WO2020170360A1 - 強度検査方法および強度検査装置 - Google Patents

強度検査方法および強度検査装置 Download PDF

Info

Publication number
WO2020170360A1
WO2020170360A1 PCT/JP2019/006335 JP2019006335W WO2020170360A1 WO 2020170360 A1 WO2020170360 A1 WO 2020170360A1 JP 2019006335 W JP2019006335 W JP 2019006335W WO 2020170360 A1 WO2020170360 A1 WO 2020170360A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
target wave
data
strength
test body
Prior art date
Application number
PCT/JP2019/006335
Other languages
English (en)
French (fr)
Inventor
拓 川▲崎▼
Original Assignee
株式会社Ihi検査計測
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi検査計測 filed Critical 株式会社Ihi検査計測
Priority to JP2021501203A priority Critical patent/JP7313421B2/ja
Priority to US17/430,009 priority patent/US20220146385A1/en
Priority to EP19915743.9A priority patent/EP3929560A4/en
Priority to PCT/JP2019/006335 priority patent/WO2020170360A1/ja
Publication of WO2020170360A1 publication Critical patent/WO2020170360A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/38Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/40Detecting the response signal, e.g. electronic circuits specially adapted therefor by amplitude filtering, e.g. by applying a threshold or by gain control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4454Signal recognition, e.g. specific values or portions, signal events, signatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/449Statistical methods not provided for in G01N29/4409, e.g. averaging, smoothing and interpolation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0096Fibre-matrix interaction in composites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0658Indicating or recording means; Sensing means using acoustic or ultrasonic detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Definitions

