WO2020170485A1 - Communication device, communication method, and program - Google Patents

Communication device, communication method, and program Download PDF

Info

Publication number
WO2020170485A1
WO2020170485A1 PCT/JP2019/035625 JP2019035625W WO2020170485A1 WO 2020170485 A1 WO2020170485 A1 WO 2020170485A1 JP 2019035625 W JP2019035625 W JP 2019035625W WO 2020170485 A1 WO2020170485 A1 WO 2020170485A1
Authority
WO
WIPO (PCT)
Prior art keywords
position information
movement
transmission
determination unit
communication device
Prior art date
Application number
PCT/JP2019/035625
Other languages
French (fr)
Japanese (ja)
Inventor
将照 山岸
Original Assignee
Smk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smk株式会社 filed Critical Smk株式会社
Publication of WO2020170485A1 publication Critical patent/WO2020170485A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a communication device, a communication method, and a program.
  • Patent Document 1 discloses a technique of searching for a connection destination of a wireless network when a stationary state of a mobile terminal is detected using a movement detection unit such as an acceleration sensor. As a result, the search operation of the wireless network is not performed during the movement, so that the power consumption can be reduced as compared with the case where the connection destination search operation is performed during the movement.
  • LPWA Low Power Wide Area
  • IoT Internet of Things
  • LPWA Low Power Wide Area
  • LPWA is very slow compared to cellular lines such as 3G lines and 4G lines and wireless LAN (Local Area Network), but it can transmit over a wide range, the frequency bandwidth is narrow, and the power consumption is extremely low. It has a characteristic of being small, and is suitable for a sensor network that transmits a large number of small data from a plurality of places.
  • Communication standards based on LPWA include, for example, SIGFOX (sub GHz band (866 MHz band, 915 MHz band/920 MHz band), maximum transmission speed of about 100 bps, transmission distance of several tens of km), LoRa (sub GHz band, maximum transmission). The speed is about 250 kbps. The transmission distance is about 10 km at maximum), Wi-Fi HaLow (sub GHz band, maximum transmission speed is about 150 kbps, transmission distance is about 1 km), Wi-SUN (sub GHz band, maximum transmission speed is 800 kbps).
  • Transmission distance is about 1 km
  • RPMA 2.4 GHz band
  • maximum transmission speed is 40 kbps
  • maximum transmission distance is about 20 km
  • Flexnet 280 MHz band
  • maximum transmission speed is 10 kbps
  • maximum transmission distance is about 20 km
  • NB-IoT And so on.
  • a communication standard suitable for such an IoT device is basically not suitable for use in a communication device involving movement as described above. This is because when such a communication standard is applied to wireless communication in a moving IoT device (for example, an IoT device used for tracking position information), frequency shift due to Doppler shift occurs due to the narrow band wireless communication as described above. Moreover, since the communication speed is slow and it takes a long time to transmit once (for example, 7 to 8 seconds in the case of SIGFOX), there is a problem that the reception error rate becomes high on the receiving side.
  • the present invention has been made in view of the above circumstances, and provides a communication device, a communication method, and a program capable of reducing the reception error on the receiving side as much as possible even when used in an application involving movement. It is in.
  • the present invention provides A communication device capable of transmitting position information based on an LPWA (Low Power Wide Area) communication method, A position information acquisition unit that acquires position information, After the acquisition of the position information by the position information acquisition unit, a movement determination unit that determines whether or not the communication device has moved, And a transmission control unit that controls the transmission of the position information based on the result of the determination by the movement determination unit, The movement determination unit determines the presence or absence of movement during the transmission of the position information based on the first acceleration information acquired before the transmission of the position information and the second acceleration information acquired after the transmission of the position information, The transmission control unit is a communication device that controls the same position information as the position information to be retransmitted when the movement determination unit determines that there is movement.
  • LPWA Low Power Wide Area
  • the movement determination unit determines the presence or absence of movement before transmitting the position information
  • the transmission control unit preferably controls the position information to be transmitted when the movement determination unit determines that there is no movement.
  • the movement determination unit determines whether or not there is movement after transmitting the position information, It is preferable that the transmission control unit controls the position information to be retransmitted when the movement determination unit determines that there is movement.
  • the position information acquisition unit preferably acquires the position information when the movement is detected by the movement detection unit.
  • a communication method capable of transmitting position information based on an LPWA (Low Power Wide Area) communication method The location information acquisition unit acquires location information, The movement determination unit determines whether or not the communication device has moved after the position information is acquired by the position information acquisition unit, The transmission control unit controls the transmission of the position information based on the result of the determination by the movement determination unit, The movement determination unit determines the presence or absence of movement during the transmission of the position information based on the first acceleration information acquired before the transmission of the position information and the second acceleration information acquired after the transmission of the position information, The transmission control unit is a communication method that controls so that the same position information as the position information is retransmitted when the movement determination unit determines that there is movement.
  • LPWA Low Power Wide Area
  • a communication method capable of transmitting position information based on an LPWA (Low Power Wide Area) communication method
  • the location information acquisition unit acquires location information
  • the movement determination unit determines whether or not the communication device has moved after the position information is acquired by the position information acquisition unit
  • the transmission control unit controls the transmission of the position information based on the result of the determination by the movement determination unit
  • the movement determination unit determines the presence or absence of movement during the transmission of the position information, based on the first acceleration information acquired before the transmission of the position information and the second acceleration information acquired after the transmission of the position information
  • the transmission control unit is a program that causes a computer to execute a communication method that controls so that the same position information as the position information is retransmitted when the movement determination unit determines that there is movement.
  • the present invention it is possible to reduce the reception error on the receiving side as much as possible even when it is used for an application involving movement.
  • the contents of the present invention are not limited to the effects described in this specification.
  • FIG. 3 is a block diagram showing a configuration example of an IoT device having a wireless communication module according to the first embodiment. It is a functional block diagram which shows the structural example of the wireless-communications module concerning 1st Embodiment.
  • 6 is a flowchart showing an example of the flow of processing performed in the first embodiment.
  • FIG. 7 is a diagram for explaining an example of an acquisition timing of position information according to the first embodiment.
  • FIG. 4 is a diagram for explaining an example of a transmission timing of position information according to the first embodiment.
  • FIG. 4 is a diagram for explaining an example of a transmission timing of position information according to the first embodiment.
  • 9 is a flowchart showing an example of the flow of processing performed in the second embodiment.
  • FIG. 1 shows a configuration example of an IoT device (IoT device 1) according to the first embodiment.
  • the communication device wireless communication module 6) according to the first embodiment of the present invention is installed in an IoT device 1.
  • the IoT device 1 is a small-sized GPS (Global Positioning System) tracker excellent in portability, which is connected to a wireless network and stores the position information (positioning information) of the IoT device 1 at a remote location. It is configured so that it can be transmitted to a device or the like.
  • the position information transmitted from the IoT device 1 is appropriately used by the server device by a method according to an application or a contract.
  • the IoT device 1 is attached to or detached from or incorporated in an article such as a person, an animal such as a pet, a key, a smart phone, or a bag.
  • the IoT device 1 includes an acceleration sensor 2, a GPS receiver 3, a temperature/humidity/pressure sensor 4, a notification LED (Light Emitting Diode) 5, a wireless communication module 6, a power supply 7, and a power switch 8.
  • the acceleration sensor 2 detects a change in motion in a linear direction associated with the movement of the IoT device 1 as acceleration, and outputs the detection result as acceleration information. Specifically, the acceleration sensor 2 detects the acceleration in each of the three directions of the XYZ axes that are orthogonal to each other, and outputs information indicating the acceleration in each direction as acceleration information. Further, when the acceleration sensor 2 detects the acceleration that accompanies the movement of the IoT device 1, the acceleration sensor 2 outputs the notification information to that effect.
  • the GPS receiver 3 receives radio waves from GPS satellites, performs positioning using the radio waves, generates position information based on the positioning result, and outputs the position information.
  • the temperature/humidity/atmospheric pressure sensor 4 detects the temperature/humidity/atmospheric pressure of the place where the IoT device 1 is located, and outputs the detection result as temperature/humidity/atmospheric pressure information.
  • the acceleration sensor 2, the GPS receiver 3, and the temperature/humidity/pressure sensor 4 are respectively connected to the wireless communication module 6, and the wireless communication module 6 is provided with the above-mentioned acceleration information, notification information, position information, and temperature/humidity/pressure information. Each is configured to be outputable.
  • the notification LED 5 is for visually notifying the user of the state of the IoT device 1. Specifically, the notification LED 5 is connected to the wireless communication module 6 as shown in the figure, and under the control of the wireless communication module 6, an ON/OFF state of a power switch 8 (described later), an operating state of the wireless communication module 6, and the like. Notify by lighting state.
  • the wireless communication module 6 is composed of, for example, a circuit board on which electronic components such as SoC (System-on-a-chip) are mounted, and is a LPWA suitable for the above-mentioned IoT device 1, specifically, a wireless standard of SIGFOX. Compliant communication is configured. Note that it is of course possible to apply the above-mentioned other LPWA communication standards as well as SIGFOX.
  • the power supply 7 is a power supply source of electric power to each element constituting the IoT device 1.
  • the power supply 7 is composed of a coin battery, a button battery, a dry battery, or the like suitable for use in a small mobile device.
  • the power supply 7 may be composed of a secondary battery (for example, a lithium ion battery) that can be charged via a charging port such as a USB (Universal Serial Bus).
  • the power switch 8 is a switch for switching on/off the power of the IoT device 1.
  • the wireless communication module 6 is equipped with application software for a GPS tracker. As shown in FIG. 2, the wireless communication module 6 has a storage unit 61, a sensor information acquisition unit 62, a position information acquisition unit 63, a sleep processing unit 64, and a movement detection unit 65 that function when the program is executed by the software. , A movement determination unit 66, a transmission control unit 67, and a communication unit 68.
  • the storage unit 61 stores various kinds of information such as information used in processes described later, programs, and the like in a memory (not shown) and reads the information from the memory. Specifically, the storage unit 61 stores acceleration information and the like acquired by the sensor information acquisition unit 62 described later.
  • the sensor information acquisition unit 62 acquires information from each sensor such as the acceleration sensor 2 and the temperature/humidity/pressure sensor 4. Specifically, the sensor information acquisition unit 62 acquires the above-described acceleration information from the acceleration sensor 2 at predetermined time intervals (for example, 200 milliseconds) by using timekeeping information such as a timer. In addition, the sensor information acquisition unit 62 acquires the notification information output from the acceleration sensor 2 in an interrupted manner.
  • the position information acquisition unit 63 acquires position information from the GPS receiver 3. Specifically, the position information acquisition unit 63 basically acquires the position information at timings of a predetermined period (for example, several minutes to several tens of minutes) by using timekeeping information such as a timer. The acquisition of the position information will be described in detail later.
  • the sleep processing unit 64 operates the wireless communication module 6 in the sleep mode.
  • the sleep mode refers to a power saving state in which a process that consumes a large amount of power, such as positioning by the GPS receiver 3 and transmission by the communication unit 68 described later, is not performed.
  • the movement detection unit 65 detects movement of the IoT device 1 including the wireless communication module 6. Specifically, the movement detection unit 65 determines that the movement of the IoT device 1 is detected when the sensor information acquisition unit 62 receives the notification information from the acceleration sensor 2.
