WO2020170421A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2020170421A1
WO2020170421A1 PCT/JP2019/006782 JP2019006782W WO2020170421A1 WO 2020170421 A1 WO2020170421 A1 WO 2020170421A1 JP 2019006782 W JP2019006782 W JP 2019006782W WO 2020170421 A1 WO2020170421 A1 WO 2020170421A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerator
humidity
temperature
led
energization amount
Prior art date
Application number
PCT/JP2019/006782
Other languages
French (fr)
Japanese (ja)
Inventor
梅田 達也
康成 大和
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/006782 priority Critical patent/WO2020170421A1/en
Publication of WO2020170421A1 publication Critical patent/WO2020170421A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features

Definitions

  • the present invention relates to a refrigerator having a storage room for storing stored items.
  • the refrigerator is provided with an internal light to illuminate the inside of the refrigerator and make it easy for the user to understand the storage status of food.
  • a light emitting diode LED: Light Emitting Diode
  • an LED is used as an operation panel illumination for the user to set the operating state of the refrigerator.
  • the interior light is a means for illuminating the interior of the refrigerator, and is used for the purpose of facilitating the user's grasp of the food storage status in the interior.
  • the operation panel illumination is provided in the operation unit for setting the operation mode of the refrigerator, and is used for the purpose of displaying the shape of the operation switch on the surface of the operation unit.
  • the permissible forward current is generally used as a design index for keeping the element temperature below the permissible junction temperature.
  • the allowable forward current is the maximum amount of forward current that can be passed through the device within a range in which the junction temperature does not exceed the allowable temperature under a certain ambient temperature. Even with the same amount of electricity, if the ambient temperature is high, the element temperature is high. Therefore, generally, when the ambient temperature is high, the allowable current value is low.
  • the easiest way to energize the LED within the range that does not exceed the permissible current value is to check the permissible current value corresponding to the highest ambient temperature that can be assumed in the actual usage environment, and energize the LED within that range. is there. However, in that case, even when the ambient temperature is not high, the LED is energized assuming the situation where the ambient temperature is the highest, so that the brightness of the LED is sacrificed.
  • the refrigerator of Patent Document 1 can achieve both long life and brightness of the LED by selecting the energization amount of the LED in consideration of the ambient temperature of the LED, but does not consider the humidity around the LED.
  • the phenomenon of ion migration is accelerated, and electrical defects such as insulation defects are likely to occur on the electronic device and a printed circuit board on which the electronic device is mounted.
  • the device life may be significantly reduced. Therefore, when the refrigerator of Patent Document 1 is used in an environment of relatively high humidity, the life of the LED may be significantly reduced.
  • the present invention has been made to solve the above problems, and provides a refrigerator capable of extending the life of a light emitting diode used as a light source even when the refrigerator is used in a high humidity environment. To do.
  • a refrigerator includes at least one storage room, a door provided on the front surface of the storage room, an operation panel that is stored in the door and is used for setting and displaying an operating state of the refrigerator, and the operation panel.
  • a print sheet provided on the front surface of the operation switch, in which the shape of the operation switch is represented, and a light emitting diode which reflects the shape of the operation switch on the front surface of the operation panel by irradiating the print sheet with light;
  • Humidity detection means for detecting ambient humidity, and a controller for controlling the operating state of the refrigerator, the controller, when the humidity detected by the humidity detection means is a predetermined humidity threshold or more, It has an energization amount control means for reducing the energization amount to the light emitting diode.
  • the refrigerator according to the present invention includes at least one storage room, a door provided in front of the storage room, an operation panel stored in the door, for setting and displaying an operating state of the refrigerator, and A print sheet provided on the front surface of the operation panel, in which the shape of the operation switch is represented, and a light emitting diode which projects the shape of the operation switch on the front surface of the operation panel by irradiating the print sheet with light, Humidity detection means for detecting the humidity around the refrigerator, temperature detection means for detecting the temperature around the refrigerator, and a controller for controlling the operating state of the refrigerator, the controller, the humidity detection means When the humidity detected by the above is equal to or higher than a predetermined humidity threshold and the temperature detected by the temperature detecting means is equal to or higher than the predetermined temperature threshold, an energization amount control means for decreasing the energization amount to the light emitting diode Is to have.
  • the energization amount of the light emitting diode is reduced in a high humidity environment, so that the progress of ion migration generated in the light emitting diode can be suppressed. Therefore, the life of the light emitting diode can be extended even in a high humidity environment.
  • FIG. 7 is a functional block diagram showing a configuration example of a controller shown in FIG. 5 and a panel controller shown in FIG. 6.
  • 5 is a graph showing an energization current when turning on the LED shown in FIG. 4 in the first embodiment.
  • FIG. 7 is a time chart showing an example of control of a duty ratio when the ambient humidity of the refrigerator shown in FIG. 1 is equal to or higher than a humidity threshold in the first embodiment.
  • FIG. 7 is a diagram showing an example of a case where the ROM shown in FIG. 6 stores set values in a table format in the first embodiment. It is a flowchart which shows the operation procedure of the refrigerator which concerns on Embodiment 1 of this invention. It is a figure for demonstrating operation
  • FIG. 7 is a diagram showing an example of a case where the ROM shown in FIG.
  • FIG. 6 stores set values in a table format in the second embodiment. It is a flowchart which shows the operation procedure of the refrigerator which concerns on Embodiment 2 of this invention. It is a figure for demonstrating operation
  • FIG. 9 is a diagram showing an example of a case where the ROM shown in FIG. 5 stores set values in a table format in the third embodiment. It is a flowchart which shows the operation procedure of the refrigerator which concerns on Embodiment 3 of this invention.
  • FIG. 1 is a schematic external view showing an example of a refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a side perspective view of the refrigerator shown in FIG.
  • the refrigerator 1 has a refrigerating room 18, freezing rooms 41 and 44, a switching room 42, and a vegetable room 43 as storage rooms for accommodating stored items such as foods.
  • the refrigerator compartment 18 and the vegetable compartment 43 are kept at the refrigeration temperature.
  • the refrigerating temperature is, for example, a temperature range of 0 to 10°C.
  • the freezer compartment 41 is kept at a freezing temperature lower than the refrigerating temperature.
  • the freezing temperature is, for example, a temperature of ⁇ 18° C.
  • the switching chamber 42 is a storage chamber in which the user can select which of the refrigerating temperature and the freezing temperature the stored item is stored in.
  • the partition between the storage compartments such as the refrigerating compartment 18 and the freezing compartment 41, the doors of the refrigerating compartment 18 and the freezing compartment 41, and the heat insulating material that covers the box body including the plurality of storage compartments are hatched. Showing.
  • the refrigerating compartment 18 is a double-door storage compartment in which a left door 7a and a right door 7b are provided on the front side of the refrigerator 1 (in the direction opposite to the Y-axis arrow).
  • an operation panel 6 is provided on the front surface of the left door 7a of the refrigerating compartment 18 for the user to set operating conditions such as adjusting the temperature of each storage compartment.
  • the operation panel 6 is used not only for setting the operating state of the refrigerator 1 but also for displaying the operating state of the refrigerator 1.
  • the refrigerator 1 includes a compressor 2 that compresses and discharges a refrigerant, a cooler 3 that functions as an evaporator of a refrigeration cycle, an expansion valve and a heat radiation pipe (not shown), and a refrigeration cycle. And a main control board 13 for controlling.
  • the radiating pipe functions as a condenser.
  • the main control board 13 is provided on the back side of the refrigerator 1 (in the Y-axis arrow direction).
  • the refrigerator 1 includes an air passage 5 through which the cool air cooled by the cooler 3 flows, a blower fan 4 for supplying the cool air to each storage room, and a refrigerating compartment damper 10 for adjusting the flow rate of the cool air flowing into the refrigerating compartment 18. It is provided.
  • the air passage 5 and the refrigerator compartment damper 10 are provided on the back side of the refrigerator 1.
  • the refrigerator 1 controls a refrigeration cycle in which a refrigerant is circulated in a refrigerant circuit including a compressor 2 and a cooler 3, and cool air in the vicinity of the cooler 3 is circulated in the refrigerator 1 to cool a plurality of storage chambers.
  • an inside lamp 12 that illuminates the inside of the refrigerating compartment 18, a refrigerating compartment thermistor 9 that is a thermistor that detects a refrigerating temperature in the refrigerating compartment 18, and a cooling that is a thermistor that detects the temperature of the cooler 3 are included.
  • a thermistor 11 is provided.
  • the interior light 12 is provided in the refrigerating compartment 18 as lighting for the refrigerating compartment 18.
  • the light source of the interior lamp 12 is, for example, an LED.
  • the temperature detected by the cooler thermistor 11 corresponds to the freezing temperature.
  • the refrigerator 1 is provided with a humidity detecting unit 14 that detects the humidity around the refrigerator 1, a temperature detecting unit 15 that detects the temperature around the refrigerator 1, and an illuminance detecting unit 31 that detects the brightness around the refrigerator. ing.
  • the temperature detecting means 15 is provided on the operation panel 6.
  • the temperature detecting means 15 is, for example, a thermistor.
  • the humidity detecting means 14 is installed on the upper surface of the refrigerator 1, and the illuminance detecting means 31 is installed on the front surface of the left door 7a or the right door 7b of the refrigerating room 18.
  • the humidity detecting means 14 is, for example, a humidity sensor such as a polymer humidity sensor and a ceramics humidity sensor.
  • the illuminance sensor is, for example, an optical sensor such as a light amount sensor.
  • the positions of the humidity detecting means 14 and the illuminance detecting means 31 are not limited to the positions shown in FIG.
  • FIG. 3 is a schematic front view showing a state in which the door of the refrigerating compartment shown in FIG. 1 is opened.
  • the door of the refrigerator compartment 18 is a double door as shown in FIG. 1, the user can open and close each of the left door 7a and the right door 7b independently.
  • a door switch 8 for detecting the open/closed state of the left door 7a and the right door 7b is provided on the front surface of the refrigerator compartment 18.
  • the left door 7a is provided with a door partition member 16 for suppressing the leakage of cold air.
  • a heater 17 is provided inside the door partition member 16 to prevent dew condensation on the door partition member 16.
  • the refrigerator 1 according to the first embodiment will be described in the case of having a configuration in which a plurality of storage chambers are provided in a box body.
  • the number of storage rooms provided in the refrigerator 1 is not limited to a plurality, and may be one.
  • the temperature of one storage chamber may be a refrigerating temperature or a freezing temperature.
  • the door provided with the operation panel 6 is not limited to the left door 7a and may be the right door 7b.
  • the storage room in which the operation panel 6 is provided is not limited to the refrigerating room 18.
  • the door of the refrigerating room 18 is not limited to the double-opening door, but may be a single-opening door.
  • FIG. 4 is a diagram showing a configuration example of the operation panel shown in FIG.
  • the operation panel 6 is provided in the left door 7a.
  • the operation panel 6 is provided with an operation panel control board 20.
  • An LED 21, which serves as a light source, is mounted on the operation panel control board 20.
  • On the front side of the refrigerator 1 of the operation panel 6, a print sheet 23 having a shape 23a of an operation switch is provided.
  • the print sheet 23 is a sheet that transmits light, and the shape of the operation switch 23a is drawn with ink that does not transmit light.
  • the print sheet 23 is arranged between the LED 21 and the surface member 22 of the left door 7a.
  • the surface member 22 of the left door 7a is a material that transmits light.
  • the operation panel 6 is provided with operation switch electrodes 24 between the print sheet 23 and the LEDs 21.
  • the operation switch electrode 24 may be arranged between the surface member 22 of the left door 7a and the print sheet 23.
  • the operation switch electrode 24 is arranged at a position that does not prevent the light emitted from the LED 21 from irradiating the surface member 22 with the shape 23 a of the operation switch.
  • the operation panel 6 described with reference to FIG. 4 is stored in the space provided on the left door 7a.
  • the configuration including the operation panel control board 20, the print sheet 23, and the operation switch electrode 24 on which the LED 21 is mounted is provided in a gas-impermeable housing. It may be sealed. However, if an attempt is made to seal these components, it is necessary to take measures to prevent outside air from entering along the power supply wiring and the signal line connected to the operation panel control board 20, which increases the manufacturing cost. ..
  • the wall of the casing surrounding these components is transparent, the light emitted by the LED 21 is attenuated by the wall of the casing, and the shape 23a of the operation switch is difficult for the user to see.
  • FIG. 5 is a diagram showing a configuration example of the main control board shown in FIG.
  • FIG. 6 is a diagram showing a configuration example of the panel control board shown in FIG.
  • FIG. 7 is a functional block diagram showing a configuration example of the controller shown in FIG. 5 and the panel controller shown in FIG.
  • the main control board 13 includes a controller 19 and an EEPROM (Electrically Erasable Programmable ROM) 30.
  • the controller 19 is, for example, a microcomputer.
  • the controller 19 has a ROM (Random Access Memory) 51, a RAM (Random Access Memory) 52, and a CPU (Central Processing Unit) 53.
  • the ROM 51 stores a program for executing the function of temperature determination required for temperature control of the freezing temperature and the refrigerating temperature, and the function of a timer for measuring time.
  • the CPU 53 executes arithmetic processing according to the program stored in the ROM 51.
  • the RAM 52 stores information such as numerical values calculated in the process of arithmetic processing executed by the CPU 53.
  • the nonvolatile memory provided on the main control board 13 is not limited to the EEPROM 30.
  • the non-volatile memory may be, for example, a flash memory.
  • the EEPROM 30 may be provided in the controller 19.
  • the operation panel control board 20 has a panel controller 25 which is a controller for the operation panel, and an LED drive circuit 26 which supplies electric power to the LEDs 21.
  • the panel controller 25 is, for example, a microcomputer.
  • the panel controller 25 has a ROM 61, a RAM 62, and a CPU 63.
  • the ROM 61 stores a control program for executing an input determination function of the operation switch electrode 24 necessary for controlling the operation panel 6 and a function of controlling lighting and extinguishing of the LED 21.
  • the CPU 63 executes arithmetic processing according to the control program stored in the ROM 61.
  • the RAM 62 stores information such as numerical values calculated in the course of arithmetic processing executed by the CPU 63.
  • FIG. 7 shows a configuration in which the controller 19 and the panel controller 25 are provided on different substrates
  • the controller 19 and the panel controller 25 may be integrally configured and provided on the same substrate.
  • the controller 19 shown in FIG. 5 may have the function of the panel controller 25 shown in FIG.
  • the CPU 53 executes the program stored in the ROM 51
  • the refrigeration cycle means 71 shown in FIG. 7 is configured.
  • the CPU 63 executes the control program stored in the ROM 61 to configure the energization amount control means 72 shown in FIG. 7.
  • the controller 19 controls the temperature of a storage room such as the refrigerating room 18, energization control of the heater 17, records operation history information, and performs mutual communication with the panel controller 25.
  • the refrigeration cycle means 71 controls the opening/closing time of the refrigerating compartment damper 10 based on the detection values detected by the refrigerating compartment thermistor 9 and the temperature detecting means 15, thereby adjusting the flow of cold air flowing into the refrigerating compartment 18. Thereby, the temperature of the refrigerator compartment 18 is controlled. Further, the refrigeration cycle means 71 controls the opening degree of the expansion valve and the operating frequency of the compressor 2 which are not shown, based on the detection value detected by the cooler thermistor 11. As a result, the function of the cooler 3 as an evaporator is controlled, and not only the temperature of the refrigerating chamber 18 but also the temperatures of the freezing chambers 41 and 44 are controlled.
  • the refrigeration cycle means 71 controls the electric power supplied to the heater 17 based on the detection value detected by the humidity detection means 14.
  • the refrigeration cycle means 71 records the cumulative operating time TO of the refrigerator 1, the setting state of the refrigerator 1 and the time series change of the operating state in the EEPROM 30.
  • the mutual communication of the controller 19 with the panel controller 25 will be described.
  • the controller 19 receives an instruction signal, which is a signal indicating the instruction content input by the user via the operation panel 6, from the panel controller 25, the refrigeration cycle means 71 performs the above-mentioned temperature control corresponding to the instruction content.
  • the instruction content is, for example, a set value of the refrigeration temperature.