  • the present disclosure relates to a technique for inspecting the tensile strength of a test body which is a fiber reinforced composite material (FRP: Fiber Reinforced Plastic). More specifically, the present disclosure relates to a technique of inspecting a tensile strength of a test body based on an AE wave (acoustic emission) generated in the test body by applying a tensile load to the test body.
  • FRP Fiber Reinforced Plastic
  • FRP Fluorescence Reduction Polymer
  • CFRP Carbon Fiber Reinforced Plastic
  • FRP destruction occurs after peeling of laminated layers and breakage of fibers occur.
  • Patent Document 1 A technique for inspecting the tensile strength of such FRP is disclosed in Patent Document 1.
  • the tensile strength of FRP is evaluated as follows. A tensile load is applied to the test body, and this tensile load is increased over time. The AE wave generated in the test body due to this tensile load is detected. A plurality of frequency components of the AE wave in each of the plurality of load application sections included in the test period are obtained. For each load application section, the center-of-gravity frequency of the AE wave is calculated based on a plurality of frequency components, and the load application section in which the center-of-gravity frequency is lower than the previous load application section among the plurality of load application sections is specified and specified. The magnitude of the tensile load applied to the test body in the applied load section is determined as the tensile strength of the test body.
  • a large number of AE waves are intermittently generated when a tensile load is applied to the test body, and among these AE waves, the AE waves that tend not to indicate the presence or absence of breakage of the test body. Is also included. Therefore, it is desired to identify the AE wave that tends to indicate the presence or absence of breakage of the test body and evaluate the tensile strength of the test body based on the identified AE wave.
  • the present disclosure is to provide a technique for identifying an AE wave that tends to indicate the presence or absence of breakage of a test body and evaluating the tensile strength of the test body based on the identified AE wave.
  • a strength inspection device is a device for evaluating the tensile strength of a test body that is a fiber-reinforced composite material,
  • An AE sensor that detects AE waves generated in the test body by the tensile load and generates waveform data of the AE waves during a test period in which the tensile load is applied to the test body.
  • a target wave specifying unit that specifies an AE wave whose duration is longer than a time threshold as a target wave based on the waveform data;
  • a calculation unit for obtaining the center-of-gravity frequency of each target wave, For each target wave, the centroid frequency of the target wave, and an evaluation data generation unit that generates strength evaluation data in which the magnitude of the tensile load applied to the test body at the time of detection of the target wave is associated.
  • the strength inspection method is a method for evaluating the tensile strength of a test body that is a fiber-reinforced composite material,
  • the tensile load is applied to the test body while being increased, whereby waveform data of AE waves generated in the test body is generated by an AE sensor, Based on the waveform data, the AE wave whose duration is longer than the time threshold is specified as the target wave by the target wave specifying unit, The center of gravity frequency of each target wave is obtained by the calculation unit, For each target wave, strength evaluation data in which the centroid frequency of the target wave and the magnitude of the tensile load applied to the test body at the time of detection of the target wave are associated with each other is generated by an evaluation data generation unit, Strength inspection method.
  • waveform data of an AE wave generated in a test body is generated during a test period in which a tensile load is applied to a test body, and based on the waveform data, an AE whose duration is longer than a time threshold value.
  • the waves are specified as target waves, and strength evaluation data in which the center-of-gravity frequency and the magnitude of the tensile load are associated with each other are generated.
  • the AE wave whose duration is longer than the time threshold value tends to include frequency information indicating the presence or absence of breakage of the test body. Therefore, the tensile strength of the test body can be evaluated based on the strength evaluation data generated using the AE wave that tends to indicate the presence or absence of breakage of the test body.
  • FIG. 1 is a block diagram showing a strength inspection device according to an embodiment of the present disclosure. It is a schematic diagram which shows an example of the waveform data which an AE sensor produces
  • 6 shows strength evaluation data obtained by the strength inspection method according to the embodiment of the present disclosure, and shows a case where the time threshold is 30 microseconds.
  • 7 shows strength evaluation data obtained by the strength inspection method according to the embodiment of the present disclosure, and shows a case where the time threshold value is 200 microseconds.
  • FIG. 1 is a block diagram showing a strength inspection device 10 according to an embodiment of the present disclosure.
  • the strength inspection device 10 is a device for evaluating the tensile strength of a test body based on the AE wave generated in the test body when a tensile load is applied to the test body which is a fiber-reinforced composite material.
  • the fiber-reinforced composite material is, for example, CFRP.
  • the test body may be, for example, a CFRP that constitutes a rocket or an aircraft, or a CFRP that constitutes a hydrogen tank that is loaded on an automobile running on hydrogen as a fuel and stores hydrogen, but is not limited thereto.
  • the strength inspection device 10 includes an AE sensor 1, a target wave identification unit 2, a calculation unit 3, and an evaluation data generation unit 4.
  • the AE sensor 1 is attached to the test body and detects the AE wave generated in the test body. More specifically, the AE sensor 1 generates waveform data of AE waves generated in the test body by the tensile load during the test period in which the tensile load is applied to the test body while increasing the tensile load. The waveform data represents the displacement of the AE wave at each time point.
  • FIG. 2 is a schematic diagram showing an example of waveform data.
  • the horizontal axis represents the elapsed time and the vertical axis represents the displacement of the AE wave.
  • two AE waves W1 and W2 are shown with a series of displacements in the waveform data as one AE wave.
  • the AE sensor 1 may generate the waveform data of the AE wave based on the elapsed time measured by the time measuring unit 6 described later.
  • the time measuring unit 6 may be incorporated in the AE sensor 1.