  • the movement determination unit 66 determines whether or not the IoT device 1 including the wireless communication module 6 has moved. Specifically, the movement determination unit 66 uses the previous acceleration information stored in the storage unit 61 (specifically, the above-described three-axis acceleration when the acceleration information is acquired by the sensor information acquisition unit 62). The XYZ value of the base of the sensor) and the acquired acceleration information (specifically, the XYZ value of the above-described three-axis acceleration sensor after a certain time has elapsed) are calculated, and the difference is less than a predetermined threshold value. If it is, it is determined to be in a stationary state (no movement), and if it is equal to or more than the threshold value, it is determined to be in a moving state (moving). For example, this movement is a movement that causes a reception error on the receiving side. It should be noted that this threshold value is appropriately set depending on the usage environment of the IoT device 1.
  • the transmission control unit 67 controls transmission by the communication unit 68.
  • the communication unit 68 connects to a wireless network by wireless communication conforming to the above-described LPWA wireless standard, and transmits position information to the outside of the IoT device 1 via the antenna ANT.
  • the antenna ANT an antenna built in the wireless communication module 6 may be used depending on the communication state, or an external antenna having a higher gain may be used.
  • the wireless communication module 6 is set to the sleep mode by the sleep processing unit 64 (step S2). Then, during the operation in the sleep mode, it is determined whether or not it is a predetermined timing for canceling the sleep mode (step S3).
  • the predetermined timing for canceling the sleep mode is set for each predetermined period (for example, several minutes to several tens of minutes) in which the position information is basically acquired from the GPS receiver 3 described above. For example, if it is set to every 2 minutes, the timing when the power is turned on and the timing every 2 minutes are determined from the timing when the power is turned on.
  • step S4 determines whether or not movement of the IoT device 1 is detected.
  • step S4 determines whether or not movement of the IoT device 1 is detected.
  • step S5 stores the flag information indicating that the movement is detected (step S5), and then the process is returned to step S3.
  • this movement it is preferable to stop the acquisition of the notification information from the acceleration sensor 2 until the next sleep mode release timing. As a result, it is possible to reduce the power consumption as compared with the case where the notification information is continuously received from the acceleration sensor 2 even after the detection.
  • step S6 it is determined whether or not the previous movement is detected. Specifically, if the storage unit 61 stores the flag information, it is determined that the movement is detected, and if it is not stored, it is determined that the movement is not detected.
  • the GPS receiver 3 is operated by the position information acquisition unit 63, and the position information is acquired from the GPS receiver 3 (step S7). ..
  • the wireless communication module 6 is configured to determine whether to cancel the sleep mode at every predetermined period (every 2 minutes in the illustrated example). Then, when the movement of the IoT device 1 is detected during the sleep mode, the sleep mode is released at the next timing of the sleep mode release determination, and the position information is acquired from the GPS receiver 3. On the other hand, if the movement is not detected, the position information is not acquired.
  • step S8 determines whether or not the IoT device 1 is in the stationary state. If it is determined in step S8 that the stationary state is not established (NO), it is determined whether or not a timeout has occurred (step S9). This time-out period is appropriately set in advance (for example, 3 seconds) based on the sleep mode release determination interval or the like. Then, if it is determined in step S9 that the timeout has not occurred (NO), the process returns to step S8.
  • step S8 If it is determined in step S8 that the vehicle is stationary (YES) and if it is determined in step S9 that a time-out has occurred (YES), the transmission controller 67 causes the communication unit 68 to transmit the position information acquired earlier. The position information is transmitted by the communication unit 68 (step S10). If it is determined in step S9 that the time-out has occurred (YES), an error or the like may be notified without transmitting this position information, but there is a possibility that no reception error will occur on the receiving side. So there is a transmission here.
  • the acceleration information is acquired from the acceleration sensor 2 at predetermined time intervals (every 200 milliseconds in the illustrated example) after the acquisition of the position information.
  • a difference between the generated acceleration information and the acceleration information acquired immediately before the acceleration information is calculated.
  • the difference is less than the threshold value, it is determined to be in a stationary state, and the position information is transmitted.
  • it is equal to or more than the threshold value it is determined that the stationary state is not set (the moving state), and the position information is not transmitted. As shown in FIG.
  • the position information is transmitted at the time-out. .. If the position information can be quickly acquired and the position information is updated, the latest position information may be transmitted in the stationary state.
  • step S11 preprocessing for shifting to the sleep mode is performed as shown in FIG. 3 (step S11). Specifically, the process of putting the acceleration sensor 2 and the GPS receiver 3 into the standby state is performed. Even when it is determined that the movement is not detected (NO) in step S6 described above, the process of step S11 is performed. Then, after the processing of step S11, the processing is returned to step S1.
  • the movement determination unit 66 performs the wireless communication module after the position information acquisition unit 63 acquires the position information.
  • the presence or absence of movement of No. 6 is determined, and the transmission control unit 67 controls the transmission of the position information based on the determination result.
  • the transmission control is performed according to the movement status of the wireless communication module 6 after the acquisition of the position information. be able to.
  • the movement determination unit 66 determines whether or not the wireless communication module 6 has moved before the position information is transmitted, and the transmission control unit 67 transmits the position information when the wireless communication module 6 is in a stationary state, that is, when there is no movement. Therefore, it is possible to reduce the probability of a reception error on the receiving side as compared with the case where the position information is immediately transmitted after being acquired. Further, by appropriately setting the length of the period for determining the presence or absence of movement, it is possible to prevent the position information from being significantly different even if the position information is transmitted after the stop. This is effective when the transmission control unit 67 controls the transmission of information by the communication unit 68 that performs wireless communication using the LPWA communication method, as in the present embodiment.
  • the position information acquisition unit 63 acquires the position information. It is possible to reduce power consumption as compared with the case where position information is acquired from the GPS receiver 3 regardless of the situation.
  • wireless communication device wireless communication module 6A
  • the processing by the movement determination unit 66A and the transmission control unit 67A is the same as the processing by the movement determination unit 66 and the transmission control unit 67 of the wireless communication module 6 according to the first embodiment described above. Be different.
  • the other points are the same as those of the first embodiment described above.
  • the same or similar components as those of the first embodiment are designated by the same reference numerals, and the description thereof will be simplified or omitted.
  • the movement determination unit 66A determines whether or not the IoT device 1 has moved, like the movement determination unit 66 in the above-described first embodiment.
  • the transmission control unit 67A controls the transmission by the communication unit 68, similarly to the transmission control unit 67 in the above-described first embodiment.
  • step S21 to step S27 shown in FIG. 8 is the same as each of step S1 to step S7 shown in FIG. 3 described above, and the description thereof is omitted here.
  • the sensor information acquisition unit 62 when the position information is acquired in the same manner as in the above-described first embodiment (step S27), the sensor information acquisition unit 62 then operates the acceleration sensor 2 so that the acceleration sensor 2 operates. Acceleration information is acquired (step S28). Then, the transmission control unit 67A controls the communication unit 68 so that the position information acquired in step S27 is transmitted, and the communication unit 68 transmits the position information (step S29). As described above, in this embodiment, the stationary state is not determined before the position information is transmitted.
  • the movement determination unit 66A determines whether or not the IoT device 1 has moved (step S30). That is, the sensor information acquisition unit 62 acquires the acceleration information from the acceleration sensor 2, calculates the difference between the acceleration information before transmission of the previously acquired position information and the newly acquired acceleration information, and the difference is predetermined. If it is equal to or more than the threshold value, it is determined that it has moved, and if it is less than the threshold value, it is determined that it has not moved.
  • step S31 the position information transmitted in step S29 is transmitted again (retransmitted).
  • the position information is retransmitted to the server device or the like three times.
  • the number of times the position information is retransmitted (the number of retries) is set as appropriate according to the content of the contract with the telecommunications carrier (limitation of the number of transmissions, charges, etc.). In this way, if there is a movement when the position information is transmitted, the same position information is retransmitted by the communication unit 68 under the control of the transmission control unit 67A.
  • step S32 After the position information is retransmitted a predetermined number of times, the above-described processing for shifting to the sleep mode is performed (step S32), and the processing is returned to step S21.
  • the presence/absence of movement is determined after the acquisition of the position information, as in the first embodiment. Since the transmission of the position information is controlled based on the determination result, it is possible to perform the transmission control according to the movement status of the wireless communication module 6A after the position information is acquired.
  • the movement determination unit 66A determines whether or not the wireless communication module 6 has moved after transmitting the position information, and when it is determined that the wireless communication module 6 has moved (YES in step S30), the transmission control unit 67A determines the position information. Since the wireless communication module 6A is controlled to be retransmitted, the wireless communication module 6A moves during the transmission of the positional information and the positional information is retransmitted even when the receiving side is likely to cause a reception error. The occurrence of reception error can be reduced as much as possible. In particular, this is effective when the transmission control unit 67 controls the transmission of information by the communication unit 68 that performs wireless communication using the LPWA communication method, as in the present embodiment.
  • the position information acquisition unit 63 acquires the position information when the movement detection unit 65 detects the movement of the wireless communication module 6A.
  • the power consumption can be reduced as compared with the case where the position information is acquired from the GPS receiver 3 regardless of whether or not the wireless communication module 6A has moved.
  • the present invention is not limited to the one described in the above-mentioned embodiment, and various modifications can be made.
  • the process described in the above-described first embodiment and the process described in the second embodiment may be combined. That is, the presence or absence of movement of the wireless communication module 6 may be determined before and after the position information is transmitted, and the position information may be transmitted based on each determination result. Thereby, both effects described in the first embodiment and the second embodiment can be obtained.
  • the detection of the movement of the wireless communication modules 6, 6A by the movement detection unit 65 and the determination of the movement of the wireless communication modules 6, 6A by the movement determination units 66, 66A are not limited to those described above. ..
  • the threshold value and the difference are compared to determine the presence or absence of movement, but the average value of the difference for a predetermined number of times is compared with the threshold value.
  • the presence/absence of movement may be determined by doing so, or the presence/absence of movement may be determined by whether or not the difference is less than the threshold value continuously for a predetermined number of times.
  • the transmission information to be transmitted from the wireless communication modules 6 and 6A is used as the position information.
  • the transmission information may be used, or other sensor output information may be used as the transmission information. Also, a combination of these pieces of information may be used as the transmission information.
  • the communication unit 68 exemplifies the one that performs wireless communication conforming to the LPWA communication method, but if the same operation and effect can be obtained, the communication method is particularly limited to this.
  • the above-mentioned other LPWA communication standard can be applied.
  • each process executed by software in each of the above-described embodiments may be realized by hardware.
  • the present invention can be implemented in an appropriate form such as a method, a program, a system, and a recording medium recording the program.
  • 6,6A wireless communication module 62 sensor information acquisition unit 63 position information acquisition unit 65 movement detection unit 66,66A movement determination unit 67,67A transmission control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Telephone Function (AREA)
  • Telephonic Communication Services (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