  • the refrigeration cycle means 71 receives the detection value of the temperature detection means 15 from the panel controller 25, the refrigeration cycle means 71 uses the received detection value for the above temperature control. Further, the refrigeration cycle means 71 transmits the detection values of the humidity detecting means 14 and the illuminance detecting means 31 to the panel controller 25.
  • the refrigeration cycle means 71 transmits information on the operation history time recorded in the EEPROM 30 to the panel controller 25.
  • the panel controller 25 shown in FIG. 6 controls the turning on and off of the LED 21, obtains outside air temperature information, and performs mutual communication with the controller 19.
  • the panel controller 25 constantly monitors the fluctuation of the ground capacitance of the operation switch electrode 24.
  • the ground capacitance of the operation switch electrode 24 located behind the shape 23a of the operation switch changes.
  • the panel controller 25 can determine that the user has operated the operation panel 6 by detecting this variation.
  • the panel controller 25 detects an operation on the operation switch shape 23 a, for example, the LED 21 behind the operation switch shape 23 a is turned on and the operation switch shape 23 a is displayed on the surface member 22. In this way, the user is notified of the operation performed by the user.
  • the panel controller 25 projects the shape 23 a of the operation switch on the surface member 22 to notify the user of the operation result or prompt the user for the next operation.
  • a buzzer (not shown) may be provided on the operation panel 6. In this case, the panel controller 25 may sound a buzzer to notify the user of the operation result.
  • the energization amount control means 72 acquires a detection value from the temperature detection means 15 which detects the temperature around the refrigerator 1 at a constant cycle.
  • the panel controller 25 transmits an instruction signal indicating the input instruction content to the controller 19.
  • the panel controller 25 transmits an instruction signal indicating the input change contents to the controller 19.
  • the energization amount control means 72 transmits the detection value acquired from the temperature detection means 15 to the refrigeration cycle means 71 of the controller 19.
  • FIG. 8 is a graph showing an energization current when the LED shown in FIG. 4 is turned on in the first embodiment.
  • the vertical axis in FIG. 8 represents the current [A] flowing in the LED 21 in the forward direction, and the horizontal axis represents the relative humidity [%RH].
  • the energization amount control means 72 causes the energizing current Cd of the LED 21 to determine the energizing amount Pth0.
  • the LED drive circuit 26 is controlled so that The energization amount Pth0 at high humidity is set to a lower value than the energization amount Pn when the humidity Hd detected by the humidity detecting means 14 is less than the humidity threshold value Hth.
  • the energization amount Pn is a normal energization amount.
  • the energization amount is the average value of the current flowing per unit time.
  • FIG. 9 is a diagram for explaining a specific example of the control of the energization amount of the LED shown in FIG.
  • the energization amount control unit 72 adjusts the ON time Ton for driving the LED driving circuit 26 that applies a predetermined voltage to the LED 21 to supply a current, for each energizing cycle Tk. Control the amount of electricity supplied to.
  • the energization amount control means 72 outputs to the LED drive circuit 26 a pulse voltage of a square wave indicating the on time Ton at a constant energization period Tk.
  • FIG. 9 is a diagram for explaining a specific example of the control of the energization amount of the LED shown in FIG.
  • the energization amount Pn is the energization amount at the normal time
  • the energization period Tk is 10 ms
  • the on time Ton is 6 ms
  • the off time Toff is 4 ms.
  • the LED drive circuit 26 supplies electric power to the LED 21 during the energization period Tk, and when the output of the square wave pulse voltage is Ton, the LED 21 is turned on.
  • the ON-DUTY rate the ratio of the time Ton indicated by the square wave in the ON state of the LED drive circuit 26 to the energization period Tk.
  • this ON-DUTY rate will be referred to as a duty ratio Du.
  • the energization amount control means 72 can adjust the average value of the current flowing through the LED 21 in the forward direction by adjusting the energization rate Du.
  • the energization amount control unit 72 can increase the energization rate Du to increase the average energization current amount and decrease the energization rate Du to decrease the average energization current amount.
  • FIG. 10 is a time chart showing an example of control of the energization rate when the humidity around the refrigerator shown in FIG. 1 is equal to or higher than the humidity threshold value in the first embodiment.
  • the energization amount control means 72 sets the energization rate Du to the energization rate Dun when the humidity Hd around the refrigerator 1 is not high, and sets the energization rate Du to the energization rate Dud when the humidity Hd is high.
  • the duty ratio Dun when the humidity is normal is 60%
  • the duty ratio Dud when the humidity is high is 40%.
  • the humidity Hd detected by the humidity detector 14 is not high, so the energization amount controller 72 outputs the normal energization rate Dun to the LED drive circuit 26. ing.
  • the humidity Hd detected by the humidity detection unit 14 is high humidity equal to or higher than the humidity threshold value Hth, and therefore the energization amount control unit 72 outputs the energization rate Dud at high humidity to the LED drive circuit 26.
  • the forward current of the LED 21 at high humidity can be reduced as compared to the normal forward current.
  • the ROM 61 shown in FIG. 6 stores set values including the duty ratio Dud at high humidity, the duty ratio Dun at normal times, and the humidity threshold value Hth.
  • the ROM 61 stores these set values in the form of a table, for example.
  • FIG. 11 is a diagram showing an example of the case where the ROM shown in FIG. 6 stores the setting values in a table format in the first embodiment.
  • the storage unit that stores these set values is not limited to the ROM 61 of the panel controller 25.
  • the EEPROM 30 shown in FIG. 5 may store the set value.
  • FIG. 12 is a flowchart which shows the operation procedure of the refrigerator which concerns on Embodiment 1 of this invention.
  • the energization amount control means 72 acquires the humidity Hd detected by the humidity detection means 14 from the humidity detection means 14 via the controller 19 (step S101).
  • the energization amount control means 72 determines whether or not the humidity Hd is equal to or higher than the humidity threshold value Hth (step S102).
  • the energization amount control unit 72 determines that the humidity around the refrigerator 1 is high, and outputs the energization rate Dud to the LED drive circuit 26 (step S103).
  • the LED drive circuit 26 supplies electric power to the LED 21 according to the duty ratio Dud. As a result, a current having an energization amount Pth0 lower than that in the normal state flows through the LED 21.
  • step S102 when the humidity Hd is less than the humidity threshold value Hth, the energization amount control unit 72 determines that the humidity around the refrigerator 1 is not high humidity, and sets the energization rate Dun to the LED drive circuit 26. Output (step S104).
  • the LED drive circuit 26 supplies electric power to the LED 21 according to the duty ratio Dun. As a result, a current having the normal energization amount Pn flows through the LED 21. In this way, when the humidity around the refrigerator 1 is high, the amount of current flowing through the LED 21 becomes small and the life of the LED 21 can be extended.
  • the refrigerator 1 includes an operation panel 6 provided on the front surface of the storage room, a print sheet 23 provided on the front surface of the operation panel 6, an LED 21 for irradiating the print sheet 23 with light, and a refrigerator 1 It has a humidity detecting means 14 for detecting the surrounding humidity and a controller 19.
  • the controller 19 has an energization amount control unit 72 that reduces the amount of energization to the LED 21 when the humidity Hd detected by the humidity detection unit 14 is equal to or higher than the humidity threshold value Hth.
  • the energization amount of the LED 21 is reduced in a high humidity environment, so that the progress of ion migration generated in the LED 21 can be suppressed. Therefore, the LED 21 is not sealed by the housing, and the life of the LED 21 can be extended without significantly impairing the life of the LED 21 even in a high humidity environment. As a result, the usage period of the refrigerator 1 can be extended.
  • Modification 1 The case where the energization amount control means 72 controls the energization amount to the LED 21 according to the humidity around the refrigerator 1 has been described with reference to FIGS. 1 to 12. , The amount of electricity supplied to the LED 21 may be controlled. For example, comparing the appearances of the operation panel 6 when the surroundings of the refrigerator 1 are bright and when the surroundings of the refrigerator 1 are dark, when the surroundings of the refrigerator 1 are dark, even if the energization amount of the LED 21 is darker than normal, the user operates the operating panel.
  • the switch shape 23a of 6 can be recognized.
  • the energization amount control unit 72 reduces the energization amount of the LED 21 in the same manner as the control shown in FIG.
  • the life of the LED 21 can be extended.
  • the energization amount control of the first modification may be combined with the flowchart shown in FIG. In this case, the life of the LED 21 can be further extended.
  • Embodiment 2 controls the energization amount of the LED 21 of the operation panel 6 in accordance with not only the humidity but also the temperature as the environment around the refrigerator 1.
  • the same components as those described in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 13 is a figure for demonstrating operation
  • the vertical axis of the upper graph is temperature
  • the vertical axis of the middle graph is relative humidity
  • the vertical axis of the lower graph is pulse voltage. Is.
  • FIG. 13 shows an example of the case where the energization amount control means 72 determines the energization rate Du output to the LED drive circuit 26 from the temperature Td detected by the temperature detection means 15 and the humidity Hd detected by the humidity detection means 14.
  • the duty factor Du when the surroundings of the refrigerator 1 are high temperature and high humidity is Dud
  • the duty factor Du when the surroundings of the refrigerator 1 is neither high temperature nor high humidity is the duty factor Dun.
  • FIG. 13 shows an example in which the duty ratio Dud is 40% and the duty ratio Dun is 60%. Further, in the example shown in FIG. 13, when the temperature Td is equal to or higher than the predetermined temperature threshold Tth, the temperature is high, and when the humidity Hd is equal to or higher than the humidity threshold Hth, the humidity is high.
  • the energization amount control unit 72 outputs the normal energization rate Dun to the LED drive circuit 26.
  • the temperature Td detected by the temperature detecting means 15 is equal to or higher than the temperature threshold Tth
  • the humidity Hd detected by the humidity detecting means 14 is equal to or higher than the humidity threshold Hth. Therefore, in the energization period Tk2, the energization amount control unit 72 outputs the energization rate Dud of high temperature and high humidity to the LED drive circuit 26.
  • the energization amount control means 72 outputs the normal energization rate Dun to the LED drive circuit 26. Further, in the energization cycle Tk4, the humidity Hd is equal to or higher than the humidity threshold value Hth, but the temperature Td is lower than the temperature threshold value Tth. Therefore, the energization amount control means 72 outputs the normal energization rate Dun to the LED drive circuit 26.
  • the ROM 61 shown in FIG. 6 stores set values including the duty ratio Dud at high temperature and high humidity, the duty ratio Dun at normal times, the temperature threshold value Tth, and the humidity threshold value Hth.
  • the ROM 61 may store these set values in the form of a table as shown in FIG. 14, for example.
  • FIG. 14 is a diagram showing an example of a case where the ROM shown in FIG. 6 stores the set values in a table format in the second embodiment.
  • the storage means for storing these set values may be the EEPROM 30 shown in FIG.
  • FIG. 15 is a flowchart which shows the operation procedure of the refrigerator which concerns on Embodiment 2 of this invention.
  • the energization amount control means 72 acquires the humidity Hd detected by the humidity detection means 14 from the humidity detection means 14 via the controller 19 (step S201). The energization amount control means 72 determines whether or not the humidity Hd is equal to or higher than the humidity threshold value Hth (step S202). When the humidity Hd is equal to or higher than the humidity threshold value Hth, the energization amount control unit 72 acquires the temperature Td detected by the temperature detection unit 15 from the temperature detection unit 15 (step S203). Subsequently, the energization amount control unit 72 determines whether the acquired temperature Td is equal to or higher than the temperature threshold Tth (step S204).
  • the energization amount control unit 72 determines that the environment around the refrigerator 1 is high temperature and high humidity, and outputs the energization rate Dud to the LED drive circuit 26 (step S205).
  • the LED drive circuit 26 supplies electric power to the LED 21 according to the duty ratio Dud. As a result, a current having an energization amount Pth0 lower than that in the normal state flows through the LED 21.
  • step S202 when the humidity Hd is less than the humidity threshold value Hth, the energization amount control unit 72 determines that the humidity around the refrigerator 1 is not high humidity, and sets the energization rate Dun to the LED drive circuit 26. Output (step S206).
  • the energization amount control unit 72 determines that the temperature is not high around the refrigerator 1 and outputs the energization rate Dun to the LED drive circuit 26. (Step S206).
  • the LED drive circuit 26 supplies electric power to the LED 21 according to the duty ratio Dun.
  • the LED 21 is turned on. The amount of electricity supplied is reduced compared to the normal state.
  • the energization amount of the LED 21 becomes small when the temperature around the refrigerator 1 is high and the humidity is high. Therefore, it is possible to prevent the life of the LED 21 from being impaired due to a high load environment due to humidity and temperature.
  • Embodiment 3 the energization amount of the LED 21 of the operation panel 6 is controlled according to the cumulative operating time of the refrigerator 1.
  • the same components as those described in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the third embodiment can be applied to both the first and second embodiments.
  • FIG. 16 is a figure for demonstrating operation
  • the vertical axis of the upper graph is the cumulative operating time
  • the lower vertical axis is the pulse voltage.
  • n is an arbitrary integer of 2 or more
  • the cumulative operating time TO of the refrigerator 1 stored in the EEPROM 30 is less than the determined operating time threshold TOth during the energization period Tk1 to Tk(n-1). Is. Therefore, the energization amount control means 72 outputs the normal energization rate Dun to the LED drive circuit 26.
  • the cumulative operation time TO of the refrigerator 1 is equal to or greater than the operation time threshold value TOth, so the energization amount control unit 72 outputs the energization rate Dup in the long-time operation to the LED drive circuit 26.
  • FIG. 16 shows an example in which the duty ratio Dup is 80% and the duty ratio Dun is 60%. Further, the case where the cumulative operating time TO is equal to or more than the operating time threshold value TOth is defined as long-time operation.
  • LEDs deteriorate over time when used for a long period of time, and even with the same energizing current, the longer the elapsed time, the lower the illuminance due to the light emitted from the LEDs. Therefore, for example, the appearance of the operation switch shape 23a illuminated by the LED 21 becomes poor. Therefore, as described with reference to FIG. 16, when the cumulative operating time TO of the refrigerator 1 becomes long, the duty factor Du of the LED 21 is increased to compensate for the decrease in illuminance due to the aged deterioration of the LED 21. it can.
  • the EEPROM 30 shown in FIG. 5 records the cumulative operating time TO.
  • the ROM 51 shown in FIG. 5 stores set values including the energization rate Dup after long-time operation, the energization rate Dun under normal conditions, and the operation time threshold value TOth.
  • the ROM 51 may store these set values in the form of a table as shown in FIG. 17, for example.
  • FIG. 17 is a diagram showing an example of a case where the ROM shown in FIG. 5 stores the setting values in a table format in the third embodiment.
  • the storage means for storing these set values may be the EEPROM 30 shown in FIG. Further, the case where the EEPROM 30 records the cumulative operating time TO will be described, but the memory that records the cumulative operating time TO is not limited to the EEPROM 30.
  • the memory for recording the cumulative operating time TO is preferably a flash memory or a non-volatile memory such as the EEPROM 30. This is because these non-volatile memories can retain the stored information even when the power supply is stopped.
  • FIG. 18 is a flowchart showing an operation procedure of the refrigerator according to the third embodiment of the present invention.
  • the energization amount control means 72 For each energization cycle Tk, the energization amount control means 72 refers to the cumulative operating time TO stored in the EEPROM 30 (step S301). The energization amount control means 72 determines whether the cumulative operating time TO is equal to or greater than the operating time threshold TOth (step S302). When the cumulative operation time TO is equal to or greater than the operation time threshold value TOth, the energization amount control unit 72 determines that the refrigerator 1 has been operated for a long time, and outputs the energization rate Dup to the LED drive circuit 26 (step S303). The LED drive circuit 26 supplies electric power to the LED 21 according to the duty ratio Dup. As a result, a current having a higher energization amount than in the normal state flows through the LED 21.
  • the energization amount control unit 72 determines that the refrigerator 1 is not operated for a long time, and sets the energization rate Dun to the LED drive circuit 26. (Step S304).
  • the LED drive circuit 26 supplies electric power to the LED 21 according to the duty ratio Dun. As a result, a current having a normal energizing amount flows through the LED 21. In this way, when it is determined that the refrigerator 1 has been operating for a long time based on the cumulative operating time TO of the refrigerator 1, the amount of current flowing through the LED 21 increases and the decrease in illuminance of the LED 21 is suppressed.
  • the refrigerator 1 increases the energization amount of the LED 21 when the cumulative operating time TO recorded by the EEPROM 30 is equal to or more than the operating time threshold TOth.
  • the third embodiment it is possible to suppress a decrease in the illuminance of the LED 21 due to the long-term operation of the refrigerator 1. If the third embodiment is applied to any one of the first and second embodiments, the life of the LED 21 can be further extended.