  • the target wave specifying unit 2 specifies an AE wave whose duration is longer than the time threshold as a target wave based on the waveform data generated by the AE sensor 1. More specifically, in the waveform data, every time a set time (Ts in FIG. 2) elapses, a series of values whose magnitude is equal to or larger than the displacement threshold (Dt in FIG. 2) at least once during the set time Ts.
  • the target wave identifying unit 2 identifies the displacement as one AE wave, and the AE wave that continues longer than the time threshold as the target wave. That is, the target wave identification unit 2 identifies each AE wave, obtains the duration of each AE wave, and identifies each AE wave whose duration is longer than the time threshold value as the target wave from these AE waves. For example, in FIG. 2, the AE wave W1 is not specified as the target wave because the duration T1 is less than or equal to the time threshold, and the AE wave W1 is specified as the target wave because the duration T2 is longer than the time threshold.
  • the target wave identifying unit 2 performs processing as follows.
  • the target wave identifying unit 2 identifies the start time point of the duration of each AE wave from the above waveform data. As shown in FIG. 2, this start time is the time when the displacement magnitude first reaches the displacement threshold Dt after the set time Ts has elapsed while the displacement magnitude of the AE wave remains less than the threshold Dt.
  • the target wave identifying unit 2 identifies the time point at which the set time Ts first passes after the start time of the duration and the displacement magnitude of the AE wave is less than the displacement threshold Dt,
  • the start time of the set time Ts is specified as the end time of the duration.
  • the target wave identifying unit 2 thus obtains the duration of each AE wave and determines whether the duration of each AE wave is longer than the time threshold value. As a result, the target wave identifying unit 2 identifies, as the target wave, each of the AE waves of which the duration is longer than the time threshold value among the many AE waves.
  • the appropriate time threshold value varies depending on the type of the fiber-reinforced composite material as the test body, and thus may be experimentally obtained in advance for each type of the test body. Further, in one example, the time threshold value may be set such that in the test period, more AE waves whose duration is equal to or less than the time threshold occur more than AE waves (target waves) whose duration is longer than the time threshold. This setting may be made based on experiments on a fiber-reinforced composite material having the same structure as the test body.
  • the target wave identification unit 2 identifies the target wave as described above based on the waveform data generated by the AE sensor 1, and determines each target wave (that is, the waveform of the target wave) and the detection time of the target wave. Generate target wave data in which and are associated with each other.
  • the waveform of the target wave is included in the waveform data generated by the AE sensor 1 and represents the magnitude of displacement of the target wave with respect to elapsed time (the same applies hereinafter).
  • the detection time point of the target wave may be, for example, a start time point, an end time point, or an intermediate time point of the duration time of the target wave.
  • Calculator 3 calculates the center-of-gravity frequency of each specified target wave.
  • the calculation unit 3 obtains, for example, the center-of-gravity frequency of each target wave based on the target-wave data described above, and generates the center-of-gravity frequency data in which the center-of-gravity frequency of each target wave and the detection time of the target wave are associated with each other. ..
  • FIG. 3A is a conceptual diagram showing an example of centroid frequency data.
  • the horizontal axis represents the elapsed time in the test period
  • the vertical axis represents the centroid frequency calculated for each target wave
  • each white circle represents the centroid frequency calculated for the corresponding target wave.
  • the calculation unit 3 has a spectrum generation unit 3a and a center-of-gravity frequency calculation unit 3b.
  • the spectrum generation unit 3a generates the spectrum data of the target wave based on the waveform of each specified target wave based on the target wave data. More specifically, the spectrum generation unit 3a uses the spectrum data representing the displacement (intensity) of the AE wave with respect to the elapsed time and the intensity of the AE wave with respect to the frequency over the duration of the AE wave. Convert to. This conversion may be performed by FFT (Fast Fourier Transform).
  • the center-of-gravity frequency calculation unit 3b obtains the center-of-gravity frequency of each target wave based on the spectrum data of the target wave.
  • Fi represents each frequency in the spectrum data
  • Pi represents the frequency component of the target wave in the spectrum data (that is, the intensity of the AE wave at the frequency Fi)
  • the subscript i of Fi and Pi is plural. Is an index value for discriminating the frequencies of from each other, and takes a value from 1 to n (n is an integer of 2 or more, preferably a sufficiently large value), and ⁇ is all values of i. Shows the sum total of.
  • the center-of-gravity frequency calculation unit 3b may obtain the center-of-gravity frequency of the target wave on the basis of all frequency components of the spectrum data of the target wave for each target wave, or may calculate a predetermined frequency in the spectrum data of the target wave.
  • the centroid frequency of the target wave may be obtained based only on each frequency component included in the frequency range.
  • the predetermined frequency range may be a frequency range excluding the resonance frequency of the AE sensor 1 (for example, lower than the resonance frequency).
  • the evaluation data generation unit 4 For each target wave, the evaluation data generation unit 4 generates strength evaluation data in which the centroid frequency of the target wave and the magnitude of the tensile load applied to the test body at the time of detection of the target wave are associated with each other.
  • the evaluation data generation unit 4 generates strength evaluation data based on, for example, the center-of-gravity frequency data and the load data indicating the magnitude of the tensile load with respect to the elapsed time in the test period. Therefore, load data is input to the evaluation data generation unit 4 in addition to the center-of-gravity frequency data.
  • FIG. 3B is a conceptual diagram showing an example of load data.
  • the horizontal axis represents the load increase time
  • the vertical axis represents the tensile load applied to the test body during the test period.
  • the load data may be generated by the load data generator 5.
  • the load data generation unit 5 generates load data based on the measured value of the tensile load applied to the test body during the test period and the elapsed time measured by the time measurement unit 6 during the test period, and evaluates this load data. Input to the data generation unit 4.
