하는 방식으로 열간 가공하거나 액화기체의 증발에 의해 형성된 냉각 분위기에서 복수 개의 환봉을 냉간 가공한 상태에서 각 환봉의 양단을 한 쌍의 평강의 서로 마주 보는 두 개의 홈에 헐겁게 끼워 맞추고 상온으로 복원시키는 방식으로 랙바를 제조함으로써 평강과 환봉을 용접하지 않고 견고한 랙바의 제조가 가능하게 되어 랙바 제조 시 용접으로 인해 발생하는 랙바의 열 변형(휨)을 방지할 수 있다.Hot working by heating a pair of flat steels in oil for a pair of flat steels and a plurality of round bars manufactured so that the size of each groove of a pair of flat steels and the size of each round bar have a tolerance of force fitting between them. Or, in a cooling atmosphere formed by evaporation of liquefied gas, a plurality of round bars are cold-worked, and both ends of each round bar are loosely fitted into two facing grooves of a pair of flat steels and restored to room temperature. It is possible to manufacture a solid rack bar without welding flat steel and round bars, so that thermal deformation (bending) of the rack bar caused by welding when manufacturing the rack bar can be prevented.
한 쌍의 평강에 대한 열간 가공과 복수 개의 환봉에 대한 냉간 가공을 동시에 진행함으로써 평강의 가열 온도를 낮추고 환봉의 냉각 온도를 낮출 수 있어 랙바의 조립 소요 시간을 대폭 줄일 수 있다. 한 쌍의 평강에 대한 열간 가공과 복수 개의 환봉에 대한 냉간 가공을 동시에 진행하는 경우에 복수 개의 환봉의 냉각에 액화질소 대신에 매우 저렴한 드라이아이스를 사용할 수 있음에 따라 랙바의 제조 단가를 대폭 낮출 수 있다.By simultaneously performing hot working on a pair of flat steel and cold working on a plurality of round bars, the heating temperature of the flat steel can be lowered and the cooling temperature of the round bars can be lowered, thereby significantly reducing the assembly time of the rack bar. When hot working for a pair of flat steel and cold working for a plurality of round bars are performed at the same time, very inexpensive dry ice can be used instead of liquid nitrogen to cool the plurality of round bars, which can significantly reduce the manufacturing cost of rack bars. have.
종래와 같이, 수문 개폐 장치의 랙바를 용접에 의해 제작하는 경우에는 랙바가 국부적으로 매우 높은 온도로 가열된다. 용접사의 작업 성향, 숙련도에 따라 랙바의 국부적 가열이 지나치게 높은 온도로 진행되거나 지나치게 오랫동안 진행될 수 있는데, 이 과정에서 랙바의 국부적인 열 변형이 발생되고 이로 인해 랙바의 표면이 미세하게 울퉁불퉁하게 된다. 이러한 열 변형의 정도가 심한 경우에는 랙바가 휘어질 수도 있다. 랙바의 표면이 미세하게 울퉁불퉁하거나 휘어지게 되면 랙바의 승강이 원활하게 이루어질 수 없고 수문 개폐 장치의 기어박스가 고장날 수 있다. 본 발명에 의해 제조된 랙바가 적용된 수문 개폐 장치는 이러한 용접이 필요 없게 되어 수문 개폐가 원활하게 이루어질 수 있고, 랙바와 수문 개폐 장치의 기어가 완벽하게 맞물리게 되어 기어박스의 고장이 방지될 수 있다.As in the prior art, when the rack bar of the sluice door opening and closing device is manufactured by welding, the rack bar is locally heated to a very high temperature. Depending on the work propensity and skill of the welder, the local heating of the rack bar may proceed at an excessively high temperature or may be performed for an excessively long time.In this process, the local thermal deformation of the rack bar occurs, which causes the surface of the rack bar to become finely uneven. If the degree of such thermal deformation is severe, the rack bar may bend. If the surface of the rack bar is slightly uneven or bent, the rack bar cannot be lifted smoothly and the gearbox of the sluice door opening and closing device may be damaged. The sluice door opening and closing device to which the rack bar manufactured according to the present invention is applied does not require such welding, so that the sluice door opening and closing can be made smoothly, and the gears of the rack bar and the sluice door opening and closing device are perfectly meshed, so that failure of the gear box can be prevented.
도 1은 본 발명의 일 실시예에 따른 수문 개폐 장치의 사시도이다.1 is a perspective view of a sluice door opening and closing device according to an embodiment of the present invention.
도 2는 도 1에 도시된 수문 개폐 장치의 일부 확대도이다.2 is a partially enlarged view of the sluice door opening and closing device shown in FIG. 1.
도 3은 도 1, 2에 도시된 랙바(30)와 종래의 랙바(30')를 비교 도시한 도면이다.3 is a view showing a comparison between the rack bar 30 shown in FIGS. 1 and 2 and the conventional rack bar 30'.
도 4는 도 2에 도시된 랙바(30)의 평강(31)과 환봉(32)의 결합 구조도이다.4 is a structural diagram of a coupling structure between the flat steel 31 and the round bar 32 of the rack bar 30 shown in FIG. 2.
도 5는 도 2에 도시된 랙바(30)의 각 부품의 단면도이다. 5 is a cross-sectional view of each component of the rack bar 30 shown in FIG. 2.
도 6은 본 발명의 일 실시예에 따른 랙바 제조 방법의 흐름도이다.6 is a flowchart of a method of manufacturing a rack bar according to an embodiment of the present invention.
도 7은 본 발명의 다른 실시예에 따른 랙바 제조 방법의 흐름도이다.7 is a flowchart of a method of manufacturing a rack bar according to another embodiment of the present invention.
도 8은 본 발명의 또 다른 실시예에 따른 랙바 제조 방법의 흐름도이다.8 is a flowchart of a method of manufacturing a rack bar according to another embodiment of the present invention.
도 9는 본 발명의 일 실시예에 의한 수문 개폐 장치의 랙바(30)의 평강(31)과 환봉(32)에 인발력을 가한 시험예 1의 그래프이다.9 is a graph of Test Example 1 in which a pulling force is applied to the flat steel 31 and the round bar 32 of the rack bar 30 of the sluice door opening and closing device according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 의한 수문 개폐 장치의 랙바(30)의 평강(31)과 환봉(32)에 인발력을 가한 시험예 2의 그래프이다.10 is a graph of Test Example 2 in which a pulling force is applied to the flat steel 31 and the round bar 32 of the rack bar 30 of the sluice door opening and closing device according to an embodiment of the present invention.
본 발명은 최선의 형태로, 수문 개폐 장치의 랙바 제조방법에 있어서, 서로 대칭되어 일렬로 나열된 다수의 홈을 갖는 한 쌍의 평강(31)을 제조하는 단계; 복수 개의 환봉(32)을 제조하는 단계를 포함하고, 상기 한 쌍의 평강(31)의 각 홈의 크기와 상기 각 환봉(32)의 크기 상호간에는 억지 끼워 맞춤의 공차를 갖고, 상기 한 쌍의 평강(31)의 내부까지 균등하게 가열될 수 있도록 상기 한 쌍의 평강(31)을 기름에 넣어 가열하는 방식으로 상기 한 쌍의 평강(31)을 열간 가공하는 단계; 및 상기 복수 개의 환봉(32)의 내부까지 균등하게 냉각될 수 있도록 액화기체의 증발에 의해 형성된 냉각 분위기에서 상기 복수 개의 환봉(32)을 냉각하는 방식으로 상기 복수 개의 환봉(32)을 냉간 가공하는 단계 중에서 적어도 하나의 단계를 더 포함하고, 상기 각 환봉(32)의 양단을 상기 한 쌍의 평강(31)의 서로 마주 보는 두 개의 홈(A)에 헐겁게 끼워 맞춘 상태에서 상온으로 복원시키는 방식으로 상기 한 쌍의 평강(31) 사이에 상기 복수 개의 환봉(32)을 결합시키는 단계를 더 포함하는 수문 개폐 장치의 랙바 제조 방법을 제시한다. The present invention, in the best form, in a method for manufacturing a rack bar of a sluice door opening and closing device, the steps of manufacturing a pair of flat steel 31 having a plurality of grooves symmetrically arranged with each other; Including the step of manufacturing a plurality of round bars (32), the size of each groove of the pair of flat steel (31) and the size of each round bar (32) has a tolerance of force fit between each other, the pair of Hot working the pair of flat steels 31 by putting the pair of flat steels 31 in oil and heating them so that they can be evenly heated to the inside of the flat steels 31; And cold working the plurality of round bars 32 by cooling the plurality of round bars 32 in a cooling atmosphere formed by evaporation of the liquefied gas so that the inside of the plurality of round bars 32 can be evenly cooled. In a method of restoring to room temperature in a state in which at least one of the steps is further included, and both ends of each of the round bars 32 are loosely fitted into two facing grooves A of the pair of flat steels 31 It presents a method of manufacturing a rack bar of a sluice door opening/closing device further comprising the step of coupling the plurality of round bars 32 between the pair of flat steels 31.
또한, 본 발명은 최선의 형태로, 제조된 랙바(30)가 적용된 수문 개폐 장치에 있어서, 사각 틀 형태로 형성되어 수로면에 연직으로 설치되는 프레임(10); 상기 프레임(10)의 양측부에 끼어져 승하강하면서 수로를 개폐하는 수문판(20); 제 1 항의 제조 방법에 의해 제조된 랙바(30)로서 하단이 상기 수문판(20)에 연결되어 상기 수문판(20)을 승강시키는 랙바(30); 및 다수의 기어 조합을 이용하여 인력에 의한 핸들의 회전 운동 또는 모터의 회전 운동을 랙바(30)의 승강 운동으로 변환하는 기어박스(40)를 포함하는 것을 특징으로 하는 수문 개폐 장치를 제시한다. In addition, the present invention in the best form, in the sluice door opening and closing device to which the manufactured rack bar 30 is applied, the frame 10 is formed in a rectangular frame shape and installed vertically on the water channel; A sluice plate 20 that is sandwiched between both sides of the frame 10 to open and close the waterway while elevating and descending; As a rack bar (30) manufactured by the manufacturing method of claim 1, the lower end is connected to the sluice plate (20) to lift the sluice plate (20); And a gearbox 40 for converting a rotational motion of a handle or a rotational motion of a motor by a manpower into a lifting motion of the rack bar 30 by using a combination of a plurality of gears.
이하에서는 도면을 참조하여 본 발명의 실시예를 상세히 설명한다. 이하에서 설명될 본 발명의 실시예는 평강과 환봉을 용접하지 않고 끼움 결합하는 방식으로 랙바를 제조하여 랙바 제조 시 용접으로 인해 발생하는 열 변형을 방지함으로써 수문이 원활하게 개폐될 수 있도록 할 뿐만 아니라 수문 개폐 장치의 고장을 방지할 수 있는 수문 개폐 장치의 랙바 제조방법 및 그 방법에 의해 제조된 랙바가 적용된 수문 개폐 장치에 관한 것이다. 이하에서는 이러한 방법 및 장치를 간략하게 “랙바 제조방법” 및 “수문 개폐 장치”로 호칭할 수도 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The embodiment of the present invention to be described below not only allows the sluice gate to be opened and closed smoothly by manufacturing the rack bar in a way that the flat steel and the round bar are fitted and coupled without welding, thereby preventing thermal deformation caused by welding during the manufacture of the rack bar. It relates to a method for manufacturing a rack bar of a sluice door opening and closing device capable of preventing failure of a sluice door opening and closing device, and a sluice door opening and closing device to which a rack bar manufactured by the method is applied. Hereinafter, such a method and apparatus may be simply referred to as “rack bar manufacturing method” and “sluice door opening and closing device”.
도 1은 본 발명의 일 실시예에 따른 수문 개폐 장치의 사시도이고, 도 2는 도 1에 도시된 수문 개폐 장치의 일부 확대도이다. 도 1, 2를 참조하면, 본 실시예에 따른 수문 개폐 장치는 프레임(10), 수문판(20), 랙바(30), 기어박스(40), 및 핸들(50)로 구성된다. 본 발명의 특징은 이하에서 설명된 바와 같이 랙바(30)의 제조방법에 있기 때문에 이하에서 설명될 랙바(30)가 적용된 수문 개폐 장치에 대해서는 간략하게 설명하기로 한다. 1 is a perspective view of a sluice door opening and closing device according to an embodiment of the present invention, and FIG. 2 is a partial enlarged view of the sluice door opening and closing device shown in FIG. 1. 1 and 2, the sluice door opening and closing device according to the present embodiment includes a frame 10, a sluice plate 20, a rack bar 30, a gearbox 40, and a handle 50. Since the characteristics of the present invention are in the manufacturing method of the rack bar 30 as described below, a brief description will be given of a sluice door opening and closing device to which the rack bar 30 to be described below is applied.
