WO2020168455A1 - 显示装置及电子设备 - Google Patents

显示装置及电子设备 Download PDF

Info

Publication number
WO2020168455A1
WO2020168455A1 PCT/CN2019/075389 CN2019075389W WO2020168455A1 WO 2020168455 A1 WO2020168455 A1 WO 2020168455A1 CN 2019075389 W CN2019075389 W CN 2019075389W WO 2020168455 A1 WO2020168455 A1 WO 2020168455A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
layer
sensing layer
display
display module
Prior art date
Application number
PCT/CN2019/075389
Other languages
English (en)
French (fr)
Inventor
陈松亚
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to PCT/CN2019/075389 priority Critical patent/WO2020168455A1/zh
Priority to CN201980073714.6A priority patent/CN113316750A/zh
Publication of WO2020168455A1 publication Critical patent/WO2020168455A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets

Definitions

  • the present invention relates to the field of display technology, in particular to a display device and electronic equipment.
  • polymer film materials with superior bending properties are usually used as flexible cover plates to protect the display panel. Since this type of display module cannot achieve higher surface hardness, strength and thickness like tempered glass, and its impact resistance is weak, electronic equipment with this flexible display module can easily cause damage to the flexible display panel during a drop or collision. And because the flexible display module will not be locally cracked or broken after the flexible display module is partially impacted or impacted, like the protective tempered glass on the surface of a traditional smart phone, it is difficult to judge from the appearance whether it is improper human operation or a local quality problem of the flexible screen itself. Display abnormal or dead pixels, causing great difficulty in after-sales judgment.
  • An embodiment of the present invention provides a display device, the display device includes a sensing layer and a display module, the sensing layer and the display module are stacked, or the sensing layer is embedded in the display module, The sensing layer detects external pressure on the display module, and is used to indicate whether the display module is damaged and where the display module is damaged.
  • the display device provided by the embodiment of the present invention includes a sensing layer and a display module.
  • the sensing layer and the display module are laminated, and in other implementations, the sensing layer is embedded in the display module.
  • the sensing layer is used to detect the external pressure on the display module and to indicate whether the display module is damaged, and when the display module is damaged, it indicates the damaged part of the display module.
  • An embodiment of the present invention further provides an electronic device, which includes a hinge part, a first housing, a second housing, and the display device provided in any of the above embodiments, and the hinge part is located in the first housing. Between the first housing and the second housing, the first housing and the second housing are used to support the display device, and the display device corresponding to the first housing can be connected through the hinge The part moves relative to the display device corresponding to the second housing.
  • FIG. 1 is a schematic structural diagram of a first display device provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another implementation manner of the first display device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a second display device provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a third display device provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a fourth display device provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a fifth display device provided by an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a sixth display device provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a seventh display device provided by an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an eighth display device provided by an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a ninth display device provided by an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a tenth display device provided by an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an eleventh display device provided by an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a twelfth display device provided by an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a thirteenth display device provided by an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a fifteenth display device provided by an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a first electronic device provided by an embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of a third electronic device provided by an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a first display device 10 according to an embodiment of the present invention.
  • the display device 10 includes a sensing layer 100 and a display module 200.
  • the sensing layer 100 is stacked on the display module 200, or the sensing layer 100 is embedded in the display module 200.
  • the layer 100 detects external pressure on the display module 200, and is used to indicate whether the display module 200 is damaged, and where the display module 200 is damaged.
  • the display module 200 is a flexible display module 200.
  • the sensing layer 100 can be an ultra-thin pressure sensitive film or a piezoelectric film.
  • the sensing layer 100 being a pressure-sensitive film and a piezoelectric film, please refer to the following detailed description.
  • the display module 200 has a well-packaged overall structure, and the sensing layer 100 is stacked on the display module 200, that is, the sensing layer 100 can be located on the display module 200 or on the display module 200.
  • the sensing layer 100 can act as an encapsulation layer, that is, the sensing layer 100 can protect the display module 200 on the one hand, and can also be used to detect the display module on the other hand.
  • the pressure from the outside of the group 200 on the display module 200 is used to indicate whether the display module 200 is damaged, and where the display module 200 is damaged. Since the sensing layer 100 is located on the display module 200, when external pressure acts on the display device 10, it directly acts on the sensing layer 100.
  • the external pressure does not need to be transmitted to the sensing layer 100 through other layer structures.
  • the sensing layer 100 is more sensitive to external pressure. Therefore, the thickness of the sensing layer 100 can be reduced on the premise of ensuring that the sensing layer 100 has a high detection accuracy, which is helpful to realize the slim design of the display device 10.
  • the sensing layer 100 is located under the display module 200, the pressure is transferred to the sensing layer 100 by pressing the display module 200, and then the different phenomena displayed by the sensing layer 100 can better measure the external application of the display module 200 Pressure, which helps to improve the accuracy of damage detection.
  • the sensing layer 100 is embedded in the display module 200, that is, the sensing layer 100 is located between any two adjacent layers of the display module 200, and the sensing layer 100 is embedded in the display module. 200.
  • the sensing layer 100 and the display module 200 can be integrally formed as a whole, which helps to realize a modular design and facilitate subsequent installation, disassembly and replacement.
  • the sensing layer 100 can be better attached to the display module 200.
  • attaching the sensing layer 100 to the display module 200 can effectively prevent the sensing layer 100 from falling off the display module 200, thereby prolonging the service life of the display device 10.
  • the sensing layer 100 can be an integral layer structure, which can maintain the same size as the display module 200, so that it can detect whether any part of the display module 200 is damaged and when it is damaged. The specific part.
  • the sensing layer 100 may also be a combination of several small sensing units 110 arranged at intervals. At this time, since adjacent sensing units 110 are spaced apart Arrangement, there will be no mutual squeezing between the adjacent sensing units 110, which can well eliminate the stress between the adjacent sensing units 110, thereby releasing the stress between the sensing layer 100 and the display module 200 , Which helps to avoid stress concentration problems. Assuming that there is stress concentration between the display module 200 and the sensing layer 100, the internal stress between the display module 200 and the sensing layer 100 may interfere with the external pressure , May lead to inaccurate detection.
  • the problem of stress concentration between the display module 200 and the sensing layer 100 can be solved, thereby improving the detection of the display device 10. Detection accuracy of external pressure. Furthermore, the detection accuracy of the display device 10 on whether the display module 200 is damaged and where the damage occurs is improved.
  • a plurality of sensing units 110 are arranged in an array to form the sensing layer 100.
  • the pressure on the display module 200 from the outside of the display module 200 is detected by the sensing unit 110 and used to indicate whether the display module 200 is damaged, and the display module 200 damaged parts.
  • the pressure detected by the two adjacent sensing units 110 is averaged to detect the external pressure of the display module 200 to the display module 200. The pressure is used to indicate whether the display module 200 is damaged and where the display module 200 is damaged.
  • weighting coefficients are allocated according to the distance between the direction of the external pressure and the central part of the sensing unit 110, and the weighting coefficients assigned to the multiple sensing units 110 are calculated and displayed
  • the pressure from the outside of the module 200 on the display module 200 is used to indicate whether the display module 200 is damaged and where the display module 200 is damaged. And specifically, the smaller the distance between the direction of the external pressure and the central part of the sensing unit 110, the larger the weighting coefficient assigned.
  • the distance between the acting direction of the external pressure and the first sensing unit 110 is d1
  • the weight coefficient for calculating the external pressure is a1
  • the weight coefficient assigned to the second sensing unit 110 for calculating the external pressure is a2
  • the display device 10 provided by the embodiment of the present invention includes a sensing layer 100 and a display module 200.
  • the sensing layer 100 and the display module 200 are stacked, and in other implementations, the sensing layer 100 is embedded In the display module 200.
  • the sensing layer 100 is used to detect external pressure on the display module 200, and used to indicate whether the display module 200 is damaged, and when the display module 200 is damaged, indicate the location where the display module 200 is damaged.
  • FIG. 3 is a schematic structural diagram of a second display device 10 according to an embodiment of the present invention.
  • the schematic structural diagram of the second display device 10 is basically the same as the schematic structural diagram of the first display device 10, except that the sensing layer 100 is a piezoelectric layer.
  • the sensing layer 100 is a piezoelectric layer.
  • the display device 10 further includes a controller 300, which determines whether the display module 200 is damaged according to the magnitude of the piezoelectric current generated by the sensing layer 100.
  • the controller 300 may be a microprocessor or a central processing unit.
  • the controller 300 is used to determine whether the display module 200 is damaged according to the magnitude of the piezoelectric current generated by the sensing layer 100. Specifically, since the sensing layer 100 is a piezoelectric layer and has a piezoelectric effect, when the display module 200 is subjected to external pressure, a weak current signal, which is a piezoelectric current, will be generated on the sensing layer 100.
  • the piezoelectric current passes through the integrated circuit in the display module 200, and the piezoelectric current generated corresponds to the coordinates on the display module 200, the external force value obtained according to the magnitude of the piezoelectric current, and the time for generating the piezoelectric current are all fed back to the display device 10 Make a background record and keep the data so that when the display device 10 is subsequently maintained, the piezoelectric current will be generated corresponding to the coordinates on the display module 200, the external force value obtained according to the magnitude of the piezoelectric current, and the time when the piezoelectric current is generated It is used to determine whether it is man-made damage or a failure of the display module 200 itself.
  • the controller 300 when the display module 200 is damaged, the controller 300 also determines the position where the display module 200 is impacted by pressure based on the position where the piezoelectric current is generated by the sensing layer 100 .
  • the sensing layer 100 is a piezoelectric layer
  • a piezoelectric current will be generated when subjected to external pressure. Therefore, there is a corresponding relationship between the position where the piezoelectric current is generated in the sensing layer 100 and the position where the display module 200 is impacted by pressure.
  • a weak piezoelectric current is generated on the sensing layer 100.
  • the piezoelectric current will pass through the integrated circuit in the display module 200 to generate piezoelectric current and feed back the coordinates on the display module 200 to the display device 10 for background recording and data retention.
  • the data recorded in the background of the display device 10 can be used as a reference at this time. According to the location where the piezoelectric current is generated, the location where the display module 200 is damaged can be determined.
  • FIG. 4 is a schematic structural diagram of a third display device 10 according to an embodiment of the present invention.
  • the structural schematic diagram of the third display device 10 is basically the same as the structural schematic diagrams of the first and second display devices 10. The difference is that when the sensing layer 100 and the display module 200 are stacked, the A double-sided tape 400 is arranged between the sensing layer 100 and the display module 200, and the double-sided tape 400 is used to fix the sensing layer 100 and the display module 200.