  • the measured value of the load may be a value measured by an appropriate load sensor 7 (for example, a strain gauge attached to the test body).
  • the load data generator 5 may be a component of the strength inspection device 10. Further, the time measuring unit 6 and the load sensor 7 may also be components of the strength inspection device 10.
  • FIG. 3C is a conceptual diagram showing an example of strength evaluation data.
  • the horizontal axis of FIG. 3C represents the tensile load applied to the test body and corresponds to the elapsed time.
  • the vertical axis of FIG. 3C indicates the center-of-gravity frequency.
  • a large number of white circles respectively indicate the center-of-gravity frequency calculated for the corresponding tensile load.
  • the evaluation data generation unit 4 outputs the strength evaluation data to the display device 8, for example.
  • the display device 8 displays the strength evaluation data on the screen.
  • the strength evaluation data represents a change in the center-of-gravity frequency with an increase in tensile load, as shown in FIG. 3C.
  • the magnitude of the tensile load immediately before the center of gravity frequency (for example, significantly) decreases due to the increase of the tensile load can be determined as the tensile strength of the test body. That is, it is considered that in the fiber-reinforced composite material, when the fiber is broken and broken by a tensile load, it is difficult for the high frequency AE wave to be transmitted to the material.
  • the center of gravity frequency of the AE wave generated by the tensile load thereafter decreases. Therefore, the magnitude of the tensile load immediately before the center-of-gravity frequency decreases can be determined as the tensile strength of the test body. For example, the tensile load indicated by the broken line in FIG. 3C can be determined as the tensile strength.
  • the evaluation data generation unit 4 may output the strength evaluation data to another device (for example, a printer device or a storage device).
  • the printer device prints the strength evaluation data on paper
  • the storage device stores the strength evaluation data.
  • FIG. 4 is a flowchart showing a strength inspection method according to an embodiment of the present disclosure.
  • the strength inspection method has the following steps S1 to S5 in order to inspect the tensile strength of a test body that is a fiber-reinforced composite material.
  • the strength inspection method is performed using the strength inspection device 10 described above.
  • step S1 the AE sensor 1 generates the waveform data of the AE wave generated in the test body by applying the tensile load to the test body while increasing the tensile load during the test period.
  • step S2 the AE wave whose duration is longer than the time threshold value is specified as the target wave by the target wave specifying unit 2 based on the waveform data generated in step S1.
  • the target wave specifying unit 2 generates the above-mentioned target wave data based on the waveform data.
  • step S3 the center of gravity frequency of each target wave identified in step S2 is calculated by the arithmetic unit 3.
  • the calculation unit 3 generates the above-described center-of-gravity frequency data based on the target wave data generated in step S2.
  • Step S3 has steps S31 and S32.
  • step S31 based on the waveform of each target wave in the target wave data generated in step S2, the spectrum generation unit 3a generates the spectrum data of the target wave.
  • step S32 the gravity center frequency of the AE wave is calculated by the gravity center frequency calculation unit 3b based on the spectrum data of each target wave generated in step S31.
  • step S4 for each target wave, the evaluation data generation unit 4 generates strength evaluation data in which the center of gravity frequency of the target wave is associated with the magnitude of the tensile load applied to the test body at the time of detection of the target wave. To do.
  • the evaluation data generation unit 4 generates strength evaluation data based on the center-of-gravity frequency data generated in step S3 and the load data representing the magnitude of the tensile load with respect to the elapsed time in step S1.
  • step S5 the strength evaluation data generated in step S4 is output by the evaluation data generator 4.
  • the evaluation data generation unit 4 outputs the strength evaluation data to the display device 8.
  • the display device 8 displays the intensity evaluation data as shown in FIG. 3C on the screen.
  • FIG. 5A shows strength evaluation data actually obtained by the strength inspection method of the comparative example.
  • step S2 in the waveform data generated in step S1, a series of displacements whose magnitudes are equal to or greater than the displacement threshold value are regarded as one AE wave, and regardless of the duration of the AE wave, The center of gravity frequency is obtained for each of the AE waves, and the other points are the same as the intensity inspection method according to the embodiment of the present disclosure described above.
  • the horizontal axis represents the tensile load given in step S1
  • the vertical axis represents the center-of-gravity frequency.
  • each small white circle is a plot of the center of gravity frequency of one AE wave.
  • FIG. 5B is a diagram in which the density of the barycentric frequency plot (a large number of open circles) in FIG. 5A is represented in gray scale.
  • the dark color area is an area where the white circles have a high density. From this region, it can be said that the center-of-gravity frequency decreases when the tensile load exceeds approximately 475 MPa, as indicated by the arrow in FIG. 5B. Therefore, it can be seen that the tensile strength of the test body is about 475 MPa.
  • FIGS. 6A and 6B show strength evaluation data actually obtained by the strength inspection method according to the embodiment of the present disclosure.
  • FIGS. 6A and 6B are data obtained from the waveform data generated in step S1, which is the same as the case of FIG. 5A.
  • FIG. 6A shows a case where an AE wave having a duration of more than 30 microseconds is specified as a target wave (that is, the time threshold is 30 microseconds).
  • FIG. 6B shows a case where an AE wave having a duration of more than 200 microseconds is specified as the target wave.
  • the processing amount for generating the intensity evaluation data is reduced because the processing for the AE waves whose duration is less than or equal to the time threshold value (for example, the processing for obtaining the center-of-gravity frequency) is unnecessary. For example, it is not necessary to generate the centroid frequencies of a huge number of AE waves as in FIG. 5A, and the process of generating the data of FIG. 5B from the data of FIG. 5A is unnecessary.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Probability & Statistics with Applications (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