본 실시예가 속하는 기술분야에서 통상의 지식을 가진 자라면 랙바(30)가 적용된 수문 개폐 장치는 도 1, 2에 도시된 형태와 구조 외에 다양한 형태와 구조로 구현될 수 있음을 이해할 수 있다. 예를 들어, 동력원으로서 핸들(50) 이외에 모터(미도시)가 추가될 수도 있다. 프레임(10)은 사각 틀 형태로 형성되어 수로면에 연직으로 설치된다. 프레임(10)의 양측부는 이것에 수문판(20)이 끼워져 수직으로 슬라이딩 이동될 수 있도록 횡단면 “[”과 “]” 형태를 갖는다. 수문판(20)은 프레임(10)의 양측부에 끼어져 승강하면서 수로를 개폐하는 역할을 한다. 랙바(30)는 이하에서 설명될 제조 방법에 의해 제조된 랙바(30)로서 그 하단이 수문판(20)에 연결되어 수문판(20)을 승강시킨다. 랙바(30)는 인력 또는 모터의 동력에 의해 구동되는 기어박스(40)에 의해 승강된다. Those of ordinary skill in the art to which this embodiment belongs can understand that the sluice door opening and closing device to which the rack bar 30 is applied may be implemented in various shapes and structures in addition to the shapes and structures shown in FIGS. 1 and 2. For example, a motor (not shown) may be added in addition to the handle 50 as a power source. The frame 10 is formed in a rectangular frame shape and is vertically installed on the water channel surface. Both sides of the frame 10 have the shape of "[" and "]" in cross-sections so that the sluice plate 20 is fitted thereto and can be vertically slid. The sluice plate 20 is sandwiched between both sides of the frame 10 and serves to open and close the waterway while ascending and descending. The rack bar 30 is a rack bar 30 manufactured by a manufacturing method to be described below, and its lower end is connected to the sluice plate 20 to lift the sluice plate 20. The rack bar 30 is raised and lowered by a gearbox 40 driven by a manpower or a motor power.
기어박스(40)는 다수의 기어 조합을 이용하여 인력에 의한 핸들의 회전 운동 또는 모터의 회전 운동을 랙바(30)의 승강 운동으로 변환한다. 핸들(50)은 사람의 힘에 의해 회전되는 부재로서 수문판(20)을 승강시키기 위한 동력을 기어박스(40)에 전달한다. 동력원으로서 핸들 이외에 모터가 추가될 경우, 모터는 수문판(20)을 승강시키기 위한 토크를 발생시키고, 이와 같이 발생된 토크는 기어박스(50)에 전달된다. 즉, 모터는 미리 설정된 크기의 토크를 기어박스(50)로 전달하여 수문판(20)을 승강시킨다. 모터 및 핸들(40)은 기어박스(50)에 병렬로 연결되며, 수문개폐장치가 모터에 의해 구동될 때에는 핸들(40)은 회전하지 않는다. 이러한 구동 구조는 본 실시예의 특징과 관련이 없기 때문에 자세한 설명은 생략된다. The gearbox 40 converts a rotational motion of a handle or a rotational motion of a motor by a manpower into a lifting motion of the rack bar 30 by using a combination of a plurality of gears. The handle 50 is a member that is rotated by the force of a person, and transmits power for raising and lowering the sluice plate 20 to the gearbox 40. When a motor is added in addition to the handle as a power source, the motor generates a torque for raising and lowering the sluice plate 20, and the generated torque is transmitted to the gearbox 50. That is, the motor transmits a torque of a preset size to the gearbox 50 to raise and lower the sluice plate 20. The motor and the handle 40 are connected in parallel to the gearbox 50, and the handle 40 does not rotate when the sluice opening and closing device is driven by the motor. Since this driving structure is not related to the features of the present embodiment, detailed descriptions are omitted.
도 3은 도 1, 2에 도시된 랙바(30)와 종래의 랙바(30')를 비교 도시한 도면이다. 도 3의 (a) 및 (b)는 도 1, 2에 도시된 랙바(30)를 도시한 사시도와 측면도이고. 도 3의 (c) 및 (d)는 종래의 랙바(30')를 도시한 사시도와 측면도이다. 도 3의 (c) 및 (d)에는 도 1, 2에 도시된 랙바(30)와 종래의 랙바(30')의 휨 변형 정도에 대한 이해를 돕기 위해, 종래의 랙바(30')가 다소 과장되게 휘어진 것으로 도시되어 있다. 3 is a view showing a comparison between the rack bar 30 shown in FIGS. 1 and 2 and the conventional rack bar 30'. 3A and 3B are perspective and side views illustrating the rack bar 30 shown in FIGS. 1 and 2. 3(c) and (d) are perspective and side views showing a conventional rack bar 30'. In (c) and (d) of Figure 3, in order to help understand the degree of bending deformation of the rack bar 30 and the conventional rack bar 30' shown in Figs. 1 and 2, the conventional rack bar 30' is somewhat It is shown exaggeratedly curved.
도 3의 (a) 및 (b)를 참조하면, 랙바(30)는 기어박스(40)의 기어와 맞물리도록 다수의 돌기를 가진 바 형태로 제작되거나 사다리 형태로 제작된다. 사다리 형태의 랙바(30)는 서로 평행하게 배치된 한 쌍의 평강(31)과 한 쌍의 평강(31) 사이에 삽입되어 연결되는 복수 개의 환봉(32)으로 구성된다. Referring to FIGS. 3A and 3B, the rack bar 30 is manufactured in the form of a bar or ladder having a plurality of protrusions so as to mesh with the gears of the gear box 40. The ladder-shaped rack bar 30 is composed of a pair of flat steels 31 arranged parallel to each other and a plurality of round bars 32 that are inserted and connected between the pair of flat steels 31.
종래의 랙바 제조방법에 따르면, 각 환봉(32)의 양단을 한 쌍의 평강(31)의 마주 보는 구멍에 끼워 맞춘 후에 한 쌍의 평강(31)의 구멍과 각 환봉(32)간의 틈새를 용접하는 방식으로 한 쌍의 평강(31) 사이에 복수 개의 환봉(32)을 결합시켰다. 이와 같이, 수문 개폐 장치의 랙바(30')를 용접에 의해 제작하는 경우에는 랙바(30')가 국부적으로 매우 높은 온도로 가열된다. 용접사의 작업 성향, 숙련도에 따라 랙바(30')의 국부적 가열이 지나치게 높은 온도로 진행되거나 지나치게 오랫동안 진행될 수 있는데, 이 과정에서 랙바(30')의 국부적인 열 변형이 발생되고 이로 인해 랙바(30')의 표면이 미세하게 울퉁불퉁하게 된다. 이러한 열 변형의 정도가 심한 경우에는 도 3의 (c) 및 (d)에 도시된 바와 같이, 육안으로 확인될 만큼 랙바(30')가 휘어질 수도 있다. 랙바(30')의 표면이 미세하게 울퉁불퉁하거나 휘어지게 되면 랙바(30')의 승강이 원활하게 이루어질 수 없고 기어박스(40)가 고장나게 된다.According to the conventional rack bar manufacturing method, after fitting both ends of each round bar 32 into the opposite hole of a pair of flat steel 31, the gap between the hole of the pair of flat steel 31 and each round bar 32 is welded. In such a way, a plurality of round bars 32 were coupled between the pair of flat steels 31. In this way, when the rack bar 30 ′ of the sluice door opening and closing device is manufactured by welding, the rack bar 30 ′ is locally heated to a very high temperature. Depending on the work tendency and skill of the welder, the local heating of the rack bar 30 ′ may be performed at an excessively high temperature or may be performed for an excessively long time. In this process, the local thermal deformation of the rack bar 30 ′ occurs, and thus, the rack bar 30 The surface of') becomes finely uneven. When the degree of such thermal deformation is severe, as shown in (c) and (d) of FIG. 3, the rack bar 30 ′ may be bent enough to be confirmed with the naked eye. If the surface of the rack bar 30 ′ is finely uneven or bent, the rack bar 30 ′ cannot be lifted smoothly and the gear box 40 is broken.
도 4는 도 2에 도시된 랙바(30)의 평강(31)과 환봉(32)의 결합 구조도이다. 도 4의 (a)는 도 2에 도시된 랙바(30)의 평강(31)의 내측면도이다. 도 4의 (b)는 도 1, 2에 도시된 랙바(30)의 평강(31)과 환봉(32)의 결합 구조를 나타내기 위한 정면도이고, 도 4의 (c)는 종래의 랙바(30')의 평강(31')와 환봉(32')의 결합 구조를 나타내기 위한 정면도이다. 이하에서 설명될 랙바(30)의 소재는 일반구조용 압연강재, 기계구조용 탄소강 또는 스테인리스강(stainless steel) STS 등이 가능한데, 그중 내부식성의 고강도 소재로서 스테인리스강 STS 304가 바람직하며, 이것으로 특정하여 설명하기로 한다. 4 is a structural diagram of a coupling structure between the flat steel 31 and the round bar 32 of the rack bar 30 shown in FIG. 2. 4A is an inner side view of the flat steel 31 of the rack bar 30 shown in FIG. 2. Figure 4 (b) is a front view showing the coupling structure of the flat steel 31 and the round bar 32 of the rack bar 30 shown in Figures 1 and 2, Figure 4 (c) is a conventional rack bar (30) It is a front view to show the coupling structure of the flat steel 31' of') and the round bar 32'. The material of the rack bar 30 to be described below may be rolled steel for general structure, carbon steel for machine structure, or stainless steel STS, among which stainless steel STS 304 is preferable as a high-strength corrosion-resistant material, and is specified as I will explain.
도 4의 (a)를 참조하면, 본 실시예에서 각 평강(31)의 내측면에는 원형의 홈(A)이 다수 개 형성 된다. 도 4의 (b)를 참조하면, 본 실시예는 각 평강(31)의 홈(A)과 각 환봉(32)을 상온에서 억지 끼워 맞춤 공차로 가공한 후 열간 가공하거나 냉간 가공하여 헐거운 끼워 맞춤 상태가 되게 한다. 이어서, 한 쌍의 평강(31)은 양측의 홈(A)의 개구부가 서로 마주보도록 배치되고, 각 환봉(32)의 양단을 한 쌍의 평강(31)의 마주 보는 두 개의 홈(A)에 각각 삽입 후 헐겁게 끼워 맞춘 상태에서 프레스로 압력을 가하면서 상온으로 복원시키는 방식으로 한 쌍의 평강(31) 사이에 복수 개의 환봉(32)이 삽입되어 체결된다.Referring to Figure 4 (a), in this embodiment, a plurality of circular grooves (A) are formed on the inner surface of each flat steel 31. Referring to Figure 4 (b), in this embodiment, the groove (A) of each flat steel (31) and each round bar (32) are processed at room temperature to a tight fit tolerance, and then hot-worked or cold-worked to loose fit. Make it a state. Subsequently, the pair of flat steels 31 are arranged so that the openings of the grooves A on both sides face each other, and both ends of each round bar 32 are placed in two facing grooves A of the pair of flat steels 31. After each insertion, a plurality of round bars 32 are inserted between the pair of flat steels 31 in a manner of restoring to room temperature while applying pressure with a press in a loosely fitted state.
본 실시예의 열간 가공은 한 쌍의 평강(31)의 내부까지 균등하게 가열될 수 있도록 한 쌍의 평강(31)을 기름에 넣어 가열하는 방식으로 이루어진다. 냉간 가공은 복수 개의 환봉(32)의 내부까지 균등하게 냉각될 수 있도록 액화기체의 증발에 의해 형성된 냉각 분위기에서 복수 개의 환봉(32)을 냉각하는 방식으로 이루어진다. 이러한 열간 가공과 냉간 가공은 동시에 이루어질 수도 있다.The hot working of this embodiment is performed by putting a pair of flat steels 31 into oil and heating them so that the insides of the pair of flat steels 31 are evenly heated. Cold working is performed by cooling the plurality of round bars 32 in a cooling atmosphere formed by evaporation of the liquefied gas so that the inside of the plurality of round bars 32 can be evenly cooled. Such hot working and cold working may be performed simultaneously.
도 4의 (c)를 참조하면, 종래에는 한 쌍의 평강(31') 각각에 각 평강(31')을 관통하는 형태의 홈(A')이 형성된다. 각 환봉(32')이 한 쌍의 평강(31')의 마주 보는 홈(A')에 삽입된 상태에서 한 쌍의 평강(31)의 구멍과 각 환봉(32)간의 틈새인 용접 부위(S)를 용접함으로써 한 쌍의 평강(31) 사이에 복수 개의 환봉(32')이 결합되었다. 상술한 바와 같이, 이러한 종래의 용접 방식에 의해 제조된 랙바(30')는 국부적인 열 변형으로 인해 랙바(30')의 표면이 미세하게 울퉁불퉁하거나 휘어지게 된다. 결과적으로, 랙바(30)와 수문 개폐 장치의 기어박스(40)의 기어가 완벽하게 맞물리지 않게 됨에 따라 랙바(30')의 승강이 원활하게 이루어질 수 없고 기어박스(40)에 과부하가 발생되어 고장을 야기한다.Referring to (c) of FIG. 4, in the related art, a groove A'having a shape penetrating each of the flat steels 31' is formed in each of the pair of flat steels 31'. In the state where each round bar 32' is inserted into the opposite groove A'of the pair of flat steels 31', the welding part (S) that is a gap between the hole of the pair of flat steels 31 and each round bar 32 ) By welding a plurality of round bars (32') between the pair of flat steel (31) was coupled. As described above, in the rack bar 30 ′ manufactured by such a conventional welding method, the surface of the rack bar 30 ′ is finely uneven or bent due to local thermal deformation. As a result, as the gears of the rack bar 30 and the gearbox 40 of the sluice door opening and closing device are not perfectly engaged, the lifting and lowering of the rack bar 30' cannot be made smoothly, and an overload occurs in the gearbox 40, thereby causing a failure. Cause.