Abstract

This refrigerator comprises: at least one storage room; a door provided on the front side of the storage room; an operation panel that is housed in the door and is for setting and displaying the operation state of the refrigerator; a printed sheet that is provided on the front side of the operation panel and on which the shape of an operation switch is illustrated; a light-emitting diode that emits light toward the printed sheet so as to display the shape of the operation switch on the front side of the operation panel; a humidity detection means for detecting the humidity around the refrigerator; and a controller for controlling the operation state of the refrigerator. The controller has an energization amount control means that reduces the amount by which the light-emitting diode is energized when the humidity detected by the humidity detection means is at or above a designated humidity threshold.

Description

冷蔵庫refrigerator
 本発明は、貯蔵物を保管する貯蔵室を有する冷蔵庫に関する。 The present invention relates to a refrigerator having a storage room for storing stored items.
 従来、冷蔵庫には、庫内を照らし、ユーザが食品の収納状況を分かりやすくするための庫内灯が設けられている。近年、庫内灯の照明として、発光ダイオード(LED:Light Emitting Diode)が用いられている。また、庫内灯だけでなく、ユーザが冷蔵庫の運転状態を設定するための操作パネル用照明にLEDが用いられた冷蔵庫もある。庫内灯は、冷蔵庫の庫内を照明するための手段であり、利用者が庫内の食品収納状況を把握しやすくする目的で用いられている。また、操作パネル用照明は、冷蔵庫の運転モードを設定するための操作部に設けられたもので、操作スイッチの形状を操作部の表面に映し出す目的で用いられている。 Conventionally, the refrigerator is provided with an internal light to illuminate the inside of the refrigerator and make it easy for the user to understand the storage status of food. In recent years, a light emitting diode (LED: Light Emitting Diode) has been used as an illumination for an interior light. In addition to the interior light, there is also a refrigerator in which an LED is used as an operation panel illumination for the user to set the operating state of the refrigerator. The interior light is a means for illuminating the interior of the refrigerator, and is used for the purpose of facilitating the user's grasp of the food storage status in the interior. The operation panel illumination is provided in the operation unit for setting the operation mode of the refrigerator, and is used for the purpose of displaying the shape of the operation switch on the surface of the operation unit.
 LEDを用いる場合の注意点として、素子のジャンクション温度が許容温度を超えてはならないという点がある。LEDの素子温度が、許容ジャンクション温度を超えると、故障に至るおそれが高くなるからである。ここで、素子温度を許容ジャンクション温度以下に保つ設計指標として、許容順方向電流が用いられるのが一般的である。許容順方向電流とは、ある周囲温度下において、ジャンクション温度が許容温度を超えない範囲で、素子に流せる最大の順方向通電量である。同じ通電量でも、周囲の温度が高ければ、素子温度は高くなるから、一般に、周囲温度が高くなると、許容電流値は低くなる。 When using LEDs, there is a point that the junction temperature of the element must not exceed the allowable temperature. This is because if the element temperature of the LED exceeds the allowable junction temperature, the possibility of failure increases. Here, the permissible forward current is generally used as a design index for keeping the element temperature below the permissible junction temperature. The allowable forward current is the maximum amount of forward current that can be passed through the device within a range in which the junction temperature does not exceed the allowable temperature under a certain ambient temperature. Even with the same amount of electricity, if the ambient temperature is high, the element temperature is high. Therefore, generally, when the ambient temperature is high, the allowable current value is low.
 許容電流値を超えない範囲でLEDに通電する一番簡単な方法は、実際の使用環境で想定し得る最も高い周囲温度に対応する許容電流値を調べ、その範囲内でLEDに通電することである。しかし、その場合、周囲温度が高くない場合においても、周囲温度が最も高い状況を想定してLEDに通電することになるので、LEDの明るさが犠牲になる。 The easiest way to energize the LED within the range that does not exceed the permissible current value is to check the permissible current value corresponding to the highest ambient temperature that can be assumed in the actual usage environment, and energize the LED within that range. is there. However, in that case, even when the ambient temperature is not high, the LED is energized assuming the situation where the ambient temperature is the highest, so that the brightness of the LED is sacrificed.
 そこで、周囲温度毎に変化する許容電流値に対応して、許容電流値を超えない範囲であって、かつ明るさが最適になる通電量で、LEDに通電する冷蔵庫が提案されている(例えば、特許文献1参照)。 Therefore, a refrigerator has been proposed in which the LEDs are energized with an energization amount that optimizes the brightness within a range that does not exceed the allowable current value, corresponding to the allowable current value that changes for each ambient temperature (for example, , Patent Document 1).
特開2008-275289号公報JP, 2008-275289, A
 特許文献1の冷蔵庫は、LEDの周囲温度を考慮してLEDの通電量を選択することで、LEDの長寿命と明るさの両立を図れるが、LEDの周囲の湿度に関しては考慮されていない。一般に、湿度が高い環境にて電子デバイスに通電を行うと、イオンマイグレーションの現象が加速され、電子デバイスおよび電子デバイスを搭載したプリント基板上において絶縁不良等の電気的不具合が起こりやすくなる。その結果、デバイス寿命が著しく低下してしまうおそれがある。そのため、特許文献1の冷蔵庫が比較的高湿度の環境で使用された場合、LEDの寿命が著しく低下してしまうおそれがある。 The refrigerator of Patent Document 1 can achieve both long life and brightness of the LED by selecting the energization amount of the LED in consideration of the ambient temperature of the LED, but does not consider the humidity around the LED. Generally, when electricity is applied to an electronic device in an environment with high humidity, the phenomenon of ion migration is accelerated, and electrical defects such as insulation defects are likely to occur on the electronic device and a printed circuit board on which the electronic device is mounted. As a result, the device life may be significantly reduced. Therefore, when the refrigerator of Patent Document 1 is used in an environment of relatively high humidity, the life of the LED may be significantly reduced.
 本発明は、上記のような課題を解決するためになされたもので、湿度の高い環境で冷蔵庫が使用される場合でも、光源に用いられる発光ダイオードの長寿命化を図ることができる冷蔵庫を提供するものである。 The present invention has been made to solve the above problems, and provides a refrigerator capable of extending the life of a light emitting diode used as a light source even when the refrigerator is used in a high humidity environment. To do.
 本発明に係る冷蔵庫は、少なくとも1つの貯蔵室と、前記貯蔵室の前面に設けられた扉と、前記扉に格納され、冷蔵庫の運転状態の設定および表示のための操作パネルと、前記操作パネルの前面に設けられ、操作スイッチの形状が表された印刷シートと、前記印刷シートに対して光を照射することで前記操作スイッチの形状を前記操作パネルの前面に映し出す発光ダイオードと、前記冷蔵庫の周囲の湿度を検出する湿度検知手段と、前記冷蔵庫の運転状態を制御するコントローラと、を有し、前記コントローラは、前記湿度検知手段によって検出される湿度が決められた湿度閾値以上であるとき、前記発光ダイオードへの通電量を低下させる通電量制御手段を有するものである。 A refrigerator according to the present invention includes at least one storage room, a door provided on the front surface of the storage room, an operation panel that is stored in the door and is used for setting and displaying an operating state of the refrigerator, and the operation panel. A print sheet provided on the front surface of the operation switch, in which the shape of the operation switch is represented, and a light emitting diode which reflects the shape of the operation switch on the front surface of the operation panel by irradiating the print sheet with light; Humidity detection means for detecting ambient humidity, and a controller for controlling the operating state of the refrigerator, the controller, when the humidity detected by the humidity detection means is a predetermined humidity threshold or more, It has an energization amount control means for reducing the energization amount to the light emitting diode.
 また、本発明に係る冷蔵庫は、少なくとも1つの貯蔵室と、前記貯蔵室の前面に設けられた扉と、前記扉に格納され、冷蔵庫の運転状態の設定および表示のための操作パネルと、前記操作パネルの前面に設けられ、操作スイッチの形状が表された印刷シートと、前記印刷シートに対して光を照射することで前記操作スイッチの形状を前記操作パネルの前面に映し出す発光ダイオードと、前記冷蔵庫の周囲の湿度を検出する湿度検知手段と、前記冷蔵庫の周囲の温度を検出する温度検知手段と、前記冷蔵庫の運転状態を制御するコントローラと、を有し、前記コントローラは、前記湿度検知手段によって検出される湿度が決められた湿度閾値以上であり、かつ前記温度検知手段によって検出される温度が決められた温度閾値以上であるとき、前記発光ダイオードへの通電量を低下させる通電量制御手段を有するものである。 Further, the refrigerator according to the present invention includes at least one storage room, a door provided in front of the storage room, an operation panel stored in the door, for setting and displaying an operating state of the refrigerator, and A print sheet provided on the front surface of the operation panel, in which the shape of the operation switch is represented, and a light emitting diode which projects the shape of the operation switch on the front surface of the operation panel by irradiating the print sheet with light, Humidity detection means for detecting the humidity around the refrigerator, temperature detection means for detecting the temperature around the refrigerator, and a controller for controlling the operating state of the refrigerator, the controller, the humidity detection means When the humidity detected by the above is equal to or higher than a predetermined humidity threshold and the temperature detected by the temperature detecting means is equal to or higher than the predetermined temperature threshold, an energization amount control means for decreasing the energization amount to the light emitting diode Is to have.
 本発明によれば、高湿度な環境においては発光ダイオードの通電量を小さくするので、発光ダイオードに発生するイオンマイグレーションの進行を抑えることができる。そのため、高湿度な環境においても、発光ダイオードの長寿命化を図ることができる。 According to the present invention, the energization amount of the light emitting diode is reduced in a high humidity environment, so that the progress of ion migration generated in the light emitting diode can be suppressed. Therefore, the life of the light emitting diode can be extended even in a high humidity environment.
本発明の実施の形態1に係る冷蔵庫の一例を示す外観概略図である。It is an outline schematic diagram showing an example of a refrigerator concerning Embodiment 1 of the present invention. 図1に示した冷蔵庫の側面透視図である。It is a side surface perspective view of the refrigerator shown in FIG. 図1に示した冷蔵室のドアを開放した状態を示す正面概略図である。It is a front schematic diagram which shows the state which opened the door of the refrigerator compartment shown in FIG. 図1に示した操作パネルの一構成例を示す図である。It is a figure which shows one structural example of the operation panel shown in FIG. 図2に示した主制御基板の一構成例を示す図である。It is a figure which shows one structural example of the main control board shown in FIG. 図4に示したパネル制御基板の一構成例を示す図である。It is a figure which shows one structural example of the panel control board shown in FIG. 図5に示すコントローラおよび図6に示すパネルコントローラの構成例を示す機能ブロック図である。FIG. 7 is a functional block diagram showing a configuration example of a controller shown in FIG. 5 and a panel controller shown in FIG. 6. 本実施の形態1において、図4に示したLEDを点灯させるときの通電電流を表すグラフである。5 is a graph showing an energization current when turning on the LED shown in FIG. 4 in the first embodiment. 図4に示したLEDの通電量の制御の具体例を説明するための図である。It is a figure for demonstrating the specific example of control of the energization amount of LED shown in FIG. 本実施の形態1において、図1に示した冷蔵庫の周囲の湿度が湿度閾値以上の場合の通電率の制御の一例を示すタイムチャートである。7 is a time chart showing an example of control of a duty ratio when the ambient humidity of the refrigerator shown in FIG. 1 is equal to or higher than a humidity threshold in the first embodiment. 本実施の形態1において、図6に示したROMが設定値をテーブル形式で記憶する場合の一例を示す図である。FIG. 7 is a diagram showing an example of a case where the ROM shown in FIG. 6 stores set values in a table format in the first embodiment. 本発明の実施の形態1に係る冷蔵庫の動作手順を示すフローチャートである。It is a flowchart which shows the operation procedure of the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷蔵庫の通電量制御手段の動作を説明するための図である。It is a figure for demonstrating operation|movement of the electricity supply amount control means of the refrigerator which concerns on Embodiment 2 of this invention. 本実施の形態2において、図6に示したROMが設定値をテーブル形式で記憶する場合の一例を示す図である。FIG. 7 is a diagram showing an example of a case where the ROM shown in FIG. 6 stores set values in a table format in the second embodiment. 本発明の実施の形態2に係る冷蔵庫の動作手順を示すフローチャートである。It is a flowchart which shows the operation procedure of the refrigerator which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷蔵庫の通電量制御手段の動作を説明するための図である。It is a figure for demonstrating operation|movement of the electricity supply amount control means of the refrigerator which concerns on Embodiment 3 of this invention. 本実施の形態3において、図5に示したROMが設定値をテーブル形式で記憶する場合の一例を示す図である。FIG. 9 is a diagram showing an example of a case where the ROM shown in FIG. 5 stores set values in a table format in the third embodiment. 本発明の実施の形態3に係る冷蔵庫の動作手順を示すフローチャートである。It is a flowchart which shows the operation procedure of the refrigerator which concerns on Embodiment 3 of this invention.
実施の形態1.
 本実施の形態1の冷蔵庫の構成を説明する。図1は、本発明の実施の形態1に係る冷蔵庫の一例を示す外観概略図である。図2は、図1に示した冷蔵庫の側面透視図である。図1および図2に示すように、冷蔵庫1は、食品等の貯蔵物を収容する貯蔵室として、冷蔵室18と、冷凍室41および44と、切替室42と、野菜室43とを有する。冷蔵室18および野菜室43は冷蔵温度で保たれる。冷蔵温度は、例えば、0~10℃の温度範囲である。冷凍室41は冷蔵温度よりも低い温度である冷凍温度で保たれる。冷凍温度は、例えば、-18℃以下の温度である。切替室42は、貯蔵物を冷蔵温度および冷凍温度のうち、いずれの温度で保管するかをユーザが選択できる貯蔵室である。図2では、冷蔵室18および冷凍室41等の貯蔵室間の仕切り部分と、冷蔵室18および冷凍室41等の扉と、これら複数の貯蔵室を含む箱体を覆う断熱材とをハッチングで示している。
Embodiment 1.
The configuration of the refrigerator according to the first embodiment will be described. FIG. 1 is a schematic external view showing an example of a refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a side perspective view of the refrigerator shown in FIG. As shown in FIG. 1 and FIG. 2, the refrigerator 1 has a refrigerating room 18, freezing rooms 41 and 44, a switching room 42, and a vegetable room 43 as storage rooms for accommodating stored items such as foods. The refrigerator compartment 18 and the vegetable compartment 43 are kept at the refrigeration temperature. The refrigerating temperature is, for example, a temperature range of 0 to 10°C. The freezer compartment 41 is kept at a freezing temperature lower than the refrigerating temperature. The freezing temperature is, for example, a temperature of −18° C. or lower. The switching chamber 42 is a storage chamber in which the user can select which of the refrigerating temperature and the freezing temperature the stored item is stored in. In FIG. 2, the partition between the storage compartments such as the refrigerating compartment 18 and the freezing compartment 41, the doors of the refrigerating compartment 18 and the freezing compartment 41, and the heat insulating material that covers the box body including the plurality of storage compartments are hatched. Showing.
 図1に示すように、冷蔵室18は、冷蔵庫1の前面側(Y軸矢印と反対方向)に左扉7aおよび右扉7bが設けられた両開き式扉の貯蔵室である。図1および図2に示すように、冷蔵室18の左扉7aの前面には、ユーザが各貯蔵室の温度調節など運転状態の設定を行うための操作パネル6が設けられている。操作パネル6は、冷蔵庫1の運転状態の設定に用いられるだけでなく、冷蔵庫1の運転状態を表示する。 As shown in FIG. 1, the refrigerating compartment 18 is a double-door storage compartment in which a left door 7a and a right door 7b are provided on the front side of the refrigerator 1 (in the direction opposite to the Y-axis arrow). As shown in FIGS. 1 and 2, an operation panel 6 is provided on the front surface of the left door 7a of the refrigerating compartment 18 for the user to set operating conditions such as adjusting the temperature of each storage compartment. The operation panel 6 is used not only for setting the operating state of the refrigerator 1 but also for displaying the operating state of the refrigerator 1.
 図2に示すように、冷蔵庫1は、冷媒を圧縮して吐出する圧縮機2と、冷凍サイクルの蒸発器として機能する冷却器3と、図に示さない膨張弁および放熱パイプと、冷凍サイクルを制御する主制御基板13とを有する。放熱パイプは凝縮器として機能する。主制御基板13は、冷蔵庫1の背面側(Y軸矢印方向)に設けられている。冷蔵庫1には、冷却器3で冷却された冷気が流通する風路5、冷気を各貯蔵室に供給する送風ファン4、および冷蔵室18に流入する冷気の流量を調節する冷蔵室ダンパ10が設けられている。風路5および冷蔵室ダンパ10は冷蔵庫1の背面側に設けられている。冷蔵庫1は、圧縮機2および冷却器3を含む冷媒回路に冷媒を循環させる冷凍サイクルを制御し、冷却器3付近の冷気を冷蔵庫1内に循環させることで、複数の貯蔵室を冷却する。 As shown in FIG. 2, the refrigerator 1 includes a compressor 2 that compresses and discharges a refrigerant, a cooler 3 that functions as an evaporator of a refrigeration cycle, an expansion valve and a heat radiation pipe (not shown), and a refrigeration cycle. And a main control board 13 for controlling. The radiating pipe functions as a condenser. The main control board 13 is provided on the back side of the refrigerator 1 (in the Y-axis arrow direction). The refrigerator 1 includes an air passage 5 through which the cool air cooled by the cooler 3 flows, a blower fan 4 for supplying the cool air to each storage room, and a refrigerating compartment damper 10 for adjusting the flow rate of the cool air flowing into the refrigerating compartment 18. It is provided. The air passage 5 and the refrigerator compartment damper 10 are provided on the back side of the refrigerator 1. The refrigerator 1 controls a refrigeration cycle in which a refrigerant is circulated in a refrigerant circuit including a compressor 2 and a cooler 3, and cool air in the vicinity of the cooler 3 is circulated in the refrigerator 1 to cool a plurality of storage chambers.