[Problem] To provide a communication device, a communication method, and a program, which are capable of reducing a reception error on a receiving side as much as possible even when used in a mobile application. [Solution] Provided is a communication device capable of transmitting position information on the basis of a communication scheme of a low power wide area (LPWA), the communication device comprising: a position information acquisition unit which acquires position information; a movement determination unit which after the acquisition of the position information, determines whether or not the communication device has moved; and a transmission control unit which controls the transmission of position information on the basis of the determination result of the movement determination unit.

Description

通信装置、通信方法およびプログラムCommunication device, communication method, and program
 本発明は、通信装置、通信方法およびプログラムに関する。 The present invention relates to a communication device, a communication method, and a program.
 従来、移動を伴う通信装置による無線通信の最適化を図る技術が提案されている。例えば、下記の特許文献1には、加速度センサなどの移動検出部を用いて携帯端末の静止が検出されたときに無線ネットワークの接続先を検索する技術が開示されている。これにより、移動中には無線ネットワークの検索動作が行われないことになるので、移動中にも接続先の検索動作を行う場合と比較して電力消費を低減させることができる。 Conventionally, a technology for optimizing wireless communication by a mobile communication device has been proposed. For example, Patent Document 1 below discloses a technique of searching for a connection destination of a wireless network when a stationary state of a mobile terminal is detected using a movement detection unit such as an acceleration sensor. As a result, the search operation of the wireless network is not performed during the movement, so that the power consumption can be reduced as compared with the case where the connection destination search operation is performed during the movement.
 ところで、近年、IoT(Internet of Things)デバイスとサーバとの間の通信方式として、LPWA(Low Power Wide Area)(省電力広域)が注目されている。LPWAは伝送速度が3G回線、4G回線などのセルラー回線や無線LAN(Local Area Network)と比較すると非常に遅いものの、広範囲に伝送でき、周波数帯幅も狭帯域であり、且つ、消費電力が極めて少ないという特性を有しており、小さいデータを複数の場所から多数送信するセンサネットワークなどに好適である。 By the way, in recent years, LPWA (Low Power Wide Area) has attracted attention as a communication method between an IoT (Internet of Things) device and a server. LPWA is very slow compared to cellular lines such as 3G lines and 4G lines and wireless LAN (Local Area Network), but it can transmit over a wide range, the frequency bandwidth is narrow, and the power consumption is extremely low. It has a characteristic of being small, and is suitable for a sensor network that transmits a large number of small data from a plurality of places.
 LPWAに基づく通信規格としては、例えば、SIGFOX(サブGHz帯(866MHz帯、915MHz帯・920MHz帯)、最大伝送速度は100bps程度。伝送距離は数十km程度)、LoRa(サブGHz帯、最大伝送速度は250kbps程度。伝送距離は最大10km程度)、Wi-Fi  HaLow(サブGHz帯、最大伝送速度は150kbps程度。伝送距離は1km程度)、Wi-SUN(サブGHz帯、最大伝送速度は800kbps。伝送距離は1km程度)、RPMA(2.4GHz帯、最大伝送速度は40kbps。最大伝送距離は20km程度)、Flexnet(280MHz帯、最大伝送速度は10kbps、最大伝送距離は20km程度)、NB-IoTなどが挙げられる。 Communication standards based on LPWA include, for example, SIGFOX (sub GHz band (866 MHz band, 915 MHz band/920 MHz band), maximum transmission speed of about 100 bps, transmission distance of several tens of km), LoRa (sub GHz band, maximum transmission). The speed is about 250 kbps. The transmission distance is about 10 km at maximum), Wi-Fi HaLow (sub GHz band, maximum transmission speed is about 150 kbps, transmission distance is about 1 km), Wi-SUN (sub GHz band, maximum transmission speed is 800 kbps). Transmission distance is about 1 km), RPMA (2.4 GHz band, maximum transmission speed is 40 kbps, maximum transmission distance is about 20 km), Flexnet (280 MHz band, maximum transmission speed is 10 kbps, maximum transmission distance is about 20 km), NB-IoT And so on.
特開2009-44309号公報JP-A-2009-44309
 しかしながら、このようなIoTデバイスに適した通信規格は、基本的には上述したような移動を伴う通信装置での利用には向いていない。というのも、このような通信規格を、移動するIoTデバイス(例えば、位置情報のトラッキング用途のIoTデバイス)における無線通信に適用すると、上述したような狭帯域無線通信ゆえ、ドップラーシフトによる周波数のズレに弱く、さらに、通信速度が遅く1回の送信に時間がかかる(例えば、SIGFOXの場合には7~8秒)ことから、受信側において受信エラー率が高くなるという問題点があった。 However, a communication standard suitable for such an IoT device is basically not suitable for use in a communication device involving movement as described above. This is because when such a communication standard is applied to wireless communication in a moving IoT device (for example, an IoT device used for tracking position information), frequency shift due to Doppler shift occurs due to the narrow band wireless communication as described above. Moreover, since the communication speed is slow and it takes a long time to transmit once (for example, 7 to 8 seconds in the case of SIGFOX), there is a problem that the reception error rate becomes high on the receiving side.
 本発明は、このような事情に鑑みてなされたもので、移動を伴う用途で用いられても受信側での受信エラーを極力、低減することができる通信装置、通信方法およびプログラムを提供することにある。 The present invention has been made in view of the above circumstances, and provides a communication device, a communication method, and a program capable of reducing the reception error on the receiving side as much as possible even when used in an application involving movement. It is in.
 上述した課題を解決するために、本発明は、
 LPWA(Low Power Wide Area)の通信方式に基づいて位置情報を送信可能な通信装置であって、
 位置情報を取得する位置情報取得部と、
 位置情報取得部による位置情報の取得後に、通信装置の移動の有無を判定する移動判定部と、
 移動判定部による判定の結果に基づいて位置情報の送信を制御する送信制御部と
 を有し、
 移動判定部は、位置情報の送信前に取得した第1の加速度情報と位置情報の送信後に取得した第2の加速度情報とに基づいて、位置情報の送信中における移動の有無を判定し、
 送信制御部は、移動判定部にて移動有りと判定された場合に、位置情報と同一の位置情報が再送されるように制御する
 通信装置である。
In order to solve the above problems, the present invention provides
A communication device capable of transmitting position information based on an LPWA (Low Power Wide Area) communication method,
A position information acquisition unit that acquires position information,
After the acquisition of the position information by the position information acquisition unit, a movement determination unit that determines whether or not the communication device has moved,
And a transmission control unit that controls the transmission of the position information based on the result of the determination by the movement determination unit,
The movement determination unit determines the presence or absence of movement during the transmission of the position information based on the first acceleration information acquired before the transmission of the position information and the second acceleration information acquired after the transmission of the position information,
The transmission control unit is a communication device that controls the same position information as the position information to be retransmitted when the movement determination unit determines that there is movement.
 本発明では、移動判定部は、位置情報の送信前に移動の有無を判定し、
 送信制御部は、移動判定部にて移動無しと判定された場合に位置情報が送信されるように制御することが好ましい。
In the present invention, the movement determination unit determines the presence or absence of movement before transmitting the position information,
The transmission control unit preferably controls the position information to be transmitted when the movement determination unit determines that there is no movement.
 本発明では、
 移動判定部は、位置情報の送信後に移動の有無を判定し、
 送信制御部は、移動判定部にて移動有りと判定された場合に位置情報が再送されるように制御することが好ましい。
In the present invention,
The movement determination unit determines whether or not there is movement after transmitting the position information,
It is preferable that the transmission control unit controls the position information to be retransmitted when the movement determination unit determines that there is movement.
 本発明では、
 通信装置の移動を検知する移動検知部を有し、
 位置情報取得部は、移動検知部により移動が検知された場合に位置情報を取得することが好ましい。
In the present invention,
Has a movement detection unit for detecting movement of the communication device,
The position information acquisition unit preferably acquires the position information when the movement is detected by the movement detection unit.
 本発明の他の態様は、
 LPWA(Low Power Wide Area)の通信方式に基づいて位置情報を送信可能な通信方法であって、
 位置情報取得部が、位置情報を取得し、
 移動判定部が、位置情報取得部による位置情報の取得後に、通信装置の移動の有無を判定し、
 送信制御部が、移動判定部による判定の結果に基づいて位置情報の送信を制御し、
 移動判定部は、位置情報の送信前に取得した第1の加速度情報と位置情報の送信後に取得した第2の加速度情報とに基づいて、位置情報の送信中における移動の有無を判定し、
 送信制御部は、移動判定部にて移動有りと判定された場合に、位置情報と同一の位置情報が再送されるように制御する
 通信方法である。
Another aspect of the invention is
A communication method capable of transmitting position information based on an LPWA (Low Power Wide Area) communication method,
The location information acquisition unit acquires location information,
The movement determination unit determines whether or not the communication device has moved after the position information is acquired by the position information acquisition unit,
The transmission control unit controls the transmission of the position information based on the result of the determination by the movement determination unit,
The movement determination unit determines the presence or absence of movement during the transmission of the position information based on the first acceleration information acquired before the transmission of the position information and the second acceleration information acquired after the transmission of the position information,
The transmission control unit is a communication method that controls so that the same position information as the position information is retransmitted when the movement determination unit determines that there is movement.
 本発明の他の態様は、
 LPWA(Low Power Wide Area)の通信方式に基づいて位置情報を送信可能な通信方法であって、
 位置情報取得部が、位置情報を取得し、
 移動判定部が、位置情報取得部による位置情報の取得後に、通信装置の移動の有無を判定し、
 送信制御部が、移動判定部による判定の結果に基づいて位置情報の送信を制御し、
 移動判定部は、位置情報の送信前に取得した第1の加速度情報と位置情報の送信後に取得した第2の加速度情報とに基づいて、位置情報の送信中における移動の有無を判定し、
 送信制御部は、移動判定部にて移動有りと判定された場合に、位置情報と同一の位置情報が再送されるように制御する
 通信方法をコンピュータに実行させるプログラムである。
Another aspect of the invention is
A communication method capable of transmitting position information based on an LPWA (Low Power Wide Area) communication method,
The location information acquisition unit acquires location information,
The movement determination unit determines whether or not the communication device has moved after the position information is acquired by the position information acquisition unit,
The transmission control unit controls the transmission of the position information based on the result of the determination by the movement determination unit,
The movement determination unit determines the presence or absence of movement during the transmission of the position information, based on the first acceleration information acquired before the transmission of the position information and the second acceleration information acquired after the transmission of the position information,
The transmission control unit is a program that causes a computer to execute a communication method that controls so that the same position information as the position information is retransmitted when the movement determination unit determines that there is movement.
 本発明によれば、移動を伴う用途で用いられても受信側での受信エラーを極力、低減することができる。なお、本明細書に記載された効果によって、本発明の内容が限定されるものではない。 According to the present invention, it is possible to reduce the reception error on the receiving side as much as possible even when it is used for an application involving movement. The contents of the present invention are not limited to the effects described in this specification.