  • the double-sided tape 400 is an ultra-thin and high-resilience double-sided tape 400.
  • the double-sided tape 400 is a whole layer of double-sided tape 400, that is, the double-sided tape 400 is a single piece, and is used to connect the sensing layer 100 and the display module 200 fixedly, so that the sensing layer 100 and the display module 200 are closely attached, so that the external pressure can be well transmitted to the sensing layer 100 through the display module 200, and then the size of the external pressure can be accurately detected through the sensing layer 100.
  • the double-sided tape 400 includes a plurality of glue units 410 arranged at intervals.
  • several colloidal units 410 arranged at intervals are arranged in an array.
  • the sensing layer 100 is adhered to the display module 200 through a number of glue units 410 arranged at intervals. Since there is no direct contact between the adjacent glue units 410, the gap between the adjacent glue units 410 can be eliminated.
  • the internal stress generated, thereby eliminating the internal stress between the sensing layer 100 and the display module 200 helps to solve the problem of stress concentration between the sensing layer 100 and the display module 200, thereby prolonging the service life of the display device 10 .
  • the gap between the adjacent colloidal units 410 provided at the edge of the display module 200 is the first gap
  • the gap between the adjacent colloidal units 410 provided at the middle of the display module 200 is the second gap.
  • the first gap is greater than the second gap. Since the edge portion of the display module 200 is attached to the sensing layer 100, the problem of stress concentration is more likely to occur.
  • the problem of stress concentration between the colloid units 410 arranged at the edge of the display module 200 can be better avoided, thereby improving the display module
  • the problem of stress concentration when the edge portion of 200 is attached to the sensing layer 100.
  • FIG. 5 is a schematic structural diagram of a fourth display device 10 provided by an embodiment of the present invention.
  • the schematic structural diagram of the fourth display device 10 is basically the same as the structural schematic diagrams of the first and second display devices 10, except that the display device 10 further includes a display panel 500 and a flexible cover 600 that are stacked.
  • the sensing layer 100 is located on a side of the display panel 500 away from the flexible cover 600.
  • the display panel 500 is a flexible display panel 500.
  • the sensing layer 100 is fixed to the surface of the display panel 500 away from the flexible cover 600 by the double-sided adhesive 400.
  • the double-sided tape 400 may be an ultra-thin, high-resilience double-sided tape 400. Since the sensing layer 100 is located away from the flexible cover 600 relative to the display panel 500, when external pressure is applied to the flexible cover 600, it is first transferred to the display panel 500 through the flexible cover 600, and then transferred to the sensing layer 100 through the display panel 500 Through the sensing layer 100, it can be determined whether the damage of the flexible display panel 500 is caused by improper operation, or the quality of the flexible display panel 500 itself has local display abnormalities or defective pixels, which has reference value for the after-sales judgment of the flexible display panel 500. In addition, the sensing layer 100 is disposed away from the flexible cover 600 relative to the display panel 500, which can prevent the sensing layer 100 from blocking the display panel 500, which helps to improve the display effect of the display device 10.
  • FIG. 6 is a schematic structural diagram of a fifth display device 10 according to an embodiment of the present invention.
  • the schematic structural diagram of the fifth display device 10 is basically the same as the structural schematic diagrams of the first and second display devices 10, except that the display device 10 further includes a display panel 500 and a flexible cover 600 that are stacked.
  • the sensing layer 100 is embedded in the display panel 500.
  • the display panel 500 is a flexible display panel 500.
  • the flexible cover 600 covers the surface of the display panel 500.
  • the flexible cover 600 is made of polyimide material (PI material).
  • PI material polyimide material
  • the flexible cover 600 constitutes a part of the appearance structure of the display device 10, is used to protect the display panel 500, and serves as an encapsulation layer and a protective layer.
  • the flexible cover 600 and the display panel 500 may be fixedly connected by transparent optical glue.
  • the sensing layer 100 is embedded in the display panel 500. That is, the sensing layer 100 can be located between any two adjacent layer structures in the display panel 500. At this time, the sensing layer 100 and the display panel 500 can be integrally formed as a whole structure, which is convenient for subsequent installation, disassembly, and replacement. And when the sensing layer 100 is embedded in the display panel 500, the distance between the sensing layer 100 and the flexible cover 600 can be made closer, and the sensing layer 100 can be reduced on the premise that the display device 10 has higher detection accuracy. The thickness of the layer 100 realizes the slim design of the display device 10.
  • FIG. 7 is a schematic structural diagram of a sixth display device 10 according to an embodiment of the present invention.
  • the schematic structural diagram of the sixth display device 10 is basically the same as the structural schematic diagrams of the first and second display devices 10, except that the display device 10 further includes a display panel 500 and a flexible cover 600 that are stacked.
  • the sensing layer 100 is located between the display panel 500 and the flexible cover 600.
  • the display panel 500 is a flexible display panel 500.
  • the flexible cover 600 covers the surface of the sensing layer 100, and the sensing layer 100 covers the surface of the display panel 500.
  • the flexible cover 600 is made of polyimide material (PI material).
  • PI material polyimide material
  • the flexible cover 600 constitutes a part of the appearance structure of the display device 10, is used to protect the display panel 500, and serves as an encapsulation layer and a protective layer.
  • the flexible cover 600 and the sensing layer 100 and the sensing layer 100 and the display panel 500 may be fixedly connected by transparent optical glue.
  • the sensing layer 100 is located between the flexible cover 600 and the display panel 500. At this time, the distance between the sensing layer 100 and the flexible cover 600 can be made closer. When external pressure is applied to the flexible cover 600, it can be quickly transferred to the sensing layer 100, thereby ensuring that the display device 10 has a longer distance. Under the premise of high detection accuracy, the thickness of the sensing layer 100 is reduced, so as to realize the light and thin design of the display device 10.
  • FIG. 8 is a schematic structural diagram of a seventh display device 10 according to an embodiment of the present invention.
  • the schematic structural diagram of the seventh display device 10 is basically the same as the structural schematic diagrams of the first and second display devices 10, except that the display device 10 further includes a display panel 500 and a flexible cover 600 that are stacked.
  • the sensing layer 100 is located on a side of the flexible cover 600 away from the display panel 500.
  • the display panel 500 is a flexible display panel 500.
  • the sensing layer 100 covers the surface of the flexible cover 600, and the flexible cover 600 covers the surface of the display panel 500.
  • the flexible cover 600 is made of polyimide material (PI material).
  • the sensing layer 100 constitutes a part of the appearance structure of the display device 10, and is used with the flexible cover 600 to protect the display panel 500, and serves as an encapsulation layer and a protective layer.
  • the sensing layer 100 and the flexible cover 600 and between the flexible cover 600 and the display panel 500 may be fixedly connected by transparent optical glue.
  • the flexible cover 600 is located between the sensing layer 100 and the display panel 500.
  • the external pressure can directly act on the sensing layer 100, so that the thickness of the sensing layer 100 can be reduced to the greatest extent on the premise that the display device 10 has a high detection accuracy, so as to realize the light and thin design of the display device 10.
  • the sensing layer 100 is located on the surface of the flexible cover 600, it can further protect the flexible cover 600 and the display panel 500, which helps to prolong the service life of the display device 10.
  • FIG. 9 is a schematic structural diagram of an eighth display device 10 according to an embodiment of the present invention.
  • the structural schematic diagram of the eighth display device 10 is basically the same as the structural schematic diagrams of the fourth to seventh display devices 10, except that a first optical device is provided between the display panel 500 and the flexible cover 600.
  • the first optical glue 450 is used to connect the display panel 500 and the flexible cover 600 in a fixed manner.
  • the display panel 500 includes a touch layer 510, a second optical glue 520, and a polarized light which are stacked in sequence.
  • the touch layer 510 is disposed adjacent to the flexible cover 600 relative to the second optical glue 520.
  • the first optical glue 450 is a transparent optical glue.
  • the first optical glue 450 is a whole layer of glue and is located between the flexible cover 600 and the display panel 500 to fix the flexible cover 600 and the display panel 500.
  • the touch layer 510 includes driving electrodes and sensing electrodes that are arranged crosswise to realize the touch function of the display device 10.
  • the second optical glue 520 is also a transparent optical glue, and the second optical glue 520 may be a whole layer of optical glue to fix the touch layer 510 and the polarizer 530.
  • the second optical glue 520 can also be formed by a combination of several glue units 410 arranged at intervals. In this case, it helps to eliminate the internal stress formed between adjacent glue units 410, thereby eliminating the difference between the touch layer 510 and the polarizer 530. The internal stress between time, prolongs the service life of the display device 10.
  • the light-emitting layer 540 is an active-matrix organic light-emitting diode (OLED) light-emitting device layer.
  • OLED organic light-emitting diode
  • the third optical glue 550 is also a transparent optical glue, and the third optical glue 550 may be a whole layer of optical glue to fix the light-emitting layer 540 and the substrate 560.
  • the third optical glue 550 can also be formed by combining several colloidal units 410 arranged at intervals. In this case, it helps to eliminate the internal stress formed between adjacent colloidal units 410, thereby eliminating the gap between the light-emitting layer 540 and the substrate 560. The internal stress extends the service life of the display device 10.
  • the substrate 560 is a flexible substrate 560, which may be a polyimide (PI) material or a polyethylene terephthalate (PET) material.
  • PI polyimide
  • PET polyethylene terephthalate
  • FIG. 10 is a schematic structural diagram of a ninth display device 10 according to an embodiment of the present invention.
  • the schematic structural diagram of the ninth display device 10 is basically the same as the structural schematic diagram of the first display device 10, except that the sensing layer 100 is a pressure-sensitive layer 110.
  • the sensing layer 100 When the display module 200 is subjected to external pressure, and When the pressure value is greater than a preset threshold, the sensing layer 100 will show a preset color, and the preset color is used to indicate that the display module 200 is damaged.
  • the preset color depth of the sensing layer 100 is used to indicate the degree of damage of the display module 200.
  • the sensing layer 100 when the sensing layer 100 is a pressure-sensitive layer 110 and the display module 200 is subjected to external pressure, the sensing layer 100 will appear red, and the sensing layer 100 will appear dark red, indicating that the corresponding part of the display module 200 is exposed to greater external pressure. Pressure, light red indicates that the corresponding part of the display module 200 receives a small external pressure.
  • the preset color is the same color.
  • the sensing layer 100 may present different colors, and different colors represent different pressure values. For example, when the display module 200 is subjected to external pressure, the sensing layer 100 will show colors such as red, orange, yellow, and green, and the sensing layer 100 will appear red to indicate that the corresponding part of the display module 200 receives the greatest external pressure, followed by orange. It is yellow again, and finally green. At this time, the preset colors are different colors.
  • the area size of the preset color presented by the sensing layer 100 is used to indicate the area size of the display module 200 damaged.
  • the sensing layer 100 Since the sensing layer 100 is a pressure-sensitive layer 110, it will present a preset color under the action of external pressure. Therefore, there is a correspondence between the area of the preset color presented by the sensing layer 100 and the damaged area of the display module 200 relationship.
  • FIG. 11 is a schematic structural diagram of a tenth display device 10 according to an embodiment of the present invention.
  • the schematic structural diagram of the tenth display device 10 is basically the same as that of the ninth display device 10, except that the pressure-sensitive layer 110 includes a first film layer 111, an isolation layer 112, and a second The thin film layer 113, the isolation layer 112 is used to isolate the first thin film layer 111 and the second thin film layer 113, the first thin film layer 111 is composed of first particles 111a, and the second thin film layer 113 is composed of second particles 113a.
  • the pressure value is greater than a preset threshold, the isolation layer 112 ruptures, and the first particles 111a and the second particles 113a react to present the preset color.
  • the first particles 111a and the second particles 113a are chemical particles.
  • the isolation layer 112 between the first particles 111a and the second particles 113a will be broken, thereby causing the first particles to 111a and the second particles 113a produce an irreversible chemical reaction, and present a specific color.
  • FIG. 12 is a schematic structural diagram of an eleventh display device 10 according to an embodiment of the present invention.
  • the schematic structural diagram of the eleventh type of display device 10 is basically the same as that of the tenth type of display device 10. The difference is that the display device 10 further includes a display panel 500 and a flexible cover 600 that are stacked.
  • a first glue 521 is arranged between the panel 500 and the flexible cover 600, and the first glue 521 is used to fix the display panel 500 and the flexible cover 600.
  • the display panel 500 includes stacked layers in sequence.
  • a touch layer 510, a second gel 522, a polarizer 530, a light-emitting layer 540, a third gel 551, and a substrate 560 are provided, and the touch layer 510 is disposed adjacent to the flexible cover 600 relative to the second gel 522
  • the sensing layer 100 is located on a side of the display panel 500 away from the flexible cover 600, and the first film layer 111 is disposed adjacent to the substrate 560 relative to the second film layer 113.
  • a film layer 111 and the substrate 560 are fixedly connected by a double-sided adhesive 400.
  • the first glue 521 is a transparent optical glue.
  • the first glue 521 is a whole layer of glue and is located between the flexible cover 600 and the display panel 500 to fix the flexible cover 600 and the display panel 500.
  • the touch layer 510 includes driving electrodes and sensing electrodes that are arranged crosswise to realize the touch function of the display device 10.
  • the second glue 522 is also a transparent optical glue, and the second glue 522 can be a whole layer of optical glue to fix the touch layer 510 and the polarizer 530.
  • the second colloid 522 can also be formed by combining several colloid units 410 arranged at intervals. At this time, it helps to eliminate the internal stress formed between adjacent colloid units 410, thereby eliminating the gap between the touch layer 510 and the polarizer 530. The internal stress of the display device 10 is extended.
  • the light-emitting layer 540 is an active-matrix organic light-emitting diode (OLED) light-emitting device layer.
  • OLED organic light-emitting diode
  • the third glue 551 is also a transparent optical glue, and the third glue 551 may be a whole layer of optical glue to fix the light emitting layer 540 and the substrate 560.
  • the third colloid 551 can also be formed by combining several colloid units 410 arranged at intervals. In this case, it helps to eliminate the internal stress formed between adjacent colloid units 410, thereby eliminating the internal stress between the light-emitting layer 540 and the substrate 560. Stress, prolong the service life of the display device 10.
  • the substrate 560 is a flexible substrate 560, which may be a polyimide (PI) material or a polyethylene terephthalate (PET) material.
  • the substrate 560 and the first film layer 111 are fixedly connected by a double-sided tape 400, and the double-sided tape 400 is an ultra-thin and highly resilient double-sided tape 400.
  • FIG. 13 is a schematic structural diagram of a twelfth display device 10 according to an embodiment of the present invention.
  • the schematic diagram of the structure of the twelfth type of display device 10 is basically the same as that of the ninth type of display device 10. The difference is that the display device 10 further includes a display panel 500 and a flexible cover 600 that are stacked.
  • a first glue 521 is arranged between the panel 500 and the flexible cover 600, and the first glue 521 is used to fix the display panel 500 and the flexible cover 600.
  • the display panel 500 includes stacked layers in sequence.
  • a touch layer 510, a second gel 522, a polarizer 530, a light-emitting layer 540, a third gel 551 and a substrate 560 are provided, and the touch layer 510 is disposed adjacent to the flexible cover 600 relative to the second gel 522 ,
  • the sensing layer 100 is located between the substrate 560 and the light emitting layer 540.
  • the sensing layer 100 and the substrate 560 and the sensing layer 100 and the light-emitting layer 540 are all connected by optical glue. At this time, the distance between the sensing layer 100 and the flexible cover 600 is closer.
  • external pressure is applied to the flexible cover 600, it can be quickly transmitted to the sensing layer 100 through the flexible cover 600, and then detected by the sensing layer 100
  • the magnitude of the external pressure further indicates whether the display module 200 is damaged and the damaged part when the damage occurs.
  • FIG. 14 is a schematic structural diagram of a thirteenth display device 10 according to an embodiment of the present invention.
  • the structure diagram of the thirteenth display device 10 is basically the same as the structure diagram of any of the previous display devices 10, except that the middle portion 101 of the sensing layer 100 corresponds to the first pressure threshold, and the sensing layer 100 The edge portion 102 corresponds to a second pressure threshold, and the first pressure threshold is greater than the second pressure threshold.
  • the stress distribution in the middle part of the display module 200 is relatively uniform, the stress distribution in the edge part of the display module 200 is not uniform. Therefore, compared with the middle part of the display module 200, the edge part of the display module 200 is relatively uniform. Prone to damage. In other words, the edge of the display module 200 is more sensitive to external pressure.
  • the first pressure threshold corresponding to the middle part 101 of the sensing layer 100 is greater than the second pressure threshold corresponding to the edge part 102 of the sensing layer 100, the external pressure on the middle part and the edge part of the display module 200 can be detected more accurately
  • the different endurance capabilities of the display device 10 can increase the sensitivity of the display device 10 to external pressure detection.
  • the first pressure threshold corresponding to the middle part 101 of the sensing layer 100 is a constant value
  • the second pressure threshold corresponding to the edge part 102 of the sensing layer 100 is also a constant value.
  • the first pressure threshold corresponding to the middle part 101 of the sensing layer 100 is a gradual value
  • the second pressure threshold corresponding to the edge part 102 of the sensing layer 100 is also a gradual value.
  • the pressure of the sensing layer 100 The threshold value gradually decreases from the middle portion 101 of the sensing layer 100 toward the edge portion 102 of the sensing layer 100.
  • the pressure threshold of the sensing layer 100 decreases uniformly from the middle portion 101 of the sensing layer 100 toward the edge portion 102 of the sensing layer 100, so as to better fit the actual stress distribution of the display module 200 itself. Circumstances help to improve the accuracy of the display device 10 for external pressure detection.
  • FIG. 15 is a schematic structural diagram of a fourteenth display device 10 according to an embodiment of the present invention.
  • the structure diagram of the fourteenth display device 10 is basically the same as the structure diagram of the thirteenth display device 10, except that the thickness of the middle portion 101 of the sensing layer 100 and the edge portion 102 of the sensing layer 100 To be consistent, the density of the middle portion 101 of the sensing layer 100 is less than the density of the edge portion 102 of the sensing layer 100.
  • the thickness corresponding to each part of the sensing layer 100 remains uniform, the thickness of the entire display device 10 can be ensured to be relatively uniform, thereby helping to eliminate the problem of stress concentration inside the display device 10.
  • the density of the middle part 101 of the sensing layer 100 is less than the density of the edge part 102 of the sensing layer 100, since the material of the middle part 101 of the sensing layer 100 is sparser, the material of the edge part 102 of the sensing layer 100 is denser.
  • the middle part 101 of the sensing layer 100 is subjected to external pressure, it is less sensitive to external pressure, and when the edge part 102 of the sensing layer 100 is subjected to external pressure, it is more sensitive to external pressure, that is, The pressure threshold corresponding to the middle part 101 of the sensing layer 100 is greater than the pressure threshold of the edge part 102 of the sensing layer 100. Since the stress distribution in the middle part of the display module 200 is relatively uniform, and the stress distribution in the edge part of the display module 200 is not uniform, therefore, compared to the middle part of the display module 200, the edge part of the display module 200 is more prone to damage . By setting the density of the edge portion 102 of the sensing layer 100 to be greater, the edge portion 102 of the sensing layer 100 can be made more sensitive to the detection of external pressure.
  • the edge sensing layer 100 can be prepared, which helps simplify the preparation process of the sensing layer 100.
  • the stress distribution in the middle part of the display module 200 is relatively uniform, the stress distribution in the edge part of the display module 200 is not uniform. Therefore, compared with the middle part of the display module 200, the edge part of the display module 200 is relatively uniform. Prone to damage.
  • the thickness of the middle part 101 of the sensing layer 100 is less than the thickness of the edge part 102 of the sensing layer 100, it helps to reduce the sensitivity of the middle part 101 of the sensing layer 100 to external pressure, and to improve the edge part 102 of the sensing layer 100 corresponding to the outside.
  • the pressure sensitivity at this time, can better fit the actual situation of the internal stress distribution of the display module 200, thereby improving the sensitivity of the display device 10 to external pressure detection.
  • FIG. 17 is a schematic structural diagram of the first electronic device 1 according to an embodiment of the present invention.
  • the electronic device 1 includes a hinge part 20, a first housing 30, a second housing 40, and the display device 10 provided in any of the above embodiments.
  • the hinge part 20 is located between the first housing 30 and the second housing. Between the housings 40, the first housing 30 and the second housing 40 are used to support the display device 10, and the display device 10 corresponding to the first housing 30 can pass through the The hinge portion 20 moves relative to the display device 10 corresponding to the second housing 40.
  • electronic equipment 1 refers to equipment that is composed of electronic components such as integrated circuits, transistors, and electron tubes, and uses electronic technology (including) software to play a role.
  • Common electronic equipment 1 includes: smart phones, tablet computers, notebook computers, palm computers , Mobile Internet devices (MID), wearable devices, such as smart watches, smart bracelets, pedometers, etc.
  • the hinge part 20 is a hinge.
  • the first housing 30 and the second housing 40 jointly constitute the housing of the electronic device 1, and are used to encapsulate and protect the display device 10.
  • the first shell 30 and the second shell 40 may be metal shells or plastic shells.
  • the electronic device 1 provided by the embodiment of the present invention includes a display device 10, and the display device 10 includes a sensing layer 100 and a display module 200.
  • the sensing layer 100 and the display module 200 are stacked, and in other implementations In this manner, the sensing layer 100 is embedded in the display module 200.
  • the sensing layer 100 is used to detect external pressure on the display module 200, and used to indicate whether the display module 200 is damaged, and when the display module 200 is damaged, indicate the location where the display module 200 is damaged.
  • the sensor layer 100 is provided to determine whether the damage of the electronic device 1 is caused by improper operation, or the quality of the electronic device 1 has local display abnormalities or defective pixels. The after-sale judgment of 1 has reference value.
  • FIG. 18 is a schematic structural diagram of a second electronic device 1 according to an embodiment of the present invention.
  • the schematic structural diagram of the second type of electronic device 1 is basically the same as that of the first type of electronic device 1, except that the electronic device 1 further includes a flexible portion 50, which is located in the first housing. 30 and the second housing 40, and the flexible portion 50 is located on the side of the hinge portion 20 away from the display device 10.
  • the flexible portion 50 is The first housing 30 and the second housing 40 move under the traction.
  • the flexible part 50 is connected between the first housing 30 and the second housing 40 and is used to encapsulate and protect the hinge part 20.
  • the flexible part 50 can move under the traction of the first housing 30 and the second housing 40.
  • the flexible portion 50 arches away from the display device 10 to form a receiving space for receiving part of the hinge portion 20.
  • FIG. 19 is a schematic structural diagram of a third electronic device 1 according to an embodiment of the present invention.
  • the schematic structural diagram of the third electronic device 1 is basically the same as that of the first electronic device 1, except that the electronic device 1 further includes a middle frame 60 and a battery 70, and the middle frame 60 is partially housed in the place.
  • the middle frame 60 is disposed adjacent to the display device 10 relative to the battery 70, and the battery 70 is used to supply power to the display device 10.
  • the middle frame 60 is partially contained in the first casing 30 and partially contained in the second casing 40.
  • the middle frame 60 is used to support the display device 10.
  • the battery 70 may be housed between the first housing 30 and the middle frame 60 or between the second housing 40 and the middle frame 60.
  • the battery 70 is arranged far away from the display device 10 relative to the middle frame 60.
  • the middle frame 60 can prevent the heat of the battery 70 from being transferred to the display device 10, thereby protecting the display device 10 and preventing the display device 10 from being damaged due to the high temperature from the battery 70.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示装置(10)及电子设备(1)。所述显示装置(10)包括感应层(100)和显示模组(200),所述感应层(100)与所述显示模组(200)层叠设置,或者,所述感应层(100)内嵌于所述显示模组(200),所述感应层(100)检测外部对所述显示模组(200)的压力,并用于指示所述显示模组(200)是否发生损坏,以及所述显示模组(200)发生损坏的部位。所述显示装置(10)可以对显示模组(200)的是否受损以及受损部位进行检测,对显示模组(200)的售后判断具有参考价值。

Description

显示装置及电子设备 技术领域
本发明涉及显示技术领域,尤其涉及一种显示装置及电子设备。
背景技术
对于有源矩阵有机发光二极体显示模组,通常采用弯折特性优越的高分子薄膜材料作为柔性盖板来保护显示面板。由于该类型显示模组无法像钢化玻璃达到较高的表面硬度、强度及厚度,抗冲击能力较弱,具有该柔性显示模组的电子设备在跌落或碰撞过程中很容易造成柔性显示面板损坏,且由于柔性显示模组在局部受到冲击或撞击后并不会出现像传统智能手机表面的保护钢化玻璃会发生局部裂痕或破碎,从外观很难判断是人为操作不当还是柔性屏幕自身品质问题出现局部显示异常或坏点,对售后判定造成较大困难。
发明内容
本发明实施例提供一种显示装置,所述显示装置包括感应层和显示模组,所述感应层与所述显示模组层叠设置,或者,所述感应层内嵌于所述显示模组,所述感应层检测外部对所述显示模组的压力,并用于指示所述显示模组是否发生损坏,以及所述显示模组发生损坏的部位。
本发明实施例提供的显示装置包括感应层和显示模组,在一些可能的实施方式中,感应层与显示模组层叠设置,在另一些实施方式中,感应层内嵌于显示模组。其中,感应层用于检测外部对显示模组的压力,并用于指示显示模组是否发生损坏,以及当显示模组发生损坏时,指示显示模组发生损坏的部位。通过设置感应层来判断柔性屏幕的损坏原因是人为操作不当引起的,还是柔性屏幕自身品质问题出现局部显示异常或坏点,对柔性屏幕的售后判定具有参考价值。
本发明实施例还提供一种电子设备,所述电子设备包括铰接部、第一壳体、第二壳体和如上任一实施例提供的显示装置,所述铰接部位于所述第一壳体和所述第二壳体之间,所述第一壳体和所述第二壳体共同用于对所述显示装置形成支撑,且所述第一壳体对应的显示装置可通过所述铰接部相对于所述第二壳体对应的显示装置运动。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的第一种显示装置的结构示意图。
图2是本发明实施例提供的第一种显示装置另一实施方式的结构示意图。
图3是本发明实施例提供的第二种显示装置的结构示意图。
图4是本发明实施例提供的第三种显示装置的结构示意图。
图5是本发明实施例提供的第四种显示装置的结构示意图。
图6是本发明实施例提供的第五种显示装置的结构示意图。
图7是本发明实施例提供的第六种显示装置的结构示意图。
图8是本发明实施例提供的第七种显示装置的结构示意图。
图9是本发明实施例提供的第八种显示装置的结构示意图。
图10是本发明实施例提供的第九种显示装置的结构示意图。
图11是本发明实施例提供的第十种显示装置的结构示意图。
图12是本发明实施例提供的第十一种显示装置的结构示意图。
图13是本发明实施例提供的第十二种显示装置的结构示意图。
图14是本发明实施例提供的第十三种显示装置的结构示意图。
图15是本发明实施例提供的第十四种显示装置的结构示意图。
图16是本发明实施例提供的第十五种显示装置的结构示意图。
图17是本发明实施例提供的第一种电子设备的结构示意图。
图18是本发明实施例提供的第二种电子设备的结构示意图。
图19是本发明实施例提供的第三种电子设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,图1是本发明实施例提供的第一种显示装置10的结构示意图。所述显示装置10包括感应层100和显示模组200,所述感应层100与所述显示模组200层叠设置,或者,所述感应层100内嵌于所述显示模组200,所述感应层100检测外部对所述显示模组200的压力,并用于指示所述显示模组200是否发生损坏,以及所述显示模组200发生损坏的部位。
其中,显示模组200为柔性显示模组200。
感应层100可以为超薄的压敏薄膜,也可以为压电薄膜。关于感应层100为压敏薄膜以及压电薄膜的具体实施方式参见后面的详细介绍。
在一些可能的实施方式中,显示模组200为封装完好的整体结构,感应层100与显示模组200层叠设置,即感应层100可以位于显示模组200的上面,也可以位于显示模组200的下面。当感应层100位于显示模组200的上面时,感应层100可以充当封装层,即感应层100一方面可以对显示模组200起到保护的作用,另一方面,还可以用于检测显示模组200外部对所述显示模组200的压力,并用于指示所述显示模组200是否发生损坏,以及所述显示模组200发生损坏的部位。由于感应层100位于显示模组200的上面,当外部压力作用于显示装置10时,直接作用于感应层100上,外部压力无需经过其他层结构传递至感应层100,换句话说,此时的感应层100对于外部压力作用更为敏感,因此,可以在确保感应层100具有较高检测精度的前提下,减小感应层100的厚度,有助于实现显示装置10的轻薄化设计。当感应层100位于显示模组200的下面时,通过按压显示模组200将压力传递至感应层100,再通过感应层100表现出来的不同现象可以更好的衡量外部对显示模组200施加的压力,从而有助于提高损坏检测的精度。
在另一些可能的实施方式中,感应层100内嵌于显示模组200内,即感应层100位于显示模组200任意相邻的两层结构之间,将感应层100内嵌于显示模组200,可以将感应层100和显示模组200作为一个整体一体化成型,有助于实现模块化设计,便于后续的安装以及拆卸更换等。且由于感应层100内嵌于显示模组200,可以使得感应层100更好的贴合于显示模组200。更进一步的,将感应 层100附着于显示模组200内,可以有效的避免感应层100从显示模组200上脱落下来,从而可以延长显示装置10的使用寿命。
进一步的,在其他一些可能的实施方式中,感应层100可以为一个整体的层结构,可以与显示模组200保持同等大小,从而可以检测显示模组200的任意部位是否发生损坏以及发生损坏时的具体部位。
请继续参阅图2,在另一些可能的实施方式中,感应层100也可以为间隔排布的若干个小的感应单元110组合而成,此时,由于相邻的感应单元110之间为间隔排布,相邻的感应单元110之间不会产生相互的挤压作用,可以很好的消除相邻感应单元110之间的应力,进而将感应层100与显示模组200之间的应力释放,有助于避免出现应力集中的问题,假设有显示模组200和感应层100之间存在应力集中的情况,那么显示模组200和感应层100之间的内应力可能会对外部压力产生干扰,可能会导致检测不准确的情况,因此,通过将若干个感应单元110间隔排布形成感应层100,可以解决显示模组200和感应层100之间的应力集中问题,进而提高显示装置10检测外部压力的检测精度。进而提高显示装置10对显示模组200是否发生损坏以及发生损坏时的部位的检测精度。
可选的,若干个感应单元110呈现阵列排布,以形成感应层100。当外部压力刚好施加于感应单元110时,通过感应单元110检测显示模组200外部对所述显示模组200的压力,并用于指示所述显示模组200是否发生损坏,以及所述显示模组200发生损坏的部位。当外部压力施加于相邻两个感应单元110之间的部位时,通过相邻两个感应单元110检测到的压力取平均值的方式来检测显示模组200外部对所述显示模组200的压力,并用于指示所述显示模组200是否发生损坏,以及所述显示模组200发生损坏的部位。当外部压力同时作用于多个相邻的感应单元110时,根据外部压力的方向与感应单元110的中心部位之间的距离大小分配权重系数,根据分配至多个感应单元110上的权重系数计算显示模组200外部对所述显示模组200的压力,并用于指示所述显示模组200是否发生损坏,以及所述显示模组200发生损坏的部位。且具体的,外部压力的方向与感应单元110的中心部位之间的距离越小,分配的权重系数越大。
举例而言,假设外部压力同时作用于相邻的第一感应单元110、第二感应单元110和第三感应单元110,外部压力的作用方向与第一感应单元110之间的距离为d1,外部压力的作用方向与第二感应单元110之间的距离d2,外部压力的作用方向与第三感应单元110之间的距离d3,当d1<d2<d3时,分配至第一感应单元110用于计算外部压力的权重系数为a1,分配至第二感应单元110用于计算外部压力的权重系数为a2,分配至第三感应单元110用于计算外部压力的权重系数为a3,其中,a1>a2>a3,且a1+a2+a3=1。
本发明实施例提供的显示装置10包括感应层100和显示模组200,在一些可能的实施方式中,感应层100与显示模组200层叠设置,在另一些实施方式中,感应层100内嵌于显示模组200。其中,感应层100用于检测外部对显示模组200的压力,并用于指示显示模组200是否发生损坏,以及当显示模组200发生损坏时,指示显示模组200发生损坏的部位。通过设置感应层100来判断柔性显示模组200的损坏原因是人为操作不当引起的,还是柔性显示模组200自身品质问题出现局部显示异常或坏点,对柔性显示模组200的售后判定具有参考价值。
请继续参阅图3,图3是本发明实施例提供的第二种显示装置10的结构示意图。第二种显示装置10的结构示意图与第一种显示装置10的结构示意图基本相同,不同之处在于,所述感应层100为压电层,当所述显示模组200受到外部 压力时,所述感应层100会产生压电电流,所述显示装置10还包括控制器300,所述控制器300根据所述感应层100产生压电电流的大小判断所述显示模组200是否发生损坏。
其中,控制器300可以为微处理器,也可以为中央处理器。控制器300用于根据感应层100产生的压电电流的大小来判断显示模组200是否发生损坏的情况。具体的,由于感应层100为压电层,具有压电效应,当显示模组200受到外部压力作用时,感应层100上会产生微弱的电流信号,即为压电电流。压电电流会经过显示模组200中的集成电路将产生压电电流对应显示模组200上的坐标、根据压电电流大小获取到的外力值以及产生压电电流的时间都反馈到显示装置10做后台记录并将数据保留,以便于后续对显示装置10进行维护时,将产生压电电流对应显示模组200上的坐标、根据压电电流大小获取到的外力值以及产生压电电流的时间作为判断是人为损坏还是显示模组200本身的故障。
在一种可能的实施方式中,当所述显示模组200发生损坏时,所述控制器300还根据所述感应层100产生压电电流的部位判断所述显示模组200受到压力冲击的部位。
具体的,由于感应层100为压电层,受到外部压力作用时会产生压电电流,因此,感应层100产生压电电流的部位与显示模组200受到压力冲击的部位之间具有对应关系。当显示模组200受到外部压力作用时,感应层100上会产生微弱的压电电流。压电电流会经过显示模组200中的集成电路将产生压电电流对应显示模组200上的坐标反馈到显示装置10做后台记录并将数据保留。当需要对显示模组200进行损坏检测时,显示装置10后台记录的数据此时可以作为参考的依据,根据产生压电电流的部位就可以确定显示模组200发生损坏的部位。
请继续参阅图4,图4是本发明实施例提供的第三种显示装置10的结构示意图。第三种显示装置10的结构示意图与第一种以及第二种显示装置10的结构示意图基本相同,不同之处在于,当所述感应层100与所述显示模组200层叠设置时,所述感应层100和所述显示模组200之间设置有双面胶400,所述双面胶400用于将所述感应层100和所述显示模组200固定连接。
其中,所述双面胶400为超薄高回弹双面胶400。
在一种实施方式中,所述双面胶400为一整层的双面胶400,即双面胶400为一整块,用于将感应层100和显示模组200固定相连,使得感应层100与显示模组200紧密贴合,从而可以使得外部压力可以很好的通过显示模组200传递至感应层100,然后通过感应层100可以精确的检测到外部压力的大小。
在另一种实施方式中,所述双面胶400包括若干个间隔排布的胶体单元410。可选的,若干个间隔排布的胶体单元410呈现阵列排布。通过若干个间隔排布的胶体单元410将感应层100粘接于显示模组200上,由于相邻的胶体单元410之间没有直接接触,因此,可以很好的消除相邻胶体单元410之间产生的内应力,进而消除感应层100与显示模组200之间的内应力,有助于解决感应层100与显示模组200之间产生应力集中的问题,进而可以延长显示装置10的使用寿命。
更进一步的,对应显示模组200边缘部位设置的相邻胶体单元410之间的间隙为第一间隙,对应显示模组200的中间部位设置的相邻胶体单元410之间的间隙为第二间隙,第一间隙大于第二间隙。由于显示模组200的边缘部位与感应层100进行贴合时,更容易出现应力集中的问题,因此,当对应显示模组200边缘部位设置的相邻胶体单元410之间的第一间隙大于对应显示模组200中间部位设置的相邻胶体单元410之间的第二间隙时,可以更好的避免显示模组200边缘部 位设置的胶体单元410之间出现应力集中的问题,进而改善显示模组200边缘部位与感应层100进行贴合时的应力集中问题。
请继续参阅图5,图5是本发明实施例提供的第四种显示装置10的结构示意图。第四种显示装置10的结构示意图与第一种以及第二种显示装置10的结构示意图基本相同,不同之处在于,所述显示装置10还包括层叠设置的显示面板500和柔性盖板600,所述感应层100位于所述显示面板500远离所述柔性盖板600的一侧。
其中,柔性盖板600盖合于显示面板500的表面。柔性盖板600为聚酰亚胺材料(PI材料)。聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达400℃以上,长期使用温度范围-200~300℃,部分无明显熔点,高绝缘性能。柔性盖板600构成显示装置10的部分外观结构,用于对显示面板500进行保护,充当封装层和保护层的作用。柔性盖板600和显示面板500之间可以通过透明光学胶固定连接。
其中,显示面板500为柔性显示面板500。
在本实施例中,感应层100通过双面胶400固定于显示面板500远离柔性盖板600的表面。其中双面胶400可以为超薄高回弹双面胶400。由于感应层100相对于显示面板500远离柔性盖板600设置,当外部压力作用于柔性盖板600时,先通过柔性盖板600传递至显示面板500,然后再通过显示面板500传递至感应层100,通过感应层100就可以判断柔性显示面板500的损坏原因是人为操作不当引起的,还是柔性显示面板500自身品质问题出现局部显示异常或坏点,对柔性显示面板500的售后判定具有参考价值。且将感应层100相对于显示面板500远离柔性盖板600设置,可以避免感应层100对显示面板500形成遮挡,有助于提高显示装置10的显示效果。
请继续参阅图6,图6是本发明实施例提供的第五种显示装置10的结构示意图。第五种显示装置10的结构示意图与第一种以及第二种显示装置10的结构示意图基本相同,不同之处在于,所述显示装置10还包括层叠设置的显示面板500和柔性盖板600,所述感应层100内嵌于所述显示面板500。
其中,显示面板500为柔性显示面板500。柔性盖板600盖合于显示面板500的表面。柔性盖板600为聚酰亚胺材料(PI材料)。柔性盖板600构成显示装置10的部分外观结构,用于对显示面板500进行保护,充当封装层和保护层的作用。柔性盖板600和显示面板500之间可以通过透明光学胶固定连接。
在本实施例中,感应层100内嵌于显示面板500内。即感应层100可以位于显示面板500内任意相邻的两个层结构之间。此时,感应层100和显示面板500可以作为一个整体的结构一体化成型,便于后续的安装以及拆卸更换等。且将感应层100内嵌于显示面板500时,可以使得感应层100与柔性盖板600之间的距离更近,进而可以在确保显示装置10具有较高的检测精度的前提下,减小感应层100的厚度,从而实现显示装置10的轻薄化设计。
请继续参阅图7,图7是本发明实施例提供的第六种显示装置10的结构示意图。第六种显示装置10的结构示意图与第一种以及第二种显示装置10的结构示意图基本相同,不同之处在于,所述显示装置10还包括层叠设置的显示面板500和柔性盖板600,所述感应层100位于所述显示面板500和所述柔性盖板600之间。
其中,显示面板500为柔性显示面板500。柔性盖板600盖合于感应层100的表面,感应层100盖合于显示面板500的表面。柔性盖板600为聚酰亚胺材料 (PI材料)。柔性盖板600构成显示装置10的部分外观结构,用于对显示面板500进行保护,充当封装层和保护层的作用。柔性盖板600与感应层100之间以及感应层100与显示面板500之间可以通过透明光学胶固定连接。
在本实施例中,感应层100位于柔性盖板600和显示面板500之间。此时,可以使得感应层100与柔性盖板600之间的距离更近,当外部压力作用于柔性盖板600时,可以快速的传递至感应层100上,进而可以在确保显示装置10具有较高的检测精度的前提下,减小感应层100的厚度,从而实现显示装置10的轻薄化设计。
请继续参阅图8,图8是本发明实施例提供的第七种显示装置10的结构示意图。第七种显示装置10的结构示意图与第一种以及第二种显示装置10的结构示意图基本相同,不同之处在于,所述显示装置10还包括层叠设置的显示面板500和柔性盖板600,所述感应层100位于所述柔性盖板600远离所述显示面板500的一侧。
其中,显示面板500为柔性显示面板500。感应层100盖合于柔性盖板600的表面,柔性盖板600盖合于显示面板500的表面。柔性盖板600为聚酰亚胺材料(PI材料)。感应层100构成显示装置10的部分外观结构,与柔性盖板600一起用于对显示面板500进行保护,充当封装层和保护层的作用。感应层100与柔性盖板600之间以及柔性盖板600与显示面板500之间可以通过透明光学胶固定连接。
在本实施例中,柔性盖板600位于感应层100和显示面板500之间。此时,外部压力可以直接作用于感应层100,进而可以在确保显示装置10具有较高的检测精度的前提下,最大程度的减小感应层100的厚度,从而实现显示装置10的轻薄化设计。且由于感应层100位于柔性盖板600的表面,可以进一步的对柔性盖板600以及显示面板500形成保护,有助于延长显示装置10的使用寿命。
请继续参阅图9,图9是本发明实施例提供的第八种显示装置10的结构示意图。第八种显示装置10的结构示意图与第四种至第七种显示装置10的结构示意图基本相同,不同之处在于,所述显示面板500和所述柔性盖板600之间设置有第一光学胶450,所述第一光学胶450用于将所述显示面板500和所述柔性盖板600固定连接,所述显示面板500包括依次层叠设置的触控层510、第二光学胶520、偏光片530、发光层540、第三光学胶550和基板560,所述触控层510相对于所述第二光学胶520邻近所述柔性盖板600设置。
其中,第一光学胶450为透明光学胶。在一种实施方式中,第一光学胶450为一整层胶体,位于柔性盖板600和显示面板500之间,以将柔性盖板600和显示面板500固定连接。
其中,触控层510包括交叉设置的驱动电极和感应电极,用于实现显示装置10的触控功能。
第二光学胶520也为透明光学胶,第二光学胶520可以为一整层的光学胶,以将触控层510和偏光片530固定连接。第二光学胶520也可以为若干个间隔排布的胶体单元410组合形成,此时,有助于消除相邻胶体单元410之间形成的内应力,进而消除触控层510和偏光片530之间的内应力,延长显示装置10的使用寿命。
其中,发光层540为有源矩阵有机发光二极体(Active-matrix organic light-emitting diode,OLED)发光器件层。
第三光学胶550也为透明光学胶,第三光学胶550可以为一整层的光学胶, 以将发光层540和基板560固定连接。第三光学胶550也可以为若干个间隔排布的胶体单元410组合形成,此时,有助于消除相邻胶体单元410之间形成的内应力,进而消除发光层540和基板560之间的内应力,延长显示装置10的使用寿命。
其中,基板560为柔性基板560,可以为聚酰亚胺(PI)材料,也可以为聚对苯二甲酸乙二醇酯(PET)材料。
请继续参阅图10,图10是本发明实施例提供的第九种显示装置10的结构示意图。第九种显示装置10的结构示意图与第一种显示装置10的结构示意图基本相同,不同之处在于,所述感应层100为压敏层110,当所述显示模组200受到外部压力,且压力值大于预设阈值时,所述感应层100会呈现出预设颜色,所述预设颜色用于指示所述显示模组200发生损坏。
在一种可能的实施方式中,所述感应层100呈现出的预设颜色的深浅用于指示所述显示模组200的受损程度。
举例而言,当感应层100为压敏层110,显示模组200受到外部压力时,感应层100会呈现出红色,感应层100呈现深红色表示对应部位的显示模组200受到较大的外部压力,浅红色表示对应部位的显示模组200受到较小的外部压力。此时,预设颜色为同一种颜色。
可以理解的,在其他实施方式中,感应层100可以呈现出不同颜色,且不同颜色表示不同压力值大小。比如,显示模组200受到外部压力时,感应层100会呈现出红、橙、黄、绿等颜色,感应层100呈现红色表示对应部位的显示模组200受到的外部压力最大,其次是橙色,再次是黄色,最后是绿色。此时,预设颜色为不同种颜色。
在另一种可能的实施方式中,所述感应层100呈现出的预设颜色的面积大小用于指示所述显示模组200受损的面积大小。
由于感应层100为压敏层110,在外部压力作用下会呈现出预设颜色,因此,感应层100呈现出的预设颜色的面积大小与显示模组200受损的面积大小之间具有对应关系。
请继续参阅图11,图11是本发明实施例提供的第十种显示装置10的结构示意图。第十种显示装置10的结构示意图与第九种显示装置10的结构示意图基本相同,不同之处在于,所述压敏层110包括依次层叠设置的第一薄膜层111、隔离层112和第二薄膜层113,所述隔离层112用于对所述第一薄膜层111和所述第二薄膜层113形成隔离,所述第一薄膜层111由第一微粒111a组成,所述第二薄膜层113由第二微粒113a组成,当压力值大于预设阈值时所述隔离层112破裂,所述第一微粒111a和所述第二微粒113a发生反应以呈现出所述预设颜色。
其中,第一微粒111a和第二微粒113a为化学微粒,当外部压力作用于显示模组200上时,第一微粒111a和第二微粒113a之间的隔离层112会破裂,进而使得第一微粒111a和第二微粒113a产生不可逆的化学反应,并呈现出特定的颜色。
请继续参阅图12,图12是本发明实施例提供的第十一种显示装置10的结构示意图。第十一种显示装置10的结构示意图与第十种显示装置10的结构示意图基本相同,不同之处在于,所述显示装置10还包括层叠设置的显示面板500和柔性盖板600,所述显示面板500和所述柔性盖板600之间设置有第一胶体521,所述第一胶体521用于将所述显示面板500和所述柔性盖板600固定连接,所述显示面板500包括依次层叠设置的触控层510、第二胶体522、偏光片530、 发光层540、第三胶体551和基板560,所述触控层510相对于所述第二胶体522邻近所述柔性盖板600设置,所述感应层100位于所述显示面板500远离所述柔性盖板600的一侧,且所述第一薄膜层111相对于所述第二薄膜层113邻近所述基板560设置,所述第一薄膜层111和所述基板560之间通过双面胶400固定连接。
其中,第一胶体521为透明光学胶。在一种实施方式中,第一胶体521为一整层胶体,位于柔性盖板600和显示面板500之间,以将柔性盖板600和显示面板500固定连接。
其中,触控层510包括交叉设置的驱动电极和感应电极,用于实现显示装置10的触控功能。
第二胶体522也为透明光学胶,第二胶体522可以为一整层的光学胶,以将触控层510和偏光片530固定连接。第二胶体522也可以为若干个间隔排布的胶体单元410组合形成,此时,有助于消除相邻胶体单元410之间形成的内应力,进而消除触控层510和偏光片530之间的内应力,延长显示装置10的使用寿命。
其中,发光层540为有源矩阵有机发光二极体(Active-matrix organic light-emitting diode,OLED)发光器件层。
第三胶体551也为透明光学胶,第三胶体551可以为一整层的光学胶,以将发光层540和基板560固定连接。第三胶体551也可以为若干个间隔排布的胶体单元410组合形成,此时,有助于消除相邻胶体单元410之间形成的内应力,进而消除发光层540和基板560之间的内应力,延长显示装置10的使用寿命。
其中,基板560为柔性基板560,可以为聚酰亚胺(PI)材料,也可以为聚对苯二甲酸乙二醇酯(PET)材料。所述基板560和所述第一薄膜层111之间通过双面胶400固定连接,所述双面胶400为超薄高回弹双面胶400。
请继续参阅图13,图13是本发明实施例提供的第十二种显示装置10的结构示意图。第十二种显示装置10的结构示意图与第九种显示装置10的结构示意图基本相同,不同之处在于,所述显示装置10还包括层叠设置的显示面板500和柔性盖板600,所述显示面板500和所述柔性盖板600之间设置有第一胶体521,所述第一胶体521用于将所述显示面板500和所述柔性盖板600固定连接,所述显示面板500包括依次层叠设置的触控层510、第二胶体522、偏光片530、发光层540、第三胶体551和基板560,所述触控层510相对于所述第二胶体522邻近所述柔性盖板600设置,所述感应层100位于所述基板560和所述发光层540之间。
其中,感应层100与基板560之间以及感应层100与发光层540之间均是通过光学胶连接。此时,感应层100与柔性盖板600之间的距离更近,当外部压力作用于柔性盖板600,可以较快的通过柔性盖板600传递至感应层100,然后再通过感应层100检测外部压力的大小,进而指示显示模组200是否发生损坏以及发生损坏时的受损部位。
请继续参阅图14,图14是本发明实施例提供的第十三种显示装置10的结构示意图。第十三种显示装置10的结构示意图与前面任意一种显示装置10的结构示意图基本相同,不同之处在于,所述感应层100的中间部位101对应第一压力阈值,所述感应层100的边缘部位102对应第二压力阈值,所述第一压力阈值大于所述第二压力阈值。
具体的,由于显示模组200的中间部位应力分布较为均匀,显示模组200的边缘部位应力分布不均匀,因此,相对于显示模组200的中间部位而言,显示模 组200的边缘部位比较容易遭受破坏。换句话说,显示模组200的边缘部位对于外部压力的表现更为敏感。当感应层100的中间部位101对应的第一压力阈值大于感应层100的边缘部位102对应的第二压力阈值时,可以更为准确的检测出显示模组200的中间部位以及边缘部位对外部压力的不同承受能力,可以增加显示装置10对外部压力检测的灵敏度。
在一种实施方式中,感应层100的中间部位101对应的第一压力阈值为恒定值,感应层100的边缘部位102对应的第二压力阈值也为恒定值,此时,感应层100的制备更为方便简单,同时也能够满足对于外部压力的检测精度。
在另一种实施方式中,感应层100的中间部位101对应的第一压力阈值为渐变的数值,感应层100的边缘部位102对应的第二压力阈值也为渐变的数值,感应层100的压力阈值从感应层100的中间部位101朝向感应层100的边缘部位102逐渐减小。在一种可能的实施方式中,感应层100的压力阈值从感应层100的中间部位101朝向感应层100的边缘部位102呈现均匀减小,从而可以更加贴合显示模组200本身应力分布的实际情况,有助于提高显示装置10对于外部压力检测的精确度。
请继续参阅图15,图15是本发明实施例提供的第十四种显示装置10的结构示意图。第十四种显示装置10的结构示意图与第十三种显示装置10的结构示意图基本相同,不同之处在于,所述感应层100的中间部位101和所述感应层100的边缘部位102的厚度保持一致,所述感应层100的中间部位101的密度小于所述感应层100的边缘部位102的密度。
具体的,当感应层100各个部位对应的厚度保持均匀一致时,可以确保整个显示装置10的厚度较为均匀,进而有助于消除显示装置10内部的应力集中问题。且当感应层100的中间部位101的密度小于感应层100的边缘部位102的密度时,由于感应层100的中间部位101的材料更为稀疏,感应层100的边缘部位102的材料更为密集,因此,感应层100的中间部位101受到外部压力作用时,对于外部压力的敏感程度较低,感应层100的边缘部位102受到外部压力作用时,对于外部压力的敏感程度较高,也就是说,感应层100的中间部位101对应的压力阈值大于感应层100的边缘部位102的压力阈值。由于显示模组200的中间部位应力分布较为均匀,显示模组200的边缘部位应力分布不均匀,因此,相对于显示模组200的中间部位而言,显示模组200的边缘部位比较容易遭受破坏。通过将感应层100的边缘部位102的密度设置的更大一些,可以使得感应层100的边缘部位102对于外部压力的检测更为灵敏。
请继续参阅图16,图16是本发明实施例提供的第十五种显示装置10的结构示意图。第十五种显示装置10的结构示意图与第十三种显示装置10的结构示意图基本相同,不同之处在于,所述感应层100的中间部位101和所述感应层100的边缘部位102的密度保持一致,所述感应层100的中间部位101的厚度小于所述感应层100的边缘部位102的厚度。
具体的,当感应层100的中间部位101的密度与边缘部位的密度保持一致时,可以边缘感应层100的制备,有助于简化感应层100的制备工艺。
进一步的,由于显示模组200的中间部位应力分布较为均匀,显示模组200的边缘部位应力分布不均匀,因此,相对于显示模组200的中间部位而言,显示模组200的边缘部位比较容易遭受破坏。当感应层100的中间部位101的厚度小于感应层100的边缘部位102的厚度时,有助于降低感应层100的中间部位101对应外部压力的敏感度,提高感应层100的边缘部位102对应外部压力的敏感度, 此时,可以更加贴合显示模组200内部应力分布的实际情况,进而提高显示装置10对于外部压力检测的灵敏度。
请继续参阅图17,图17是本发明实施例提供的第一种电子设备1的结构示意图。所述电子设备1包括铰接部20、第一壳体30、第二壳体40和如上任意实施例提供的显示装置10,所述铰接部20位于所述第一壳体30和所述第二壳体40之间,所述第一壳体30和所述第二壳体40共同用于对所述显示装置10形成支撑,且所述第一壳体30对应的显示装置10可通过所述铰接部20相对于所述第二壳体40对应的显示装置10运动。
其中,电子设备1是指由集成电路、晶体管、电子管等电子元器件组成,应用电子技术(包括)软件发挥作用的设备,常见的电子设备1包括:智能手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。所述铰接部20为铰链。
第一壳体30和第二壳体40共同构成电子设备1的外壳,用于对显示装置10形成封装和保护。第一壳体30和第二壳体40可以为金属壳体,也可以为塑胶壳体。
本发明实施例提供的电子设备1包括显示装置10,显示装置10包括感应层100和显示模组200,在一些可能的实施方式中,感应层100与显示模组200层叠设置,在另一些实施方式中,感应层100内嵌于显示模组200。其中,感应层100用于检测外部对显示模组200的压力,并用于指示显示模组200是否发生损坏,以及当显示模组200发生损坏时,指示显示模组200发生损坏的部位。当显示模组200应用于电子设备1时,通过设置感应层100来判断电子设备1的损坏原因是人为操作不当引起的,还是电子设备1自身品质问题出现局部显示异常或坏点,对电子设备1的售后判定具有参考价值。
请继续参阅图18,图18是本发明实施例提供的第二种电子设备1的结构示意图。第二种电子设备1的结构示意图与第一种电子设备1的结构示意图基本相同,不同之处在于,所述电子设备1还包括柔性部50,所述柔性部50位于所述第一壳体30和所述第二壳体40之间,且所述柔性部50位于所述铰接部20远离所述显示装置10的一侧,当所述显示装置10产生折叠时,所述柔性部50在所述第一壳体30以及所述第二壳体40的牵引下运动。
具体的,柔性部50连接于第一壳体30和第二壳体40之间,且用于对铰接部20形成封装和保护。柔性部50可以在第一壳体30和第二壳体40的牵引下产生运动。当第一壳体30对应的显示装置10朝向第二壳体40对应的显示装置10折叠时,柔性部50朝向背离显示装置10的方向拱起,以形成收容空间用于收容部分铰接部20。
请继续参阅图19,图19是本发明实施例提供的第三种电子设备1的结构示意图。第三种电子设备1的结构示意图与第一种电子设备1的结构示意图基本相同,不同之处在于,所述电子设备1还包括中框60和电池70,所述中框60部分收容于所述第一壳体30以及所述第二壳体40内,所述中框60相对于所述电池70邻近所述显示装置10设置,所述电池70用于为所述显示装置10供电。
其中,中框60部分收容于第一壳体30内,且部分收容于第二壳体40内,中框60用于对显示装置10形成支撑。电池70可以收容于第一壳体30与中框60之间,也可以收容于第二壳体40与中框60之间。电池70相对于中框60远离显示装置10设置,中框60可以避免电池70的热量朝向显示装置10传递,从 而对显示装置10形成保护,避免显示装置10由于来自电池70的高温被损坏。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (21)