 また、冷蔵庫1には、冷蔵室18の内部を照らす庫内灯12、冷蔵室18内の冷蔵温度を検出するサーミスタである冷蔵室サーミスタ9、および冷却器3の温度を検出するサーミスタである冷却器サーミスタ11が設けられている。庫内灯12は、冷蔵室18内の照明として冷蔵室18に設けられている。庫内灯12の光源は、例えば、LEDである。冷却器サーミスタ11が検出する温度は冷凍温度に相当する。 Further, in the refrigerator 1, an inside lamp 12 that illuminates the inside of the refrigerating compartment 18, a refrigerating compartment thermistor 9 that is a thermistor that detects a refrigerating temperature in the refrigerating compartment 18, and a cooling that is a thermistor that detects the temperature of the cooler 3 are included. A thermistor 11 is provided. The interior light 12 is provided in the refrigerating compartment 18 as lighting for the refrigerating compartment 18. The light source of the interior lamp 12 is, for example, an LED. The temperature detected by the cooler thermistor 11 corresponds to the freezing temperature.
 冷蔵庫1には、冷蔵庫1の周囲の湿度を検出する湿度検知手段14、冷蔵庫1の周囲の温度を検出する温度検知手段15、および冷蔵庫の周囲の明るさを検出する照度検知手段31が設けられている。温度検知手段15は操作パネル6に設けられている。温度検知手段15は、例えば、サーミスタである。湿度検知手段14は冷蔵庫1の上面に設置され、照度検知手段31は冷蔵室18の左扉7aまたは右扉7bの前面に設置されている。湿度検知手段14は、例えば、高分子系湿度センサおよびセラミックス湿度センサ等の湿度センサである。照度センサは、例えば、光量センサ等の光センサである。湿度検知手段14および照度検知手段31の位置は図2に示す位置に限らない。 The refrigerator 1 is provided with a humidity detecting unit 14 that detects the humidity around the refrigerator 1, a temperature detecting unit 15 that detects the temperature around the refrigerator 1, and an illuminance detecting unit 31 that detects the brightness around the refrigerator. ing. The temperature detecting means 15 is provided on the operation panel 6. The temperature detecting means 15 is, for example, a thermistor. The humidity detecting means 14 is installed on the upper surface of the refrigerator 1, and the illuminance detecting means 31 is installed on the front surface of the left door 7a or the right door 7b of the refrigerating room 18. The humidity detecting means 14 is, for example, a humidity sensor such as a polymer humidity sensor and a ceramics humidity sensor. The illuminance sensor is, for example, an optical sensor such as a light amount sensor. The positions of the humidity detecting means 14 and the illuminance detecting means 31 are not limited to the positions shown in FIG.
 図3は、図1に示した冷蔵室のドアを開放した状態を示す正面概略図である。冷蔵室18の扉が図1に示すような両開き式扉である場合、ユーザは左扉7aおよび右扉7bのそれぞれを独立に開閉することができる。冷蔵室18の前面には、左扉7aおよび右扉7bの開閉状態を検出するドアスイッチ8が設けられている。冷蔵室18の扉が両開き式扉である場合、図2に示すように、冷気漏れを抑制するための扉仕切部材16が左扉7aに設けられている。扉仕切部材16の内部には、扉仕切部材16の結露を防止するヒータ17が設けられている。 3 is a schematic front view showing a state in which the door of the refrigerating compartment shown in FIG. 1 is opened. When the door of the refrigerator compartment 18 is a double door as shown in FIG. 1, the user can open and close each of the left door 7a and the right door 7b independently. A door switch 8 for detecting the open/closed state of the left door 7a and the right door 7b is provided on the front surface of the refrigerator compartment 18. When the door of the refrigerating chamber 18 is a double door, as shown in FIG. 2, the left door 7a is provided with a door partition member 16 for suppressing the leakage of cold air. A heater 17 is provided inside the door partition member 16 to prevent dew condensation on the door partition member 16.
 なお、本実施の形態1では、図1および図2に示すように、本実施の形態1の冷蔵庫1は箱体に複数の貯蔵室を備えた構成の場合で説明するが、貯蔵室の種類および数は図1に示す場合に限らない。冷蔵庫1に設けられる貯蔵室の数は、複数の場合に限らず、1つであってもよい。この場合、1つの貯蔵室の温度は冷蔵温度であってもよく、冷凍温度であってもよい。貯蔵室全体が冷凍温度に保たれる場合として、業務用の冷凍貯蔵庫がある。また、操作パネル6が設けられる扉は左扉7aに限らず、右扉7bであってもよい。操作パネル6が設けられる貯蔵室は冷蔵室18に限らない。冷蔵室18の扉は、両開き式扉に限らず、片開き式扉であってもよい。 In the first embodiment, as shown in FIGS. 1 and 2, the refrigerator 1 according to the first embodiment will be described in the case of having a configuration in which a plurality of storage chambers are provided in a box body. The numbers and are not limited to those shown in FIG. The number of storage rooms provided in the refrigerator 1 is not limited to a plurality, and may be one. In this case, the temperature of one storage chamber may be a refrigerating temperature or a freezing temperature. When the whole storage room is kept at a freezing temperature, there is a commercial freezing storage. Further, the door provided with the operation panel 6 is not limited to the left door 7a and may be the right door 7b. The storage room in which the operation panel 6 is provided is not limited to the refrigerating room 18. The door of the refrigerating room 18 is not limited to the double-opening door, but may be a single-opening door.
 図1に示した操作パネル6の構成について説明する。図4は、図1に示した操作パネルの一構成例を示す図である。操作パネル6は、左扉7a内に設けられている。操作パネル6には、操作パネル制御基板20が設けられている。操作パネル制御基板20には、光源となるLED21が搭載されている。操作パネル6の冷蔵庫1の前面側には、操作スイッチの形状23aが表された印刷シート23が設けられている。印刷シート23は、光を透過するシートに光を透過しないインクで操作スイッチの形状23aが描かれたものである。印刷シート23は、LED21と左扉7aの表面部材22との間に配置されている。左扉7aの表面部材22は光を透過する材料である。LED21が左扉7aの表面部材22の方向に光を照射すると、表面部材22に操作スイッチの形状23aが映し出される。また、図4に示すように、操作パネル6には、印刷シート23とLED21との間に、操作スイッチ電極24が設けられている。操作スイッチ電極24は、左扉7aの表面部材22と印刷シート23との間に配置されてもよい。操作スイッチ電極24は、LED21から放出される光が操作スイッチの形状23aを表面部材22に照射することを妨げない位置に配置される。 The configuration of the operation panel 6 shown in FIG. 1 will be described. FIG. 4 is a diagram showing a configuration example of the operation panel shown in FIG. The operation panel 6 is provided in the left door 7a. The operation panel 6 is provided with an operation panel control board 20. An LED 21, which serves as a light source, is mounted on the operation panel control board 20. On the front side of the refrigerator 1 of the operation panel 6, a print sheet 23 having a shape 23a of an operation switch is provided. The print sheet 23 is a sheet that transmits light, and the shape of the operation switch 23a is drawn with ink that does not transmit light. The print sheet 23 is arranged between the LED 21 and the surface member 22 of the left door 7a. The surface member 22 of the left door 7a is a material that transmits light. When the LED 21 emits light in the direction of the surface member 22 of the left door 7a, the shape 23a of the operation switch is displayed on the surface member 22. Further, as shown in FIG. 4, the operation panel 6 is provided with operation switch electrodes 24 between the print sheet 23 and the LEDs 21. The operation switch electrode 24 may be arranged between the surface member 22 of the left door 7a and the print sheet 23. The operation switch electrode 24 is arranged at a position that does not prevent the light emitted from the LED 21 from irradiating the surface member 22 with the shape 23 a of the operation switch.
 図4を参照して説明した操作パネル6は、左扉7aに設けられたスペースに格納される。LED21が冷蔵庫1の周囲の湿度の影響をできるだけ受けないようにする場合、LED21が搭載された操作パネル制御基板20、印刷シート23および操作スイッチ電極24を含む構成を、気体が透過しない筐体で密閉することが考えられる。しかし、これらの構成を密閉しようとすると、操作パネル制御基板20に接続される電源配線および信号線に沿って外気が中に入りこむことを防止する対策が必要になり、製造コストが高くなってしまう。また、これらの構成を囲む筐体の壁が透明であっても、LED21が放出する光が筐体の壁で減衰してしまうことになり、操作スイッチの形状23aがユーザに見えにくくなる。操作スイッチの形状23aをユーザにより見えるようにするためには、LED21の光度を大きくする必要がある。LED21の光度を大きくしようとすると、LED21に流す電流を大きくしなければならず、かえってLED21の寿命が短くなってしまう。そのため、操作パネル6に設けられたLED21について、簡易な構造で外気の影響を受けないようにすることは困難であり、LED21に対する、冷蔵庫1の周囲の環境の影響を無視できない。 The operation panel 6 described with reference to FIG. 4 is stored in the space provided on the left door 7a. In order to prevent the LED 21 from being affected by the humidity around the refrigerator 1 as much as possible, the configuration including the operation panel control board 20, the print sheet 23, and the operation switch electrode 24 on which the LED 21 is mounted is provided in a gas-impermeable housing. It may be sealed. However, if an attempt is made to seal these components, it is necessary to take measures to prevent outside air from entering along the power supply wiring and the signal line connected to the operation panel control board 20, which increases the manufacturing cost. .. Further, even if the wall of the casing surrounding these components is transparent, the light emitted by the LED 21 is attenuated by the wall of the casing, and the shape 23a of the operation switch is difficult for the user to see. In order to make the shape 23a of the operation switch visible to the user, it is necessary to increase the luminous intensity of the LED 21. If the luminous intensity of the LED 21 is to be increased, the current flowing through the LED 21 must be increased, and the life of the LED 21 is shortened. Therefore, it is difficult to prevent the LED 21 provided on the operation panel 6 from being affected by the outside air with a simple structure, and the influence of the environment around the refrigerator 1 on the LED 21 cannot be ignored.
 次に、図2に示した主制御基板および図4に示したパネル制御基板の構成を説明する。図5は、図2に示した主制御基板の一構成例を示す図である。図6は、図4に示したパネル制御基板の一構成例を示す図である。図7は、図5に示すコントローラおよび図6に示すパネルコントローラの構成例を示す機能ブロック図である。 Next, the configurations of the main control board shown in FIG. 2 and the panel control board shown in FIG. 4 will be described. FIG. 5 is a diagram showing a configuration example of the main control board shown in FIG. FIG. 6 is a diagram showing a configuration example of the panel control board shown in FIG. FIG. 7 is a functional block diagram showing a configuration example of the controller shown in FIG. 5 and the panel controller shown in FIG.
 図5に示すように、主制御基板13は、コントローラ19と、EEPROM(Electrically Erasable Programmable ROM)30とを有する。コントローラ19は、例えば、マイクロコンピュータである。コントローラ19は、ROM(Random Access Memory)51と、RAM(Random Access Memory)52と、CPU(Cental Processing Unit)53とを有する。ROM51は、冷凍温度および冷蔵温度の温度制御に必要な温度判定の機能、および時間を計測するタイマーの機能を実行するためのプログラムを記憶する。CPU53は、ROM51が記憶するプログラムにしたがって演算処理を実行する。RAM52は、CPU53が実行する演算処理の過程で算出される数値等の情報を記憶する。主制御基板13に設けられる不揮発性メモリは、EEPROM30に限らない。不揮発性メモリは、例えば、フラッシュメモリであってもよい。EEPROM30はコントローラ19に設けられていてもよい。 As shown in FIG. 5, the main control board 13 includes a controller 19 and an EEPROM (Electrically Erasable Programmable ROM) 30. The controller 19 is, for example, a microcomputer. The controller 19 has a ROM (Random Access Memory) 51, a RAM (Random Access Memory) 52, and a CPU (Central Processing Unit) 53. The ROM 51 stores a program for executing the function of temperature determination required for temperature control of the freezing temperature and the refrigerating temperature, and the function of a timer for measuring time. The CPU 53 executes arithmetic processing according to the program stored in the ROM 51. The RAM 52 stores information such as numerical values calculated in the process of arithmetic processing executed by the CPU 53. The nonvolatile memory provided on the main control board 13 is not limited to the EEPROM 30. The non-volatile memory may be, for example, a flash memory. The EEPROM 30 may be provided in the controller 19.
 図6に示すように、操作パネル制御基板20は、操作パネル用のコントローラであるパネルコントローラ25と、LED21に電力を供給するLED駆動回路26とを有する。パネルコントローラ25は、例えば、マイクロコンピュータである。パネルコントローラ25は、ROM61と、RAM62と、CPU63とを有する。ROM61は、操作パネル6の制御に必要な操作スイッチ電極24の入力判定機能と、LED21の点灯および消灯を制御する機能とを実行するための制御プログラムを記憶する。CPU63は、ROM61が記憶する制御プログラムにしたがって演算処理を実行する。RAM62は、CPU63が実行する演算処理の過程で算出される数値等の情報を記憶する。 As shown in FIG. 6, the operation panel control board 20 has a panel controller 25 which is a controller for the operation panel, and an LED drive circuit 26 which supplies electric power to the LEDs 21. The panel controller 25 is, for example, a microcomputer. The panel controller 25 has a ROM 61, a RAM 62, and a CPU 63. The ROM 61 stores a control program for executing an input determination function of the operation switch electrode 24 necessary for controlling the operation panel 6 and a function of controlling lighting and extinguishing of the LED 21. The CPU 63 executes arithmetic processing according to the control program stored in the ROM 61. The RAM 62 stores information such as numerical values calculated in the course of arithmetic processing executed by the CPU 63.
 図7は、コントローラ19およびパネルコントローラ25が別々の基板に設けられている構成を示しているが、コントローラ19とパネルコントローラ25とが一体に構成され、同一の基板に設けられていてもよい。例えば、図5に示したコントローラ19が図6に示したパネルコントローラ25の機能を備えていてもよい。ROM51が記憶するプログラムをCPU53が実行することで、図7に示す冷凍サイクル手段71が構成される。ROM61が記憶する制御プログラムをCPU63が実行することで、図7に示す通電量制御手段72が構成される。 Although FIG. 7 shows a configuration in which the controller 19 and the panel controller 25 are provided on different substrates, the controller 19 and the panel controller 25 may be integrally configured and provided on the same substrate. For example, the controller 19 shown in FIG. 5 may have the function of the panel controller 25 shown in FIG. When the CPU 53 executes the program stored in the ROM 51, the refrigeration cycle means 71 shown in FIG. 7 is configured. The CPU 63 executes the control program stored in the ROM 61 to configure the energization amount control means 72 shown in FIG. 7.
 コントローラ19は、冷蔵室18等の貯蔵室の温度制御、ヒータ17の通電制御、運転履歴情報の記録、およびパネルコントローラ25との相互通信を行う。 The controller 19 controls the temperature of a storage room such as the refrigerating room 18, energization control of the heater 17, records operation history information, and performs mutual communication with the panel controller 25.
 冷蔵室18等の貯蔵室の温度制御のうち、冷蔵室18の温度制御の場合について説明する。冷凍サイクル手段71は、冷蔵室サーミスタ9および温度検知手段15が検出する検出値に基づいて、冷蔵室ダンパ10の開閉時間を制御することで、冷蔵室18に流入する冷気の流れを調節する。これにより、冷蔵室18の温度が制御される。また、冷凍サイクル手段71は、冷却器サーミスタ11が検出する検出値に基づいて、図に示さない膨張弁の開度および圧縮機2の運転周波数を制御する。これにより、冷却器3における蒸発器としての機能が制御され、冷蔵室18の温度だけでなく、冷凍室41および44の温度も制御される。 Of the temperature control of the storage compartments such as the refrigerating compartment 18, the temperature control of the refrigerating compartment 18 will be described. The refrigeration cycle means 71 controls the opening/closing time of the refrigerating compartment damper 10 based on the detection values detected by the refrigerating compartment thermistor 9 and the temperature detecting means 15, thereby adjusting the flow of cold air flowing into the refrigerating compartment 18. Thereby, the temperature of the refrigerator compartment 18 is controlled. Further, the refrigeration cycle means 71 controls the opening degree of the expansion valve and the operating frequency of the compressor 2 which are not shown, based on the detection value detected by the cooler thermistor 11. As a result, the function of the cooler 3 as an evaporator is controlled, and not only the temperature of the refrigerating chamber 18 but also the temperatures of the freezing chambers 41 and 44 are controlled.
 ヒータ17の通電制御について、冷凍サイクル手段71は、湿度検知手段14が検出する検出値に基づいてヒータ17に供給する電力を制御する。運転履歴情報の記録については、冷凍サイクル手段71は、冷蔵庫1の累積運転時間TO、ならびに冷蔵庫1の設定状態および運転状態の時系列変化などをEEPROM30に記録する。 Regarding the energization control of the heater 17, the refrigeration cycle means 71 controls the electric power supplied to the heater 17 based on the detection value detected by the humidity detection means 14. Regarding the recording of the operation history information, the refrigeration cycle means 71 records the cumulative operating time TO of the refrigerator 1, the setting state of the refrigerator 1 and the time series change of the operating state in the EEPROM 30.
 コントローラ19のパネルコントローラ25との相互通信について説明する。コントローラ19が、ユーザが操作パネル6を介して入力した指示内容を示す信号である指示信号をパネルコントローラ25から受け取ると、冷凍サイクル手段71は、指示内容に対応して上述の温度制御を行う。指示内容は、例えば、冷蔵温度の設定値である。冷凍サイクル手段71は、パネルコントローラ25から温度検知手段15の検出値を受け取ると、受け取った検出値を上述の温度制御に利用する。また、冷凍サイクル手段71は、パネルコントローラ25に対し、湿度検知手段14および照度検知手段31の検出値をパネルコントローラ25に送信する。冷凍サイクル手段71は、EEPROM30に記録される運転履歴時間の情報をパネルコントローラ25に送信する。 The mutual communication of the controller 19 with the panel controller 25 will be described. When the controller 19 receives an instruction signal, which is a signal indicating the instruction content input by the user via the operation panel 6, from the panel controller 25, the refrigeration cycle means 71 performs the above-mentioned temperature control corresponding to the instruction content. The instruction content is, for example, a set value of the refrigeration temperature. When the refrigeration cycle means 71 receives the detection value of the temperature detection means 15 from the panel controller 25, the refrigeration cycle means 71 uses the received detection value for the above temperature control. Further, the refrigeration cycle means 71 transmits the detection values of the humidity detecting means 14 and the illuminance detecting means 31 to the panel controller 25. The refrigeration cycle means 71 transmits information on the operation history time recorded in the EEPROM 30 to the panel controller 25.
 コントローラ19が行うその他の制御を説明する。コントローラ19は、ドアスイッチ8が開状態を検出すると、庫内灯12を点灯し、ドアスイッチ8が閉状態を検出すると、庫内灯12を消灯する制御を行う。 Explain the other controls performed by the controller 19. When the door switch 8 detects the open state, the controller 19 turns on the interior lamp 12, and when the door switch 8 detects the closed state, the controller 19 turns off the interior lamp 12.
 図6に示したパネルコントローラ25は、LED21の点灯および消灯の制御、外気温度情報の取得、およびコントローラ19との相互通信を行う。 The panel controller 25 shown in FIG. 6 controls the turning on and off of the LED 21, obtains outside air temperature information, and performs mutual communication with the controller 19.