도 5는 도 2의 랙바(30)의 각 부품의 단면도이다. 도 5의 (a)는 랙바(30)의 평강(31)의 횡단면도이고, 도 5의 (b)는 랙바(30)의 환봉(32)의 종단면도이다. 다음 표 1에는 여러 규격의 평강(31)과 환봉(32)의 치수가 기재되어 있다. 여기에서, “A”는 평강(31)의 홈의 깊이를 나타내고, “B”는 평강(31)의 두께를 나타내고, “H”는 평강(31)의 너비를 나타내고, “L”은 환봉(32)의 길이를 나타내고, “D”는 평강(31) 홈의 직경과 환봉(32) 직경의 기준 치수를 나타낸다. 도 5에는 D=16mm 규격에 해당하는 평강(31)과 환봉(32)이 도시되어 있다. 이하에서는 D=16mm 규격의 실시예를 설명하기로 한다. 본 실시예가 속하는 기술분야에서 통상의 지식을 가진 자라면 다른 규격의 실시예에 대해서도 아래의 설명이 적용될 수 있음을 이해할 수 있다.5 is a cross-sectional view of each component of the rack bar 30 of FIG. 2. Figure 5 (a) is a cross-sectional view of the flat steel 31 of the rack bar 30, Figure 5 (b) is a longitudinal cross-sectional view of the round bar 32 of the rack bar 30. Table 1 below lists the dimensions of the flat steel 31 and the round bar 32 of various standards. Here, “A” indicates the depth of the groove of the flat steel 31, “B” indicates the thickness of the flat steel 31, “H” indicates the width of the flat steel 31, and “L” indicates the round bar ( 32), and “D” indicates the standard dimensions of the diameter of the groove of the flat steel 31 and the diameter of the round bar 32. 5 shows a flat steel 31 and a round bar 32 corresponding to the D=16mm standard. Hereinafter, an embodiment of the D=16mm standard will be described. Those of ordinary skill in the art to which this embodiment belongs can understand that the following description may be applied to embodiments of other standards.
DD 평강(31)Pyeonggang (31) 환봉(32)Round bar (32) AA BB HH LL
최소공차Minimum tolerance 최대공차Maximum tolerance 최소공차Minimum tolerance 최대공차Maximum tolerance
1616 0.0000.000 0.0150.015 0.0330.033 0.0440.044 1010 1515 4040 5050
2222 0.0000.000 0.0170.017 0.0390.039 0.0520.052 88 1212 6565 5555
2525 0.0000.000 0.0190.019 0.0410.041 0.0550.055 1111 1616 6565 7070
2626 0.0000.000 0.0190.019 0.0420.042 0.0560.056 1111 1616 7575 7070
3232 0.0000.000 0.0210.021 0.0470.047 0.0620.062 1515 2222 9090 9090
3535 0.0000.000 0.0220.022 0.0490.049 0.0650.065 1717 2525 9090 9999
4343 0.0000.000 0.0240.024 0.0540.054 0.0720.072 3030 3838 105105 140140
5151 0.0000.000 0.0270.027 0.0590.059 0.0720.072 3030 3838 125125 160160
6565 0.0000.000 0.0300.030 0.0670.067 0.0890.089 3030 3838 180180 190190
도 6은 본 발명의 일 실시예에 따른 랙바 제조방법의 흐름도이다. 도 6을 참조하면, 본 발명의 실시예에 따른 랙바 제조방법은 다음과 같은 단계들로 구성된다. 110 단계에서는 절삭 가공 등을 이용하여 스테인리스강 STS 304의 모재로부터 서로 대칭되어 일렬로 나열된 다수의 홈을 갖는 한 쌍의 평강(31)을 제조한다. 120 단계에서는 절삭 가공 등을 이용하여 스테인리스강 STS 304의 모재로부터 복수 개의 환봉(32)을 제조한다. 여기에서, 한 쌍의 평강(31)의 각 홈의 크기와 각 환봉(32)의 크기 상호간에는 억지 끼워 맞춤의 공차를 갖는다.본 실시예에 따르면, 110 단계에서의 한 쌍의 평강(31) 제조 시, 상온 20℃에서 각 홈(A)의 직경은 기준 치수(D) 16mm 에 대해 16mm 내지 16.015mm [{D+(
Figure PCTKR2019016175-appb-I000016
의 0.372%)}mm]로 형성되고, 홈(A)의 깊이는 각 평강(31)의 두께 15mm일 때 10mm의 깊이로 형성되고, 각 평강(31)의 내측면에서의 이웃하는 홈(A)들 간의 간격은 랙바와 맞물리는 기어의 간격과 동일하게 형성된다. 120 단계에서의 환봉(32) 제조 시, 상온 20℃에서 각 환봉(32)의 직경은 기준 치수 16mm에 대해 16.033mm 내지 16.044mm [{D+(
Figure PCTKR2019016175-appb-I000017
의 0.825%)}mm 내지 {D+(
Figure PCTKR2019016175-appb-I000018
의 1.1%)}mm]로 형성되고, 환봉(32)의 길이는 50mm로 형성된다.
6 is a flowchart of a method of manufacturing a rack bar according to an embodiment of the present invention. Referring to Figure 6, the rack bar manufacturing method according to an embodiment of the present invention consists of the following steps. In step 110, a pair of flat steels 31 having a plurality of grooves arranged in a line are symmetrical to each other from the base material of stainless steel STS 304 by cutting or the like. In step 120, a plurality of round bars 32 are manufactured from the base material of stainless steel STS 304 using a cutting process or the like. Here, the size of each groove of the pair of flat steels 31 and the size of each round bar 32 have a tolerance for force fitting. According to this embodiment, the pair of flat steels 31 in step 110 At the time of manufacture, the diameter of each groove (A) at room temperature 20 °C is 16mm to 16.015mm for the reference dimension (D) 16mm [{D+(
Figure PCTKR2019016175-appb-I000016
0.372%)}mm], and the depth of the groove (A) is formed to a depth of 10 mm when the thickness of each flat steel 31 is 15 mm, and the adjacent groove (A) on the inner surface of each flat steel 31 ) The spacing between them is formed equal to the spacing of the gear meshing with the rack bar. When manufacturing the round bar 32 in step 120, the diameter of each round bar 32 at room temperature of 20° C. is 16.033mm to 16.044mm for the standard size 16mm [{D+(
Figure PCTKR2019016175-appb-I000017
0.825%)}mm to {D+(
Figure PCTKR2019016175-appb-I000018
1.1%)}mm], and the length of the round bar 32 is formed to be 50mm.
이와 같이, 한 쌍의 평강(31)의 각 홈의 크기는 각 홈의 크기 기준 치수 16[D]mm에 대해 상온 20℃에서 0mm 내지 +0.015mm[+(
Figure PCTKR2019016175-appb-I000019
의 0.372%)mm]의 공차를 갖고 각 환봉(32)의 크기는 각 환봉(32)의 크기 기준 치수 16mm에 대해 상온 20℃에서+0.033mm 내지 +0.044mm [+(
Figure PCTKR2019016175-appb-I000020
의 0.825%)mm 내지 +(
Figure PCTKR2019016175-appb-I000021
의 1.1%)mm]를 가짐에 따라 한 쌍의 평강(31)의 각 홈의 크기와 각 환봉(32)의 크기는 상호간에 억지 끼워 맞춤의 공차를 갖게 된다.
In this way, the size of each groove of the pair of flat steel 31 is 0mm to +0.015mm[+() at room temperature 20°C for the standard size of each groove of 16[D]mm.
Figure PCTKR2019016175-appb-I000019
0.372%)mm], and the size of each round bar (32) is +0.033mm to +0.044mm [+(
Figure PCTKR2019016175-appb-I000020
0.825%)mm to +(
Figure PCTKR2019016175-appb-I000021
1.1%) mm], the size of each groove of the pair of flat steels 31 and the size of each round bar 32 have a tolerance of forcibly fitting each other.
130 단계에서는 한 쌍의 평강(31)의 내부까지 균등하게 가열될 수 있도록 한 쌍의 평강(31)을 기름에 넣어 가열하는 방식으로 110 단계에서 제조된 한 쌍의 평강(31)을 열간 가공한다. 이러한 열간 가공 시 사용되는 기름의 예로는 지방유, 혼합유, 광유 등을 들 수 있다. 한 쌍의 평강(31)이 그 내부까지 가열될 수 있도록 기름의 온도에 따라 그것을 기름에 완전히 담근 상태에서 10분 내지 1시간 정도 잠시 대기한 후에 꺼낸다. 각 평강(31)의 열간 가공시 신장량은 도 5에 도시된 바와 같은 크기로 각 평강(31)이 제조되었을 때에 스테인리스강 STS 304의 열팽창 계수는 0℃ 이상에서 17.3×10-6 m/(m℃)이므로 다음 수학식 1에 의해 계산될 수 있다.In step 130, the pair of flat steels 31 manufactured in step 110 are hot-processed by putting a pair of flat steels 31 in oil and heating them so that the inside of the pair of flat steels 31 can be evenly heated. . Examples of oils used in such hot processing include fatty oils, mixed oils, and mineral oils. Depending on the temperature of the oil so that the pair of flat steels 31 can be heated to the inside, wait for 10 minutes to 1 hour in the state of being completely immersed in the oil, and then take it out. The amount of elongation during hot working of each flat steel 31 is as shown in FIG. 5. When each flat steel 31 is manufactured, the coefficient of thermal expansion of stainless steel STS 304 is 17.3×10 -6 m/(m) at 0°C or higher. ℃), so it can be calculated by the following equation (1).
[수학식 1][Equation 1]
열팽창량 = 길이×열팽창 계수×온도변화량Thermal expansion amount = length × coefficient of thermal expansion × temperature change
상온 20℃에서 각 평강(31)을 제조한 후에 열간 가공에서 180℃로 가열했을 경우, 열팽창량 = 16mm×17.3×10-6×160= 0.044mm [Dmm×17.3×10-6×160 = (0.002768×D)mm]이므로, 평강의 홈(A)의 직경은 0.044mm [(0.002768×D)mm]만큼 증가하게 된다. 즉, 180℃ 가열 상태의 평강(31)의 각 홈 직경 공차는 +0.044mm 내지 +0.059mm [+(0.002768×D)mm 내지 +{(
Figure PCTKR2019016175-appb-I000022
의 0.372%)+(0.002768×D)}mm]가 되고 상온 20℃의 각 환봉(32)의 직경 공차는 +0.033mm 내지 +0.044mm [+(
Figure PCTKR2019016175-appb-I000023
의 0.825%)mm 내지 +(
Figure PCTKR2019016175-appb-I000024
의 1.1%)mm]이므로, 한 쌍의 평강(31)의 각 홈과 환봉(32)간의 최소틈새는 0.0000mm이고, 최대 틈새는 0.026mm로 헐거운 끼워 맞춤 공차가 된다. 이에 따라, 한 쌍의 평강(110)의 마주 보는 홈에 환봉(32) 양단의 삽입이 매우 수월하게 이루어질 수 있다. 이와 같이, 130 단계에서는 한 쌍의 평강(31)을 최소 180℃ 이상의 기름에 넣어 최소 180℃ 이상으로 가열함으로써 각 홈의 크기의 0mm 내지 +0.015mm[+(
Figure PCTKR2019016175-appb-I000025
의 0.372%)mm] 공차를 +0.044mm 내지 +0.059mm [ +(0.002768×D)mm 내지 +{(
Figure PCTKR2019016175-appb-I000026
의 0.372%)+(0.002768×D)}mm ] 이상의 공차로 변형함에 따라 한 쌍의 평강(31)의 각 홈의 크기와 각 환봉(32)의 크기 상호간의 억지 끼워 맞춤의 공차는 헐거운 끼워 맞춤 공차로 변형된다.
When each flat steel 31 is manufactured at room temperature at 20℃ and then heated to 180℃ in hot working, the amount of thermal expansion = 16mm×17.3×10 -6 ×160= 0.044mm [Dmm×17.3×10 -6 ×160 = ( 0.002768×D)mm], the diameter of the groove A of the flat steel increases by 0.044mm [(0.002768×D)mm]. That is, the tolerance of each groove diameter of the flat steel 31 heated at 180°C is +0.044mm to +0.059mm [+(0.002768×D)mm to +{(
Figure PCTKR2019016175-appb-I000022
0.372%)+(0.002768×D)}mm], and the diameter tolerance of each round bar 32 at room temperature of 20℃ is +0.033mm to +0.044mm [+(
Figure PCTKR2019016175-appb-I000023
0.825%)mm to +(
Figure PCTKR2019016175-appb-I000024
1.1%)mm], so the minimum clearance between each groove of the pair of flat steel 31 and the round bar 32 is 0.0000mm, and the maximum clearance is 0.026mm, which is a loose fit tolerance. Accordingly, insertion of both ends of the round bar 32 into the facing groove of the pair of flat steels 110 can be made very easily. As such, in step 130, by putting the pair of flat steels 31 in oil of at least 180°C and heating them to at least 180°C, the size of each groove is 0mm to +0.015mm[+(
Figure PCTKR2019016175-appb-I000025
0.372%)mm] tolerance of +0.044mm to +0.059mm [+(0.002768×D)mm to +{(
Figure PCTKR2019016175-appb-I000026
Of 0.372%)+(0.002768×D)}mm ], the tolerance of force fit between the size of each groove of the pair of flat steels (31) and the size of each round bar (32) is loose fit Transformed into tolerance.