繊維強化複合材料である試験体の引張強度を評価するための強度検査装置は、AEセンサ1と対象波特定部2と演算部3と評価データ生成部4を備える。AEセンサ1は、 引張荷重を増加させながら試験体に与えている試験期間において、引張荷重により試験体において生じるAE波を検出してAE波の波形データを生成する。対象波特定部2は、生成された波形データに基づいて、持続時間が時間閾値よりも長いAE波を対象波として特定する。演算部3は、各対象波の重心周波数を求める。評価データ生成部4は、各対象波について、対象波の重心周波数と、対象波の検出時点で試験体に与え引張荷重の大きさとを対応付けた強度評価データを生成する。

Description

強度検査方法および強度検査装置
 本開示は、繊維強化複合材料(FRP:Fiber Reinforced Plastic)である試験体の引張強度を検査する技術に関する。より詳しくは、本開示は、試験体に引張荷重を与えることにより、試験体に生じたAE波(acoustic emission)に基づいて、試験体の引張強度を検査する技術に関する。
 FRPは、ロケットや航空機などに用いられている。特に、炭素繊維強化複合材料(CFRP:Carbon Fiber Reinforced Plastic)は、強度と剛性に優れている。FRPでは、積層の剥離や繊維の断線が生じた後に破壊に至る。
 このようなFRPの引張強度を検査する技術が、特許文献1に開示されている。特許文献1の強度検査方法では、次のようにFRPの引張強度を評価している。試験体に引張荷重を与え、この引張荷重を、時間の経過に従って増やす。この引張荷重により試験体に生じるAE波を検出する。試験期間に含まれる複数の荷重印加区間の各々におけるAE波の複数の周波数成分を求める。各荷重印加区間について、複数の周波数成分に基づいてAE波の重心周波数を求め、複数の荷重印加区間のうち、先の荷重印加区間よりも重心周波数が下がっている荷重印加区間を特定し、特定した荷重印加区間において試験体に与えた引張荷重の大きさを、試験体の引張強度と判定する。
特許第5841081号
 試験体に引張荷重を与えている時に、多数のAE波(一連の変位)が断続的に生じるが、これらのAE波の中には、試験体の破断の有無を表わさない傾向にあるAE波も含まれる。そのため、試験体の破断の有無を表わす傾向にあるAE波を特定して、特定したAE波に基づいて試験体の引張強度を評価することが望まれる。
 すなわち、本開示は、試験体の破断の有無を表わす傾向にあるAE波を特定し、特定したAE波に基づいて、試験体の引張強度を評価する技術を提供することにある。
 本開示による強度検査装置は、繊維強化複合材料である試験体の引張強度を評価するための装置であって、
 引張荷重を増加させながら前記試験体に与えている試験期間において、該引張荷重により前記試験体において生じるAE波を検出してAE波の波形データを生成するAEセンサと、
 前記波形データに基づいて、持続時間が時間閾値よりも長いAE波を対象波として特定する対象波特定部と、
 各対象波の重心周波数を求める演算部と、
 各対象波について、該対象波の前記重心周波数と、該対象波の検出時点で前記試験体に与えた前記引張荷重の大きさとを対応付けた強度評価データを生成する評価データ生成部と、を備える。
 本開示による強度検査方法は、繊維強化複合材料である試験体の引張強度を評価するための方法であって、
 引張荷重を増加させながら前記試験体に与え、これにより前記試験体において生じるAE波の波形データを、AEセンサにより生成し、
 前記波形データに基づいて、持続時間が時間閾値よりも長いAE波を、対象波特定部により対象波として特定し、
 各対象波の重心周波数を演算部により求め、
 各対象波について、該対象波の前記重心周波数と、該対象波の検出時点で前記試験体に与えた前記引張荷重の大きさとを対応付けた強度評価データを、評価データ生成部により生成する、強度検査方法。
 本開示によると、引張荷重を増加させながら試験体に与えている試験期間において、試験体において生じるAE波の波形データを生成し、この波形データに基づいて、持続時間が時間閾値よりも長いAE波を対象波として特定し、各対象波について、その重心周波数と引張荷重の大きさとを対応付けた強度評価データを生成する。
 これについて、持続時間が時間閾値よりも長いAE波は、試験体の破断の有無を表わす周波数情報を含んでいる傾向にある。したがって、試験体の破断の有無を表わす傾向にあるAE波を用いて生成した強度評価データに基づいて、試験体の引張強度を評価することができる。
本開示の実施形態による強度検査装置を示すブロック図である。 AEセンサが生成する波形データの一例を示す模式図である。 重心周波数データの一例を示す概念図である。 荷重データの一例を示す概念図である。 強度評価データの一例を示す概念図である。 本開示の実施形態による強度検査方法を示すフローチャートである。 比較例の強度検査方法により得られた強度評価データを示す。 図5Aにおける重心周波数のプロットの密度をグレースケールで表わした図である。 本開示の実施形態による強度検査方法により得られた強度評価データを示し、時間閾値が30マイクロ秒である場合を示す。 本開示の実施形態による強度検査方法により得られた強度評価データを示し、時間閾値が200マイクロ秒である場合を示す。
 本開示の実施形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
(強度検査装置の構成)
 図1は、本開示の実施形態による強度検査装置10を示すブロック図である。強度検査装置10は、繊維強化複合材料である試験体に引張荷重を与えた時に試験体に生じるAE波に基づいて、試験体の引張強度を評価するための装置である。ここで、繊維強化複合材料は、例えばCFRPである。試験体は、例えば、ロケット又は航空機を構成するCFRP、あるいは、水素を燃料として走行する自動車に積載され水素を蓄える水素タンクを構成するCFRPであってよいが、これらに限定されない。
 強度検査装置10は、AEセンサ1と対象波特定部2と演算部3と評価データ生成部4とを備える。
 AEセンサ1は、試験体に取り付けられ、試験体に生じたAE波を検出する。より詳しくは、AEセンサ1は、引張荷重を増加させながら試験体に与えている試験期間において、該引張荷重により試験体において生じるAE波の波形データを生成する。波形データは、各時点におけるAE波の変位を表わす。
 図2は、波形データの一例を示す模式図である。図2において、横軸は経過時間を示し、縦軸は、AE波の変位を示す。図2では、波形データにおける一連の変位を1つのAE波として2つのAE波W1,W2を示している。なお、試験期間においては、多数のAE波が断続的に生じる。AEセンサ1は、後述する時間計測部6が計測した経過時間に基づいてAE波の波形データを生成してよい。この時間計測部6は、AEセンサ1に組み込まれていてもよい。
 対象波特定部2は、AEセンサ1が生成した波形データに基づいて、持続時間が時間閾値よりも長いAE波を対象波として特定する。より詳しくは、波形データにおいて、設定時間(図2ではTs)が経過する度に、当該設定時間Ts中に大きさが少なくとも1回は変位閾値(図2ではDt)以上になっている一連の変位を1つのAE波として、対象波特定部2は、時間閾値よりも長く持続しているAE波を対象波として特定する。すなわち、対象波特定部2は、各AE波を特定し、当該各AE波の持続時間を求め、これらのAE波から、持続時間が時間閾値よりも長い各AE波を対象波として特定する。例えば、図2において、AE波W1は、持続時間T1が時間閾値以下であるので対象波として特定されず、AE波W1は、持続時間T2が時間閾値よりも長いので対象波として特定される。
 一例では、対象波特定部2は、次のように処理を行う。対象波特定部2は、上述の波形データから各AE波の持続時間の開始時点を特定する。この開始時点は、図2のように、AE波の変位の大きさが閾値Dt未満のまま、設定時間Tsを経過した後に、変位の大きさが変位閾値Dtに最初に達した時点である。また、対象波特定部2は、図2のように、持続時間の開始時点の後、AE波の変位の大きさが変位閾値Dt未満のまま最初に設定時間Tsを経過した時点を特定し、当該設定時間Tsの開始時点を持続時間の終了時点として特定する。対象波特定部2は、このように各AE波の持続時間を求め、各AE波について、その持続時間が時間閾値よりも長いかを判断する。これにより、対象波特定部2は、多数のAE波のうち、持続時間が時間閾値よりも長い各AE波を対象波として特定する。
 なお、適切な時間閾値は、試験体としての繊維強化複合材料の種類により変わるので、試験体の種類毎に実験的に予め求められてよい。また、一例では、試験期間において、持続時間が時間閾値以下のAE波が、持続時間が時間閾値よりも長いAE波(対象波)よりも多く生じるように、時間閾値が設定されてよい。この設定は、試験体と同じ構造の繊維強化複合材料に対する実験に基づいてなされてよい。
 対象波特定部2は、例えば、AEセンサ1により生成された波形データに基づいて、上述のように対象波を特定し、各対象波(すなわち対象波の波形)と、当該対象波の検出時点とを対応付けた対象波データを生成する。なお、対象波の波形は、AEセンサ1により生成された波形データに含まれており、経過時間に対する対象波の変位の大きさを表わす波形である(以下同様)。また、対象波の検出時点は、例えば、対象波の持続時間の開始時点、終了時点、又は中間時点であってよい。
 演算部3は、特定された各対象波の重心周波数を求める。演算部3は、例えば、上述の対象波データに基づいて、各対象波の重心周波数を求め、各対象波の重心周波数と、該対象波の検出時点とを対応付けた重心周波数データを生成する。図3Aは、重心周波数データの一例を示す概念図である。図3Aにおいて、横軸は、試験期間における経過時間を示し、縦軸は、各対象波について算出した重心周波数を示し、各白丸は、それぞれ、対応する対象波について算出された重心周波数を示す。演算部3は、スペクトル生成部3aと重心周波数算出部3bとを有する。
 スペクトル生成部3aは、対象波データに基づいて、特定された各対象波の波形に基づいて、当該対象波のスペクトルデータを生成する。より詳しくは、スペクトル生成部3aは、当該AE波の持続時間にわたって、経過時間に対して当該AE波の変位(強度)を表わした波形を、周波数に対してAE波の強度を表わしたスペクトルデータに変換する。この変換は、FFT(Fast Fourier Transform)により行われてよい。
 重心周波数算出部3bは、各対象波について、当該対象波のスペクトルデータに基づいて、当該対象波の重心周波数を求める。重心周波数Fgは、次の式により表される。
 