 LED21の点灯および消灯の制御について説明する。パネルコントローラ25は、操作スイッチ電極24の接地容量の変動を常時、監視する。ユーザが表面部材22に映し出された操作スイッチの形状23aに触れると、操作スイッチの形状23aの後方に位置する操作スイッチ電極24の接地容量が変動する。パネルコントローラ25は、この変動を検知することで、ユーザが操作パネル6を操作したと判定できる。パネルコントローラ25は、操作スイッチの形状23aへの操作を検知すると、例えば、操作スイッチの形状23aの後方にあるLED21を点灯させ、その操作スイッチの形状23aを表面部材22に映し出す。このようにして、ユーザに対して、ユーザが行った操作を通知する。また、パネルコントローラ25は、操作スイッチの形状23aを表面部材22に映し出すことで、操作結果をユーザに通知したり、次の操作をユーザに促したりする。図に示さないブザーが操作パネル6に設けられていてもよい。この場合、パネルコントローラ25は、ブザーを鳴らしてユーザに操作結果を通知してもよい。 Explain the control of turning on and off the LED 21. The panel controller 25 constantly monitors the fluctuation of the ground capacitance of the operation switch electrode 24. When the user touches the shape 23a of the operation switch displayed on the surface member 22, the ground capacitance of the operation switch electrode 24 located behind the shape 23a of the operation switch changes. The panel controller 25 can determine that the user has operated the operation panel 6 by detecting this variation. When the panel controller 25 detects an operation on the operation switch shape 23 a, for example, the LED 21 behind the operation switch shape 23 a is turned on and the operation switch shape 23 a is displayed on the surface member 22. In this way, the user is notified of the operation performed by the user. Further, the panel controller 25 projects the shape 23 a of the operation switch on the surface member 22 to notify the user of the operation result or prompt the user for the next operation. A buzzer (not shown) may be provided on the operation panel 6. In this case, the panel controller 25 may sound a buzzer to notify the user of the operation result.
 外気温度情報の取得については、通電量制御手段72は、一定の周期で、冷蔵庫1の周囲の温度を検出する温度検知手段15から検出値を取得する。 Regarding acquisition of outside air temperature information, the energization amount control means 72 acquires a detection value from the temperature detection means 15 which detects the temperature around the refrigerator 1 at a constant cycle.
 パネルコントローラ25のコントローラ19との相互通信について説明する。ユーザが操作パネル6を介して指示を入力すると、パネルコントローラ25は、入力された指示内容を示す指示信号をコントローラ19に送信する。ユーザが操作パネル6を介して、冷蔵庫1の設定状態を変更する指示を入力すると、パネルコントローラ25は、入力された変更内容を示す指示信号をコントローラ19に送信する。通電量制御手段72は、温度検知手段15から取得した検出値をコントローラ19の冷凍サイクル手段71に送信する。 The mutual communication of the panel controller 25 with the controller 19 will be described. When the user inputs an instruction via the operation panel 6, the panel controller 25 transmits an instruction signal indicating the input instruction content to the controller 19. When the user inputs an instruction to change the setting state of the refrigerator 1 via the operation panel 6, the panel controller 25 transmits an instruction signal indicating the input change contents to the controller 19. The energization amount control means 72 transmits the detection value acquired from the temperature detection means 15 to the refrigeration cycle means 71 of the controller 19.
 次に、通電量制御手段72がLED21に対して行う通電量の制御について説明する。 Next, control of the energization amount performed by the energization amount control means 72 for the LED 21 will be described.
 図8は、本実施の形態1において、図4に示したLEDを点灯させるときの通電電流を表すグラフである。図8の縦軸はLED21に順方向に流れる電流[A]であり、横軸は相対湿度[%RH]である。本実施の形態1では、湿度検知手段14が検出した湿度Hdが決められた湿度閾値Hth以上の高湿度であるとき、通電量制御手段72は、LED21の通電電流Cdが決められた通電量Pth0になるようにLED駆動回路26を制御する。高湿度時の通電量Pth0は、湿度検知手段14が検出した湿度Hdが湿度閾値Hth未満のときの通電量Pnに対して、低い値に設定される。通電量Pnは通常時の通電量である。通電量は、単位時間当たりに流れる電流の平均値とする。 FIG. 8 is a graph showing an energization current when the LED shown in FIG. 4 is turned on in the first embodiment. The vertical axis in FIG. 8 represents the current [A] flowing in the LED 21 in the forward direction, and the horizontal axis represents the relative humidity [%RH]. In the first embodiment, when the humidity Hd detected by the humidity detecting means 14 is high humidity equal to or higher than the determined humidity threshold value Hth, the energization amount control means 72 causes the energizing current Cd of the LED 21 to determine the energizing amount Pth0. The LED drive circuit 26 is controlled so that The energization amount Pth0 at high humidity is set to a lower value than the energization amount Pn when the humidity Hd detected by the humidity detecting means 14 is less than the humidity threshold value Hth. The energization amount Pn is a normal energization amount. The energization amount is the average value of the current flowing per unit time.
 図9は、図4に示したLEDの通電量の制御の具体例を説明するための図である。通電量制御手段72は、LED21を点灯させる際、LED21に決められた電圧を印加して電流を流すLED駆動回路26に対して駆動させるオン時間Tonを通電周期Tk毎に調節することで、LED21への通電量を制御する。具体的には、通電量制御手段72は、LED駆動回路26に対して、一定の通電周期Tkでオン時間Tonを示す方形波のパルス電圧を出力する。図9は通電量Pnが通常時の通電量の場合であり、通電周期Tkは10ms、オン時間Tonは6ms、オフ時間Toffは4msである。 FIG. 9 is a diagram for explaining a specific example of the control of the energization amount of the LED shown in FIG. When the LED 21 is turned on, the energization amount control unit 72 adjusts the ON time Ton for driving the LED driving circuit 26 that applies a predetermined voltage to the LED 21 to supply a current, for each energizing cycle Tk. Control the amount of electricity supplied to. Specifically, the energization amount control means 72 outputs to the LED drive circuit 26 a pulse voltage of a square wave indicating the on time Ton at a constant energization period Tk. FIG. 9 shows the case where the energization amount Pn is the energization amount at the normal time, the energization period Tk is 10 ms, the on time Ton is 6 ms, and the off time Toff is 4 ms.
 図9に示すパルス波形において、通電周期Tkのうち、方形波のパルス電圧の出力がTonの時間に、LED駆動回路26がLED21に電力を供給することで、LED21が点灯する。通電周期Tkにおいて、LED駆動回路26がオン状態の方形波が示す時間Tonの通電周期Tkにおける割合をON-DUTY率とする。以下では、このON-DUTY率を通電率Duと称する。通電量制御手段72は、通電率Duを調整することで、LED21に順方向に流れる電流の平均値を調整することができる。通電量制御手段72は、通電率Duを大きくすることで、平均の通電電流量を増加させ、通電率Duを小さくすることで、平均の通電電流量を減少させることができる。 In the pulse waveform shown in FIG. 9, the LED drive circuit 26 supplies electric power to the LED 21 during the energization period Tk, and when the output of the square wave pulse voltage is Ton, the LED 21 is turned on. In the energization period Tk, the ratio of the time Ton indicated by the square wave in the ON state of the LED drive circuit 26 to the energization period Tk is defined as the ON-DUTY rate. Hereinafter, this ON-DUTY rate will be referred to as a duty ratio Du. The energization amount control means 72 can adjust the average value of the current flowing through the LED 21 in the forward direction by adjusting the energization rate Du. The energization amount control unit 72 can increase the energization rate Du to increase the average energization current amount and decrease the energization rate Du to decrease the average energization current amount.
 図10は、本実施の形態1において、図1に示した冷蔵庫の周囲の湿度が湿度閾値以上の場合の通電率の制御の一例を示すタイムチャートである。通電量制御手段72は、冷蔵庫1の周囲の湿度Hdが高湿度でない通常の場合に通電率Duを通電率Dunとし、湿度Hdが高湿度である場合に通電率Duを通電率Dudとする。図10に示す例では、湿度が通常の場合の通電率Dunは60%であり、高湿度の場合の通電率Dudは40%である。 FIG. 10 is a time chart showing an example of control of the energization rate when the humidity around the refrigerator shown in FIG. 1 is equal to or higher than the humidity threshold value in the first embodiment. The energization amount control means 72 sets the energization rate Du to the energization rate Dun when the humidity Hd around the refrigerator 1 is not high, and sets the energization rate Du to the energization rate Dud when the humidity Hd is high. In the example shown in FIG. 10, the duty ratio Dun when the humidity is normal is 60%, and the duty ratio Dud when the humidity is high is 40%.
 図10に示す例において、通電周期Tk1においては、湿度検知手段14が検出する湿度Hdが高湿度でないので、通電量制御手段72は、LED駆動回路26に対して通常の通電率Dunを出力している。通電周期Tk2では、湿度検知手段14が検出する湿度Hdが湿度閾値Hth以上の高湿度なので、通電量制御手段72は、LED駆動回路26に対して高湿度時の通電率Dudを出力する。その結果、高湿度時のLED21の順方向の通電電流を、通常時の順方向の通電電流に対して、低下させることができる。 In the example shown in FIG. 10, in the energization cycle Tk1, the humidity Hd detected by the humidity detector 14 is not high, so the energization amount controller 72 outputs the normal energization rate Dun to the LED drive circuit 26. ing. In the energization cycle Tk2, the humidity Hd detected by the humidity detection unit 14 is high humidity equal to or higher than the humidity threshold value Hth, and therefore the energization amount control unit 72 outputs the energization rate Dud at high humidity to the LED drive circuit 26. As a result, the forward current of the LED 21 at high humidity can be reduced as compared to the normal forward current.
 なお、図6に示したROM61が、高湿度時の通電率Dud、通常時の通電率Dunおよび湿度閾値Hthを含む設定値を記憶している。ROM61は、例えば、これらの設定値をテーブルの形式にして記憶する。図11は、本実施の形態1において、図6に示したROMが設定値をテーブル形式で記憶する場合の一例を示す図である。これらの設定値を記憶する記憶手段は、パネルコントローラ25のROM61に限らない。例えば、図5に示したEEPROM30が設定値を記憶してもよい。 The ROM 61 shown in FIG. 6 stores set values including the duty ratio Dud at high humidity, the duty ratio Dun at normal times, and the humidity threshold value Hth. The ROM 61 stores these set values in the form of a table, for example. FIG. 11 is a diagram showing an example of the case where the ROM shown in FIG. 6 stores the setting values in a table format in the first embodiment. The storage unit that stores these set values is not limited to the ROM 61 of the panel controller 25. For example, the EEPROM 30 shown in FIG. 5 may store the set value.
 次に、本実施の形態1の冷蔵庫1の動作を説明する。図12は、本発明の実施の形態1に係る冷蔵庫の動作手順を示すフローチャートである。 Next, the operation of the refrigerator 1 according to the first embodiment will be described. FIG. 12: is a flowchart which shows the operation procedure of the refrigerator which concerns on Embodiment 1 of this invention.
 通電周期Tk毎に、通電量制御手段72は、湿度検知手段14が検出する湿度Hdを、コントローラ19を介して湿度検知手段14から取得する(ステップS101)。通電量制御手段72は、湿度Hdが湿度閾値Hth以上か否かを判定する(ステップS102)。湿度Hdが湿度閾値Hth以上である場合、通電量制御手段72は、冷蔵庫1の周囲の湿度が高湿度と判定し、通電率DudをLED駆動回路26に出力する(ステップS103)。LED駆動回路26は通電率Dudにしたがって電力をLED21に供給する。これにより、LED21には、通常時よりも低い通電量Pth0の電流が流れる。 Every energization cycle Tk, the energization amount control means 72 acquires the humidity Hd detected by the humidity detection means 14 from the humidity detection means 14 via the controller 19 (step S101). The energization amount control means 72 determines whether or not the humidity Hd is equal to or higher than the humidity threshold value Hth (step S102). When the humidity Hd is equal to or higher than the humidity threshold value Hth, the energization amount control unit 72 determines that the humidity around the refrigerator 1 is high, and outputs the energization rate Dud to the LED drive circuit 26 (step S103). The LED drive circuit 26 supplies electric power to the LED 21 according to the duty ratio Dud. As a result, a current having an energization amount Pth0 lower than that in the normal state flows through the LED 21.
 一方、ステップS102の判定の結果、湿度Hdが湿度閾値Hth未満である場合、通電量制御手段72は、冷蔵庫1の周囲の湿度が高湿度でないと判定し、通電率DunをLED駆動回路26に出力する(ステップS104)。LED駆動回路26は通電率Dunにしたがって電力をLED21に供給する。これにより、LED21には、通常時の通電量Pnの電流が流れる。このようにして、冷蔵庫1の周囲の湿度が高いとき、LED21に流れる電流量が小さくなり、LED21の長寿命化が図れる。 On the other hand, as a result of the determination in step S102, when the humidity Hd is less than the humidity threshold value Hth, the energization amount control unit 72 determines that the humidity around the refrigerator 1 is not high humidity, and sets the energization rate Dun to the LED drive circuit 26. Output (step S104). The LED drive circuit 26 supplies electric power to the LED 21 according to the duty ratio Dun. As a result, a current having the normal energization amount Pn flows through the LED 21. In this way, when the humidity around the refrigerator 1 is high, the amount of current flowing through the LED 21 becomes small and the life of the LED 21 can be extended.
 本実施の形態1の冷蔵庫1は、貯蔵室の前面に設けられた操作パネル6と、操作パネル6の前面に設けられた印刷シート23と、印刷シート23に光を照射するLED21と、冷蔵庫1の周囲の湿度を検出する湿度検知手段14と、コントローラ19とを有する。コントローラ19は、湿度検知手段14によって検出される湿度Hdが湿度閾値Hth以上であるとき、LED21への通電量を低下させる通電量制御手段72を有する。 The refrigerator 1 according to the first embodiment includes an operation panel 6 provided on the front surface of the storage room, a print sheet 23 provided on the front surface of the operation panel 6, an LED 21 for irradiating the print sheet 23 with light, and a refrigerator 1 It has a humidity detecting means 14 for detecting the surrounding humidity and a controller 19. The controller 19 has an energization amount control unit 72 that reduces the amount of energization to the LED 21 when the humidity Hd detected by the humidity detection unit 14 is equal to or higher than the humidity threshold value Hth.
 本実施の形態1によれば、高湿度な環境においてはLED21の通電量を小さくするので、LED21に発生するイオンマイグレーションの進行を抑えることができる。そのため、LED21が筐体で密閉されておらず、高湿度な環境においても、LED21の寿命を著しく損なうことなく、LED21の長寿命化を図ることができる。その結果、冷蔵庫1の使用期間を長くすることができる。 According to the first embodiment, the energization amount of the LED 21 is reduced in a high humidity environment, so that the progress of ion migration generated in the LED 21 can be suppressed. Therefore, the LED 21 is not sealed by the housing, and the life of the LED 21 can be extended without significantly impairing the life of the LED 21 even in a high humidity environment. As a result, the usage period of the refrigerator 1 can be extended.
(変形例1)
 図1~図12を参照して、通電量制御手段72が冷蔵庫1の周囲の湿度に応じてLED21への通電量を制御する場合を説明したが、冷蔵庫1の周囲の明るさに対応して、LED21への通電量を制御してもよい。例えば、冷蔵庫1の周囲が明るい場合と暗い場合とで操作パネル6の見え方を比較すると、冷蔵庫1の周囲が暗い場合、LED21の通電量を通常時よりも暗くしても、ユーザは操作パネル6のスイッチの形状23aを認識できる。そこで、通電量制御手段72は、照度検知手段31によって検出される照度Ldが決められた照度閾値Lth未満であるとき、図10に示した制御と同様にして、LED21の通電量を低下させる。
(Modification 1)
The case where the energization amount control means 72 controls the energization amount to the LED 21 according to the humidity around the refrigerator 1 has been described with reference to FIGS. 1 to 12. , The amount of electricity supplied to the LED 21 may be controlled. For example, comparing the appearances of the operation panel 6 when the surroundings of the refrigerator 1 are bright and when the surroundings of the refrigerator 1 are dark, when the surroundings of the refrigerator 1 are dark, even if the energization amount of the LED 21 is darker than normal, the user operates the operating panel. The switch shape 23a of 6 can be recognized. Therefore, when the illuminance Ld detected by the illuminance detection unit 31 is less than the predetermined illuminance threshold Lth, the energization amount control unit 72 reduces the energization amount of the LED 21 in the same manner as the control shown in FIG.
 本変形例1においても、LED21の長寿命化を図ることができる。本変形例1の通電量制御を、図12に示したフローチャートに組み合わせてもよい。この場合、さらにLED21の長寿命化を図ることができる。 Also in the first modification, the life of the LED 21 can be extended. The energization amount control of the first modification may be combined with the flowchart shown in FIG. In this case, the life of the LED 21 can be further extended.
実施の形態2.
 本実施の形態2は、冷蔵庫1の周囲の環境として湿度だけでなく温度に対応して、操作パネル6のLED21の通電量を制御するものである。本実施の形態2では、実施の形態1で説明した構成と同一の構成については同一の符号を付し、その詳細な説明を省略する。
Embodiment 2.
The second embodiment controls the energization amount of the LED 21 of the operation panel 6 in accordance with not only the humidity but also the temperature as the environment around the refrigerator 1. In the second embodiment, the same components as those described in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 本実施の形態2の冷蔵庫1の構成を説明する。図13は、本発明の実施の形態2に係る冷蔵庫の通電量制御手段の動作を説明するための図である。図13において、横軸が時間で時系列変化を示す3つのグラフのうち、上段のグラフの縦軸は温度であり、中段のグラフの縦軸は相対湿度であり、下段の縦軸はパルス電圧である。 The configuration of the refrigerator 1 according to the second embodiment will be described. FIG. 13: is a figure for demonstrating operation|movement of the electricity amount control means of the refrigerator which concerns on Embodiment 2 of this invention. In FIG. 13, among the three graphs showing time-series changes with time on the horizontal axis, the vertical axis of the upper graph is temperature, the vertical axis of the middle graph is relative humidity, and the vertical axis of the lower graph is pulse voltage. Is.
 図13は、温度検知手段15が検出する温度Tdおよび湿度検知手段14が検出する湿度Hdから、通電量制御手段72がLED駆動回路26に出力する通電率Duを決定する場合の一例を示す。冷蔵庫1の周囲が高温かつ高湿度のときの通電率DuをDudとし、冷蔵庫1の周囲が高温でも高湿度でもない通常のときの通電率Duを通電率Dunとする。図13は、通電率Dudを40%とし、通電率Dunを60%とした場合の一例である。また、図13に示す例では、温度Tdが決められた温度閾値Tth以上である場合を高温とし、湿度Hdが湿度閾値Hth以上である場合に高湿度としている。 FIG. 13 shows an example of the case where the energization amount control means 72 determines the energization rate Du output to the LED drive circuit 26 from the temperature Td detected by the temperature detection means 15 and the humidity Hd detected by the humidity detection means 14. The duty factor Du when the surroundings of the refrigerator 1 are high temperature and high humidity is Dud, and the duty factor Du when the surroundings of the refrigerator 1 is neither high temperature nor high humidity is the duty factor Dun. FIG. 13 shows an example in which the duty ratio Dud is 40% and the duty ratio Dun is 60%. Further, in the example shown in FIG. 13, when the temperature Td is equal to or higher than the predetermined temperature threshold Tth, the temperature is high, and when the humidity Hd is equal to or higher than the humidity threshold Hth, the humidity is high.