140 단계에서는 120 단계에서 제조된 각 환봉(32)의 양측을 130 단계에서 열간 가공된 한 쌍의 평강(31)의 서로 마주 보는 두 개의 홈(A)에 헐겁게 끼워 맞춘 상태에서 프레스로 압력을 가하면서 상온 20℃의 환경에서 방치시키는 방식으로 한 쌍의 평강(31) 사이에 복수 개의 환봉(32)을 결합시킨다. 여기에서, 프레스의 압력은 한 쌍의 평강(31) 사이에 복수 개의 환봉(32)이 헐겁게 끼워진 상태에서의 상온 복원 과정이 상당한 시간이 소요됨에 따라 상온 복원 과정에서 한 쌍의 평강(31)과 복수 개의 환봉(32)간의 조립 형태가 틀어지는 것을 방지하기 위해 사용된다.In step 140, pressure is applied with a press while both sides of each round bar (32) manufactured in step 120 are loosely fitted into the two grooves (A) facing each other of the pair of flat steels (31) hot-machined in step 130. The plurality of round bars 32 are coupled between the pair of flat steels 31 while leaving them in an environment at room temperature of 20°C. Here, the pressure of the press is a pair of flat steels 31 and a pair of flat steels 31 in the room temperature restoration process as the room temperature restoration process takes a considerable amount of time in a state in which a plurality of round bars 32 are loosely fitted between the pair of flat steels 31 It is used to prevent the assembly shape between the plurality of round bars 32 from being distorted.
상술한 바와 같이, 한 쌍의 평강(31)이 180℃까지 가열되었다가 상온 20℃로 되돌아오면 한 쌍의 평강(31)의 각 홈의 크기와 각 환봉(32)의 크기 상호간의 헐거운 끼워 맞춤의 공차는 억지 끼워 맞춤 공차로 복원된다. 한 쌍의 평강(31)의 각 홈의 직경이 16mm[Dmm] 미만이고 각 환봉(32)의 직경이 16.044mm[{D+(
Figure PCTKR2019016175-appb-I000027
의 1.1%)}mm]를 초과하면 한 쌍의 평강(31)의 각 홈의 직경보다 각 환봉(32)의 직경이 지나치게 큼에 따라 평강(31)의 홈 주위에 균열이 발생할 수 있다. 한 쌍의 평강(31)의 각 홈의 직경이 16.015mm[{D+(
Figure PCTKR2019016175-appb-I000028
의 0.372%)}mm]를 초과하고 각 환봉(32)의 직경이 16.033mm[{D+(
Figure PCTKR2019016175-appb-I000029
의 0.825%)}mm]미만이면 한 쌍의 평강(31)의 각 홈의 내면에 각 환봉(32)의 표면이 단단하게 압착 결합될 수 없음에 따라 수문 개폐 장치의 사용 중에 한 쌍의 평강(31)로부터 환봉(32)이 쉽게 분리될 수 있다.
As described above, when the pair of flat steels 31 is heated to 180°C and returns to room temperature 20°C, the size of each groove of the pair of flat steels 31 and the size of each round bar 32 are loosely fitted. The tolerance of the force-fitting is restored to the tolerance. The diameter of each groove of the pair of flat steel 31 is less than 16mm[Dmm], and the diameter of each round bar 32 is 16.044mm[{D+(
Figure PCTKR2019016175-appb-I000027
If it exceeds 1.1%)}mm], cracks may occur around the grooves of the flat steels 31 as the diameter of each round bar 32 is too large than the diameters of each groove of the pair of flat steels 31. The diameter of each groove of the pair of flat steel 31 is 16.015mm [{D+(
Figure PCTKR2019016175-appb-I000028
0.372%)}mm] and the diameter of each round bar 32 is 16.033mm[{D+(
Figure PCTKR2019016175-appb-I000029
If it is less than 0.825%)}mm], the surface of each round bar 32 cannot be firmly pressed into the inner surface of each groove of a pair of flat steels 31, so a pair of flat steels ( The round bar 32 can be easily separated from 31).
이상에서의 상온 20℃는 본 실시예의 랙바(30)가 사용되는 환경 온도의 예일 뿐이며, 그 환경 온도가 -40℃ 내지 40℃의 범위 내에서는 도 5에 도시된 예와 같은 수치로 한 쌍의 평강(31)과 복수 개의 환봉(32)이 제작될 경우에 평강(31)의 홈 주위의 균열 발생이 없고 한 쌍의 평강(31)의 각 홈의 내면에 각 환봉(32)의 표면이 단단하게 압착 결합될 수 있다. Room temperature 20 ℃ above is only an example of the environmental temperature in which the rack bar 30 of the present embodiment is used, and the environmental temperature is within the range of -40 ℃ to 40 ℃, a pair of the same numerical value as the example shown in FIG. When the flat steel 31 and the plurality of round bars 32 are manufactured, there is no cracking around the groove of the flat steel 31, and the surface of each round bar 32 is hard on the inner surface of each groove of the pair of flat steel 31 Can be squeezed together.
도 7은 본 발명의 다른 실시예에 따른 랙바 제조방법의 흐름도이다. 도 7을 참조하면, 도 7에 도시된 실시예에 따른 랙바 제조방법은 다음과 같은 단계들로 구성된다. 210 단계에서는 절삭 가공 등을 이용하여 스테인리스강 STS 304의 모재로부터 서로 대칭되어 일렬로 나열된 다수의 홈을 갖는 한 쌍의 평강(31)을 제조한다. 220 단계에서는 절삭 가공 등을 이용하여 스테인리스강 STS 304의 모재로부터 복수 개의 환봉(32)을 제조한다. 여기에서, 한 쌍의 평강(31)의 각 홈의 크기와 각 환봉(32)의 크기 상호간에는 억지 끼워 맞춤의 공차를 갖는다. 210, 220 단계에서 한 쌍의 평강(31)과 복수 개의 환봉(32)을 도 6에 도시된 실시예과 동일하게 도 5에 도시된 예의 크기로 제작된다. 따라서, 이것에 대한 자세한 설명은 도 5에 대하여 상술한 설명으로 갈음하기로 한다.7 is a flowchart of a method of manufacturing a rack bar according to another embodiment of the present invention. Referring to FIG. 7, the method of manufacturing a rack bar according to the embodiment illustrated in FIG. 7 includes the following steps. In step 210, a pair of flat steels 31 having a plurality of grooves arranged in a row are symmetrical to each other from the base material of stainless steel STS 304 by cutting or the like. In step 220, a plurality of round bars 32 are manufactured from the base material of stainless steel STS 304 using a cutting process or the like. Here, the size of each groove of the pair of flat steels 31 and the size of each round bar 32 have a tolerance of force fitting. In steps 210 and 220, a pair of flat steels 31 and a plurality of round bars 32 are manufactured in the same size as the example shown in FIG. 5 as in the embodiment shown in FIG. 6. Therefore, a detailed description of this will be replaced with the above description with respect to FIG. 5.
230 단계에서는 복수 개의 환봉(32)의 내부까지 균등하게 냉각될 수 있도록 액화질소의 증발에 의해 형성된 냉각 분위기에서 복수 개의 환봉(32)을 냉각하는 방식으로 220 단계에서 제조된 복수 개의 환봉(32)을 냉간 가공한다. 각 환봉(32)의 냉간 가공 시 수축량은 도 7에 도시된 바와 같은 크기로 각 평강(31)이 제조되었을 때에 스테인리스강 STS 304의 열팽창 계수는 0℃ 이상에서 17.3×10-6 m/(m℃)이고, 0℃ 내지 -73℃의 열팽창 계수는 14.8×10-6 m/(m℃)이므로 다음과 같이 수학식 1에 의해 계산될 수 있다.In step 230, the plurality of round bars 32 manufactured in step 220 are cooled in a cooling atmosphere formed by evaporation of liquid nitrogen so that the inside of the plurality of round bars 32 can be evenly cooled. Cold work. The shrinkage during cold working of each round bar 32 is as shown in FIG. 7. When each flat steel 31 is manufactured, the coefficient of thermal expansion of stainless steel STS 304 is 17.3×10 -6 m/(m) at 0°C or higher. ℃), and the coefficient of thermal expansion of 0°C to -73°C is 14.8×10 -6 m/(m°C), so it can be calculated by Equation 1 as follows.
상온 20℃에서 각 환봉(32)을 제조한 후에 냉간 가공에서 -165℃로 냉각했을 경우, 20℃ 내지 0℃의 열팽창량 =16mm×17.3×10-6×(-20) = -0.006mm [Dmm×17.3×10-6×(-20)=-(0.000346×D)mm]이고, 0℃ 내지 -165℃의 열팽창량 =16mm×14.8×10-6×(-165) = -0.039mm [Dmm×14.8×10-6×(-165)=-(0.002442×D)mm]이므로, 각 환봉(32)의 직경은 0.045mm[(0.002788×D)mm]만큼 감소하게 된다. 즉, -165℃ 냉각 상태의 환봉(32)의 직경 공차는 -0.012mm 내지 -0.001mm [{(
Figure PCTKR2019016175-appb-I000030
의 0.825%)-(0.002788×D)}mm 내지 {(
Figure PCTKR2019016175-appb-I000031
의 1.1%)-(0.002788×D)}mm]가 되고 상온 20℃의 평강(31)의 각 홈 직경 공차가 0mm 내지 +0.015mm[+(
Figure PCTKR2019016175-appb-I000032
의 0.372%)mm]이므로, 한 쌍의 평강(31)의 각 홈과 환봉(32)간의 최소틈새는 0.001mm이고, 최대 틈새는 0.027mm로 헐거운 끼워 맞춤 공차가 된다. 이에 따라, 한 쌍의 평강(110)의 마주 보는 홈에 환봉(32) 양단의 삽입이 매우 수월하게 이루어질 수 있다. 이와 같이, 230 단계에서는 복수 개의 환봉(32)을 액화질소의 증발에 의해 형성된 냉각 분위기에서 최소 -165℃ 이하로 냉각함으로써 각 환봉(32)의 크기의 +0.033mm 내지 +0.044mm [+(
Figure PCTKR2019016175-appb-I000033
의 0.825%)mm 내지 +(
Figure PCTKR2019016175-appb-I000034
의 1.1%)mm] 공차를 -0.012mm 내지 -0.001mm [{(
Figure PCTKR2019016175-appb-I000035
의 0.825%)-(0.002788×D)}mm 내지 {(
Figure PCTKR2019016175-appb-I000036
의 1.1%)-(0.002788×D)}mm]이하의 공차로 변형함에 따라 한 쌍의 평강(31)의 각 홈의 크기와 각 환봉(32)의 크기 상호간의 억지 끼워 맞춤의 공차는 헐거운 끼워 맞춤 공차로 변형된다.
When each round bar 32 is manufactured at room temperature of 20°C and then cooled to -165°C in cold working, the amount of thermal expansion of 20°C to 0°C =16mm×17.3×10 -6 ×(-20) = -0.006mm [ Dmm×17.3×10 -6 ×(-20)=-(0.000346×D)mm], and the amount of thermal expansion of 0℃ to -165℃ =16mm×14.8×10 -6 ×(-165) = -0.039mm [ Since Dmm×14.8×10 -6 ×(-165)=-(0.002442×D)mm], the diameter of each round bar 32 decreases by 0.045mm [(0.002788×D)mm]. That is, the diameter tolerance of the round bar 32 in the -165°C cooling state is -0.012mm to -0.001mm [{(
Figure PCTKR2019016175-appb-I000030
0.825%)-(0.002788×D)}mm to {(
Figure PCTKR2019016175-appb-I000031
1.1%)-(0.002788×D)}mm], and the tolerance of each groove diameter of the flat steel 31 at room temperature of 20℃ is 0mm to +0.015mm[+(
Figure PCTKR2019016175-appb-I000032
0.372%) mm], so the minimum clearance between each groove of the pair of flat steels 31 and the round bar 32 is 0.001mm, and the maximum clearance is 0.027mm, which is a loose fit tolerance. Accordingly, insertion of both ends of the round bar 32 into the facing groove of the pair of flat steels 110 can be made very easily. As such, in step 230, the plurality of round bars 32 are cooled to at least -165° C. in a cooling atmosphere formed by evaporation of liquid nitrogen, so that the size of each round bar 32 is +0.033mm to +0.044mm [+(
Figure PCTKR2019016175-appb-I000033
0.825%)mm to +(
Figure PCTKR2019016175-appb-I000034
1.1%)mm] tolerance of -0.012mm to -0.001mm [{(
Figure PCTKR2019016175-appb-I000035
0.825%)-(0.002788×D)}mm to {(
Figure PCTKR2019016175-appb-I000036
1.1%)-(0.002788×D)}mm] or less, the size of each groove of the pair of flat steels 31 and the size of each round bar 32 Deformed to fit tolerance.
240 단계에서는 230 단계에서 냉간 가공된 각 환봉(32)의 양측을 210 단계에서 제조된 한 쌍의 평강(31)의 서로 마주 보는 두 개의 홈(A)에 헐겁게 끼워 맞춘 상태에서 프레스로 압력을 가하면서 상온 20℃의 환경에서 방치시키는 방식으로 한 쌍의 평강(31) 사이에 복수 개의 환봉(32)을 결합시킨다. 여기에서, 프레스의 압력은 한 쌍의 평강(31) 사이에 복수 개의 환봉(32)이 헐겁게 끼워진 상태에서의 상온 복원 과정이 상당한 시간이 소요됨에 따라 상온 복원 과정에서 한 쌍의 평강(31)과 복수 개의 환봉(32)간의 조립 형태가 틀어지는 것을 방지하기 위해 사용된다.In step 240, pressure is applied with a press while loosely fitting both sides of each round bar (32) cold-worked in step 230 into two grooves (A) facing each other of the pair of flat steels (31) manufactured in step 210. The plurality of round bars 32 are coupled between the pair of flat steels 31 while leaving them in an environment at room temperature of 20°C. Here, the pressure of the press is a pair of flat steels 31 and a pair of flat steels 31 in the room temperature restoration process as the room temperature restoration process takes a considerable amount of time in a state in which a plurality of round bars 32 are loosely fitted between the pair of flat steels 31 It is used to prevent the assembly shape between the plurality of round bars 32 from being distorted.