第1の実施の形態にかかる無線通信モジュールを有するIoTデバイスの構成例を示すブロック図である。FIG. 3 is a block diagram showing a configuration example of an IoT device having a wireless communication module according to the first embodiment. 第1の実施の形態にかかる無線通信モジュールの構成例を示す機能ブロック図である。It is a functional block diagram which shows the structural example of the wireless-communications module concerning 1st Embodiment. 第1の実施の形態で行われる処理の流れの一例を示すフローチャートである。6 is a flowchart showing an example of the flow of processing performed in the first embodiment. 第1の実施の形態にかかる位置情報の取得タイミングの一例について説明するための図である。FIG. 7 is a diagram for explaining an example of an acquisition timing of position information according to the first embodiment. 第1の実施の形態にかかる位置情報の送信タイミングの一例について説明するための図である。FIG. 4 is a diagram for explaining an example of a transmission timing of position information according to the first embodiment. 第1の実施の形態にかかる位置情報の送信タイミングの一例について説明するための図である。FIG. 4 is a diagram for explaining an example of a transmission timing of position information according to the first embodiment. 第2の実施の形態にかかる無線通信モジュールの構成例を示すための機能ブロック図である。It is a functional block diagram for showing the example of composition of the radio communication module concerning a 2nd embodiment. 第2の実施の形態で行われる処理の流れの一例を示すフローチャートである。9 is a flowchart showing an example of the flow of processing performed in the second embodiment.
 以下、本発明の実施の形態等について図面を参照しながら説明する。なお、説明は以下の順序で行う。
<第1の実施の形態>
<第2の実施の形態>
<変形例>
 以下に説明する実施の形態等は本発明の好適な具体例であり、本発明の内容がこれらの実施の形態等に限定されるものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The description will be given in the following order.
<First Embodiment>
<Second Embodiment>
<Modification>
The embodiments and the like described below are preferred specific examples of the present invention, and the contents of the present invention are not limited to these embodiments and the like.
<第1の実施の形態>
[IoTデバイスの構成例]
 図1は、第1の実施の形態にかかるIoTデバイス(IoTデバイス1)の構成例を示している。図1に示すように、本発明の第1の実施の形態にかかる通信装置(無線通信モジュール6)は、IoTデバイス1に搭載されるものである。IoTデバイス1は、具体的には、携帯性に優れた小型のGPS(Global Positioning System)トラッカーであり、無線ネットワークに接続し、当該IoTデバイス1の位置情報(測位情報)を遠隔地にあるサーバ装置などに送信可能に構成されている。IoTデバイス1から送信された位置情報が、サーバ装置でアプリケーションや契約に応じた方法により適宜、使用される。IoTデバイス1は、例えば、人、ペット等の動物、鍵,スマートホン,鞄等の物品に着脱又は内蔵される。
<First Embodiment>
[Configuration example of IoT device]
FIG. 1 shows a configuration example of an IoT device (IoT device 1) according to the first embodiment. As shown in FIG. 1, the communication device (wireless communication module 6) according to the first embodiment of the present invention is installed in an IoT device 1. Specifically, the IoT device 1 is a small-sized GPS (Global Positioning System) tracker excellent in portability, which is connected to a wireless network and stores the position information (positioning information) of the IoT device 1 at a remote location. It is configured so that it can be transmitted to a device or the like. The position information transmitted from the IoT device 1 is appropriately used by the server device by a method according to an application or a contract. The IoT device 1 is attached to or detached from or incorporated in an article such as a person, an animal such as a pet, a key, a smart phone, or a bag.
 図示するように、IoTデバイス1は、加速度センサ2、GPS受信機3、温湿度・気圧センサ4、通知LED(Light Emitting Diode)5、無線通信モジュール6、電源7および電源スイッチ8を有している。加速度センサ2は、IoTデバイス1の移動に伴う直線方向の運動の変化を加速度として検出し、その検出結果を加速度情報として出力するものである。具体的には、加速度センサ2は、互いに直交するXYZ軸の3方向それぞれの加速度を検出し、各方向の加速度を表す情報を加速度情報として出力する。また、加速度センサ2は、IoTデバイス1の移動にともなう加速度を検知した場合に、その旨を通知する通知情報を出力する。 As illustrated, the IoT device 1 includes an acceleration sensor 2, a GPS receiver 3, a temperature/humidity/pressure sensor 4, a notification LED (Light Emitting Diode) 5, a wireless communication module 6, a power supply 7, and a power switch 8. There is. The acceleration sensor 2 detects a change in motion in a linear direction associated with the movement of the IoT device 1 as acceleration, and outputs the detection result as acceleration information. Specifically, the acceleration sensor 2 detects the acceleration in each of the three directions of the XYZ axes that are orthogonal to each other, and outputs information indicating the acceleration in each direction as acceleration information. Further, when the acceleration sensor 2 detects the acceleration that accompanies the movement of the IoT device 1, the acceleration sensor 2 outputs the notification information to that effect.
 GPS受信機3は、GPS衛星からの電波を受信し、その電波を用いて測位を行い、その測位結果に基づく位置情報を生成し、出力するものである。温湿度・気圧センサ4は、IoTデバイス1が位置する場所の温湿度・気圧をそれぞれ検出し、その検出結果を温湿度・気圧情報として出力するものである。 The GPS receiver 3 receives radio waves from GPS satellites, performs positioning using the radio waves, generates position information based on the positioning result, and outputs the position information. The temperature/humidity/atmospheric pressure sensor 4 detects the temperature/humidity/atmospheric pressure of the place where the IoT device 1 is located, and outputs the detection result as temperature/humidity/atmospheric pressure information.
 これら加速度センサ2、GPS受信機3および温湿度・気圧センサ4は、それぞれ無線通信モジュール6と接続され、無線通信モジュール6に、上述した加速度情報、通知情報、位置情報および温湿度・気圧情報をそれぞれ出力可能に構成されている。 The acceleration sensor 2, the GPS receiver 3, and the temperature/humidity/pressure sensor 4 are respectively connected to the wireless communication module 6, and the wireless communication module 6 is provided with the above-mentioned acceleration information, notification information, position information, and temperature/humidity/pressure information. Each is configured to be outputable.
 通知LED5は、IoTデバイス1の状態を利用者に視覚的に知らせるためのものである。具体的には、通知LED5は、図示するように無線通信モジュール6と接続され、無線通信モジュール6の制御のもと、電源スイッチ8(後述)のオンオフ状態、無線通信モジュール6の作動状態などを点灯状態によって通知する。 The notification LED 5 is for visually notifying the user of the state of the IoT device 1. Specifically, the notification LED 5 is connected to the wireless communication module 6 as shown in the figure, and under the control of the wireless communication module 6, an ON/OFF state of a power switch 8 (described later), an operating state of the wireless communication module 6, and the like. Notify by lighting state.
 無線通信モジュール6は、例えば、SoC(System-on-a-chip)などの電子部品を搭載した回路基板によって構成され、上述したIoTデバイス1に適したLPWA、具体的にはSIGFOXの無線規格に準拠した通信が可能に構成されている。なお、SIGFOXに限らず、上述した他のLPWAの通信規格を適用することも勿論可能である。 The wireless communication module 6 is composed of, for example, a circuit board on which electronic components such as SoC (System-on-a-chip) are mounted, and is a LPWA suitable for the above-mentioned IoT device 1, specifically, a wireless standard of SIGFOX. Compliant communication is configured. Note that it is of course possible to apply the above-mentioned other LPWA communication standards as well as SIGFOX.
 電源7は、IoTデバイス1を構成する各要素への電力の供給源である。具体的には、電源7は、小型の携帯機器への採用に好適なコイン電池、ボタン電池または乾電池などで構成される。なお、電源7は、USB(Universal Serial Bus)などの充電用ポートを介して充電可能な二次電池(例えば、リチウムイオン電池)で構成されていてもよい。電源スイッチ8は、IoTデバイス1の電源オン/オフを切り替えるためのスイッチである。 The power supply 7 is a power supply source of electric power to each element constituting the IoT device 1. Specifically, the power supply 7 is composed of a coin battery, a button battery, a dry battery, or the like suitable for use in a small mobile device. The power supply 7 may be composed of a secondary battery (for example, a lithium ion battery) that can be charged via a charging port such as a USB (Universal Serial Bus). The power switch 8 is a switch for switching on/off the power of the IoT device 1.
 ところで、上述した無線通信モジュール6には、GPSトラッカー用のアプリケーションソフトウェアが実装されている。この無線通信モジュール6は、図2に示すように、そのソフトウェアによるプログラムの実行の際に機能する記憶部61、センサ情報取得部62、位置情報取得部63、スリープ処理部64、移動検知部65、移動判定部66、送信制御部67および通信部68を有している。 By the way, the above-mentioned wireless communication module 6 is equipped with application software for a GPS tracker. As shown in FIG. 2, the wireless communication module 6 has a storage unit 61, a sensor information acquisition unit 62, a position information acquisition unit 63, a sleep processing unit 64, and a movement detection unit 65 that function when the program is executed by the software. , A movement determination unit 66, a transmission control unit 67, and a communication unit 68.
 記憶部61は、後述する処理で使用される情報などの各種情報やプログラムなどをメモリ(図示略)に記憶し、またメモリから読み出すものである。具体的には、記憶部61は、後述するセンサ情報取得部62によって取得された加速度情報などを記憶する。センサ情報取得部62は、加速度センサ2および温湿度・気圧センサ4などの各センサから情報を取得するものである。具体的には、センサ情報取得部62は、タイマなどの計時情報を利用して、加速度センサ2から所定期間(例えば、200ミリ秒)毎に上述した加速度情報を取得する。また、センサ情報取得部62は、加速度センサ2から出力される通知情報を割込み的に取得する。 The storage unit 61 stores various kinds of information such as information used in processes described later, programs, and the like in a memory (not shown) and reads the information from the memory. Specifically, the storage unit 61 stores acceleration information and the like acquired by the sensor information acquisition unit 62 described later. The sensor information acquisition unit 62 acquires information from each sensor such as the acceleration sensor 2 and the temperature/humidity/pressure sensor 4. Specifically, the sensor information acquisition unit 62 acquires the above-described acceleration information from the acceleration sensor 2 at predetermined time intervals (for example, 200 milliseconds) by using timekeeping information such as a timer. In addition, the sensor information acquisition unit 62 acquires the notification information output from the acceleration sensor 2 in an interrupted manner.
 位置情報取得部63は、GPS受信機3から位置情報を取得するものである。具体的には、位置情報取得部63は、タイマなどの計時情報を利用して、基本的に所定期間(例えば、数分から数十分)毎のタイミングで位置情報を取得する。なお、この位置情報の取得については、後で詳述する。 The position information acquisition unit 63 acquires position information from the GPS receiver 3. Specifically, the position information acquisition unit 63 basically acquires the position information at timings of a predetermined period (for example, several minutes to several tens of minutes) by using timekeeping information such as a timer. The acquisition of the position information will be described in detail later.
 スリープ処理部64は、無線通信モジュール6をスリープモードで動作させるものである。ここで、スリープモードとは、GPS受信機3での測位や、後述する通信部68による送信など、電力消費の大きい処理が行われない省電力状態のことをいう。 The sleep processing unit 64 operates the wireless communication module 6 in the sleep mode. Here, the sleep mode refers to a power saving state in which a process that consumes a large amount of power, such as positioning by the GPS receiver 3 and transmission by the communication unit 68 described later, is not performed.
 移動検知部65は、無線通信モジュール6を含むIoTデバイス1の移動を検知するものである。具体的には、移動検知部65は、センサ情報取得部62が加速度センサ2から通知情報を受け取った場合に、IoTデバイス1の移動が検知されたと判定する。 The movement detection unit 65 detects movement of the IoT device 1 including the wireless communication module 6. Specifically, the movement detection unit 65 determines that the movement of the IoT device 1 is detected when the sensor information acquisition unit 62 receives the notification information from the acceleration sensor 2.
 移動判定部66は、無線通信モジュール6を含むIoTデバイス1の移動の有無について判定するものである。具体的には、この移動判定部66は、センサ情報取得部62によって加速度情報が取得された際に、記憶部61により記憶されている前回の加速度情報(具体的には、上述した3軸加速度センサにおけるベースのXYZ値)と、その取得された加速度情報(具体的には、上述した3軸加速度センサにおける一定時間経過後のXYZ値)との差分を算出し、その差分が所定の閾値未満である場合には、静止状態である(動きがない)と判定し、閾値以上である場合には、移動状態である(動きがある)と判定する。例えば、この動きは、受信側において受信エラーとなるような動きのことである。なお、この閾値は、IoTデバイス1の使用環境などによって適宜設定される。 The movement determination unit 66 determines whether or not the IoT device 1 including the wireless communication module 6 has moved. Specifically, the movement determination unit 66 uses the previous acceleration information stored in the storage unit 61 (specifically, the above-described three-axis acceleration when the acceleration information is acquired by the sensor information acquisition unit 62). The XYZ value of the base of the sensor) and the acquired acceleration information (specifically, the XYZ value of the above-described three-axis acceleration sensor after a certain time has elapsed) are calculated, and the difference is less than a predetermined threshold value. If it is, it is determined to be in a stationary state (no movement), and if it is equal to or more than the threshold value, it is determined to be in a moving state (moving). For example, this movement is a movement that causes a reception error on the receiving side. It should be noted that this threshold value is appropriately set depending on the usage environment of the IoT device 1.