 図13を参照すると、通電周期Tk1の初期段階で、温度検知手段15が検出する温度Tdが温度閾値Tth未満であり、湿度検知手段14が検出する湿度Hdも湿度閾値Hth未満である。そのため、通電周期Tk1では、通電量制御手段72は、LED駆動回路26に対して、通常の通電率Dunを出力する。通電周期Tk2の初期段階では、温度検知手段15が検出する温度Tdが温度閾値Tth以上であり、かつ、湿度検知手段14が検出する湿度Hdも湿度閾値Hth以上である。そのため、通電周期Tk2では、通電量制御手段72は、LED駆動回路26に対して、高温かつ高湿度の通電率Dudを出力する。 Referring to FIG. 13, at the initial stage of the energization cycle Tk1, the temperature Td detected by the temperature detecting means 15 is less than the temperature threshold Tth, and the humidity Hd detected by the humidity detecting means 14 is also less than the humidity threshold Hth. Therefore, in the energization period Tk1, the energization amount control unit 72 outputs the normal energization rate Dun to the LED drive circuit 26. In the initial stage of the energization cycle Tk2, the temperature Td detected by the temperature detecting means 15 is equal to or higher than the temperature threshold Tth, and the humidity Hd detected by the humidity detecting means 14 is equal to or higher than the humidity threshold Hth. Therefore, in the energization period Tk2, the energization amount control unit 72 outputs the energization rate Dud of high temperature and high humidity to the LED drive circuit 26.
 一方、通電周期Tk3の初期段階では、冷蔵庫1の周囲の温度Tdが温度閾値Tth以上であるが、冷蔵庫1の周囲の湿度Hdが湿度閾値Hth未満である。そのため、通電量制御手段72は、LED駆動回路26に対して、通常の通電率Dunを出力する。また、通電周期Tk4では、湿度Hdが湿度閾値Hth以上であるが、温度Tdが温度閾値Tth未満である。そのため、通電量制御手段72は、LED駆動回路26に対して、通常の通電率Dunを出力する。 On the other hand, in the initial stage of the energization cycle Tk3, the temperature Td around the refrigerator 1 is equal to or higher than the temperature threshold Tth, but the humidity Hd around the refrigerator 1 is lower than the humidity threshold Hth. Therefore, the energization amount control means 72 outputs the normal energization rate Dun to the LED drive circuit 26. Further, in the energization cycle Tk4, the humidity Hd is equal to or higher than the humidity threshold value Hth, but the temperature Td is lower than the temperature threshold value Tth. Therefore, the energization amount control means 72 outputs the normal energization rate Dun to the LED drive circuit 26.
 なお、図6に示したROM61が、高温かつ高湿度時の通電率Dud、通常時の通電率Dun、温度閾値Tthおよび湿度閾値Hthを含む設定値を記憶している。ROM61は、これらの設定値を、例えば、図14に示すようなテーブルの形式にして記憶してもよい。図14は、本実施の形態2において、図6に示したROMが設定値をテーブル形式で記憶する場合の一例を示す図である。これらの設定値を記憶する記憶手段は、図5に示したEEPROM30であってもよい。 The ROM 61 shown in FIG. 6 stores set values including the duty ratio Dud at high temperature and high humidity, the duty ratio Dun at normal times, the temperature threshold value Tth, and the humidity threshold value Hth. The ROM 61 may store these set values in the form of a table as shown in FIG. 14, for example. FIG. 14 is a diagram showing an example of a case where the ROM shown in FIG. 6 stores the set values in a table format in the second embodiment. The storage means for storing these set values may be the EEPROM 30 shown in FIG.
 次に、本実施の形態2の冷蔵庫1の動作を説明する。図15は、本発明の実施の形態2に係る冷蔵庫の動作手順を示すフローチャートである。 Next, the operation of the refrigerator 1 according to the second embodiment will be described. FIG. 15: is a flowchart which shows the operation procedure of the refrigerator which concerns on Embodiment 2 of this invention.
 通電周期Tk毎に、通電量制御手段72は、湿度検知手段14が検出する湿度Hdを、コントローラ19を介して湿度検知手段14から取得する(ステップS201)。通電量制御手段72は、湿度Hdが湿度閾値Hth以上か否かを判定する(ステップS202)。湿度Hdが湿度閾値Hth以上である場合、通電量制御手段72は、温度検知手段15が検出する温度Tdを温度検知手段15から取得する(ステップS203)。続いて、通電量制御手段72は、取得した温度Tdが温度閾値Tth以上か否かを判定する(ステップS204)。温度Tdが温度閾値Tth以上である場合、通電量制御手段72は、冷蔵庫1の周囲の環境が高温かつ高湿度と判定し、通電率DudをLED駆動回路26に出力する(ステップS205)。LED駆動回路26は通電率Dudにしたがって電力をLED21に供給する。これにより、LED21には、通常時よりも低い通電量Pth0の電流が流れる。 Every energization cycle Tk, the energization amount control means 72 acquires the humidity Hd detected by the humidity detection means 14 from the humidity detection means 14 via the controller 19 (step S201). The energization amount control means 72 determines whether or not the humidity Hd is equal to or higher than the humidity threshold value Hth (step S202). When the humidity Hd is equal to or higher than the humidity threshold value Hth, the energization amount control unit 72 acquires the temperature Td detected by the temperature detection unit 15 from the temperature detection unit 15 (step S203). Subsequently, the energization amount control unit 72 determines whether the acquired temperature Td is equal to or higher than the temperature threshold Tth (step S204). When the temperature Td is equal to or higher than the temperature threshold Tth, the energization amount control unit 72 determines that the environment around the refrigerator 1 is high temperature and high humidity, and outputs the energization rate Dud to the LED drive circuit 26 (step S205). The LED drive circuit 26 supplies electric power to the LED 21 according to the duty ratio Dud. As a result, a current having an energization amount Pth0 lower than that in the normal state flows through the LED 21.
 一方、ステップS202の判定の結果、湿度Hdが湿度閾値Hth未満である場合、通電量制御手段72は、冷蔵庫1の周囲の湿度が高湿度でないと判定し、通電率DunをLED駆動回路26に出力する(ステップS206)。また、ステップS204の判定の結果、温度Tdが温度閾値Tth未満である場合、通電量制御手段72は、冷蔵庫1の周囲の高温ではないと判定し、通電率DunをLED駆動回路26に出力する(ステップS206)。LED駆動回路26は、通電率Dunにしたがって電力をLED21に供給する。これにより、LED21には、通常時の通電量Pnの電流が流れる。このようにして、冷蔵庫1の周囲が高温かつ高湿度のとき、LED21に流れる電流量が小さくなり、LED21の長寿命化が図れる。 On the other hand, as a result of the determination in step S202, when the humidity Hd is less than the humidity threshold value Hth, the energization amount control unit 72 determines that the humidity around the refrigerator 1 is not high humidity, and sets the energization rate Dun to the LED drive circuit 26. Output (step S206). When the temperature Td is lower than the temperature threshold value Tth as a result of the determination in step S204, the energization amount control unit 72 determines that the temperature is not high around the refrigerator 1 and outputs the energization rate Dun to the LED drive circuit 26. (Step S206). The LED drive circuit 26 supplies electric power to the LED 21 according to the duty ratio Dun. As a result, a current having the normal energization amount Pn flows through the LED 21. In this way, when the temperature around the refrigerator 1 is high and the humidity is high, the amount of current flowing through the LED 21 becomes small and the life of the LED 21 can be extended.
 本実施の形態2の冷蔵庫1は、湿度検知手段14によって検出される湿度Hdが湿度閾値Hth以上であり、かつ温度検知手段15によって検出される温度Tdが温度閾値Tth以上であるとき、LED21への通電量を通常時よりも低下させるものである。 In the refrigerator 1 according to the second embodiment, when the humidity Hd detected by the humidity detecting means 14 is the humidity threshold value Hth or more and the temperature Td detected by the temperature detecting means 15 is the temperature threshold value Tth or more, the LED 21 is turned on. The amount of electricity supplied is reduced compared to the normal state.
 本実施の形態2によれば、冷蔵庫1の周囲が高温かつ高湿度の場合にLED21の通電量が小さくなる。そのため、湿度および温度による高負荷環境に起因してLED21の寿命が損なわれることを抑制できる。 According to the second embodiment, the energization amount of the LED 21 becomes small when the temperature around the refrigerator 1 is high and the humidity is high. Therefore, it is possible to prevent the life of the LED 21 from being impaired due to a high load environment due to humidity and temperature.
実施の形態3.
 本実施の形態3は、冷蔵庫1の累積運転時間に対応して、操作パネル6のLED21の通電量を制御するものである。本実施の形態3では、実施の形態1で説明した構成と同一の構成については同一の符号を付し、その詳細な説明を省略する。本実施の形態3を、実施の形態1および2のいずれにも適用することができる。
Embodiment 3.
In the third embodiment, the energization amount of the LED 21 of the operation panel 6 is controlled according to the cumulative operating time of the refrigerator 1. In the third embodiment, the same components as those described in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. The third embodiment can be applied to both the first and second embodiments.
 本実施の形態3の冷蔵庫の構成を説明する。図16は、本発明の実施の形態3に係る冷蔵庫の通電量制御手段の動作を説明するための図である。図16において、横軸が時間で時系列変化を示す2つのグラフのうち、上段のグラフの縦軸は累積運転時間であり、下段の縦軸はパルス電圧である。 The configuration of the refrigerator according to the third embodiment will be described. FIG. 16: is a figure for demonstrating operation|movement of the electricity amount control means of the refrigerator which concerns on Embodiment 3 of this invention. In FIG. 16, among the two graphs showing the time series changes with the horizontal axis, the vertical axis of the upper graph is the cumulative operating time, and the lower vertical axis is the pulse voltage.
 nを2以上の任意の整数とすると、図16において、通電周期Tk1からTk(n-1)の期間では、EEPROM30が記憶する、冷蔵庫1の累積運転時間TOが決められた運転時間閾値TOth未満である。そのため、通電量制御手段72は、LED駆動回路26に対して、通常の通電率Dunを出力する。一方、通電周期Tkn以降では、冷蔵庫1の累積運転時間TOが運転時間閾値TOth以上なので、通電量制御手段72は、長時間運転の場合の通電率DupをLED駆動回路26に出力する。図16は、通電率Dupを80%とし、通電率Dunを60%とした場合の一例である。また、累積運転時間TOが運転時間閾値TOth以上である場合を長時間運転としている。 When n is an arbitrary integer of 2 or more, in FIG. 16, the cumulative operating time TO of the refrigerator 1 stored in the EEPROM 30 is less than the determined operating time threshold TOth during the energization period Tk1 to Tk(n-1). Is. Therefore, the energization amount control means 72 outputs the normal energization rate Dun to the LED drive circuit 26. On the other hand, after the energization period Tkn, the cumulative operation time TO of the refrigerator 1 is equal to or greater than the operation time threshold value TOth, so the energization amount control unit 72 outputs the energization rate Dup in the long-time operation to the LED drive circuit 26. FIG. 16 shows an example in which the duty ratio Dup is 80% and the duty ratio Dun is 60%. Further, the case where the cumulative operating time TO is equal to or more than the operating time threshold value TOth is defined as long-time operation.
 一般的に、LEDは長期間使用すると経年劣化が起こり、同じ通電電流でも経過時間が長いほどLEDから放出される光による照度が低下する。そのため、例えば、LED21に照らされる、操作スイッチの形状23aの見栄えが悪くなる。そこで、図16を参照して説明したように、冷蔵庫1の累積運転時間TOが長時間になったときに、LED21の通電率Duを増やすことで、LED21の経年劣化による照度低下を補うことができる。 Generally speaking, LEDs deteriorate over time when used for a long period of time, and even with the same energizing current, the longer the elapsed time, the lower the illuminance due to the light emitted from the LEDs. Therefore, for example, the appearance of the operation switch shape 23a illuminated by the LED 21 becomes poor. Therefore, as described with reference to FIG. 16, when the cumulative operating time TO of the refrigerator 1 becomes long, the duty factor Du of the LED 21 is increased to compensate for the decrease in illuminance due to the aged deterioration of the LED 21. it can.
 なお、図5に示したEEPROM30が累積運転時間TOを記録する。図5に示したROM51が、長時間運転後の通電率Dup、通常時の通電率Dun、および運転時間閾値TOthを含む設定値を記憶している。ROM51は、これらの設定値を、例えば、図17に示すようなテーブルの形式にして記憶してもよい。図17は、本実施の形態3において、図5に示したROMが設定値をテーブル形式で記憶する場合の一例を示す図である。これらの設定値を記憶する記憶手段は、図5に示したEEPROM30であってもよい。さらに、EEPROM30が累積運転時間TOを記録する場合で説明するが、累積運転時間TOを記録するメモリは、EEPROM30に限らない。累積運転時間TOを記録するメモリは、フラッシュメモリおよびEEPROM30等の不揮発性メモリであることが望ましい。これらの不揮発性メモリは、電力の供給が停止しても、記憶した情報を保持できるからである。 Note that the EEPROM 30 shown in FIG. 5 records the cumulative operating time TO. The ROM 51 shown in FIG. 5 stores set values including the energization rate Dup after long-time operation, the energization rate Dun under normal conditions, and the operation time threshold value TOth. The ROM 51 may store these set values in the form of a table as shown in FIG. 17, for example. FIG. 17 is a diagram showing an example of a case where the ROM shown in FIG. 5 stores the setting values in a table format in the third embodiment. The storage means for storing these set values may be the EEPROM 30 shown in FIG. Further, the case where the EEPROM 30 records the cumulative operating time TO will be described, but the memory that records the cumulative operating time TO is not limited to the EEPROM 30. The memory for recording the cumulative operating time TO is preferably a flash memory or a non-volatile memory such as the EEPROM 30. This is because these non-volatile memories can retain the stored information even when the power supply is stopped.
 次に、本実施の形態3の冷蔵庫1の動作を説明する。図18は、本発明の実施の形態3に係る冷蔵庫の動作手順を示すフローチャートである。 Next, the operation of the refrigerator 1 according to the third embodiment will be described. FIG. 18 is a flowchart showing an operation procedure of the refrigerator according to the third embodiment of the present invention.
 通電周期Tk毎に、通電量制御手段72は、EEPROM30が記憶する累積運転時間TOを参照する(ステップS301)。通電量制御手段72は、累積運転時間TOが運転時間閾値TOth以上か否かを判定する(ステップS302)。累積運転時間TOが運転時間閾値TOth以上である場合、通電量制御手段72は、冷蔵庫1が長時間運転されたと判定し、通電率DupをLED駆動回路26に出力する(ステップS303)。LED駆動回路26は通電率Dupにしたがって電力をLED21に供給する。これにより、LED21には、通常時よりも高い通電量の電流が流れる。 For each energization cycle Tk, the energization amount control means 72 refers to the cumulative operating time TO stored in the EEPROM 30 (step S301). The energization amount control means 72 determines whether the cumulative operating time TO is equal to or greater than the operating time threshold TOth (step S302). When the cumulative operation time TO is equal to or greater than the operation time threshold value TOth, the energization amount control unit 72 determines that the refrigerator 1 has been operated for a long time, and outputs the energization rate Dup to the LED drive circuit 26 (step S303). The LED drive circuit 26 supplies electric power to the LED 21 according to the duty ratio Dup. As a result, a current having a higher energization amount than in the normal state flows through the LED 21.
 一方、ステップS302の判定の結果、累積運転時間TOが運転時間閾値TOth未満である場合、通電量制御手段72は、冷蔵庫1が長時間運転ではないと判定し、通電率DunをLED駆動回路26に出力する(ステップS304)。LED駆動回路26は通電率Dunにしたがって電力をLED21に供給する。これにより、LED21には、通常時の通電量の電流が流れる。このようにして、冷蔵庫1の累積運転時間TOに基づいて冷蔵庫1が長時間運転したと判定されると、LED21に流れる電流量が大きくなり、LED21の照度低下が抑制される。 On the other hand, as a result of the determination in step S302, when the cumulative operation time TO is less than the operation time threshold value TOth, the energization amount control unit 72 determines that the refrigerator 1 is not operated for a long time, and sets the energization rate Dun to the LED drive circuit 26. (Step S304). The LED drive circuit 26 supplies electric power to the LED 21 according to the duty ratio Dun. As a result, a current having a normal energizing amount flows through the LED 21. In this way, when it is determined that the refrigerator 1 has been operating for a long time based on the cumulative operating time TO of the refrigerator 1, the amount of current flowing through the LED 21 increases and the decrease in illuminance of the LED 21 is suppressed.
 本実施の形態3の冷蔵庫1は、EEPROM30によって記録された累積運転時間TOが運転時間閾値TOth以上であるとき、LED21の通電量を上げるものである。 The refrigerator 1 according to the third embodiment increases the energization amount of the LED 21 when the cumulative operating time TO recorded by the EEPROM 30 is equal to or more than the operating time threshold TOth.
 本実施の形態3によれば、冷蔵庫1の長時間運転に起因するLED21の照度低下を抑制することができる。本実施の形態3を実施の形態1および2のうち、いずれかの実施の形態に適用すれば、LED21の長寿命化をさらに図ることができる。 According to the third embodiment, it is possible to suppress a decrease in the illuminance of the LED 21 due to the long-term operation of the refrigerator 1. If the third embodiment is applied to any one of the first and second embodiments, the life of the LED 21 can be further extended.
 1 冷蔵庫、2 圧縮機、3 冷却器、4 送風ファン、5 風路、6 操作パネル、7a 左扉、7b 右扉、8 ドアスイッチ、9 冷蔵室サーミスタ、10 冷蔵室ダンパ、11 冷却器サーミスタ、12 庫内灯、13 主制御基板、14 湿度検知手段、15 温度検知手段、16 扉仕切部材、17 ヒータ、18 冷蔵室、19 コントローラ、20 操作パネル制御基板、21 LED、22 表面部材、23 印刷シート、23a 操作スイッチの形状、24 操作スイッチ電極、25 パネルコントローラ、26 LED駆動回路、30 EEPROM、31 照度検知手段、41 冷凍室、42 切替室、43 野菜室、51 ROM、52 RAM、53 CPU、61 ROM、62 RAM、63 CPU、71 冷凍サイクル手段、72 通電量制御手段。 1 refrigerator, 2 compressor, 3 cooler, 4 blower fan, 5 air passage, 6 operation panel, 7a left door, 7b right door, 8 door switch, 9 cold room thermistor, 10 cold room damper, 11 cooler thermistor, 12 internal light, 13 main control board, 14 humidity detecting means, 15 temperature detecting means, 16 door partition member, 17 heater, 18 refrigerating room, 19 controller, 20 operation panel control board, 21 LED, 22 surface member, 23 printing Seat, 23a operation switch shape, 24 operation switch electrode, 25 panel controller, 26 LED drive circuit, 30 EEPROM, 31 illuminance detection means, 41 freezing room, 42 switching room, 43 vegetable room, 51 ROM, 52 RAM, 53 CPU , 61 ROM, 62 RAM, 63 CPU, 71 refrigeration cycle means, 72 energization amount control means.