 Fg=Σ(Fi×Pi)/ΣPi
 
 ここで、Fiは、スペクトルデータにおける各周波数を示し、Piは、スペクトルデータにおける対象波の周波数成分(すなわち、周波数FiでのAE波の強度)を示し、FiとPiの添え字iは、複数の周波数を互いに区別するための指標値であって、1~n(nは、2以上の整数であり、好ましくは、十分に大きい値)までの値をとり、Σは、iのすべての値についての総和を示す。
 なお、重心周波数算出部3bは、各対象波について、当該対象波のスペクトルデータの全ての周波数成分に基づいて当該対象波の重心周波数を求めてもよいし、当該対象波のスペクトルデータにおける所定の周波数域に含まれる各周波数成分のみに基づいて当該対象波の重心周波数を求めてもよい。ここで、所定の周波数域は、AEセンサ1の共振周波数を除く(例えば当該共振周波数よりも低い)周波数域であってよい。
 評価データ生成部4は、各対象波について、当該対象波の重心周波数と、当該対象波の検出時点で試験体に与えた引張荷重の大きさとを対応付けた強度評価データを生成する。評価データ生成部4は、例えば、重心周波数データと、試験期間における経過時間に対する引張荷重の大きさを表わす荷重データとに基づいて、強度評価データを生成する。そのために、評価データ生成部4には、重心周波数データ以外に荷重データが入力される。
 図3Bは、荷重データの一例を示す概念図である。図3Bにおいて、横軸は、荷重増加時間を示し、縦軸は、試験期間において試験体に与えた引張荷重を示す。荷重データは、荷重データ生成部5により生成されてよい。荷重データ生成部5は、試験期間において試験体に与えた引張荷重の計測値と、試験期間において時間計測部6が計測した経過時間とに基づいて、荷重データを生成し、この荷重データを評価データ生成部4に入力する。ここで、荷重の計測値は、適宜の荷重センサ7(例えば試験体に取り付けたひずみゲージ)により計測された値であってよい。なお、荷重データ生成部5は、強度検査装置10の構成要素であってもよい。また、時間計測部6と荷重センサ7も、強度検査装置10の構成要素であってもよい。
 図3Cは、強度評価データの一例を示す概念図である。図3Cの横軸は、試験体に与えた引張荷重を示し、経過時間に対応する。図3Cの縦軸は、重心周波数を示す。また、図3Cにおいて、多数の白丸は、それぞれ、対応する引張荷重について算出された重心周波数を示す。例えば、図3Bの荷重データによる引張荷重が試験体に与えられた結果、図3Aの重心周波数データと図3Cの強度評価データが得られる。
 評価データ生成部4は、例えば、強度評価データをディスプレイ装置8に出力する。この場合には、ディスプレイ装置8は、その画面に強度評価データを表示する。強度評価データは、図3Cのように、引張荷重の増加に伴う、重心周波数の変化を表わす。このような強度評価データにおいて、引張荷重の増加により重心周波数が(例えば顕著に)低下する直前の引張荷重の大きさを、試験体の引張強度として判定することができる。すなわち、繊維強化複合材料は、引張荷重により、その繊維が破断して破壊されると、この材料には、高い周波数のAE波が伝わり難くなると考えられる。したがって、引張荷重の増加過程で試験体が破壊されると、以降において引張荷重により発生するAE波の重心周波数が下がる。したがって、重心周波数が低下する直前の引張荷重の大きさを試験体の引張強度として判定できる。例えば、図3Cにおいて破線で示す引張荷重を引張強度と判定できる。
 なお、評価データ生成部4は、強度評価データを他の装置(例えば、プリンタ装置または記憶装置)に出力してもよい。この場合、プリンタ装置は、強度評価データを用紙に印刷し、当該記憶装置は、強度評価データを記憶する。
(強度検査方法)
 図4は、本開示の実施形態による強度検査方法を示すフローチャートである。強度検査方法は、繊維強化複合材料である試験体の引張強度を検査するために、以下のステップS1~S5を有する。強度検査方法は、上述した強度検査装置10を用いて行われる。
 ステップS1では、試験期間において引張荷重を増加させながら試験体に与え、これにより試験体において生じるAE波の波形データを、AEセンサ1により生成する。
 ステップS2では、ステップS1で生成された波形データに基づいて、持続時間が時間閾値よりも長いAE波を、対象波特定部2により対象波として特定する。例えば、対象波特定部2は、波形データに基づいて上述の対象波データを生成する。
 ステップS3では、ステップS2で特定された各対象波の重心周波数を演算部3により求める。例えば、演算部3は、ステップS2で生成された対象波データに基づいて、上述の重心周波数データを生成する。
 ステップS3は、ステップS31,S32を有する。ステップS31では、ステップS2で生成された対象波データにおける各対象波の波形に基づいて、当該対象波のスペクトルデータを、スペクトル生成部3aにより生成する。ステップS32では、ステップS31で生成した各対象波のスペクトルデータに基づいて、当該AE波の重心周波数を、重心周波数算出部3bにより求める。
 ステップS4では、各対象波について、当該対象波の重心周波数と、当該対象波の検出時点で試験体に与えた引張荷重の大きさとを対応付けた強度評価データを、評価データ生成部4により生成する。例えば、評価データ生成部4は、ステップS3で生成された重心周波数データと、ステップS1における経過時間に対する引張荷重の大きさを表わす荷重データとに基づいて、強度評価データを生成する。
 ステップS5では、ステップS4で生成された強度評価データが評価データ生成部4により出力される。例えば、評価データ生成部4は、強度評価データをディスプレイ装置8に出力する。この場合、ディスプレイ装置8は、その画面に、図3Cのような強度評価データを表示する。人が、表示された強度評価データを見て、引張荷重の増加過程において重心周波数の低下(例えば顕著に)が始まる直前の引張荷重の大きさを、試験体の引張強度として判定することができる。
(実施例)
 図5Aは、比較例の強度検査方法により実際に得られた強度評価データを示す。図5Aの場合では、上述のステップS2において、ステップS1で生成した波形データにおいて、大きさが変位閾値以上となる一連の変位を1つのAE波として、AE波の持続時間に係わらず、全てのAE波の各々について重心周波数を求め、他の点は、上述した本開示の実施形態による強度検査方法と同じである。図5Aにおいて、横軸は、ステップS1で与えた引張荷重を示し、縦軸は、重心周波数を示す。図5Aにおいて、小さい各白抜きの丸印は、1つのAE波の重心周波数のプロットである。
 図5Aの強度評価データでは、試験体の破断を表わしていない各白抜きの丸印が多いので、引張荷重がどの値を超えたら重心周波数が低下していると言えるのかを判定し難い。図5Bは、図5Aにおいて、重心周波数のプロット(多数の白抜きの丸印)の密度をグレースケールで表わした図である。図5Bにおいて、濃い色の領域が、白抜きの丸印の密度が高い領域である。この領域から、図5Bの矢印が示すように、引張荷重が概ね475MPaを超えたら重心周波数が低下していると言える。したがって、試験体の引張強度は約475MPaであることが分かる。
 図6Aと図6Bは、本開示の実施形態による強度検査方法により実際に得られた強度評価データを示す。図6Aと図6Bは、図5Aの場合と同じ、ステップS1で生成した波形データから得られたデータである。図6Aは、持続時間が30マイクロ秒を超えるAE波を対象波として特定した場合(すなわち、上記時間閾値を30マイクロ秒とした場合)を示す。図6Bは、持続時間が200マイクロ秒を超えるAE波を対象波として特定した場合を示す。
 図6Aと図6Bの強度評価データにおいて、これらの図の矢印が示すように、引張荷重が概ね475MPaを超えたら重心周波数が低下していることが分かる。持続時間がより長い各対象波から生成した図6Bの強度評価データでは、引張荷重がどの値を超えたら重心周波数が低下しているのかを、図6Aの場合よりも精度よく判定することができる。
(実施形態による効果)
 持続時間が時間閾値以下であるAE波には、試験体の破断とは関係しない比較的高い周波数成分が含まれている傾向がある。したがって、このような持続時間の短いAE波の重心周波数は、試験体の破断の有無を表わさない傾向にある。
 これに対し、本開示の実施形態では、上述のように、このような持続時間が短いAE波を用いずに、重心周波数が試験体の破断の有無を表わす傾向にある持続時間の長いAE波(対象波)を用いて強度評価データを生成している。したがって、このような強度評価データに基づいて、試験体の引張強度を精度よく判定することが可能となる。
 また、持続時間が時間閾値以下のAE波に対する処理(例えば重心周波数を求める処理)が不要となるので、強度評価データを生成するための処理量が低減される。例えば、図5Aのように膨大な数のAE波の重心周波数を生成することが不要になり、図5Aのデータから図5Bのデータを生成する処理が不要になる。
 本開示は上述した実施の形態に限定されず、本開示の要旨を逸脱しない範囲で種々変更を加え得ることは勿論である。
1 AEセンサ、2 対象波特定部、3 演算部、3a スペクトル生成部、3b 重心周波数算出部、4 評価データ生成部、5 荷重データ生成部、6 時間計測部、7 荷重センサ、8 ディスプレイ装置、10 強度検査装置、Ts 設定時間、Dt 変位閾値

Claims (6)

  1.  繊維強化複合材料である試験体の引張強度を評価するための強度検査装置であって、
     引張荷重を増加させながら前記試験体に与えている試験期間において、該引張荷重により前記試験体において生じるAE波を検出してAE波の波形データを生成するAEセンサと、
     前記波形データに基づいて、持続時間が時間閾値よりも長いAE波を対象波として特定する対象波特定部と、
     各対象波の重心周波数を求める演算部と、
     各対象波について、該対象波の前記重心周波数と、該対象波の検出時点で前記試験体に与えた前記引張荷重の大きさとを対応付けた強度評価データを生成する評価データ生成部と、を備える強度検査装置。
  2.  波形データにおいて、設定時間が経過する度に、当該設定時間中に大きさが少なくとも1回は変位閾値以上になっている一連の変位を1つのAE波として、対象波特定部は、前記時間閾値よりも長く持続しているAE波を対象波として特定する、請求項1に記載の強度検査装置。
  3.  前記対象波特定部は、前記波形データに基づいて、持続時間が前記時間閾値よりも長いAE波を対象波として特定し、各対象波と、当該対象波の検出時点とを対応付けた対象波データを生成し、
     前記演算部は、前記対象波データに基づいて、各対象波の重心周波数を求め、各対象波の重心周波数と、該対象波の検出時点とを対応付けた重心周波数データを生成し、
     前記評価データ生成部は、前記重心周波数データと、経過時間に対する前記引張荷重の大きさを表わす荷重データとに基づいて、前記強度評価データを生成する、請求項1に記載の強度検査装置。
  4.  前記演算部は、
     各対象波の波形に基づいて該対象波のスペクトルデータを生成するスペクトル生成部と、
     各対象波の前記スペクトルデータに基づいて、該AE波の重心周波数を求める重心周波数算出部と、を有する、請求項1に記載の強度検査装置。
  5.  前記強度評価データを表示するディスプレイ装置を備える、請求項1に記載の強度検査装置。
  6.  繊維強化複合材料である試験体の引張強度を評価するための強度検査方法であって、
     引張荷重を増加させながら前記試験体に与え、これにより前記試験体において生じるAE波の波形データを、AEセンサにより生成し、
     前記波形データに基づいて、持続時間が時間閾値よりも長いAE波を、対象波特定部により対象波として特定し、
     各対象波の重心周波数を演算部により求め、
     各対象波について、該対象波の前記重心周波数と、該対象波の検出時点で前記試験体に与えた前記引張荷重の大きさとを対応付けた強度評価データを、評価データ生成部により生成する、強度検査方法。
PCT/JP2019/006335 2019-02-20 2019-02-20 強度検査方法および強度検査装置 WO2020170360A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021501203A JP7313421B2 (ja) 2019-02-20 2019-02-20 強度検査方法および強度検査装置
US17/430,009 US20220146385A1 (en) 2019-02-20 2019-02-20 Strength inspection method and strength inspection device
EP19915743.9A EP3929560A4 (en) 2019-02-20 2019-02-20 STRENGTH TESTING METHOD AND STRENGTH TESTING DEVICE
PCT/JP2019/006335 WO2020170360A1 (ja) 2019-02-20 2019-02-20 強度検査方法および強度検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/006335 WO2020170360A1 (ja) 2019-02-20 2019-02-20 強度検査方法および強度検査装置

Publications (1)

Publication Number Publication Date
WO2020170360A1 true WO2020170360A1 (ja) 2020-08-27

Family

ID=72143357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006335 WO2020170360A1 (ja) 2019-02-20 2019-02-20 強度検査方法および強度検査装置

Country Status (4)