 送信制御部67は、通信部68による送信の制御を行うものである。通信部68は、上述したLPWAの無線規格に準拠した無線通信により無線ネットワークに接続し、アンテナANTを介して位置情報をIoTデバイス1の外部に送信するものである。なお、アンテナANTは、通信状態に応じて無線通信モジュール6に内蔵のアンテナを用いてもよいし、より利得の高い外付けのアンテナを用いてもよい。 The transmission control unit 67 controls transmission by the communication unit 68. The communication unit 68 connects to a wireless network by wireless communication conforming to the above-described LPWA wireless standard, and transmits position information to the outside of the IoT device 1 via the antenna ANT. As the antenna ANT, an antenna built in the wireless communication module 6 may be used depending on the communication state, or an external antenna having a higher gain may be used.
[第1の実施の形態で行われる処理の流れ]
 次に、図3を参照して、上述した無線通信モジュール6による処理の流れの一例について説明する。ユーザによって図1に示すIoTデバイス1の電源スイッチ8がオフからオンに切り替えられると、無線通信モジュール6に電源7から電力が供給され、図3に示す処理が開始される。なお、この処理は、電源スイッチ8が再びオフに切り替えられると終了する(ステップS1でYES)。
[Flow of processing performed in the first embodiment]
Next, an example of the flow of processing by the wireless communication module 6 described above will be described with reference to FIG. When the power switch 8 of the IoT device 1 shown in FIG. 1 is switched from off to on by the user, power is supplied from the power supply 7 to the wireless communication module 6 and the processing shown in FIG. 3 is started. Note that this process ends when the power switch 8 is turned off again (YES in step S1).
 電源スイッチ8がオンの状態である場合(ステップS1でNO)には、無線通信モジュール6は、スリープ処理部64によってスリープモードに設定される(ステップS2)。そして、このスリープモードでの動作中において、スリープモードを解除する所定タイミングとなったか否かについて判定される(ステップS3)。このスリープモード解除の所定タイミングは、上述したGPS受信機3から位置情報が基本的に取得される所定期間(例えば、数分から数十分)毎のタイミングに設定される。例えば、2分毎と設定した場合には、電源オン時のタイミングおよびその電源オン時のタイミングから2分毎のタイミングが判定される。 If the power switch 8 is on (NO in step S1), the wireless communication module 6 is set to the sleep mode by the sleep processing unit 64 (step S2). Then, during the operation in the sleep mode, it is determined whether or not it is a predetermined timing for canceling the sleep mode (step S3). The predetermined timing for canceling the sleep mode is set for each predetermined period (for example, several minutes to several tens of minutes) in which the position information is basically acquired from the GPS receiver 3 described above. For example, if it is set to every 2 minutes, the timing when the power is turned on and the timing every 2 minutes are determined from the timing when the power is turned on.
 ステップS3にて所定タイミングでない(NO)と判定された場合には、移動検知部65によりIoTデバイス1の移動検知の有無について判定される(ステップS4)。ステップS4にて、移動が検知されない(NO)と判定された場合には、ステップS3に処理が戻される。一方、移動が検知された(YES)と判定された場合には、移動の検知があった旨のフラグ情報を記憶部61により記憶(ステップS5)した後、処理がステップS3に戻される。なお、この移動検知があった場合には、次のスリープモードの解除タイミングまで加速度センサ2からの通知情報の取得を停止することが好ましい。これにより、検知後も継続して加速度センサ2から通知情報を受ける場合と比較して電力消費を低減させることができる。 If it is determined in step S3 that the timing is not the predetermined timing (NO), the movement detection unit 65 determines whether or not movement of the IoT device 1 is detected (step S4). When it is determined in step S4 that the movement is not detected (NO), the process is returned to step S3. On the other hand, when it is determined that the movement is detected (YES), the storage unit 61 stores the flag information indicating that the movement is detected (step S5), and then the process is returned to step S3. When this movement is detected, it is preferable to stop the acquisition of the notification information from the acceleration sensor 2 until the next sleep mode release timing. As a result, it is possible to reduce the power consumption as compared with the case where the notification information is continuously received from the acceleration sensor 2 even after the detection.
 ステップS3にて所定タイミングである(YES)と判定された場合には、先ほどの移動の検知があったか否かについて判定される(ステップS6)。具体的には、記憶部61によりフラグ情報が記憶されていれば移動の検知があったと判定され、記憶されていなければ移動の検知がなかったと判定される。ステップS6にて移動の検知があったと判定された場合(YES)には、位置情報取得部63によってGPS受信機3が作動され、GPS受信機3から位置情報の取得が行われる(ステップS7)。 If it is determined in step S3 that the timing is the predetermined timing (YES), it is determined whether or not the previous movement is detected (step S6). Specifically, if the storage unit 61 stores the flag information, it is determined that the movement is detected, and if it is not stored, it is determined that the movement is not detected. When it is determined that the movement is detected in step S6 (YES), the GPS receiver 3 is operated by the position information acquisition unit 63, and the position information is acquired from the GPS receiver 3 (step S7). ..
 つまり、図4に示すように、この無線通信モジュール6では、所定期間毎(図示する例では2分毎)にスリープモードの解除判定がなされるようになっている。そして、そのスリープモード中にIoTデバイス1の移動が検知された場合には、次のスリープモードの解除判定のタイミングにおいてスリープモードが解除され、GPS受信機3から位置情報が取得される。一方、移動が検知されなかった場合には位置情報は取得されない。 That is, as shown in FIG. 4, the wireless communication module 6 is configured to determine whether to cancel the sleep mode at every predetermined period (every 2 minutes in the illustrated example). Then, when the movement of the IoT device 1 is detected during the sleep mode, the sleep mode is released at the next timing of the sleep mode release determination, and the position information is acquired from the GPS receiver 3. On the other hand, if the movement is not detected, the position information is not acquired.
 そして、このステップS7での位置情報の取得が行われた後、移動判定部66によってIoTデバイス1が静止状態であるか否かについて判定される(ステップS8)。ステップS8にて静止状態でないと判定された場合(NO)には、タイムアウトか否かが判定される(ステップS9)。このタイムアウトにする時間は、スリープモードの解除判定間隔などに基づき予め適宜設定(例えば3秒間)されるものである。そして、このステップS9にてタイムアウトではない(NO)と判定された場合には、処理がステップS8に戻される。 Then, after the acquisition of the position information in step S7, the movement determination unit 66 determines whether or not the IoT device 1 is in the stationary state (step S8). If it is determined in step S8 that the stationary state is not established (NO), it is determined whether or not a timeout has occurred (step S9). This time-out period is appropriately set in advance (for example, 3 seconds) based on the sleep mode release determination interval or the like. Then, if it is determined in step S9 that the timeout has not occurred (NO), the process returns to step S8.
 ステップS8にて静止状態であると判定された場合(YES)およびステップS9にてタイムアウトであると判定された場合(YES)には、送信制御部67により、先ほど取得した位置情報が通信部68を介して送信されるように制御され、通信部68によって位置情報が送信される(ステップS10)。なお、ステップS9にてタイムアウトであると判定された場合(YES)に、この位置情報を送信さずにエラー等の報知が行われてもよいが、受信側で受信エラーが生じない可能性もあるので、ここでは送信を行っている。 If it is determined in step S8 that the vehicle is stationary (YES) and if it is determined in step S9 that a time-out has occurred (YES), the transmission controller 67 causes the communication unit 68 to transmit the position information acquired earlier. The position information is transmitted by the communication unit 68 (step S10). If it is determined in step S9 that the time-out has occurred (YES), an error or the like may be notified without transmitting this position information, but there is a possibility that no reception error will occur on the receiving side. So there is a transmission here.
 つまり、図5に示すように、この無線通信モジュール6では、位置情報の取得後に加速度センサ2から加速度情報が所定期間毎(図示する例では200ミリ秒毎)に取得され、取得の都度、取得された加速度情報とその加速度情報の直前に取得された加速度情報との差分が算出される。そして、その差分が閾値未満である場合には静止状態であると判定され、位置情報の送信が行われる。一方、閾値以上である場合には静止状態でない(移動状態である)と判定され、位置情報の送信は行われない。図6に示すように、タイムアウトとなるまで(図示する例では、加速度情報の取得開始から3秒間)差分が閾値を超えた状態が続いた場合には、タイムアウトの際に位置情報が送信される。なお、位置情報が迅速に取得でき、位置情報が更新された場合には、静止状態において最新の位置情報が送信されてもよい。 That is, as shown in FIG. 5, in the wireless communication module 6, the acceleration information is acquired from the acceleration sensor 2 at predetermined time intervals (every 200 milliseconds in the illustrated example) after the acquisition of the position information. A difference between the generated acceleration information and the acceleration information acquired immediately before the acceleration information is calculated. Then, if the difference is less than the threshold value, it is determined to be in a stationary state, and the position information is transmitted. On the other hand, when it is equal to or more than the threshold value, it is determined that the stationary state is not set (the moving state), and the position information is not transmitted. As shown in FIG. 6, if the difference continues to exceed the threshold value until the time-out occurs (in the illustrated example, 3 seconds from the start of acquisition of acceleration information), the position information is transmitted at the time-out. .. If the position information can be quickly acquired and the position information is updated, the latest position information may be transmitted in the stationary state.
 そして、このステップS10での位置情報の送信後、図3に示すように、スリープモードに移行するための前処理が行われる(ステップS11)。具体的には、加速度センサ2およびGPS受信機3を待機状態にする処理が行われる。なお、上述したステップS6にて移動の検知がなかった(NO)と判定された場合にも、このステップS11の処理がなされる。そして、このステップS11の処理後、ステップS1に処理が戻される。 Then, after transmitting the position information in step S10, preprocessing for shifting to the sleep mode is performed as shown in FIG. 3 (step S11). Specifically, the process of putting the acceleration sensor 2 and the GPS receiver 3 into the standby state is performed. Even when it is determined that the movement is not detected (NO) in step S6 described above, the process of step S11 is performed. Then, after the processing of step S11, the processing is returned to step S1.
 以上説明したように、本発明の第1の実施の形態に係る無線通信装置(無線通信モジュール6)によれば、位置情報取得部63による位置情報の取得後に、移動判定部66により無線通信モジュール6の移動の有無が判定され、その判定結果に基づいて送信制御部67により位置情報の送信が制御される。このように、位置情報の取得後に移動の有無が判定され、その判定結果に基づき位置情報の送信が制御されるので、位置情報取得後の無線通信モジュール6の移動状況に応じた送信制御を行うことができる。 As described above, according to the wireless communication device (wireless communication module 6) according to the first embodiment of the present invention, the movement determination unit 66 performs the wireless communication module after the position information acquisition unit 63 acquires the position information. The presence or absence of movement of No. 6 is determined, and the transmission control unit 67 controls the transmission of the position information based on the determination result. In this way, the presence/absence of movement is determined after the acquisition of the position information, and the transmission of the position information is controlled based on the determination result. Therefore, the transmission control is performed according to the movement status of the wireless communication module 6 after the acquisition of the position information. be able to.
 本実施の形態では、位置情報の送信前に移動判定部66によって無線通信モジュール6の移動の有無が判定され、静止状態、つまり移動なしと判定されたに送信制御部67によって位置情報が送信されるように制御されるので、位置情報を取得後に即送信する場合と比較して受信側において受信エラーとなる確率を低くすることができる。また、移動の有無を判定する期間の長さを適切に設定することにって、停止してから位置情報を送信しても、位置情報が大幅に違ってしまうことを防止することができる。本実施の形態のように、LPWAの通信方式を用いた無線通信を行う通信部68による情報の送信を送信制御部67が制御するような場合に効果的である。 In the present embodiment, the movement determination unit 66 determines whether or not the wireless communication module 6 has moved before the position information is transmitted, and the transmission control unit 67 transmits the position information when the wireless communication module 6 is in a stationary state, that is, when there is no movement. Therefore, it is possible to reduce the probability of a reception error on the receiving side as compared with the case where the position information is immediately transmitted after being acquired. Further, by appropriately setting the length of the period for determining the presence or absence of movement, it is possible to prevent the position information from being significantly different even if the position information is transmitted after the stop. This is effective when the transmission control unit 67 controls the transmission of information by the communication unit 68 that performs wireless communication using the LPWA communication method, as in the present embodiment.
 また、この無線通信モジュール6では、移動検知部65によって無線通信モジュール6の移動が検知された場合に、位置情報取得部63によって位置情報が取得されるので、無線通信モジュール6の移動の有無に関係なくGPS受信機3から位置情報を取得する場合と比較して消費電力を低減させることができる。 Further, in this wireless communication module 6, when the movement detection unit 65 detects the movement of the wireless communication module 6, the position information acquisition unit 63 acquires the position information. It is possible to reduce power consumption as compared with the case where position information is acquired from the GPS receiver 3 regardless of the situation.
<第2の実施の形態>
 次に、図7を参照して本発明の第2実施の形態にかかる無線通信装置(無線通信モジュール6A)について説明する。図7に示す無線通信モジュール6Aは、移動判定部66Aおよび送信制御部67Aによる処理が、上述した第1の実施の形態に係る無線通信モジュール6の移動判定部66および送信制御部67による処理と相違する。他の点は、上述した第1の実施の形態と同様である。なお、図中、第1の実施の形態と同一または同様の構成には同じ符号を付し、説明を簡略または省略する。
<Second Embodiment>
Next, a wireless communication device (wireless communication module 6A) according to a second embodiment of the present invention will be described with reference to FIG. In the wireless communication module 6A shown in FIG. 7, the processing by the movement determination unit 66A and the transmission control unit 67A is the same as the processing by the movement determination unit 66 and the transmission control unit 67 of the wireless communication module 6 according to the first embodiment described above. Be different. The other points are the same as those of the first embodiment described above. In the drawings, the same or similar components as those of the first embodiment are designated by the same reference numerals, and the description thereof will be simplified or omitted.
 移動判定部66Aは、上述した第1の実施の形態での移動判定部66と同様、IoTデバイス1の移動の有無について判定するものである。送信制御部67Aは、上述した第1の実施の形態での送信制御部67と同様、通信部68による送信の制御を行うものである。 The movement determination unit 66A determines whether or not the IoT device 1 has moved, like the movement determination unit 66 in the above-described first embodiment. The transmission control unit 67A controls the transmission by the communication unit 68, similarly to the transmission control unit 67 in the above-described first embodiment.
 以下、図8を参照して、この移動判定部66Aおよび送信制御部67Aを有する無線通信モジュール6Aによる処理の流れの一例について説明する。なお、図8に示すステップS21からステップS27までの各処理は、それぞれ上述した図3に示すステップS1からステップS7と同様であり、ここでは説明を省略する。 An example of the flow of processing by the wireless communication module 6A having the movement determination unit 66A and the transmission control unit 67A will be described below with reference to FIG. It should be noted that each processing from step S21 to step S27 shown in FIG. 8 is the same as each of step S1 to step S7 shown in FIG. 3 described above, and the description thereof is omitted here.
 無線通信モジュール6Aでは、上述した第1の実施の形態と同様にして位置情報が取得される(ステップS27)と、次に、センサ情報取得部62により加速度センサ2が作動され、加速度センサ2から加速度情報が取得される(ステップS28)。そして、送信制御部67Aにより、ステップS27にて取得された位置情報が送信されるように通信部68が制御され、通信部68によって位置情報が送信される(ステップS29)。このように、本実施の形態では、位置情報の送信前に静止状態の判定は行わない。 In the wireless communication module 6A, when the position information is acquired in the same manner as in the above-described first embodiment (step S27), the sensor information acquisition unit 62 then operates the acceleration sensor 2 so that the acceleration sensor 2 operates. Acceleration information is acquired (step S28). Then, the transmission control unit 67A controls the communication unit 68 so that the position information acquired in step S27 is transmitted, and the communication unit 68 transmits the position information (step S29). As described above, in this embodiment, the stationary state is not determined before the position information is transmitted.
 そして、このステップS29により位置情報が送信された後に、移動判定部66AによってIoTデバイス1が移動したか否かについて判定される(ステップS30)。つまり、センサ情報取得部62により加速度センサ2から加速度情報が取得され、先ほど取得した位置情報の送信前の加速度情報と、この新たに取得された加速度情報との差分が算出され、その差分が所定の閾値以上であるには移動したと判定され、閾値未満である場合には移動しなかったと判定される。 Then, after the position information is transmitted in step S29, the movement determination unit 66A determines whether or not the IoT device 1 has moved (step S30). That is, the sensor information acquisition unit 62 acquires the acceleration information from the acceleration sensor 2, calculates the difference between the acceleration information before transmission of the previously acquired position information and the newly acquired acceleration information, and the difference is predetermined. If it is equal to or more than the threshold value, it is determined that it has moved, and if it is less than the threshold value, it is determined that it has not moved.
 ステップS30にて移動した(YES)と判定された場合には、移動に起因して受信側での受信エラーが発生している可能性が高い。そこで、ステップS31では、ステップS29で送信された位置情報が再度、送信される(再送される)。例えば、3回、位置情報がサーバ装置等に再送される。位置情報を再送する回数(リトライ回数)は、通信事業者との契約内容(送信回数制限、料金など)などによって適宜設定される。このように、位置情報が送信された際に移動があった場合には、送信制御部67Aによる制御のもと、通信部68によって同じ位置情報が再送されることになる。 If it is determined in step S30 that the terminal has moved (YES), it is highly possible that a receiving error has occurred on the receiving side due to the movement. Therefore, in step S31, the position information transmitted in step S29 is transmitted again (retransmitted). For example, the position information is retransmitted to the server device or the like three times. The number of times the position information is retransmitted (the number of retries) is set as appropriate according to the content of the contract with the telecommunications carrier (limitation of the number of transmissions, charges, etc.). In this way, if there is a movement when the position information is transmitted, the same position information is retransmitted by the communication unit 68 under the control of the transmission control unit 67A.
 位置情報が、所定回数、再送された後、上述したスリープモードに移行するための処理が行われ(ステップS32)、処理がステップS21に戻される。 After the position information is retransmitted a predetermined number of times, the above-described processing for shifting to the sleep mode is performed (step S32), and the processing is returned to step S21.
 以上説明したように、本発明の第2実施の形態に係る無線通信装置(無線通信モジュール6A)によれば、第1の実施の形態と同様に、位置情報の取得後に移動の有無が判定され、その判定結果に基づき位置情報の送信が制御されるので、位置情報取得後の無線通信モジュール6Aの移動状況に応じた送信制御を行うことができる。 As described above, according to the wireless communication device (wireless communication module 6A) according to the second embodiment of the present invention, the presence/absence of movement is determined after the acquisition of the position information, as in the first embodiment. Since the transmission of the position information is controlled based on the determination result, it is possible to perform the transmission control according to the movement status of the wireless communication module 6A after the position information is acquired.
 本実施の形態では、位置情報の送信後に移動判定部66Aによって無線通信モジュール6の移動の有無が判定され、移動ありと判定された場合(ステップS30でYES)に送信制御部67Aによって位置情報が再送されるように制御されるので、位置情報の送信中に無線通信モジュール6Aが移動し、受信側において受信エラーが生じる可能性が高いような場合でも位置情報が再送されるので、受信側における受信エラーの発生を極力、低減することができる。特に、本実施の形態のように、LPWAの通信方式を用いた無線通信を行う通信部68による情報の送信を送信制御部67が制御するような場合に効果的である。 In the present embodiment, the movement determination unit 66A determines whether or not the wireless communication module 6 has moved after transmitting the position information, and when it is determined that the wireless communication module 6 has moved (YES in step S30), the transmission control unit 67A determines the position information. Since the wireless communication module 6A is controlled to be retransmitted, the wireless communication module 6A moves during the transmission of the positional information and the positional information is retransmitted even when the receiving side is likely to cause a reception error. The occurrence of reception error can be reduced as much as possible. In particular, this is effective when the transmission control unit 67 controls the transmission of information by the communication unit 68 that performs wireless communication using the LPWA communication method, as in the present embodiment.
 また、第1の実施の形態と同様に、この無線通信モジュール6Aでは、移動検知部65によって無線通信モジュール6Aの移動が検知された場合に、位置情報取得部63によって位置情報が取得されるので、無線通信モジュール6Aの移動の有無に関係なくGPS受信機3から位置情報を取得する場合と比較して消費電力を低減させることができる。 Further, as in the first embodiment, in the wireless communication module 6A, the position information acquisition unit 63 acquires the position information when the movement detection unit 65 detects the movement of the wireless communication module 6A. The power consumption can be reduced as compared with the case where the position information is acquired from the GPS receiver 3 regardless of whether or not the wireless communication module 6A has moved.
<変形例>
 本発明は、上述した実施の形態において説明したものに限らず、種々の変形が可能である。例えば、上述した第1の実施の形態において説明した処理と第2実施の形態において説明した処理とを組み合わせてもよい。つまり、位置情報の送信前と送信後にそれぞれ無線通信モジュール6の移動の有無を判定し、各判定結果に基づいて位置情報の送信を行うようにしてもよい。これにより、第1の実施の形態および第2実施の形態で説明した双方の効果を得ることができる。
<Modification>
The present invention is not limited to the one described in the above-mentioned embodiment, and various modifications can be made. For example, the process described in the above-described first embodiment and the process described in the second embodiment may be combined. That is, the presence or absence of movement of the wireless communication module 6 may be determined before and after the position information is transmitted, and the position information may be transmitted based on each determination result. Thereby, both effects described in the first embodiment and the second embodiment can be obtained.
 また、上述した移動検知部65による無線通信モジュール6,6Aの移動の検知や移動判定部66,66Aによる無線通信モジュール6,6Aの移動の有無の判定は、上述したものに限ったものではない。例えば、上述した例では、センサ情報取得部62により加速度情報が取得される都度、閾値と差分とを比較して移動の有無について判定するとしたが、所定回数分の差分の平均値を閾値と比較することで移動の有無を判定してもよいし、差分が所定回数連続して閾値未満であるか否かによって移動の有無を判定してもよい。 Further, the detection of the movement of the wireless communication modules 6, 6A by the movement detection unit 65 and the determination of the movement of the wireless communication modules 6, 6A by the movement determination units 66, 66A are not limited to those described above. .. For example, in the above-described example, each time the sensor information acquisition unit 62 acquires the acceleration information, the threshold value and the difference are compared to determine the presence or absence of movement, but the average value of the difference for a predetermined number of times is compared with the threshold value. The presence/absence of movement may be determined by doing so, or the presence/absence of movement may be determined by whether or not the difference is less than the threshold value continuously for a predetermined number of times.
 さらに、上述した各実施の形態では、無線通信モジュール6,6Aから送信させる送信用情報を位置情報としたが、これに限らず、温湿度・気圧センサ4から出力される温湿度・気圧情報を送信用情報としてもよいし、他のセンサ出力情報を送信用情報としてもよい。また、これらの情報を組み合わせたものを送信用情報としてもよい。 Furthermore, in each of the above-described embodiments, the transmission information to be transmitted from the wireless communication modules 6 and 6A is used as the position information. The transmission information may be used, or other sensor output information may be used as the transmission information. Also, a combination of these pieces of information may be used as the transmission information.
 また、上述した各実施の形態では、通信部68として、LPWAの通信方式に準拠した無線通信を行うものを例示したが、同様の作用効果を得られるものであれば、通信方式は特にこれに限ったものではなく、例えば、上述した他のLPWAの通信規格を適用することができる。 Further, in each of the above-described embodiments, the communication unit 68 exemplifies the one that performs wireless communication conforming to the LPWA communication method, but if the same operation and effect can be obtained, the communication method is particularly limited to this. For example, the above-mentioned other LPWA communication standard can be applied.
 さらに、上述した各実施の形態においてソフトウェアにより実行される各処理は、ハードウェアにより実現してもよい。また、本発明は、方法、プログラム、システム、プログラムを記録した記録媒体等、適宜な形態で実現することができる。 Furthermore, each process executed by software in each of the above-described embodiments may be realized by hardware. Further, the present invention can be implemented in an appropriate form such as a method, a program, a system, and a recording medium recording the program.
 6,6A   無線通信モジュール
 62     センサ情報取得部
 63     位置情報取得部
 65     移動検知部
 66,66A 移動判定部
 67,67A 送信制御部
6,6A wireless communication module 62 sensor information acquisition unit 63 position information acquisition unit 65 movement detection unit 66,66A movement determination unit 67,67A transmission control unit

Claims (5)

  1.  LPWA(Low Power Wide Area)の通信方式に基づいて位置情報を送信可能な通信装置であって、
     前記位置情報を取得する位置情報取得部と、
     前記位置情報取得部による位置情報の取得後に、前記通信装置の移動の有無を判定する移動判定部と、
     前記移動判定部による判定の結果に基づいて前記位置情報の送信を制御する送信制御部と
     を有し、
     前記移動判定部は、前記位置情報の送信前に取得した第1の加速度情報と前記位置情報の送信後に取得した第2の加速度情報とに基づいて、前記位置情報の送信中における移動の有無を判定し、
     前記送信制御部は、前記移動判定部にて移動有りと判定された場合に、前記位置情報と同一の位置情報が再送されるように制御する
     通信装置。
    A communication device capable of transmitting position information based on an LPWA (Low Power Wide Area) communication method,
    A position information acquisition unit that acquires the position information,
    After the acquisition of the position information by the position information acquisition unit, a movement determination unit that determines the presence or absence of movement of the communication device,
    A transmission control unit that controls the transmission of the position information based on the result of the determination by the movement determination unit,
    The movement determination unit determines whether or not there is movement during transmission of the position information based on the first acceleration information acquired before the transmission of the position information and the second acceleration information acquired after the transmission of the position information. Judge,
    The transmission control unit is a communication device that controls such that the same position information as the position information is retransmitted when the movement determination unit determines that there is movement.
  2.  前記移動判定部は、前記第1の加速度情報に基づいて前記位置情報の送信前の移動の有無を判定し、
     前記送信制御部は、前記移動判定部にて移動無しと判定された場合に前記位置情報が送信されるように制御する
     請求項1に記載の通信装置。
    The movement determination unit determines the presence or absence of movement before transmission of the position information based on the first acceleration information,
    The communication device according to claim 1, wherein the transmission control unit controls the position information to be transmitted when the movement determination unit determines that there is no movement.
  3.  前記通信装置の移動を検知する移動検知部を有し、
     前記位置情報取得部は、前記移動検知部により移動が検知された場合に前記位置情報を取得する
     請求項1又は2に記載の通信装置。
    A movement detector for detecting movement of the communication device,
    The communication device according to claim 1, wherein the position information acquisition unit acquires the position information when the movement is detected by the movement detection unit.
  4.  LPWA(Low Power Wide Area)の通信方式に基づいて位置情報を送信可能な通信方法であって、
     位置情報取得部が、前記位置情報を取得し、
     移動判定部が、前記位置情報取得部による位置情報の取得後に、前記通信装置の移動の有無を判定し、
     送信制御部が、前記移動判定部による判定の結果に基づいて前記位置情報の送信を制御し、
     前記移動判定部は、前記位置情報の送信前に取得した第1の加速度情報と前記位置情報の送信後に取得した第2の加速度情報とに基づいて、前記位置情報の送信中における移動の有無を判定し、
     前記送信制御部は、前記移動判定部にて移動有りと判定された場合に、前記位置情報と同一の位置情報が再送されるように制御する
     通信方法。
    A communication method capable of transmitting position information based on an LPWA (Low Power Wide Area) communication method,
    The position information acquisition unit acquires the position information,
    The movement determination unit determines whether or not the communication device has moved after the position information is acquired by the position information acquisition unit,
    The transmission control unit controls the transmission of the position information based on the result of the determination by the movement determination unit,
    The movement determination unit determines whether or not there is movement during transmission of the position information based on the first acceleration information acquired before the transmission of the position information and the second acceleration information acquired after the transmission of the position information. Judge,
    A communication method, wherein the transmission control unit controls such that the same position information as the position information is retransmitted when the movement determination unit determines that there is movement.
  5.  LPWA(Low Power Wide Area)の通信方式に基づいて位置情報を送信可能な通信方法であって、
     位置情報取得部が、前記位置情報を取得し、
     移動判定部が、前記位置情報取得部による位置情報の取得後に、前記通信装置の移動の有無を判定し、
     送信制御部が、前記移動判定部による判定の結果に基づいて前記位置情報の送信を制御し、
     前記移動判定部は、前記位置情報の送信前に取得した第1の加速度情報と前記位置情報の送信後に取得した第2の加速度情報とに基づいて、前記位置情報の送信中における移動の有無を判定し、
     前記送信制御部は、前記移動判定部にて移動有りと判定された場合に、前記位置情報と同一の位置情報が再送されるように制御する
     通信方法をコンピュータに実行させるプログラム。
    A communication method capable of transmitting position information based on an LPWA (Low Power Wide Area) communication method,
    The position information acquisition unit acquires the position information,
    The movement determination unit determines whether or not the communication device has moved after the position information is acquired by the position information acquisition unit,
    The transmission control unit controls the transmission of the position information based on the result of the determination by the movement determination unit,
    The movement determination unit determines whether or not there is movement during transmission of the position information based on the first acceleration information acquired before the transmission of the position information and the second acceleration information acquired after the transmission of the position information. Judge,
    A program that causes a computer to execute a communication method that controls the transmission control unit to retransmit the same position information as the position information when the movement determination unit determines that there is movement.
PCT/JP2019/035625 2019-02-22 2019-09-11 Communication device, communication method, and program WO2020170485A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019030054A JP6587037B1 (en) 2019-02-22 2019-02-22 COMMUNICATION DEVICE, COMMUNICATION METHOD, AND PROGRAM
JP2019-030054 2019-02-22