상술한 바와 같이, 복수 개의 환봉(32)이 -165℃까지 냉각되었다가 상온 20℃로 되돌아오면 한 쌍의 평강(31)의 각 홈의 크기와 각 환봉(32)의 크기 상호간의 헐거운 끼워 맞춤의 공차는 억지 끼워 맞춤 공차로 복원된다. 한 쌍의 평강(31)의 각 홈의 직경이 16mm[Dmm] 미만이고 각 환봉(32)의 직경이 16.044mm[{D+(
Figure PCTKR2019016175-appb-I000037
의 1.1%)}mm]를 초과하면 한 쌍의 평강(31)의 각 홈의 직경보다 각 환봉(32)의 직경이 지나치게 큼에 따라 평강(31)의 홈 주위에 균열이 발생할 수 있다. 한 쌍의 평강(31)의 각 홈의 직경이 16.015mm[{D+(
Figure PCTKR2019016175-appb-I000038
의 0.372%)}mm]를 초과하고 각 환봉(32)의 직경이 16.033mm[{D+(
Figure PCTKR2019016175-appb-I000039
의 0.825%)}mm] 미만이면 한 쌍의 평강(31)의 각 홈의 내면에 각 환봉(32)의 표면이 단단하게 압착 결합될 수 없음에 따라 수문 개폐 장치의 사용 중에 한 쌍의 평강(31)으로부터 환봉(32)이 쉽게 분리될 수 있다.
As described above, when the plurality of round bars 32 are cooled to -165°C and return to room temperature 20°C, the size of each groove of the pair of flat steels 31 and the size of each round bar 32 are loosely fitted. The tolerance of the force-fitting is restored to the tolerance. The diameter of each groove of the pair of flat steel 31 is less than 16mm[Dmm], and the diameter of each round bar 32 is 16.044mm[{D+(
Figure PCTKR2019016175-appb-I000037
If it exceeds 1.1%)}mm], cracks may occur around the grooves of the flat steels 31 as the diameter of each round bar 32 is too large than the diameters of each groove of the pair of flat steels 31. The diameter of each groove of the pair of flat steel 31 is 16.015mm [{D+(
Figure PCTKR2019016175-appb-I000038
0.372%)}mm] and the diameter of each round bar 32 is 16.033mm[{D+(
Figure PCTKR2019016175-appb-I000039
If it is less than 0.825%)}mm], the surface of each round bar 32 cannot be firmly pressed into the inner surface of each groove of the pair of flat steel 31, and thus a pair of flat steel ( The round bar 32 can be easily separated from 31).
도 8은 본 발명의 다른 실시예에 따른 랙바 제조방법의 흐름도이다. 도 8을 참조하면, 도 8에 도시된 실시예에 따른 랙바 제조방법은 다음과 같은 단계들로 구성된다. 310 단계에서는 절삭 가공 등을 이용하여 스테인리스강 STS 304의 모재로부터 서로 대칭되어 일렬로 나열된 다수의 홈을 갖는 한 쌍의 평강(31)을 제조한다. 320 단계에서는 절삭 가공 등을 이용하여 스테인리스강 STS 304의 모재로부터 복수 개의 환봉(32)을 제조한다. 여기에서, 한 쌍의 평강(31)의 각 홈의 크기와 각 환봉(32)의 크기 상호간에는 억지 끼워 맞춤의 공차를 갖는다. 310, 320 단계에서 한 쌍의 평강(31)과 복수 개의 환봉(32)은 도 5에 도시된 실시예과 동일하게 도 5에 도시된 예의 크기로 제작된다. 따라서, 이것에 대한 자세한 설명은 도 5에 대하여 상술한 설명으로 갈음하기로 한다.8 is a flowchart of a method for manufacturing a rack bar according to another embodiment of the present invention. Referring to FIG. 8, the method of manufacturing a rack bar according to the embodiment illustrated in FIG. 8 consists of the following steps. In step 310, a pair of flat steels 31 having a plurality of grooves arranged in a row are symmetrical to each other from the base material of stainless steel STS 304 by cutting or the like. In step 320, a plurality of round bars 32 are manufactured from the base material of stainless steel STS 304 using a cutting process or the like. Here, the size of each groove of the pair of flat steels 31 and the size of each round bar 32 have a tolerance of force fitting. In steps 310 and 320, the pair of flat steels 31 and the plurality of round bars 32 are manufactured in the same size as the example shown in FIG. 5 as in the embodiment shown in FIG. 5. Therefore, a detailed description of this will be replaced with the above description with respect to FIG. 5.
330 단계에서는 한 쌍의 평강(31)의 내부까지 균등하게 가열될 수 있도록 한 쌍의 평강(31)을 기름에 넣어 가열하는 방식으로 310 단계에서 제조된 한 쌍의 평강(31)을 열간 가공한다. 상온 20℃에서 각 평강(31)을 제조한 후에 열간 가공에서 100℃로 가열했을 경우, 열팽창량 = 16mm×17.3×10-6×80 = 0.022mm [(0.001384×D)mm]이므로, 평강의 홈(A)의 직경은 0.022mm 만큼 증가하게 된다. 즉, 100℃ 가열 상태의 평강(31)의 각 홈 직경 공차는 +0.022mm 내지 +0.037mm [+(0.001384×D)mm 내지 +{(
Figure PCTKR2019016175-appb-I000040
의 0.372%)+(0.001384×D)}mm]가 된다.
In step 330, the pair of flat steels 31 manufactured in step 310 are hot-processed by putting a pair of flat steels 31 in oil and heating them so that the inside of the pair of flat steels 31 is evenly heated. . When each flat steel 31 is manufactured at room temperature of 20℃ and then heated to 100℃ in hot working, the amount of thermal expansion = 16mm×17.3×10 -6 ×80 = 0.022mm [(0.001384×D)mm] The diameter of the groove (A) increases by 0.022 mm. That is, the tolerance of each groove diameter of the flat steel 31 heated at 100°C is +0.022mm to +0.037mm [+(0.001384×D)mm to +{(
Figure PCTKR2019016175-appb-I000040
0.372%) + (0.001384 × D)} mm].
340 단계에서는 복수 개의 환봉(32)의 내부까지 균등하게 냉각될 수 있도록 드라이아이스의 증발에 의해 형성된 냉각 분위기에서 복수 개의 환봉(32)을 냉각하는 방식으로 320 단계에서 제조된 복수 개의 환봉(32)을 냉간 가공한다. 상온 20℃에서 각 환봉(32)을 제조한 후에 냉간 가공에서 -70℃로 냉각했을 경우, 20℃ 내지 0℃의 열팽창량 =16mm×17.3×10-6×(-20) = -0.006mm [Dmm×17.3×10-6×(-20)=-(0.000346×D)mm] 이고, 0℃ 내지 -70℃의 열팽창량 =16mm×14.8×10-6×(-70) = -0.017 mm [Dmm×14.8×10-6×(-70)=-(0.001036×D)mm] 이므로, 각 환봉(32)의 직경은 0.022mm(반올림값 반영)[(0.001382×D)mm] 만큼 감소하게 된다. 즉, -70℃ 냉각 상태의 환봉(32)의 직경 공차는 0.011mm 내지 +0.022mm [{(
Figure PCTKR2019016175-appb-I000041
의 0.825%)-(0.001382×D)}mm 내지 {(
Figure PCTKR2019016175-appb-I000042
의 1.1%)-(0.001382×D)}mm]가 된다.
In step 340, the plurality of round bars 32 manufactured in step 320 are cooled in a cooling atmosphere formed by evaporation of dry ice so that the inside of the plurality of round bars 32 can be evenly cooled. Cold work. When each round bar 32 is manufactured at room temperature of 20°C and then cooled to -70°C in cold working, the amount of thermal expansion of 20°C to 0°C =16mm×17.3×10 -6 ×(-20) = -0.006mm [ Dmm×17.3×10 -6 ×(-20)=-(0.000346×D)mm], and the amount of thermal expansion between 0℃ and -70℃ =16mm×14.8×10 -6 ×(-70) = -0.017 mm [ Since Dmm×14.8×10 -6 ×(-70)=-(0.001036×D)mm], the diameter of each round bar 32 decreases by 0.022mm (reflecting rounded value)[(0.001382×D)mm] . That is, the diameter tolerance of the round bar 32 in the -70°C cooling state is 0.011mm to +0.022mm [{(
Figure PCTKR2019016175-appb-I000041
0.825%)-(0.001382×D)}mm to {(
Figure PCTKR2019016175-appb-I000042
1.1%)-(0.001382×D)}mm].
330 단계에서의 열간 가공에 의한 100℃ 가열 상태의 평강(31)의 각 홈 직경 공차는 +0.022mm 내지 +0.037mm [+(0.001384×D)mm 내지 +{(
Figure PCTKR2019016175-appb-I000043
의 0.372%)+(0.001384×D)}mm]이고, 440 단계에서의 냉간 가공에 의한 -70℃ 냉각 상태의 환봉(32)의 직경 공차는 0.011mm 내지 +0.022mm [{(
Figure PCTKR2019016175-appb-I000044
의 0.825%)-(0.001382×D)}mm 내지 {(
Figure PCTKR2019016175-appb-I000045
의 1.1%)-(0.001382×D)}mm]이므로, 한 쌍의 평강(31)의 각 홈과 환봉(32)간의 최소틈새는 0.000mm이고, 최대 틈새는 0.026mm로 헐거운 끼워 맞춤 공차가 된다. 이에 따라, 한 쌍의 평강(31)의 마주 보는 홈에 환봉(32) 양단의 삽입이 매우 수월하게 이루어질 수 있다.
Each groove diameter tolerance of the flat steel 31 heated at 100°C by hot working in step 330 is +0.022mm to +0.037mm [+(0.001384×D)mm to +{(
Figure PCTKR2019016175-appb-I000043
0.372%)+(0.001384×D)}mm], and the diameter tolerance of the round bar 32 in the -70°C cooled state by cold working in step 440 is 0.011mm to +0.022mm [{(
Figure PCTKR2019016175-appb-I000044
0.825%)-(0.001382×D)}mm to {(
Figure PCTKR2019016175-appb-I000045
1.1%)-(0.001382×D)}mm], so the minimum clearance between each groove of the pair of flat steels 31 and the round bar 32 is 0.000mm, and the maximum clearance is 0.026mm, which is a loose fit tolerance. . Accordingly, insertion of both ends of the round bar 32 into the facing groove of the pair of flat steel 31 can be made very easily.
이와 같이, 330 단계에서는 한 쌍의 평강(31)을 최소 100℃ 이상의 기름에 넣어 최소 100℃ 이상으로 가열함으로써 각 홈의 크기의 0mm 내지 +0.015mm[+(
Figure PCTKR2019016175-appb-I000046
의 0.372%)mm] 공차를 +0.022mm 내지 +0.037mm [+(0.001384×D)mm 내지 +{(
Figure PCTKR2019016175-appb-I000047
의 0.372%)+(0.001384×D)}mm] 이상의 공차로 변형하고, 340 단계에서는 복수 개의 환봉(32)을 드라이아이스의 증발에 의해 형성된 냉각 분위기에서 최소 -70℃ 이하로 냉각함으로써 각 환봉(32)의 크기의 +0.033mm 내지 +0.044mm [+(
Figure PCTKR2019016175-appb-I000048
의 0.825%)mm 내지 +(
Figure PCTKR2019016175-appb-I000049
의 1.1%)mm] 공차를 0.011mm 내지 +0.022mm [{(
Figure PCTKR2019016175-appb-I000050
의 0.825%)-(0.001382×D)}mm 내지 {(
Figure PCTKR2019016175-appb-I000051
의 1.1%)-(0.001382×D)}mm] 이하의 공차로 변형함에 따라 한 쌍의 평강(31)의 각 홈의 크기와 각 환봉(32)의 크기 상호간의 억지 끼워 맞춤의 공차는 헐거운 끼워 맞춤 공차로 변형된다.
As such, in step 330, the pair of flat steels 31 are put in oil of at least 100°C and heated to at least 100°C, so that the size of each groove is 0mm to +0.015mm[+(
Figure PCTKR2019016175-appb-I000046
0.372%)mm] tolerance of +0.022mm to +0.037mm [+(0.001384×D)mm to +{(
Figure PCTKR2019016175-appb-I000047
0.372%) + (0.001384 × D)} mm] or more of the tolerance, and in step 340, the plurality of round bars 32 are cooled to at least -70°C in a cooling atmosphere formed by evaporation of dry ice. 32) of the size of +0.033mm to +0.044mm [+(
Figure PCTKR2019016175-appb-I000048
0.825%)mm to +(
Figure PCTKR2019016175-appb-I000049
1.1%)mm] tolerance of 0.011mm to +0.022mm [{(
Figure PCTKR2019016175-appb-I000050
0.825%)-(0.001382×D)}mm to {(
Figure PCTKR2019016175-appb-I000051
1.1%)-(0.001382×D)}mm] of each groove of the pair of flat steels 31 and the size of each round bar 32. Deformed to fit tolerance.
350 단계에서는 340 단계에서 냉간 가공된 각 환봉(32)의 양측을 330 단계에서 열간 가공된 한 쌍의 평강(31)의 서로 마주 보는 두 개의 홈(A)에 헐겁게 끼워 맞춘 상태에서 프레스로 압력을 가하면서 상온 20℃의 환경에서 방치시키는 방식으로 한 쌍의 평강(31) 사이에 복수 개의 환봉(32)을 결합시킨다. 여기에서, 프레스의 압력은 한 쌍의 평강(31) 사이에 복수 개의 환봉(32)이 헐겁게 끼워진 상태에서의 상온 복원 과정이 상당한 시간이 소요됨에 따라 상온 복원 과정에서 한 쌍의 평강(31)과 복수 개의 환봉(32)간의 조립 형태가 틀어지는 것을 방지하기 위해 사용된다.In step 350, the two sides of each round bar 32 cold-worked in step 340 are loosely fitted into two grooves (A) facing each other of the pair of flat steels 31 hot-worked in step 330, and pressure is applied with a press. A plurality of round bars 32 are coupled between the pair of flat steels 31 in a manner that is allowed to stand in an environment at room temperature of 20° C. Here, the pressure of the press is a pair of flat steels 31 and a pair of flat steels 31 in the room temperature restoration process as the room temperature restoration process takes a considerable amount of time in a state in which a plurality of round bars 32 are loosely fitted between the pair of flat steels 31 It is used to prevent the assembly shape between the plurality of round bars 32 from being distorted.
상술한 바와 같이, 한 쌍의 평강(31)이 100℃까지 가열되고 복수 개의 환봉(32)이 -70℃까지 냉각되었다가 상온 20℃로 되돌아오면 한 쌍의 평강(31)의 각 홈의 크기와 각 환봉(32)의 크기 상호간의 헐거운 끼워 맞춤의 공차는 억지 끼워 맞춤 공차로 복원된다. 한 쌍의 평강(31)의 각 홈의 직경이 16mm [Dmm] 미만이고 각 환봉(32)의 직경이 16.044mm[{D+(
Figure PCTKR2019016175-appb-I000052
의 1.1%)}mm]를 초과하면 한 쌍의 평강(31)의 각 홈의 직경보다 각 환봉(32)의 직경이 지나치게 큼에 따라 평강(31)의 홈 주위에 균열이 발생할 수 있다. 한 쌍의 평강(31)의 각 홈의 직경이 16.015mm[{D+(
Figure PCTKR2019016175-appb-I000053
의 0.372%)}mm]를 초과하고 각 환봉(32)의 직경이 16.033mm[{D+(
Figure PCTKR2019016175-appb-I000054
의 0.825%)}mm] 미만이면 한 쌍의 평강(31)의 각 홈의 내면에 각 환봉(32)의 표면이 단단하게 압착 결합될 수 없음에 따라 수문 개폐 장치의 사용 중에 한 쌍의 평강(31)으로부터 환봉(32)이 쉽게 분리될 수 있다.
As described above, when the pair of flat steels 31 are heated to 100°C and the plurality of round bars 32 are cooled to -70°C and then returned to room temperature of 20°C, the size of each groove of the pair of flat steels 31 And the tolerance of the loose fit between the size of each round bar 32 is restored to the forced fit tolerance. The diameter of each groove of the pair of flat steel 31 is less than 16mm [Dmm], and the diameter of each round bar 32 is 16.044mm [{D+(
Figure PCTKR2019016175-appb-I000052
If it exceeds 1.1%)}mm], cracks may occur around the grooves of the flat steels 31 as the diameter of each round bar 32 is too large than the diameters of each groove of the pair of flat steels 31. The diameter of each groove of the pair of flat steel 31 is 16.015mm [{D+(
Figure PCTKR2019016175-appb-I000053
0.372%)}mm] and the diameter of each round bar 32 is 16.033mm[{D+(
Figure PCTKR2019016175-appb-I000054
If it is less than 0.825%)}mm], the surface of each round bar 32 cannot be firmly pressed into the inner surface of each groove of the pair of flat steel 31, and thus a pair of flat steel ( The round bar 32 can be easily separated from 31).
도 8에 도시된 실시예에서는 한 쌍의 평강(31)에 대한 열간 가공과 복수 개의 환봉(32)에 대한 냉간 가공을 동시에 진행함으로써 평강(31)의 가열 온도를 낮추고 환봉(32)의 냉각 온도를 낮출 수 있어 랙바(30)의 조립 소요 시간을 대폭 줄일 수 있다. 질소의 비등점은 -196℃이고 이산화탄소의 비등점은 -78℃이므로 복수 개의 환봉(32)에 대한 냉간 가공만 진행하는 경우에는 드라이아이스가 사용될 수 없다. 이와 같이, 도 8에 도시된 실시예에서는 복수 개의 환봉(32)의 냉각에 액화질소 대신에 매우 저렴한 드라이아이스를 사용할 수 있음에 따라 랙바(30)의 제조 단가를 대폭 낮출 수 있다.In the embodiment shown in FIG. 8, the heating temperature of the flat steel 31 is lowered and the cooling temperature of the round bar 32 by simultaneously performing hot working on the pair of flat steels 31 and cold working on the plurality of round bars 32 It is possible to lower the assembly time of the rack bar 30 can be significantly reduced. Since the boiling point of nitrogen is -196°C and the boiling point of carbon dioxide is -78°C, dry ice cannot be used when only cold working is performed on the plurality of round bars 32. As described above, in the embodiment shown in FIG. 8, since very inexpensive dry ice can be used instead of liquid nitrogen for cooling the plurality of round bars 32, the manufacturing cost of the rack bar 30 can be significantly reduced.
도 6, 7, 8에 도시된 실시예에 따라 제작된 랙바(30)의 사용 과정에서의 파손 가능성을 알아보기 위하여 총 3 개의 실시예와 총 4 개의 비교예를 제작한 후에 인발력 시험기를 이용하여 각 실시예와 비교예의 평강(31)과 환봉(32)에 인발력을 가하여 각 실시예와 비교예에 대한 인발력 시험을 실시하였다. In order to determine the possibility of damage in the process of using the rack bar 30 manufactured according to the embodiments shown in FIGS. 6, 7 and 8, a total of three examples and a total of four comparative examples were prepared, and then a pulling force tester was used. A pulling force test for each Example and Comparative Example was performed by applying a pulling force to the flat steel 31 and the round bar 32 of each Example and Comparative Example.
<실시예 1~3><Examples 1 to 3>
평강(31)의 각 홈(A)의 직경이 16.015mm이고 환봉(32)의 직경이 16.033mm이고 나머지 치수는 도 5에 도시된 예와 동일하게 되도록 상온 20℃에서 평강(31)과 환봉(32)을 제작한 후에 평강(31)을 180℃로 열간 가공하는 방식으로 도 6에 도시된 제조방법에 따라 실시예 1의 랙바를 제작하였다. 이와 같이, 실시예 1은 평강(31)의 홈 직경이 최대 허용치수로 가공되고 환봉(32)의 직경이 최소 허용치수로 가공된 경우이다.The diameter of each groove (A) of the flat steel 31 is 16.015 mm, the diameter of the round bar 32 is 16.033 mm, and the remaining dimensions are the same as the example shown in FIG. 5, so that the flat steel 31 and the round bar ( After manufacturing 32), the rack bar of Example 1 was manufactured according to the manufacturing method shown in FIG. 6 by hot working the flat steel 31 at 180°C. As such, Example 1 is a case where the groove diameter of the flat steel 31 is processed to the maximum allowable dimension and the diameter of the round bar 32 is processed to the minimum allowable dimension.
평강(31)의 각 홈(A)의 직경이 16.008mm이고 환봉(32)의 직경이 16.039mm이고 나머지 치수는 도 5에 도시된 예와 동일하게 되도록 상온 20℃에서 평강(31)과 환봉(32)을 제작한 후에 환봉(32)을 -165℃로 냉간 가공하는 방식으로 도 7에 도시된 제조 방법에 따라 실시예 2의 랙바를 제작하였다. 이와 같이, 실시예 2는 평강(31)의 홈 직경과 환봉(32)의 직경이 최대 허용치수와 최소 허용치수의 중간 값으로 가공된 경우이다.The diameter of each groove (A) of the flat steel 31 is 16.008 mm, the diameter of the round bar 32 is 16.039 mm, and the remaining dimensions are the same as the example shown in FIG. 5, so that the flat steel 31 and the round bar ( After manufacturing 32), the rack bar of Example 2 was manufactured according to the manufacturing method shown in FIG. 7 in a manner of cold working the round bar 32 at -165°C. As described above, Example 2 is a case in which the diameter of the groove of the flat steel 31 and the diameter of the round bar 32 are processed to an intermediate value between the maximum and minimum allowable dimensions.
평강(31)의 각 홈(A)의 직경이 16.000mm이고 환봉(32)의 직경이 16.044mm이고 나머지 치수는 도 5에 도시된 예와 동일하게 되도록 상온 20℃에서 평강(31)과 환봉(32)을 제작한 후에 평강(31)을 100℃로 열간 가공함과 동시에 환봉(32)을 -70℃로 냉간 가공하는 방식으로 도 8에 도시된 제조 방법에 따라 실시예 3을 제작하였다. 이와 같이, 실시예 3은 평강(31)의 홈 직경이 최소 허용치수로 가공되고, 환봉(32)의 직경이 최대 허용치수로 가공된 경우이다.The diameter of each groove (A) of the flat steel 31 is 16.000 mm, the diameter of the round bar 32 is 16.044 mm, and the remaining dimensions are the same as the example shown in FIG. 5, so that the flat steel 31 and the round bar ( After manufacturing 32), Example 3 was manufactured according to the manufacturing method shown in FIG. 8 by hot working the flat steel 31 at 100°C and cold working the round bar 32 at -70°C. As such, Example 3 is a case where the groove diameter of the flat steel 31 is processed to the minimum allowable dimension, and the diameter of the round bar 32 is processed to the maximum allowable dimension.
<비교예 1~4><Comparative Examples 1-4>
평강(31)의 각 홈(A)의 직경이 16.024mm이고 환봉(32)의 직경이 16.024mm이고 나머지 치수는 도 5에 도시된 예와 동일하게 되도록 상온 20℃에서 평강(31)과 환봉(32)을 제작한 후에 평강(31)을 180℃로 열간 가공하는 방식으로 도 6에 도시된 제조 방법에 따라 비교예 1의 랙바를 제작하였다. 이와 같이, 비교예 1은 평강(31)의 흠 직경이 최대 허용치수보다 크게 가공되고, 환봉(32)의 직경이 최소 허용치수보다 작게 가공된 경우이다.The diameter of each groove (A) of the flat steel 31 is 16.024 mm, the diameter of the round bar 32 is 16.024 mm, and the remaining dimensions are the same as the example shown in FIG. 5, so that the flat steel 31 and the round bar ( After manufacturing 32), the rack bar of Comparative Example 1 was manufactured according to the manufacturing method shown in FIG. 6 by hot working the flat steel 31 at 180°C. As described above, Comparative Example 1 is a case where the flaw diameter of the flat steel 31 is processed larger than the maximum allowable dimension, and the diameter of the round bar 32 is processed smaller than the minimum allowable dimension.
평강(31)의 각 홈(A)의 직경이 16.020mm이고 환봉(32)의 직경이 16.028mm이고 나머지 치수는 도 5에 도시된 예와 동일하게 되도록 상온 20℃에서 평강(31)과 환봉(32)을 제작한 후에 환봉(32)을 -165℃로 냉간 가공하는 방식으로 도 7에 도시된 제조방법에 따라 비교예 2의 랙바를 제작하였다. 이와 같이, 비교예 2는 평강(31)의 흠 직경이 최대 허용치수보다 크게 가공되고, 환봉(32)의 직경이 최소 허용치수보다 작게 가공된 경우이다.The diameter of each groove (A) of the flat steel 31 is 16.020 mm, the diameter of the round bar 32 is 16.028 mm, and the remaining dimensions are the same as the example shown in FIG. 5, so that the flat steel 31 and the round bar ( After manufacturing 32), the rack bar of Comparative Example 2 was manufactured according to the manufacturing method shown in FIG. 7 by cold working the round bar 32 at -165°C. As described above, Comparative Example 2 is a case where the flaw diameter of the flat steel 31 is processed larger than the maximum allowable dimension, and the diameter of the round bar 32 is processed smaller than the minimum allowable dimension.
평강(31)의 각 홈(A)의 직경이 15.985mm이고 환봉(32)의 직경이 16.059mm이고 나머지 치수는 도 5에 도시된 예와 동일하게 되도록 상온 20℃에서 평강(31)과 환봉(32)을 제작한 후에 평강(31)을 180℃로 열간 가공하는 방식으로 도 6에 도시된 제조 방법에 따라 비교예 3의 랙바를 제작하였다. 이와 같이, 비교예 3은 평강(31)의 홈 직경이 최소 허용치수보다 작게 가공되고, 환봉(32)의 직경이 최대 허용치수보다 크게 가공된 경우이다.The diameter of each groove (A) of the flat steel 31 is 15.985 mm, the diameter of the round bar 32 is 16.059 mm, and the remaining dimensions are the same as the example shown in FIG. 5, so that the flat steel 31 and the round bar ( After manufacturing 32), the rack bar of Comparative Example 3 was manufactured according to the manufacturing method shown in FIG. 6 by hot working the flat steel 31 at 180°C. As described above, Comparative Example 3 is a case where the groove diameter of the flat steel 31 is processed smaller than the minimum allowable dimension, and the diameter of the round bar 32 is processed larger than the maximum allowable dimension.
평강(31)의 각 홈(A)의 직경이 15.970mm이고 환봉(32)의 직경이 16.074mm이고 나머지 치수는 도 5에 도시된 예와 동일하게 되도록 상온 20℃에서 평강(31)과 환봉(32)을 제작한 후에 환봉(32)을 -120℃로 냉간 가공하는 방식으로 도 7에 도시된 제조 방법에 따라 비교예 4의 랙바를 제작하였다. 이와 같이, 비교예 4는 평강(31)의 홈 직경이 최소 허용치수보다 작게 가공되고, 환봉(32)의 직경이 최대 허용치수보다 크게 가공된 경우이다.The diameter of each groove (A) of the flat steel 31 is 15.970 mm, the diameter of the round bar 32 is 16.074 mm, and the remaining dimensions are the same as the example shown in FIG. 5, and the flat steel 31 and the round bar ( After manufacturing 32), the rack bar of Comparative Example 4 was manufactured according to the manufacturing method shown in FIG. 7 by cold working the round bar 32 at -120°C. As described above, Comparative Example 4 is a case where the groove diameter of the flat steel 31 is processed smaller than the minimum allowable dimension, and the diameter of the round bar 32 is processed larger than the maximum allowable dimension.
<시험예 1><Test Example 1>
실시예 1~3, 비교예 1~4 각각에 대해 인발력 시험기를 이용하여 평강(31)과 환봉(32)이 결합된 방향의 반대 방향으로 인발력을 가하여 평강(31)과 환봉(32)의 결합 위치를 기준으로 환봉(32)이 평강(31)으로부터 1mm 이탈된 때의 인발력을 측정하였다. 그 실험 결과는 아래의 표 2에 기재되어 있다.For each of Examples 1 to 3 and Comparative Examples 1 to 4, the flat steel 31 and the round bar 32 were combined by applying a pulling force in the opposite direction to the direction in which the flat steel 31 and the round bar 32 were combined using a pulling force tester. The pulling force was measured when the round bar 32 deviated 1mm from the flat steel 31 based on the position. The experimental results are shown in Table 2 below.
구분division 평강(31)의 홈 직경 (mm)Groove diameter of flat steel (31) (mm) 환봉(32)의 직경 (mm)Diameter of round bar (32) (mm) 인발력(N)Pulling force (N)
비교예 1Comparative Example 1 16.02416.024 16.02416.024 4949
비교예 2Comparative Example 2 16.02016.020 16.02816.028 137137
실시예 1Example 1 16.01516.015 16.03316.033 18251825
실시예 2Example 2 16.00816.008 16.03916.039 19011901
실시예 3Example 3 16.00016.000 16.04416.044 20872087
비교예 3Comparative Example 3 15.98515.985 16.05916.059 17801780
비교예 4Comparative Example 4 15.97015.970 16.07416.074 16101610
표 2로부터 실시예 1 내지 실시예 3은 비교예 1 내지 비교예 4보다 인발력이 높음을 알 수 있다. 비교예 1 및 비교예 2는 실시예 1~3에 비해 환봉(32)의 직경이 평강(31)의 홈 직경보다 지나치게 작아서 랙바(30)의 인발력이 매우 낮게 나타남을 알 수 있다. 비교예 1 및 비교예 2가 수문 개폐 장치에 적용될 경우, 수문 개폐 장치의 사용 과정에서 한 쌍의 평강(31)으로부터 환봉(32)이 쉽게 분리될 수 있음을 알 수 있다.비교예 3 및 비교예 4는 실시예 1~3에 비해 환봉(32)의 직경이 평강(31)의 홈 직경에 대해 큼에도 불구하고 랙바(30)의 인발력이 비교적 낮게 나타남을 알 수 있다. 그 원인을 찾기 위해, 비교예 3 및 비교예 4의 홈 부위를 살펴본 결과, 비교예 3 및 비교예 4의 홈 부위에 균열(crack)이 발생하였음을 볼 수 있었다. 특히, 비교예 3보다 비교예 4에서 더 크게 벌어지는 균열이 나타남에 따라 비교예 3보다 비교예 4의 인발력이 더 낮게 측정되었다. 비교예 3 및 비교예 4가 수문 개폐 장치에 적용될 경우, 수문 개폐 장치의 사용 과정에서 비교예 3 및 비교예 4의 홈 부위 균열은 점점 더 심해지고 되고 한 쌍의 평강(31)으로부터 환봉(32)이 쉽게 분리될 수 있음을 알 수 있다.From Table 2, it can be seen that Examples 1 to 3 have higher pulling force than Comparative Examples 1 to 4. In Comparative Examples 1 and 2, it can be seen that the diameter of the round bar 32 is too small than the groove diameter of the flat steel 31 compared to Examples 1 to 3, so that the pulling force of the rack bar 30 is very low. When Comparative Example 1 and Comparative Example 2 are applied to the sluice door opening and closing device, it can be seen that the round bar 32 can be easily separated from the pair of flat steels 31 in the process of using the sluice opening and closing device. In Example 4, it can be seen that the pulling force of the rack bar 30 is relatively low, although the diameter of the round bar 32 is larger than the groove diameter of the flat steel 31 compared to Examples 1 to 3. In order to find the cause, as a result of examining the groove portions of Comparative Example 3 and Comparative Example 4, it could be seen that a crack occurred in the groove portions of Comparative Examples 3 and 4. In particular, as the cracks that were wider in Comparative Example 4 than in Comparative Example 3 appeared, the pulling force of Comparative Example 4 was measured to be lower than that of Comparative Example 3. When Comparative Examples 3 and 4 are applied to the sluice door opening and closing device, the cracks in the grooves of Comparative Examples 3 and 4 in the process of using the sluice door opening and closing device become more and more severe, and the round bar 32 from the pair of flat steels 31 ) Can be easily separated.
도 9는 본 발명의 일 실시예에 의한 수문 개폐 장치의 랙바(30)의 평강(31)과 환봉(32)에 인발력을 가한 시험예 1의 그래프이다. 도 9에 도시된 그래프에 따르면, 평강(31)의 홈 직경이 점점 더 감소되고 환봉(32)의 직경이 점점 증가되는 순서대로 X축에 실시예 1~3과 비교예 1~4를 나열하고 Y축에 표 2에 기재된 인발력 시험 결과를 표시하였다. 도 9를 참조하면, 평강(31)의 홈 직경과 환봉(32)의 직경 기준치수가 16mm일 때, 평강(31)의 홈 직경을 0.000mm 내지 +0.015mm, 환봉(32)의 직경을 +0.033mm 내지 +0.044mm의 억지 끼워 맞춤 공차로 가공하여 도 6, 7, 8에 도시된 제조방법에 따라 랙바(30)를 제작한 경우 인발력이 매우 우수한 견고한 랙바(30)를 제조할 수 있음을 알 수 있다.9 is a graph of Test Example 1 in which a pulling force is applied to the flat steel 31 and the round bar 32 of the rack bar 30 of the sluice door opening and closing device according to an embodiment of the present invention. According to the graph shown in FIG. 9, Examples 1 to 3 and Comparative Examples 1 to 4 are arranged on the X-axis in the order in which the groove diameter of the flat steel 31 is gradually decreased and the diameter of the round bar 32 is gradually increased. The results of the pulling force test shown in Table 2 are shown on the Y-axis. Referring to FIG. 9, when the groove diameter of the flat steel 31 and the standard diameter of the round bar 32 are 16 mm, the groove diameter of the flat steel 31 is 0.000 mm to +0.015 mm, and the diameter of the round bar 32 is +0.033. It was found that when the rack bar 30 was manufactured according to the manufacturing method shown in FIGS. 6, 7 and 8 by processing with an interference fit tolerance of mm to +0.044 mm, it was possible to manufacture a solid rack bar 30 having very excellent pulling force. I can.
<시험예 2><Test Example 2>
평강(31)과 환봉(32)의 기준 치수를 시험예 1의 D=16mm 규격 이외에 D=65mm 규격 65mm에 대해서도 추가적으로 표 1과 아래의 표 3에 따라 실시예 4~6, 비교예 5~8를 제작하고, 인발력 시험기를 이용하여 평강(31)과 환봉(32)이 결합된 방향의 반대 방향으로 인발력을 가하여 평강(31)과 환봉(32)의 결합 위치를 기준으로 환봉(32)이 평강(31)으로부터 1mm 이탈된 때의 인발력을 측정하였다. 그 실험 결과는 아래의 표 3에 기재되어 있다.In addition to the D=16mm standard of Test Example 1, the standard dimensions of the flat steel 31 and the round bar 32 were additionally determined for D=65mm and 65mm according to Table 1 and Table 3 below.Examples 4 to 6 and Comparative Examples 5 to 8 And, using a pulling force tester, the flat steel 31 and the round bar 32 are combined to apply a pulling force in the opposite direction to the flat steel 31 and the round bar 32. The pulling force was measured when it deviated from (31) by 1 mm. The experimental results are shown in Table 3 below.
구분division 평강(31)의 홈 직경 (mm)Groove diameter of flat steel (31) (mm) 환봉(32)의 직경 (mm)Diameter of round bar (32) (mm) 인발력(N)Pulling force (N)
비교예 5Comparative Example 5 65.04865.048 65.04865.048 9898
비교예 6Comparative Example 6 65.04065.040 65.05665.056 278278
실시예 4Example 4 65.03065.030 65.06665.066 75707570
실시예 5Example 5 65.01665.016 65.07865.078 80948094
실시예 6Example 6 65.00065.000 65.08965.089 84668466
비교예 7Comparative Example 7 65.97065.970 65.12065.120 78667866
비교예 8Comparative Example 8 65.91065.910 65.14465.144 75127512
도 10은 본 발명의 일 실시예에 의한 수문 개폐 장치의 랙바(30)의 평강(31)과 환봉(32)에 인발력을 가한 시험예 2의 그래프이다. 도 10을 참조하면, 시험예 2 역시 시험예 1과 동일한 결과를 보여줌을 알 수 있다. D=22mm, 25mm, 26mm, 32mm, 35mm, 43mm, 51mm 규격에 대한 시험예 설명은 생략하나 시험예 1, 2와 동일한 결과가 나타남을 알 수 있다. 10 is a graph of Test Example 2 in which a pulling force is applied to the flat steel 31 and the round bar 32 of the rack bar 30 of the sluice door opening and closing device according to an embodiment of the present invention. Referring to FIG. 10, it can be seen that Test Example 2 also shows the same results as Test Example 1. D=22mm, 25mm, 26mm, 32mm, 35mm, 43mm, 51mm The description of the test examples for the standards is omitted, but it can be seen that the same results as those of Test Examples 1 and 2.
이제까지 본 발명에 대하여 실시예, 비교예 및 시험예를 살펴보았다. 본 발명의 실시예, 비교예 및 시험예를 통하여 구체적으로 설명하였으나 이는 본 발명을 제한하기 위한 것은 아니며 단지 본 발명을 입증하기 위한 것이다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 범위가 이러한 실시예에 의해 제한되지 않으며, 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, examples, comparative examples, and test examples for the present invention have been described. Although it has been described in detail through Examples, Comparative Examples and Test Examples of the present invention, this is not intended to limit the present invention, but only to prove the present invention. Those of ordinary skill in the art to which the present invention pertains will understand that the scope of the present invention is not limited by these examples, and the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. I will be able to. Therefore, the disclosed embodiments should be considered from an illustrative point of view rather than a limiting point of view. The scope of the present invention is shown in the claims rather than the above description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.

Claims (6)

  1. 수문 개폐 장치의 랙바 제조방법에 있어서,In the rack bar manufacturing method of the sluice door opening and closing device,
    서로 대칭되어 일렬로 나열된 다수의 홈을 갖는 한 쌍의 평강(31)을 제조하는 단계;Manufacturing a pair of flat steels 31 symmetrical to each other and having a plurality of grooves arranged in a line;
    복수 개의 환봉(32)을 제조하는 단계를 포함하고,Including the step of manufacturing a plurality of round bars 32,
    상기 한 쌍의 평강(31)의 각 홈의 크기와 상기 각 환봉(32)의 크기 상호간에는 억지 끼워 맞춤의 공차를 갖고,The size of each groove of the pair of flat steels 31 and the size of each round bar 32 have a tolerance of force fitting,
    상기 한 쌍의 평강(31)의 내부까지 균등하게 가열될 수 있도록 상기 한 쌍의 평강(31)을 기름에 넣어 가열하는 방식으로 상기 한 쌍의 평강(31)을 열간 가공하는 단계; 및Hot working the pair of flat steels 31 by putting the pair of flat steels 31 into oil and heating them so that the insides of the pair of flat steels 31 are evenly heated; And
    상기 복수 개의 환봉(32)의 내부까지 균등하게 냉각될 수 있도록 액화기체의 증발에 의해 형성된 냉각 분위기에서 상기 복수 개의 환봉(32)을 냉각하는 방식으로 상기 복수 개의 환봉(32)을 냉간 가공하는 단계 중에서 적어도 하나의 단계를 더 포함하고,Cold working the plurality of round bars 32 by cooling the plurality of round bars 32 in a cooling atmosphere formed by evaporation of liquefied gas so that the inside of the plurality of round bars 32 can be evenly cooled. Further comprising at least one step of,
    상기 각 환봉(32)의 양단을 상기 한 쌍의 평강(31)의 서로 마주 보는 두 개의 홈(A)에 헐겁게 끼워 맞춘 상태에서 상온으로 복원시키는 방식으로 상기 한 쌍의 평강(31) 사이에 상기 복수 개의 환봉(32)을 결합시키는 단계를 더 포함하는 수문 개폐 장치의 랙바 제조 방법.Between the pair of flat steels 31 in a manner that restores to room temperature in a state where both ends of each round bar 32 are loosely fitted into the two opposite grooves A of the pair of flat steels 31, the Rack bar manufacturing method of a sluice door opening and closing device further comprising the step of combining a plurality of round bars (32).
  2. 제 1 항에 있어서,The method of claim 1,
    상기 한 쌍의 평강(31)을 제조하는 단계는 스테인리스강 STS 304의 모재로부터 상기 한 쌍의 평강(31)을 제조하고,The step of manufacturing the pair of flat steel 31 is to prepare the pair of flat steel 31 from the base material of stainless steel STS 304,
    상기 복수 개의 환봉(32)을 제조하는 단계는 스테인리스강 STS 304의 모재로부터 상기 복수 개의 환봉(32)을 제조하고,The step of manufacturing the plurality of round bars 32 is to manufacture the plurality of round bars 32 from the base material of stainless steel STS 304,
    상기 한 쌍의 평강(31)의 각 홈의 크기는 기준 치수(D)에 대해 상온 20℃에서 0mm 내지 +(
    Figure PCTKR2019016175-appb-I000055
    의 0.372%)mm의 공차를 갖고 상기 각 환봉(32)의 크기는 기준 치수(D)에 대해 상온 20℃에서 +(
    Figure PCTKR2019016175-appb-I000056
    의 0.825%)mm 내지 +(
    Figure PCTKR2019016175-appb-I000057
    의 1.1%)mm를 가짐에 따라 상기 한 쌍의 평강(31)의 각 홈의 크기와 상기 각 환봉(32)의 크기는 상호간에 억지 끼워 맞춤의 공차를 갖는 것을 특징으로 하는 수문 개폐 장치의 랙바 제조 방법.
    The size of each groove of the pair of flat steels 31 is 0mm to +(
    Figure PCTKR2019016175-appb-I000055
    Has a tolerance of 0.372%)mm, and the size of each round bar 32 is +(
    Figure PCTKR2019016175-appb-I000056
    0.825%)mm to +(
    Figure PCTKR2019016175-appb-I000057
    The rack bar of the sluice door opening/closing device, characterized in that the size of each groove of the pair of flat steels 31 and the size of each round bar 32 has a tolerance of forcibly fitting each other as it has 1.1%) mm of Manufacturing method.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 열간 가공하는 단계는 상기 한 쌍의 평강(31)을 최소 180℃ 이상의 기름에 넣어 최소 180℃ 이상으로 가열함으로써 상기 각 홈의 크기의 0mm 내지 0mm 내지 +(
    Figure PCTKR2019016175-appb-I000058
    의 0.372%)mm 공차를 +(0.002768×D)mm 내지 +{(
    Figure PCTKR2019016175-appb-I000059
    의 0.372%)+(0.002768×D)}mm 이상의 공차로 변형함에 따라 상기 한 쌍의 평강(31)의 각 홈의 크기와 상기 각 환봉(32)의 크기 상호간의 억지 끼워 맞춤의 공차는 헐거운 끼워 맞춤 공차로 변형되는 것을 특징으로 하는 수문 개폐 장치의 랙바 제조방법.
    In the step of hot working, the pair of flat steels 31 are placed in oil of at least 180° C. and heated to at least 180° C., so that the size of each groove is 0mm to 0mm to +(
    Figure PCTKR2019016175-appb-I000058
    0.372% of)mm tolerance from +(0.002768×D)mm to +((
    Figure PCTKR2019016175-appb-I000059
    0.372%)+(0.002768×D)}mm or more of the difference between the size of each groove of the pair of flat steels 31 and the size of each round bar 32 is a loose fit. Rack bar manufacturing method of a sluice door opening and closing device, characterized in that it is transformed into a fit tolerance.
  4. 제 2 항에 있어서,The method of claim 2,
    상기 냉간 가공하는 단계는 상기 복수 개의 환봉(32)을 액화질소의 증발에 의해 형성된 냉각 분위기에서 최소 -165℃ 이하로 냉각함으로써 상기 각 환봉(32)의 크기의 +(
    Figure PCTKR2019016175-appb-I000060
    의 0.825%)mm 내지 +(
    Figure PCTKR2019016175-appb-I000061
    의 1.1%)mm 공차를 {(
    Figure PCTKR2019016175-appb-I000062
    의 0.825%)-(0.002788×D)}mm 내지 {(
    Figure PCTKR2019016175-appb-I000063
    의 1.1%)-(0.002788×D)}mm 이하의 공차로 변형함에 따라 상기 한 쌍의 평강(31)의 각 홈의 크기와 상기 각 환봉(32)의 크기 상호간의 억지 끼워 맞춤의 공차는 헐거운 끼워 맞춤 공차로 변형되는 것을 특징으로 하는 수문 개폐 장치의 랙바 제조방법.
    In the cold working step, the plurality of round bars 32 are cooled to at least -165° C. in a cooling atmosphere formed by evaporation of liquid nitrogen, so that the size of each round bar 32 is +(
    Figure PCTKR2019016175-appb-I000060
    0.825%)mm to +(
    Figure PCTKR2019016175-appb-I000061
    1.1%)mm tolerance of {(
    Figure PCTKR2019016175-appb-I000062
    0.825%)-(0.002788×D)}mm to {(
    Figure PCTKR2019016175-appb-I000063
    1.1%)-(0.002788×D)}mm or less, the size of each groove of the pair of flat steels 31 and the size of each round bar 32 Rack bar manufacturing method of a sluice door opening and closing device, characterized in that it is transformed into a fitting tolerance.
  5. 제 2 항에 있어서,The method of claim 2,
    상기 열간 가공하는 단계는 상기 한 쌍의 평강(31)을 최소 100℃ 이상의 기름에 넣어 최소 100℃ 이상으로 가열함으로써 상기 각 홈의 크기의 0mm 내지 +(
    Figure PCTKR2019016175-appb-I000064
    의 0.372%)mm 공차를 +(0.001384×D)mm 내지 {(
    Figure PCTKR2019016175-appb-I000065
    의 0.372%)+(0.001384×D)}mm 이상의 공차로 변형하고,
    In the hot working step, the pair of flat steels 31 are put in oil of at least 100°C and heated to at least 100°C, so that the size of each groove is 0mm to +(
    Figure PCTKR2019016175-appb-I000064
    0.372%)mm tolerance of +(0.001384×D)mm to ((
    Figure PCTKR2019016175-appb-I000065
    0.372%) + (0.001384 × D)} mm or more to a tolerance,
    상기 냉간 가공하는 단계는 상기 복수 개의 환봉(32)을 드라이아이스의 증발에 의해 형성된 냉각 분위기에서 최소 -70℃ 이하로 냉각함으로써 상기 각 환봉(32)의 크기의 +(
    Figure PCTKR2019016175-appb-I000066
    의 0.825%)mm 내지 +(
    Figure PCTKR2019016175-appb-I000067
    의 1.1%)mm공차를 {(
    Figure PCTKR2019016175-appb-I000068
    의 0.825%)-(0.001382×D)}mm 내지 (
    Figure PCTKR2019016175-appb-I000069
    의 1.1%)-(0.001382×D)mm 이하의 공차로 변형함에 따라 상기 한 쌍의 평강(31)의 각 홈의 크기와 상기 각 환봉(32)의 크기 상호간의 억지 끼워 맞춤의 공차는 헐거운 끼워 맞춤 공차로 변형되는 것을 특징으로 하는 수문 개폐 장치의 랙바 제조방법.
    In the cold working step, the plurality of round bars 32 are cooled to at least -70°C or less in a cooling atmosphere formed by evaporation of dry ice, so that the size of each round bar 32 is +(
    Figure PCTKR2019016175-appb-I000066
    0.825%)mm to +(
    Figure PCTKR2019016175-appb-I000067
    1.1% of) mm tolerance ((
    Figure PCTKR2019016175-appb-I000068
    0.825%)-(0.001382×D)}mm to (
    Figure PCTKR2019016175-appb-I000069
    1.1%)-(0.001382×D)mm or less of the deformation, the size of each groove of the pair of flat steels 31 and the size of each round bar 32 are mutually forced fit tolerance. Rack bar manufacturing method of a sluice door opening and closing device, characterized in that it is transformed into a fit tolerance.
  6. 제 1 항의 제조 방법에 의해 제조된 랙바(30)가 적용된 수문 개폐 장치에 있어서,In the sluice door opening and closing device to which the rack bar 30 manufactured by the manufacturing method of claim 1 is applied,
    사각 틀 형태로 형성되어 수로면에 연직으로 설치되는 프레임(10);A frame 10 formed in a rectangular frame shape and vertically installed on the waterway surface;
    상기 프레임(10)의 양측부에 끼어져 승하강하면서 수로를 개폐하는 수문판(20);A sluice plate 20 that is sandwiched between both sides of the frame 10 to open and close the waterway while elevating and descending;
    제 1 항의 제조 방법에 의해 제조된 랙바(30)로서 하단이 상기 수문판(20)에 연결되어 상기 수문판(20)을 승강시키는 랙바(30); 및As a rack bar (30) manufactured by the manufacturing method of claim 1, the lower end is connected to the sluice plate (20) to lift the sluice plate (20); And
    다수의 기어 조합을 이용하여 인력에 의한 핸들의 회전 운동 또는 모터의 회전 운동을 랙바(30)의 승강 운동으로 변환하는 기어박스(40)를 포함하는 것을 특징으로 하는 수문 개폐 장치.A sluice door opening and closing device comprising a gearbox (40) for converting a rotational motion of a handle or a rotational motion of a motor by a manpower into an elevating motion of the rack bar (30) using a combination of a plurality of gears.
PCT/KR2019/016175 2019-02-20 2019-11-22 Sluice opening/closing apparatus and method for manufacturing rack bar thereof WO2020171351A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190020113A KR101975005B1 (en) 2019-02-20 2019-02-20 Floodgate switchgear apparatus and method for manufacturing rack bar thereof
KR10-2019-0020113 2019-02-20

Publications (1)

Publication Number Publication Date
WO2020171351A1 true WO2020171351A1 (en) 2020-08-27

Family

ID=66582645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016175 WO2020171351A1 (en) 2019-02-20 2019-11-22 Sluice opening/closing apparatus and method for manufacturing rack bar thereof

Country Status (2)

Country Link
KR (1) KR101975005B1 (en)
WO (1) WO2020171351A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101975005B1 (en) * 2019-02-20 2019-05-03 (주)대도엔텍 Floodgate switchgear apparatus and method for manufacturing rack bar thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07224417A (en) * 1994-02-09 1995-08-22 Nishida Marine Boiler Co Ltd Sluice opening/shutting device
KR20060007230A (en) * 2004-07-19 2006-01-24 오국현 Chain rack
KR20070020194A (en) * 2003-11-10 2007-02-20 가부시키가이샤 제이텍트 Power transmission chain, power transmission device, and method of producing the chain
CN101407306A (en) * 2008-11-14 2009-04-15 丰华 Stacked flexible rack gear type elevating gear
KR101012475B1 (en) * 2010-08-16 2011-02-08 이병순 Rack gear and floodgate lifter using the same
KR101975005B1 (en) * 2019-02-20 2019-05-03 (주)대도엔텍 Floodgate switchgear apparatus and method for manufacturing rack bar thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07224417A (en) * 1994-02-09 1995-08-22 Nishida Marine Boiler Co Ltd Sluice opening/shutting device
KR20070020194A (en) * 2003-11-10 2007-02-20 가부시키가이샤 제이텍트 Power transmission chain, power transmission device, and method of producing the chain
KR20060007230A (en) * 2004-07-19 2006-01-24 오국현 Chain rack
CN101407306A (en) * 2008-11-14 2009-04-15 丰华 Stacked flexible rack gear type elevating gear
KR101012475B1 (en) * 2010-08-16 2011-02-08 이병순 Rack gear and floodgate lifter using the same
KR101975005B1 (en) * 2019-02-20 2019-05-03 (주)대도엔텍 Floodgate switchgear apparatus and method for manufacturing rack bar thereof

Also Published As

Publication number Publication date
KR101975005B1 (en) 2019-05-03

Similar Documents

Publication Publication Date Title
WO2020171351A1 (en) Sluice opening/closing apparatus and method for manufacturing rack bar thereof
CN112126875A (en) Multi-level heterostructure dual-phase alloy and hot rolling method thereof
CN1169995C (en) Cryogenic treatment process for copper alloy band
CN109112275B (en) Straightening method and straightening device for gear shaft after carburizing, quenching and deforming
CN215725065U (en) Box annealing furnace
CN213771813U (en) Annealing furnace for glass bottle production
CN111233312A (en) Method and device for reducing tempered glass into common glass by removing stress
CN210826265U (en) Controlled atmosphere multipurpose furnace for heat treatment
CN112858148A (en) Two-box type temperature impact test box
CN217131824U (en) Box resistance furnace convenient to blowing
CN218817301U (en) Hydraulic valve group for mining machinery
CN218541585U (en) Building installation assembly
CN211601584U (en) Box resistance furnace protector
CN219842134U (en) Safety valve inspection bench convenient to maintain
CN211227255U (en) Metal product heat preservation tempering furnace
CN1924500A (en) Furnace door ridge and roller hearth furnace door
CN217692586U (en) Visual cable pit fire prevention apron
CN220183347U (en) Surface layer heat treatment device for metal anti-corrosion treatment
CN210441649U (en) Heat treatment resistance furnace
CN116399155A (en) Supporting device of plate heat exchanger
CN220907566U (en) Heat treatment equipment for protecting staff
CN216514069U (en) Nitriding furnace work piece support
CN211152461U (en) Dustproof construction for digital communication device
CN217503710U (en) Novel mechanical seal structure for water seal at bottom of boiler
CN218932228U (en) Heat treatment quenching device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915600

Country of ref document: EP

Kind code of ref document: A1