Country Link
US (1) US20220146385A1 (ja)
EP (1) EP3929560A4 (ja)
JP (1) JP7313421B2 (ja)
WO (1) WO2020170360A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3779400A4 (en) * 2018-03-26 2021-04-28 IHI Inspection and Instrumentation Co., Ltd. STRENGTH TEST PROCEDURE AND STRENGTH ASSESSMENT DEVICE
CN113466044A (zh) * 2021-07-20 2021-10-01 西安近代化学研究所 一种巴西试验过程炸药缺陷生成测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841081B2 (ja) 1976-06-15 1983-09-09 積水化学工業株式会社 気液接触装置
JPH05133842A (ja) * 1991-11-11 1993-05-28 Toshiba Corp セラミツク動翼部品の保証試験装置
US5275050A (en) * 1990-07-30 1994-01-04 Pirelli Prodotti Diversificati S.P.A. Process for quality control of products having parts made of elastomeric material
US20010047691A1 (en) * 2000-01-03 2001-12-06 Yuris Dzenis Hybrid transient-parametric method and system to distinguish and analyze sources of acoustic emission for nondestructive inspection and structural health monitoring
JP2017166953A (ja) * 2016-03-16 2017-09-21 株式会社Ihi検査計測 複合材料の損傷評価方法と装置
US20190033263A1 (en) * 2017-03-13 2019-01-31 University Of South Carolina Identifying structural defect geometric features from acoustic emission waveforms

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5841081B2 (ja) * 2013-01-24 2016-01-06 株式会社Ihi検査計測 強度検査方法および強度評価用データ出力装置
US10048230B2 (en) * 2013-11-14 2018-08-14 The Boeing Company Structural bond inspection
JP6957399B2 (ja) * 2018-03-26 2021-11-02 株式会社Ihi検査計測 強度検査方法および強度評価用装置
US20200384704A1 (en) * 2018-04-25 2020-12-10 Asahi Kasei Kabushiki Kaisha Continuous-Fiber-Reinforced Resin Molding and Method for Manufacturing Same
CN109283047B (zh) * 2018-11-29 2023-10-20 四川大学 一种深地工程环境下岩体损伤监测系统及评价方法
EP3929561B1 (en) * 2019-02-20 2023-06-28 IHI Inspection and Instrumentation Co., Ltd. Device and method for evaluating soundness of fiber-reinforced composite material
CN112748007B (zh) * 2020-12-29 2022-06-07 长沙理工大学 一种基于声发射的抗腐蚀疲劳性能测试装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841081B2 (ja) 1976-06-15 1983-09-09 積水化学工業株式会社 気液接触装置
US5275050A (en) * 1990-07-30 1994-01-04 Pirelli Prodotti Diversificati S.P.A. Process for quality control of products having parts made of elastomeric material
JPH05133842A (ja) * 1991-11-11 1993-05-28 Toshiba Corp セラミツク動翼部品の保証試験装置
US20010047691A1 (en) * 2000-01-03 2001-12-06 Yuris Dzenis Hybrid transient-parametric method and system to distinguish and analyze sources of acoustic emission for nondestructive inspection and structural health monitoring
JP2017166953A (ja) * 2016-03-16 2017-09-21 株式会社Ihi検査計測 複合材料の損傷評価方法と装置
US20190033263A1 (en) * 2017-03-13 2019-01-31 University Of South Carolina Identifying structural defect geometric features from acoustic emission waveforms

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3929560A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3779400A4 (en) * 2018-03-26 2021-04-28 IHI Inspection and Instrumentation Co., Ltd. STRENGTH TEST PROCEDURE AND STRENGTH ASSESSMENT DEVICE
US11680879B2 (en) 2018-03-26 2023-06-20 Ihi Inspection And Instrumentation Co., Ltd. Strength testing method and strength evaluation device
CN113466044A (zh) * 2021-07-20 2021-10-01 西安近代化学研究所 一种巴西试验过程炸药缺陷生成测试方法
CN113466044B (zh) * 2021-07-20 2023-07-18 西安近代化学研究所 一种巴西试验过程炸药缺陷生成测试方法

Also Published As

Publication number Publication date
EP3929560A4 (en) 2022-03-02
EP3929560A1 (en) 2021-12-29
JPWO2020170360A1 (ja) 2021-12-16
US20220146385A1 (en) 2022-05-12
JP7313421B2 (ja) 2023-07-24

Similar Documents

Publication Publication Date Title
JP7166426B2 (ja) 繊維強化複合材料の健全性評価装置と方法
WO2020170360A1 (ja) 強度検査方法および強度検査装置
RU2539095C1 (ru) Неразрушающее исследование гибких композитных изделий
Obrien et al. Scale effects on the transverse tensile strength of graphite epoxy composites
Tamrakar et al. High rate test method for fiber-matrix interface characterization
JP5841081B2 (ja) 強度検査方法および強度評価用データ出力装置
Kakakasery et al. Cure cycle effect on impact resistance under elevated temperatures in carbon prepreg laminates investigated using acoustic emission
JP6165908B1 (ja) 複合材料の損傷評価方法と装置
Wagner et al. In-situ X-ray computed tomography of composites subjected to fatigue loading
US11680879B2 (en) Strength testing method and strength evaluation device
JP2010019622A (ja) 超音波探傷方法と装置
CN116312898B (zh) 识别复合材料力学参数及训练其识别模型的方法、装置
Kushwaha et al. Nonlinear progressive damage model for woven patch-repaired laminate composites
Lasn et al. Comparison of laminate stiffness as measured by three experimental methods
Chen et al. In situ monitoring in real time of fatigue-induced damage growth in composite materials by acoustography
Katunin et al. Fatigue life assessment of hybrid bio-composites based on self-heating temperature
Zhang et al. Investigation on fatigue performance of T800 composites structural component
John Sensitivity analysis of residual stresses in composite pressure vessels via modal analysis
Li et al. Delamination analysis of carbon fiber composites under dynamic loads using acoustic emission
Braisaz et al. Fatigue damage monitoring and stiffness assessment in plain weave composites by means of acoustic emission and digital image correlation
Bremer et al. NDT-based characteriazation of timber and vulcanized fiber for civil infrastructure
Tutans et al. Seismoacoustic prediction of the fracture processes in glass-reinforced plastics: 1. Load dependence of the seismoacoustic emission
Pearson et al. Audible acoustics for detecting and locating damage in composite structures
WO2023120257A1 (ja) 複合材料の検査装置、複合材料の検査方法、複合材料の検査プログラムおよび記録媒体
Kanouni et al. Assessment of fatigue damage onset and growth in plain weave composites with embedded flaws

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501203

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019915743

Country of ref document: EP

Effective date: 20210920