Publications (1)

Publication Number Publication Date
WO2020170485A1 true WO2020170485A1 (en) 2020-08-27

Family

ID=68159663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035625 WO2020170485A1 (en) 2019-02-22 2019-09-11 Communication device, communication method, and program

Country Status (2)

Country Link
JP (1) JP6587037B1 (en)
WO (1) WO2020170485A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114779302A (en) * 2022-06-21 2022-07-22 深圳华大北斗科技股份有限公司 Low-power-consumption Internet of things equipment based on PPP-RTK technology and control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117296352A (en) 2021-05-12 2023-12-26 凸版印刷株式会社 Object management system, object management server, and object management method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017224877A (en) * 2016-06-13 2017-12-21 日本電気株式会社 Communication device, data acquisition method, program, and safety confirmation system
JP2019022090A (en) * 2017-07-18 2019-02-07 Smk株式会社 Sensor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6397289B2 (en) * 2014-09-25 2018-09-26 Kddi株式会社 Communication terminal device, location providing system, location transmission method, and location transmission control program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017224877A (en) * 2016-06-13 2017-12-21 日本電気株式会社 Communication device, data acquisition method, program, and safety confirmation system
JP2019022090A (en) * 2017-07-18 2019-02-07 Smk株式会社 Sensor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114779302A (en) * 2022-06-21 2022-07-22 深圳华大北斗科技股份有限公司 Low-power-consumption Internet of things equipment based on PPP-RTK technology and control method thereof

Also Published As

Publication number Publication date
JP2020136985A (en) 2020-08-31
JP6587037B1 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
EP1548456B1 (en) Location updating method and apparatus for a cellular subscriber unit comprising a communication receiver and a GPS receiver
EP2659467B1 (en) Power management in wireless tracking device operating with restricted power source
KR101423126B1 (en) System and method for operating a gps device in micro power mode
WO2004093337A1 (en) Motion detecting wireless receiver and signal monitoring method therefor
US8116725B2 (en) GPS-enabled mobile terminal and current position locating method thereof
KR960039707A (en) A wireless unit communicating with a group of satellites and a method of operation thereof
WO2020170485A1 (en) Communication device, communication method, and program
TWI657705B (en) Position tracking system, positioning apparatus and position tracking method
EP3629268B1 (en) Inventory tracking tags, system and method for prolonging battery life
JP2002156438A (en) Satellite receiving device
EP3208950A1 (en) Connected objects communication system
EP1441235A9 (en) Location system
JP2007312165A (en) Positional information communication terminal
JP4915644B2 (en) Emergency call terminal
US20150276932A1 (en) Apparatus and method for determining location of mobile object
WO2018192207A1 (en) Satellite signal search method, device, and mobile terminal
KR101015893B1 (en) Search and Rescue beacon and Method of transmitting rescue signal by utilizing commercial wireless link
JP2006246342A (en) Mobile phone
US20090046006A1 (en) Directional communication apparatus, communication method, communication program, and communication system using directional communication apparatus
JP2007235344A (en) Radio communication system
JPH0927782A (en) Radio equipment
CN216211110U (en) Logistics tray positioning equipment
US11082926B2 (en) Mobile target locator with both RF and cellular communications
JP6478239B2 (en) Terminal device and communication system
KR102342348B1 (en) Energy harvesting system, apparatus and method for performing long distance location estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916405

Country of ref document: EP

Kind code of ref document: A1