Claims (4)

  1.  少なくとも1つの貯蔵室と、
     前記貯蔵室の前面に設けられた扉と、
     前記扉に格納され、冷蔵庫の運転状態の設定および表示のための操作パネルと、
     前記操作パネルの前面に設けられ、操作スイッチの形状が表された印刷シートと、
     前記印刷シートに対して光を照射することで前記操作スイッチの形状を前記操作パネルの前面に映し出す発光ダイオードと、
     前記冷蔵庫の周囲の湿度を検出する湿度検知手段と、
     前記冷蔵庫の運転状態を制御するコントローラと、を有し、
     前記コントローラは、
     前記湿度検知手段によって検出される湿度が決められた湿度閾値以上であるとき、前記発光ダイオードへの通電量を低下させる通電量制御手段を有する、
     冷蔵庫。
    At least one storage room,
    A door provided in front of the storage room,
    An operation panel stored in the door for setting and displaying the operating state of the refrigerator,
    A print sheet provided on the front surface of the operation panel and showing the shape of the operation switch,
    A light emitting diode that projects the shape of the operation switch on the front surface of the operation panel by irradiating the print sheet with light,
    Humidity detection means for detecting the humidity around the refrigerator,
    A controller for controlling the operating state of the refrigerator,
    The controller is
    When the humidity detected by the humidity detecting means is equal to or higher than a predetermined humidity threshold value, it has an energization amount control means for decreasing the energization amount to the light emitting diode,
    refrigerator.
  2.  少なくとも1つの貯蔵室と、
     前記貯蔵室の前面に設けられた扉と、
     前記扉に格納され、冷蔵庫の運転状態を設定および表示のための操作パネルと、
     前記操作パネルの前面に設けられ、操作スイッチの形状が表された印刷シートと、
     前記印刷シートに対して光を照射することで前記操作スイッチの形状を前記操作パネルの前面に映し出す発光ダイオードと、
     前記冷蔵庫の周囲の湿度を検出する湿度検知手段と、
     前記冷蔵庫の周囲の温度を検出する温度検知手段と、
     前記冷蔵庫の運転状態を制御するコントローラと、を有し、
     前記コントローラは、
     前記湿度検知手段によって検出される湿度が決められた湿度閾値以上であり、かつ前記温度検知手段によって検出される温度が決められた温度閾値以上であるとき、前記発光ダイオードへの通電量を低下させる通電量制御手段を有する、
     冷蔵庫。
    At least one storage room,
    A door provided in front of the storage room,
    An operation panel stored in the door for setting and displaying the operating state of the refrigerator,
    A print sheet provided on the front surface of the operation panel and showing the shape of the operation switch,
    A light emitting diode that projects the shape of the operation switch on the front surface of the operation panel by irradiating the print sheet with light,
    Humidity detection means for detecting the humidity around the refrigerator,
    Temperature detection means for detecting the temperature around the refrigerator,
    A controller for controlling the operating state of the refrigerator,
    The controller is
    When the humidity detected by the humidity detecting means is equal to or higher than a predetermined humidity threshold and the temperature detected by the temperature detecting means is equal to or higher than the predetermined temperature threshold, the amount of electricity supplied to the light emitting diode is reduced. Having an energization amount control means,
    refrigerator.
  3.  前記冷蔵庫の周囲の明るさを検出する照度検知手段をさらに有し、
     前記通電量制御手段は、
     前記照度検知手段によって検出される照度が決められた照度閾値未満であるとき、前記発光ダイオードの通電量を低下させる、請求項1または2に記載の冷蔵庫。
    Further comprising an illuminance detection means for detecting the brightness around the refrigerator,
    The energization amount control means,
    The refrigerator according to claim 1 or 2, wherein when the illuminance detected by the illuminance detection unit is less than a predetermined illuminance threshold, the energization amount of the light emitting diode is reduced.
  4.  前記コントローラは、前記冷蔵庫の累積運転時間を記録するメモリを有し、
     前記通電量制御手段は、
     前記メモリによって記録された累積運転時間が決められた運転時間閾値以上であるとき、前記発光ダイオードの通電量を上げる、請求項1または2に記載の冷蔵庫。
    The controller has a memory for recording the cumulative operating time of the refrigerator,
    The energization amount control means,
    The refrigerator according to claim 1 or 2, wherein when the cumulative operating time recorded by the memory is equal to or more than a predetermined operating time threshold value, the energization amount of the light emitting diode is increased.
PCT/JP2019/006782 2019-02-22 2019-02-22 Refrigerator WO2020170421A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/006782 WO2020170421A1 (en) 2019-02-22 2019-02-22 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/006782 WO2020170421A1 (en) 2019-02-22 2019-02-22 Refrigerator

