WO2020168881A1 - 一种激光辅助柔性随动式工具电极微细电沉积的装置及方法 - Google Patents

一种激光辅助柔性随动式工具电极微细电沉积的装置及方法 Download PDF

Info

Publication number
WO2020168881A1
WO2020168881A1 PCT/CN2020/072902 CN2020072902W WO2020168881A1 WO 2020168881 A1 WO2020168881 A1 WO 2020168881A1 CN 2020072902 W CN2020072902 W CN 2020072902W WO 2020168881 A1 WO2020168881 A1 WO 2020168881A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
flexible
tool
deposition
anode
Prior art date
Application number
PCT/CN2020/072902
Other languages
English (en)
French (fr)
Inventor
张朝阳
吴予澄
徐坤
戴学仁
王安斌
顾秦铭
王虹
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US17/296,552 priority Critical patent/US11306408B2/en
Publication of WO2020168881A1 publication Critical patent/WO2020168881A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/024Electroplating of selected surface areas using locally applied electromagnetic radiation, e.g. lasers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/14Electrodes, e.g. composition, counter electrode for pad-plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/06Filtering particles other than ions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current

Definitions

  • the invention mainly relates to the technical field of localized micro-electrodeposition, in particular to a method and device for laser-assisted flexible follow-up tool electrode micro-electrodeposition, which is suitable for processing and manufacturing of micro metal parts.
  • the micro-electrodeposition technology is based on the electrochemical principle.
  • the metal ions in the solution move to the cathode to obtain electrons and undergo a reduction reaction.
  • the metal ions are continuously reduced to stack and accumulate materials on the surface of the cathode in the form of atoms and molecules, so micro/nano can be realized
  • Advanced additive manufacturing has a lot of room for development in the field of micro-nano manufacturing.
  • Laser processing is a non-contact processing method, which has the advantages of high energy density, high efficiency, and good flexibility.
  • the introduction of laser irradiation enhances micro-area stirring, accelerates charge transfer, improves the mechanical properties of the deposited layer, and effectively reduces the amount of Defects such as pitting and looseness.
  • the introduction of laser irradiation in micro-electrodeposition technology can improve the deposition quality, but still has problems such as poor localization and inability to accurately control the size and shape of parts, which need to be solved urgently.
  • the purpose of the present invention is to propose a laser-assisted flexible follow-up tool electrode micro-electrodeposition method, using a flexible follow-up tool electrode, the upper section of which is an insoluble metal wire with sidewall insulation, which limits the area where the anode electric field is dispersed; It is an insulating shielding mold, which limits the area of the cathode electrodeposition reaction; the middle is connected by a flexible spring joint, and the spring elastic force ensures close contact between the lower shielding mold and the cathode substrate during the knife setting process, and the spring buffering effect avoids damaging the insulating shielding mold.
  • the metal can continue to be deposited in the shielding mold; at the same time, the flexible joint enables the shielding mold to be lifted diagonally or bent, ensuring the spatial movement of the tool electrode.
  • the shielding mold In order to obtain complex-shaped deposits; by changing the shape of the shielding mold, different cross-sectional shapes can be obtained, and the forming accuracy of the parts is controlled by the shielding mold, so it has high dimensional accuracy.
  • the laser irradiation enhances the electrode reaction power, the thermal effect accelerates the deposition rate, promotes the removal of cathode gas from the elastic joint and the supplement of metal cations, effectively reduces defects such as cracks and pores in the deposition body, and improves the deposition quality.
  • Another object of the present invention is to provide a laser-assisted flexible follow-up tool electrode micro-electrodeposition device, which provides a complete set of processing platforms to realize the electro-deposition of complex micro-components.
  • a laser-assisted flexible follow-up tool electrode micro-electrodeposition device including a workpiece processing system, a laser irradiation system and a motion control system;
  • the workpiece processing system includes an X-Y two-coordinate workbench, a vertical lifting workbench, a DC pulse power supply, a working tank, a flexible follow-up tool anode and a cathode substrate;
  • the anode of the flexible follow-up tool is connected to the positive electrode of the DC pulse power supply and is clamped by the working arm of the XY two-coordinate workbench;
  • the cathode substrate is connected to the negative electrode of the DC pulse power supply; It is arranged from top to bottom, and the anode and cathode substrates of the flexible follow-up tool are both arranged in the electrolyte of the working tank;
  • the working tank is arranged on the vertical lifting table;
  • the laser irradiation system includes a pulsed laser, a reflecting mirror, and a focusing lens; the laser beam emitted by the pulsed laser is reflected by the reflecting mirror, and then focused by the focusing lens and irradiated on the anode of the flexible follower tool;
  • the motion control system includes a computer and a motion control card; the computer controls a pulse laser and a motion control card, and the motion control card controls an X-Y two-coordinate workbench and a vertical lifting workbench.
  • the flexible follower tool anode includes an upper section, an elastic middle section and a lower section, and the upper section and the lower section are connected by the elastic middle section; the upper section includes an insoluble metal wire for sidewall insulation, and the lower end includes a hollow structure shielding deposition mold.
  • the shielding deposition mold is made of light-transmitting material, and a deposition body is arranged in the shielding deposition mold.
  • the insoluble metal wires are insulated by insulating glass tubes for sidewall insulation.
  • the working fluid circulation system includes a liquid storage tank, a micro pump, a filter, and a throttle valve; the micro pump interface is connected to the liquid storage tank, and the outlet is connected to the working tank, and the filter In series with the throttle valve in the loop.
  • the workpiece processing system further includes an oscilloscope; the oscilloscope is connected to a DC pulse power supply.
  • the elastic middle section is a flexible spring.
  • the laser-assisted flexible follow-up tool electrode fine electrodeposition method includes the following steps:
  • the cathode substrate is subjected to polishing, degreasing, water washing, weak erosion, water washing, and drying pretreatments in sequence;
  • the DC pulse power supply voltage is adjustable from 0 to 20V, and the duty cycle is from 0 to 100%.
  • the pulsed laser is one of an excimer laser, a fiber laser, or a YAG laser, and the laser focus is focused at a position 0.1-1 mm above the cathode substrate; the liquid level of the deposition liquid is below the upper section of the flexible follower tool anode 2 ⁇ 10mm, the temperature of the deposition solution is kept at 20 ⁇ 70°C.
  • the working pressure of the micropump is less than 2 bar, the flow rate is less than 0.5 L/min, and the solution flow has minimal disturbance to the liquid surface of the deposition liquid.
  • the flexible follow-up tool electrode can effectively limit the dispersion area of the electric field and the electrodeposition reaction area, enhance the localization of electrodeposition, and the forming accuracy is controlled by the shielding mold, which effectively solves the low precision and processing of fine electrodeposition forming The problem of poor quality.
  • the elastic middle section of the electrode of the flexible follow-up tool ensures that the shielding mold is in close contact with the cathode substrate during the knife setting process without damaging the shielding mold; the shielding mold in the lower section can be continuously raised with the increase of the deposition body, and the flexible joint can also be used.
  • Make the tool electrode perform spatial scanning movement, effectively control the size and shape of the part, and improve the processing efficiency.
  • the laser is irradiated in the shielding mold to enhance micro-region stirring, accelerate charge transfer, improve the mechanical properties of the deposited layer, effectively reduce defects such as cracks and pores in the deposited body, and improve the deposition quality.
  • Figure 1 is a system diagram of laser-assisted fine electrodeposition of flexible follow-up tool electrodes
  • Figure 2 is a schematic diagram of the working principle of the flexible follow-up tool electrode, where a is the schematic diagram of the flexible follow-up tool anode and the cathode substrate mechanism; b the schematic diagram of the initial reaction between the flexible follow-up tool anode and the cathode substrate; c the flexible follow-up tool anode Schematic diagram during reaction with the cathode substrate; d Schematic diagram after reaction.
  • a laser-assisted flexible follow-up tool electrode micro-electrodeposition device includes a workpiece processing system, a laser irradiation system, and a motion control system;
  • the workpiece processing system includes an XY two-coordinate worktable 16, vertical lifting Workbench 8, DC pulse power supply 15, working tank 13, flexible follow-up tool anode 10 and cathode substrate 14;
  • the flexible follow-up tool anode 10 is connected to the anode of the DC pulse power supply 15 and consists of the XY two-coordinate workbench 16 Working arm clamping;
  • the cathode substrate 14 is connected to the negative electrode of the DC pulse power supply 15;
  • the flexible follower tool anode 10 and the cathode substrate 14 are arranged from top to bottom, and the flexible follower tool anode and the cathode substrate 14 are both set In the electrolyte in the working tank 13;
  • the working tank 13 is set on the vertical lifting table 8;
  • the laser irradiation system includes a pulse
  • the flexible follow-up tool anode 10 includes an upper section, an elastic middle section and a lower section, and the upper section and the lower section are connected by an elastic middle section.
  • the elastic middle section is a flexible spring 19; the upper section includes an insoluble metal wire 17 for sidewall insulation, and the lower section includes a hollow core.
  • the shielding deposition mold 21 is made of light-transmitting material, and a deposition body 22 is arranged in the shielding deposition mold 21.
  • the insoluble metal wire 17 is insulated by an insulating glass tube 18 for sidewall insulation. It also includes a working fluid circulation system.
  • the working fluid circulation system includes a liquid storage tank 7, a micro pump 6, a filter 5, and a throttle valve 4.
  • the micro pump 6 has an interface connected to the liquid storage tank 7, and an outlet connected to a working tank 13.
  • the filter 5 and the throttle valve 4 are connected in series in the loop.
  • the workpiece processing system also includes an oscilloscope 9; the oscilloscope 9 is connected to a DC pulse power supply 15.
  • the upper section of the flexible follower tool anode 10 includes an insoluble metal wire 17 for sidewall insulation. This structure can limit the electric field to the top area of the wire.
  • the lower section includes an insulating shielding deposition mold 21 to further restrict the dispersion area of the electric field and limit electrodeposition.
  • the reaction area is connected between the upper and lower sections with a flexible spring 19 to ensure that the lower section of the anode is in close contact with the cathode substrate 14 without damaging the insulating shielding mold, as well as the supplement of cations and the precipitation of cathode gas.
  • the X-Y two-coordinate worktable 16 clamps the flexible follower tool anode 10 by a working arm to control its movement path.
  • the computer 1 is connected to the pulse laser 3 and the motion control card 2.
  • the computer 1 can control the laser parameters of the pulse laser 3 and can also transmit the written code to the motion control card 2.
  • the oscilloscope 9 is connected to the DC pulse power supply 15 to monitor current parameters in real time.
  • the working tank 13 is placed on the vertical lifting table 8, the cathode substrate 14 is placed in the working tank 13, and the flexible follower tool anode 10 is clamped and placed in the working tank 13 by the working arm of the X-Y two-coordinate working table 16.
  • the laser beam is emitted from the pulse laser 3, passes through the mirror 11 to change the transmission path, and then passes through the focusing lens 12, and the focused pulse laser 23 passes through the shielded deposition mold 21 and is focused on the cathode substrate 14.
  • the motion control card 2 controls the motion tracks of the X-Y two-coordinate worktable 16 and the vertical lifting worktable 8 to deposit complex components.
  • the sedimentation liquid is stored in the liquid storage tank 7, and the micropump 6 provides power to transport the sedimentation liquid from the liquid storage tank 7 through the filter 5 and the overflow valve 4 to the working tank 13, and finally returns to the liquid storage tank 7 for circulation .
  • the upper end of the flexible follower tool anode 10 is an insoluble metal wire 17 insulated with an insulating glass tube 18 for sidewall insulation, and the lower end is an insulating shielding deposition mold 21.
  • the upper and lower sections are connected by a flexible spring 19 ,
  • the electrodeposition reaction is carried out in the shielded deposition mold 21.
  • the upper section of the anode 10 of the follow-up flexible follow-up tool is controlled to lift up, and the metal can continue to be deposited in the shielded deposition mold 21.
  • a complex-shaped deposit 22 can be obtained.
  • the thermal action generated by the focused pulse laser 23 irradiation promotes the convection, mass transfer and crystallization of the cations 20 in the shielding deposition mold 21, and accelerates the discharge of the gas in the shielding deposition mold 21 from the joint of the flexible spring 19, and the cations 20 from the flexible spring
  • the joint 19 enters the shielded deposition mold 21 to continue the deposition reaction until the corresponding components are deposited.
  • Electrodeposition solution consists of nickel sulfate (NiSO4 ⁇ 6H2O) 120g/L, ferrous sulfate (FeSO4 ⁇ 7H2O) 20g/L, nickel chloride (NiCl2 ⁇ 6H2O) 40g/L, boric acid (H3BO3) 40g/L, sodium citrate (Na3C6H5O7.2H2O) 20g/L, saccharin 3g/L, sodium lauryl sulfate (C12H25SO4Na) 2g/L composition, PH maintained at 3 ⁇ 0.02, temperature maintained at 40-60°C; cathode substrate is 1Cr18Ni9Ti stainless steel; insoluble
  • the metal wire is a platinum wire; the laser is a YAG nanosecond pulse laser; the DC pulse power supply voltage is 0-30V, the frequency is 1-5000Hz, and the duty cycle is 0-100%.
  • the deposition method of laser-assisted flexible follow-up tool electrode micro-electrodeposition device includes the following steps:
  • the anode 10 of the flexible follow-up tool is connected to the positive electrode of the DC pulse power supply 15 and clamped by the working arm of the XY two-coordinate workbench 16, and placed in the working tank 13.
  • the lower section of the anode 10 of the flexible follow-up tool passes through the flexible spring 19 The function is in close contact with the cathode substrate 14;
  • the pulse laser 3 is turned on, and at the same time, the movement path of the X-Y two-coordinate worktable 16 is controlled according to the programmed code, so that the shielding deposition mold 21 deposits a desired shape.
  • the cathode substrate 14 is subjected to polishing, degreasing, water washing, weak erosion, water washing, and drying pretreatments in sequence;
  • the DC pulse power supply 15 has an adjustable voltage of 0-20V, and a duty ratio of 0-100%.
  • the pulsed laser 3 is one of an excimer laser, a fiber laser, or a YAG laser, and the laser focus is focused at a position 0.1-1 mm above the cathode substrate 14; the liquid level of the deposition liquid is below the upper section 2 of the flexible follow-up tool anode 10. ⁇ 10mm, the temperature of the deposition solution is kept at 20 ⁇ 70°C.
  • the deposition method of the laser-assisted flexible follow-up tool electrode micro-electrodeposition device includes the following steps:
  • S8 The parameters of the laser are controlled through the computer 1, the parameters of the DC pulse power supply 15 are controlled externally, and the oscilloscope 9 is connected to the DC pulse power supply 15 to monitor the parameters of the DC pulse power supply 15 in real time;
  • S10 Use the computer to turn on the laser 3 and the motion control card 2, and control the motion path of the shielding deposition mold 21 to deposit the three-dimensional shape of the component.
  • the working pressure of the micro pump 6 is less than 2 bar, and the flow rate is less than 0.5 L/min.
  • the flow of the solution has minimal disturbance to the liquid surface of the deposition liquid.

Abstract

本发明公开了一种激光辅助柔性随动式工具电极微细电沉积的装置及方法,涉及定域微细电沉积技术领域,通过使用柔性随动式工具电极限制电场分散区域以及电沉积的反应区域,提高电沉积的定域性以及构件的尺寸精度,通过控制柔性随动式工具电极的运动路径即可沉积出复杂形状的构件;由于激光具有高的功率密度,引入激光辐照改变照射区域的电极状态,加快离子扩散和电子转移速度,提高沉积速率,减少沉积体中麻孔、裂纹等缺陷,提高沉积质量,由电化学和激光两种能量的共同作用实现微细零件的制造。本发明主要用于微细零件的制造,能有效提高电化学沉积的定域性和零件的成形精度。

Description

一种激光辅助柔性随动式工具电极微细电沉积的装置及方法 技术领域
本发明主要涉及定域微细电沉积技术领域,特指一种激光辅助柔性随动式工具电极微细电沉积的方法与装置,适用于微细金属零件的加工和制造。
背景技术
微细电沉积技术是根据电化学原理,溶液中的金属离子运动到阴极获得电子发生还原反应,金属离子被不断还原以原子和分子的形式在阴极表面增叠和堆积材料,因此可以实现微/纳米级的增材制造,在微纳制造领域有着很大的发展空间。激光加工是一种非接触式的加工方法,具有能量密度高、效率高、柔性好等优点,引入激光辐照增强微区搅拌,加速电荷转移,改善沉积层的力学性能,有效减少沉积体中麻孔、疏松等缺陷。在微细电沉积技术中引入激光辐照,虽然可以提高沉积质量,但是依然存在定域性差,无法精确控制零件的尺寸和形状等问题,亟待解决。
国内外对于激光辅助电沉积技术的研究颇多,中国专利“一种激光强化电沉积快速成形加工装置及方法”,专利号“CN103590076A”提出:使用中空管状钝性阳极,阳极的侧面和顶面包裹绝缘膜,激光束通过阳极的中心辐射在阴极基板上方,实现激光与电沉积技术的复合,根据相应的扫描路径,在基板表面逐点沉积,完成第一层后,工作平台下降,完成第二层的沉积,层层叠加沉积出所需的三维零件。中国专利“一种激光诱导离子液体电沉积制备锗纳米阵列的方法”,专利号“CN104988546A”提出:将离子液体电沉积技术与激光辐照技术相结合,使用无毒无污染的绿色离子液体1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐作为溶剂,GeCl 4为电解质,脉冲激光器辐照电解液,沉积时间1200s左右,制备出锗纳米阵列。电沉积反应主要受电场分布影响,而以上两个专利未能对电场进行很好的限制,因此均存在定域性差、沉积体的形状精度低等问题,使用柔性随动式工具电极可以有效的解决问题,有效的增强复杂零件的成型精度。
发明内容
本发明的目的是提出一种激光辅助柔性随动式工具电极微细电沉积的方法,采用柔性随动式工具电极,其上段是侧壁绝缘的不溶性金属丝,限制了阳极电场分散的区域;下段是绝缘屏蔽模,限制了阴极电沉积反应的区域;中间由柔性弹簧接头连接,对刀过程中弹簧弹力保证下段屏蔽模与阴极基板的紧密接触,弹簧缓冲作用又避免了损害绝缘屏蔽模。沉积过程中,随着沉积体的增高,通过不断向上提升屏蔽模,就可以继续在屏 蔽模内沉积金属;同时柔性接头使屏蔽模进行斜向或弯曲的提升,保证了工具电极的空间移动,以获得复杂形状的沉积体;通过改变屏蔽模的形状,可以得到不同的截面形状,零件的成形精度由屏蔽模控制,因此具有较高的尺寸精度。激光的辐照增强电极反应动力,热效应加快沉积速度,促进阴极析气从弹性接头处排除和金属阳离子的补充,有效的减少沉积体中的裂纹和气孔等缺陷,提高沉积质量。
本发明的另一个目的是提出一种激光辅助柔性随动式工具电极微细电沉积的装置,提供一整套的加工平台,实现复杂微细构件的电沉积。
为实现本发明的目的主要是通过以下技术方案实现的:
一种激光辅助柔性随动式工具电极微细电沉积的装置,包括工件加工系统、激光辐照系统和运动控制系统;
所述工件加工系统包括X-Y二坐标工作台、垂直升降工作台、直流脉冲电源、工作槽、柔性随动式工具阳极和阴极基板;
所述柔性随动式工具阳极与直流脉冲电源正极相连并由X-Y二坐标工作台的工作手臂夹持;所述阴极基板与直流脉冲电源负极相连;所述柔性随动式工具阳极与阴极基板自上而下设置,且柔性随动式工具阳极与阴极基板均设置在工作槽的电解液中;所述工作槽设置在垂直升降工作台上;
所述激光辐照系统包括脉冲激光器、反射镜、聚焦透镜;所述脉冲激光器发出的激光束经反射镜反射后,再经聚焦透镜聚焦后辐照在柔性随动式工具阳极上;
所述运动控制系统包括计算机、运动控制卡;所述计算机控制脉冲激光器和运动控制卡,所述运动控制卡控制X-Y二坐标工作台和垂直升降工作台。
进一步的,所述柔性随动式工具阳极包括上段、弹性中段与下段,且上段与下段通过弹性中段连接;上段包括进行侧壁绝缘的不溶性金属丝,下端包括空心结构的屏蔽沉积模。
进一步的,所述屏蔽沉积模为透光材质,且屏蔽沉积模内设置有沉积体。
进一步的,所述不溶性金属丝通过绝缘玻璃管进行侧壁绝缘。
进一步的,还包括工作液循环系统,所述工作液循环系统包括储液槽、微型泵、过滤器、节流阀;所述微型泵接口接储液槽,出口接工作槽,所述过滤器与节流阀串联在回路中。
进一步的,所述工件加工系统还包括示波器;所述示波器与直流脉冲电源相连。
进一步的,弹性中段为柔性弹簧。
激光辅助柔性随动式工具电极微细电沉积方法,包括如下步骤:
对阴极基板进行表面预处理;
编写程序,并输入到计算机的控制软件中;
将阴极基板与直流脉冲电源负极相连并固定在工作槽中,并将工作槽放置在垂直升降工作台上;
将柔性随动式工具阳极与直流脉冲电源正极相连并由X-Y二坐标工作台的工作手臂夹持,放置在工作槽中,柔性随动式工具阳极的下段通过柔性弹簧的作用与阴极基板紧密接触;
调整激光光斑的位置,使光斑聚焦于屏蔽沉积模区域内的阴极基板上方;
加入沉积液,使阴极基板和柔性随动式工具阳极上段的一部分浸入沉积液中;
开启微型泵进行循环换液,保证工作槽中溶液的浓度均匀;
开启脉冲激光器,同时根据所编代码通过控制X-Y二坐标工作台的运动路径,从而使得屏蔽沉积模沉积出所需形状。
进一步的,所述阴极基板依次进行抛光、除油、水洗、弱侵蚀、水洗、干燥预处理;所述直流脉冲电源电压为0~20V可调,占空比为0~100%。
进一步的,所述脉冲激光器为准分子激光器或者光纤激光器或者YAG激光器中的一种,激光焦点聚焦于阴极基板上方0.1~1mm处;所述沉积液液面没过柔性随动式工具阳极上段2~10mm,沉积液温度保持在20~70℃。
优选的,所述微型泵工作压力小于2bar,流速小于0.5L/min,溶液流动对于沉积液液面扰动极小。
本发明的技术优势和有益效果:
(1)柔性随动式工具电极可以有效的限制电场的分散区域以及电沉积的反应区域,增强电沉积的定域性,并且成形精度由屏蔽模控制,有效解决微细电沉积成型精度低和加工质量差的问题。
(2)柔性随动式工具电极的弹性中段保证了对刀过程中屏蔽模与阴极基板紧密接触而不损坏屏蔽模;下段的屏蔽模可以随着沉积体的增高不断向上提升,柔性接头还可以使得工具电极进行空间扫描移动,有效控制零件的尺寸和形状,提高加工效率。
(3)激光辐照在屏蔽模内,增强微区搅拌,加速电荷转移,改善沉积层的力学性能,有效减少沉积体中的裂纹和气孔等缺陷,提高沉积质量。
附图说明
图1为激光辅助柔性随动式工具电极微细电沉积的系统图;
图2为柔性随动式工具电极工作原理图,其中,a为柔性随动式工具阳极与阴极基板机构示意图;b柔性随动式工具阳极与阴极基板初始反应示意图;c柔性随动式工具阳极与阴极基板反应过程中示意图;d反应后示意图。
图中标号名称:
1.计算机,2.运动控制卡,3.脉冲激光器,4.节流阀,5.过滤器,6.微型泵,7.储液槽,8.垂直升降工作台,9.示波器,10.柔性随动式工具阳极,11.反射镜,12.聚焦透镜,13.工作槽,14.阴极基板,15.直流脉冲电源,16.X-Y二坐标工作台,17.不溶性金属丝,18.绝缘玻璃管,19.柔性弹簧,20.阳离子,21.屏蔽沉积模,22.沉积体,23.聚焦后的脉冲激光。
具体实施方式
下面结合附图以及具体实施案例对本发明作进一步的说明,但本发明的保护范围并不限于此。
结合附图1,一种激光辅助柔性随动式工具电极微细电沉积的装置,包括工件加工系统、激光辐照系统和运动控制系统;所述工件加工系统包括X-Y二坐标工作台16、垂直升降工作台8、直流脉冲电源15、工作槽13、柔性随动式工具阳极10和阴极基板14;所述柔性随动式工具阳极10与直流脉冲电源15正极相连并由X-Y二坐标工作台16的工作手臂夹持;所述阴极基板14与直流脉冲电源15负极相连;所述柔性随动式工具阳极10与阴极基板14自上而下设置,且柔性随动式工具阳极与阴极基板14均设置在工作槽13的电解液中;所述工作槽13设置在垂直升降工作台8上;所述激光辐照系统包括脉冲激光器3、反射镜11、聚焦透镜12;所述脉冲激光器3发出的激光束经反射镜11反射后,再经聚焦透镜12聚焦后辐照在柔性随动式工具阳极上;所述运动控制系统包括计算机1、运动控制卡2;所述计算机1控制脉冲激光器3和运动控制卡2,所述运动控制卡2控制X-Y二坐标工作台16和垂直升降工作台8。
其中,所述柔性随动式工具阳极10包括上段、弹性中段与下段,且上段与下段通过弹性中段连接,弹性中段为柔性弹簧19;上段包括进行侧壁绝缘的不溶性金属丝17,下段包括空心结构的屏蔽沉积模21。所述屏蔽沉积模21为透光材质,且屏蔽沉积模21内设置有沉积体22。所述不溶性金属丝17通过绝缘玻璃管18进行侧壁绝缘。还包括工作液循环系统,所述工作液循环系统包括储液槽7、微型泵6、过滤器5、节流阀4;所述微型泵6接口接储液槽7,出口接工作槽13,所述过滤器5与节流阀4串联在回路中。 所述工件加工系统还包括示波器9;所述示波器9与直流脉冲电源15相连。
柔性随动式工具阳极10的上段包括进行侧壁绝缘的不溶性金属丝17,该结构可将电场限制在金属丝顶端区域,下段包括绝缘屏蔽沉积模21,进一步约束电场的分散区域以及限制电沉积反应的区域,上下两段之间用柔性弹簧19连接,确保阳极下段与阴极基板14紧密接触而不损害绝缘屏蔽模以及保证阳离子的补充和阴极气体的析出。
通过改变屏蔽沉积模2的形状从而控制沉积体的截面形状,X-Y二坐标工作台16通过工作手臂夹持柔性随动式工具阳极10以控制其运动路径。
如图1所示,计算机1与脉冲激光器3和运动控制卡2相连,计算机1可以控制脉冲激光器3的激光参数,还可以将所编写的代码传输到运动控制卡2。示波器9与直流脉冲电源15相连,实时监测电流参数。工作槽13置于垂直升降工作台8上,阴极基板14放置于工作槽13中,柔性随动式工具阳极10由X-Y二坐标工作台16的工作手臂夹持放置于工作槽13中。激光光束从脉冲激光器3发射,经过反射镜11改变传输路径,再经过聚焦透镜12,聚焦后的脉冲激光23穿过屏蔽沉积模21聚焦于阴极基板14的上方。运动控制卡2控制X-Y二坐标工作台16和垂直升降工作台8的运动轨迹以沉积出复杂的构件。沉积液储存于储液槽7中,由微型泵6提供动力将沉积液从储液槽7经过滤器5和溢流阀4输送到工作槽13中,最终又回流到储液槽7中实现循环。
如图2所示,柔性随动式工具阳极10的上端是用绝缘玻璃管18进行侧壁绝缘的不溶性金属丝17,下端是绝缘性屏蔽沉积模21,上段、下段之间用柔性弹簧19连接,电沉积反应在屏蔽沉积模21内进行,当沉积体22堆叠到一定高度时,控制随动式柔性随动式工具阳极10的上段向上提升,就可以继续在屏蔽沉积模21沉积金属,同时控制柔性随动式工具阳极10的空间扫描移动,即可获得复杂形状的沉积体22。聚焦后的脉冲激光23辐照产生的热力作用促进屏蔽沉积模21内阳离子20的对流、传质和结晶,加快屏蔽沉积模21内的气体从柔性弹簧19接头处排出,阳离子20又从柔性弹簧19接头处进入屏蔽沉积模21内继续进行沉积反应,直到沉积出相应的构件。
本发明具体实施方法如下:
电沉积液由硫酸镍(NiSO4·6H2O)120g/L,硫酸亚铁(FeSO4·7H2O)20g/L,氯化镍(NiCl2·6H2O)40g/L,硼酸(H3BO3)40g/L,柠檬酸钠(Na3C6H5O7.2H2O)20g/L,糖精3g/L,十二烷基硫酸钠(C12H25SO4Na)2g/L组成,PH保持在3±0.02,温度保持在40~60℃;阴极基板为1Cr18Ni9Ti不锈钢;不溶性金属丝为铂丝;激光器为YAG纳秒脉冲激光器;直流脉冲电源电压0~30V,频率1~5000Hz,占空比0~100%。
激光辅助柔性随动式工具电极微细电沉积装置的沉积方法,包括如下步骤:
对阴极基板14进行表面预处理;
编写程序,并输入到计算机1的控制软件中;
将阴极基板14与直流脉冲电源15负极相连并固定在工作槽13中,并将工作槽13放置在垂直升降工作台8上;
将柔性随动式工具阳极10与直流脉冲电源15正极相连并由X-Y二坐标工作台16的工作手臂夹持,放置在工作槽13中,柔性随动式工具阳极10的下段通过柔性弹簧19的作用与阴极基板14紧密接触;
调整激光光斑的位置,使光斑聚焦于屏蔽沉积模21区域内的阴极基板14上方;
加入沉积液,使阴极基板14和柔性随动式工具阳极10上段的一部分浸入沉积液中;
开启微型泵6进行循环换液,保证工作槽13中溶液的浓度均匀;
开启脉冲激光器3,同时根据所编代码通过控制X-Y二坐标工作台16的运动路径,从而使得屏蔽沉积模21沉积出所需形状。
其中,所述阴极基板14依次进行抛光、除油、水洗、弱侵蚀、水洗、干燥预处理;所述直流脉冲电源15电压为0~20V可调,占空比为0~100%。所述脉冲激光器3为准分子激光器或者光纤激光器或者YAG激光器中的一种,激光焦点聚焦于阴极基板14上方0.1~1mm处;所述沉积液液面没过柔性随动式工具阳极10上段2~10mm,沉积液温度保持在20~70℃。
具体的,激光辅助柔性随动式工具电极微细电沉积装置的沉积方法,包括如下步骤:
S1:对阴极基板14进行预处理去除表面的杂质和机械损伤;
S2:根据所需要的构件形状编写运动路径的程序代码,并将编写的代码输入到计算机1中;
S3:配置电化学沉积液,使其PH保持在3±0.02,温度保持在40~60℃;
S4:将预处理过的阴极基板14与直流脉冲电源15负极相连并固定在工作槽13中,并将工作槽13放置在垂直升降台8上;
S5:组装柔性随动式工具电极10并与直流脉冲电源15正极相连由X-Y二坐标工作台16的工作手臂夹持放置在工作槽13中,工具阳极的下段屏蔽沉积模21通过柔性弹簧19的作用与阴极基板14紧密接触;
S6:选择YAG纳秒脉冲激光器3,调整激光光斑的位置,使光斑聚焦于绝缘屏蔽模21内的阴极基板14上方0.1~1mm处;
S7:加入电沉积液,使得电沉积液液面没过柔性随动式工具阳极10上段2~8mm;;
S8:通过计算机1控制激光的参数,直流脉冲电源15的参数由外部控制,示波器9与直流脉冲电源15相连,实时监测直流脉冲电源15参数;
S9:开启微型泵6,使电沉积液开始循环;
S10:利用计算机开启激光器3和运动控制卡2,控制屏蔽沉积模21的运动路径以沉积出构件的三维形状。
微型泵6工作压力小于2bar,流速小于0.5L/min,溶液流动对于沉积液液面扰动极小。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (10)

  1. 一种激光辅助柔性随动式工具电极微细电沉积的装置,包括工件加工系统、激光辐照系统和运动控制系统;其特征在于,
    所述工件加工系统包括X-Y二坐标工作台(16)、垂直升降工作台(8)、直流脉冲电源(15)、工作槽(13)、柔性随动式工具阳极(10)和阴极基板(14);
    所述柔性随动式工具阳极(10)与直流脉冲电源(15)正极相连并由X-Y二坐标工作台(16)的工作手臂夹持;所述阴极基板(14)与直流脉冲电源(15)负极相连;柔性随动式工具阳极(10)与阴极基板(14)均设置在工作槽(13)的电解液中,通电时,形成电化学回路;所述工作槽(13)设置在垂直升降工作台(8)上;
    所述激光辐照系统包括脉冲激光器(3)、反射镜(11)、聚焦透镜(12);所述脉冲激光器(3)发出的激光束经反射镜(11)反射后,再经聚焦透镜(12)聚焦后辐照在柔性随动式工具阳极(10)的下段上;
    所述运动控制系统包括计算机(1)、运动控制卡(2);所述计算机(1)控制脉冲激光器(3)和运动控制卡(2),所述运动控制卡(2)控制X-Y二坐标工作台(16)和垂直升降工作台(8)。
  2. 根据权利要求1所述的激光辅助柔性随动式工具电极微细电沉积的装置,其特征在于,所述柔性随动式工具阳极(10)包括上段、弹性中段与下段,且上段与下段通过弹性中段连接;上段包括进行侧壁绝缘的不溶性金属丝(17),下段包括空心结构的屏蔽沉积模(21)。
  3. 根据权利要求2所述的激光辅助柔性随动式工具电极微细电沉积的装置,其特征在于,所述屏蔽沉积模(21)为透光材质。
  4. 根据权利要求2所述的激光辅助柔性随动式工具电极微细电沉积的装置,其特征在于,所述不溶性金属丝(17)通过绝缘玻璃管(18)进行侧壁绝缘。
  5. 根据权利要求1所述的激光辅助柔性随动式工具电极微细电沉积的装置,其特征在于,还包括工作液循环系统,所述工作液循环系统包括储液槽(7)、微型泵(6)、过滤器(5)、节流阀(4);所述微型泵(6)接口接储液槽(7),出口接工作槽(13),所述过滤器(5)与节流阀(4)串联在回路中。
  6. 根据权利要求1所述的激光辅助柔性随动式工具电极微细电沉积的装置,其特征在于,所述工件加工系统还包括示波器(9);所述示波器(9)与直流脉冲电源(15)相连。
  7. 根据权利要求2所述的激光辅助柔性随动式工具电极微细电沉积的装置,其特征在于,弹性中段为柔性弹簧(19)。
  8. 根据权利要求1-7任一项所述的激光辅助柔性随动式工具电极微细电沉积装置的沉积方法,其特征在于,包括如下步骤:
    对阴极基板(14)进行表面预处理;
    编写程序,并输入到计算机(1)的控制软件中;
    将阴极基板(14)与直流脉冲电源(15)负极相连并固定在工作槽(13)中,并将工作槽(13)放置在垂直升降工作台(8)上;
    将柔性随动式工具阳极(10)与直流脉冲电源(15)正极相连并由X-Y二坐标工作台(16)的工作手臂夹持,放置在工作槽(13)中,柔性随动式工具阳极(10)的下段通过柔性弹簧(19)的作用与阴极基板(14)紧密接触;
    调整激光光斑的位置,使激光光斑聚焦于屏蔽沉积模(21)区域内的阴极基板(14)上方;
    加入沉积液,使阴极基板(14)和柔性随动式工具阳极(10)上段的一部分浸入沉积液中;
    开启微型泵(6)进行循环换液,保证工作槽(13)中溶液的浓度均匀;
    开启脉冲激光器(3),同时根据所编代码通过控制X-Y二坐标工作台(16)的运动路径,从而使得屏蔽沉积模(21)中沉积出所需形状。
  9. 根据权利要求8所述的激光辅助柔性随动式工具电极微细电沉积方法,其特征在于,所述阴极基板(14)依次进行抛光、除油、水洗、弱侵蚀、水洗、干燥预处理;所述直流脉冲电源(15)电压为0~20V可调,占空比为0~100%。
  10. 根据权利要求8所述的激光辅助柔性随动式工具电极微细电沉积方法,其特征在于,所述脉冲激光器(3)为准分子激光器或者光纤激光器或者YAG激光器中的一种,激光焦点聚焦于阴极基板(14)上方0.1~1mm处;所述沉积液液面没过柔性随动式工具阳极(10)上段2~10mm,沉积液温度保持在20~70℃。
PCT/CN2020/072902 2019-02-20 2020-01-19 一种激光辅助柔性随动式工具电极微细电沉积的装置及方法 WO2020168881A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/296,552 US11306408B2 (en) 2019-02-20 2020-01-19 Device for microelectrodeposition through laser assisted flexible following tool electrode and deposition method using the device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910125271.2 2019-02-20
CN201910125271.2A CN109735883B (zh) 2019-02-20 2019-02-20 一种激光辅助柔性随动式工具电极微细电沉积的装置及方法

Publications (1)

Publication Number Publication Date
WO2020168881A1 true WO2020168881A1 (zh) 2020-08-27

Family

ID=66367797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072902 WO2020168881A1 (zh) 2019-02-20 2020-01-19 一种激光辅助柔性随动式工具电极微细电沉积的装置及方法

Country Status (3)

Country Link
US (1) US11306408B2 (zh)
CN (1) CN109735883B (zh)
WO (1) WO2020168881A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109735883B (zh) * 2019-02-20 2021-02-12 江苏大学 一种激光辅助柔性随动式工具电极微细电沉积的装置及方法
CN110315464B (zh) * 2019-08-06 2020-09-29 哈尔滨理工大学 一种基于电化学沉积的金属微构件拾取方法
CN110625272B (zh) * 2019-08-16 2021-08-03 江苏大学 一种利用化学腐蚀冰层辅助激光加工低锥度微孔的装置及方法
CN110904485B (zh) * 2019-12-25 2023-07-25 浙江工业大学 一种扫描式激光辅助微弧氧化装置及方法
CN112126955B (zh) * 2020-08-18 2021-08-03 江苏大学 一种膛线式空心旋转电极的激光电化学复合沉积的方法及装置
CN112247480B (zh) * 2020-09-16 2021-10-12 江苏大学 一种径向滑动轴承轴瓦内表面织构复合加工方法和装置
CN112135412B (zh) * 2020-09-23 2021-09-28 北京大学 一种激光加速器自动重频打靶的时间连锁控制系统及方法
US11590115B2 (en) 2020-10-05 2023-02-28 T3 Bioscience, LLC Pseudomonas strains and their metabolites to control fish diseases
CN112207376B (zh) * 2020-10-09 2021-10-08 江苏大学 一种基于可变电场的阵列管状阳极辅助激光电化学复合加工的方法及装置
CN112359396A (zh) * 2020-10-23 2021-02-12 长春理工大学 声子光子复合作用下的电化学微增材制造装置及方法
CN113481555A (zh) * 2021-07-15 2021-10-08 江苏大学 一种利用激光复合电化学技术对材料内壁进行定域电沉积修复的方法及装置
CN113604857B (zh) * 2021-07-15 2022-07-19 武汉大学 一种纳米电镀超快激光强化及原位在线监测装置
CN113737237B (zh) * 2021-08-17 2022-10-28 江苏大学 一种激光辅助电沉积制备梯度镀层的方法及装置
CN114086226A (zh) * 2021-11-11 2022-02-25 浙江工业大学 一种激光侧向同步复合喷射电沉积增材再制造铜的装置及方法
CN113897654B (zh) * 2021-11-11 2023-03-28 浙江工业大学 一种同轴式激光辅助微弧氧化装置及方法
CN114481248A (zh) * 2022-01-24 2022-05-13 江苏大学 一种在硅表面定域电沉积的加工装置及方法
CN114892227B (zh) * 2022-03-30 2024-04-05 沈阳理工大学 一种物理场辅助脉冲电沉积纳米结构镍钴合金涂层的方法及实验装置
CN114855235A (zh) * 2022-06-13 2022-08-05 江苏大学 一种吸收层可调的激光喷丸成形装置和方法
CN115323442A (zh) * 2022-08-08 2022-11-11 哈尔滨工业大学 一种基于光纤激光与电沉积同轴复合加工装置的加工方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430165A (en) * 1981-07-24 1984-02-07 Inoue-Japax Research Incorporated Laser-activated electrodepositing method and apparatus
RU2289640C1 (ru) * 2005-07-07 2006-12-20 Учреждение образования "Гомельский государственный университет им. Франциска Скорины" Установка для лазерной электрохимической обработки
WO2007095434A2 (en) * 2006-02-10 2007-08-23 Masco Corporation Internal coating technique for non-cylindrical components
WO2009051923A1 (en) * 2007-10-17 2009-04-23 The Trustees Of Columbia University In The City Of New York Systems and methods for in situ annealing of electro- and electroless platings during deposition
CN104942388A (zh) * 2015-06-17 2015-09-30 江苏大学 电化学放电与激光复合加工材料的装置和方法
CN107723761A (zh) * 2017-08-24 2018-02-23 江苏大学 一种激光冲击压电陶瓷定域微细电沉积的装置及方法
CN108655521A (zh) * 2018-04-27 2018-10-16 江苏大学 一种压电陶瓷振动与电化学放电同步的加工装置及方法
CN109735883A (zh) * 2019-02-20 2019-05-10 江苏大学 一种激光辅助柔性随动式工具电极微细电沉积的装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU180405B (en) 1981-03-26 1983-03-28 Nii Ex I Avtomobil Elektroobor Device for individual feeding winding units to winding machines
CN103590076B (zh) 2013-11-28 2016-11-23 铜陵学院 一种激光强化电沉积快速成形加工装置及方法
CN104988546B (zh) 2015-07-28 2017-06-20 吉林师范大学 一种激光诱导离子液体电沉积制备锗纳米阵列的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430165A (en) * 1981-07-24 1984-02-07 Inoue-Japax Research Incorporated Laser-activated electrodepositing method and apparatus
RU2289640C1 (ru) * 2005-07-07 2006-12-20 Учреждение образования "Гомельский государственный университет им. Франциска Скорины" Установка для лазерной электрохимической обработки
WO2007095434A2 (en) * 2006-02-10 2007-08-23 Masco Corporation Internal coating technique for non-cylindrical components
WO2009051923A1 (en) * 2007-10-17 2009-04-23 The Trustees Of Columbia University In The City Of New York Systems and methods for in situ annealing of electro- and electroless platings during deposition
CN104942388A (zh) * 2015-06-17 2015-09-30 江苏大学 电化学放电与激光复合加工材料的装置和方法
CN107723761A (zh) * 2017-08-24 2018-02-23 江苏大学 一种激光冲击压电陶瓷定域微细电沉积的装置及方法
CN108655521A (zh) * 2018-04-27 2018-10-16 江苏大学 一种压电陶瓷振动与电化学放电同步的加工装置及方法
CN109735883A (zh) * 2019-02-20 2019-05-10 江苏大学 一种激光辅助柔性随动式工具电极微细电沉积的装置及方法

Also Published As

Publication number Publication date
US11306408B2 (en) 2022-04-19
CN109735883B (zh) 2021-02-12
CN109735883A (zh) 2019-05-10
US20220010448A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
WO2020168881A1 (zh) 一种激光辅助柔性随动式工具电极微细电沉积的装置及方法
CN109913919B (zh) 一种在工件表面制备微纳二维结构的加工方法及装置
CN112176383B (zh) 一种利用激光电沉积复合加工的装置及方法
CN109226973B (zh) 一种激光-电化学沉积制备仿生超疏水金属表面的系统及方法
CN102925938B (zh) 一种对激光镀层进行处理的系统
US20110042201A1 (en) In situ Plating And Soldering Of Materials Covered With A Surface Film
WO2015039427A1 (zh) 激光光管电极的电化学复合沉积制造方法与装置
CN109676379B (zh) 激光刻蚀电化学微增材换热功能表面的制备装置及方法
CN111360345B (zh) 一种在工件表面形成微结构的加工方法及控制系统
WO2023284431A1 (zh) 一种利用激光辐照实现薄壁件背面诱导定域电沉积的方法及装置
CN112372144A (zh) 一种激光透明材料镀层/刻蚀的方法及装置
CN110280915B (zh) 一种基于水下打孔改善制孔质量的激光打孔装置及方法
CN112981471B (zh) 一种高定域性三维电沉积装置及方法
CN102817051A (zh) 一种激光脉冲电镀系统
GB2616490A (en) Method and device for laser electrochemical composite deposition using rifling hollow rotating electrode
CN203593801U (zh) 一种激光强化电沉积快速成形加工装置
DE3227878A1 (de) Verfahren und vorrichtung zum galvanischen abscheiden eines metalls auf ein werkstueck
CN209162216U (zh) 基于激光局部电镀的金属增材制造装置
CN114481266B (zh) 一种激光刻蚀微织构表面复合电沉积自润滑涂层的制备方法及装置
CN211311631U (zh) 一种扫描式激光辅助微弧氧化装置
CN102618869B (zh) 基于大面积电子束的工件表面快速涂覆重熔方法及装置
CN114351233A (zh) 一种利用激光进行阳极局部活化实现定域电沉积的方法及装置
CN114737230B (zh) 一种激光增强电化学沉积制备带有跨尺度微纳结构功能性薄膜的方法及装置
CN112605398B (zh) 一种修复slm成型件的电解-电沉积加工装置及方法
CN114481248A (zh) 一种在硅表面定域电沉积的加工装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759583

Country of ref document: EP

Kind code of ref document: A1