  1. 一种显示装置,其特征在于,所述显示装置包括感应层和显示模组,所述感应层与所述显示模组层叠设置,或者,所述感应层内嵌于所述显示模组,所述感应层检测外部对所述显示模组的压力,并用于指示所述显示模组是否发生损坏,以及所述显示模组发生损坏的部位。
  2. 如权利要求1所述的显示装置,其特征在于,所述感应层为压电层,当所述显示模组受到外部压力时,所述感应层会产生压电电流,所述显示装置还包括控制器,所述控制器根据所述感应层产生压电电流的大小判断所述显示模组是否发生损坏。
  3. 如权利要求2所述的显示装置,其特征在于,当所述显示模组发生损坏时,所述控制器还根据所述感应层产生压电电流的部位判断所述显示模组受到压力冲击的部位。
  4. 如权利要求1-3任意一项所述的显示装置,其特征在于,当所述感应层与所述显示模组层叠设置时,所述感应层和所述显示模组之间设置有双面胶,所述双面胶用于将所述感应层和所述显示模组固定连接。
  5. 如权利要求1-3任一项所述的显示装置,其特征在于,所述显示装置还包括层叠设置的显示面板和柔性盖板,所述感应层位于所述显示面板远离所述柔性盖板的一侧。
  6. 如权利要求1-3任一项所述的显示装置,其特征在于,所述显示装置还包括层叠设置的显示面板和柔性盖板,所述感应层内嵌于所述显示面板。
  7. 如权利要求1-3任一项所述的显示装置,其特征在于,所述显示装置还包括层叠设置的显示面板和柔性盖板,所述感应层位于所述显示面板和所述柔性盖板之间。
  8. 如权利要求1-3任一项所述的显示装置,其特征在于,所述显示装置还包括层叠设置的显示面板和柔性盖板,所述感应层位于所述柔性盖板远离所述显示面板的一侧。
  9. 如权利要求5-8任一项所述的显示装置,其特征在于,所述显示面板和所述柔性盖板之间设置有第一光学胶,所述第一光学胶用于将所述显示面板和所述柔性盖板固定连接,所述显示面板包括依次层叠设置的触控层、第二光学胶、偏光片、发光层、第三光学胶和基板,所述触控层相对于所述第二光学胶邻近所述柔性盖板设置。
  10. 如权利要求1所述的显示装置,其特征在于,所述感应层为压敏层,当所述显示模组受到外部压力,且压力值大于预设阈值时,所述感应层会呈现出预设颜色,所述预设颜色用于指示所述显示模组发生损坏。
  11. 如权利要求10所述的显示装置,其特征在于,所述感应层呈现出的预设颜色的深浅用于指示所述显示模组的受损程度。
  12. 如权利要求10所述的显示装置,其特征在于,所述感应层呈现出的预设颜色的面积大小用于指示所述显示模组受损的面积大小。
  13. 如权利要求10-12任意一项所述的显示装置,其特征在于,所述压敏层包括依次层叠设置的第一薄膜层、隔离层和第二薄膜层,所述隔离层用于对所述第一薄膜层和所述第二薄膜层形成隔离,所述第一薄膜层由第一微粒组成,所述第二薄膜层由第二微粒组成,当压力值大于预设阈值时所述隔离层破裂,所述第一微粒和所述第二微粒发生反应以呈现出所述预设颜色。
  14. 如权利要求13所述的显示装置,其特征在于,所述显示装置还包括层叠设置的显示面板和柔性盖板,所述显示面板和所述柔性盖板之间设置有第一胶体,所述第一胶体用于将所述显示面板和所述柔性盖板固定连接,所述显示面板包括依次层叠设置的触控层、第二胶体、偏光片、发光层、第三胶体和基板,所述触控层相对于所述第二胶体邻近所述柔性盖板设置,所述感应层位于所述显示面板远离所述柔性盖板的一侧,且所述第一薄膜层相对于所述第二薄膜层邻近所述基板设置,所述第一薄膜层和所述基板之间通过双面胶固定连接。
  15. 如权利要求10-12任意一项所述的显示装置,其特征在于,所述显示装置还包括层叠设置的显示面板和柔性盖板,所述显示面板和所述柔性盖板之间设置有第一胶体,所述第一胶体用于将所述显示面板和所述柔性盖板固定连接,所述显示面板包括依次层叠设置的触控层、第二胶体、偏光片、发光层、第三胶体和基板,所述触控层相对于所述第二胶体邻近所述柔性盖板设置,所述感应层位于所述基板和所述发光层之间。
  16. 如权利要求1-15任一项所述的显示装置,其特征在于,所述感应层的中间部位对应第一压力阈值,所述感应层的边缘部位对应第二压力阈值,所述第一压力阈值大于所述第二压力阈值。
  17. 如权利要求16所述的显示装置,其特征在于,所述感应层的中间部位和所述感应层的边缘部位的厚度保持一致,所述感应层的中间部位的密度小于所述感应层的边缘部位的密度。
  18. 如权利要求16所述的显示装置,其特征在于,所述感应层的中间部位和所述感应层的边缘部位的密度保持一致,所述感应层的中间部位的厚度小于所述感应层的边缘部位的厚度。
  19. 一种电子设备,其特征在于,所述电子设备包括铰接部、第一壳体、第二壳体和如权利要求1-18任一项所述的显示装置,所述铰接部位于所述第一壳体和所述第二壳体之间,所述第一壳体和所述第二壳体共同用于对所述显示装置形成支撑,且所述第一壳体对应的显示装置可通过所述铰接部相对于所述第二壳 体对应的显示装置运动。
  20. 如权利要求19所述的电子设备,其特征在于,所述电子设备还包括柔性部,所述柔性部位于所述第一壳体和所述第二壳体之间,且所述柔性部位于所述铰接部远离所述显示装置的一侧,当所述显示装置产生折叠时,所述柔性部在所述第一壳体以及所述第二壳体的牵引下运动。
  21. 如权利要求19所述的电子设备,其特征在于,所述电子设备还包括中框和电池,所述中框部分收容于所述第一壳体以及所述第二壳体内,所述中框相对于所述电池邻近所述显示装置设置,所述电池用于为所述显示装置供电。
PCT/CN2019/075389 2019-02-18 2019-02-18 显示装置及电子设备 WO2020168455A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/075389 WO2020168455A1 (zh) 2019-02-18 2019-02-18 显示装置及电子设备
CN201980073714.6A CN113316750A (zh) 2019-02-18 2019-02-18 显示装置及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075389 WO2020168455A1 (zh) 2019-02-18 2019-02-18 显示装置及电子设备

Publications (1)

Publication Number Publication Date
WO2020168455A1 true WO2020168455A1 (zh) 2020-08-27

Family

ID=72143952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075389 WO2020168455A1 (zh) 2019-02-18 2019-02-18 显示装置及电子设备

Country Status (2)

Country Link
CN (1) CN113316750A (zh)
WO (1) WO2020168455A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100171708A1 (en) * 2009-01-08 2010-07-08 Prime View International Co., Ltd. Touch-control structure for a flexible display device
CN103823592A (zh) * 2014-02-26 2014-05-28 汕头超声显示器(二厂)有限公司 一种带有力学感应功能的显示装置
CN105426016A (zh) * 2015-12-31 2016-03-23 华勤通讯技术有限公司 移动终端及其压力感应装置
CN206133518U (zh) * 2016-10-18 2017-04-26 厦门天马微电子有限公司 压感显示装置
CN108873414A (zh) * 2018-07-26 2018-11-23 京东方科技集团股份有限公司 液晶面板的损伤补偿方法及装置
CN108965503A (zh) * 2017-05-17 2018-12-07 广东欧珀移动通信有限公司 可折叠移动终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100171708A1 (en) * 2009-01-08 2010-07-08 Prime View International Co., Ltd. Touch-control structure for a flexible display device
CN103823592A (zh) * 2014-02-26 2014-05-28 汕头超声显示器(二厂)有限公司 一种带有力学感应功能的显示装置
CN105426016A (zh) * 2015-12-31 2016-03-23 华勤通讯技术有限公司 移动终端及其压力感应装置
CN206133518U (zh) * 2016-10-18 2017-04-26 厦门天马微电子有限公司 压感显示装置
CN108965503A (zh) * 2017-05-17 2018-12-07 广东欧珀移动通信有限公司 可折叠移动终端
CN108873414A (zh) * 2018-07-26 2018-11-23 京东方科技集团股份有限公司 液晶面板的损伤补偿方法及装置

Also Published As

Publication number Publication date
CN113316750A (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
US10735571B2 (en) Display device
US10720474B2 (en) Electronic device
TWI625846B (zh) 具有彎曲基板之可撓曲顯示面板
EP3252574B1 (en) Touch sensor and organic light emitting display device including the same
US10409430B2 (en) Electronic device having force touch function comprising a display panel and a force sensing panel disposed entirely below the display panel
CN104813475B (zh) 具有显示器集成的光传感器的电子设备
US20210383756A1 (en) Display device
US9158396B2 (en) Organic light emitting diode display device with built-in touch panel
KR102658176B1 (ko) 표시장치
US11749185B2 (en) Display device
KR20200007115A (ko) 표시모듈 및 이를 포함하는 표시장치
WO2020001381A1 (zh) 显示面板及其制作方法、移动终端
US11017199B2 (en) Display device with integrated sensor opening
WO2020206992A1 (zh) 显示屏组件及电子设备
KR20200068864A (ko) 접착 구조를 포함하는 전자 장치
CN113394355A (zh) 显示装置及终端设备
TWI658389B (zh) 背框具有觸控按鍵的觸控裝置
WO2020168455A1 (zh) 显示装置及电子设备
US20200203661A1 (en) Display device for preventing corrosion of line and electronic device including the same
US11462529B2 (en) Electronic apparatus
KR20130077015A (ko) 플렉서블 유기 발광 표시 장치
KR20200057868A (ko) 전자장치
US20210181889A1 (en) Display device and input sensor for the same
US20190121183A1 (en) Displays With Delamination Stopper and Corrosion Blocking Structures
KR102350858B1 (ko) 플렉서블 기판을 포함하는 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915657

Country of ref document: EP

Kind code of ref document: A1