Publications (1)

Publication Number Publication Date
WO2020170421A1 true WO2020170421A1 (en) 2020-08-27

Family

ID=72144513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006782 WO2020170421A1 (en) 2019-02-22 2019-02-22 Refrigerator

Country Status (1)

Country Link
WO (1) WO2020170421A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04319457A (en) * 1991-04-18 1992-11-10 Omron Corp Regulator for amount of light of printer
JPH04353378A (en) * 1991-05-30 1992-12-08 Mitsubishi Electric Corp Indication controller for refrigerator
JP2003172577A (en) * 2001-12-05 2003-06-20 Sanyo Electric Co Ltd Refrigerator
JP2008275289A (en) * 2007-05-07 2008-11-13 Mitsubishi Electric Corp Refrigerator
JP2013235847A (en) * 2006-07-10 2013-11-21 Toshiba Lighting & Technology Corp Illuminating device
JP2015018618A (en) * 2013-07-09 2015-01-29 三菱電機株式会社 LED display device
JP2015169421A (en) * 2014-03-11 2015-09-28 三菱電機株式会社 Storehouse and refrigerator
CN206713118U (en) * 2017-04-19 2017-12-05 江门市卡迪光电科技有限公司 A kind of Zigbee intelligence outdoor project lamps for collecting automatic protection with an automatic light meter
JP6373522B1 (en) * 2018-03-05 2018-08-15 Tdk株式会社 LED lighting evaluation system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04319457A (en) * 1991-04-18 1992-11-10 Omron Corp Regulator for amount of light of printer
JPH04353378A (en) * 1991-05-30 1992-12-08 Mitsubishi Electric Corp Indication controller for refrigerator
JP2003172577A (en) * 2001-12-05 2003-06-20 Sanyo Electric Co Ltd Refrigerator
JP2013235847A (en) * 2006-07-10 2013-11-21 Toshiba Lighting & Technology Corp Illuminating device
JP2008275289A (en) * 2007-05-07 2008-11-13 Mitsubishi Electric Corp Refrigerator
JP2015018618A (en) * 2013-07-09 2015-01-29 三菱電機株式会社 LED display device
JP2015169421A (en) * 2014-03-11 2015-09-28 三菱電機株式会社 Storehouse and refrigerator
CN206713118U (en) * 2017-04-19 2017-12-05 江门市卡迪光电科技有限公司 A kind of Zigbee intelligence outdoor project lamps for collecting automatic protection with an automatic light meter
JP6373522B1 (en) * 2018-03-05 2018-08-15 Tdk株式会社 LED lighting evaluation system

Similar Documents

Publication Publication Date Title
CN101438908B (en) Showcase
JP5140392B2 (en) Showcase
JP5586535B2 (en) refrigerator
EP2437014B1 (en) Refrigerator
JP2006336963A (en) Refrigerator
CN102893107B (en) Refrigerator
TW442638B (en) Refrigerator
JP2008292048A (en) Refrigerator
WO2020170421A1 (en) Refrigerator
US9482435B2 (en) Method for light emitting device protection and performance in an appliance
JP5750085B2 (en) refrigerator
JP4074567B2 (en) refrigerator
JP2007003021A (en) Refrigerator
JP2008275289A (en) Refrigerator
JP4489057B2 (en) refrigerator
JP2005114186A (en) Refrigerator
JP2006308132A (en) Refrigerator
KR20210049548A (en) Refrigerator and method for controlling the same
JP2007298214A (en) Refrigerator
JP2020085406A (en) Cooling storage
JP2006329543A (en) Refrigerator
US7386986B2 (en) Apparatus for generating heat of refrigerator and control method thereof
JP6385637B2 (en) refrigerator
JP7105519B1 (en) Environment forming device
JP2008070024A (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP